ORACLE

Oracle® Call Interface
Programmer's Guide

11gRelease 2 (11.2)
E10646-15

July 2014

Oracle Call Interface Programmer's Guide, 11g Release 2 (11.2)
E10646-15

Copyright © 1996, 2014, Oracle and/or its affiliates. All rights reserved.
Primary Authors: Rod Ward, Jack Melnick

Contributors: Geeta Arora, Varun Arora, A. Bande, D. Banerjee, S. Banerjee, M. Bastawala, E. Belden, N.
Bhatt, T. Bhosle, Janet Blowney, R. Chakravarthula, S. Chandrasekar, D. Chiba, L. Chidambaran, Thuvan
Hoang, N. Ikeda, K. Itikarlapalli, Chandrasekhar Iyer, Shankar Iyer, B. Khaladkar, S. Krishnaswamy, S.
Lahorani, S. Lari, Tianshu Li, Chao Liang, Edwina Lu, S. Lynn, Valarie Moore, A. Mullick, K. Neel, , E.
Paapanen, R. Phillips, R. Pingte, R. Rajamani, M. Ramacher, A. Ramappa, A. Saxena, S. Seshadri, Rupa
Singh, B. Sinha, H. Slattery, Lu Sun, Mallikharjun Vemana, S. Vemuri, G. Viswanathan, Lik Wong, S. Youssef

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Contents

PUrOIACE ...t xIvii
AN S Lo = U< J TSRS xIvii
Documentation AcCeSSIDILILYccciiiiiiiiiiiiiiiic e xIvii
Related DOCUITIEIESooviiieiieieeeeeeeeeeetee ettt ettt et ea e e teeeaa e eateeeaeseateesassenaeessesenseesseesneesnseesreeennes xlviii
(@03 4N T£=3 015 o) o I RTR USRI xIviii

What's New in Oracle Call INTerface? ... et l
New Features in Oracle Call Interface Release 11.2oooeeiiiiiieieeieieeeeeeeeeeeeee ettt ens li
New Features in Oracle Call Interface Release 11.1 ... vieiieiieeeeie ettt seaeeesaeea lii

1 OCI: Introduction and Upgrading

OVEIVIEW OF OCT ...ttt ettt ettt et et e e te et e e se e beeaeeseeaaesseeraesteessesbeensessaeasenseenns 1-1
Advantages Of OCL.........cccccuiiiiiiieee e 1-2
Building an OCT APPLCation.........c.oiiurieieiicie et 1-2
PartS Of OC ..ottt ettt ettt ettt ete et e e beesaeere e b e baesbeebeeaseessenseeseenseesseseessenseeneas 1-3
Procedural and Nonprocedural Elements..........cccccccceeuvieiiiiiiniiiiinneiccreeeeeeeeeeeeeeeeenes 1-3
ODBJeCt SUPPOTE ..ot 1-3
SQL STALEIMENES. ... vetieiietieteettee ettt sttt ettt et e e a e te s at et e st e beebeenteestenbeeatensesntensesneenseeneas 1-4

Data Definition Language..........ccccoveiiiiiiiiiiiiiiiiiicc s 1-5
CONLLOL SEALEIMENTS ...vevveiiievieieeiieieeeete ettt ettt et e b e re e s e s beesbesbeessesbsessesseensesseessenseenns 1-5
Data Manipulation Languagecccceeiuiiiiiiiiiiiiiiiiiicessessessssseesess s 1-5
QUETIES . ..couveeeeeieeteie ettt e et et et esteese e beesaesseesbesbee st e seessessaessesseessesseessesseessesseessasseassansenssensennes 1-6
PL/SQL oottt ettt ettt ettt et ettt ettt eteeteebeeteete et e be et e s et enseasetsersereetseteereerans 1-6
Embedded SQLooiieeeeeeeeeee ettt ettt ettt b e et bt be et e b e aaeereenns 1-7
Special OCI Terms for SQL........ccccoviiiiiiiiiiiicic s 1-7
Encapsulated INterfaces...........cccooviiiiiiiiiiiiiiiiii s 1-8
Simplified User Authentication and Password Management..............cccccceeuiiiiiiiiiiciiieennns 1-8
Extensions to Improve Application Performance and Scalabilityccccooeiiiiiiiiiiniinns 1-8
OCT ODbJeCt SUPPOTT ..o 1-9
Client-Side Object Cache........ccccoeuiiiiiiiiiiiiiiiiiiiiircc e 1-9
Associative and Navigational Interfaces..........c.ccocevvieiiiiiiiiiiiiccc 1-10
OCI Runtime Environment for ObjJects ... 1-10
Type Management: Mapping and Manipulation Functionsccccccceeiicinninnnnnn. 1-10
Object Type Translator ... s 1-11
OCI Support for Oracle Streams Advanced QUEUINGccccvvvvviiiiiiiiiiiiie 1-11

XA LIDIary SUPPOTIT ...cocveviiiiiiiiiiiciciciceicc s 1-11

Compatibility and Upgrading ... 1-12
Version Compatibility of Statically Linked and Dynamically Linked Applications 1-12
Simplified Upgrading of Existing OCI Release 7 Applications..........c.cccoceevvviivninnnininnns 1-12
Obsolete OCT ROUINESc.couiiiiiiiiiiiiiiiiiiiiic s 1-13
OCI Routines NOt SUPPOTLEAc.ceueuimiuiuriiiiiiiieicieicicieieieieieeeeee e 1-14
Compatibility Between Different Releases of OCI and Serverscccooveeieiiiciennennnen, 1-15
Upgrading OCL.........cou it 1-15

Adding Post-Release 7.x OCI Calls to 7.x Applicationscccceeueueuereurrerciccnerieceeenes 1-15

OCT Instant CLieNt...........ccooiiiiiiiii ettt 1-16
Benefits of Instant CLent ... 1-17
OCI Instant Client Installation PTOCeSSccovvviiiiiiiiiiiiniiiic e, 1-17
When to Use Instant CLHeNt.........cccoviiiiiiiiic s 1-19
Patching Instant Client Shared Libraries on Linux or UNIX.......ccccocooiiiiiiie, 1-19
Regeneration of Data Shared Library and Zip and RPM Files..........cccccccccoeiiiiiiinnnnnnne. 1-19

Regenerating Data Shared Library libociei.socccoovieiiiiiiiii 1-20
Regenerating Data Shared Library libociicus.s0ccocovoirieiiiiiicieiicc 1-20
Regenerating Data Shared Libraries libociei.so and libociicus.so in One Step............... 1-20
Regenerating Zip and RPM Files for the Basic Package...........ccocovvireiiiiiniiiiic 1-20
Regenerating Zip and RPM Files for the Basic Light Packagecccccooovoiiiiinnii 1-21
Regenerating Zip and RPM Files for the JDBC Package........c.cccocovuvvvnvrnnnnnincnccnnes 1-21
Regenerating Zip and RPM Files for the ODBC Package.........ccccccoivviiiininininiininns 1-21
Regenerating Zip and RPM Files for the SQL*Plus Package............cccoeeueiiireieiiiicncnnes 1-21
Regenerating Zip and RPM Files for the Tools Package..........cccccoeeevvviicnvvnnnnne 1-21
Regenerating Zip and RPM Files for All Packages.............ccccoceuvieinieiiicinicieicceeians 1-21
Database Connection Strings for OCI Instant Clientcccooeiiiiicce, 1-21
Examples of Instant Client Connect Identifiers..........cccccceeeervviiinninnnnrrereceee 1-22
Environment Variables for OCI Instant Client ... 1-23
Instant Client Light (ENglish)ccoiiiiiiii 1-24
Globalization SEtHNGS.......c.coiiiiiiiiiiecceecccee e 1-25
Operation of Instant Client Light ... 1-25
Installation of Instant Client Lightcccccoeviiinniiiniiiicc 1-26
SDK for Instant CHENLccviiiiiiiiiiiiicc e 1-27

OCI Programming Basics

Header File and Makefile LOCAtiONS..........cccooieiiriiriiiieiieieeeeee ettt s sa e 2-1
Overview of OCI Program Programming.............ccccooiiiiiiiiiiiiiiicccccsscseseesnens 2-2
OCT Data SEIUCLUTESoocvieiiieieeeieete ettt ettt et e st eeete e et e e teesssesbeesssessseessseesseeseesssaesssassseessesssesnses 2-3
HANALES ..ottt ettt ettt e v bbb s b e st e st e s s et s eseeseeseesees et esbessessensesteneeseesaerennens 2-3
Allocating and Freeing Handles ..o 2-4
Environment Handle ...ttt ettt ettt 2-5

EIrOr HANAIEocviiiiicieeeeeeeee ettt ettt e s te st s sesbe b e b e b e sessesaesaeseasens 2-5

Service Context Handle and Associated Handles...........c.cccevirieviinieniiieeniecieeseeeeeeiene 2-5
Statement, Bind, and Define Handles............ooooouvioieoiiiiieceeeeeeeeeeeeeeee et 2-6
DeESCIIDE HANAIEcviiiieeieieieetctetettee ettt ettt et sbe s e s et e st esseseeseasassenseasens 2-7
Complex Object Retrieval Handle...........coooiiiiiiiiiiiccs 2-7

TRICA HANALE....ccoeeieeeeeeeeeeeeeeeeeee ettt ettt e e e et e st e e s eaeeesateesaaeeseneeessnseesnns 2-7

Subscription Handle ... 2-7

Direct Path Handles.............cccoooiiiiiiiiiiiiics s 2-7
Connection Pool Handle ... s 2-8

Handle AHIIDULEScoovviiiiii 2-8

OCL DESCIIPLOTS....ocvieiiieicteieteee s 2-9

OCI Programming StePS..........cccccoviiiiiiiiiiiiiiicc s 2-12
OCI Environment InitialiZationcccoceeiiiiiiiiiniiiiiniii s 2-13
Creating the OCI ENVIroNmMentcoocuiiiiiiieiiiicciec i 2-13
Allocating Handles and DeSCriptorsccccccueueuriiiiieiriniriieercceereeseeeeee s 2-14
Application Initialization, Connection, and Session Creationccccceceevevevivivnnnnennnes 2-14
Processing SQL Statements in OCL...........cccccooiiiiii 2-19
Commit or Roll Back Operations...........ccoceucuiuiuiiieiiiiiiiciiicceeieieieeeeiee e seeeeeeeaeees 2-19
Terminating the APPLiCAtioNccooviiiiiiiiiiiiii s 2-20
Error Handling in OCT ..ot 2-20
Return and Error Codes for Data.........ccccooviiiiiiiiiniiiiicc e 2-21
Functions Returning Other Values............cooooiiiiiiii 2-22
Additional Coding Guidelines.............ccccooviviiiiiiiiiiiniiiiiii s 2-22
Operating System Considerationsc.cccccucucueueieiiuiiieiiieiceeeeee et eeaeees 2-22
Parameter TYPeS......ccoceiiiieiiiiiiiiiiii s 2-23
Address Parameters...........cccocviiiiiiiiiiiiiiiiiiiiii s 2-23

Integer Parameters.........ccocociiiiiiiiiiiiii s 2-23
Character String Parameters............c.oouieueiiiiiiiiiiccc s 2-23
Inserting Nulls into @ ColUMI..........c.oiiiiii e 2-23
INdicator Variables..........ciiiiiiii e 2-24
INPUL .o s 2-24

OUEPUL s 2-24
Indicator Variables for Named Data Types and REFs..........cccccoviivninnnnnnnnnccnes 2-24
Canceling Callsoviuiiiiiiiiiiii s 2-25
Positioned Updates and Deletescoiriiiiiiiiiiiiccci 2-25
ReServed WOTdScoiiiiiiiiiic e 2-26
Oracle Reserved NameSPaCEScvuviiviiiiiiiiiiiiiiiecieie s 2-26

Polling Mode Operations in OCTccccciiiiiiiiiiiiiieee s 2-27
Nonblocking Mode in OCT ..o 2-27
Setting Blocking MOdes..........ccuiuiiiiiiiiiiiiiiiiiic s 2-28
Canceling a Nonblocking Call...........cccccoiiiiiiiiiiis 2-29
Using PL/SQL in an OCI Program ... 2-29
OCI Globalization SUPPOIt..........cccoiiiiiiiiiii e 2-30
Client Character Set Control from OCI...........oociiviririiiinnecircceeeee e 2-30
Character Control and OCI INterfacesccovvviviiiiniiiiiiiiiiic e, 2-31
Character-Length Semantics in OCl...........cooiiiiiiiiiii 2-31
Character Set SUPPOTt i OCT.......cccciiiiiiiiiiiiii s 2-31
Other OCI Globalization SUpport FUNCHONSccccciiiiiiiiiiicecceeeeeeiceeneeenenenees 2-31
Getting Locale Information in OClL..........cccooiiiiiii e 2-32
Manipulating Strings in OCL.........cccccciiiiiiiii s 2-33
Converting Character Sets in OCIT ... 2-35
OCI Messaging FUNCHONSciueieiiiiciieccicite et 2-36
IMSGEN UHILIEY ...vviiiiicicici s 2-36

vi

Guidelines for Text Message Files ... 2-36

An Example of Creating a Binary Message File from a Text Message File...................... 2-37
Data Types
Oracle Data TYPES ..o 3-1
Using External Data Type COdes.........ccoiiiiiiiiiiiiiiiiccceceeeceeeneee e esesenenes 3-3
Internal Data TYPEScooiiiiiiiiiiicc s 3-3
LONG, RAW, LONG RAW, VARCHAR?......ccccotiiiriiiiiiiicniteesniissese s 3-4
Character Strings and Byte ATTaYsccccccceucuiiiiiiiiiiiiicicieieeeeeeeeeeeeeeeeeeeeeee e 3-4
UROWID .o s s 3-5
BINARY_FLOAT and BINARY_DOUBLE.........ccccceoeiiniiiiiniiiiiiceiniicces e 3-5
External Data TYPes ... 3-6
VARCHARZ ..o 3-7
INPUL .o 3-8
OUEPUL s 3-8
INUMBER ..ot 3-8
64-Bit Integer Host Data TYPecoceueiiiiiiiiiiiiii 3-9
OCI Bind and Define for 64-Bit INtegers..........ccccceuiuiiiiiiiiiiiiiccccceeeeeceeeeeeeeeeees 3-10
Support for OUT Bind DML Returning Statementscccoeoevviiiviniiiiiniiinns 3-10
INTEGER ...ttt 3-11
FLOAT .ot 3-11
STRING ...ttt s 3-11
INPUL oo 3-11
OUEPUL e 3-12
VARNUM ..ottt 3-12
LONG ...t 3-12
VARCHAR ..ot 3-12
DATE. ..o 3-13
RAW bbb 3-13
VARRAW ..ot bbb 3-14
LONG RAW ..ot s 3-14
UNSIGNED ...ttt 3-14
LONG VARCHAR ..ottt 3-14
LONG VARRAW ..ottt 3-14
CHAR ...ttt 3-14
INPUL. oo 3-15
OULPUL o 3-15
CHARZ ...ttt ettt 3-15
Named Data Types: Object, VARRAY, Nested Table.........cccccceeueuiiiniiiiniiiceicceeeene 3-16
REF .o s 3-16
ROWID DESCIIPLOTviviiiiieiiiiietiteiec s 3-16
LOB DeSCIIPLOTcuiiiiiiiiiiiciicit e 3-17
BEILE ... 3-18
BLOB ...ttt 3-18
CLOB....o i 3-18
INCLOB ...t 3-19
Datetime and Interval Data Type Descriptors........ccecouvereinieiieieieiiceceeecc e, 3-19

ANSIDATE ..ottt sttt st st sttt st s ne 3-19

TIMESTAMP......ocoiiiiiiiiiiie bbb 3-19
TIMESTAMP WITH TIME ZONE ..ot 3-19
TIMESTAMP WITH LOCAL TIME ZONEcccoocoiiiiiiiiiiiicecsnns 3-19
INTERVAL YEAR TO MONTH ..ot 3-20
INTERVAL DAY TO SECONDooiiiiiiiiiiiceecc s 3-20
Avoiding Unexpected Results Using Datetime............ccooeueiiiiiiiiiiiiiic 3-20

Native Float and Native Double ... 3-20

C Object-Relational Data Type Mappings........cccccevervririrrrinirererreeeeeeeeeeeeeeeseeeseeeeeeeseees 3-21
Data CONVETISIONSc.coviiiiiiiiiiiiiiic s 3-21
Data Conversions for LOB Data Type Descriptorscccoceuoiireieiiicicieieiccieeecceeeee 3-22
Data Conversions for Datetime and Interval Data Types........cccccccevverirrrvnvinrrceenene 3-23
AsSIgNIMENt INOES.....cuviiiiiiiiiii s 3-23

Data Conversion Notes for Datetime and Interval Typescccccooiieiiiiiiniiiiiiccnae 3-24
Datetime and Date Upgrading RUles.............ccccccciiiiiiiiiiiiiceeecceeceeeeeeeeees 3-24
Pre-9.0 Client with 9.0 or Later Server ... 3-24

Pre-9.0 Server with 9.0 or Later Client..........cccccoceeviiiiiiiiniiiiiiiiicc 3-24

Data Conversion for BINARY_ FLOAT and BINARY_DOUBLE in OCI.......ccccceeveiveveneennnne. 3-24
TYPECOAES ... s 3-25
Relationship Between SQLT and OCI_TYPECODE Valuescccccceovuiiinninnninninnnnnnn, 3-27
Definitions in oratypes. ... 3-28

Using SQL Statements in OCI

Overview of SQL Statement Processing..............ccccovuiiviiiiiiiiiiiniiiiccccees 4-1
Preparing Statements...............ccooiiiiiiiiiii s 4-3
Using Prepared Statements on Multiple Servers...........ccocooiiiiiiiicieiicciecceec e 4-4
Binding Placeholders in OCTccccooiiiiiiiiiiiiii e 4-4
Rules for PIaceholdersccoiiiiiiiiiiiiiiiiiiiiiiiicccc s 4-5
Executing Statements...............ocoooiiiiiiiiiii 4-5
EXeCution SNapShOLsc.cueviiiiiiiiiiiciecce e 4-6
Execution Modes of OCISTMEEXECULE() ..cverveieieiiirieireriesiesesee ettt 4-6
BatCh Error MOde.........cuciiiiiiiiiiiciiiece ettt 4-7
Example of Batch Error Mode..........ccoccuiiiiiiiiiiiiicccceeeieeeeeeieeeeeeee e 4-8
Describing Select-List Itemscccccoviiiiiiiiiiii 4-9
IMPLCit DESCIIDE ... s 4-10
Explicit Describe of QUETIESc.ccoeuiuiiiiiiiiiiiiiicieicieceeceee e 4-11
Defining Output Variables in OCI...............ccccccoiiiiiiiiii s 4-12
Fetching ReSULES..........ccccooiiiiiiiiiiiiiii s 4-13
Fetching LOB Datac.cccvuiiiiiiiiiiiiicicicieceee et 4-13
Setting Prefetch Count.........oooii 4-13
Using Scrollable Cursors in OCI.............ccocoiiiiiiiiiniiiiiii s 4-14
Increasing Scrollable Cursor Performancecccccccceeiciinncienccccceeeceeeeeeeeeeees 4-15
Example of Access on a Scrollable CUISOT ... 4-15

Binding and Defining in OCI
Overview of Binding in OCl..............cccooiiiiiiiii s 5-1

vii

viii

Named Binds and Positional BINAScc.ooovviiieeiiiiiiiecieeeeee ettt eaae s s e eeavee e 5-2

OCT Array INterfaceoccueiiiceci e 5-3
Binding Placeholders in PL/SQL.......ccccccciiuiiiiiiiiiiiceececeeeceeeeeeeseeeesee e 5-4
Steps Used in OCL BINAINGouruiiiiiiiiieiiiici e 5-5
PL/SQL Block in an OCI Programcccccovviiiiiiiiiiiniiiiiiiesssessssssssssssssss 5-5
Advanced Bind Operations in OCL..........cccocccooiiiiiiiniiineineeeeeereee et 5-7
BINAiNg LOBS ...ttt 5-8
Binding LOB LOCAtOTScoueiiiiieiiiicie i 5-8
Binding LOB Data.....c.ccccueuiiiiiiiiiiiiiiieiieiccree e 5-9
Binding in OCI_DATA_AT_EXEC MOde......ccccceviimiiniiiiiiiiiiniicsscsscnes 5-13
Binding REF CURSOR Variables..........ccccooiiiiiiiiiicc i 5-13
Overview of Defining in OCI............cccooiiiiiiiii s 5-13
Steps Used in OCI Defining.........ccceuiimeiiiiicieieiicie s 5-14
Advanced Define Operations in OCI..............cccccoviiiiiiiiii s 5-15
Defining LOB Output Variables ... 5-16
Defining LOB LOCAtOTS.........coiiiiiiiiiciici i 5-16
Defining LOB Datacoooiuiiiiiiiiec v 5-16
Defining PL/SQL Output Variables...........cccccoviviiiirniiicceeereeeeeeeeeeeeseeeeeeeeeeeeees 5-17
Defining for a Piecewise Fetchccocoviiiiiiiiiii 5-17
Binding and Defining Arrays of Structures in OCIccccocoiiiiiiiiiiis 5-18
SKIP Parameters........ccccuiuiiiiiiiiiiiiciieiccceeee et 5-18
Skip Parameters for Standard Arrays ..o 5-19

OCI Calls Used with Arrays of SEIrUCLUIESc.coeiiiiiiiicieicc e 5-19
Arrays of Structures and Indicator Variables ... 5-19
Binding and Defining Multiple Buffers...............cccccccooonini 5-20
DML with a RETURNING Clause in OClccccccooviiiiiiiniiiiniiinisss 5-23
Using DML with a RETURNING Clause to Combine Two SQL Statements......................... 5-23
Binding RETURNING...INTO Variablesccccoriiiiiiiiiiiicceeeees 5-23
OCT Error HaNAINgoocuiiiiicie v 5-24
DML with RETURNING REF...INTO Clause in OCTcccccovvviiniiiiniineiccecccnnn, 5-24
Binding the Output Variable............ccoiiiiiiiiiiiiiicc s 5-25
Additional Notes About OCI Callbackscccovuviiiriiiiiiiiiiiniiiiiiiiiccs 5-26
Array Interface for DML RETURNING Statements in OCl.........ccccccoevieiivnnnivniccenene 5-26
Character Conversion in OCI Binding and Definingccccooooviiiiiiiiiicens 5-26
Choosing a Character Set............cccciiiiiiiiiiiiic s 5-26
Character Set Form and ID ... 5-26
Implicit Conversion Between CHAR and NCHAR........cccoooiiiiiiiiiicne 5-27

Setting Client Character Sets in OCTcccoooiiiiiiiiiic e, 5-27
Binding Variables in OCTc.cccciiiiiiiiiiieececeeeeeeee e 5-28
Using the OCI_ATTR_MAXDATA_SIZE Attributecccccocvviiiniiniiiiiniicns 5-28

Using the OCI_ATTR_MAXCHAR_SIZE Attribute.........cccccoeuricuvinniceeriieerencenenes 5-29

Buffer Expansion During OCI Binding..........ccccceociiiiiiieiiciecceececceeeeeeeeeeeens 5-29
Constraint Checking During Defining..........cc.ocouieieiiiiiiiiiiec 5-30
General Compatibility Issues for Character-Length Semantics in OCI...............c.cc........ 5-30
PL/SQL REF CURSORs and Nested Tables in OCIccccoviiiieiiieiieieceeceeee e 5-32
Runtime Data Allocation and Piecewise Operations in OCIccccccoviiiiniiiinnicne, 5-33
Valid Data Types for Piecewise Operations............cccceeueeeeieiniinieinciceieceeecce e, 5-34

Types of Piecewise Operations ...ttt 5-34

Providing INSERT or UPDATE Data at Runtimecccooooioiiiiic, 5-35
Performing a Piecewise Insert or Update........c.cccccoeuiiiiiiiiiiiiiicecccccceeeeeeees 5-35
Piecewise Operations with PL/SQL........ccccocciiiiiiiiiiiiiiiicic s 5-37
PL/SQL Indexed Table Binding SUppOIt.........ccc.oviiiiiiiiiiiic e 5-37
ReSEIICHONS. c..vvvvtetetetctctc s 5-38
Providing FETCH Information at Run Time..........ccooooiiiiiii, 5-38
Performing a Piecewise Fetch ..o 5-38
Piecewise Binds and Defines for LOBSccccoviiiiiniiiiiiicccc e, 5-39

6 Describing Schema Metadata

Using OCIDeSCriDEANY().........ccooviiiiiiiiiiiiiii e 6-1
Limitations on OCIDeSCIIDEANY ()ccvviviriiiiiiiiiiiieiiiiicieicicicieiee s 6-2
Notes on Types and Attributes ..o 6-3

Data TYPE COESummiiiiiiieieiciciccieeiee ettt 6-3
DeSCIIDING TYPES....ccuiviiiiicieiiectci et 6-3
Implicit and Explicit Describe Operations ... 6-3
OCI_ATTR_LIST_ARGUMENTS Atribute......ccccoovviviiiiiiiiiiiicicccccccenes 6-4

Parameter Attributes. ... 6-4
Table or View Parameters...........ccooviiiiiiiiininiiiiiiiic s 6-5
Procedure, Function, and Subprogram Attributes..............ccccoovoiiiiiiiiiicicccicecceeenenes 6-6
Package AttIIDULESc.oiviiie 6-6
Type AHTIDULES ... 6-7
Type Attribute AIIDULES ...c.ocuiiiiiiiicc e 6-8
Type Method AttribuLes.........coouiviii 6-9
Collection AITDULES........coiiiiiiiiii s 6-10
SYNONYIM AITIDULES ...ttt 6-10
Sequence AttTIDULEScoiviiiiiiiiiicc s 6-11
Column ATIDULESvviiiiiiii s 6-11
Argument and Result Atributes ... 6-12
List AtTIDULES ..o 6-14
SChema ATIIIDULESc.ooiieiiiiiicccc ettt 6-14
Database AITDULEScccvuiiiiiiiiiii e 6-15
Rule AttriDULES......cvoviviiiiciciicc s 6-15
RULE Set ALITIDULES ...ttt 6-16
Evaluation Context AHIIDULESccooviiiiiiiiiiii e 6-16
Table Alias AtIDULES........covviiii 6-16
Variable Type AttrIDULES.........cccoiiiiiiiiiiiccc s 6-17
Name Value Atributes..........cooiiiiiiii e 6-17

Character-Length Semantics Support in Describe Operations..............cccccoviiiiiiiinnccnne. 6-17
IMplicit DeSCIIDING.......c.cviuiiiiiiiiiiiiiiiciiic s 6-18
EXPLicit DESCIIDINGovviiiiiiiiiiiiiicicicicccc et 6-18

Client and Server Compatibility Issues for Describing...........ccooevvriiirinicinicniiccicnns 6-18

Examples Using OCIDescribe ANy ()ccccooiimiiiiiiiiiiiiiiiiicccceeceeeeese e 6-18
Retrieving Column Data Types for a Table..........ccccciiiiiiiiiiiiiicicceeecccceeeeeenees 6-19
Describing the Stored Procedure ..o 6-20
Retrieving Attributes of an Object TYPeccooeviiiieiiiiiiiccc e, 6-22

Retrieving the Collection Element's Data Type of a Named Collection Type 6-23
Describing with Character-Length Semanticsccoooiiiii, 6-25

LOB and BFILE Operations

Using OCI Functions for LOBs............cccccoviiiiiiiiis s 7-1
Creating and Modifying Persistent LOBSccccccocooiviiiiiiiicces 7-2
Associating a BFILE in a Table with an Operating System Filec.cccccooiiiin. 7-2
LOB Attributes of an Object ... 7-3
Writing to a LOB Attribute of an ODbJect.........cccoviiieiiiiiiiiieccrreene e 7-3
Transient Objects with LOB Attributes. ..o, 7-3
Array Interface for LOBS..........cccccocoviiiiiiiiii s 7-3
Using LOBs of Size Greater than 4 GBcccoiiiiiii, 7-4
Functions to Use for the Increased LOB SiZesccoooiuiiiiiiiiiiiiiiiiciiiiiccceeeas 7-5
Compatibility and Migration............cocueiiiiiiiiiiic 7-6
LOB and BFILE Functions in OCL.............ccccooiiiiiiiicc s 7-8
Improving LOB Read /Write Performance............cccooiiiiiiiiniiiicinicceeeeeeeenennas 7-8
Using Data Interface for LOBSccoooiiiiiii e 7-9

Using OCILObGetChUNKSIZE()......c.cviuieiiiiieiiiiiiiiiicieeieieeeneiee e nenennas 7-9

Using OCILObWTrite APPend2()........cccuueveueieiiiiiiiiiiiiiieieicicieeiee e 7-9

Using OCILobArrayRead() and OCILoObArrayWrite().........cocoveueveivicieieiieiceieccieeee 7-9

LOB Buffering FUNCHONSc.ccccccuiuiuiiiiiiiiieicieieiciceeieeeccteeeieeeee et 7-9
Functions for Opening and Closing LOBs...........ccccoiiiiiiiiiie s 7-10
Restrictions on Opening and Closing LOBs...........cccoiiii 7-10

LOB Read and Write Callbacks...........cccvuiviiiimiiiiiiiiiiiciicesc e 7-11
Callback Interface for Streamingc.cocoeuoeueiiiniieiceice s 7-11
Reading LOBs by Using Callbacks...........ccouoeeueiiiiiiiieiiiicieieccci i 7-11
Writing LOBs by Using Callbacksccoeuviiiiiriiiiiiiicccccccccccceceeenenes 7-13
Temporary LOB SUPPOTt ..o s 7-14
Creating and Freeing Temporary LOBs.........ccccooiiiiii e, 7-15
Temporary LOB DUIations ... 7-15
Freeing Temporary LOBS.........coooii 7-16
Take Care When Assigning POINEErS.........ccccccuiuiiiiiiiiiiiiiiiiiiiiciicceees 7-16
Temporary LOB EXamPLeccccuiiiiiiiiiiiiiiiceecceee e 7-16
Prefetching of LOB Data, Length, and Chunk Size.............ccccocoiiiiiiiii, 7-19
Options of SecureFiles LOBS ... 7-22

Managing Scalable Platforms

OCI Support for Transactions.............cccciiiuiiiiiiiiiiii s 8-1
Levels of Transactional Complexityccccooiiiiiniiiiiniiis 8-2
Simple Local Transactionscccceiiiiiiiiiiiiiiiee e 8-2
Serializable or Read-Only Local Transactionsc.ccoueeueieiieieiiiineeicce e 8-2
Global TranSaCtioNSc.cccucuiucuiiciieieiciciee ettt 8-2
Transaction IdeNtifiers ... 8-2
Attribute OCI_ATTR_TRANS_NAMEcccccoviiiiiiiiiiniinncsr s 8-3
Transaction Branches..........c.cccccciiiiiiicceee e 8-3

Branch States.........ooii s 8-4

Detaching and Resuming Branches............ccccccoeciiiiiiiniiiniiiininnncnnnssnsenn, 8-4

Setting the Client Database Name...........cccoviiiiiiiiiiiiiii e 8-5

One-Phase Commit Versus Two-Phase Commitcooooiiiiiiiiiiiee 8-5
Preparing Multiple Branches in a Single MeSsage..........cccccoeeueueuiienivinenirinnrrrreeeeeeeane 8-6
Transaction EXaMPLES.........ccociiiiiiiiiiiiiiiiiii s 8-6
Initialization Parameters ... 8-6
Update Successfully, One-Phase COMMULcccoviiriiiiiiiiiicccccccceecnceceenenes 8-6

Start a Transaction, Detach, Resume, Prepare, Two-Phase Commit..........cccccevuriiiiuinnnne. 8-6
Read-Only Update Fails...........ccoooiiiii e 8-7

Start a Read-Only Transaction, Select, and Commit..........cccccoeoeceiicicciiieeicccreene 8-7
Password and Session Management ..o 8-7
OCI Authentication Managementccoeuoiirrieiiiicicie et 8-7
OCI Password Management...........ccccucueuerureriiirirerinininenrieieieseseseseeeses s 8-9
Secure External Password StOre..........ccceviiiiiiiiiiiiiiicic 8-9
OCI Session Management..........cceueuiieiiiiiiiiiieie s 8-9
Middle-Tier Applications in OCTccouiiriiriiiniriicceeeeree et 8-10
OCI Attributes for Middle-Tier Applicationscccoeveveviiiieieiiiiiiiiiiiiicc 8-11
OCI_CRED_PROXY ..ottt 8-11
OCI_ATTR_PROXY_CREDENTIALS........ccceviviitiiiiiiiiiicec s 8-11
OCI_ATTR_DISTINGUISHED_NAME........cccccecviiiiiiiiiiiiicnennnnes 8-11
OCIL_ATTR_CERTIFICATE ..ottt 8-12
OCI_ATTR_INITIAL_CLIENT_ROLEScceiviiiiiiiiiiinciicesnce s 8-12
OCI_ATTR_CLIENT_IDENTIFIERccccecviiiiiiiiiiiiniincscsscnnes 8-12
OCI_ATTR_PASSWORD. ..ottt 8-13
Externally Initialized Context in OCIccccccooiiiniiiiiiii 8-15
Externally Initialized Context Attributes in OCIL...........cccooiiiiiiiiii e, 8-16
OCILATTR_APPCTX_SIZE ...ttt 8-16
OCI_ATTR_APPCTX_LIST ..ottt 8-16

Session Handle Attributes Used to Set an Externally Initialized Context....................... 8-16
End-to-End Application Tracing..........ccceueiirurieiiiiicieieicec e 8-17
OCI_ATTR_COLLECT_CALL_TIMEcceoiiiiiiiiiininincniire s 8-17
OCILATTR_CALL_TIME......coiiiiiiiiiiiiiiini e 8-17
Attributes for End-to-End Application Tracingccoeeeivemeieiniicciceecccee 8-17

Using OClSessionBegin() with an Externally Initialized Contextccccccevueiivrivnnnnene. 8-18
Client Application Context............coooiiiiiiiiiiiiii s 8-20
Multiple SET OPerations.........cccccccuciiiiiiiiiiiiiiiiiiiiiiieeieieeeteeeie e 8-20
CLEAR-ALL Operations Between SET Operationsc.ccccccvviviniiiiiiniiiiininiccnneecne 8-21
Network Transport and PL/SQL on Client Namespace...........ccccceeueurreiieieieieiieierciceeennens 8-21
Edition-Based Redefinition..............cccccoviiiiiiiiiiiiiicicccccrce et 8-22
OCI Security ENhancements ... 8-23
Controlling the Database Version Banner Displayed..........cccooiiiiiiiiiininciiiceen, 8-23
Banners for Unauthorized Access and User Actions Auditing..........ccccoeeveveenieiiicinneccnnnn, 8-23
Non-Deferred LINKAGEccccceuiuiuririiiiiiiieicereeeceeeeee e 8-24
Overview of OCI Multithreaded Development..................ccccccoiniiiiiiniiinie, 8-24
Advantages of OCI Thread Safety ... 8-25
OCI Thread Safety and Three-Tier Architecturesc.cccceeueuiicrrrieinrnerereeeeeereenes 8-25
Implementing Thread Safety ... 8-25
Polling Mode Operations and Thread Safetycccccoeviiiiiiinnnniiiniincnes 8-26

xi

Xii

Mixing 7.x and Later Release OCI Callsccccceuoiimiieiiiiiiiieiicic s 8-26

OCIThread Package ..ot 8-26
Initialization and TermMiNAtioNccccoiioiiiiiiiiiceeeeeee et nees 8-27
OCIThread COnteXt ... s 8-28

Passive Threading Primitives ..o 8-28
OCITRIEAAMULEXvviiiiiiciicieictcetete ettt aenees 8-28
OCIThIEadKeyooeiiiiieiieie st 8-29
OCIThreadKeyDestFUNC...........coooiiiiii s 8-29
OCITRIEadId.ottt 8-29

Active Threading Primitives.........cccoouoiiiiiiiiiiii 8-30
OCIThreadHandlecccooiiiiiiiiiiiiiiiiiii s 8-30

OCI Programming Advanced Topics

Connection Pooling in OCl ... s 9-1
OCI Connection Pooling CONCEPLSccocueueuimiuiueieiiieicieicieieieieieieeeieteeeteieeeeene e 9-1
Similarities and Differences from a Shared Server ..., 9-2
Stateless Sessions Versus Stateful SeSSIONS ..o 9-2
Multiple Connection POOIScccccciiiiiiiiiiiiccccce e 9-3
Transparent Application FailoVer ..o 9-3
OCI Calls for Connection POOINGccceviuiieiiiiiiiiec e 9-3
Allocate the Pool Handle ... s 9-4
Create the Connection Pool ..., 9-4
Log On to the Database............cooiuiiiiii e 9-5
Deal with SGA Limitations in Connection POOLNGc.ccccccccuiiiiiiicineiiccrcccceeene 9-6
Log Off from the Databasecceeviririeiiicii e 9-6
Destroy the Connection POOL.............cooruiiiiiii e 9-7
Free the POOl HaNdlecocviiiiiiiiiiiii s 9-7
Examples of OCI Connection POOLNE..........cccoueiiiiiiriiiiiicic 9-7
Session Pooling in OCT ... s 9-7
Functionality of OCI Session POOLNEcccovuveriririririrririiiirrc e 9-8
Homogeneous and Heterogeneous Session POOIS ... 9-8
Using Tags in Session POOIS..........cccccciiiiiiiiiiiiiiices e 9-9
OCI Handles for Session POOLNG.........c.cccoeueuruiiiieiriririiiciciriricceeirereeereeeeeeses e 9-9
OCISPOOL ...ttt 9-9
OCTAURINTO ...t 9-9
Using OCI SeSS10n POOLNGc.cucuiuiiuimiiiiiiiiccieieeieiceeeeieneeie et neeeees 9-10
OCI Calls for Session POOLNG..........ccuiricieiiiiciiccic 9-10
Allocate the Pool Handlecoouiuiiniiiiciiiiiiiiicceeee et 9-11
Create the POOI SESSIONccveviiiiiiiiiiiii e 9-11
Log On to the Database.............cooioiiiiiiii 9-11
Log Off from the Databasecccccoeuiiiiiiiiiiiiiiiiiiiiii s 9-12
Destroy the Session PooL..........ccccccciiiiiiiiiiiccceee e 9-12
Free the Pool Handleccccooviiiiiiiiiiiiiicc s 9-12
Example of OCI Session POOLNG..........ccccceuiiiiiiiiiiiiiiiiiic s 9-12
Runtime Connection Load Balancing............cccccccoeiiiiiiiiiiiiiicccccereeecceeeeeeeees 9-12
Receiving Load Balancing Advisory FAN Eventscccccooiiiiiiiic 9-13
Database Resident Connection Pooling ..o 9-13

Configuring Database Resident Connection POOlNGccccccovvvieiiiiiiiiiiiiiiiicie, 9-15

Using OCI Session Pool APIs with DRCPcccccoiiiiiiiiiiiiieces 9-16
Session Purity and Connection Class..........c.cccocceiiiiiiiiiiiiiicceeeeeeeeeeeeeeeeeeeeee s 9-16
S@SSION PUTILY .ottt 9-16
ConNECctioN Class........ciiiiiiiiiiiiic s 9-17
Defaults for Session Purity and Connection Class.........c.cccoccecucueciicccieeicceiceeenes 9-18
Starting the Database Resident Connection Pool ..., 9-18
Enabling Database Resident Connection POOLNGccoevoiiiiiiiiiiicice, 9-18
Benefiting from the Scalability of DRCP in an OCI Applicationccccccceueuciecieenicncuennne. 9-18
Best Practices for Using DRCP ... 9-19
Compatibility and Migration...........ccccruoiiiiieiiiiic e 9-20
Restrictions on Using Database Resident Connection Poolingccccccceuvueuciivicnvincnenene. 9-20
Using DRCP with Custom POOIS ..ot 9-21
Marking Sessions Explicitly as Stateful or Stateless.............ccooeueieiiiiiiiii, 9-21
DRCP with Real Application CLUSETScccccuiuiiiiiiiiiieieieiccceeicice s 9-22
DRCP with Data GUArd.........ccocoiiiiiiiiiiiiiic s 9-23
When to Use Connection Pooling, Session Pooling, or Neithercccccoovvinnnnnnnn 9-23
Functions for Session CIeation............coouviiiiiiniiiiiiieiiic e 9-24
Choosing Between Different Types of OCI SeSSionsccccovoiiurieiiiiicieieiiceece, 9-25
Statement Caching in OCI.............ccocoiiiiiiiiii e 9-26
Statement Caching Without Session Pooling in OCI..........ccccccccciiiiiiinnnninrncrreenes 9-26
Statement Caching with Session Pooling in OClL.........ccccooiiiiiiiiiicicc 9-27
Rules for Statement Caching in OCTL..........c.cooiiiiiiiii e 9-27
Bind and Define Optimization in Statement Cachingcccccoevvvvinnnnninnrrccrne 9-28
OCI Statement Caching Code Example ..o 9-29
User-Defined Callback Functions in OCI ... 9-29
Registering User Callbacks in OCTcccoiiiiiiiiiiiiriririrreeeeereeeeeee s 9-30
OCIUserCallbackRegIStercooouiiiiieiicieiiiicie s 9-31
User Callback FUNCHONcooviiiiiiiiiiiiii s 9-31
User Callback Control FIOW ..o 9-32
User Callback for OCIEITOTGEL() .veveverreirieririeiirieeirieesieestertstesestesestenestesessesessesessesessesessenens 9-33
Errors from Entry Callbacks.........ccccceviiiiiiiiiiiiiiiiiiiiiiiiiicccccccccs 9-33
Dynamic Callback Registrations............cccceueueuiiriiiririniiiinririecreeeeceeeeeseeeeeee s 9-33
Loading Multiple Packages ... 9-34
Package FOrmatcccciiiiiiiiiiiiiiicic s 9-34
User Callback Chainingccccoiiiiiiiiiiiicceeeeeeeeeeeneeie e seseseneseees 9-35
Accessing Other Data Sources Through OCLL.........ccccooiiiiii 9-35
Restrictions on Callback FUNCLIONSccccoovrieieuiiininieiiiiirecce e 9-35
Example of OCT Callbacksccocoeuiuiiiiiiiiiiiiiiccecccceeeeeee e 9-36
OCI Callbacks from External Procedures...........cccouvieiiiniininiiiiiiiiiieciceccecseees 9-37
Transparent Application Failover in OCIccccccoviviiiiiiininiiiiiccnces 9-37
Configuring Transparent Application Failover ... 9-38
Transparent Application Failover Callbacks in OCl...........ccccccovviniiiiniiniiiiice 9-38
Failover Callback Structure and Parameters.............cccocovvvrnniniiiininiiniicinncecces 9-39
Failover Callback RegIStrationccocouvuviiiiiririririiiiiiirrecr s 9-40
Failover Callback EXamplecccciiiiiiiiiiiiiiiiiiciic s 9-40
Handling OCI_FO_ERRORccccceceuriiiiriniiiieieiniierrcesie ettt 9-42

xiii

10

Xiv

HA EVent INOTIEICATIONoiiieiiiciie ettt eeaae s et e s etesesaseesnnneesnnreeennes 9-43

OCIEvent Handle.........cooiiiiiiiiicss s 9-44
OCI Failover for Connection and Session PoOIS ..., 9-44
OCI Failover for Independent CONNECtioNS..........cc.cviuiuiiiiiiiviiniiiiiie s 9-45
Event Callbackccooiiiiiiiiiiiiiiiiiiiici s 9-45
Custom Pooling: Tagged Server Handles...........cccccoiiiiiiiiiiiiccecceceeeceenenens 9-46
Determining Transparent Application Failover (TAF) Capabilities.........ccccovririininnnnne. 9-47
OCI and Streams Advanced QUEUING............ccoviiiiiiiiiiiii e 9-47
OCI Streams Advanced Queuing FUNCHONScccciiiiiiiiciicceeccceececceeeeeeees 9-48
OCI Streams Advanced Queuing Descriptors.........coeieieiiiicieiciiiccec e 9-48
Streams Advanced Queuing in OCI Versus PL/SQL........ccccocoiiiiiiiininiicin, 9-49
Buffered MeSSAZINGc.cceuiuiuiiiiiiiiiiiiiccieece et 9-52
Publish-Subscribe Notification in OCIcccocoiiiiiii e 9-54
Publish-Subscribe Registration Functions in OCI ..o, 9-55
Publish-Subscribe Register Directly to the Database..........ccccccoeeeuricuiiinviiccrcccene 9-55
Open Registration for Publish-Subscribecooooiii 9-58
Using OCI to Open Register with LDAP.........c.cooooiiiiiiiicc 9-59
Setting QOS, Timeout Interval, Namespace, Client Address, and Port Number 9-60
OCI Functions Used to Manage Publish-Subscribe Notification...........cccccceoeveiiininnninns 9-61
Notification Callback in OCL ..o 9-61
Notification ProOCedUIEccoviiiiiiiiiiiic e 9-64
Publish-Subscribe Direct Registration Example...........ccoooeiiiiiiinieiiiice, 9-64
Publish-Subscribe LDAP Registration Example...........cccoooiiiiiiiiiiicc, 9-69

More OCI Advanced Topics

Continuous Query Notification.............cccooiiiiiiiiiii 10-1
Using Query Result Set NOtIficationsccoveeeeiririiniciiiiccicccceeeceeee s 10-2
Registering for Continuous Query Notification ..o, 10-2
Subscription Handle Attributes for Continuous Query Notification...........ccccoovriieinnnnan. 10-3
Using OCI_ATTR_CQ_QUERYID Attributecccccovviiiiiiiiiiiiiiiicicccc 10-5
Continuous Query Notification Descriptors.........cccouiiieiiiiiiieicc 10-5

OCI_DTYPE _CHDESoitiiiiiiieieriieieisieeie ettt 10-6
Continuous Query Notification EXample.........ccccceciiiiiiinniiirenccereeeeeeeeeeeeeeeaes 10-7

Database Startup and ShutdoWn ... 10-17
Examples of Startup and Shutdown in OCl...........cccooviiiiiiiii 10-18

Implicit Fetching of ROWIDS ... 10-20
Example of Implicit Fetching of ROWIDS..........ccccooviviiiiniiiiccencnnas 10-21

Client Result Cache..........ccccooviiiiiiiiiiiiiicce ettt 10-23
Benefits of Client Result Cache ..o, 10-23
Guidelines for Using Client Result Cachecooooiiii 10-24

SQL HINES ...ttt 10-25
Table ANNOLAtIONcoviviiiiiiii s 10-25
Checking Table Annotation Mode ..o 10-26
5€5S10N PaArameterscocoiviiiiiiiiiiiiciecee e 10-26
Effective Result Cache Table Mode ..o 10-26
Cache Example Use Casescccouviiiiiiiiiniiiiiiiii s 10-27
Queries That Are NOt Cachedcooovieiiiieieieceeeeeeeeeee ettt e earees 10-27

11

Client Cache CONSIStENCYcuoviiurieiiiiicie et 10-27

Deployment Time Settings for Client Result Cache...........cccooiiii 10-28
Client Configuration File ... 10-29

Client Cache StatiStiCs.........cooviiiiiiiiiiiiiiiiiiic 10-29
Validation of the Client Result Cacheccccoviniiiiiiiiiiie 10-30
Timing Measurement ..o 10-30

USING VEMYStAt.....oooviiiiiicici s 10-30

USING VESGLATOA ... 10-30

OCI Client-Side Result Cache and Server Result Cache.........ccccoovviiiviiiiiiiiiiine, 10-31
Client Result Cache Demo Files..........cccccoviiiiiiiiiniiiiiiiii e 10-31
Compatibility with Previous Releasescccoooiiiiiiiiiiiiiccc 10-32
Fault Diagnosability in OCl.............ccoiiiiniiiiii s 10-32
ADR Base LOCAtIONcoieiiiiiiiiiiciciceett e 10-32
USING ADRC ...t 10-33
Controlling ADR Creation and Disabling Fault Diagnosability Using sqlnet.ora............... 10-35
Client and Server Operating with Different Versions of Time Zone Files............................. 10-36

OCI Object-Relational Programming

OCT ODJECt OVEIVIEW ...ttt 11-1
Working with Objects in OCL............ccccooiiiniiiiiniiiiii s 11-2
Basic Object Program SEIUCIUIEc.ccovuviiiciiiriririiiceeeeeeereceee e 11-2
Persistent Objects, Transient Objects, and Values............ccccocovvniiinnnnnnn, 11-3
Persistent ODJeCtScouoiiicieie s 11-3
Transient ODJECtS.........cviiiiiiicicceeecce ettt es 11-4

VAIUES ..ot s 11-4
Developing an OCI Object Applicationcccccovviiiiiiiiiiiiii 11-5
Representing Objects in C APPLICAtIONSccevevcuiiriririiiiiicccrerree e 11-5
Initializing the Environment and the Object Cache...........c.coociiiiiiiiiiiic, 11-6
Making Database CONNECtiONS...........c.ooruiieiiicieieicci e 11-7
Retrieving an Object Reference from the Server ... 11-7
PInning an ODJectcuoviiiiii 11-8
ATTAY PN 11-9
Manipulating Object AttIDULESc.cceuiuiiiiiiiiiiiicicceee s 11-9
Marking Objects and Flushing Changes..............ccoeiiiiiiiiiic 11-10
Fetching Embedded ObjJectscooviiiiiiiiiiiiiiiicc e 11-11
Object Meta-AttriDULEScoocuiiiiiiiiiicccccce e 11-12
Persistent Object Meta-Attributes............ccooiiiiiiiiiiii 11-12
Additional Attribute FUNCHONSc.c.eoiviiiiiiiiiiciiiccccee e 11-14
Transient Object Meta-AttribDUtes ... 11-14
Complex Object Retrieval ..o 11-15
Prefetching ObJECESc.coviiiiiiiiiiiiiiiiic e 11-16
Implementing Complex Object Retrieval in OCTcccoovvrviinniniireeeees 11-17

COR PrefetChing........ccoviiviiiiiiiiiiiic s 11-18
COR INEETITACE ...ttt 11-18
Example of CORc.ooouiiiire et 11-18

OCI Versus SQL Access to ObJECESccvuiviiiiiiiiiiiiiiiiiiiiccccc s 11-20
Pin Count and UNpinning.........c.ccccceeviiiiiiiiiniiiiiiinsnii e 11-21

XV

12

XVi

AL 59 I Ve STal= {0y ate 1 b Loi 1 0 <SRRI 11-21

Creating ODJECtSocuiieiieic e 11-23
Attribute Values of New ODJECESc.ccceuiiiiiiiiiiririiiciririccecreeeceee s 11-24
Freeing and Copying ObJECtScouiiieiiiiieieiiccic e 11-25
Object Reference and Type Reference...........cooueviiiiiiiiiiiiicc 11-25
Create Objects Based on Object Views and Object Tables with Primary-Key-Based OIDs 11-25
Error Handling in Object Applications..........cccocvviiiiiniiiiiniiniiiiicccnecana 11-26
Type INheritance.............cocooiiiiii e 11-27
SUDSHEULADIIEY ...t 11-27
NOT INSTANTIABLE Types and Methods...........c.ccoiiioiiiiiiic 11-28
OCI Support for Type INheritance.........cooooeeieiiiciiicce e 11-28
OCIDESCITDEANY() ...vvviviiiiiniiiicieiccc s 11-29

Bind and Define FUNCHONSccccoeviviiiiiiiiiiiiiiiiccc s 11-29
OCIODbjectGetTyPeRef()cccvviviiiiiiiiiiiiciicicicc s 11-29
OCIODIECHCOPY()--veveveverremrmrmeeereieiririeeeieeetseeeeeeseses s st 11-29
OCICOHIASSIGNEIEIM()vovviiiiiieiiicicicicicc s 11-29
OCICOHAPPENA()...rrrrrriiiirieieieiicie ettt et 11-29
OCICOIGELEIEIN() ...cocvvviiiiiriiciieiiiiec s 11-30

OTT Support for Type Inheritance ... 11-30
Type EVOIULION.ccooiiiiiiiiiiiii e 11-30

Object-Relational Data Types in OCI

Overview of OCI Functions for Objects.............coooiiiiiiiiiiiiee 12-1
Mapping Oracle Data Types to C..........ccccoviiiiiiiiiiiiiii s 12-2
OCI Type Mapping Methodologycccceueiirieiiiicicic i 12-3
Manipulating C Data Types with OClL.............ccccccoviiiniiiiiis 12-3
Precision of Oracle Number Operations...........c.cccoccuecceueciieieieeeeeeeeeeieneieneeeeeeneeeenenens 12-4
DAte (OCIDALE)cccveiieeieeeeieeteete ettt ete sttt e st e te e et e s te e st e sseessesseesseessessesssessasssassasssassanssensesssensenses 12-5
Date EXample ... 12-5
Datetime and Interval (OCIDateTime, OCIINterval)........cccccooviveomiiioieieeieeeeee e 12-6
Datetime FUNCHONS ...cooviiiieiiieieeeteee ettt sttt et e st e ae e st e esbaessbeebaesssesnbaensnesnses 12-7
Datetime EXampPle........ccccoiiiiiiiiiiiiiicce s 12-8
INEEIVAl FUNCHONS ...veiivieiieieeieeeese ettt ettt et sse e e s e et eeseensesseensesseessesneensenneen 12-8
Number (OCINUMDET)cccooieiieieie ettt ete et et e te et e e e ssesseessessaessesssessaessessasssessasssensesssensenses 12-9
OCINUMDber EXamPIESc.couviviiiiiiiiiiiiiiiiiiiin e 12-10
Fixed or Variable-Length String (OCIString)cccocoovviiiiiiiiiicccccccnes 12-12
SHING FUNCHONS.ottt 12-12
SHANG EXAMPLE ..o 12-12
RAW (OCTRAW) ...oovieiiieiieieeieie ettt e et et e sae st estesee s e esaessasssesaensesseensasseensesseensesseensesseensesseensensenns 12-13
RAW FUNCHIONS ..eiiiiiiiieieeiteeteeeeeeet ettt ettt et e st e be st e e st e ssbesbaesssesnseesssesnsasnseenns 12-13
RaW EXAMPLEooviiiiiiiiiic e 12-13
Collections (OCITable, OCIArray, OCIColl, OCIIter)cccoovviiinniiiiniiiiiciicccces 12-14
Generic Collection FUNCHIONS.cc.icieciiiieiecceereeesee ettt ae e sae s e e esseesaessesseenes 12-14
Collection Data Manipulation FUNCtIONS............ccoeiiiiiiinicccc e, 12-14
Collection Scanning FUNCHONSc.couviriiiiiiiiiiiecc e 12-15
Varray/Collection Iterator Example ..o 12-15
Nested Table Manipulation FUNCHONS..........cccouoiiiiiiiiccc 12-16

13

Nested Table Element Ordering ..o 12-17

Nested Table LOCAtOIScccoviiiiiiiiiiiiiiiiiiiii e 12-17
Multilevel Collection TYPes..........cccccviriiiiiiiiiiiiii s 12-17
Multilevel Collection Type EXample..........cccoceiiiiiiiiiiniiiiiiiiiias 12-18
REF (OCTRES) ..ot 12-18
REF Manipulation FUNCHONS.ccviiiiiiiircrrr e 12-19
REF EXAMPIE...oiiiiiiiiiiiiiiiiiiiicticc s s 12-19
Object Type Information Storage and Accesscoceiiiiiiiiiiiiiiiines 12-20
DeSCIIPLOr ODJECES ...t e 12-20
AnyType, AnyData, and AnyDataSet Interfacesccccoooovviiiiiiics 12-20
Type INterfacescouviiiiii 12-21
Creating a Parameter Descriptor for OCIType Calls.......cccccceuvuviiiiivnninrnnrerecees 12-21
Obtaining the OCIType for Persistent Typescccooeueueiiriiiiininiiieiicce 12-22

Type Access Calls........c.ooiuriiiiii s 12-23
Extensions to OCIDESCIIDEANY()....c.cueueururuiiiuiiriririeieieirieieieeereeeeeere s 12-23
OCTAnyData INterfacescooiiurieiiiiiciic 12-23
NCHAR Typecodes for OCIAnyData FUNCHONSccccuiviiiiiiieiicciccc 12-24
OCIAnNyDataSet INtEIfaces.ccvueururuririririiiccerr e 12-24
Binding Named Data TYPes. ...ttt ses s 12-25
Named Data Type Binds ..o 12-25
BInding REFS......cooviiiiiii et 12-25
Information for Named Data Type and REF Bindsc..ccccovoiiiiiiiiiinicce, 12-26
Information Regarding Array Bindscccoooiiiiiii e, 12-26
Defining Named Data TYPesccococeiiiiiiiiiiiiiicc e 12-26
Defining Named Data Type Output Variables...........ccooovvviiiininiiiicn, 12-26
Defining REF Output Variables ..o 12-27
Information for Named Data Type and REF Defines, and PL/SQL OUT Binds................. 12-27
Information About Array Defines..........cccoooviiiiiiniiiiiiiiiiccc 12-28
Binding and Defining Oracle C Data Types..........cccccoiiiiiiiiiiiiiicccnnes 12-28
Bind and Define EXamPILes.........cccvuriviiiiriiriniicr e 12-29
Salary Update EXamplescccceiieiiiiiiiiiiiiiii s 12-31
Method 1 - Fetch, Convert, ASSIgN........cccccouviviiiiiiiniiiiiiiiiccccceaas 12-32
Method 2 - Fetch and ASSIZN........ccceuiiiriiiir e 12-32
Method 3 - Direct Fetch.........ccoooiiiiiiii 12-32
Summary and NOLES ..o 12-33
SQLT_NTY Bind and Define EXamplesc.ccccocoiniiiininininieneeeeeeeeeeeeeesee e 12-33
SQLT_NTY Bind EXampPIeccccuiiiiiiiiiiiiiiiiicii s 12-33
SQLT_NTY Define EXample........ccccccueuiiiiiiiiiiniiiiiiiniininiinircin e 12-34

Direct Path Loading

Direct Path Loading OVerVIeW ..o s 13-1
Data Types Supported for Direct Path Loadingc.cccccoccciiiiiiiiiiicccccceeeeeees 13-3
Direct Path Handles............oooiiii s 13-4
Direct Path COMeXt.......couviuiiiriiieiiirieciieeeeet et 13-4

OCI Direct Path Function ConteXt............cocovviviiiiiiiniiiiicceceeeens 13-4

Direct Path Column Array and Direct Path Function Column Arrayc.cccooevueinnne. 13-5

Direct Path SEreamcooiuciiniiiiiiiiccireecieeece ettt 13-6

xvii

Direct Path INterface FUNCHONScoovuviiieiiieceeeeeee ettt s e e aaeesnaes 13-6

Limitations and Restrictions of the Direct Path Load Interfaceccccooooriiiiiiinnne, 13-7
Direct Path Load Examples for Scalar COIUMNS........c.ccccccuiueuiiniiiciininiiiireccereeeeeeeecenes 13-7
Data Structures Used in Direct Path Loading Exampleccccoooiiriiiiiiiiiiiiceas 13-7
Outline of an Example of a Direct Path Load for Scalar Columnscccccevviirinnnes 13-9
Using a Date Cache in Direct Path Loading of Dates in OCIccoviiiiininccinccnne 13-13
OCI_ATTR_DIRPATH_DCACHE_SIZEccccecounimiiiiiiniiiiniiiencsnns 13-13
OCI_ATTR_DIRPATH_DCACHE_NUMccccouviiiiiiiiiiiieniceencscseneenns 13-13
OCI_ATTR_DIRPATH_DCACHE_MISSES........cccooeiiiiiiiininiieee s 13-13
OCI_ATTR_DIRPATH_DCACHE_HITScccevviiiiiiiiiiiisicns 13-14
OCI_ATTR_DIRPATH_DCACHE_DISABLEccceceiniiiiiiiiiiiccnescccnenne 13-14
Direct Path Loading of Object TYpesccccviiiiiiiiiiiiices 13-14
Direct Path Loading of Nested Tablesc.ccoooiiiiiiiiiiii 13-14
Describing a Nested Table Column and Its Nested Table.............cccoooooiiiiiniin 13-15
Direct Path Loading of Column ODJectscoviiiiiiiiiiiiicccicccceecncereeeeeenenes 13-15
Describing a Column Object...........coviiiriiiiiic s 13-15
Allocating the Array Column for the Column Objectc.cccoovoiiiiii 13-17
Loading Column Object Data into the Column Arraycccccceeeeuvuervrvnrnernrreecenes 13-17
OCI_DIRPATH_COL_ERROR........ccevimiriiiimiiiiiiiiisisc s 13-18
Direct Path Loading of SQL String ColumMNSccoeuiieieiiiiciciecc e 13-18
Describing a SQL String COIUMIN ..o 13-18
Allocating the Column Array for SQL String Columns............ccoevveeiicniicieiicciicecan 13-20
Loading the SQL String Data into the Column Arrayccccooeoeciiiiioicieiicicceece 13-20
Direct Path Loading of REF COIUMNSc.cccceuiiiiiiiiiiriiiicierceiccceeeeeeeeeeeees s 13-21
Describing the REF COIUMI........oouiiiiii s 13-21
Allocating the Column Array for a REF Column..........ccoooiiiiiiiiice 13-23
Loading the REF Data into the Column ATraycccceceeeeerrerenrerrrrrreeeesseseceaes 13-23
Direct Path Loading of NOT FINAL Object and REF Columns...........cccocoevvviiiiiiniinnnnnnn. 13-24
Inheritance Hierarchy ... 13-24
Describing a Fixed, Derived Type to Be Loaded.........ccccooiiiiiiiinciiiiiiciccccnnes 13-25
Allocating the ColumMN ATTaY.......ccoouiiiiiiieieiiccie s 13-25
Loading the Data into the Column ATTayccccccevviiviiininiiiinrees 13-25
Direct Path Loading of Object Tables..........ccocoviiiiiiiiiiiiicccccccccecceceeeenenes 13-25
Direct Path Loading a NOT FINAL Object Table..........ccccoouoiiiiiiiiii 13-26
Direct Path Loading in Piecescocoooiiiiiiiiiiiiiiiiice e 13-27
Loading Object Types N PIeCES........ccceuriiiiiiiiiiiiiicricccrre et 13-27
Direct Path Context Handles and Attributes for Object Types.........ccooviiriiiiiiiiiinn, 13-28
Direct Path Context Attributes...........ccooviviviiiiiiiiiii e 13-28
OCI_ATTR_DIRPATH_OBJ_CONSTR.......cooeririiimrmiriiirininiiiescnee s 13-28
Direct Path Function Context and Attributes ..o 13-28
OCI_ATTR_DIRPATH_OBJ_CONSTR.......coceteiriiiemririiieiririieieriseeie e 13-28
OCILATTR_UNAME ... 13-29
OCIL_ATTR_DIRPATH_EXPR_TYPEcccceiiiiiiiiiiiiinciini s 13-30
OCI_ATTR_DIRPATH_NO_INDEX_ERRORS.......ccccestiueremiimriniicrenrericieseseseenenenns 13-30
OCILATTR_NUML_COLS......cootiiiiiiietricnicie s 13-30
OCLATTR_NUM_ROWS ..ot 13-31
Direct Path Column Parameter Attributes...........cccccceuiiiiiiiiiiiiniiiiccce 13-32

xviii

OCLATTR UNAME ...ttt ettt e e 13-32

OCI_ATTR_DIRPATH_SID ...ttt ettt st et evseve e beereese e e sveesnasaeennas 13-34
OCI_ATTR_DIRPATH_OIDoouieieieiieieiieiresteetesiesieietesesetssessesressessessessessessessessssassenns 13-34
Direct Path Function Column Array Handle for Nonscalar Columns............cccoovviviniinnne 13-34
OCI_ATTR_NUM_ROWS AHIIDULE ...ceveviiiieiieieieceecteeee ettt 13-34

14 Object Advanced Topics in OCI

Object Cache and Memory Managementcccceuiiiiiiiiiiiniiiiinieeeeneeesese e 14-1
Cache Consistency and CONRETENCY........c.ccccucuiiuiuciiiiiiiieiiecceeeee et 14-3
Object Cache Parameters..........coviiiiiiiiiiiniiiiiiic s 14-4
Object Cache Operations...........ociueiiiiicieiicci s 14-4

Pinning and UNpinmingcccccccciiiiieeeeeeeeeeeeeesee e sesenenens 14-4
FIOOING ..ottt 14-4
Marking and Unmarkingcoceueiiiriciniicie et 14-5
FIUSIINE ...t 14-5
RefreShING ..o 14-5
Loading and Removing Object COPIesccocueuiiiiicieiiiicieiecccee e 14-5
Pinning an ODbJect COPY ...c.ceuimriiiiiiicieiciciciceeeiectee et eaaes 14-5
Unpinning an ObJect COPYcccvveiiiiiiiiiiiiiiinicies s 14-7
Freeing an Object COPYociiiiiiiiiicieecie et 14-7
Making Changes to Object COPIES.........couiiuiuimiiiiiiiiicieieieecieeiee e nenens 14-7
Marking an Object COPYcoceuiirieiiiiicieieici s 14-7
Unmarking an Object CopPYoovriiiiiiiic s 14-8
Synchronizing Object Copies with the SErver ... 14-8
Flushing Changes to the SEIVeT ..o 14-8
Refreshing an Object COPY ...ccueuireieiiiicieieieci s 14-9
ODJECt LOCKING ...ttt 14-10
LOCK OPtIONS....cooviiiviiiiciciciiicccc s 14-10
Locking Objects for Update..........c.ooiiieioiiiii 14-10
Locking with the NOWAIT OPHiOn........cccouvurivrirrinirirrrirereere s 14-10
Implementing Optimistic LOCKINGc.oooveiiiiiiiiiiii e 14-11
Commit and Rollback in Object Applicationscccocceeveiiiieieieiiciiccee e, 14-11
ODbJECt DUTALION ...ttt 14-11
Durations EXample ... 14-12
Memory Layout of an INStanceccccccevviiiiiiiniiiniiiicncn s 14-13

Object Navigation ... 14-14
Simple Object Navigationccceiiiiiiiiiiiiiiiii e 14-14

OCI Navigational FUNCHONS ..o 14-15
Pin/Unpin/Free FUNCHONS.c.ccciiiiiiiiiiiccecreere e 14-15
Flush and Refresh FUNCHONSccocovviiiiiiiiiiiiiicc s 14-16
Mark and Unmark FUNCHONSccieiriiiiiciiiiciiirieccrccceee et 14-16
Object Meta-Attribute Accessor FUNCHONS..........cccccciiiiiiiiiiicccceeeeeeeeeeeeeeeaes 14-16
Other FUNCHONScooviviiiiicicccc s 14-16

Type Evolution and the Object Cache.............cccoiiiiiiiiiicces 14-17

OCT SUPPOTt O XIML......ooiiiiiiiiiiiieereeree ettt ettt 14-17
XML CONEEXE ..ottt 14-18
XML Data On the SEIVETc.coviiiiiiiiiiiiiiiiiectete ettt et 14-18

Xix

Using OCI XML DB FUNCHONScoviiiiiiiiiiiiiiiiciccciccc s 14-18

OCI Client Access to Binary XIML.........cccccocvviiiiniiiiiiiniiiiccssnnes 14-19
Accessing XML Data from an OCI Applicationccccceueucueurveeinrirnnirrercererecenes 14-20
Repository CONtEXtcoiiueieiiiiciiece s 14-20
Create Repository Context from a Dedicated OCI Connectioncccceuvvviiiiiiirinnnnes 14-20
Create Repository Context from a Connection Pool..........c.ccccoeviiinninnnnnnirnes 14-21
Associating Repository Context with a Data Connection..........c.ccooeeeieiiicieiiiinnnn 14-21
Setting XMLType Encoding Format Preference.............cccocoeuoioioiriiiiiiic 14-21
Example of Using a Connection Pool...........cccccceeuiiiiiniiiiiirrcrre e 14-21

15 Using the Object Type Translator with OCI

XX

OTT OVEIVIEW ..ottt r st ca st st b st a s a e a et et a st et a s sa sttt st teaete 15-1
What Is the Object Type Translator?............cccocoeviiiiiiiniiiiic s 15-2
Creating Types in the Databaseccocooiii 15-3
INVOKING OTT ..ottt 15-4
CommaANnd LINE.......ccoiiiiiiiiiiiiiiii s 15-4
Configuration File...........oooiiiiii 15-4
INTYPE FAlE ..ot 15-4

OTT Command Line..........cccooiiiiiiiiiiiicic sttt 15-4
OTT Command-Line Invocation Examplecccooeiiiiiiiiiiiicc e 15-5
OTT ot 15-5
USERID ...t 15-5
INTYPE ..o 15-5
OUTTYPE ..ot 15-5

CODE ...t 15-5

HEFILE ..o 15-6
INITEILE......ooiiiiiiiiieiiicee s e 15-6

INtyPe Fle ... 15-6
OTT Data Type Mappings........cccccoeeiiiiiiiiiiiiieicciieecc ettt aene s 15-8
Mapping Object Data TYPES t0 C.....cccuimimiuiiiiiiiiiieieiiicicieieieieiccieieee et seeeees 15-8
OTT Type Mapping EXample.........ccccvuiiiiiiiiiiiniiiiiic s 15-10
NUIL INAICALOT SEIUCES ...ttt 15-12
OTT Support for Type Inheritancecccccciiiiiiiiiiccrcrcee s 15-13
Substitutable Object Attributes..........cccooviiiiiiiiiiiiii 15-15
OULYPE FIle ... 15-15
Using OTT with OCI Applications...........ccccoouiiiiiiiiiiiniiiiii 15-16
Accessing and Manipulating Objects with OCI ..o, 15-17
Calling the Initialization FUNCHOMN..........ccccouviiiiiiiiiiiiice 15-18
Tasks of the Initialization FUNCHONccoooviiiiiiiii e, 15-19
OTT ReferencCe.........coiiiiiiiiiiiic s sa s ss et s e st s s s ssaenis 15-19
OTT Command-Line SYNtaX........cccccceiiiiiiiiiiiiiiiiiiiire s 15-20
OTT Parameters........cceveieieieieiiieieieieee s aeaeas 15-21
USERID.....oiiiiiiiiii s s 15-21
INTYPE ...ttt 15-22
OUTTYPE ..ot 15-22

CODE ... 15-22
INITEILE......oiiiiiiicicieiiee ettt 15-22

HFILE ..ot 15-23
CONEFIG ..ottt sas 15-23
ERRTYPE......oiiiiiiiiiiiii s 15-23
CASE .. b 15-24
SCHEMA _NAMES ..ot 15-24
TRANSITIVE ..ot 15-24
URL bbb 15-24
Where OTT Parameters Can APPEATrccciiiiiimiiimiiiceicecieeeereeseneesesesenesesesesenesenens 15-25
Structure of the Intype File ... 15-25
Intype File Type Specificationsccoceueiirieiiiiie 15-26
Nested Included File Generation..........c.ccoiiiiiiiiiiniiiicce e 15-27
SCHEMA_NAMES USAZEcoovrivriiiiiiiiiiiniiiiisis s 15-29
Example: Schema_Names USage..........cccceuvirrieiniiiiiieiicci e 15-29
Default Name Mappingccoceeerrriniirnrrnrr et 15-30
OTT Restriction on File Name CompariSOm..........cccovueiereviiiiiiniiiniiiniseeecns 15-31

16 OCI Relational Functions

Introduction to the Relational FUNCHIONS...........ccooiiiiiiiiiiieeeeeeeeee e 16-1
Conventions fOr OCT FUNCHONSccueiiieieiieiieieeiese sttt ettt st ettt saeeaas 16-1
PUTPOSE ..o 16-1
SYTEAX ..ottt 16-1
PaT@IMELETS ...ttt b et b et b ettt et b et st aeeatan 16-1
COMNIMIEIIES ..cnenteieietet ettt ettt ettt ettt et e bbbt be bt se et et e s b et e st et e st ebeeb e bt sbesbebenbesaenes 16-2
REEUITIS ettt ettt sttt e e et e e s bt e st e sbeesaesbeemnennees 16-2
EXAMPLE .o 16-2
Related FUNCHOMNSveieeiieiiieiiieitete ettt sttt bttt b et be st be b e be e ene 16-2
Calling OCT FUNCHONSvuiuiiiieiicicteei ittt 16-2
Server Round-Trips for LOB FUNCHONSccouiiiiiiiiiiciccc 16-2

Connect, Authorize, and Initialize FUNCHONSccoooiiiiiiiiiiieicceee e 16-3
OCTAPPCEXCLEATALL) ..vvivvieiiicicicicieiee s 16-4
OCTAPPCEXSEL() vttt 16-5
OCICONNECHONPOOICTEAE() ..evvevrevrerierireriieiisiesesiesiestestestestetestesessessessessessessessessessessessesseseeseesenses 16-7
OCICoNNectioNPOOIDESLIOY() ...cuvvrviviriririiiiiiiiiiiieietcieiie s 16-9
OCTDBSNULAOWII() .+ evtevtereeeteieeteriesiesteteteteteeeseestesessestessessessessesseseesteseesessessessessessansensensessesessenss 16-10
OCIDBSLATUP() «.vcvvvvvviniiiiiieiiiiniiciit e 16-12
OCTENVCTEATE() veuvenventententeierieeteeterte ettt ettt ettt ettt s b et et et et e st e bt e b e sbese e st e b et eseebtebesbeebebenee 16-13
OCTENVNISCIEALE() -evvevvevenereneereietentetertetertet et ettsteststet st tstestetest et et esetebestes et ese st e st st esebesesesensens 16-17
OCTLOGOLE() +-vvveeeeeeeeireeeee e 16-21
OCILOGON() wvivvriieieriiiicicietee s sa e sa st ss s s tetes 16-22
OCTILOGONZ() 1.ttt 16-24
OCTISEIVETATLACK() . vivveereeieeieeteieieieerter et ettt eete e etestestessessessesseseesteseesesseasessessessessessassesensensenes 16-27
OCISEIVETrDETACKH() .. eueeueeutenteiieiieieeee ettt ettt ettt st sb e sttt sbe b e 16-29
OCISESSIONBEZIN().....eoviviiiiiiiiciir e 16-30
OCTISESSIONEINA() cvvevvevieereererieiieiiriistiietestetetetetesee e ssessebessessessesseseesseseesessessessessessassessessesensensenes 16-33
OCTISESSIONGEL() ..uvenveuienteuieieriietertiste ettt ettt ettt st sb e s bt e e et e st e bt e bt sbe st e et e st e se e st ententebeebebenee 16-34
OCTSESSIONPOOICTEALE() -.vevervevieeuirieieieteietet ettt ettt ettt ettt ettt sttt es st b et b e beseasenes 16-40

XXi

OCISessioNPOOIDESLIOV()....cvcvevevivivireiiiiiiiiiiiiiiiiiicii e 16-43

OCTSESSIONRELEASE() -..vvervevireuirieirieirieirtet ettt ettt ettt sttt b et sbe s e s 16-44
L =3 g =1 < (SRS R 16-46
Handle and Descriptor FUNCLONScccoiiiiiiiiiiiiiiic s 16-47
OCTA11ayDescriptOrALLOC() ...ovovovereeieieicieieie e 16-48
OCIA1rayDescriptorFree() ..o 16-50
OCTAIIIGEE() cevevenvererererterirterirtestetetetestetestetestetetetestesesesestesessesessesensesensesersesesseneasenesenesasessanessanes 16-51
OCTAIIISEL() ovveveverrrrenirieieieteieeetestetetetetetessesetesesesesesessesassesesesaasesarsesersassasensesessesensrsassssasessenes 16-53
OCIDESCIIPLOTALLOC()..veveveverrmreieieicieieirieeeieteeree ettt 16-54
OCIDeSCIIPLOTETEE() ...t 16-56
OCTHANAIEATIOC() -ttt ettt ettt sttt et sa ettt be bt esene s s 16-57
OCTHANAIEFTEE() c.vevveveeeiereeiieiietieieetestestetet et eeteseesesasseesessessessessesseseessesaesesseasessessessessessesseseesessenns 16-58
OCTPATAMNGEL() c-venvemeeneeneeeeieeieete ettt ettt ettt ettt ettt e et e st e bt e bt s bt sbe b e st e st et et et eseebesbesae 16-59
OCTPATAMISEL() c.nvvenereneereiereieterteierteitrt ettt ettt ettt ettt et ettt ettt b et b et eb et es et e bt bebensenessenensens 16-61
Bind, Define, and Describe FUNCHONSooooviiiiiiiieiiieeee e eeae e e e enns 16-62
OCIBINAATTayOfStruct() ...cvoveveveviicieieiiiiiicicc s 16-63
OCIBINABYINAIME() ..ot 16-64
OCIBINABYPOS() «..evvvvveiiieieirieieieicieieieeeeeiseeeseseese st 16-68
OCIBINADYNAMUEC() cv.vvvvierereiiiiiiieiiiicin s s aaenes 16-72
OCIBINAODIECE() ...vvvvvviiiiiiiiii e 16-75
OCIDefiN€ATTAYOLSEIUCE() «.vvvevieiririieeierreree s 16-77
OCIDefiNeBYPOS()cveveviviieiiiiiiiiiiicicicicccc s 16-78
OCIDefineDYNamiC()ceviviviiiiriiiiiiiiiiiiiiii e 16-82
OCIDEfINEODIECE().....vvvvereieirieeeicicieireee e 16-84
OCIDESCIIDEAINY () ...vovvvvieiereiiicicieicics st aenas 16-86
OCIStMEGEBINAINTO() ..t vveerveerereieieieieietetetest ettt ese st ese b e sesesesesseseesesessesesessesenassenes 16-89

17 More OCI Relational Functions

XXii

Introduction to the Relational FUNCHONS...........ooooiiiiiiiiiiiie e 17-1
Conventions fOr OCT FUNCHONSc.cvveuirieririeiirieirieieieteietee ettt ettt 17-1
Statement FUNCHOMNSoooiiii ettt ettt s b s sae 17-2
OCTSEMEEXECULE() .. cnvevervenirenirteiirieteieieiete ettt ettt ettt bbbttt b et ebe st be st e e b e be e beneene 17-3
OCTISEMEFETCNZ() 1e.vivetiieieieietetet ettt ste et e b e st e b et e e eseeseesessessessessessessessassassessesensessensenses 17-6
OCTISEMEGEPIECEINTO() venveuvenrenienieiieiiet ettt sttt st et ettt ebe bbbt besbesaeneen 17-8
OCISIMEPTEPATE() ... evvviiiiiiiiiciirrsir e 17-10
OCIStMEPTEPATE2()....vviviiiiiiiiiiiiieii e 17-12
OCTSEMEREIEASE() -vevveveevermeruerienieniertertestet et ettt ettt ettt ettt ettt e bt s bt b sbe st et e b et et et et e s ebeebenee 17-14
OCTStMESELPIECEINTO() .. euvevirreiirieirieirie ettt ettt ettt et sttt et ns 17-15
LOB FUNCHIONS ...ttt sttt ettt ettt b ettt b e et et et et et et et eseebeebenee 17-17
OCIDUrationBegin()........cccevveueririiiiiieieiiieieieiiccccc 17-20
OCTIDUTAtIONENA() c.vveveiiieiiieiirieeriere ettt ettt ettt ettt ettt 17-21
OCILODAPPENA() -ttt 17-22
OCILObAITaYREAd() ...vovvvvieieiiicicicicicicce e 17-24
OCILODATTAYWIILE() ..vvvviiiiiciiiiciricrrr e 17-28
OCILODASSIGN().c.cuvvvviniiiiiciiiiciic s 17-32
OCILODCRATSEFOITIN) -eeuveuteuteiieieniieiertertetetet ettt ettt et sttt st et ebe b e 17-34
OCTLODCRATSEEIA() . tuvvevereiertrieerieirietrte ettt ettt ettt ettt ettt s sttt b et b et sbesessens 17-35

OCTLODCIOSE() +vvenvenveneemtentemeritntertertesteste ettt et et et sttt besbe st et et et e st e st ebesbeebeebesbeseensenseneebeebebenee 17-36

OCTLODCOPY2() wevrvririviiiimiieiiiiiiieieisisiisie sttt 17-37
OCILobCreateTemMPOTArY() «...coeveririiiiiiiiiiiiiiiicicce s 17-39
OCILobDisableBuffering().........c.ccoueeiiiiiiiiiiiiiiiiniiiiiiiii e 17-41
OCILobEnableBuffering()cccocvvviiiiiiiniiiiniiiiiiiic e 17-42
OCTLODETASE2() +vvvevvevieriererrisrieriseiessessestestessesessessessessessessessessessessessaseasessessessessessessessessessesessensenns 17-43
OCTLODFIIECIOSE() .. vvtevteveeuerienientenieieiente ettt ettt sttt sttt et e et e bt besbe st et e st e se e s eateneebeebebenee 17-45
OCTLODFILECIOSEATLL() .nvuvevevemiirieieieiteieieie ettt ettt ebebe ettt ettt ettt be b s s besenensenes 17-46
OCITLODFIIEEXISES() 1.veuvevverrerieereierieieessessessessessessessessestesessessessessessessessessessessssessessessessessesseseesessenss 17-47
OCTLODFIIEGEINAINE() -.veveeveereriiniinienienieietet ettt sttt see et et st et et be sttt sbesbese et e b et eseeseebenee 17-48
OCILODFIlEISOPEN()....ecviviriiiiiiiiiiiiiiiiiiiiiiiiiis e 17-50
OCILODFILEOPEN()....cvvvriiiemiieieicieieieieieieieteieeeeeieeeees e 17-51
OCTLODFIIESEINAIMNIE() ..cevevervireieieieieteteitei ettt sttt sttt ettt st b e st sttt et e st esteseebeebebenee 17-52
OCTLODFIUSHBULLET() -ttt ettt ettt 17-53
OCILODFreeTemMPOTATY() «...cvcveveevreieeeieieieeeirirerieesesereseeeseseses et 17-54
OCILODGELCRUNKSIZE() .eveeveeveriiriinieniinieienietetei ettt sttt sttt sttt ettt eb s b b sttt ee e et ee 17-55
OCILobGetContentTyPe() ..ceveverueieiiicieieieicci et 17-56
OCILODGELLENGEN2() ...ttt 17-58
OCILODGEtOPHIONS() ...ttt 17-59
OCILobGetStorageLimit().......ccocoiiieiiiiiiiiiiiiiiiiiii e 17-61
OCILODISEQUAL()....vvveuieiiieieieieieicicieeeercereee e 17-62
OCILODISOPEN() ..ottt 17-63
OCILODISTEMPOIATY ()voveruereiiiiinieieiiscie ettt 17-65
OCILODLOAAFIOMEFILE2()...vveeveeierieiiriierisiesieiesieteeietestesessessessessessessessesseseesassessessessessessessessessnsenns 17-66
OCILObLOCAtOTASSIZIN() cv.vvvviiiieieieiiiiieice s 17-68
OCILODBLOCAtOTISINIL() .eveuvevineeeiieiirieirieiric ettt ettt es ettt senes 17-70
OCILODOPEI() ..t 17-71
OCTLODREAAZ() ..ottt ettt ettt sttt ettt ettt e be bt sb e st et e st e se et eateseebeebebenee 17-73
OCIL0bSetContentTYPe() . oueveveueuereieicrcieiieiecie ittt 17-77
OCILODSEOPLIONS() ..ottt 17-79
OCTLODTIIM2() cvevtrerverereneirreieieineeietesetsteteieetstesebesese et sesesessebese e eesesesesessesesesesessesesenesesesesesesanes 17-80
OCTLODWIIEE2() - tvvvevevenenereeieieieteiete ettt et te ettt et ettt ebese st etebenenessesesen et esesesaneseseseseneaseses 17-81
OCILODWIHEAPPENAZ2() ..t 17-85
Streams Advanced Queuing and Publish-Subscribe Functions.............c.cccccooviinniiinnnn. 17-88
OCTAQDEG() c-vvevrerenreieeiiieiereisieiete sttt ettt et 17-89
OCTAQDEGATTAY()..ovveniriiiiiriiiiiiieiiii e 17-91
OCTAQENG() «vvereererererererereresisisises sttt ettt ettt nenen 17-93
OCTAQENGATITAY() ..vvveiiiiiiiiiiiirsie st 17-95
OCTAQLISEENZ().vveneeereveiireriereiiirietereeesesteuereeseeseresestseeresesesessesestsesseseststsessesestsessesesestsssesesesessenes 17-97
OCISubscriptionDiSable() ..o 17-99
OCISubscriptionENable()c.couvviiiiiiriiiiiiiiiiiii e 17-100
OCISUBSCIIPHONPOSL() ...covvviiiiiiiciiic e 17-101
OCISubscriptioNREGISTET()cveveveveieriiiiiiiiiieiiiciicc s 17-103
OCISubscriptioNUNREGISLEI()c.cueuiuiiiiiiiiiiiiiiiiiiciciiieee s 17-105
Direct Path Loading FUNCHIONS ..o 17-106
OCTDIIPathADOTL() -.uveuveueeieeiieierienienieteniese ettt sttt st sttt et be bbb s b et e e e et bebes 17-107
OCIDirPathColArrayEntryGet()ccovveveiiiiieiniiiiiiiriiiciciiiiisn e 17-108

xXiii

OCIDirPathColArrayENtrySet()......cccveiiviiiieiiiiiiciicieiciccieec s 17-109

OCIDirPathCoIATTAYRESEL()ovuivviiniiiiiiiiiciiiiceie e 17-111
OCIDirPathColArrayROWGEL()....c.cvcueviemimiiiriiiicieirieieeiceeeeieeeeseeeeeee e 17-112
OCIDirPathColArrayTOSIAmI()cevveviveriiiiiiiiiiiieiciiieiecc s 17-113
OCIDIrPathDataSave()eeveveevererieeriererierinieristeristesessesessesessesessesesseseesessssessesessesessesessesessesenseses 17-115
OCIDIrPathFINISI() .o.veveverieieieieiieisesesteteteiete ettt es e ste e sessessesseseessesassessessessassessesenses 17-116
OCIDirPathFIUShROW () ...ceuceuteuiiiiriinieiienieeietetete ettt ettt et 17-117
OCIDirPathLoadStreami()c.coceeeuereueriruenierinieiinteiertee ettt et st sesesessesennes 17-118
OCIDIrPathPrepare()cccoceueueueueuemeieieieieieieieieieieieieeeeeieieeeeseeeeeseseeesee e eseeas 17-119
OCIDirPathStreamBReESEL()coveeeutertririiniinierienieete ettt sttt sttt ettt sae st st sbe e eeenis 17-120
Thread Management FUNCHONSc.ccccoviiiiiiiiii s 17-121
OCITRIEAACIOSE() vvvevververrereeriereeierieresessessessessessessessaseeseesessessessessessessessessessaseesessessessessassessesseses 17-122
OCITRIEAACTEALE() -.uveuveneeneeuietieieiteetestest ettt ettt ettt bt bbbt e sttt et st bt e b sbesbesbesbeseeaeenis 17-123
OCIThreadHandleGet().......cvveerueririeririeririieeieieieteiesei ettt ettt ettt seaeenes 17-124
OCIThread HNADESIIOY()cveveveeemieiririiiiiiirireriererreeecreeer e 17-125
OCIThread HNAINIE() .. covevvereeieieeeieeieeiesiest ettt sttt ettt st st sa e ens 17-126
OCIThreadIdDeStIOY()ceevevriiiiiiiiiiiiiiiiiiiiiciic s 17-127
OCITRIEAAIAGEL() ...veveierrerieeieeeeeietiereere sttt et ete st e st sestessessessessessessesseseaseasessessessessassessassases 17-128
OCITRIEAATATNIL() . veuvenreeeeerieieeieeteet ettt ettt ettt sttt ettt ettt e b e b sbe st et e nse e s enes 17-129
OCITRIEAATANUIL() ..eeveeiveeieieeieieteieieeietet ettt ete sttt se e sessesesesesesessesessesessessasesssaseesasesan 17-130
OCITRreadIdSame().....cevveeeieeeeerieriseriisressetessesestestestesessessessessessessessessessessesessessessessessessesseses 17-131
OCTITRIEAATASEE() - venvemveneeneeiieierierieet sttt ettt ettt sttt et ettt besbe st be s bt eneenes 17-132
OCIThreadIdSEtINULL()coveeevererieririeriietirieetetetstetetesestetesesteseeete e sessesessesessesessesessesesesassesensen 17-133
OCITRIEAAINIT() cveuvevereieierieieeeeeeeresrest et e etestestesteseesessessessessessessessessesseseaseesessessessensessassesseses 17-134
OCITRIEAAISMULEI() +uveuveneeneenteieeierieeiestest ettt sttt ettt ettt s st e b ne e eas 17-135
OCTTRIEAdJOIN() sv.veveuereenirieirieirtee ettt ettt ettt et es ettt bt a et sb et be e b et ssesennes 17-136
OCIThreadKeyDEStIOY () ...cccveveveeeurureririririririreriserer sttt e 17-137
OCIThreadKeyGet()......oovveviririiriiieiiiciiiiiciciec s 17-138
OCIThreadKeyINit()......cccovviiiiiiiiiiiiiiiiiiiiiiii s 17-139
OCITRIEadKeySet()....c.cvvveveiriririiiiiciririeieerr e 17-140
OCIThread MuteXACQUITE()ccovvviuiuiiiiiiiiiiiiiiciiic e 17-141
OCIThreadMuteXDeStroy ()cccoeveveuririiiiiiiriiiiiiiciriirierr s 17-142
OCIThreadMULEXINIL() «veoveevevereieieeeirieiserteteteteteteseeessessessessessessesseseessesessessessessassessessases 17-143
OCIThreadMUteXRELEASE()c.veeeuteueririintinieriinieiestetete ettt ettt ettt ebe e s se e 17-144
OCIThreadProCeSSINTt().....couvvetrreririenirieiriiietetetet ettt ettt ettt ettt ettt ettt esessesenen 17-145
OCITRIEAATEITIN() vovvevverrereerierierieieeteetestestetesseteseesaesessessessessessessessessesseseaseesessessessessessessessessesseses 17-146
Transaction FUNCHIONSc..oooiiiiiiiii ettt sttt ettt 17-147
OCTITTANSCOMIMIE() v.ververerenirrererieerieirtetrtet ettt et sttt et r ettt b bbb bt be bt e st b esesbesebesessenesen 17-148
OCITTanSDEACK() ...vecvevieieieieiieieieeee sttt ettt e tesseste b e besbesaessesesssasassessessensessessessases 17-151
OCITTanSFOIZEt() ...ovevevevireririiiiiiiiciciicieiee s 17-152
OCITransMUltiPIepare()cccccccueueieiriiiiiiiiiciiiiiciesieieee s 17-153
OCITransPrepare()cocoeeiiiniiiiiiit s 17-154
OCITTanSROIDACK() «..vevertereeieieieiieieeieriesteestee ettt sttt ettt sae st st s sa e eaas 17-155
OCTTTANSSEATL() «.vevevenereenirienirietrtee ettt ettt ettt b ettt b ettt eb e e bt e st be st s s e st st enesbestbebessenenen 17-156
Miscellaneous FUNCHONSc.ccucoiiiiiiiiiiiii ettt sttt 17-162
OCTIBIEAK()- - nveuvemeentemeeeeieeie ettt ettt sttt ettt a bbbt bbbt et et et et e st ebe e bt sbe e b e besbe st et et et eneenes 17-163
OCTCHENEVETSION() vutrveuirinirtinieienieiesietetetet et ettt et estes et s et eb st esesbestsbe st be st sse st sbentsbentesentesenesen 17-164

XXiv

OCTEITOTGEL() vnteutemeeneeiteterte ettt ettt ettt ettt sttt ettt et eat et e bt sbe et e s be st et e b et enteneeneebeebeben 17-165

OCTLAATOSVECEX() cveverererreririeririeririeesieessesessesessestsseessesessessesessesessesessesessesassesessesessesessesessesanses 17-168
OCIPassWOIrdCRANGE()......cvevrveurereririririeiriririsrieerer sttt 17-169
OCTIPING (). vvrereremiriireieisiii i 17-171
OCTRESEL() -vvevvevenrererieririerisiesistesestesessetesestesestesassesensesassesensesensesensesensesensesensesssessssessssessssessssasessen 17-172
OCIROWIATOCRAT() v.vvevveereeierieririiriisiesiesieieteetestesteessessessessessessessessessasassessessessessessessessessessesenses 17-173
OCISEIVETRELEASE() -..uveuvemeeneeuieuiriiriieterteste ettt ettt st sttt st et et e be bttt b e sbesb et e s et eneebeebes 17-174
OCTSEIVETVETSION() .e.venvverienireririererteierteierteitrteetstetste ettt steststetsbetsbe st s st ebetebeneebeneesensesenees 17-175
OCISVCECEXTOLAA() c.vevveererierieieiriisristesiestetetestesteeteessessessessessessesseseessesassessessessessessessessassessesenses 17-176
OCTUSErCallDacKGEL() ...uveueeueereriiriinienienieieietet ettt sttt sttt eb e ebe bbb st et se e et eaeenes 17-177
OCIUserCallbackRegister()..........ccovueviiurieieiicieieieieicie e 17-179

18 OCI Navigational and Type Functions

Introduction to the Navigational and Type Functionsccocooiiiiiiiiiiiins 18-1
Object Types and Lifetimesccccociiiiiiiiiiiiiiceeeecceee e 18-1
TerMINOLOZY ...cevviiiii et 18-3
Conventions for OCI FUNCHONScccciviiiiiiiiiiiiiiiiiccc s 18-3
RetUIN VAlUESoiiiiiiiii e 18-3
Navigational Function Return Values...........ccccooiiiiiiiiii 18-3
Server Round-Trips for Cache and Object FUNCHONSc.coooiiiiiiii, 18-3
Navigational Function Error COdesccocoiiiiiiiiiiiicceeeceeeeeeeeeeeeeeeenenees 18-4

OCI Flush or Refresh FUNCHONS ..o 18-6
OCTICAChEFIUSI()vvviiniiiiii b 18-7
OCICACHEREITESN() .vevvivveeieeieiieiieieiieietrt et se et e et et et et e ee st eseesessessessessessessessassessassesensessensenses 18-9
OCIODJECEFIUSI().....cvviiiiiiiiiiicici e 18-11
OCIODbJeCtREfIeSN() ...vviiiiiiiiiicic e 18-12

OCI Mark or Unmark Object and Cache Functions...............cccccoovviiininiiiiniinins 18-14
OCTICAChEUNIMATK() 1.vttteuteuerierientintetetete ettt ettt sttt sttt ettt et b e sbe bbb se e e et et eseebebe e 18-15
OCIODbjectMarkDelete()cccvieririiiieiiiiiiciic e 18-16
OCIODbjectMarkDeleteByRef()ccrurururuiiririiiririrrrrr e 18-17
OCIODbjectMarkUpdate()........cccevvueviieieiiiiiiiiiiiciiiiiiic e 18-18
OCIODbJectUNIMATK().....vevviiiiiiciiciriiiccr e 18-19
OCIODbjectUNmarkBYRE()cceviuiiiiririiiiiiirccrrrrre e 18-20

OCI Get Object Status FUNCHONS.............ccoiiiiiiii e 18-21
OCIODJECEEXISES() «.v.vvvevevireieieiieieieieieiricict s 18-22
OCIODJECtGEtPTOPETLY (). .vvvieeeiicirieireeieirrerre et 18-23
OCIODJECISDIILY () ..vveveveveverereieieieieieieieeieie e 18-26
OCIODbJECtISLOCKEA() «.evvvviviiviiiiiiiiiciiicici s 18-27

OCI Miscellaneous Object FUNCLIONSccccooviiiiiiiiiiiiie 18-28
OCIODJECHCOPY() cvveveverererrrerereieiiieieieieresis e st 18-29
OCIODJECHGELALII() ... 18-31
OCIODIECHGELINA() .-t 18-33
OCIODbjectGetODbJECtREL()vviiriviiiiiiiicii s 18-34
OCIODbjectGetTYPEREf() ...cvcvviiiiiiiiciiicicii e 18-35
OCIODIECELOCK() -ttt 18-36
OCIODbjJeCtLOCKINOWAIL() . ..vuiuiiiiiiiiiiiciiiiiic e 18-37
OCIODJECENEW () ... 18-38

XXV

OCIODJECESELALLL() ..o 18-41

OCI Pin, Unpin, and Free FUNCHIONSccocooiiiiiiiiiiiiicicccccc e 18-43
OCTICACREFTEE() +vevvevvevieeieieiritieiestestestestetet et et e et e b sesbesbessessesaaseasesseesessessessessessessessessesensensenns 18-44
OCICAChEUNPIN() «ouvvviiiiiiciiiiiiciirc s 18-45
OCIODbJECtAITATPIN() ..vvvviiciiiiiiiiiiccicc e 18-46
OCIODJECEETEE() ..ttt 18-48
OCTIODJECPIN() oo s 18-50
OCIODbjectPINCOUNtRESEL()c.ovovviiiiiiiiiiiciiiiic e 18-52
OCIODJECtPINTADLE() ...veveviiiiieicicicieieiee et 18-53
OCIODJECtUNPIN() cv.vvvvieieieieieteieie et 18-55

OCI Type Information Accessor FUNCHONS...............cocoooiiiiiiiiiiica 18-57
OCITypeArrayByName()......ccocvvuiiiiiiiiiiiiiiiiiiiic e 18-58
OCITypeArrayByRef().....coveeieiiirici 18-60
OCITYPeByNAmME() ...ocvvieeerieieiicieiee ittt e 18-62
OCITYPEBYREL() vt 18-64

19 OCI Data Type Mapping and Manipulation Functions

XXVi

Introduction to Data Type Mapping and Manipulation Functionscccoiiinnnnn 19-1
Conventions fOr OCT FUNCHONSc.cvvetrieuirieirieinieinieinietnetereee ettt seee s seene 19-1
RETUTTIS ...ttt s st sttt sae bbb saenes 19-2
Data Type Mapping and Manipulation Function Return Values...........cccccceeeuvcirvnnnnnnene. 19-2
Functions Returning Other Values..............ccoooiiiiiiii 19-2
Server Round-Trips for Data Type Mapping and Manipulation Functions 19-2
EXQIMIPLES ...t 19-2

OCI Collection and Iterator FUNCHONS............cccouecirieiriiniriinicincecceeereeee et 19-3
OCICOHAPPENA() ..cvvviiniiiiiiiicieie it 19-4
OCICOILASSIGI() -.vvvvvrememeieieieieieeieie ettt ettt st eeeens 19-5
OCICOIASSIGNEIEIMN() ..oovvviiiiiieiicieicicec s 19-6
OCTCOIGELELEIN() vvvevvtnereteienirieieieitrtste ettt sttt ettt ettt be et be bttt b bbb be et esbebesenen 19-7
OCICOUGELEIEMATTAY()....vvveeieicieieiieeeieieireeeee ettt 19-10
OCTCOIISLOCALOT() c.veuteuteneeueeieeierieetesieste ettt ettt ettt sttt ettt a et s b st be st et et et et eseebeebesee 19-12
OCTCOIMEX() veveverererreremereririesetrtetetestetetstesesesessesesestatsteseseststebeseseesteseseseseesesesesesssesaneasesesesensasasas 19-13
OCTCOIISIZE() +.veveverervereveerrerereuirireeieretresrereetsee e ertess ettt seesebeseseseesesestatseesenestsesseneseatsesseseseneeenes 19-14
OCTCONUTIIMN() v eveeeerereereeieteiererteietetrtstet ettt ettt eae et ebebese st b b esese st besesesessebesenesseseseseneneane 19-16
OCTIEEICTEALE() - evvverveveeenereeniriettrtet ettt ettt et ettt sttt ettt b st eb et e st be st ese st e st st et e bentebesesbenensens 19-17
OCTIEEIDEIELE() .vevverveenreerieieetieiietesteeteteete e st e e e tessessessesseeseaseaseessessesneessesnsensesssesenseensensennes 19-18
OCTIEIGEECUTITENE() c-veuveueeneeuerterteeieetertert ettt ettt ettt ettt ettt et e st e e s bt sbesbesbese et et et e e ebesbenee 19-19
OCTTEETIIIE) w.vvvenererieteneieeetetees ettt ettt ettt ettt b s et e b b enea e s e besene st s esesene e eseseseneaeenes 19-20
OCTIEEIINEXL() vevvvenverreererrieierteeeeseete st etesseesesseessesseessesseenseseensesseassessesnsessesnsessesssensesssensesssensennes 19-21
OCTIEEIPTEOV() c-veuteuteneeteiteeee ettt ettt ettt ettt et ettt b e bt b s b st e b et et et et et e st ebeebenee 19-23

OCI Date, Datetime, and Interval FUNCHONScccoooviiiiiiiiiiececeeeee e 19-25
OCIDAtEAAADAYS() -.vvvvvvveerireiirirerireieerirer sttt 19-27
OCIDate AAAMONTNS() ..c.ueiuiriirieriiniiieieetet ettt st sttt ettt b e b e 19-28
OCIDAtEASSIZII) .. 19-29
OCTDAtECRECK() vvvevvevieeieieieiierietestestetetetetesteseesessessessessessessessesseseassesessessessessessessessessesseseesensenss 19-30
OCIDateComMPAre()cucuerriiiiiiiiiiiiiciiiiiiteic e 19-32
OCIDateDaysSBetWee ()ccccuviviriririiiiiiiiiiiiiric s 19-33

OCTDAtEFTOMTEXE() +.vvevveutereerieririinienteiente ettt ettt sttt sttt et ettt sbe st e b sbese et e b et eseebebenee 19-34

OCTIDAEGEIDIALE() ..vvevervevrreriieririeririeisteessesieseseesetesestesessesessesessesassesessesessesasesessessssessssessssesssseses 19-36
OCTIDAtEGELITIIME() «.veevvenvreierrieierteieeeerteseesee st eteseetesseessesseessesseessesseessesseensesssensessesssenssensensennes 19-37
OCIDateLastDay().......cccevueveviiiiiiiiiiiiciiiiicii s 19-38
OCIDateNexXtDAY() ...cvevvvrviiiiiiiiiiiiiiiiiiiii s 19-39
OCTIDAtESEEDIALE() -.euveevvenrreierrieierteieeeertesteste st ereseetesteessesseesesseessesseessesseensesseensessesssenseessensennes 19-40
OCTDAtESEETIME() +.vveeveeuerierieetertertetetet ettt ettt st sttt et ettt e be bt sb e sb et e st e se e e et et ebeebebe e 19-41
OCIDateSYSDAte()cvcvvieeerieieieiciete ettt 19-42
OCIDateTImMEASSIZN() «..cvvveveriiiiiiiiiiiiniic s 19-43
OCIDAtETIMECRECK() c.veverviriititeteetee ettt ettt sttt sttt et ettt be e 19-44
OCIDateTimeCompPare()ccocvuvuriririiiiniiiiiiii s 19-46
OCIDateTImMECONSEIUCE() .-vevrerrerrrererreriereesteseeeseestesreetesseessesseessesseesesseessesseesesseessesssensensennes 19-47
OCTIDAtETIMECONVETL() c..cvervirriiiiiieieteteteiteit ettt st sttt ettt s be b sbese et et et eseebeebeebeebebenee 19-49
OCIDateTIimeFrOmMAITaAY() ...ccvvviiiiiiiiiiiiiiiiiii s 19-50
OCIDateTImMEFIOMTEXL() ..veeveeveeeieieeieieeeerie ettt teee e te st et esaesseessesneesesseensesssensenseenes 19-51
OCIDAteTIMEGEEDAE() .. eveevereteieieieieteite ettt ettt sttt ettt e be b e 19-53
OCIDAETIMEGEITIME() ..vvveeverinieririeririeeirtetirtereetetereseetetetesteseseesessesessesessesensesessesesessnsesaseseseses 19-54
OCIDateTimeGetTimeZoNneNAMIE()cceevrrvererrrereeierieieneeeeeseeeteseeeseesseessesseesesseessesseessesseenes 19-55
OCIDateTimeGetTimeZoneOSFSEL()cveverrrerireieierieeieietetet ettt se et sesesesesenes 19-56
OCIDateTimeInterval Add()oeoeeererrerrienirieeieteiereee ettt ettt ns 19-57
OCIDateTimeINtervalSuD().....c..cueieiriirierieieieieiece ettt ettt e et eress e b e s ssessessesaesassenns 19-58
OCIDateTIMESUDITACE() . .ceveeveerertirtinteieneiete ettt ettt et et sttt 19-59
OCIDateTimeSysTimeStamp()cccooeeueiriicieiiiicicie et s 19-60
OCIDateTImeTOATTAY() ...oveveviiriiiiiiiiiiiciiiiiic e 19-61
OCIDAtETIMETOTEXE() c+eveevereerreienieieieteteitei ettt sttt ettt sttt et st e st et e bbb b e 19-62
OCTDATETOTEXL() 1vevreveneereieriieriietisieerteestestrteseetetese e eseseesesteseseesassesessesensesansesessesssesssesssasssenes 19-64
OCIDAteZONETOZONE() .. e euveeeeeieeieeieeiesieeeestestestestesesseeseeseesesseessesssessesssessesssessesseensesssensessesnes 19-66
OCTINEEIVALAAA() s+enveneententeieeieeier ettt sttt et ettt sbe st b e st et et ebe b be e 19-68
OCIINtEIVAIASSIZI()...vvevvririiiiiiiiiiei e 19-69
OCTIINEEIVAICRECK() vevveeveereeieiieirieiieieietet ettt eete e eteete e sbessessesaeseesaeseesessessessessessessessessesensensenes 19-70
OCIINtervalComPare()ceiiririiiiiiiiiciii s 19-72
OCTINLErVAIDIVIAE() ... evevereenirieririeitrieiriertrte ettt ettt ettt ettt et st sttt sb s senes 19-73
OCIINtervalFromMINUMDET()coveiiriiriiieieieieieie ettt ettt e e eseesessesbessessessessesaessnsenes 19-74
OCTIINEErVAIFTOMTEXE(). . eeveeveererririinientenietetete ettt sttt ettt ettt b b et et be e 19-75
OCTINEErVAIFTOMTZ() c.veveeeveieiiieiirtetrie ettt ettt ettt ettt ettt bbb e ns 19-76
OClIIntervalGetDaySecond()cccocueuruririiiiieinieirieerirreeerres e 19-77
OClIIntervalGetYearMOnth()coceeeiririreeeeeeee ettt 19-78
OCINtervalMULIPLY () «..cvevevereieieiiiiiiciciecicicce e 19-79
OClIntervalSetDaySeComnd()ccceueurururureririreriieiirirrier e 19-80
OCIINntervalSetYearMOMNtN()coeeirirerierieieieiteere sttt ettt sttt st 19-81
OCTINLErVAISUDEIACE() «.vevveventrrenireeieienteteteietet ettt ettt ettt ettt ettt et eb st et bbb s besesenes 19-82
OCIINtErVaAlTONUMDET() ..cvveeveeieiieiieiiriisiesiesiet ettt etee e see st ssessestessesseseeseesessessessessessassessesansenns 19-83
OCTINEEIVAITOTEXE() c-veuveueereertrreriiriintenterietet ettt ettt sttt ettt et et b e sbe st st e st e se et et ebeebebe e 19-84
OCI NUMBER FUNCHONS.......ouiiiiiieiieiieiieeet ettt ettt ettt st et saeete s estesseebe s e ensesneens 19-86
OCTINUIMDETADS() ..t vevtevieieeiieiietiiteietesteteteteseeses e ssessessessessessesseseeseasessessessessessessassessessessesensenns 19-88
OCINUMDETAAA() - tevtevtenteieeieetert ettt sttt ettt et et sbe st st st se et et e st ebebe e 19-89
OCTNUMDETATCCOS()-veuervenereareriterinteitrtestriestrtesteteststests et bt bestebeste e st e e aesetesestesessenessenessesenes 19-90

XXVii

XXViii

OCTINUMDETATCSITI() e -eutenteneetteteeieeteetestent ettt ettt ettt st et s b et e te et e st e bt e bt sbesbesbesbe st e e et et eneebesbenee 19-91

OCINUMDBETATCTAN() c.vveveviieiirieerieirietrt ettt ettt ettt eb sttt ettt b st et se et be b eaeebeneesens 19-92
OCINUMDBETATCTANZ() 1vevvevieeieiieiietieieeteieietestesteeeeessessessessessessesseseesseseesessessessessessessessesseseesensenss 19-93
OCINUMDEIASSIGI() «.vvevvveveiiriiiiiiiieieiieeee s aaeaas 19-94
OCTINUMDBEICEIL()..euveveveriieririerieteteieieietetetetestetetesestesessesessesessesessesessesessesessesesesesesssessssesessenes 19-95
OCINUMDEICTINP() --vevvvevireieirieeeieieeeireeeeeeeee ettt 19-96
OCTINUIMDETCOS() -eteveevteuerieriententestestestet et ettt et st ettt et e st et et e st e st e bt s bt e besbesbesbe b et ententeneeseebesbenee 19-97
OCTNUMDBETIDEC() .veveneveneereietenteienieiertei ettt ettt ettt sttt b et bt b et be bbb ensenensenes 19-98
OCINUMDETIDIV() 1vevvevieiieieieiieieietestestetet et et eestte et bessessessessestesseseesessessessessessessessessessesensenss 19-99
OCINUMDBETEXP() ..uvvieiiiiiiiiiiiiiciciic e 19-100
OCTINUMDBETIFLOOT() -e.veuvveneeuenieiinteienteiirtetrtei ettt ettt ettt ettt et s st saenenaes 19-101
OCINUMDBEIFIOMINT() c.vovvevieiieiieieiieieisiiieieieieie ettt e st se s e e esaesesseesessessessessassassesseses 19-102
OCINUMDErFromREaI() ...euveuteuieiiriiitiitiriiteeteee ettt ettt st 19-103
OCINUMDBEIFIOMTEXL() -euvevevevirieirieirieiriiietetetetetestet ettt ettt sttt see sttt be s eseaeenes 19-104
OCINUMDETHYPCOS() +-vevevevvvieieiieieieiiieieieeeeeieeieesieeeteese et 19-106
OCINUMDBEIrHYPSIN() cvvoveveveviieiiiiieiiieieiiieiceece s 19-107
OCINUMDbErHYPTAN()vvieeieiiieieie it 19-108
OCINUMDETIINEC() 11veveieieieieieeeeetere sttt et e ae st et e ses e sessessessessessessesseseessesessessessessessessesseses 19-109
OCINUMDETTNEPOWET() «..evevieteitiriinienienietetete ettt ettt ettt ettt et st sbe sttt nae e seenis 19-110
OCTINUMDBETTISINT() ...ttt ettt ettt a et sa et st s et eaesenes 19-111
OCINUMDETISZETO() cvvevveeeevrerierisieriesiesiesieietetestestesessessessessessessessessessessaseesssseesessessessessassessessases 19-112
OCTIINUMDETLIN() 1.ttt ettt ettt ettt ettt b e b b st et e b e neeseenis 19-113
OCINUMDEILOZ() ..o vvviiiiiiiiiiiiiinieiir s 19-114
OCINUMDBEIMOA() c.vevverierierieiieiieietierisestess et eteaeaesesteseesessessessessessessessesseseessasessessessessessessesseses 19-115
OCINUMDETMIUL() 1.ttt ettt ettt ettt st b e b st et et e e eais 19-116
OCINUMDEINEZ() ...ecvevviiicieieiiceieie it 19-117
OCINUMDETIPOWET() c.vevververieeieeieiieiierisistestesetestetetestestesessessessessessessessessessessesessessessessessessesseses 19-118
OCTIINUMDETPTEC() 1 venvententeneeiteieeie ettt ettt ettt ettt et et sbe et be st st et e s e e eneens 19-119
OCINUMDBETROUNA() .c.vvenveretererieinieiirieirietetet ettt ettt ettt ettt a ettt be e besessesennes 19-120
OCTIINUIMDETISEEPI() .. evvevverierieeietieietieesestest et etessesbessestesaesessessessessessessessessessassesessessessessessessesseses 19-121
OCINUMDETSEEZETO() +uvenveneenterteieriietesiesteeteterte ettt ettt b st st be st et et et et e st ebesbesbe st nbesseneeneenes 19-122
OCTINUMDBEISIITE() 1.vevvvevieieiireieierieiesietei ettt et testeressesesesessesessesessesesseseesasessassesessesassesasesss 19-123
OCINUMDETSIGN() ...ttt 19-124
OCTINUIMDETSIN() c-venvententeteneetieteeie sttt sttt ettt et s bttt b e st s te b e b este e e st et eae e bt ebesbesbenbesbeneeneenes 19-125
OCINUMDEISGIL() ..vvvviieiiieiiieiiieirc s 19-126
OCINUIMDETISUD() «.vvevteieeieiieiiettete ettt sttt e et et esessassessessessessessessesseseassasassessessessessessessases 19-127
OCTIINUMDETTAN() 1ottt sttt ettt ettt et sttt et st e st et et et et es e e bt saeebeebesbe st et enseneeneenes 19-128
OCTNUMDBETITOINE() veveuveviteniieiirieerieretrt ettt ettt ettt ettt ettt b et beseaen 19-129
OCINUMDEITOREAL() +.evvevvevieeierieiieiierisiesiesietetesteteseseeseesessessessessessessessesessessessessessessessessessesseses 19-130
OCINUMbBEITOREAIAITAY () ...oveveviviviviiriiiiiiieiiieieeceee s 19-131
OCTNUMDBEITOTEXE() -euvvervenereentrieirieirieirietetet ettt ettt ettt eb bbb bbbt se st esesbe st besesbesesen 19-132
OCINUMDEITIUNC() +evvevververeerieeeeerieresessessessessessestessestesessessessessessessessessessssessessessessessessessessesseses 19-134
OCT RAW FUNCHONS ...ttt ettt b et st a et et et et e b enes 19-135
OCTRAWAILOCSIZE() veverveverveneriemirieirieirietetet et ettt sttt b et b st st st e et e st s s et st et sbentebentesenesen 19-136
OCIRaWASSIGNBYLES() . .cuvivviviiiiiiiciiiiiiccc e 19-137
OCIRaWASSIZNRAW () cv.vovveviviriiiiieicicicicccc s 19-138
OCTRAWPEL() ceveveureveiereieriteteietesteesteetesesse st e sesesseseeseseesassesessesessesessesessesessesessesessesesesssasessasess 19-139

OCTRAWRESIZE() +uveneeneentemerieriinteniertentestete ettt ettt sttt sttt e et et e beebesbe st st sbe st et entestebeebeben 19-140

OCTRAWSIZE() +vevvevevereriererierinieristeresseestesessestssesessessssessssessesessesessesessesessesessesensesessesessesessesessesenss 19-141
OCT REF FUNCEIOMNS.....cuetiiiieieteieiteteiteieet sttt ettt ettt et ettt sae bt sae st sa e s e eseeneeneeneesesen 19-142
OCTIREfASSIZIN()..o.vvvvriiiiiciiiiis s 19-143
OCTRELCIEAT() v.vrvveverererreririeirieisiesesteestetetestesesessestssesessessesessesessesessesessesessesensesessesessesessesensesanses 19-144
OCTIREFFTOMHEX() ..vvevvevieeeeeierieriiiistisieieieiesestesteeaeessessessessessessessessessessssessessessessessessessessessesenses 19-145
OCTREFHEXSIZE() «-venvenventemteneetieierteriest ettt ettt sttt sttt et et e e bt e bt sbe st st e st e st et ensesteneebenben 19-146
OCIREFISEQUAL() -..vuiviiiiniiiiiiiciiri b 19-147
OCTRELISNUIL() .+ veneeveietetetetetetet ettt sttt sttt sttt st st st et ste s be et et st et sbe e ebenessensesenees 19-148
OCTREITOHEX() c.venveneeneententeieeitet sttt ettt ettt ettt st s bbb e b et e e e st e bt ebesbeebesbesbentenbenteneebenben 19-149
OCIT String FUNCHONS ... 19-150
OCISHNGALOCSIZE() vovovvveereiririreei s 19-151
OCTISHIINGASSIGN() ..cvrvevevieiecieie ettt 19-152
OCIString AssigNTEXt()cvvveviviiiiiiiiiiiiiiiiiii s 19-153
OCTISNGPLL() c..vviiiic e 19-154
OCIStINGRESIZE()....vvvvveieieiciciiciec s 19-155
OCISEINGSIZE() ...vvvviiiiiieiiice bbb 19-156
OCT Table FUNCHOMNS.....c..cooiiiiiiieieieteee ettt ettt sttt et ebeebenes 19-157
OCITADIEDELELE() . .veuvenreneeneeiieierieri ettt sttt et ettt b e sbe bbb se et e st ebe b ebes 19-158
OCITADIEEXISES() vveveverrerrrieirieririererieestetssestesesessestssesessessesessesessesessesessesessesensesessesessesessesensesenses 19-159
OCITADIEFITST() c.veuvevvevieeieieeietietisiestistesiesteiesestesteste e ssessessessessessessessessessesessessessassessessessassessesenses 19-160
OCTITADIELASE() c.veuvevemeenieieieeiieteei sttt ettt sttt ettt st b e s bt st et b et et esteseebeebebes 19-161
OCTTADIENEXL() cevevevererrererieirieririerietetstetetetetesestesestesestesessessesessesessesessesessesensesessesassesessesesesenses 19-162
OCITADIEPTEV() c.veuvenreeieiieeieiieiieiesiestestestetessesbestestesae e ssessessessessessassessessaseasessessessassessessassassassesenses 19-163
OCTTADIESIZE() ... vvevevereneieniieiiieie sttt ettt ste e ste e ste s te s te st steneesentssentssensssentesansesensesensesenses 19-164

20 OCI Cartridge Functions

Introduction to External Procedure and Cartridge Services Functionscccccoceviininnns 20-1
Conventions fOr OCT FUNCHONSc.coveirieirieinieinieiricerietnietnicterctese ettt eene 20-1
RELUIT COAES ...ttt ettt ettt sttt 20-1
With_Context TYPec.cviiiiiiiiiic s 20-2

Cartridge Services — OCI External Procedurescccccooiiiiiiiiiiiiiiiiceccceennas 20-3
OCIEXtProc AlIoCCalIMEMOTIY() . .uveuumemememeieieiereieieieiereieieieieieieteteeere e nesesese e seneneneees 20-4
OCTEXEPTOCGEIENV() ..ttt sttt st ettt ettt s aas 20-5
OCIEXtPTOCRAISEEXCP() ..vvvvviiiiiiiiiiiiiciciiiciceicictet e 20-6
OCIExtProcRaisSeEXCPWItRIMSZ() ...cvvvmimemiiiiiiiiieicieiciccicieiciceteteieie e 20-7

Cartridge Services — MemoOTIy SeIVICes...........cooviiiiiiiiiiiiiiiiiiie e 20-8
OCIDUrationBegin().........ccceeueuiuimiiiiiiiiiiiiiiieieee s 20-9
OCIDUTAtIONENA() c.vevveereeieeieieiiieiseietet ettt ette e ste st e sbe s essesaesaesaesaesessessessessessassessessesensensenes 20-10
OCIMEMOIYALLOC() cvvvviiieiiriiiiiicicict st sa st 20-11
OCIMEMOTYFIEE() ... 20-12
OCIMemMOTYRESIZE() ..ovviiiiiiiiiiiiii e 20-13

Cartridge Services — Maintaining Context.............ccoooiiiiii 20-14
OCTCONEEXECIEATVALUE() c.veevvvenirenieieieieieieiet ettt ettt ettt ettt sttt sens 20-15
OCIContextGenerateKey() ..o 20-16
OCICONIEXEGEEVAIUE() -nveveenteiiriiniiienieseeete ettt ettt b e sb e sttt 20-17
OCTCONEEXESEEVALIUE() vevervevirrenirienirieirieteie ettt ettt ettt ettt ettt et sttt b e senes 20-18

XXiX

21

XXX

Cartridge Services — Parameter Manager Interface..............cccocoooiiiiins 20-19

OCTEXTTaCtFIOMEFILE() ..uveueeuieeieiieiieiieteeieee ettt ettt et ettt et et beebe e 20-20
L@@ 1 257 =Tt d 2y} o 01 1511 () 1TSS 20-21
OCTEXITaCtFIOMSET() .cueeuienieiietiieeieeeste ettt ettt ettt ettt et et b b e 20-22
OCTEXETACEINTE() vttt ettt ettt ettt ettt ettt e ettt e st e s bt ebesbe st e seeee e eneeneebeebenee 20-23
OCTEXETACTRESEE() veuveevveveeieniieiirieieetesteetesteseeteseesestessesseessesseessesseessesseessesseessesseessesseessensennes 20-24
OCIEXtractSEtKey () ...uoveveviviriiiieiiiiiiiiieieiiiciccec s 20-25
OCIExtractSetNUMKEYS() ...c.ovvviiiiiiiiiiiiiiiiiic e 20-27
L@ @ 1 25T =Tt ol =3 ' o 1) 1SRRI 20-28
OCTEXETaCtTOBOOL() ... ueeuteuteueeiieteeteeiieiestetetet ettt st sttt et ebe b e 20-29
OCTEXTACETOINE() . cvveeeveeeninieitrteerieteietrt ettt ettt ettt bttt ettt bbbt se et b b et sbenenaenes 20-30
L@ @ 1 25Tq =Tt ol o) I =] (SRS 20-31
OCIEXEract TOOCTIINUITI() -c.veeveererteriinienientetetet ettt sttt sttt sttt et st sbe b st se e e et et e ebe b e 20-32
OCTEXITACETOSEL() . cnvvenvereeereeeterteerieitrtetrt ettt sttt ettt ettt b et b et eb st et s et besebesenbenensenes 20-33
Cartridge Services — File I/O Interface ... 20-34
OCTFIIECIOSE() wevvvveuerueruerierieriententeste sttt ettt et et sttt et et e st et et e st et e bt e bt e be s bt st e b et e st et et eneeseebesbenee 20-35
OCTFIIEEXISTS() - vuveueeuteuteueeueeieetestestesteste et est et et et be bt stes b e sbe b et e st e st esteneebesaesbeebesbe st ensenteneeneeseesenes 20-36
OCTFIIEFIUSI() vvvevvevieiieiieteieiieteete sttt ettt ette et et e s e b essesaesaeseesessassessessessessessaseesensensenes 20-37
OCTFileGetLength()ccccceeveviiiiiiiiiiiiiiiiiicii s 20-38
O CTFIIEINTE() ettt ettt ettt ettt sttt ettt et et e s e st s e ebeebesbe b et et et eneenteneeneebeebeeee 20-39
OCTFILEOPEI() .ottt 20-40
OCTFIIEREAA() -vvveuvemeentemteeeienieeteste sttt ettt ettt ettt sttt ettt et a e bt et s bt st e b et et et et et e beebeebenae 20-42
OCTFIIESEEK() - vnvenvemeemeenteieet ettt ettt ettt ettt sttt ettt e bt e e st et e st e bt e besbesbeebe b et et et eneeseebeebenes 20-43
OCTFIIETEITIN() . 1evvevvevierieeieeeietiete e st stet et et et et eseesessessessesbessessessessessesseseasesseasessersessessessassasensensenes 20-44
OCTFIIEWITIEE() +.vveuvemeeneeneeieeieeieet ettt ettt ettt bbbttt ettt sbe bt be s b st e e et et e beebeebenae 20-45
Cartridge Services — String Formatting Interface..............cccoooiiii, 20-46
OCTFOIMALINIE() +revveeveererrieienieieeeeseetesteetestestesesee e sseessesseessesseessesseessesseessesnsensesssesensesssensennes 20-47
OCTIFOrmatStrING() ..voveveveveverereieieieieieieecec e 20-48
OCTFOIMATEITI() +euvevenvereeereieterteerieitrtetrt ettt sttt ettt et b bbb bbb ese st e st besebesessenensenes 20-53

OCI Any Type and Data Functions

Introduction to Any Type and Data Interfaces..............cccccoooiiiiiiiiiiiiicceas 21-1
Conventions for OCT FUNCHONSeeerirriereininieiciceninteeetreneeieeseeereseestereseseeseesesesesessesesesees 21-1
FUunction RetUrn ValUes........o.ccvveireiriiiniiieiieeeceteee ettt ere e 21-1

OCI Type Interface FUNCLIONS...........ccocoiiiiiiiiiiiiiicc e 21-3
OCITYPEAAAALLT() ..ttt ees 21-4
OCITypeBeginCreate()ccoiiieieieiiiieie i 21-5
OCITYPeENdCTIEAte()cvvevviiiiiiiciciiicieii s 21-6
OCITyPeSetBUIITN() ...cvvveerieiiecicirieieieeieree et 21-7
OCITypeSetCOlIECtION()cuvvrviriririeiiiiiiiririieieieiette e 21-8

OCI Any Data Interface FUNCHONS ..o 21-9
OCTANYDAtAACCESS()...cvvuvvvniiiiiiiiiiiiiii s 21-10
OCIANYDAtaAIGEL() ..vovovevevieieiciciieiccicccc e 21-12
OCTANYDAtaATISEL()cvvviiiiiiicicie e 21-14
OCIAnyDataBeginCreate() ... 21-16
OCIANYDataColIAAAEIEM() ...cvovvviiiiiiiiiii e 21-18
OCIANYDataCollGEtEIEM()cuovviiiiiiiiiciiiiiiiirirccse s 21-20

OCIANYDataCOonVert()ceveveviieiiiiieieiiiiicc e 21-22

OCTANYDAtaDESIOY (). .vuvurveveiercieieieiiicie ittt 21-24
OCIANYDataENACTIEAtE() . ..vveeeeireecr e 21-25
OCIANyDataGetCurr AHINUMN() ...coveveviveieicieiiicicccc s 21-26
OCTANYDAtaGEITYPE() «.vrvvrvviirieiiiiiiiiiieiiiiiee s 21-27
OCTANYDAtaISINUIL()....veviiieiicecrceec e 21-28
OCIAnyDataTypeCodeToSqL().......ccourueriiiiieieiiciciec e 21-29
OCI Any Data Set Interface FUNCHONS.............cocoooiiiiiiiiice 21-30
OCIANyDataSet AddINStANCE()......covrveeeieeiiiieccc e 21-31
OCIAnyDataSetBeginCreate()...........cowrueueiicieieiniciciecicie s 21-32
OCTANYDataSetDeStIOY ()ceveveeuruereiicieieieiiicie ettt 21-33
OCIANYDataSEtENACTIEAte().......eveveveerererireeirirerieeererire et 21-34
OCIANyDataSetGetCount()ccceveveveiiiiiiiiiiiiiii e 21-35
OCTAnyDataSetGetINStance()ccceeverueueieiiecieieicicie et 21-36
OCIANYDataSetGetTyPe()covvvviiiiiiniiiiiiiciic e 21-37

22 OCI Globalization Support Functions

Introduction to Globalization Support in OCIc.cccccoiiiiiiinnineccee s 22-1
Conventions fOr OCT FUNCHONSc.coveerieirieirieinieirictnietnietneeereeeieesieessesee e see e eeene 22-1
REEUTITIS -ttt ettt ettt st b et e bt e a e b et e s bt e st e sbeebesaeenaenbean 22-1

OCT LOCale FUNCHONSc..oveiiiiiiieiieiieiieieei sttt sttt et et e sttt ebe b sbesaesbenbensens 22-3
OCINISCharSEtIATONAMIE() -.c.veveuveuieuieierieeierierieeierte ettt ettt st sbe st sbe st st et bete st e e et e e eaesbeeaen 22-4
OCINISCharSetNameTOLA()ceeveverieririeririeiirieirieerieerietr ettt et s seene 22-5
OCINISENnvironmentVariableGet()c..cveeveereriririerieieiereieieeeressessessessessessessessessessessesessessenss 22-6
OCTINISGEEINTO() 1ttt ettt et sttt ettt ettt et e s bt sb e b bt s b et et et et estest et ebeebenbesbesaenean 22-8
OCINISNUMETICINFOGEL() ..evrvevvvemirreiriiirieietetet ettt ettt ettt aens 22-11

OCI Locale-Mapping FUNCtion.............cccooeiiiiiiiiii e 22-12
OCINISNAMEMAP (). vveviniriiiiniiiiiiiiii e 22-13

OCI String Manipulation FUNCIONS ... 22-14
OCIMultiByteInSize TOWIideChar()c.cccocueueuiiimiiiiiieiiicciceireceeeeeeeee s 22-16
OCIMultiByteStrCaseCONVerSiON()ccouvuereriieiireieiiiiieieieieciniseeeeee s 22-17
OCIMULtIBYtESICAt() . ..vvvviviiiiciciciciiicie s 22-18
OCIMUltiByteStremp()ocoveeiiiiiiiiiiiiiii e 22-19
OCIMULtBYTESEICPY (). v veieieeieiiiicie ettt 22-20
OCIMUltiByteStIIEN().....c.cvviveuiiiiiiiciciiiicieeeec s 22-21
OCIMultiByteStrncat()........cocovviviiiiiiiiiiiiiiiiii e 22-22
OCIMultiByteStrnemp()ceeveveiiiiieiiiiiiiiicicii e 22-23
OCIMUltiByteStINCPY () «.vvvevviiiiiiiiciiiciiiirrrr e 22-25
OCIMultiByteStrnDisplayLength()cccccovueeuiieirrriiiiircccrrerrre s 22-26
OCIMultiByteToWideChar()cccoovveviiiiiiiiiiiiiiiii e 22-27
OCIWideCharInSize TOMUItiBYte()cccovvuiiiiiiiiiiiiiiiiicccccc e 22-28
OCIWideCharMultiByteLength()cccccerureririririniiiiiiicccccccccccccccccnceeeeee e 22-29
OCIWideCharStrCaseCONVETrSION().......coeruerterterterererieeesiestestessestestentesteseeteebesbesaestensessessenseneene 22-30
OCTWIECRATSEICAL() c.vveveviieiirieiirteirietrie ettt ettt b ettt sttt et st ettt be b sens 22-31
OCTWIideCRATSEICNT() ..vveevevieiieririietiieieietetetetette e se e bestessessesseseeseeseesessessessessessessessessessssensenes 22-32
OCIWideCharSICIP()....covvueuiiiiiiieiiiicci e 22-33
OCIWIdeCRArSIICPY() ..vovvevevriiiiiiiiiiriiiiriiri e 22-34

XXXi

23

A

XXXii

OCTWIdeCRArSEIIEN() c..eeueeueeeeeterierieeierteetet ettt ettt st st et b e 22-35

OCTWIdECRATSEINCAL() 1ovvvevrveriereieieieieietetetesteteteestesesesesesessesessesesesesesessesessessssessssessesessssenes 22-36
OCIWideCRarSENCINP() «.vcvevevreeeeieieieirieeeieireirerreeeseres e 22-37
OCIWideCharStINCPY (). ceveverereieieiiieieiiiciiircicsi s 22-39
OCTWiIdeCRharSEITCRI() «..coveeerveeerieirieirieiricteeet ettt ettt sttt b s nae s 22-40
OCTIWIideCRArTOLOWET() c.vvevevierieiieieieieiereeteiesieessessessessessessessesaessesessessessessessessessessessessesessenss 22-41
OCIWideCharToMUltiByte()cccevueiiiiiiiiiiiciiiiiciciiccc i 22-42
OCIWideCharTOUPPer()cccovvviviiiiiiiiiiiiiiiiiiiiicinii s 22-43
OCI Character Classification FUNCHIONScccooeviiiiiiiiiiiiiiiininneeeseeee et 22-44
OCIWideCharISAINUIMN() ...ceueeuererinerientetetetete ettt sttt ettt st st e ne et ene e 22-45
OCIWideCharIsSAIPRA()coovviiiiiiiiiiiiiiicc e 22-46
OCTIWIideCRArISCIELL() veveveereieieieieiietetetetete et eres e saessessessesaessesaeseeseesessessessessessessessesensenns 22-47
OCIWideCharIsDigit()cccooveviiiiiiiiiiiiiiiiiicc 22-48
OCIWideCharIsGraph()cccoovuviiiiiiiiiiiiiiiiiiiiii e 22-49
OCTIWIideCRArISLOWET() c.veveveierierieririeieietesieiesteassessessessessessessessessesessessessessessessessessesseseesensenss 22-50
OCTWIideChAarISPIIiNE() .. eoveeeuteueeierieriertertetetete ettt ettt ettt sa et ebe b e 22-51
OCTWideCharISPUNCE() «.cvevrvererenieieieieieietetent ettt ettt sttt sa et et ss e ss et eae s 22-52
OCIWideCharIsSINGIEBYte().....c.ceurueuemememiueiirimiieieieicieieicieieieeeeeee et 22-53
OCIWideCharISSPace() ... 22-54
OCIWideCharIsUPPer()ccoeueviiiiiiiiiiiiiiiiiiiiiicss s 22-55
OCIWideCharIsXdigit()ccevurerururiririririiiirrrrrrrer e 22-56
OCI Character Set Conversion FUNCHONS..........cccccciiiiniiiiienieieieee e 22-57
OCICharSetConversionlsReplacementUsed()ccccvvvriiiiiiininiiniiiniiiiiicne 22-58
OCICharSetTOUNICOAE() .vevveveererrirririerieieiereteeerteerseesessessessessessessesseseesessessessessessessessessessesessenss 22-59
OCINISChArSEtCONVETT() «..veveeueereruerieriinieieteteteteteit ettt ettt ettt et et sbe e st e see e et e e ebeebenee 22-60
OCTUNICOAETOCRATSEE() «.vvvvveveevenerreirieiriiteientetetetesteietet ettt ettt et se et st bt sbe st sae s 22-62
OCI Messaging FUNCHONScooiiiiiiiiiic e 22-63
OCIMESSAGECLOSE() . cuvvviiiiiiiiiiiiciicit bbb 22-64
OCIMESSAGEGEL() ..vviviiiiiiiiiiic s 22-65
OCIMESSAZEOPEI().....vvviiiiiiniiiiii bbb 22-66

OCI XML DB Functions

Introduction to XML DB Support in OCI............ccocooiiniiniiniineinceneeneeneeneceree e 23-1
Conventions fOr OCT FUNCHONSccueoiiieiiiiiirieiesiesieeeterte ettt sttt sttt 23-1
RETUITIS ettt ettt et e s bt et e s bt e te s bt et e eseentesaeentesaeensesaeesesnean 23-1

OCI XML DB FUNCEIONScoonieiiiiiieieeiieeeienecet ettt ettt eeb ettt ettt et eae et ssesaesbesbesaens 23-2
OCIBinXmlCreateReposCEXFromCONm().......ccovuvuiuiiininiiiiiiiiiiciiicccieccccees 23-3
OCIBinXmlCreateReposCtxFromCPOOL()ccccoceuiuiiiiimiiiiiiiiiiciccccceccces 23-4
OCIBINXMISEtFOrMAtPIEf() ..vevevereieieeieieieisieesesesteiet et estee e e esessessesbessessessessessesseseessnsenses 23-5
OCIBinXmlSetReposCEXFOrCONI()cvcueuiiiiiiiiiiiiiiciiiiccinc s 23-6
OCTXMIDDFIEeXMICEX() ..veuveveurerenteieieieieiirtettrtesertesesteststes et estees et s bt ebe st e b st e e sae b e ebeeebeneene 23-7
OCTXMIDDINIEXIMNICEX() -vovevvveneereieieieieietitetertesesteestetstests e seste et bt ebe st ebe st e e seeseneesenseseneene 23-8

Handle and Descriptor Attributes

(@) 1R 77=) 1 o o) 2 1= J RO A-2
Environment Handle ATIDULES..........ooovviieiiiiieeceeeeeee ettt eraee st eaee e seaaeeens A-2
Error Handle AETDUEESo...oooeiiieeeeeeeeeeee ettt et ettt e et e e e eaee s s et e s saaeessnneesenaeenan A-8

Service Context Handle AEIDULESc..oooeeiiiieeeeeeeee ettt ae e eaaeeens A-8

Server Handle Attributes ... A-11
Authentication Information Handle..........cccccoooiiiiiiiiiiiccceeeeeeeeeeeenees A-14
User Session Handle Attributes ... A-14

Administration Handle Attributes ... A-22

Connection Pool Handle Attributes ..., A-22

Session Pool Handle Attributes ... A-24

Transaction Handle Attributes ... A-26

Statement Handle Attributes ... A-27

Bind Handle Atributes..............cccoiiiiiiiiiii s A-34

Define Handle Atributes ... A-37

Describe Handle Attributes ... A-39

Parameter Descriptor AHIIDULES ... A-39

LOB Locator AtFIDULESc.coiiiiiiiiii s A-39

Complex Object Attributes...............ccccoooiiniiiiiiiiiii A-40
Complex Object Retrieval Handle Attributescccccoooviiiiiiiiiii A-40
Complex Object Retrieval Descriptor Attributes...........ooooeoioiiiiiiiii A-40

Streams Advanced Queuing Descriptor Attributes................cccooiiinniini A-41
OCIAQEngOptions Descriptor Attributes ..o A-41
OCIAQDeqOptions Descriptor Attributes............ocooeueiiiiiii e, A-43
OCIAQMsgProperties Descriptor Attributes...........cccoviiiiiiiiiiiiiiiiie, A-46
OCIAQAgent Descriptor AttribULescceveveviiiiiiiiiiiiic s A-50
OCIServerDNs Descriptor Atributes ..o A-51

Subscription Handle Attributesccooiviiiiiiiieeeere e A-51
Continuous Query Notification Attributes ..., A-57
Continuous Query Notification Descriptor Attributes............coooeieioiiiiiii, A-58
Notification Descriptor AttrIDULES.........cccccvuiuiiiiriiiiiriiieccrr s A-60
Invalidated Query AtribUtesc.ooiiiiii A-62

Direct Path Loading Handle Attributes..............cccocooviiiiiii A-62
Direct Path Context Handle (OCIDirPathCtx) Attributes.......cocevvevveieiecieieieieieieeeese e A-63
Direct Path Function Context Handle (OCIDirPathFuncCtx) Attributes..........cccecevcrenenee. A-68
Direct Path Function Column Array Handle (OCIDirPathColArray) Attributes A-69
Direct Path Stream Handle (OCIDirPathStream) Attributes........cccooveeveeveieciecincininieesesenen A-70
Direct Path Column Parameter Attributes..........ccccoooviiiiiiniicces A-71

Accessing Column Parameter Attributes.........c..oooviiiiiiiiiiic A-71

Process Handle Attributes ... A-75

Event Handle Attributes ... A-77

OCI Demonstration Programs

OCI Function Server Round-Trips

Overview of Server ROUNA-TEIPS........ccccoiiiiiiiiiiiiiiii s C-1
Relational Function ROUNA-TIiPscccviieiiiiiiiiiiiiiicicceeeceieeeeee et C-1
LOB FUunction ROUNA-TEIPSc.cceririiiiiiriiecininietctineereeteneeieee et nesesesessese et s s sesesensenesenes C-3
Object and Cache Function Round-Trips..........cccooviiiiiiiiiiiiiiiiic s C-4
Describe Operation ROUNA-TTiPsccocooviiiiiiiiiiiiiiicccccee e C-5

XXXxiii

Data Type Mapping and Manipulation Function Round-Trips........cccccoviiiiniiiinniiinnnn. C-6
Any Type and Data Function Round-Tripscccoooriiiiiiiiiiic s C-6
Other Local FUNCHONS ..o C-6

Getting Started with OCI for Windows

What Is Included in the OCI Package for Windows? ..., D-1
Oracle Directory Structure for Windows...............cccoiiiiiiiiiicce D-1
Sample OCI Programs for Windows ... D-2
Compiling OCI Applications for WIndows.............ccccoeiiviiiiiiiiiiiiicne D-2
Linking OCI Applications for WIndows ... D-3
OCLLID s D-3
Client DLL Loading When Using Load Library ()ccccccccecueueueieueieiniiieeeeceeeeeeeeeeeenes D-3
Running OCI Applications for WINndOWsccccoviiiiniiiiiiiccaes D-3
Oracle XA LiDIary ...t D-3
Compiling and Linking an OCI Program with the Oracle XA Library........c.cccccccccoeeeinnnnnne. D-4
Using XA Dynamic Registration...........cccoeeieieiiiiiiiiiiiiiiii s D-4
Adding an Environmental Variable for the Current Session ..o, D-4
Adding a Registry Variable for All SESSIONS..........cccevuriririvriiirrrrcrrreccereeeee s D-4

To Add a Registry Variable: ... D-5

XA and TP Monitor INformation ... D-5
Using the Object Type Translator for Windows..............cccccoviiiiiiiinnie, D-5

E Deprecated OCI Functions

Deprecated Initialize FUNCHONSc.ccccoviiiiiiiiiiiiiiiicecce s E-2
OCTENVINIE() .ttt ettt ettt ettt ettt et be bbb st et e st e st et eatest e st ebeebeebenbe s ensenee E-3
OCTIINIHALZE() -.vvvevrvemerereremiiereieiereieteieteiereee et eresesete e e sese s bbb sese s e se st sesesessaesesesessaeseseseesesnes E-5

Deprecated Statement FUNCHIONS...........cccoociriiiiiiiiiiceccce s E-7
OCTISEMEFETCN() 1.ttt ettt st b ettt et e e bt be bt sbeeb e bbb e b enee E-8

Deprecated Lob FUNCHONSccooviiiiiiiiiiiiiii s E-9
OCTLODCOPY() cvevvvevemerememememeieieieiemeieieieieieseieteseiesesesese e s sesesese s sese s seae s s s s asaesesesesessasssesaseseses E-10
OCTLODETASE() +.uvuveutenteneeieeieeteeteetesie sttt sttt et ettt e st e st et st e bt s bt sbe b e be st e st et e st et ebtebtebeebeebeebesbessensen E-11
OCILODGELLENGEN() ...ttt E-12
OCILODLOAAFIOMEFILE() ...veuvevveeieeieeieeieiieiriieiistesiesteieteste et ete st esessessessessessessessessessessessesseseessnsenses E-13
OCTLODREAA() .+ venveveteeeieteiteitetteit ettt et sttt ettt ettt b s bt st sb e b e b st et e e et et ebeebeebesbeebeebesbesaensen E-14
OCTLODTIIIN() +vvveveremererererereteueiereretetetetereretetesetesesesetesssesesesesesssesssssssesnes E-18
OCTLODWIIEE() «.veveeveeriieieieieiieteeteeteestesseesestessessessessessessessesseseasassessessessessessessessassessassesensessenseses E-19
OCILObWIIEAPPENA() ..vvvviiiiiicicicicrceicceee s E-23

Deprecated Streams Advanced Queuing Functions................ccccooviiinininnniin E-26
OCTAQLISTEN() vttt eees E-27

Index

XXXiV

XXXV

List of Examples

XXXVi

2-1

O i N
OO h WN

l\)l\)l\)l\)l\)ll\)l\)l\)l\)l\)l\)

B e T QT W W W = I <o I e e LN |

No o w20

N
D =N

rreeesttTh
OO BHhWON=2LNOO AW

01(.)1(.)1(.')10101

7
\I

T
o

5-9

Using the OCI_ATTR_USERNAME Attribute to Set the User Name in the Session Handle .
2-8
Returning Describe Information in the Statement Handle Relating to Select-List Items 2-8

Using the OCILogon2 Call for a Single User Sessionccccveeiiiiciiiiiicniiiininennen 2-15
Enabling a Local User to Serve as a Proxy for Another Userccccovvvniiinninnnnnn 2-16
Connection String to Use for the Proxy User...........cccccoviiiiiiiniiiininiiinn 2-16

Preserving Case Sensitivity When Enabling a Local User to Serve as a Proxy for Another
User 2-16

Preserving Case Sensitivity in the Connection String ..o, 2-16
Using "dilbert[mybert]" in the Connection String...........ccccoevvviviiininiiinniinin, 2-16
Using "dilbert[mybert]"["joe[myjoe]"] in the Connection String...........ccccceeuvveviiirinnnen. 2-17
Setting the Target User Nameccoocriiiiiiiiiiiccec i 2-17
Using OCI to Set the OCI_ATTR_PROXY_CLIENT Attribute and the Proxy dilbert... 2-17
Creating and Initializing an OCI Environmentccccccovvvvinniiniiininiiiinn 2-18
Getting Locale Information in OCL...........cccccooiiiiiiiniiis 2-32
Basic String Manipulation in OCl...........cccccoiiiiiniiiiiis 2-33
Classifying Characters in OClL..........cccccooiiiiiiiiiiiiiii s 2-34
Converting Character Sets in OCILcccccooiiiiiiiiiii s 2-35
Retrieving a Message from a Text Message File..........cccccoiiiiiiiniiiinn, 2-36
OCI Bind and Define Support for 64-Bit Integersc.cccccevreiiiiiniiiiiiicinn, 3-10
Binding 8-Byte Integer Data Types for OUT Binds of a DML Returning Statement 3-10
Binding Both Input and Output Variables in Nonquery Operations............cccccccevrirnnnen. 4-5

Calling OCIAttrGet() to Retrieve the Number of Errors Encountered During an Array
DML Operation 4-7

Retrieving Information About Each Error Following an Array DML Operation 4-7
Using Batch Error Execution Mode...........c.oooiiiii e 4-8
Implicit Describe - Select List Is Available as an Attribute of the Statement Handle.... 4-10
Explicit Describe - Returning the Select-List Description for Each Column................... 4-12
Access on a Scrollable CUTSOT ... 4-16
Handle Allocation and Binding for Each Placeholder in a SQL Statement........................ 5-5
Defining a PL/SQL Statement to Be Used in OCTccccccoviviviiiiiiniiniiiiiine, 5-6
Binding the Placeholder and Executing the Statement to Insert a Single Locator 5-8
Binding the Placeholder and Executing the Statement to Insert an Array of Locators.... 5-9
Demonstrating Some Implicit Conversions That Cannot Be Done..............ccocooeeiii 5-10

Allowed: Inserting into C1, C2, and L Columns Up to 8000, 8000, and 2000 Byte-Sized Bind
Variable Data Values, Respectively 5-11

Allowed: Inserting into C1 and L Columns up to 2000 and 8000 Byte-Sized Bind Variable
Data Values, Respectively 5-11

Allowed: Updating C1, C2, and L Columns up to 8000, 8000, and 2000 Byte-Sized Bind
Variable Data Values, Respectively 5-11

Allowed: Updating C1, C2, and L Columns up to 2000, 2000, and 8000 Byte-Sized Bind
Variable Data Values, Respectively 5-12

Allowed: Piecewise, Callback, and Array Insert or Update Operationscccc........ 5-12
Not Allowed: Inserting More Than 4000 Bytes into Both LOB and LONG Columns Using
the Same INSERT Statement 5-12

Allowed: Inserting into the CT3 LOB Column up to 2000 Byte-Sized Bind Variable Data
Values 5-12

Not Allowed: Binding Any Length Data to a LOB Column in an Insert As Select Operation
5-13

Defining a Scalar Output Variable Following an Execute and Describe Operation...... 5-14
Defining LOBs Before EXeCULIONccccccuiuiiiiiiiiiiiiiiiiiiciciccccccs 5-17
Defining LOBs After EXeCUIONc.cccccuiiiiiiiiiiiiiiiiiiiicicccccees 5-17
Using Multiple Bind and Define Buffers............ccccccocciiiiiiiiiiiiiiccceccce, 5-20
Binding the REF Output Variable in an OCI Applicationccccccoevviiiivniinnncnnns 5-25

5-19
5-20
521
5-22
5-23

[
oNO O A

NOOaPLrWN—= 244

(IO(O
©

Setting the Client Character Set to OCI_UTF16ID in OCIcccccecevviininniniiinninnn 5-27

Insert and Select Operations Using the OCI_ATTR_MAXCHAR_SIZE Attribute 5-31
Binding and Defining UTF-16 Data..........cccccoooiiiiiiiiiii e 5-32
Binding the :cursorl Placeholder to the Statement Handle stm2p as a REF CURSOR. 5-33
Defining a Nested Table (Second Position) as a Statement Handle..............cccccccceveen 5-33
Initializing the OCI Process in Object Mode..........cccccovunivivininiiinininniiii, 6-3
Using an Explicit Describe to Retrieve Column Data Types for a Table.................c........ 6-19
Describing the Stored Procedure.............cc.cooiuiiiiiiiii 6-20
Using an Explicit Describe on a Named Object Type.......cccccovveveviiiiiiciiiiiiiiiinn, 6-22
Using an Explicit Describe on a Named Collection Type........cccccooiiiiieiiiiiiieiiiinicinns 6-23

Using a Parameter Descriptor to Retrieve the Data Types, Column Names, and
Character-Length Semantics 6-25

Using the LOB Locator and Allocating the Descriptors.........cococeueiiiieiiiiciciciiccce 7-4
Implementing Read Callback Functions Using OCILobRead2()cccccoovurueviiniununuennnes 7-12
Implementing Write Callback Functions Using OCILObWrite2()c.cccoerueveiiiniriennnes 7-13
Using Temporary LOBScooiiii 7-16
Prefetching of LOB Data, Length, and Chunk Size..........ccccooiiiiiiiiiiiiii 7-20

Defining the OCI_ATTR_SERVER_GROUP Attribute to Pass the Server Group Name. 8-9
Defining the OCI_ATTR_PROXY_CREDENTIALS Attribute to Specify the Credentials of
the Application Server for Client Authentication 8-11

Defining the OCI_ATTR_DISTINGUISHED_NAME Attribute to Pass the Distinguished
Name of the Client 8-11

Defining the OCI_ATTR_CERTIFICATE Attribute to Pass the Entire X.509 Certificate
8-12

Defining the OCI_ATTR_INITIAL_CLIENT_ROLES Attribute to Pass the Client Roles........
8-12

Defining the OCI_ATTR_CLIENT_IDENTIFIER Attribute to Pass the End-User Identity.....
8-12

Defining the OCI_ATTR_PASSWORD Attribute to Pass the Password for Validation 8-13
OCI Attributes That Let You Specify the External Name and Initial Privileges of a Client
8-13

Defining the OCI_ATTR_APPCTX_SIZE Attribute to Initialize the Context Array Size with
the Desired Number of Context Attributes 8-16

Using the OCI_ATTR_APPCTX_LIST Attribute to Get a Handle on the Application
Context List Descriptor for the Session 8-16

Calling OCIParamGet() to Obtain an Individual Descriptor for the i-th Application Context
Using the Application Context List Descriptor 8-16

Defining Session Handle Attributes to Set Externally Initialized Context...................... 8-17
Using the OCI_ATTR_CALL_TIME Attribute to Get the Elapsed Time of the Last Server
Call 8-17

Using OCISessionBegin() with an Externally Initialized Contextcccceiiiinniennnes 8-18
Changing the "responsibility" Attribute Value in the CLIENTCONTEXT Namespace 8-20
Two Ways to Clear Specific Attribute Information in a Client Namespace.................... 8-21
Clearing All the Context Information in a Specific Client Namespace............ccccceuevnnee. 8-21
Calling OCIAttrSet() to Set the OCI_ATTR_EDITION Attributeccccccoeevevirinnnnnnn. 8-22
Setting SeSSION PULItYcoiviveieiiic 9-17
Setting the Connection Class as HRMS ..o 9-17
Setting the Connection Class as RECMScccooiiiiiiiiiiiiiccc 9-17
Specifying :POOLED in the Easy Connect String for Enabling DRCPccocc.co.... 9-18
Specifying SERVER=POOLED in a TNS Connect String for Enabling DRCP................. 9-18
Database Resident Connection Pooling Application..........cccccevviiiiiiiiiiciinine 9-19

Connect String to Use for a Deployment in Dedicated Server Mode with DRCP Not
Enabled 9-20

Connect String to Use for a Deployment with DRCP Enabled...........ccccooviiiiiiiininnnes 9-20
Optimizing Bind and Define Operations on Statements in the Cache............cccccccoeuee. 9-29

XXXVii

XXXViii

QOQOQOQO(IOQOQOQOQO
O G G G G G Y
ONOOOPA~,WN-—=-O

Pseudocode That Describes the Overall Processing of a Typical OCI Call..................... 9-32

Environment Variable Setting for the ORA_OCI_UCBPKG Variable.............ccccccueunnn. 9-36
Specifying the pkgNInit() and PkgNEnvCallback() Functions.........cccccoovreiiiircneinnes 9-36
Using pkgINEnvCallback() to Register Entry, Replacement, and Exit Callbacks........... 9-36
Registering User Callbacks with the NULL ucbDesc.........ccoooveieiiiiiiiiiicic 9-36
Using the OCIStmtPrepare() Call to Call the Callbacks in Order...........cccccovvvviivnnininnnns 9-37
User-Defined Failover Callback Function Definitioncccccoveeiniiiiiiiiiininnnn, 9-40
Failover Callback Registrationccoooviirioiiiiiii 9-41
Failover Callback Unregistration............ccooerieiiiiiiiiiii 9-41
Callback Function That Implements a Failover Strategyccccooieieiniiiciniiics 9-42
Event NOtificationcccciiviiiiiiiiiicccicccc s 9-46
Enqueue Buffered Messagingcooocueveiiiiiiiiiiiciicci 9-52
Dequeue Buffered Messagingcccoeueueviiiieiniiiicieicce s 9-53

Setting QOS Levels, the Notification Grouping Class, Value, and Type, and the Namespace
Specific Context 9-57

Using AQ Grouping Notification Attributes in an OCI Notification Callback 9-62
Implementing a Publish Subscription Notificationccccceeeviiiiiiiiniiicnn 9-64
Registering for Notification Using Callback FUNCtions..........ccccoeueviieiiiiiiiiciiicicieae 9-66
LDAP RegiStration........ccccoeveveiiieiiieiiiiieiieiiei s 9-69
Program Listing That Demonstrates Continuous Query Notification..............cccoccco..e. 10-7
Calling OCIDBStartup() to Perform a Database Startup Operation...........cccooceveviunnnnes 10-18
Calling OCIDBShutdown() in OCI_DBSHUTDOWN_FINAL Mode..........ccccccovrnrnnes 10-19
Calling OCIDBShutdown() in OCI_DBSHUTDOWN_ABORT Mode...........ccccovrrururnes 10-20
Implicit Fetching of ROWIDS.........ccccoiiiiiiiiiicec s 10-21
SQL Definition of Standalone Objects..........cccoccvvviiiiiiiiniiiiiis 11-4
SQL Definition of Embedded Objects........c.cccoviviiiiiiiiiiiiiiiiiiccines 11-4
Pinning an ObJect........coici 11-8
Manipulating Object Attributes in OCT ... 11-9
Using Complex Object Retrieval in OClL...........cccccoiiiiiiiiiiiiiicccc 11-19
C Representations of Types with Their Corresponding NULL Indicator Structures.. 11-22
Creating a New Object for an Object VIewccccoeeeiiiiiiiiiiii 11-26
Manipulating an Attribute of Type OCIDatecccoooeriiiiiiiiiieiiic 12-5
Manipulating an Attribute of Type OCIDateTimecccoouiiiiiiiiiiiiiiicecie 12-8
Manipulating an Attribute of Type OCINuUmMDber..........cccoooiiiiiiiiiiie 12-10

Converting Values in OCINumber Format Returned from OCIDescribeAny() Calls to
Unsigned Integers 12-11

Manipulating an Attribute of Type OCIStringcooooeveveiiiiiiiiiiiiecc 12-12
Manipulating an Attribute of Type OCIRawWcccccueiiiiiiiieiiiicieic e 12-13
Using Collection Data Manipulation FUNCtiONS.........cccooviiiiiiiiiicnes 12-15
Using Multilevel Collection Data Manipulation Functions...........cccccooeviiiiiinnnnns 12-18
Using REF Manipulation FUNCIONS..........cccoeeiiiiiiiiiiiiiicccc 12-19
Using Type Interfaces to Construct Object Types..........cccooovueieiiiiciiiiiicciccce 12-21
Using Type Interfaces to Construct Collection Types........ccccceeeeiiiiiiniciiiieiienne, 12-21
Using Special Construction and Access Calls for Improved Performance 12-24
Method 1 for a Salary Update: Fetch, Convert, and Assigncccocoeevviiieiiieiniennnen 12-32
Method 2 for a Salary Update: Fetch and Assign, No Convert..........c..ccocovrivinrirninnnn 12-32
Method 3 for a Salary Update: Direct Fetch.........cccooevviniiniiiniiiiiiccs 12-33
Using the SQLT_NTY Bind Call Including OCIBindObject()cccccovuvvninnininininnnnes 12-33
Using the SQLT_NTY Define Call Including OCIDefineObject().........cccccourvvvviviinnnnnes 12-34
Direct Path Programs Must Include the Header Files...........ccccccocoviiiiiiiiiiiinnn, 13-4
Passing the Handle Type to Allocate the Function Context..........cccocoevviiiiniiinnnnnnn, 13-5
Explicit Allocation of Direct Path Column Array Handle...........ccoooiviiniiiininins 13-5
Explicit Allocation of Direct Path Function Column Array Handlec..ccccccooeeee. 13-5
Allocating a Direct Path Stream Handle............c.cccooiiiiiiiiiicce, 13-6
Data Structures Used in Direct Path Loading Examplesc.cccocovvviiininnnnninn 13-7

13-7
13-8
13-9
13-10
1311
13-12
13-13
13-14
13-15
13-16
13-17
13-18
13-19
13-20
13-21
13-22
13-23
13-24
141
14-2
14-3
151
15-2
15-3
154
15-5
15-6
15-7
15-8
15-9
15-10
1511
15-12
15-13
15-14
15-15
15-16
15-17
15-18
15-19
15-20
15-21
15-22
15-23
161
16-2
16-3
164
16-5
16-6
16-7
16-8
17-1
17-2
17-3

Contents of the Header File cdemodp.h.......cccccoiiiiiiiiiiiiic 13-8

Use of OCI Direct Path Interfaces...........ccooeeueiiiiiiiiiic 13-10
Allocating the Column Array and Stream Handlescccoooiiiii 13-10
Getting the Number of Rows and Columnscccouvimeiiiiiciciccc e 13-11
Setting Input Data Fields ..o 13-11
Resetting the Column Array State..........ccceviiieiiiiiiii e 13-11
Resetting the Stream State ... 13-11
Converting Data to Stream Formatccooieiiiiiiiii e 13-12
Loading the Stream...........couiiiiiiiiiic s 13-12
Finishing the Direct Path Load Operation ... 13-12
Freeing the Direct Path Handles..........cocoooiiiiii 13-12
Allocating a Child Column Array for a Column Objectcccoooiiriiiiiii 13-17
Allocating a Child Column Array for a SQL String Columnccceeiiiiiiiiinne, 13-20
Allocating a Child Column Array for a REF Column ..o 13-23
Allocating the Column Array for the Object Table...........cccooooriiiiiii 13-26
Specifying Values for the OCI_ATTR_DIRPATH_EXPR_TYPE Attribute.................... 13-30
Setting a Function Context as a Column Attribute...........ccooooiiiiiii 13-32
Allocating a Child Column Array for a Function Contextcccccoevveevnininicinicninnans 13-34
Object Type Representation of a Department ROWccccoevviiiiniininiiii 14-13
C Representation of a Department ROWcccooviviiiiiincce 14-13
Initializing and Terminating XML Context with a C APL.......cccccccooiiiiiiiii 14-18
Definition of the Employee Object Type Listed in the Intype Fileccccccceuvvviiinininnnes 15-2
Contents of the Generated Header File demo.h ..., 15-2
Contents of the demov.c File........cccooiiiiiiii s 15-3
Invoking OTT from the Command Linecccoocviiiiiriniiiiinicc s 15-5
Contents of a User-Created Intype Fileccooouoviiiiiiiii 15-6
Object Type Definition for EMployeecccoeviiiiiiiiiiiiiiicc 15-8
OTT-Generated Struct Declarations...........cc.cceueiiiieiiiiicicicec e 15-8
Object Type Definitions for the OTT Type Mapping Example.........ccccccevveviririirinnnnne. 15-10
Various Type Mappings Created by OTT from Object Type Definitions 15-10
Object Type and Subtype Definitionscccoeviviiiiiiiiiiiiccce 15-13
Contents of the Intype File...........cooooiiiiii 15-13
OTT Generates C Structs for the Types and Null Indicator Structsccceveneeee 15-13
Contents of an Intype File..........ccoooiiiii 15-15
Contents of the Outtype File After Running OTT..........cccoooveiiiiiiiiie 15-16
Content of an Intype File Named eX2C.typ.......cocoerieiiiiiieiiiiiiecc 15-18
Invoking OTT and Specifying the Initialization Function ... 15-18
Content of an OTT-Generated File Named eX2CV.C.....ccooiiurieiiiiciiiiiicccce 15-18
Object Type Definition to Demonstrate How OTT Generates Include Files................. 15-27
Content of the Intype Filec.coooiii 15-27
Invoking OTT from the Command Linecccoooiriiiiiiiiieiiicc e 15-27
Content of the Header File tott95b.h.........c.cccoooiiii 15-27
Content of the Header File tott95a.hc.coooiiiiii 15-28
Construct to Use to Conditionally Include the Header File tott95b.h............................ 15-28
Creating a Thread-Safe OCI Environment with N” Substitution Turned On................ 16-16
Using the OCIServerAttach() Call.........c.ccooeiiiiiiiiiiiiiiii 16-28
Using the OCISessionBegin() Call..........ccccooiriiiiiiiiiiiiic 16-32
Using the OCI_ATTR_MODULE Attribute with OCI Session Pooling......................... 16-37
Using the OCI_ATTR_EDITION Attribute with OCI Session Pooling.............cccccccc..... 16-38
Disabling Runtime Load Balancing............c..ccooveieioiiiiiiiiicce 16-42
Allocating a Large Number of Descriptors........cococeueiicicieiiiiiiciciccecc e 16-48
Allocating an Array of Descriptorsccocoiirieieiiiiciciccc e 16-49
Allocating a source_loc Source LOCatorcccoveeiiiiiiiiiniiiciiiiiincs 17-33
Allocating a dest_loc Destination LOCAtOT..........cccccevevieiiiiiiiciiiiiiiccccccce 17-33
Using OCITransCommit() in a Simple Local Transactioncccccoevvvvvinnnininininennns 17-149

XXXiX

xl

17-4
17-5

17-6
19-1
19-2
19-3
194
19-5
20-1
20-2

Using OCITransStart() in a Single Session Operating on Different Branches............. 17-157
Using OCITransStart() in a Single Session Operating on Multiple Branches Sharing the
Same Transaction 17-159

Using OCIErrorGet() for Error Checkingcccoevveiiviiiiiniiiiiiiinns 17-166
Assigning a New Reference to the Pointer to the Collection Element.............cccccccu.... 19-8
Prototype of OCINumberAssign() Call........c.ccooviiiiiiiiiiiiiiiiiceeeeeeees 19-8
Getting the Date for a Specific Day After a Specified Datecccccoovvviiiiiiiiinnnns 19-39
Deleting an Element from a Nested table.............cccccooeeiiiiiiiiiiii 19-164
Getting a Count of All Elements Including Deleted Elements from a Nested Table. 19-164
Using OCIExtProcAllocCallMemory() to Allocate 1024 Bytes of Memory..................... 20-4

Using OCIFormatString() to Format a Date Two Different Ways for Two Countries 20-51

List of Figures

21
2-2
2-3
2-4
4-1
5-1
5-2
5-3
5-4
61
81
8-2
91
9-2
11-1
131
13-2
141
14-2
151
181

Basic OCI Program FLOW ...ttt 2-2
Components of a Service COnteXt.......cooiiiiiiiiiiiiieeec e 2-5
Statement Handles............cooouii e 2-6
Direct Path Handles............coouiiii e 2-8
Steps in Processing SOL Statementsccoooeuiiiiiiiiiiiiici e 4-2
Using OCIBindByName() to Associate Placeholders with Program Variables................. 5-2
Determining Skip Parametersoococuiioiiiiieiiiicicieccee e 5-18
Performing Piecewise INSert..........ccoiiriiiiiiiiiiiie s 5-36
Performing Piecewise Fetch ... 5-39
OClIDescribe Any() Table DeSCIiptionccooceieiiuiieiniiiciciecccee s 6-2
Multiple Tightly Coupled Branches............ccccooiiiiiiiiicc e 8-4
Session Operating on Multiple Branchesccoooooi 8-4
OCT Connection POOINGc.cuoiiiiiiiieiei e 9-3
Publish-Subscribe Modelcccoooviiiiiiiininiiiiiiiiii s 9-54
Basic Object Operational FIOWcooiiiiiiiiiii s 11-5
Direct Path LOAding..........oouoiiiiii s 13-2
Inheritance Hierarchy for a Column of Type Personc.cccoooeoioiiiincicciiiciccee. 13-24
ODbject CaChe ..o 14-3
Object Graph of person_t INStancesccococeveiiiriciiiiicceccc e 14-14
Using OTT With OCIcoiiiiiiii s 15-17
Classification of Instances by Type and Lifetime...........cccocooooii 18-2

xli

List of Tables

1-1 Obsolescent OCI FUNCHONScovviiiiiiiiiiiiiiiiicccc e 1-13
1-2 OCI Functions Not Supported ... 1-15
1-3 OCl Instant Client Shared Libraries..........ccccoveiiiiiiiiiiiciiices 1-16
1-4 OCI Instant Client Light Shared Libraries............cccoooeuoiiiiiiiiiicccec s 1-25
2-1 OCT Handle TYPEScucviieiirieiiiicieieecct st 2-3
2-2 DeSCIIPtOr TYPES ..ottt 2-9
2-3 OCT RetUIN COdes.......cuvviviiiiiiiiiciiiicicccc e 2-21
2-4 Return and Error Codes........oiiiiiiie s 2-21
2-5 Oracle Reserved NameSpacesccccovvviviiiiiniiiiiiii e 2-26
3-1 Internal Oracle Database Data Types.........cccoceueiiuiiiiiiiiciiii e, 3-3
3-2 External Data Types and Codes.........ccceuiiriiiiiiiiieiiiccici e, 3-6
3-3 VARNUM EXAMPIESooviiiiiiiiiiiiiiiiiceiccie e 3-12
3-4 Format of the DATE Data TYpecccouirieiiiiiiic e 3-13
3-5 Data CONVETSIONScouiviiiiiiitiiiiicicce e 3-21
3-6 Data Conversions for LOBS ... 3-22
3-7 Data Conversion for Datetime and Interval Types........cccoceuruniiiniiiiciniccccce, 3-23
3-8 Data Conversion for External Data Types to Internal Numeric Data Types 3-24
3-9 Data Conversions for Internal to External Numeric Data Types........ccccocouoeriiiiininnnne. 3-25
3-10 OCITypeCode Values and Data Types.......c.ccccoumurieiiiiriiiiiinieice e 3-26
3-11 OCI_TYPECODE to SQLT Mappingsc.cececeeverirrieririiiiiiiieieiiinininincessiisesessssssesesesces 3-27
41 OCI_ATTR_STMT_TYPE Values and Statement Typescccccecevvvvvnnnnnnnnnnnnn 4-3
5-1 Information Summary for Bind Types..........ccociiiiiiiiiiiii 5-7
6-1 Attributes of All Parameters...........ccooviiiiiiniiiiiiiiisees 6-4
6-2 Attributes of Tables OF VIEWS.......cccciiiiiiiniiiiiii s 6-5
6-3 Attributes Specific t0 Tables ... 6-6
64 Attributes of Procedures or FUNCHONS..........cccocviiiiiiiiiiiiiiicccc s 6-6
6-5 Attributes Specific to Package Subprograms............cccooeuvieiiieiiicinicicce e, 6-6
6-6 Attributes of Packages.........ccouvuiiiiiiniiiicic 6-7
6-7 AribUtes Of TYPES ...cuvvieeei 6-7
6-8 Attributes of Type Attributes.........o.oooiiiiiiii e, 6-8
6-9 Attributes of Type Methods ... 6-9
6-10 Attributes of Collection TYPesccooiririeiiiiiii s 6-10
6-11 Attributes of SYNONYMScccooviuiiiiiii s 6-11
6-12 Attributes of SEQUENCES..........cccovvviiiiiiiiiiiiiiii 6-11
6-13 Attributes of Columns of Tables Or VIEWSccccciiiiiiiiiiiiiiiccccccce 6-12
6-14 Attributes of Arguments and ReSULLSccooviiiiiiiiiii 6-13
6-15 List AHIIDULES oo 6-14
6-16 Attributes Specific to Schemas ..o 6-15
6-17 Attributes Specific to Databases ... 6-15
6-18 Attributes Specific t0 RUIESc.ccooiviiiiiiiiii 6-16
6-19 Attributes Specific to Rule Sets ... 6-16
6-20 Attributes Specific to Evaluation Contexts ..o 6-16
6-21 Attributes Specific to Table AlIaSeS..........cccccciiiiiiiiiiiiiiiiic e 6-17
6-22 Attributes Specific to Variable Types........cccooviiiiiiiiiiiicccce 6-17
6-23 Attributes Specific to Name-Value Pair...........ccoooiiiiiiiicccccn 6-17
7-1 LOB Functions Compatibility and Migration..........ccccceueieieiiiicieiiiccnce 7-6
8-1 Global Transaction Identifier ... 8-3
8-2 One-Phase COMIMUt........ccoiiiiiiiii s 8-6
8-3 Two-Phase COMMILooiviiiiiiiiiii s 8-7
8-4 Read-Only Update Fails...........ooormiiii 8-7
8-5 Read-Only Transactionccoicueieiiiieieccie it 8-7
8-6 Initialization and Termination Multithreading Functions............c.ccoooeiiiiinni, 8-27
8-7 Passive Threading PrimitiVes.........ccooiiiiiiiiiiiiiiiccc e, 8-28

xlii

|
HON =2

. 24 2 000N O,

Active Threading PrimitiVes ..o, 8-30

Defaults Used in Various Client Scenarios...........cccoceeeviiiiiniiiiiinininn, 9-18
Time and EVeNt ..o 9-42
AQ FUNCHONS.....cuvieiiiieeiesieeteteetestt ettt ettt e e et e s te e b e be et e seessesseesaesseensesseessessaessenssessansenns 9-49
Enquete Parameters. ... 9-49
Dequeue Parameters...........coooviiiiiiiic s 9-49
Listen Parameters.........ccoooueiiieiiiiiiccc s 9-50
Array Enqueue Parameters ... 9-50
Array Dequeue Parameters ... 9-50
Agent Parameters..........ccceioiiiiiiiiiiii s 9-50
MesSsage Propertiescccviieiiiiieieiiieieiiie s 9-51
Enqueue Option Atributes ... 9-51
Dequeue Option AtIibULes ... 9-51
Publish-Subscribe FUNCHONSccovviiiiiiiiiiiiciciiccccc 9-61
DDL Table Result Cache Annotation Modes...........cccoeuveiiiiiiiiniiiniiiiiicceees 10-25
Effective Result Cache Table Mode...........ccoooiiiiiiiiiiiiiica 10-26
Setting Client-Side Result Cache and Server Result Cache ..o, 10-31
Meta-Attributes of Persistent Objectsccccovviiiiiiiiiiiiens 11-12
Set and Check FUNCHONSccoiviiiiiiiiiiicccc 11-14
Transient Meta-Attributes ... 11-14
Attribute Values for New ODbjects ..o 11-24
Function Prefix EXamples ... 12-4
Binding and Defining Datetime and Interval Data Typesccccooooueiniiiiininininicine 12-6
Datetime FUNCHONS ..ot 12-7
Interval FUNCHONSc.coviiiiiiiic e 12-9
StriNG FUNCHONS ..o 12-12
RaW FUNCHONS ..ot s 12-13
Collection FUNCHONScuiviiiiiiiiiiciiictcici s 12-14
Collection Scanning FUNCHONS...........cooiuiiiiiiiiici e 12-15
Nested Table FUNCHIONS.........cccoviiiiiiiiiiiciicc s 12-16
REF Manipulation FUNCHONSccoeviiiiiiiiiiiiiiiiiic 12-19
Descriptor ODJECtS.......ciuiiiiiiiiiiiiiicicicic s 12-20
Data Type Mappings for Binds and Defines............cccccocovvniiiiininninne, 12-29
Direct Path Context FUNCHONSccooveviiiiiiiiiiiiiic 13-6
Direct Path Column Array FUNCHONScoooiviiiiiiicc 13-7
Object Attributes After a Refresh Operation ..., 14-9
Example of Allocation and Pin Durations..........ccccceevvvinninnnnnie, 14-12
Pin, Free, and Unpin FUNCLONS ... 14-15
Flush and Refresh FUNCHONScovuiiiiiiiiiiiiiiicccs 14-16
Mark and Unmark FUNCHONScooiiiiiiiiiiiiiiicc 14-16
Object Meta-Attributes FUNCHONSccovviiiiiiiiiiiiiiiccc 14-16
Other Object FUNCHONScovviiiiiiiiiiiiiiicicc e 14-17
Object Data Type Mappings for Object Type Attributesccccccovviiiininiiinnnnn, 15-9
Mode of @ Parameter ..o 16-2
Connect, Authorize, and Initialize FUNCHONScooveiiiiiiieiiccie e 16-3
Handle and Descriptor FUNCHONScccviviiiiiiiiiiiiicicccc 16-47
Bind, Define, and Describe FUNCHONS..........cocuveeiiiiiieieeciie ettt eeveeeaeeneens 16-62
Statement FUNCHONSccoviiiiiiiiiiii e 17-2
LOB FUNCHONS ...ttt 17-17
Advanced Queuing and Publish-Subscribe Functions............cccooiiiiiiciiicinen, 17-88
Direct Path Loading FUNCHONSc.cooimiiiiiiiii 17-106
Thread Management FUNCHONS ..o, 17-121
Transaction FUNCHONScooioiiiiii s 17-147
Miscellaneous FUNCHONS ..ot 17-162
OCT FUNCHION COAES ...ttt 17-182

xliii

xliv

17-9
18-1
18-2
18-3
184
18-5
18-6
18—7
18-8
18-9
18-10
18-11
19-1
19-2
19-3
194
19-5
19-6
19-7
19-8
19-9
19-10
19-11
19-12
19-13
19-14
19-15
19-16
19-17
20-1
20-2
20-3
204
20-5
20-6
20-7
20-8
211
21-2
21-3
21-4
21-5
21-6
221
222
22-3
224
22-5
22-6
22-7
23-1
23-2
A1
B-1

Continuation of OCI Function Codes from 97 and Higherccccccoeviniiiinn. 17-183

Type and Lifetime of INStancesccoooeueueiiiciiiiiiccc e 18-2
Return Values of Navigational FUNCHONSc.cccoevvviiiiiiiiiiiiice, 18-3
OCI Navigational Functions Error Codes...........ccoviiiiiiiiiiiiiiinicecceenas 18-4
Flush or Refresh FUNCHONSc.ocviiiiieiiciciicece ettt s eeae s ne e 18-6
Object Status After Refresh..........cccooviiiiiiiiiiii 18-12
Mark or Unmark Object and Cache FUNCLIONS..........cccoeviviiiiiniiieiiiiiiicicccccns 18-14
Get Object Status FUNCHONS. ..o 18-21
Miscellaneous Object FUNCHONS..........ccccoviiiiiiiiiiiiiiiiic 18-28
INStANCES CrEAtedc.viceveieeeieiieieeteeteeee ettt et st a e e e sae b e beessesbeessenseens 18-39
Pin, Unpin, and Free FUNCHONS ... 18-43
Type Information Accessor FUNCHONScccoeviiiiiiiiiiiic 18-57
Function RetUIN VAIUEScccvovieiiiiieieicteeetee ettt st sstesae e e saeenaesaeennens 19-2
Collection and Iterator FUNCEIONSc.ccveviieieriieieseeeeeetese ettt seesee e esae e 19-3
ElemMENt POINLETSccvicvieiieiieieeiete ettt ettt e ettt e et e e e e e seesaesseessasseessessaessessanssensenns 19-8
Date FUNCHONS ...eeieiieiieiie ettt ettt et et e st e s be e sabeebeesbtessbeensaesasaenseesnsens 19-25
Error Bits Returned by the valid Parameter for OCIDateCheck()cccocovvuvviiinnnn. 19-30
Comparison ReSULLS..........coiiiiiiiiicc 19-32
Error Bits Returned by the valid Parameter for OCIDateTimeCheck()cccceuuvee. 19-44
Comparison Results Returned by the result Parameter for OCIDateTimeCompare() 19-46
Error Bits Returned by the valid Parameter for OClIntervalCheck()..........cccccouvurunnee. 19-70
Comparison Results Returned by the result Parameter for OClIntervalCompare() .. 19-72
NUMBER FUNCHONS ...veeuvieiiiiiteeie ettt ettt eve st sbeestaestesbeesaessbeesaaesaseesssasnsesnsees 19-86
Comparison Results Returned by the result Parameter for OCINumberCmp()......... 19-96
Valtues Of TESULL.....c.oiiuiiieeeiceeeee ettt ettt sse et e e saesaeeseesseesnensans 19-124
RAW FUNCHONS ..ttt ettt et ettt st e e e sabeesbaesssesbaananesnns 19-135
REf FUNCHONS ...ttt et ettt st et b bt essesserseveeseebesbebesbessessassessans 19-142
String FUNCHONSoovoviiiiiicii s 19-150
Table FUNCHONS ...ccuvivieiecieieeteieetet ettt st te sttt e s e e e esa e seeseessessaessesseessesssensens 19-157
External Procedures FUNCHONSc.cccveviiiieiiiieec ettt eveeae e svesenesaessnens 20-3
Memory Services FUNCHONScooiiiiiiiiiiiiiiiiciccc e 20-8
Maintaining Context FUNCHONScooooueiiiiiiiieiii s 20-14
Parameter Manager Interface FUNCHONSooiiiiiiiiiiiiiic, 20-19
File I/ O INterface FUNCHONScvveiieeeiieeeeeeeee ettt e s 20-34
String Formatting FUNCHONS.........ccoiiiiiiiiiicc e 20-46
Format Modifier FIags.........ccoviiiiiiiiiiiiiiiciccc e 20-49
Format Codes to Specify How to Format an Argument Written to a String 20-50
Function RetUIN VAIUEScccvevieiiiiieieiceetecee ettt sre e saeeaesaeesaesaeennens 21-1
Type Interface FUNCHONS...........c.oviiiii 21-3
Any Data FUNCHONSoovviieiieic s 21-9
Data Types and Attribute Values ... 21-13
Data Types and Attribute Values ... 21-15
Any Data Set FUNCHONS ..o 21-30
Function RetUIN VAIUESccveiieeiiiieieectceeese ettt st sta et sreeaesra e ssn s s 22-1
OCT LOCAle FUNCLIONSovieiieiieiieeieeiieteie ettt ettt e setebesseesessaessessaessesssessessaessesssessesseans 22-3
OCI Locale-Mapping FUNCHONcoiiiiiiiiiiiiiiiiiicccc e 22-12
OCI String Manipulation FUNCHONS.........c.oviiiiii e, 22-14
OCI Character Classification FUNCHONS.........cccevieeieriiiienecieiecteieeeeieeeeve e 22-44
OCI Character Set Conversion FUNCHONS..........cccoceeierieriereeieceieseeeesee e 22-57
OCI Messaging FUNCHONS...........cviuiuiiiiiiiiiiiic e 22-63
Function RetUIN VAIUEScccveiieiiiiiciececeeee ettt sttt e s aesna e aesnnenneas 23-1
OCI XML DB FUNCHONS ...c.vvivieiieiieeiesiieiesteetesteeteseesesteesesseessesseessesseessessesssesssessessesssesseens 23-2
SQL ComMMANd COAES.....ccveriieiiiieierieeiereetesreetestee e sre et sreeaesseeaessaessesseessesssessessesssenseenes A-32
OCI Demonstration PrOZIramscccoceuiiiiucieiiiiicieecie et B-1
Server Round-Trips for Relational Operations...........cccccevviiviviniiiiiininins C-1

| L s R R T T T T I A A A O
ONOOPOON—=LON2NOOOPLODND

mmMmMmMmMmMMmMMmMmMmMOoOoOoOoOoOOO0O0OO0

Server Round-Trips for OCILOb Callscccoviiiiiiiiiiiiiicce C-3

Server Round-Trips for Object and Cache Functions..........cccccoovviiiiiiiiiiiiniinnn, C-4
Server Round-Trips for Describe Operationscccccovviiiina C-5
Server Round-Trips for Data Type Manipulation Functionscccceceeveieniiiininnnns C-6
Server Round-Trips for Any Type and Data Functions............ccccooioiriiiiiiccnn C-6
Locally Processed FUNCHONSccouoiiuiiiiiiiciciccct s C-6
ORACLE_HOME Directories and CONTENESccvveeeveiiieeeieiieeeeeee e eeveeeeveessnveeeenes D-2
Oracle XA COMPONENLSouiviviiiririiiiiiiiitiieieeiei ettt D-4
LinK LIDTATIES. c.ecviviviiiiiiiiciciiictceciictcttt sttt D-4
Deprecated OCI FUNCHONS ...t E-1
Deprecated Initialize FUNCHONSccocooviiiiiiiiii E-2
Deprecated Statement FUNCHONSccocovviiiiiiiiii E-7
Deprecated LOB FUNCHONS.........ccooiiiiiiiiiicssssss s E-9
Characters or Bytes in amtp for OCILObRead()cccoeovuviimimviviiiiiiiiiiiiicccnns E-14
Characters or Bytes in amtp for OCILObWIite()ccoovvrviiiuiiininiiiiiicieiciicccccccccs E-19
Characters or Bytes in amtp for OCILobWrite Append().........cocovvvvvviiminiininiiiincinnnnn, E-23
Deprecated Streams Advanced Queuing FUNCHONS.........ccoooeviiiiiiiiiiiie, E-26

xlv

xlvi

Audience

Preface

Oracle Call Interface (OCI) is an application programming interface (API) that lets
applications written in C or C++ interact with Oracle Database. OCI gives your
programs the capability to perform the full range of database operations that are
possible with Oracle Database, including SQL statement processing and object
manipulation.

This guide is intended for programmers developing new applications or converting
existing applications to run in the Oracle Database environment. This comprehensive
treatment of OCl is also valuable to systems analysts, project managers, and others
interested in the development of database applications.

This guide assumes that you have a working knowledge of application programming
using C. Readers should also be familiar with the use of structured query language
(SQL) to access information in relational database systems. In addition, some sections
of this guide assume knowledge of the basic concepts of object-oriented programming.

See Also:

» Oracle Database SQL Language Reference and Oracle Database
Administrator’s Guide for information about SQL

» Oracle Database Concepts

» Oracle Database New Features Guide for information about the
differences between the Standard Edition and the Enterprise
Edition and all the features and options that are available to
you

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

xlvii

Related Documents

Many of the examples in this book use the sample schemas, which are installed by
default when you select the Basic Installation option with an Oracle Database
installation. See Oracle Database Sample Schemas for information about how these
schemas were created and how you can use them.

To download free release notes, installation documentation, white papers, or other
collateral, visit the Oracle Technology Network (OTN). You must register online before
using OTN; registration is free and can be done at

http://www.oracle.com/technetwork/community/join/overview/
If you have a user name and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://www.oracle.com/technetwork/indexes/documentation/

Oracle Call Interface Programmer’s Guide does not contain all information that describes
the features and functionality of OCI in the Oracle Database Standard Edition and
Enterprise Edition products. Explore the following documents for additional
information about OCL

» Oracle Database Data Cartridge Developer’s Guide provides information about
cartridge services and OCI calls pertaining to development of data cartridges.

» Oracle Database Globalization Support Guide explains OCI calls pertaining to NLS
settings and globalization support.

» Oracle Streams Advanced Queuing User’s Guide supplies information about OCI calls
pertaining to Advanced Queuing.

» Oracle Database Advanced Application Developer’s Guide explains how to use OCI
with the XA library.

» Oracle Database SecureFiles and Large Objects Developer’s Guide provides information
about using OCI calls to manipulate LOBs, including code examples.

» Oracle Database Object-Relational Developer’s Guide offers a detailed explanation of
object types.

For additional information about Oracle Database, consult the following documents:
» Oracle Database Installation Guide for Microsoft Windows

» Oracle Database Release Notes for Microsoft Windows

» Oracle Database Net Services Administrator's Guide

» Oracle Database New Features Guide

» Oracle Database Concepts

» Oracle Database Reference

» Oracle Database Error Messages

The Oracle C++ Call Interface provides OCI functionality for C++ programs and
enables programmers to manipulate database objects of user-defined types as C++
objects. For more information about OCI functionality for C++, see the Oracle C++ Call
Interface Programmer’s Guide

Conventions

The following text conventions are used in this document:

xlviii

Convention

Meaning

boldface

italic

monospace

Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xlix

What's New in Oracle Call Interface?

The following sections describe the new features in this Oracle Call Interface manual:

New Features in Oracle Call Interface Release 11.2

New Features in Oracle Call Interface Release 11.1

New Features in Oracle Call Interface Release 11.2

This release includes the following new or enhanced features:

The client and server can use different time zone files.

See "Client and Server Operating with Different Versions of Time Zone Files" on
page 10-36.

Application patching is improved with edition-based redefinition.
See "Edition-Based Redefinition" on page 8-22.

OCI supports 64-bit host data types.

See "64-Bit Integer Host Data Type" on page 3-9.

New attributes can specify IP address format as either IPv4 or IPv6.

See "OCI_ATTR_SUBSCR_HOSTADDR" on page A-52, "OCI_ATTR_SUBSCR_
IPADDR" on page A-53, and "Publish-Subscribe Register Directly to the Database"
on page 9-55.

Content types for SecureFiles are used with hierarchical storage.

See "OCILobGetContentType()" on page 17-56 and "OCILobSetContentType()" on
page 17-77.

There is a new direct path loading attribute.
See "OCI_ATTR_DIRPATH_NO_INDEX_ERRORS" on page 13-30.

The client result cache feature now has table annotations, and it supports caching
on a query with views. Also, the restriction causing the client cache to be disabled
with database resident pooling has been removed.

See "Client Result Cache" on page 10-23.

The process to regenerate the data shared library and the zip and RPM files has
changed for Instant Client.

See "Regeneration of Data Shared Library and Zip and RPM Files" on page 1-19.

You can use OCI to access Oracle TimesTen In-Memory Database and Oracle
In-Memory Database Cache.

See the chapter about TimesTen Support for Oracle Call Interface in the Oracle
TimesTen In-Memory Database C Developer’s Guide.

New Features in Oracle Call Interface Release 11.1

The following new or enhanced features were introduced in release 11.1 of Oracle Call
Interface:

Run-time load balancing is available automatically and improves performance.
See "Runtime Connection Load Balancing" on page 9-12.

To improve performance, binds and defines now allow noncontiguous buffers for
reading and writing (scatter and gather for binds and defines).

See "Binding and Defining Multiple Buffers" on page 5-20.

Use the SELECT ... FOR UPDATE statement to implicitly fetch ROWIDs.

See "Implicit Fetching of ROWIDs" on page 10-20.

Performance is improved by the use of arrays of descriptors.

See "OCIArrayDescriptorAlloc()" on page 16-48.

The client result cache feature can improve performance.

See "Client Result Cache" on page 10-23.

New settings provided for database administrators make OCI more secure.
See "OCI Security Enhancements" on page 8-23.

Support for XML DB and XDK documents has been enhanced to include binary
XML.

See "OCI Support for XML" on page 14-17.

OCI applications can optimize fetching of length, chunk size, and data of small
LOBs.

See "Prefetching of LOB Data, Length, and Chunk Size" on page 7-19.

SecureFiles LOBs. New capabilities of LOBs include encryption, deduplication,
and compression. New OCI functions are included in this release. These new
functions and features are only usable on the new SecureFiles LOBs.

See "Options of SecureFiles LOBs" on page 7-22.

Database resident connection pooling. The pool spans processes instead of just
spanning different threads. More efficient applications can result.

See "Database Resident Connection Pooling" on page 9-13.

Database change notification enhancements for query result set changes are added
to the preexisting capabilities.

See "Continuous Query Notification" on page 10-1.

Oracle Streams Advanced Queuing event notification now supports notifications
spaced in time.

See "Publish-Subscribe Notification in OCI" on page 9-54.

Fault diagnostic subdirectory structures help users manage OCI-generated
incidents.

See "Fault Diagnosability in OCI" on page 10-32.

To read or write the client driver layer name to improve OCI fault diagnosability,
use the following attribute on the session handle.

See "OCI_ATTR_DRIVER_NAME" on page A-18.
New version compatibility of OCI applications is described.

See "Version Compatibility of Statically Linked and Dynamically Linked
Applications" on page 1-12.

liv

1

OCI: Introduction and Upgrading

This chapter contains these topics:
» Overview of OCI

s Compatibility and Upgrading
s OCI Instant Client

Overview of OCI
Oracle Call Interface (OCI) is an application programming interface (API) that lets you

create applications that use function calls to access an Oracle database and control all
phases of SQL statement execution. OCI supports the data types, calling conventions,
syntax, and semantics of C and C++.

See Also:

» Oracle C++ Call Interface Programmer’s Guide

= "Related Documents" on page 2-xlviii

OCI provides:

s Improved performance and scalability through the efficient use of system memory
and network connectivity

= Consistent interfaces for dynamic session and transaction management in a
two-tier client/server or multitier environment

s N-tier authentication

= Comprehensive support for application development using Oracle Database
objects

s Access to external databases

= Applications that support an increasing number of users and requests without
additional hardware investments

OCI enables you to manipulate data and schemas in an Oracle Database using the C
programming language. It provides a library of standard database access and retrieval
functions in the form of a dynamic runtime library (OCI library) that can be linked in
an application at run time.

You can use OCI to access Oracle TimesTen In-Memory Database and Oracle
In-Memory Database Cache. See Oracle TimesTen In-Memory Database C Developer’s
Guide.

OCI: Introduction and Upgrading 1-1

Overview of OCI

OCI has many new features that can be categorized into several primary areas:

= Encapsulated or opaque interfaces, whose implementation details are unknown
= Simplified user authentication and password management

= Extensions to improve application performance and scalability

= Consistent interface for transaction management

s OCI extensions to support client-side access to Oracle objects

Advantages of OCI

OCI provides significant advantages over other methods of accessing an Oracle
Database:

= More fine-grained control over all aspects of application design
= High degree of control over program execution

= Use of familiar third-generation language programming techniques and
application development tools, such as browsers and debuggers

= Connection pooling, session pooling, and statement caching that enable building
of scalable applications

= Support of dynamic SQL

= Availability on the broadest range of operating systems of all the Oracle
programmatic interfaces

= Dynamic binding and defining using callbacks
= Description functionality to expose layers of server metadata
= Asynchronous event notification for registered client applications

= Enhanced array data manipulation language (DML) capability for array inserts,
updates, and deletes

= Ability to associate commit requests with executes to reduce round-trips
= Optimization of queries using transparent prefetch buffers to reduce round-trips

s Thread safety, which eliminates the need for mutual exclusive locks (mutexes) on
OCI handles

Building an OCI Application

You compile and link an OCI program in the same way that you compile and link a
non-database application. There is no need for a separate preprocessing or
precompilation step.

Oracle Database supports most popular third-party compilers. The details of linking
an OCI program vary from system to system. On some operating systems, it may be
necessary to include other libraries, in addition to the OCl library, to properly link
your OCI programs. See your Oracle Database system-specific documentation and the
installation guide for more information about compiling and linking an OCI
application for your operating system.

See Also: Appendix D, "Getting Started with OCI for Windows"

1-2 Oracle Call Interface Programmer's Guide

Overview of OCI

Parts of OCI

OCT has the following functionality:

= APIs to design a scalable, multithreaded application that can support large
numbers of users securely

= SQL access functions, for managing database access, processing SQL statements,
and manipulating objects retrieved from an Oracle database

= Data type mapping and manipulation functions, for manipulating data attributes
of Oracle types

= Data loading functions, for loading data directly into the database without using
SQL statements

= External procedure functions, for writing C callbacks from PL/SQL

Procedural and Nonprocedural Elements

OCI enables you to develop scalable, multithreaded applications in a multitier
architecture that combines the nonprocedural data access power of structured query
language (SQL) with the procedural capabilities of C and C++.

= Inanonprocedural language program, the set of data to be operated on is
specified, but what operations are to be performed, or how the operations are to be
conducted, is not specified. The nonprocedural nature of SQL makes it an easy
language to learn and to use to perform database transactions. It is also the
standard language used to access and manipulate data in modern relational and
object-relational database systems.

= Ina procedural language program, the execution of most statements depends on
previous or subsequent statements and on control structures, such as loops or
conditional branches, that are not available in SQL. The procedural nature of these
languages makes them more complex than SQL, but it also makes them more
flexible and powerful.

The combination of both nonprocedural and procedural language elements in an OCI
program provides easy access to an Oracle database in a structured programming
environment.

OClI supports all SQL data definition, data manipulation, query, and transaction
control facilities that are available through an Oracle database. For example, an OCI
program can run a query against an Oracle database. The query can require the
program to supply data to the database using input (bind) variables, as follows:

SELECT name FROM employees WHERE empno = :empnumber;
In the preceding SQL statement, : empnumber is a placeholder for a value that is to be
supplied by the application.

You can also take advantage of PL/SQL, Oracle's procedural extension to SQL. The
applications you develop can be more powerful and flexible than applications written
in SQL alone. OCI also provides facilities for accessing and manipulating objects in a
database.

Object Support

OClI has facilities for working with object types and objects. An object type is a
user-defined data structure representing an abstraction of a real-world entity. For
example, the database might contain a definition of a person object. That object might

OCI: Introduction and Upgrading 1-3

Overview of OCI

have attributes—first_name, last_name, and age—to represent a person's identifying
characteristics.

The object type definition serves as the basis for creating objects that represent
instances of the object type by using the object type as a structural definition, you
could create a person object with the attribute values John', 'Bonivento', and '30'.
Object types may also contain methods—programmatic functions that represent the
behavior of that object type.

See Also:

» Oracle Database Concepts

» Oracle Database Object-Relational Developer’s Guide.
OCl includes functions that extend the capabilities of OCI to handle objects in an
Oracle Database. These capabilities include:
= Executing SQL statements that manipulate object data and schema information
= Passing of object references and instances as input variables in SQL statements

= Declaring object references and instances as variables to receive the output of SQL
statements

s Fetching object references and instances from a database

s Describing the properties of SQL statements that return object instances and
references

s Describing PL/SQL procedures or functions with object parameters or results

= Extension of commit and rollback calls to synchronize object and relational
functionality

Additional OCI calls are provided to support manipulation of objects after they have
been accessed by SQL statements. For a more detailed description, see "Encapsulated
Interfaces" on page 1-8.

SQL Statements

One of the main tasks of an OCI application is to process SQL statements. Different
types of SQL statements require different processing steps in your program. It is
important to take this into account when coding your OCI application. Oracle
Database recognizes several types of SQL statements:

= Data Definition Language (DDL)
= Control Statements
- Transaction Control
- Session Control
- System Control
= Data Manipulation Language (DML)

s Queries

Note: Queries are often classified as DML statements, but OCI
applications process queries differently, so they are considered
separately here.

1-4 Oracle Call Interface Programmer's Guide

Overview of OCI

= PL/SQL
s Embedded SQL

See Also: Chapter 4, "Using SQL Statements in OCI"

Data Definition Language

Data definition language (DDL) statements manage schema objects in the database.
DDL statements create new tables, drop old tables, and establish other schema objects.
They also control access to schema objects.

The following is an example of creating and specifying access to a table:

CREATE TABLE employees

(name VARCHAR2 (20) ,
ssn VARCHAR2 (12),
empno NUMBER (6) ,
mgr NUMBER (6) ,
salary NUMBER (6)) ;

GRANT UPDATE, INSERT, DELETE ON employees TO donna;
REVOKE UPDATE ON employees FROM jamie;

DDL statements also allow you to work with objects in the Oracle database, as in the
following series of statements that create an object table:

CREATE TYPE person_t AS OBJECT (
name VARCHAR2 (30) ,
ssn VARCHAR2 (12),
address VARCHAR2 (50));

CREATE TABLE person_tab OF person_t;

Control Statements

OCI applications treat transaction control, session control, and system control
statements as if they were DML statements.

See Also: Oracle Database SQL Language Reference for information
about these types of statements

Data Manipulation Language

Data manipulation language (DML) statements can change data in the database tables.
For example, DML statements are used to:

= Insert new rows into a table

= Update column values in existing rows

» Delete rows from a table

= Lock a table in the database

= Explain the execution plan for a SQL statement

= Require an application to supply data to the database using input (bind) variables

See Also: "Binding Placeholders in OCI" on page 4-4 for more
information about input bind variables

OCI: Introduction and Upgrading 1-5

Overview of OCI

DML statements also allow you to work with objects in the Oracle database, as in the
following example, which inserts an instance of type person_t into the object table
person_tab:

INSERT INTO person_tab
VALUES (person_t('Steve May', '987-65-4320"','146 Winfield Street'));

Queries

Queries are statements that retrieve data from a database. A query can return zero,
one, or many rows of data. All queries begin with the SQL keyword SELECT, as in the
following example:

SELECT dname FROM dept
WHERE deptno = 42;

Queries access data in tables, and they are often classified with DML statements.
However, OCI applications process queries differently, so they are considered
separately in this guide.

Queries can require the program to supply data to the database using input (bind)
variables, as in the following example:

SELECT name
FROM employees
WHERE empno = :empnumber;

In the preceding SQL statement, : empnumber is a placeholder for a value that is to be
supplied by the application.

When processing a query, an OCI application also must define output variables to
receive the returned results. In the preceding statement, you must define an output
variable to receive any name values returned from the query.

See Also:

= "Overview of Binding in OCI" on page 5-1 for more information
about input bind variables

s "Overview of Defining in OCI" on page 5-13 for information
about defining output variables

» Chapter 4, for detailed information about how SQL statements
are processed in an OCI program

PL/SQL

PL/SQL is Oracle's procedural extension to the SQL language. PL/SQL processes
tasks that are more complicated than simple queries and SQL data manipulation
language statements. PL/SQL allows some constructs to be grouped into a single
block and executed as a unit. Among these are:

s One or more SQL statements

= Variable declarations

= Assignment statements

» Procedural control statements (IF.. THEN...ELSE statements and loops)
= Exception handling

You can use PL/SQL blocks in your OCI program to:

= Call Oracle Database stored procedures and stored functions

1-6 Oracle Call Interface Programmer's Guide

Overview of OCI

s Combine procedural control statements with several SQL statements, so that they
are executed as a unit

m Access special PL/SQL features such as records, tables, cursor FOR loops, and
exception handling

s Use cursor variables
= Access and manipulate objects in an Oracle database

The following PL/SQL example issues a SQL statement to retrieve values from a table
of employees, given a particular employee number. This example also demonstrates
the use of placeholders in PL/SQL statements.

BEGIN
SELECT ename, sal, comm INTO :emp_name, :salary, :commission
FROM emp
WHERE empno = :emp_number;

END;

Note that the placeholders in this statement are not PL/SQL variables. They represent
input values passed to the database when the statement is processed. These
placeholders must be bound to C language variables in your program.

See Also:

» Oracle Database PL/SQL Language Reference for information
about coding PL/SQL blocks

= "Binding Placeholders in PL/SQL" on page 5-4 for information
about working with placeholders in PL/SQL

Embedded SQL

OCI processes SQL statements as text strings that an application passes to the database
on execution. The Oracle precompilers (Pro*C/C++, Pro*COBOL, Pro*FORTRAN)
allow you to embed SQL statements directly into your application code. A separate
precompilation step is then necessary to generate an executable application.

It is possible to mix OCI calls and embedded SQL in a precompiler program.

See Also: Pro*C/C++ Programmer’s Guide

Special OCI Terms for SQL

This guide uses special terms to refer to the different parts of a SQL statement. For
example, consider the following SQL statement:

SELECT customer, address
FROM customers

WHERE bus_type = 'SOFTWARE'
AND sales_volume = :sales;

It contains the following parts:

s A SQL command - SELECT

» Two select-list items - customer and address

» A table name in the FROM clause - customers

s Two column names in the WHERE clause - bus_type and sales_volume

= A literal input value in the WHERE clause - 'SOFTWARE'

OCI: Introduction and Upgrading 1-7

Overview of OCI

» A placeholder for an input variable in the WHERE clause - :sales

When you develop your OCI application, you call routines that specify to the Oracle
database the address (location) of input and output variables of your program. In this
guide, specifying the address of a placeholder variable for data input is called a bind
operation. Specifying the address of a variable to receive select-list items is called a
define operation.

For PL/SQL, both input and output specifications are called bind operations. These
terms and operations are described in Chapter 4.

Encapsulated Interfaces

All the data structures that are used by OCI calls are encapsulated in the form of
opaque interfaces that are called handles. A handle is an opaque pointer to a storage
area allocated by the OCI library that stores context information, connection
information, error information, or bind information about a SQL or PL/SQL
statement. A client allocates certain types of handles, populates one or more of those
handles through well-defined interfaces, and sends requests to the server using those
handles. In turn, applications can access the specific information contained in a handle
by using accessor functions.

The OCI library manages a hierarchy of handles. Encapsulating the OCI interfaces
with these handles has several benefits to the application developer, including:

= Reduction of server-side state information that must be retained, thereby reducing
server-side memory usage

= Improvement of productivity by eliminating the need for global variables, making
error reporting easier, and providing consistency in the way OCI variables are
accessed and used

= Allows changes to be made to the underlying structure without affecting
applications

Simplified User Authentication and Password Management

OCI provides application developers with simplified user authentication and
password management in several ways:

s OClI enables a single OCI application to authenticate and maintain multiple users.

= OClI enables the application to update a user's password, which is particularly
helpful if an expired password message is returned by an authentication attempt.

OCI supports two types of login sessions:

= A simplified login function for sessions by which a single user connects to the
database using a login name and password

= A mechanism by which a single OCI application authenticates and maintains
multiple sessions by separating the login session (the session created when a user
logs in to an Oracle database) from the user sessions (all other sessions created by
a user)

Extensions to Improve Application Performance and Scalability

OCI provides several feature extensions to improve application performance and
scalability. Application performance has been improved by reducing the number of
client to server round-trips required, and scalability improvements have been made by

1-8 Oracle Call Interface Programmer's Guide

Overview of OCI

reducing the amount of state information that must be retained on the server side.
Some of these features include:

s Increased client-side processing, and reduced server-side requirements on queries

s Implicit prefetching of SELECT statement result sets to eliminate the describe
round-trip, reduce round-trips, and reduce memory usage

s Elimination of open and closed cursor round-trips
» Improved support for multithreaded environments
= Session multiplexing over connections

= Consistent support for a variety of configurations, including standard two-tier
client/server configurations, server-to-server transaction coordination, and
three-tier TP-monitor configurations

s Consistent support for local and global transactions, including support for the XA
interface's TM_JOIN operation

= Improved scalability by providing the ability to concentrate connections,
processes, and sessions across users on connections and by eliminating the need
for separate sessions to be created for each branch of a global transaction

= Allowing applications to authenticate multiple users and allow transactions to be
started on their behalf

OCI Object Support

OCI provides a comprehensive application programming interface for programmers
seeking to use Oracle Database object capabilities. These features can be divided into
the following major categories:

s Client-Side Object Cache
= Associative and Navigational Interfaces to access and manipulate objects
s OCI Runtime Environment for Objects

s Type Management: Mapping and Manipulation Functions to access information
about object types and control data attributes of Oracle types

s Object Type Translator (OTT) utility, for mapping internal Oracle Database schema
information to client-side language bind variables

Client-Side Object Cache

The object cache is a client-side memory buffer that provides lookup and memory
management support for objects. It stores and tracks object instances that have been
fetched by an OCI application from the server to the client side. The object cache is
created when the OCI environment is initialized. When multiple applications run
against the same server, each has its own object cache. The cache tracks the objects that
are currently in memory, maintains references to objects, manages automatic object
swapping, and tracks the meta-attributes or type information about objects. The object
cache provides the following features to OCI applications:

» Improved application performance by reducing the number of client/server
round-trips required to fetch and operate on objects

= Enhanced scalability by supporting object swapping from the client-side cache

= Improved concurrency by supporting object-level locking

OCI: Introduction and Upgrading 1-9

Overview of OCI

Associative and Navigational Interfaces

Applications using OCI can access objects in an Oracle database through several types
of interfaces:

s Using SQL SELECT, INSERT, and UPDATE statements

= Using a C-style pointer chasing scheme to access objects in the client-side cache by
traversing the corresponding smart pointers or REFs

OCI provides a set of functions with extensions to support object manipulation using
SQL SELECT, INSERT, and UPDATE statements. To access Oracle Database objects, these
SQL statements use a consistent set of steps as if they were accessing relational tables.
OCI provides the following sets of functions required to access objects:

» Binding and defining object type instances and references as input and output
variables of SQL statements

= Executing SQL statements that contain object type instances and references
= Fetching object type instances and references
s Describing select-list items of an Oracle object type

OClI also provides a set of functions using a C-style pointer chasing scheme to access
objects after they have been fetched into the client-side cache by traversing the
corresponding smart pointers or REFs. This navigational interface provides functions for:

» Instantiating a copy of a referenceable persistent object (that is, of a persistent
object with object ID in the client-side cache) by pinning its smart pointer or REF

» Traversing a sequence of objects that are connected to each other by traversing the
REFs that point from one to the other

= Dynamically getting and setting values of an object's attributes

OCI Runtime Environment for Objects

OCI provides functions for objects to manage how Oracle Database objects are used on
the client side. These functions provide for:

= Connecting to an Oracle database server to access its object functionality, including
initializing a session, logging on to a database server, and registering a connection

= Setting up the client-side object cache and tuning its parameters
» Getting errors and warning messages

= Controlling transactions that access objects in the database

= Associatively accessing objects through SQL

s Describing PL/SQL procedures or functions whose parameters or results are
Oracle types

Type Management: Mapping and Manipulation Functions
OCI provides two sets of functions to work with Oracle Database objects:

= Type Mapping functions allow applications to map attributes of an Oracle schema
represented in the server as internal Oracle data types to their corresponding host
language types.

» Type Manipulation functions allow host language applications to manipulate
individual attributes of an Oracle schema such as setting and getting their values
and flushing their values to the server.

1-10 Oracle Call Interface Programmer's Guide

Overview of OCI

Additionally, the 0CIDescribeAny () function provides information about objects
stored in the database.

Object Type Translator

The Object Type Translator (OTT) utility translates schema information about Oracle
object types into client-side language bindings of host language variables, such as
structures. The OTT takes as input an intype file that contains metadata information
about Oracle schema objects. It generates an outtype file and the header and
implementation files that must be included in a C application that runs against the
object schema. Both OCI applications and Pro*C/C++ precompiler applications may
include code generated by the OTT. The OTT is beneficial because it:

= Improves application developer productivity: OTT eliminates the need for you to
code the host language variables that correspond to schema objects.

= Maintains SQL as the data definition language of choice: By providing the ability
to automatically map Oracle schema objects that are created using SQL to host
language variables, OTT facilitates the use of SQL as the data definition language
of choice. This in turn allows Oracle Database to support a consistent model of
data.

= Facilitates schema evolution of object types: OTT regenerates included header files
when the schema is changed, allowing Oracle applications to support schema
evolution.

OTT is typically invoked from the command line by specifying the intype file, the
outtype file, and the specific database connection. With Oracle Database, OTT can
only generate C structures that can either be used with OCI programs or with the
Pro*C/C++ precompiler programs.

OCI Support for Oracle Streams Advanced Queuing

OCI provides an interface to Oracle Streams Advanced Queuing (Streams AQ) feature.
Streams AQ provides message queuing as an integrated part of Oracle Database.
Streams AQ provides this functionality by integrating the queuing system with the
database, thereby creating a message-enabled database. By providing an integrated
solution, Streams AQ frees you to devote your efforts to your specific business logic
rather than having to construct a messaging infrastructure.

See Also: "OCI and Streams Advanced Queuing" on page 9-47

XA Library Support

OCI supports the Oracle XA library. The xa.h header file is in the same location as all
the other OCI header files. For Linux or UNIX, the path is $ORACLE_

HOME/rdbms /public. Users of the demo_rdbms .mk file on Linux or UNIX are not
affected because this make file includes the $ORACLE_HOME/rdbms/public directory.

For Windows, the path is ORACLE_BASE\ORACLE_HOME\oci\include.

See Also:

s "Oracle XA Library" on page D-3 for more information about
Windows and XA applications

» Oracle Database Advanced Application Developer’s Guide for
information about developing applications with Oracle XA

OCI: Introduction and Upgrading 1-11

Compatibility and Upgrading

Compatibility and Upgrading

The following sections discuss issues concerning compatibility between different
releases of OCI client and server, changes in the OClI library routines, and upgrading
an application from the release 7.x OCI to the current release of OCI.

Version Compatibility of Statically Linked and Dynamically Linked Applications

Here are the rules for relinking for a new release.

Statically linked OCI applications:

Statically linked OCI applications must be relinked for both major and minor
releases, because the statically linked Oracle Database client-side library code may
be incompatible with the error messages in the upgraded Oracle home. For
example, if an error message was updated with additional parameters then it is no
longer compatible with the statically linked code.

Dynamically linked OCI applications:

Dynamically linked OCI applications from Oracle Database 10g and later releases
need not be relinked. That is, the Oracle Database client-side dynamic library is
upwardly compatible with the previous version of the library. Oracle Universal
Installer creates a symbolic link for the previous version of the library that resolves
to the current version. Therefore, an application that is dynamically linked with
the previous version of the Oracle Database client-side dynamic library does not
need to be relinked to operate with the current version of the Oracle Database
client-side library.

Note: If the application is linked with a runtime library search path (such as
-rpath on Linux), then the application may still run with the version of Oracle
Database client-side library it is linked with. To run with the current version of
Oracle Database client-side library, it must be relinked.

See Also:

» Oracle Database Upgrade Guide for information about compatibility and
upgrading

s The server versions supported currently are found on My Oracle Support
in note 207303.1. See the website at

https://support.oracle.com/

Simplified Upgrading of Existing OCI Release 7 Applications

OCT has been significantly improved with many features since OClI release 7.
Applications written to work with OCI release 7 have a smooth migration path to the
current OCI release because of the interoperability of OCI release 7 clients with the
current release of the Oracle Database, and of clients of the current release with Oracle
Database release 7.

Specifically:

Applications that use the OCI release 7.3 API work unchanged against the current
release of Oracle Database. They do need to be linked with the current client
library.

1-12 Oracle Call Interface Programmer's Guide

Compatibility and Upgrading

s OClrelease 7 and the OCI calls of this release can be mixed in the same application
and in the same transaction provided they are not mixed within the same
statement execution.

As a result, when migrating an existing OCI version 7 application you have the
following two alternatives:

= Upgrade to the current OCI client but do not modify the application: If you choose
to upgrade from an Oracle release 7 OCI client to the current release OCI client,
you need only link the new version of the OCI library and need rnot recompile your
application. The relinked Oracle Database release 7 OCI applications work
unchanged against a current Oracle Database.

s Upgrade to the current OCI client and modify the application: To use the
performance and scalability benefits provided by the current OCI, however, you
must modify your existing applications to use the current OCI programming
paradigm, relink them with the current OCI library, and run them against the
current release of the Oracle database.

If you want to use any of the object capabilities of the current Oracle Database release,
you must upgrade your client to the current release of OCL

Obsolete OCI Routines

Release 8.0 of the OCI introduced an entirely new set of functions that were not
available in release 7.3. Oracle Database continues to support these release 7.3
functions. Many of the earlier 7.x calls are available, but Oracle strongly recommends
that new applications use the new calls to improve performance and provide increased
functionality.

Table 1-1 lists the 7.x OCI calls with their later equivalents. For more information
about the OCI calls, see the function descriptions in this guide. For more information
about the 7.x calls, see Programmer’s Guide to the Oracle Call Interface, Release 7.3. These
7.x calls are obsolete, meaning that OCI has replaced them with newer calls. Although
the obsolete calls are now supported, they may not be supported in all future versions
of OCL

Note: In many cases the new or current OCI routines do not map
directly onto the 7.x routines, so it almost may not be possible to
simply replace one function call and parameter list with another.
Additional program logic may be required before or after the new
or current call is made. See the remaining chapters, in particular
Chapter 2, "OCI Programming Basics" of this guide for more
information.

Table 1-1 Obsolescent OCI Functions

7.x OCI Routine Equivalent or Similar Later OCI Routine

obindps (), obndra(), 0CIBindByName (), OCIBindByPos () (Note: additional bind calls
obndrn (), obndrv() may be necessary for some data types)

obreak () OCIBreak()

ocan() none

oclose() Note: cursors are not used in release 8.x or later

ocof (), ocon() OCIStmtExecute() with OCI_COMMIT_ON_SUCCESS mode

OCI: Introduction and Upgrading 1-13

Compatibility and Upgrading

Table 1-1 (Cont.) Obsolescent OCI Functions

7.x OCI Routine Equivalent or Similar Later OCI Routine
ocom () OCITransCommit ()
odefin(), odefinps() 0CIDefineByPos () (Note: additional define calls may be

necessary for some data types)

odescr () Note: schema objects are described with OCIDescribeAny(). A
describe, as used in release 7.x, most often be done by calling
OCIAttrGet() on the statement handle after SQL statement

execution.

odessp () OCIDescribeAny ()

oerhms () OCIErrorGet ()

oexec (), oexn() OCIStmtExecute()

oexfet () OCIStmtExecute (), 0CIStmtFetch () (Note: result set rows can be
implicitly prefetched)

ofen(), ofetch() OCIStmtFetch()

oflng() none

ogetpi() OCIStmtGetPieceInfol()

olog () OCILogon ()

ologof () OCILogoff ()

onbclr (), onbset(), Note: nonblocking mode can be set or checked by calling

onbtst () OCIAttrSet () or OCIAttrGet () on the server context handle or
service context handle

oopen () Note: cursors are not used in release 8.x or later

oopt () none

oparse () oCcIStmtPrepare (); however, it is all local

opinit() OCIEnvCreate()

orol () OCITransRollback()

osetpi() 0CIStmtSetPiecelInfo()

sqglld2 () SQLSvceCtxGet or SQLEnvGet

sgllda() SQLSvcCtxGet or SQLEnvGet

odsc () Note: see odescr() preceding

oermsg () OCIErrorGet ()

olon() OCILogon ()

orlon() OCILogon ()

oname () Note: see odescr () preceding

o0sql3 () Note: see oparse () preceding

OCI Routines Not Supported

Some OCI routines that were available in previous versions of OCI are not supported
in the current release. They are listed in Table 1-2.

1-14 Oracle Call Interface Programmer's Guide

Compatibility and Upgrading

Table 1-2 OCI Functions Not Supported

OCI Routine Equivalent or Similar Later OCI Routine

obind () 0CIBindByName (), 0CIBindByPos () (Note: additional bind
calls may be necessary for some data types)

obindn () 0CIBindByName (), OCIBindByPos () (Note: additional
bind calls may be necessary for some data types)

odfinn() 0CIDefineByPos () (Note: additional define calls may be
necessary for some data types)

odsrbn () Note: see odescr () in Table 1-1

ologon () OCILogon ()

osql () Note: see oparse () Table 1-1

Compatibility Between Different Releases of OCI and Servers

This section addresses compatibility between different releases of OCI and Oracle
Database.

Existing 7.x applications with no new post-release 7.x calls have to be relinked with the
current client-side library.

The application cannot use the object features of Oracle8i or later, and cannot get any
of the performance or scalability benefits provided by those OCI releases.

Upgrading OCI

Programmers who want to incorporate post-release 7.x functionality into existing OCI
applications have two options:

» Completely rewrite the application to use only current OCI calls (recommended).

= Incorporate current OCI post-release 7.x calls into the application, while still using
7.x calls for some operations.

This manual should provide the information necessary to rewrite an existing
application to use only current OCI calls.

Adding Post-Release 7.x OCI Calls to 7.x Applications

The following guidelines apply to programmers who want to incorporate current
Oracle data types and features by using current OCI calls, while keeping 7.x calls for
some operations:

= Change the existing logon to use 0OCILogon () instead of olog () (or other logon
call). The service context handle can be used with current OCI calls or can be
converted into an Lda_Def to be used with 7.x OCI calls.

See Also: See the description of "OCIServerAttach()" on
page 16-27 and the description of "OClISessionBegin()" on
page 16-30 for information about the logon calls necessary for
applications that are maintaining multiple sessions

m After the server context handle has been initialized, it can be used with OCI
post-release 7.x calls.

= To use release 7 OCI calls, convert the server context handle to an Lda_Def using
0CISvcCtxToLda (), and pass the resulting Lda_Def to the 7.x calls.

OCI: Introduction and Upgrading 1-15

OCI Instant Client

Note: If there are multiple service contexts that share the same server
handle, only one can be in Oracle Database release 7 mode at any one
time.

= To begin using post-release 7.x OCI calls again, the application must convert the
Lda_Def back to a server context handle using 0OCILdaToSveCtx ().

s The application may toggle between the Lda_Def and server context as often as
necessary in the application.

This approach allows an application to use a single connection, but two different APIs,
to accomplish different tasks.

You can mix OCI 7.x and post-release 7.x calls within a transaction, but not within a
statement. This lets you execute one SQL or PL/SQL statement with OCI 7.x calls and
the next SQL or PL/SQL statement within that transaction with post-release 7.x OCI
calls.

Caution: You cannot open a cursor, parse with OCI 7.x calls and
then execute the statement with post-release 7.x calls.

OCl Instant Client

The Instant Client feature simplifies the deployment of customer applications based on
OCI, OCCI, ODBC, and JDBC OCI by eliminating the need for an Oracle home. The
storage space requirement of an OCI application running in Instant Client mode is
significantly reduced compared to the same application running in a full client-side
installation. The Instant Client shared libraries occupy only about one-fourth the disk
space of a full client-side installation.

A README file is included with the Instant Client installation. It describes the
version, date and time, and the operating system the Instant Client was generated on.

Table 1-3 shows the Oracle Database client-side files required to deploy an OCI
application:

Table 1-3 OCI Instant Client Shared Libraries

Description for Description for
Linux and UNIX Linux and UNIX Microsoft Windows Microsoft Windows
libclntsh.so.11.1 Client Code Library oci.dll Forwarding functions
that applications link
with
libociei.so OCI Instant Client oraocieill.dll Data and code
Data Shared Library
libnnzll.so Security Library orannzsbbll.dll Security Library
oci.sym, Symbol tables

oraocieill.sym,
orannzsbbll.sym

1-16 Oracle Call Interface Programmer's Guide

OCl Instant Client

A .symfile is provided for each dynamic-link library (DLL). When the . sym file is
present in the same location as the DLL, a stack trace with function names is generated
when a failure occurs in OCI on Windows.

See Also: "Fault Diagnosability in OCI" on page 10-32

Oracle Database 11¢ Release 1 library names are used in the table.

To use the Microsoft ODBC and OLEDB driver, you must copy ociw32.d11 from the
ORACLE_HOME\bin directory.

Benefits of Instant Client
Why use Instant Client?

= Installation involves copying a small number of files.

s The Oracle Database client-side number of required files and the total disk storage
are significantly reduced.

s There is no loss of functionality or performance for applications deployed in
Instant Client mode.

s Itis simple for independent software vendors to package applications.

OCI Instant Client Installation Process

The Instant Client libraries can be installed by either choosing the Instant Client option
from Oracle Universal Installer or by downloading and installing the Instant Client
libraries from the OCI page (see the bottom of OCI page for the Instant Client link) on
the Oracle Technology Network website:

http://www.oracle.com/technology/tech/oci/instantclient/index.html

To Download and Install the Instant Client Libraries from the Oracle Technology
Network Website

1. Download and install the Instant Client shared libraries to an empty directory,
such as instantclient_11_2, for Oracle Database release 11.2. Choose the Basic
package.

2. Set the operating system shared library path environment variable to the directory
from Step 1. For example, on Linux or UNIX, set LD_LIBRARY_PATH to
instantclient_11_ 2. On Windows, set PATH to the instantclient_11_2 directory.

3. If necessary, set the NLS_LANG environment variable to specify the language and
territory used by the client application and database connections opened by the
application, and the client's character set, which is the character set for data
entered or displayed by a client program. NLS_LANG is set as an environment
variable on UNIX platforms and is set in the registry on Windows platforms. See
Oracle Database Globalization Support Guide for more information on setting the
NLS_LANG environment variable.

After completing the preceding steps you are ready to run the OCI application.

The OCI application operates in Instant Client mode when the OCI shared libraries are
accessible through the operating system Library Path variable. In this mode, there is
no dependency on the Oracle home and none of the other code and data files provided
in the Oracle home are needed by OCI (except for the tnsnames. ora file described
later).

OCI: Introduction and Upgrading 1-17

OCI Instant Client

To Install the Instant Client from the Oracle Universal Installer
1. Invoke the Oracle Universal Installer and select the Instant Client option.

2. Install the Instant Client shared libraries to an empty directory, such as
instantclient_11_2, for release 11.2.

3. Set the LD_LIBRARY_PATH to the instant client directory to operate in instant client
mode.

4. If necessary, set the NLS_LANG environment variable to specify the language and
territory used by the client application and database connections opened by the
application, and the client's character set, which is the character set for data
entered or displayed by a client program. NLS_LANG is set as an environment
variable on UNIX platforms and is set in the registry on Windows platforms. See
Oracle Database Globalization Support Guide for more information on setting the
NLS_LANG environment variable.

If you did a complete client installation (by choosing the Admin option in Oracle
Universal Installer), the Instant Client shared libraries are also installed. The locations
of the Instant Client shared libraries in a full client installation are:

On Linux or UNIX:

libociei.so library is in $ORACLE_HOME/instantclient
libclntsh.so.11.1 and libnnzll.so are in $ORACLE_HOME/lib

On Windows:

oraocieill.dll library is in ORACLE_HOME\instantclient

oci.dll, ociw32.d1ll, and orannzsbbll.dll are in ORACLE_HOME\bin

To enable running the OCI application in Instant Client mode, copy the preceding
libraries to a different directory and set the operating system shared library path to
locate this directory.

Note: All the libraries must be copied from the same Oracle home and must
be placed in the same directory. Co-location of symlinks to Instant Client
libraries is not a substitute for physical co-location of the libraries.

There should be only one set of Oracle libraries on the operating system
Library Path variable. That is, if you have multiple directories containing
Instant Client libraries, then only one such directory should be on the
operating system Library Path.

Similarly, if an Oracle home-based installation is performed on the same
system, then you should not have ORACLE_HOME/1ib and the Instant Client
directory on the operating system Library Path simultaneously regardless of
the order in which they appear on the Library Path. That is, either the ORACLE_
HOME/1ib directory (for non-Instant Client operation) or Instant Client
directory (for Instant Client operation) should be on the operating system
Library Path variable, but not both.

To enable other capabilities such as OCCI and JDBC OCI, you must copy a few
additional files. To enable OCCI, you must install the OCCI Library (1ibocci.so.11.1
on Linux or UNIX and oraoccill.dll on Windows) in the Instant Client directory. For
the JDBC OCI driver, in addition to the three OCI shared libraries, you must also
download OCI JDBC Library (for example 1ibocijdbcll.so on Linux or UNIX and
ocijdbcll.dll on Windows). Place all libraries in the Instant Client directory.

1-18 Oracle Call Interface Programmer's Guide

OCl Instant Client

Note: On hybrid platforms, such as Sparc64, to operate the JDBC OCI driver
in the Instant Client mode, copy the libociei.so library from the ORACLE_
HOME/instantclient32 directory to the Instant Client directory. Copy all other
Sparc64 libraries needed for the JDBC OCI Instant Client from the ORACLE_
HOME/11ib32 directory to the Instant Client directory.

When to Use Instant Client

Instant Client is a deployment feature and should be used for running production
applications. In general, all OCI functionality is available to an application being run
in the Instant Client mode, except that the Instant Client mode is for client-side
operation only. Therefore, server-side external procedures cannot operate in the Instant
Client mode.

For development you can also use the Instant Client SDK.

See Also:
"SDK for Instant Client" on page 1-27
= "Fault Diagnosability in OCI" on page 10-32

Patching Instant Client Shared Libraries on Linux or UNIX

Because Instant Client is a deployment feature, the number and size of files (client
footprint) required to run an OCI application has been reduced. Hence, all files needed
to patch Instant Client shared libraries are not available in an Instant Client
deployment. A complete client installation based on Oracle home is needed to patch
the Instant Client shared libraries. Use the opatch utility to patch the Instant Client
shared libraries.

After you apply the patch in an Oracle home environment, copy the files listed in
Table 1-3 to the instant client directory, as described in "OCI Instant Client Installation
Process" on page 1-17.

Instead of copying individual files, you can generate Instant Client zip and RPM files
for OCI and OCCI, JDBC, and SQL*Plus as described in "Regeneration of Data Shared
Library and Zip and RPM Files" on page 1-19. Then, you can copy the zip and RPM
files to the target system and unzip them as described in "OCI Instant Client
Installation Process" on page 1-17.

The opatch utility stores the patching information of the ORACLE_HOME installation in
libclntsh.so . This information can be retrieved by the following command:

genezi -v

If the Instant Client deployment system does not have the genezi utility, you can copy
it from the ORACLE_HOME/bin directory.

Note: The opatch utility is not available on Windows.

Regeneration of Data Shared Library and Zip and RPM Files

The process to regenerate the data shared library and the zip and RPM files has

changed for release 11.2 and later. Separate targets are added to create the data shared
libraries, zip, and RPM files either individually or all at once. In previous releases, one
target, ilibociei, was provided to build the data shared libraries, zip, and RPM files.

OCI: Introduction and Upgrading 1-19

OCI Instant Client

Now ilibociei builds only the zip and RPM files. Regeneration of data shared
libraries requires both a compiler and linker, which may not be available on all
installations. Therefore, separate targets have been added to regenerate the data
shared libraries.

Note: The regenerated Instant Client binaries contain only the Instant Client
files installed in the Oracle Client Administrator Home from which the
regeneration is done. Therefore, error messages, character set encodings, and
time zone files that are present in the regeneration environment are the only
ones that are packaged in the data shared libraries. Error messages, character
set encodings, and time zone files depend on which national languages were
selected for the installation of the Oracle Client Administrator Home.

Regenerating Data Shared Library libociei.so

The OCI Instant Client Data Shared Library (1ibociei.so) can be regenerated by
using the following commands in an Administrator Install of ORACLE_HOME:

cd SORACLE_HOME/rdbms/1lib
make -f ins_rdbms.mk igenlibociei

The new regenerated libociei.so is placed in the ORACLE_HOME/instantclient
directory. The original existing 1ibociei.so located in this same directory is renamed
to libociei.so0.

Regenerating Data Shared Library libociicus.so

To regenerate Instant Client Light data shared library (1ibociicus.so), use the
following commands:

mkdir -p SORACLE_HOME/rdbms/install/instantclient/light
cd SORACLE_HOME/rdbms/1lib
make -f ins_rdbms.mk igenlibociicus

The newly regenerated 1ibociicus.so is placed in the ORACLE_
HOME/instantclient/light directory. The original existing 1ibociicus.so located in
this same directory is renamed to 1ibociicus.so0.

Regenerating Data Shared Libraries libociei.so and libociicus.so in One Step

To regenerate the data shared libraries 1ibociei.so and libociicus.so, use the
following commands:

mkdir -p SORACLE_HOME/rdbms/install/instantclient/light
cd SORACLE_HOME/rdbms/1lib
make -f ins_rdbms.mk igenliboci

The newly regenerated 1ibociei.so is placed in the ORACLE_HOME/instantclient
directory. The original existing libociei.so located in this same directory is renamed
to 1ibociei.so0.

The newly regenerated 1ibociicus.so is placed in the ORACLE_
HOME/instantclient/light directory. The original existing libociicus.so located in
this same directory is renamed to 1ibociicus.so0.

Regenerating Zip and RPM Files for the Basic Package

To regenerate the zip and RPM files for the basic package, use the following
commands:

1-20 Oracle Call Interface Programmer's Guide

OCl Instant Client

cd SORACLE_HOME/rdbms/1lib
make -f ins_rdbms.mk ic_basic_zip

Regenerating Zip and RPM Files for the Basic Light Package

To regenerate the zip and RPM files for the basic light package, use the following
commands:

cd SORACLE_HOME/rdbms/1lib
make -f ins_rdbms.mk ic_basiclite_zip

Regenerating Zip and RPM Files for the JDBC Package

To regenerate the zip and RPM files for the JDBC package, use the following
commands:

cd SORACLE_HOME/rdbms/1lib
make -f ins_rdbms.mk ic_jdbc_zip

Regenerating Zip and RPM Files for the ODBC Package

To regenerate the zip and RPM files for the ODBC package, use the following
commands:

cd $ORACLE_HOME/rdbms/lib
make -f ins_rdbms.mk ic_odbc_zip

Regenerating Zip and RPM Files for the SQL*Plus Package

To regenerate the zip and RPM files for the SQL*Plus package, use the following
commands:

cd SORACLE_HOME/rdbms/1lib
make -f ins_rdbms.mk ic_sglplus_zip

Regenerating Zip and RPM Files for the Tools Package

To regenerate the zip and RPM files for the tools package, use the following
commands:

cd SORACLE_HOME/rdbms/1lib
make -f ins_rdbms.mk ic_tools_zip

Regenerating Zip and RPM Files for All Packages

To regenerate the zip and RPM files for all packages, use the following commands:
cd $ORACLE_HOME/rdbms/1ib

make -f ins_rdbms.mk ilibociei

The new zip and RPM files are generated under the following directory:
SORACLE_HOME/rdbms/install/instantclient

Regeneration of the data shared library and the zip and RPM files is not available on
Windows platforms.

Database Connection Strings for OCI Instant Client

OClI Instant Client can make remote database connections in all the ways that ordinary
SQL clients can. However, because Instant Client does not have the Oracle home
environment and directory structure, some database naming methods require
additional configuration steps.

OCI: Introduction and Upgrading 1-21

OCI Instant Client

All Oracle Net naming methods that do not require use of ORACLE_HOME or TNS_ADMIN
(to locate configuration files such as tnsnames. ora or sqglnet.ora) work in the Instant
Client mode. In particular, the connect_identifier in the OCIServerAttach () call can
be specified in the following formats:

= A SQL Connect URL string of the form:

[//lhostl:port] [/service name]

For example:

//dlsun242:5521/bjava2l

= Asan Oracle Net connect descriptor. For example:

" (DESCRIPTION= (ADDRESS=(PROTOCOL=tcp) (HOST=dlsun242) (PORT=5521))
(CONNECT_DATA= (SERVICE_NAME=bjava2l)))"

= A Connection Name that is resolved through Directory Naming where the site is
configured for LDAP server discovery.

For naming methods such as tnsnames and directory naming to work, the TNS_ADMIN
environment variable must be set.

See Also: Oracle Database Net Services Administrator’s Guide
chapter on "Configuring Naming Methods" for more about connect
descriptors

If the TNS_ADMIN environment variable is not set, and TNSNAMES entries such as instl,
and so on, are used, then the ORACLE_HOME variable must be set, and the configuration
files are expected to be in the SORACLE_HOME/network/admin directory.

Note that the ORACLE_HOME variable in this case is only used for locating Oracle Net
configuration files, and no other component of Client Code Library (OCI, NLS, and so
on) uses the value of ORACLE_HOME.

"

If a NULL string, "", is used as the connection string in the 0CIServerAttach() call, then
the TWO_TASK environment variable can be set to the connect_identifier.Ona
Windows operating system, the LOCAL environment variable is used instead of TWO_
TASK.

Similarly, for OCI command-line applications such as SQL*Plus, the TWO_TASK (or
LOCAL on Windows) environment variable can be set to the connect_identifier. Its value
can be anything that would have gone to the right of the '@' on a typical connect string.

Examples of Instant Client Connect Identifiers

If you are using SQL*Plus in Instant Client mode, then you can specify the connect
identifier in the following ways:

If the listener.ora file on the Oracle database contains the following:

LISTENER = (ADDRESS_LIST=
(ADDRESS= (PROTOCOL=tcp) (HOST=server6) (PORT=1573))
)

SID_LIST LISTENER = (SID_LIST=

(SID_DESC=(SID_NAME=rdbms3) (GLOBAL_DBNAME=rdbms3.server6.us.alchemy.com)
(ORACLE_HOME=/home/dba/rdbms3/oracle))
)

The SQL*Plus connect identifier is:

1-22 Oracle Call Interface Programmer's Guide

OCl Instant Client

" (DESCRIPTION= (ADDRESS= (PROTOCOL=tcp) (HOST=server6) (PORT=1573)) (CONNECT_DATA=
(SERVICE_NAME=rdbms3.server6.us.alchemy.com)))"

The connect identifier can also be specified as:
"//server6:1573/rdbms3.server6.us.alchemy.com"

Alternatively, you can set the TWO_TASK environment variable to any of the previous
connect identifiers and connect without specifying the connect identifier. For example:
setenv TWO_TASK " (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp) (HOST=server6) (PORT=1573))
(CONNECT_DATA= (SERVICE_NAME=rdbms3.server6.us.alchemy.com)))"

You can also specify the TWO_TASK environment variable as:

setenv TWO_TASK //server6:1573/rdbms3.server6.us.alchemy.com

Then you can invoke SQL*Plus with an empty connect identifier (you are prompted
for the password):

sglplus user

The connect descriptor can also be stored in the tnsnames. ora file. For example, if the
tnsnames . ora file contains the following connect descriptor:

conn_str = (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp) (HOST=server6) (PORT=1573)) (CONNECT_
DATA=
(SERVICE_NAME=rdbms3.server6.us.alchemy.com)))

The tnsnames. ora file is located in the /home/webuser/instantclient directory, so
you can set the variable TNS_ADMIN (or LOCAL on Windows) as:
setenv TNS_ADMIN /home/webuser/instantclient

Then you can use the connect identifier conn_str for invoking SQL*Plus, or for your
OCI connection.

Note: TNS_ADMIN specifies the directory where the tnsnames. ora file is
located and TNS_ADMIN is not the full path of the tnsnames. ora file.

If the preceding tnsnames.ora file is located in an installation based Oracle home, in
the /network/server6/home/dba/oracle/network/admin directory, then the ORACLE_
HOME environment variable can be set as follows and SQL*Plus can be invoked as
previously, with the identifier conn_str:

setenv ORACLE_HOME /network/server6/home/dba/oracle
Finally, if tnsnames . ora can be located by TNS_ADMIN or ORACLE_HOME, then the TWO_

TASK environment variable can be set as follows enabling you to invoke SQL*Plus
without a connect identifier:

setenv TWO_TASK conn_str

Environment Variables for OCI Instant Client

The ORACLE_HOME environment variable no longer determines the location of NLS,

CORE, and error message files. An OCI-only application should not require ORACLE_
HOME to be set. However, if it is set, it does not affect OCI. OCI always obtains its data
from the Data Shared Library. If the Data Shared Library is not available, only then is

OCI: Introduction and Upgrading 1-23

OCI Instant Client

ORACLE_HOME used and a full client installation is assumed. Though ORACLE_HOME is not
required to be set, if it is set, then it must be set to a valid operating system path name
that identifies a directory.

If Dynamic User callback libraries are to be loaded, then as this guide specifies, the
callback package must reside in ORACLE_HOME/1ib (ORACLE_HOME\bin on Windows). Set
ORACLE_HOME in this case.

Environment variables ORA_NLS10 and ORA_NLS_PROFILE33 are ignored in the Instant
Client mode.

In the Instant Client mode, if the ORA_TZFILE variable is not set, then the larger,
default, timezlrg_n.dat file from the Data Shared Library is used. If the smaller
timezone_n.dat file is to be used from the Data Shared Library, then set the ORA_
TZFILE environment variable to the name of the file without any absolute or relative
path names.

On Linux or UNIX:

setenv ORA_TZFILE timezone_n.dat

On Windows:

set ORA_TZFILE=timezone_n.dat

In these examples, # is the time zone data file version number.

To determine the versions of small and large timezone files that are packaged in the
Instant Client Data Shared Library, enter the following command to run the genezi
utility:

genezi -v

If OCl is not operating in the Instant Client mode (because the Data Shared Library is
not available), then ORA_TZFILE variable, if set, names a complete path name as it does
in previous Oracle Database releases.

If TNSNAMES entries are used, then, as mentioned earlier, TNS_ADMIN directory must
contain the TNSNAMES configuration files. If TNS_ADMIN is not set, then the ORACLE_
HOME/network/admin directory must contain Oracle Net Services configuration files.

Instant Client Light (English)

The Instant Client Light (English) version of Instant Client further reduces the disk
space requirements of the client installation. The size of the library has been reduced
by removing error message files for languages other than English and leaving only a
few supported character set definitions out of around 250.

This Instant Client Light version is geared toward applications that use either
US7ASCII, WESDEC, WESISO8859P1, WESMSWIN1252, or a Unicode character set.
There is no restriction on the LANGUAGE and the TERRITORY fields of the NLS_LANG
setting, so the Instant Client Light operates with any language and territory settings.
Because only English error messages are provided with the Instant Client Light, error
messages generated on the client side, such as Net connection errors, are always
reported in English, even if NLS_LANG is set to a language other than AMERICAN. Error
messages generated by the database side, such as syntax errors in SQL statements, are
in the selected language provided the appropriate translated message files are
installed in the Oracle home of the database instance.

1-24 Oracle Call Interface Programmer's Guide

OCl Instant Client

Globalization Settings
Instant Client Light supports the following client character sets:

Single-byte
» US7ASCII
= WESDEC

= WESMSWIN1252
= WESISO8859P1

Unicode

= UTF8

= AL16UTF16
= AL32UTF8

Instant Client Light can connect to databases having one of these database character
sets:

» US7ASCII

» WESDEC

» WESMSWIN1252
= WESISO8859P1

= WESEBCDIC37C
= WESEBCDIC1047
» UTF8

» AL32UTEFS8

Instant Client Light returns an error if a character set other than those in the preceding
lists is used as the client or database character set.

Instant Client Light can also operate with the OCI Environment handles created in the
OCI_UTF16 mode.

See Also: Oracle Database Globalization Support Guide for more
information about National Language Support (NLS) settings

Operation of Instant Client Light

OCI applications, by default, look for the OCI Data Shared Library, 1ibociei.so (or
Oraocieill.dll on Windows) on the LD_LIBRARY_PATH (PATH on Windows) to
determine if the application should operate in the Instant Client mode. If this library is
not found, then OCI tries to load the Instant Client Light Data Shared Library (see
Table 1-4), libociicus.so (or Oraociicusll.dll on Windows). If the Instant Client
Light library is found, then the application operates in the Instant Client Light mode.
Otherwise, a full installation based on Oracle home is assumed.

Table 1-4 OCI Instant Client Light Shared Libraries

Description for Description for
Linux and UNIX Linux and UNIX Windows Windows
libclntsh.so.11.1 Client Code Library oci.dll Forwarding functions
that applications link
with

OCI: Introduction and Upgrading 1-25

OCI Instant Client

Table 1-4 (Cont.) OCI Instant Client Light Shared Libraries

Description for Description for
Linux and UNIX Linux and UNIX Windows Windows
libociicus.so OClI Instant Client oraociicusl1l.dll Data and code
Light Data Shared
Library
libnnzll.so Security Library orannzsbbll.dll Security Library
oci.sym, Symbol tables

oraociicusll.sym,
orannzsbbll.sym

Installation of Instant Client Light
Instant Client Light can be installed in one of these ways:

From OTN

Go to the Instant Client link from the OCI URL (see the bottom of OCI page for the
Instant Client link) on the Oracle Technology Network website:

http://www.oracle.com/technology/software/tech/oci/instantclient/

For Instant Client Light, download and unzip the basiclite.zip package in to an
empty instantclient_11_2 directory.

From Client Admin Install

From the ORACLE_HOME/instantclient/light subdirectory, copy libociicus.so
(or Oraociicusll.dll on Windows). The Instant Client directory on the LD_
LIBRARY_PATH (PATH on Windows) should contain the Instant Client Light Data
Shared Library, 1ibociicus.so (Oraociicusll.dll on Windows), instead of the
larger OCI Instant Client Data Shared Library, 1ibociei.so (Oraocieill.dll on
Windows).

From Oracle Universal Installer

When you select the Instant Client option from the Oracle Universal Installer,
libociei.so (or Oraocieill.dll on Windows) is installed in the base directory of
the installation, which means these files are placed on the LD_LIBRARY_PATH (PATH
on Widows).

The Instant Light Client Data Shared Library, libociicus.so (or
Oraociicusll.dll on Windows), is installed in the 1ight subdirectory of the base
directory and not enabled by default. Therefore, to operate in the Instant Client
Light mode, the OCI Data Shared Library, 1ibociei.so (or Oraocieill.dll on
Windows) must be deleted or renamed and the Instant Client Light library must
be copied from the 1ight subdirectory to the base directory of the installation.

For example, if Oracle Universal Installer has installed the Instant Client in my_
oraic_11_2 directory on the LD_LIBRARY_PATH (PATH on Windows), then use the
following command sequence to operate in the Instant Client Light mode:

cd my_oraic_11_2
rm libociei.so
mv light/libociicus.so .

Note: To ensure that no incompatible binaries exist in the installation, always
copy and install the Instant Client files in to an empty directory.

1-26 Oracle Call Interface Programmer's Guide

OCl Instant Client

SDK for Instant Client

The SDK can be downloaded from the Instant Client link on the OCI URL (see the
bottom of OCI page for the Instant Client link) on the Oracle Technology Network
website:

http://www.oracle.com/technology/tech/oci/instantclient/

s The Instant Client SDK package has both C and C++ header files and a makefile
for developing OCI and OCCI applications while in an Instant Client environment.
Developed applications can be deployed in any client environment.

s The SDK contains C and C++ demonstration programs.

s On Windows, libraries required to link the OCI or OCCI applications are also
included. Make .bat is provided to build the demos.

= On UNIX or Linux, the makefile demo.mk is provided to build the demos. The
instantclient_11_2 directory must be on the LD_LIBRARY_PATH before linking the
application. The OCI and OCCI programs require the presence of 1ibclntsh.so
and libocci.so symbolic links in the instantclient_11_2 directory. demo.mk

creates these before the link step. These symbolic links can also be created in a
shell:

cd instantclient_11_2
In -s libclntsh.so.11.1 libclntsh.so
In -s libocci.so.11.1 libocci.so

s The SDK also contains the Object Type Translator (OTT) utility and its classes to
generate the application header files.

OCI: Introduction and Upgrading 1-27

OCI Instant Client

1-28 Oracle Call Interface Programmer's Guide

2

OCI Programming Basics

This chapter introduces concepts and procedures involved in programming with OCL
After reading this chapter, you should have most of the tools necessary to understand
and create a basic OCI application.

This chapter includes the following major sections:
= Header File and Makefile Locations

s Overview of OCI Program Programming

s OCI Data Structures

s OCI Programming Steps

s Error Handling in OCI

» Additional Coding Guidelines

s Using PL/SQL in an OCI Program

s OCI Globalization Support

New users should pay particular attention to the information presented in this chapter,
because it forms the basis for the rest of the material presented in this guide. The
information in this chapter is supplemented by information in later chapters.

See Also:

» Oracle Database Globalization Support Guide for a discussion of
the OCI functions that apply to a multilingual environment

» Oracle Database Data Cartridge Developer’s Guide for a discussion
of the OCI functions that apply to cartridge services

Header File and Makefile Locations

The OCI and OCCI header files that are required for OCI and OCCI client application
development on Linux and UNIX operating systems reside in the $ORACLE_
HOME/rdbms/public directory. These files are available both with the Oracle Database
Server installation, and with the Oracle Database Client Administration and Custom
installations.

All demonstration programs and their related header files continue to reside in the
$ORACLE_HOME/rdbms/demo directory. These demonstration files are installable only
from the Examples media. See Appendix B for the names of these programs and their
purposes.

Several makefiles are provided in the demo directory. Each makefile contains comments
with instructions on its use in building OCI executables. Oracle recommends that you

OCI Programming Basics 2-1

Overview of OCI Program Programming

use these demonstration makefiles whenever possible to avoid errors in compilation
and linking.

The demo_rdbms . mk file in the demo directory and is an example makefile. See the
comments on how to build the demonstration OCI programs. The demo_rdbms . mk file
includes the $ORACLE_HOME/rdbms/public directory. Ensure that your own customized
makefiles have the $ORACLE_HOME/rdbms/public directory in the INCLUDE path.

The ociucb.mk file is a makefile in demo for building a callback shared library.

Overview of OCI Program Programming

The general goal of an OCI application is to operate on behalf of multiple users. In an
n-tiered configuration, multiple users are sending HTTP requests to the client
application. The client application may need to perform some data operations that
include exchanging data and performing data processing.

OCI uses the following basic program flow:

1. Create the environment by initializing the OCI programming environment and
threads.

2. Allocate necessary handles, and establish server connections and user sessions.

3. Exchange data with the database server by executing SQL statements on the
server, and perform necessary application data processing.

4. Execute prepared statements, or prepare a new statement for execution.
5. Terminate user sessions and disconnect from server connections.
6. Free handles and data structures.

Figure 21 illustrates the flow of steps in an OCI application. "OCI Programming
Steps" on page 2-12 describes each step in more detail.

Figure 2-1 Basic OCI Program Flow

Create
Environment

v

Allocate Handles
and Data Structures

v

Connect to Server
and Begin Session

v

Issue SQL
and Process Data

v

Disconnect

v

Free Handles
& Data Structures

The diagram and the list of steps present a simple generalization of OCI programming
steps. Variations are possible, depending on the functionality of the program. OCI
applications that include more sophisticated functionality, such as managing multiple
sessions and transactions and using objects, require additional steps.

2-2 Oracle Call Interface Programmer's Guide

OCI Data Structures

All OCI function calls are executed in the context of an environment. There can be
multiple environments within an OCI process. If an environment requires any
process-level initialization, then it is performed automatically.

Note: It is possible to have multiple active connections and
statements in an OCI application.

See Also: Chapter 11 through Chapter 15 for information about
accessing and manipulating objects

OCI Data Structures

Handles and descriptors are opaque data structures that are defined in OCI applications.
They can be allocated directly, through specific allocate calls, or they can be implicitly
allocated by OCI functions.

7.x Upgrade Note: Programmers who have previously written 7.x
OCI applications must become familiar with these data structures
that are used by most OCI calls.

Handles and descriptors store information pertaining to data, connections, or
application behavior. Handles are defined in more detail in the next section.
Descriptors are discussed in "OCI Descriptors" on page 2-9.

Handles

Almost every OCI call includes in its parameter list one or more handles. A handle is
an opaque pointer to a storage area allocated by the OCI library. You use a handle to
store context or connection information, (for example, an environment or service
context handle), or it may store information about OCI functions or data (for example,
an error or describe handle). Handles can make programming easier, because the
library, rather than the application, maintains this data.

Most OCI applications must access the information stored in handles. The get and set
attribute OCI calls, OCIAttrGet() and OCIAttrSet(), access and set this information.

See Also: "Handle Attributes" on page 2-8

Table 2-1 lists the handles defined for OCI. For each handle type, the C data type and
handle type constant used to identify the handle type in OCI calls are listed.

Table 2-1 OCI Handle Types

Description C Data Type Handle Type Constant
OCI environment handle OCIEnv OCI_HTYPE_ENV

OCI error handle OCIError OCI_HTYPE_ERROR

OCI service context handle OCISveCtx OCI_HTYPE_SVCCTX

OCI statement handle OCIStmt OCI_HTYPE_STMT

OCI bind handle OCIBind OCI_HTYPE_BIND

OCI define handle OCIDefine OCI_HTYPE_DEFINE

OCI Programming Basics 2-3

OCI Data Structures

Table 2-1 (Cont.) OCI Handle Types

Description C Data Type Handle Type Constant
OCI describe handle 0CIDescribe OCI_HTYPE_DESCRIBE

OClI server handle OCIServer OCI_HTYPE_SERVER

OCI user session handle OCISession OCI_HTYPE_SESSION

OCI authentication information handle OCIAuthInfo OCI_HTYPE_AUTHINFO

OCI connection pool handle 0CICPool OCI_HTYPE_CPOOL

OClI session pool handle 0CISPool OCI_HTYPE_SPOOL

OCI transaction handle OCITrans OCI_HTYPE_TRANS

OCI complex object retrieval (COR) handle = 0CIComplexObject OCI_HTYPE_COMPLEXOBJECT
OCI thread handle OCIThreadHandle Not applicable

OCI subscription handle 0CISubscription OCI_HTYPE_SUBSCRIPTION
OCI direct path context handle OCIDirPathCtx OCI_HTYPE_DIRPATH_CTX
OCI direct path function context handle 0CIDirPathFuncCtx OCI_HTYPE_DIRPATH_FN_CTX
OCI direct path column array handle 0CIDirPathColArray OCI_HTYPE_DIRPATH_COLUMN_ARRAY
OCI direct path stream handle OCIDirPathStream OCI_HTYPE_DIRPATH_STREAM
OCI process handle OCIProcess OCI_HTYPE_PROC

OCI administration handle OCIAdmin OCI_HTYPE_ADMIN

OCI HA event handle OCIEvent Not applicable

Allocating and Freeing Handles

Your application allocates all handles (except the bind, define, and thread handles) for
a particular environment handle. You pass the environment handle as one of the
parameters to the handle allocation call. The allocated handle is then specific to that
particular environment.

The bind and define handles are allocated for a statement handle, and contain
information about the statement represented by that handle.

Note: The bind and define handles are implicitly allocated by the
OCl library, and do not require user allocation.

The environment handle is allocated and initialized with a call to OCIEnvCreate() or to
OCIEnvNIsCreate(), one of which is required by all OCI applications.

All user-allocated handles are initialized using the OCI handle allocation call,
OCIHandleAlloc().

The types of handles include: session pool handle, direct path context handle, thread
handle, COR handle, subscription handle, describe handle, statement handle, service
context handle, error handle, server handle, connection pool handle, event handle, and
administration handle.

The thread handle is allocated with the OCIThreadHndInit() call.

An application must free all handles when they are no longer needed. The
OCIHandleFree() function frees all handles.

2-4 Oracle Call Interface Programmer's Guide

OCI Data Structures

Note: When a parent handle is freed, all child handles associated
with it are also freed and can no longer be used. For example, when
a statement handle is freed, any bind and define handles associated
with it are also freed.

Handles lessen the need for global variables. Handles also make error reporting easier.
An error handle is used to return errors and diagnostic information.

See Also: The example programs listed in Appendix B for
sample code demonstrating the allocation and use of OCI handles

Environment Handle

The environment handle defines a context in which all OCI functions are invoked. Each
environment handle contains a memory cache that enables fast memory access. All
memory allocation under the environment handle is done from this cache. Access to
the cache is serialized if multiple threads try to allocate memory under the same
environment handle. When multiple threads share a single environment handle, they
may block on access to the cache.

The environment handle is passed as the parent parameter to the OCIHandleAlloc()
call to allocate all other handle types. Bind and define handles are allocated implicitly.

Error Handle

The error handle is passed as a parameter to most OCI calls. The error handle maintains
information about errors that occur during an OCI operation. If an error occurs in a
call, the error handle can be passed to OCIErrorGet () to obtain additional information
about the error that occurred.

Allocating the error handle is one of the first steps in an OCI application because most

OCI calls require an error handle as a parameter.

See Also: "Implementing Thread Safety" on page 8-25

Service Context Handle and Associated Handles

A service context handle defines attributes that determine the operational context for
OCI calls to a server. The service context handle contains three handles as its
attributes, that represent a server connection, a user session, and a transaction. These
attributes are illustrated in Figure 2-2.

Figure 2-2 Components of a Service Context

Service Context

Handle
Server User Session Transaction
Handle Handle Handle

» A server handle identifies a connection to a database. It translates into a physical
connection in a connection-oriented transport mechanism.

= A user session handle defines a user's roles and privileges (also known as the user's
security domain), and the operational context in which the calls execute.

OCI Programming Basics 2-5

OCI Data Structures

» A transaction handle defines the transaction in which the SQL operations are
performed. The transaction context includes user session state information,
including any fetch state and package instantiation.

Breaking the service context handle down in this way provides scalability and enables
programmers to create sophisticated multitiered applications and transaction
processing (IP) monitors to execute requests on behalf of multiple users on multiple
application servers and different transaction contexts.

You must allocate and initialize the service context handle with OCIHandleAlloc(),
OClILogon(), or OCILogon2() before you can use it. The service context handle is
allocated explicitly by 0OCIHandleAlloc (). It can be initialized using OCIAttrSet() with
the server, user session, and transaction handle. If the service context handle is
allocated implicitly using 0CILogon (), it is already initialized.

Applications maintaining only a single user session for each database connection at
any time can call 0OCILogon () to get an initialized service context handle.

In applications requiring more complex session management, the service context
handle must be explicitly allocated, and the server and user session handles must be
explicitly set into the service context handle. OCIServerAttach() and
OClSessionBegin() calls initialize the server and user session handle respectively.

An application only defines a transaction explicitly if it is a global transaction or there
are multiple transactions active for sessions. It works correctly with the implicit
transaction created automatically by OCI when the application makes changes to the
database.

See Also:
= "OCI Support for Transactions" on page 8-1

= "OCI Environment Initialization" on page 2-13, and "Password
and Session Management" on page 8-7 for more information
about establishing a server connection and user session

Statement, Bind, and Define Handles

A statement handle is the context that identifies a SQL or PL/SQL statement and its
associated attributes, as shown in Figure 2-3.

Figure 2-3 Statement Handles

Statement
Handle
Define Bind
Handle Handle

Information about input and output bind variables is stored in bind handles. The OCI
library allocates a bind handle for each placeholder bound with the OCIBindByName()
or OCIBindByPos() function. The user must not allocate bind handles. They are
implicitly allocated by the bind call.

Fetched data returned by a query (select statement) is converted and retrieved
according to the specifications of the define handles. The OCI library allocates a define
handle for each output variable defined with OCIDefineByPos(). The user must not
allocate define handles. They are implicitly allocated by the define call.

2-6 Oracle Call Interface Programmer's Guide

OCI Data Structures

Bind and define handles are implicitly allocated by the OCI library, and are
transparently reused if the bind or define operation is repeated. The actual value of the
bind or define handle is needed by the application for the advanced bind or define
operations described in Chapter 5. The handles are freed when the statement handle is
freed or when a new statement is prepared on the statement handle. Explicitly
allocating bind or define handles may lead to memory leaks. Explicitly freeing bind or
define handles may cause abnormal program termination.

See Also:
= "Advanced Bind Operations in OCI" on page 5-7
= "Advanced Define Operations in OCI" on page 5-15

Describe Handle

The describe handle is used by the OCI describe call, OCIDescribeAny(). This call
obtains information about schema objects in a database (for example, functions or
procedures). The call takes a describe handle as one of its parameters, along with
information about the object being described. When the call completes, the describe
handle is populated with information about the object. The OCI application can then
obtain describe information through the attributes of the parameter descriptors.

See Also: Chapter 6 for more information about using the
OCIDescribeAny () function

Complex Object Retrieval Handle

The complex object retrieval (COR) handle is used by some OCI applications that work
with objects in an Oracle database. This handle contains COR descriptors, which
provide instructions for retrieving objects referenced by another object.

See Also : "Complex Object Retrieval” on page 11-15

Thread Handle

For information about the thread handle, which is used in multithreaded applications,
see "OCIThread Package" on page 8-26.

Subscription Handle

The subscription handle is used by an OCI client application that registers and
subscribes to receive notifications of database events or events in the AQ namespace.
The subscription handle encapsulates all information related to a registration from a
client.

See Also: "Publish-Subscribe Notification in OCI" on page 9-54

Direct Path Handles

The direct path handles are necessary for an OCI application that uses the direct path
load engine in the Oracle database. The direct path load interface enables the
application to access the direct block formatter of the Oracle database. Figure 2—4
shows the different kinds of direct path handles.

OCI Programming Basics 2-7

OCI Data Structures

Figure 2—4 Direct Path Handles

Direct Path
Context Handle

l

Direct Path Direct Path Direct Path
Column Array Stream Function Context
Handle Handle Handle
See Also:

s "Direct Path Loading Overview" on page 13-1
s "Direct Path Loading Handle Attributes" on page A-62

Connection Pool Handle

The connection pool handle is used for applications that pool physical connections into
virtual connections by calling specific OCI functions.

See Also: "Connection Pooling in OCI" on page 9-1

Handle Attributes

All OCI handles have attributes that represent data stored in that handle. You can read
handle attributes by using the attribute get call, OCIAttrGet(), and you can change
them with the attribute set call, OCIAttrSet().

For example, the statements in Example 21 set the user name in the session handle by
writing to the OCI_ATTR_USERNAME attribute:

Example 2-1 Using the OCl_ATTR_USERNAME Attribute to Set the User Name in the
Session Handle

text username[] = "hr";
err = OCIAttrSet ((void *) mysessp, OCI_HTYPE_SESSION, (void *)username,
(ub4) strlen((char *)username), OCI_ATTR_USERNAME, (OCIError *) myerrhp);

Some OCI functions require that particular handle attributes be set before the function
is called. For example, when OCISessionBegin() is called to establish a user's login
session, the user name and password must be set in the user session handle before the
call is made.

Other OCI functions provide useful return data in handle attributes after the function
completes. For example, when OCIStmtExecute() is called to execute a SQL query,
describe information relating to the select-list items is returned in the statement
handle, as shown in Example 2-2.

Example 2-2 Returning Describe Information in the Statement Handle Relating to
Select-List Items

ub4d parmcnt;

/* get the number of columns in the select list */

err = OCIAttrGet ((void *)stmhp, (ub4)OCI_HTYPE STMT, (void *)
&parmcnt, (ub4 *) 0, (ub4)OCI_ATTR_PARAM COUNT, errhp);

2-8 Oracle Call Interface Programmer's Guide

OCI Data Structures

See Also:

s The description of "OCIArrayDescriptorAlloc()" on page 16-48
for an example showing how to allocate a large number of
descriptors

= Appendix A, "Handle and Descriptor Attributes”

OCI Descriptors

OClI descriptors and locators are opaque data structures that maintain data-specific
information. Table 2-2 lists them, along with their C data type, and the OCI type

constant that allocates a descriptor of that type in a call to OCIDescriptorAlloc(). The

OClIDescriptorFree() function frees descriptors and locators. See also the functions
"OClArrayDescriptorAlloc()" on page 16-48 and "OCIArrayDescriptorFree()" on

page 16-50.

Table 2-2 Descriptor Types

Description C Data Type OCI Type Constant

Snapshot descriptor 0CISnapshot OCI_DTYPE_SNAP

Result set descriptor OCIResult OCI_DTYPE_RSET

LOB data type locator OCILobLocator OCI_DTYPE_LOB

BFILE data type locator OCILobLocator OCI_DTYPE_FILE

Read-only parameter descriptor OCIParam OCI_DTYPE_PARAM

ROWID descriptor OCIRowid OCI_DTYPE_ROWID

ANSI DATE deSCI‘iptOI‘ OCIDateTime OCI_DTYPE_DATE

TIMESTAMP descriptor OCIDateTime OCI_DTYPE_TIMESTAMP
TIMESTAMP WITH TIME ZONE descriptor OCIDateTime OCI_DTYPE_TIMESTAMP_TZ
TIMESTAMP WITH LOCAL TIME ZONE OCIDateTime OCI_DTYPE_TIMESTAMP_LTZ
descriptor

INTERVAL YEAR TO MONTH descriptor OCIInterval OCI_DTYPE_INTERVAL_YM
INTERVAL DAY TO SECOND descriptor OCIInterval OCI_DTYPE_INTERVAL_DS

User callback descriptor OCIUcb OCI_DTYPE_UCB

Distinguished names of the database 0CIServerDNs OCI_DTYPE_SRVDN

servers in a registration request

Complex object descriptor 0CIComplexObjectComp OCI_DTYPE_COMPLEXOBJECTCOMP
Advanced queuing enqueue options OCIAQEngOptions OCI_DTYPE_AQENQ_OPTIONS
Advanced queuing dequeue options OCIAQDegOptions OCI_DTYPE_AQDEQ_OPTIONS
Advanced queuing message properties OCIAQMsgProperties OCI_DTYPE_AQMSG_PROPERTIES
Advanced queuing agent OCIAQAgent OCI_DTYPE_AQAGENT
Advanced queuing notification OCIAQNotify OCI_DTYPE_AQNFY

Advanced queuing listen options OCIAQListenOpts OCI_DTYPE_AQLIS_OPTIONS
Advanced queuing message properties OCIAQLisMsgProps OCI_DTYPE_AQLIS_MSG_PROPERTIES
Change notification None OCI_DTYPE_CHDES

Table change None OCI_DTYPE_TABLE_CHDES

Row change None OCI_DTYPE_ROW_CHDES

OCI Programming Basics 2-9

OCI Data Structures

Note: Although there is a single C type for OCILobLocator, this
locator is allocated with a different OCI type constant for internal
and external LOBs. "LOB and BFILE Locators" on page 2-10
discusses this difference.

The following list describes the main purpose of each descriptor type. The sections
that follow describe each descriptor type in more detail:

m OCISnapshot - Used in statement execution

m OCILobLocator - Used for LOB (0OCI_DTYPE LOB) or BFILE (OCI_DTYPE FILE) calls
= OCIParam- Used in describe calls

= OCIRowid - Used for binding or defining ROWID values

m OCIDateTime and OCIInterval - Used for datetime and interval data types

= OCIComplexObjectComp - Used for complex object retrieval

s OCIAQEngOptions, OCIAQDeqOptions, OCIAQMsgProperties, OCIAQAgent - Used for
Advanced Queuing

= OCIAQNotify - Used for publish-subscribe notification

m 0CIServerDNs - Used for LDAP-based publish-subscribe notification

Snapshot Descriptor The snapshot descriptor is an optional parameter to the execute call,
OCIStmtExecute() . It indicates that a query is being executed against a database
snapshot that represents the state of a database at a particular time.

Allocate a snapshot descriptor with a call to OCIDescriptorAlloc() by passing 0CI_
DTYPE_SNAP as the type parameter.

See Also: "Execution Snapshots" on page 4-6 for more
information about 0CIStmtExecute () and database snapshots

LOB and BFILE Locators A large object (LOB) is an Oracle data type that can hold binary
large object (BLOB) or character large object (CLOB) data. In the database, an opaque
data structure called a LOB locator is stored in a LOB column of a database row, or in
the place of a LOB attribute of an object. The locator serves as a pointer to the actual
LOB value, which is stored in a separate location.

Note: Depending on your application, you may or may not want
to use LOB locators. You can use the data interface for LOBs, which
does not require LOB locators. In this interface, you can bind or
define character data for CLOB columns or RAW data for BLOB
columns.

See Also:
= "Binding LOB Data" on page 5-9
s "Defining LOB Data" on page 5-16

The OCI LOB locator is used to perform OCI operations against a LOB (BLOB or CLOB)
or FILE (BFILE). OCILobXXX functions take a LOB locator parameter instead of the LOB

2-10 Oracle Call Interface Programmer's Guide

OCI Data Structures

value. OCI LOB functions do not use actual LOB data as parameters. They use the
LOB locators as parameters and operate on the LOB data referenced by them.

The LOB locator is allocated with a call to OCIDescriptorAlloc() by passing 0CI_
DTYPE_LOB as the type parameter for BLOBs or CLOBs, and OCI_DTYPE_FILE for BFILES.

Caution: The two LOB locator types are not interchangeable.
When binding or defining a BLOB or CLOB, the application must take
care that the locator is properly allocated by using OCI_DTYPE_LOB.
Similarly, when binding or defining a BFILE, the application must
be sure to allocate the locator using OCI_DTYPE_FILE.

An OCI application can retrieve a LOB locator from the Oracle database by issuing a
SQL statement containing a LOB column or attribute as an element in the select list. In
this case, the application would first allocate the LOB locator and then use it to define
an output variable. Similarly, a LOB locator can be used as part of a bind operation to
create an association between a LOB and a placeholder in a SQL statement.

See Also:

s Chapter 7, "LOB and BFILE Operations"
= "Binding LOB Data" on page 5-9

s "Defining LOB Data" on page 5-16

Parameter Descriptor OCI applications use parameter descriptors to obtain information
about select-list columns or schema objects. This information is obtained through a
describe operation.

The parameter descriptor is the only descriptor type that is not allocated using
OClIDescriptorAlloc(). You can obtain it only as an attribute of a describe handle,
statement handle, or through a complex object retrieval handle by specifying the
position of the parameter using an OCIParamGet() call.

See Also: Chapter 6 and "Describing Select-List Items" on
page 4-9 for more information about obtaining and using parameter
descriptors

ROWID Descriptor The ROWID descriptor, 0CIRowid, is used by applications that must
retrieve and use Oracle ROWIDs. To work with a ROWID an application can define a
ROWID descriptor for a rowid position in a SQL select list, and retrieve a ROWID into the
descriptor. This same descriptor can later be bound to an input variable in an INSERT
statement or WHERE clause.

ROWIDs are also redirected into descriptors using OCIAttrGet() on the statement handle
following an execute operation.

Date, Datetime, and Interval Descriptors The date, datetime, and interval descriptors are
used by applications that use the date, datetime, or interval data types (0OCIDate,
OCIDateTime, and OCIInterval). These descriptors can be used for binding and
defining, and are passed as parameters to the functions OCIDescriptorAlloc() and
OClDescriptorFree() to allocate and free memory.

OCI Programming Basics 2-11

OCI Programming Steps

See Also:
s Chapter 3 for more information about these data types

s Chapter 19 for descriptions of the functions that operate on
these data types

Complex Object Descriptor Application performance when dealing with objects may be
increased using complex object retrieval (COR).

See Also: "Complex Object Retrieval" on page 11-15 for
information about the complex object descriptor and its use

Advanced Queuing Descriptors Oracle Streams Advanced Queuing provides message
queuing as an integrated part of Oracle Database.

See Also:
s "OCI and Streams Advanced Queuing" on page 9-47
» '"Publish-Subscribe Registration Functions in OCI" on page 9-55

User Memory Allocation The OCIDescriptorAlloc() call has an xtramem_sz parameter in
its parameter list. This parameter is used to specify the amount of user memory that
should be allocated along with a descriptor or locator.

Typically, an application uses this parameter to allocate an application-defined
structure that has the same lifetime as the descriptor or locator. This structure can be
used for application bookkeeping or storing context information.

Using the xtramem_sz parameter means that the application does not need to explicitly
allocate and deallocate memory as each descriptor or locator is allocated and
deallocated. The memory is allocated along with the descriptor or locator, and freeing
the descriptor or locator (with OCIDescriptorFree()) frees the user's data structures as
well.

The OCIHandleAlloc() call has a similar parameter for allocating user memory that
has the same lifetime as the handle.

The OCIEnvCreate() and (OCIEnvInit() deprecated) calls have a similar parameter for
allocating user memory that has the same lifetime as the environment handle.

OCI Programming Steps

The following sections describe in detail each of the steps in developing an OCI
application. Some of the steps are optional. For example, you do not need to describe
or define select-list items if the statement is not a query.

2-12 Oracle Call Interface Programmer's Guide

OCI Programming Steps

See Also:

s The first sample program in Appendix B for an example
showing the use of OCI calls for processing SQL statements.

s "'Runtime Data Allocation and Piecewise Operations in OCI" on
page 5-33 for a detailed description of the special case of
dynamically providing data at run time

= "Binding and Defining Arrays of Structures in OCI" on
page 5-18 for a description of the special considerations for
operations involving arrays of structures

s "Error Handling in OCI" on page 2-20 for an outline of the steps
involved in processing a SQL statement within an OCI program

s "Overview of OCI Multithreaded Development" on page 8-24
for information about using the OCI to write multithreaded
applications

= "SQL Statements" on page 1-4 for more information about types
of SQL statements

The following sections describe the steps that are required of an OCI application:
s OCI Environment Initialization
s Processing SQL Statements in OCI
s Commit or Roll Back Operations
s Terminating the Application
s Error Handling in OCI

Application-specific processing also occurs in between any and all of the OCI function
steps.

OCI Environment Initialization

This section describes how to initialize the OCI environment, establish a connection to
a server, and authorize a user to perform actions against the database.

First, the three main steps in initializing the OCI environment are described in the
following sections:

» "Creating the OCI Environment" on page 2-13
= "Allocating Handles and Descriptors" on page 2-14

= "Application Initialization, Connection, and Session Creation" on page 2-14

Creating the OCI Environment

Each OCI function call is executed in the context of an environment that is created
with the OCIEnvCreate() call. This call must be invoked before any other OCI call is
executed. The only exception is the setting of a process-level attribute for the OCI
shared mode.

The mode parameter of OCIEnvCreate() specifies whether the application calling the
OCl library functions can:

s Run in a threaded environment (mode = OCI_THREADED).

= Use objects (mode = 0CI_OBJECT). Use with AQ subscription registration.

OCI Programming Basics 2-13

OCI Programming Steps

» Use subscriptions (mode = OCI_EVENTS).
The mode can be set independently in each environment.

It is necessary to initialize in object mode if the application binds and defines objects,
or if it uses the OCI's object navigation calls. The program may also choose to use none
of these features (mode = OCI_DEFAULT) or some combination of them, separating the
options with a vertical bar. For example if mode = (OCI_THREADED | OCI_OBJECT), then
the application runs in a threaded environment and uses objects.

You can specify user-defined memory management functions for each OCI
environment.
See Also:

s "OCIEnvCreate()" on page 16-13, "OCIEnvNIsCreate()" on
page 16-17, and "OCllInitialize()" on page E-5 (deprecated) for
more information about the initialization calls

= "Overview of OCI Multithreaded Development" on page 8-24
» Chapter 11, Chapter 12, Chapter 13, Chapter 14, and Chapter 15
= "Publish-Subscribe Notification in OCI" on page 9-54

Allocating Handles and Descriptors

Oracle Database provides OCI functions to allocate and deallocate handles and
descriptors. You must allocate handles using OCIHandleAlloc() before passing them
into an OCI call, unless the OCI call, such as OCIBindByPos(), allocates the handles for
you.

You can allocate the types of handles listed in Table 2-1 with 0OCIHandleAlloc ()
Depending on the functionality of your application, it must allocate some or all of
these handles.

Application Initialization, Connection, and Session Creation

An application must call OCIEnvNIsCreate() to initialize the OCI environment handle.
Existing applications may have used OCIEnvCreate().

Following this step, the application has several options for establishing an Oracle
database connection and beginning a user session.

These methods include:
= Single User, Single Connection
» Client Access Through a Proxy

= Nonproxy Multiple Sessions or Connections

Note: OCIEnvCreate() or OCIEnvNIsCreate() should be used
instead of the 0CIInitialize() and OCIEnvInit () calls.
0CIInitialize() and OCIEnvInit () calls are supported for
backward compatibility.

Single User, Single Connection The single user, single connection option is the simplified
logon method, which can be used if an application maintains only a single user session
for each database connection at any time.

2-14 Oracle Call Interface Programmer's Guide

OCI Programming Steps

When an application calls OCILogon2() or OCILogon(), the OCI library initializes the
service context handle that is passed to it, and creates a connection to the specified
Oracle database for the user making the request.

Example 2-3 shows what a call to OCILogon2() looks like for a single user session with
user name hr, password hr, and database oracledb.

Example 2-3 Using the OCILogon2 Call for a Single User Session
OCILogon2 (envhp, errhp, &svchp, (text *)"hr", (ub4)strlen("hr"), (text *)"hr",

(ub4)strlen("hr"), (text *)"oracledb", (ub4)strlen("oracledb"),
OCI_DEFAULT) ;

The parameters to this call include the service context handle (which has been
initialized), the user name, the user's password, and the name of the database that are
used to establish the connection. With the last parameter, mode, set to 0CI_DEFAULT, this
call has the same effect as calling the older 0CILogon (). Use OCILogon2() for any new
applications. The server and user session handles are implicitly allocated by this
function.

If an application uses this logon method, the service context, server, and user session
handles are all read-only; the application cannot switch session or transaction by
changing the appropriate attributes of the service context handle using an
OCIAttrSet() call.

An application that initializes its session and authorization using OCILogon2() must
terminate them using OCILogoff().

Note: For simplicity in demonstrating this feature, this example does not
perform the password management techniques that a deployed system
normally uses. In a production environment, follow the Oracle Database
password management guidelines, and disable any sample accounts. See
Oracle Database Security Guide for password management guidelines and other
security recommendations.

For information regarding operating systems providing facilities for spawning
processes that allow child processes to reuse state created by their parent process, see
"Operating System Considerations" on page 2-22. This section explains why the child
process must not use the same database connection as created by the parent.

Client Access Through a Proxy Proxy authentication is a process typically employed in an
environment with a middle tier such as a firewall, in which the end user authenticates
to the middle tier, which then authenticates to the database on the user's behalf—as its
proxy. The middle tier logs in to the database as a proxy user. A proxy user can switch
identities and, after logging in to the database, switch to the end user's identity. It can
perform operations on the end user's behalf, using the authorization appropriate to
that particular end user.

Note: Inrelease 1 of Oracle 11g, standards for acceptable passwords were
greatly raised to increase security. Examples of passwords in this section are
incorrect. A password must contain no fewer than eight characters. See the
guidelines for securing passwords Oracle Database Security Guide for additional
information.

OCI Programming Basics 2-15

OCI Programming Steps

Proxy to database users is supported by using OCI and the ALTER USER statement,
whose BNF syntax is:

ALTER USER <targetuser> GRANT CONNECT THROUGH <proxy> [AUTHENTICATION REQUIRED];

The ALTER USER statement is used once in an application. Connections can be made
multiple times afterward. In OCI, you can either use connect strings or the function
OCIAttrSet() with the parameter OCI_ATTR_PROXY_CLIENT.

After a proxy switch is made, the current and connected user is the target user of the
proxy. The identity of the original user is not used for any privilege calculations. The
original user can be a local or external user.

Example 2—4 through Example 2-11 show connect strings that you can use in functions
such as OCILogon2() (set mode = OCI_DEFAULT), OCILogon (), OCISessionBegin() with
OCIAttrSet() (pass the attribute OCI_ATTR_USERNAME of the session handle), and so on.

In Example 2—4, Dilbert and Joe are two local database users. To enable Dilbert to serve
as a proxy for Joe, use the SQL statement shown in Example 2—4.

Example 2-4 Enabling a Local User to Serve as a Proxy for Another User
ALTER USER joe GRANT CONNECT THROUGH dilbert;

When user name dilbert is acting on behalf of joe, use the connection string shown
in Example 2-5. (The user name dilbert has the password tigerl23).

Example 2-5 Connection String to Use for the Proxy User
dilbert[joe] /tigerl23@dbl

The left and right brackets "[" and "]" are entered in the connection string.

In Example 2-6, "Dilbert" and "Joe" are two local database users. The names are
case-sensitive and must be enclosed in double quotation marks. To enable "Dilbert" to
serve as a proxy for "Joe", use the SQL statement shown in Example 2—-6.

Example 2-6 Preserving Case Sensitivity When Enabling a Local User to Serve as a
Proxy for Another User

ALTER USER "Joe" GRANT CONNECT THROUGH "Dilbert";

When "Dilbert" is acting on behalf of "Joe", use the connection string shown in
Example 2-7. Be sure to include the double quotation marks (") characters.

Example 2-7 Preserving Case Sensitivity in the Connection String
"Dilbert" ["Joe"]/tigerl23@dbl

When the proxy user is created as "dilbert[mybert]", use the connection string shown

in Example 2-8 to connect to the database. (The left and right brackets "[" and "]" are
entered in the connection string.)

Example 2-8 Using "dilbert[mybert]" in the Connection String
"dilbert [mybert]"/tigerl23

rem the user was already created this way:
rem CREATE USER "dilbert[mybert]" IDENTIFIED BY tigerl23;

2-16 Oracle Call Interface Programmer's Guide

OCI Programming Steps

In Example 2-9, dilbert[mybert] and joe[myjoe] are two database users that contain the
left and right bracket characters "[" and "]". If dilbert[mybert] wants to act on behalf of
joe[myjoe], Example 2-9 shows the connect statement to use.

Example 2-9 Using "dilbert[mybert]"["joe[myjoe]"] in the Connection String
"dilbert [mybert]"["joe[myjoe]"]/tigerl23

In Example 2-10, you can set the target user name by using the ALTER USER statement.

Example 2-10 Setting the Target User Name
ALTER USER joe GRANT CONNECT THROUGH dilbert;

Then, as shown in Example 2-11, in an OCI program, use the OCIAttrSet () call to set
the attribute OCI_ATTR_PROXY_CLIENT and the proxy dilbert. In your program, use
these statements to connect multiple times.

Example 2-11 Using OCI to Set the OCl_ATTR_PROXY_CLIENT Attribute and the Proxy

dilbert

OCIAttrSet (session, OCI_HTYPE SESSION, (void *)"dilbert",
(ub4)strlen("dilbert"), OCI_ATTR_USERNAME,
error_handle) ;

OCIAttrSet (session, OCI_HTYPE SESSION, (void *)"tigerl23",
(ub4)strlen("tiger123"), OCI_ATTR_PASSWORD,
error_handle) ;

OCIAttrSet(session, OCI_HTYPE_SESSION, (void *)"joe",
(ub4)strlen("joe"), OCI_ATTR_PROXY_CLIENT,
error_handle) ;

See Also:
s "OCIL_ATTR_PROXY_CLIENT" on page A-20

s Oracle Database Security Guide for a discussion of proxy
authentication

= '"Password and Session Management" on page 8-7

s "OCIAttrSet()" on page 16-53

Caution: There are compatibility issues of client access through a
proxy. Because this feature was introduced in Oracle Database release
10.2, pre-10.2 clients do not have it. If newer clients use the feature
with pre-10.2 Oracle databases, the connect fails and the client returns
an error after checking the database release level.

Nonproxy Multiple Sessions or Connections The nonproxy multiple sessions or connections
option uses explicit attach and begin-session calls to maintain multiple user sessions
and connections on a database connection. Specific calls to attach to the Oracle
database and begin sessions are:

s OClIServerAttach() - Creates an access path to the Oracle database for OCI
operations.

OCI Programming Basics 2-17

OCI Programming Steps

s OClISessionBegin() - Establishes a session for a user against a particular Oracle
database. This call is required for the user to execute operations on the Oracle
database.

A subsequent call to OCISessionBegin() using different service context and session
context handles logs off the previous user and causes an error. To run two
simultaneous nonmigratable sessions, a second OCISessionBegin() call must be made
with the same service context handle and a new session context handle.

These calls set up an operational environment that enables you to execute SQL and
PL/SQL statements against a database.

See Also:
= "Connect, Authorize, and Initialize Functions" on page 16-3

s Chapter 9 for more information about maintaining multiple
sessions, transactions, and connections

s 'Client Character Set Control from OCI" on page 2-30 for the
use of OCIEnvNlsCreate ()
Example 2-12 demonstrates the creation and initialization of an OCI environment.
= A server context is created and set in the service handle.

s Then a user session handle is created and initialized using a database user name
and password.

s For simplicity, error checking is not included.

Example 2-12 Creating and Initializing an OCI Environment

#include <oci.h>

main ()

{

OCIEnv *myenvhp; /* the environment handle */
OCIServer *mysrvhp; /* the server handle */
OCIError *myerrhp; /* the error handle */
0CISession *myusrhp; /* user session handle */
0CISveCtx *mysvchp; /* the service handle */

/* initialize the mode to be the threaded and object environment */
(void) OCIEnvCreate (&myenvhp, OCI_THREADED\OCI_OBJECT, (void *)O0,
0, 0, 0, (size_t) 0, (void **)0);

/* allocate a server handle */
(void) OCIHandleAlloc ((void *)myenvhp, (void **)é&mysrvhp,
OCI_HTYPE_SERVER, 0, (void **) 0);

/* allocate an error handle */
(void) OCIHandleAlloc ((void *)myenvhp, (void **)é&myerrhp,
OCI_HTYPE_ERROR, 0, (void **) 0);

/* create a server context */

(void) OCIServerAttach (mysrvhp, myerrhp, (text *)"instl alias",
strlen ("instl_alias"), OCI_DEFAULT);
/* allocate a service handle */

(void) OCIHandleAlloc ((void *)myenvhp, (void **)é&mysvchp,

2-18 Oracle Call Interface Programmer's Guide

OCI Programming Steps

OCI_HTYPE_SVCCTX, 0, (void **) 0);

/* set the server attribute in the service context handle*/
(void) OCIAttrSet ((void *)mysvchp, OCI_HTYPE_SVCCTX,
(void *)mysrvhp, (ub4) 0, OCI_ATTR_SERVER, myerrhp);

/* allocate a user session handle */
(void) OCIHandleAlloc ((void *)myenvhp, (void **)é&myusrhp,
OCI_HTYPE_SESSION, 0, (void **) 0);

/* set user name attribute in user session handle */
(void) OCIAttrSet ((void *)myusrhp, OCI_HTYPE SESSION,

(void *)"hr", (ub4)strlen("hr")

OCI_ATTR_USERNAME, myerrhp);

/* set password attribute in user session handle */
(void) OCIAttrSet ((void *)myusrhp, OCI_HTYPE SESSION,

(void *)"hr", (ub4)strlen("hr")

OCI_ATTR_PASSWORD, myerrhp);

(void) OCISessionBegin ((void *) mysvchp, myerrhp, myusrhp,
OCI_CRED_RDBMS, OCI_DEFAULT);

/* set the user session attribute in the service context handle*/
(void) OCIAttrSet ((void *)mysvchp, OCI_HTYPE_SVCCTX,
(void *)myusrhp, (ub4) 0, OCI_ATTR_SESSION, myerrhp);

}

The demonstration program cdemo81.c in the demo directory illustrates this process,
with error checking.

Processing SQL Statements in OCI

Chapter 4 outlines the specific steps involved in processing SQL statements in OCI.

Commit or Roll Back Operations

An application commits changes to the database by calling OCITransCommit(). This
call uses a service context as one of its parameters. The transaction is associated with
the service context whose changes are committed. This transaction can be explicitly
created by the application or implicitly created when the application modifies the
database.

Note: By using the 0CI_COMMIT_ON_SUCCESS mode of the
OCIStmtExecute() call, the application can selectively commit
transactions after each statement execution, saving an extra
round-trip.

To roll back a transaction, use the OCITransRollback() call.

If an application disconnects from Oracle Database in a way other than a normal
logoff, such as losing a network connection, and OCITransCommit() has not been
called, all active transactions are rolled back automatically.

OCI Programming Basics 2-19

Error Handling in OCI

See Also:
= "Service Context Handle and Associated Handles" on page 2-5

s "OCI Support for Transactions" on page 8-1

Terminating the Application

An OCI application should perform the following steps before it terminates:

1. Delete the user session by calling OCISessionEnd() for each session.

2. Delete access to the data sources by calling OCIServerDetach() for each source.
3. Explicitly deallocate all handles by calling OCIHandleFree() for each handle.
4

Delete the environment handle, which deallocates all other handles associated
with it.

Note: When a parent OCI handle is freed, any child handles
associated with it are freed automatically

The calls to OCIServerDetach() and OCISessionEnd() are not mandatory but are
recommended. If the application terminates, and OCITransCommit() (transaction
commit) has not been called, any pending transactions are automatically rolled back.

See Also: The first sample program in Appendix B for an
example showing handles being freed at the end of an application

Note: If the application uses the simplified logon method of
OCILogon2(), then a call to OCILogoff() terminates the session,
disconnects from the Oracle database, and frees the service context
and associated handles. The application is still responsible for
freeing other handles it allocated.

Error Handling in OCI

OCI function calls have a set of return codes, listed in Table 2-3, which indicate the
success or failure of the call, such as 0CI_SUCCESS or OCI_ERROR, or provide other
information that may be required by the application, such as OCI_NEED_DATA or OCI_
STILL_EXECUTING. Most OCI calls return one of these codes.

To verify that the connection to the server is not terminated by the OCI_ERROR, an
application can check the value of the attribute OCI_ATTR_SERVER_STATUS in the server
handle. If the value of the attribute is OCI_SERVER_NOT CONNECTED, then the connection
to the server and the user session must be reestablished.

See Also:
= "Functions Returning Other Values" on page 2-22 for exceptions

= "OCIErrorGet()" on page 17-165 for complete details and an
example of usage

= "Server Handle Attributes" on page A-11

2-20 Oracle Call Interface Programmer's Guide

Error Handling in OCI

Table 2-3 OCI Return Codes

OCI Return Code

Value

Description

OCI_SUCCESS 0

OCI_SUCCESS_WITH_INFO 1

OCI_NO_DATA 100
OCI_ERROR -1
OCI_INVALID_HANDLE -2
OCI_NEED_DATA 99
OCI_STILL_EXECUTING -3123
OCI_CONTINUE -24200
OCI_ROWCBK_DONE -24201

The function completed successfully.

The function completed successfully; a call to OCIErrorGet() returns
additional diagnostic information. This may include warnings.

The function completed, and there is no further data.
The function failed; a call to OCIErrorGet() returns additional information.

An invalid handle was passed as a parameter or a user callback was passed
an invalid handle or invalid context. No further diagnostics are available.

The application must provide runtime data.

The service context was established in nonblocking mode, and the current
operation could not be completed immediately. The operation must be called
again to complete. OCIErrorGet() returns ORA-03123 as the error code.

This code is returned only from a callback function. It indicates that the
callback function wants the OCI library to resume its normal processing.

This code is returned only from a callback function. It indicates that the
callback function is done with the user row callback.

If the return code indicates that an error has occurred, the application can retrieve
error codes and messages specific to Oracle Database by calling OCIErrorGet (). One
of the parameters to OCIErrorGet() is the error handle passed to the call that caused

the error.

Note:

Multiple diagnostic records can be retrieved by calling

OClIErrorGet() repeatedly until there are no more records (0OCI_NO_
DATA is returned). OCIErrorGet () returns at most a single
diagnostic record.

Return and Error Codes for Data

In Table 2—4, the OCI return code, error number, indicator variable, and column return
code are specified when the data fetched is normal, null, or truncated.

See Also:

"Indicator Variables" on page 2-24

Table 2-4 Return and Error Codes

State of Data

Return Code Indicator - Not provided Indicator - Provided

Not null or
truncated

Not null or
truncated

Null data

Not provided OCI_SUCCESS OCI_SUCCESS
Error =0 Error =0
Indicator =0
Provided OCI_SUCCESS OCI_SUCCESS
Error =0 Error =0
Return code =0 Indicator =0
Return code =0
Not provided OCI_ERROR OCI_SUCCESS
Error = 1405 Error =0

Indicator = -1

OCI Programming Basics 2-21

Additional Coding Guidelines

Table 2-4 (Cont.) Return and Error Codes

State of Data

Return Code

Indicator - Not provided

Indicator - Provided

Null data Provided
Truncated data Not provided
Truncated data Provided

OCI_ERROR
Error = 1405
Return code = 1405

OCI_ERROR
Error = 1406

OCI_SUCCESS_WITH_INFO
Error = 24345

OCI_SUCCESS

Error =0

Indicator = -1

Return code = 1405
OCI_ERROR

Error = 1406

Indicator = data_len
OCI_SUCCESS_WITH_INFO
Error = 24345

Return code = 1405 Indicator = data_len

Return code = 1406

For truncated data, data_len is the actual length of the data that has been truncated if
this length is less than or equal to SB2MAXVAL. Otherwise, the indicator is set to -2.

Functions Returning Other Values

Some functions return values other than the OCI error codes listed in Table 2-3. When
you use these functions, be aware that they return values directly from the function
call, rather than through an OUT parameter. More detailed information about each
function and its return values is listed in the reference chapters.

Additional Coding Guidelines

This section explains some additional issues when coding OCI applications.

Operating System Considerations

Operating systems may provide facilities for spawning processes that allow child
processes to reuse the state created by their parent process. After spawning a child
process, the child process must not use the same database connection as created by the
parent. Any attempt on behalf of the child process to use the same database connection
as the parent may cause undesired connection interference and result in intermittent
ORA-03137 errors, because Oracle Net expects only one user process to be using a
connection to the database.

Where multiple, concurrent connections are required, consider using threads if your
platform supports a threads package. Concurrent connections are supported in either
single-threaded or multithreaded applications.

See Also: «"Overview of OCI Multithreaded Development" on
page 8-24

s "OCIThread Package" on page 8-26

For better performance with many concurrently opened connections, consider pooling
them.

2-22 Oracle Call Interface Programmer's Guide

Additional Coding Guidelines

See Also: &"Session Pooling in OCI" on page 9-7

= "When to Use Connection Pooling, Session Pooling, or Neither"
on page 9-23

Parameter Types

OCI functions take a variety of different types of parameters, including integers,
handles, and character strings. Special considerations must be taken into account for
some types of parameters, as described in the following sections.

See Also: "Connect, Authorize, and Initialize Functions" on
page 16-3 for more information about parameter data types and
parameter passing conventions

Address Parameters

Address parameters are used to pass the address of the variable to Oracle Database.
You should be careful when developing in C, because it normally passes scalar
parameters by value.

Integer Parameters

Binary integer and short binary integer parameters are numbers whose size is
system-dependent. See Oracle Database documentation that is specific to your
operating system for the size of these integers on your system.

Character String Parameters

Character strings are a special type of address parameter. Each OCI routine that
enables a character string to be passed as a parameter also has a string length
parameter. The length parameter should be set to the length of the string.

7.x Upgrade Note: Unlike earlier versions of OCI, you do not pass
-1 for the string length parameter of a null-terminated string.

Inserting Nulls into a Column

You can insert a null into a database column in several ways.

s One method is to use a literal NULL in the text of an INSERT or UPDATE statement.
For example, the SQL statement makes the ENAME column NULL.

INSERT INTO empl (ename, empno, deptno)
VALUES (NULL, 8010, 20)

= Use indicator variables in the OCI bind call. See "Indicator Variables" on page 2-24.

= Insert a NULL to set both the buffer length and maximum length parameters to zero
on a bind call.

Note: Following the SQL standard requirements, Oracle Database
returns an error if an attempt is made to fetch a null select-list item
into a variable that does not have an associated indicator variable
specified in the define call.

OCI Programming Basics 2-23

Additional Coding Guidelines

Indicator Variables

Each bind and define OCI call has a parameter that associates an indicator variable, or
an array of indicator variables, with a DML statement, a PL/SQL statement, or a

query.
The C language does not have the concept of null values; therefore, you associate
indicator variables with input variables to specify whether the associated placeholder

is a NULL. When data is passed to an Oracle database, the values of these indicator
variables determine whether a NULL is assigned to a database field.

For output variables, indicator variables determine whether the value returned from
Oracle is a NULL or a truncated value. For a NULL fetch in an OCIStmtFetch2() call or a
truncation in an OCIStmtExecute() call, the OCI call returns 0CI_SUCCESS_WITH_INFO.
The output indicator variable is set.

The data type of indicator variables is sb2. For arrays of indicator variables, the
individual array elements should be of type sb2.

Input

For input host variables, the OCI application can assign the following values to an
indicator variable:

Input Indicator Value Action Taken by Oracle Database

-1 Oracle Database assigns a NULL to the column, ignoring the value
of the input variable.

>=0 Oracle Database assigns the value of the input variable to the
column.

Output

On output, Oracle Database can assign the following values to an indicator variable:

Output Indicator Value Meaning

-2 The length of the item is greater than the length of the output
variable; the item has been truncated. Additionally, the original
length is longer than the maximum data length that can be
returned in the sb2 indicator variable.

-1 The selected value is null, and the value of the output variable is
unchanged.

0 Oracle Database assigned an intact value to the host variable.

>0 The length of the item is greater than the length of the output

variable; the item has been truncated. The positive value
returned in the indicator variable is the actual length before
truncation.

Indicator Variables for Named Data Types and REFs

Indicator variables for most data types introduced after release 8.0 behave as described
earlier. The only exception is SQLT_NTY (a named data type). For data of type SQLT_
NTY, the indicator variable must be a pointer to an indicator structure. Data of type
SQLT_REF uses a standard scalar indicator, just like other variable types.

When database types are translated into C struct representations using the Object Type
Translator (OTT), a null indicator structure is generated for each object type. This
structure includes an atomic null indicator, plus indicators for each object attribute.

2-24 Oracle Call Interface Programmer's Guide

Additional Coding Guidelines

See Also:

s Documentation for the OTT in Chapter 15, and "NULL Indicator
Structure" on page 11-21 for information about NULL indicator structures

» Descriptions of 0OCIBindByName () and 0CIBindByPos () in "Bind, Define,
and Describe Functions" on page 16-62, and the sections "Information for
Named Data Type and REF Binds" on page 12-26, and "Information for
Named Data Type and REF Defines, and PL/SQL OUT Binds" on
page 12-27 for more information about setting indicator parameters for
named data types and REFs

Canceling Calls

On most operating systems, you can cancel long-running or repeated OCI calls by
entering the operating system's interrupt character (usually Control+C) from the
keyboard.

Note: This is not to be confused with canceling a cursor, which is
accomplished by calling OCIStmtFetch2() with the nrows parameter set to
zero.

When you cancel the long-running or repeated call using the operating system
interrupt, the error code ORA-01013 ("user requested cancel of current operation”) is
returned.

When given a particular service context pointer or server context pointer, the
0CIBreak() function performs an immediate (asynchronous) stop of any currently
executing OCI function associated with the server. It is normally used to stop a
long-running OCI call being processed on the server. The OCIReset() function is
necessary to perform a protocol synchronization on a nonblocking connection after an
OCI application stops a function with OCIBreak().

Note: OCIBreak() works on Windows systems.

The status of potentially long-running calls can be monitored using nonblocking calls.
Use multithreading for new applications.

See Also:
= "Overview of OCI Multithreaded Development" on page 8-24
s "OCIThread Package" on page 8-26

Positioned Updates and Deletes

You can use the ROWID associated with a SELECT...FOR UPDATE OF... statement in a later
UPDATE or DELETE statement. The ROWID is retrieved by calling OCIAttrGet() on the
statement handle to retrieve the handle's OCI_ATTR_ROWID attribute.

For example, consider a SQL statement such as the following:

SELECT ename FROM empl WHERE empno = 7499 FOR UPDATE OF sal

When the fetch is performed, the ROWID attribute in the handle contains the row

identifier of the selected row. You can retrieve the ROWID into a buffer in your program
by calling OCIAttrGet() as follows:

OCI Programming Basics 2-25

Additional Coding Guidelines

OCIRowid *rowid; /* the rowid in opaque format */
/* allocate descriptor with OCIDescriptorAlloc() */
status = OCIDescriptorAlloc ((void *) envhp, (void **) &rowid,
(ub4) OCI_DTYPE ROWID, (size_t) 0, (void **) 0);
status = OCIAttrGet ((void *) mystmtp, OCI_HTYPE_STMT,
(void *) rowid, (ub4 *) 0, OCI_ATTR_ROWID, (OCIError *) myerrhp);

You can then use the saved ROWID in a DELETE or UPDATE statement. For example, if
rowid is the buffer in which the row identifier has been saved, you can later process a
SQL statement such as the following by binding the new salary to the : 1 placeholder
and rowid to the :2 placeholder.

UPDATE empl SET sal = :1 WHERE rowid = :2

Be sure to use data type code 104 (ROWID descriptor, see Table 3-2) when binding rowid
to : 2.

By using prefetching, you can select an array of ROWIDs for use in subsequent batch
updates.

See Also: «'UROWID" on page 3-5 and "DATE" on page 3-13 for
more information about ROWIDs

= "External Data Types" on page 3-6 for a table of external data
types and codes

Reserved Words

Some words are reserved by Oracle. That is, they have a special meaning to Oracle and
cannot be redefined. For this reason, you cannot use them to name database objects
such as columns, tables, or indexes.

See Also: Oracle Database SQL Language Reference and Oracle Database
PL/SQL Language Reference to view the lists of the Oracle keywords or reserved
words for SQL and PL/SQL

Oracle Reserved Namespaces

Table 2-5 contains a list of namespaces that are reserved by Oracle. The initial
characters of function names in Oracle libraries are restricted to the character strings in
this list. Because of potential name conflicts, do not use function names that begin with
these characters.

Table 2-5 Oracle Reserved Namespaces

Namespace Library

XA External functions for XA applications only

SQ External SQLLIB functions used by Oracle Precompiler and
SQL*Module applications

0, 0CI External OCI functions internal OCI functions

UPI, KP Function names from the Oracle UPI layer

2-26 Oracle Call Interface Programmer's Guide

Additional Coding Guidelines

Table 2-5 (Cont.) Oracle Reserved Namespaces

Namespace Library

NA Oracle Net Native Services Product

NC Oracle Net RPC Project

ND Oracle Net Directory

NL Oracle Net Network Library Layer

NM Oracle Net Management Project

NR Oracle Net Interchange

NS Oracle Net Transparent Network Service

NT Oracle Net Drivers

NZ Oracle Net Security Service

0SN Oracle Net V1

TTC Oracle Net Two Task

GEN, L, ORA Core library functions

LI, 1M, LX Function names from the Oracle Globalization Support layer
S Function names from system-dependent libraries
KO Kernel Objects

For a complete list of functions within a particular namespace, refer to the document
that corresponds to the appropriate Oracle library.

Polling Mode Operations in OCI

OClI has calls that poll for completion. Examples of such polling mode calls are:
s OCI calls in nonblocking mode

s OCI calls that operate on LOB data in pieces such as OCILobRead2() and
OCILobWrite2()

s OCIStmtExecute() and OCIStmtFetch2() when used with OCIStmtSetPiecelnfo()
and OCIStmtGetPiecelnfo()

In such cases, OCI requires that the application ensure that the same OCI call is
repeated on the connection and nothing else is done on the connection in the interim.
Performing any other OCI call on such a connection (when OCI has handed control
back to the caller) can result in unexpected behavior.

Hence, with such polling mode OCI calls, the caller must ensure that the same call is
repeated on the connection and that nothing else is done until the call completes.

OCIBreak() and OCIReset() are exceptions to the rule. These calls are allowed so that
the caller can stop an OCI call that has been started.

Nonblocking Mode in OCI

Note: Because nonblocking mode requires the caller to repeat the
same call until it completes, it increases CPU usage. Instead, use
multithreaded mode.

OCI Programming Basics 2-27

Additional Coding Guidelines

See Also:

s "Overview of OCI Multithreaded Development" on page 8-24

s "OCIThread Package" on page 8-26
OCI provides the ability to establish a server connection in blocking mode or nonblocking
mode. When a connection is made in blocking mode, an OCI call returns control to an
OCI client application only when the call completes, either successfully or in error.

With the nonblocking mode, control is immediately returned to the OCI program if the
call could not complete, and the call returns a value of 0OCI_STILL_EXECUTING.

In nonblocking mode, an application must test the return code of each OCI function to
see if it returns OCI_STILL_EXECUTING. If it does, the OCI client can continue to process
program logic while waiting to retry the OCI call to the server. This mode is
particularly useful in graphical user interface (GUI) applications, real-time
applications, and in distributed environments.

The nonblocking mode is not interrupt-driven. Rather, it is based on a polling
paradigm, which means that the client application must check whether the pending
call is finished at the server by executing the call again with the exact same parameters.

The following features and functions are not supported in nonblocking mode:
s Direct Path Load

= LOB buffering

» Objects

= Query cache

= Scrollable cursors

» Transparent application failover (TAF)
s OCIAQEngArray()

m OCIAQDegArray ()

m OCIDescribeAny ()

m OCILobArrayRead()

s OCILobArrayWrite()

s OCITransStart()

m OCITransDetach()

Setting Blocking Modes

2-28

You can modify or check an application's blocking status by calling OCIAttrSet() to set
the status, or OCIAttrGet() to read the status on the server context handle with the
attrtype parameter set to OCI_ATTR_NONBLOCKING_MODE. You must set this attribute
only after OCISessionBegin() or OCILogon2() has been called. Otherwise, an error is
returned.

See Also: "Server Handle Attributes" on page A-11

Note: Only functions that have a server context or a service context
handle as a parameter can return OCI_STILL_EXECUTING.

Oracle Call Interface Programmer's Guide

Using PL/SQL in an OCI Program

Canceling a Nonblocking Call

You can cancel a long-running OCI call by using the OCIBreak() function while the
OClI call is in progress. You must then issue an OCIReset() call to reset the
asynchronous operation and protocol.

Using PL/SQL in an OCI Program

PL/SQL is Oracle's procedural extension to the SQL language. PL/SQL supports tasks
that are more complicated than simple queries and SQL data manipulation language
(DML) statements. PL/SQL enables you to group some constructs into a single block
and execute it as a unit. These constructs include:

One or more SQL statements

Variable declarations

Assignment statements

Procedural control statements such as IF...THEN. . .ELSE statements and loops

Exception handling

You can use PL/SQL blocks in your OCI program to perform the following operations:

Call Oracle stored procedures and stored functions

Combine procedural control statements with several SQL statements, to be
executed as a unit

Access special PL/SQL features such as tables, CURSOR FOR loops, and exception
handling

Use cursor variables

Operate on objects in a server

Note:

= Although OCI can only directly process anonymous blocks,
and not named packages or procedures, you can always put the
package or procedure call within an anonymous block and
process that block.

= Note that all OUT variables must be initialized to NULL
(through an indicator of -1, or an actual length of 0) before a
PL/SQL begin-end block can be executed in OCI.

s OCI does not support the PL/SQL RECORD data type.

= When binding a PL/SQL VARCHAR?2 variable in OCI, the
maximum size of the bind variable is 32512 bytes, because of
the overhead of control structures.

OCI Programming Basics 2-29

OCI Globalization Support

Caution: When you write PL/SQL code, it is important to
remember that the parser treats everything between a pair of
hyphens"--" and a carriage return character as a comment. So if
comments are indicated on each line by "--", the C compiler can
concatenate all lines in a PL/SQL block into a single line without
putting a carriage return "\n" for each line. In this particular case,
the parser fails to extract the PL/SQL code of a line if the previous
line ends with a comment. To avoid the problem, the programmer
should put "\n" after each "--" comment to ensure that the comment
ends there.

See Also: Oracle Database PL/SQL Language Reference for
information about coding PL/SQL blocks

OCI Globalization Support

The following sections introduce OCI functions that can be used for globalization
purposes, such as deriving locale information, manipulating strings, character set
conversion, and OCI messaging. These functions are also described in detail in other
chapters of this guide because they have multiple purposes and functionality.

Client Character Set Control from OCI

The function OCIEnvNIsCreate() enables you to set character set information in
applications independently from NLS_LANG and NLS_NCHAR settings. One
application can have several environment handles initialized within the same system
environment using different client-side character set IDs and national character set
IDs. For example:

OCIEnvNlsCreate (OCIEnv **envhpp, ..., csid, ncsid);

In this example, csid is the value for the character set ID, and ncsid is the value for
the national character set ID. Either can be 0 or OCI_UTF161D. If both are 0, this is
equivalent to using OCIEnvCreate() instead. The other arguments are the same as for
the OCIEnvCreate () call.

The OCIEnvNIsCreate() function is an enhancement for programmatic control of
character sets, because it validates OCI_UTF161D.

When character set IDs are set through the function OCIEnvN1sCreate (), they replace
the settings in NLS_LANG and NLS_NCHAR. In addition to all character sets
supported by the National Language Support Runtime Library (NLSRTL), 0CI_
UTF161D is allowed as a character set ID in the OCIEnvNlsCreate () function, although
this ID is not valid in NLS_LANG or NLS_NCHAR.

Any Oracle character set ID, except AL16UTF16, can be specified through the
OCIEnvNIsCreate() function to specify the encoding of metadata, SQL CHAR data, and
SQL NCHAR data.

You can retrieve character sets in NLS_LANG and NLS_NCHAR through another
function, OCINIsEnvironmentVariableGet().

See Also: «"OCIEnvNIsCreate()" on page 16-17

» "Setting Client Character Sets in OCI" on page 5-27 for a
pseudocode fragment that illustrates a sample usage of these
calls

2-30 Oracle Call Interface Programmer's Guide

OCI Globalization Support

Character Control and OCI Interfaces

The OCINIsGetInfo() function returns information about 0CI_UTF161ID if this value has
been used in OCIEnvNlsCreate ().

The OCIAttrGet() function returns the character set ID and national character set ID
that were passed into OCIEnvNIsCreate(). This is used to get OCI_ATTR_ENV_CHARSET_
ID and OCI_ATTR_ENV_NCHARSET_ID. This includes the value 0CI_UTF161ID.

If both charset and ncharset parameters were set to NULL by OCIEnvNlsCreate(),
the character set IDs in NLS_LANG and NLS_NCHAR are returned.

The OCIAttrSet() function sets character IDs as the defaults if OCI_ATTR_CHARSET FORM
is reset through this function. The eligible character set IDs include 0OCI_UTF161ID if
OCIEnvNIsCreate() is passed as charset or ncharset.

The OCIBindByName() and OCIBindByPos() functions bind variables with the default
character set in the OCIEnvNIsCreate() call, including 0CI_UTF161ID. The actual length
and the returned length are always in bytes if 0CIEnvNlsCreate () is used.

The OCIDefineByPos() function defines variables with the value of charset in
OCIEnvNIsCreate(), including 0CI_UTF161ID, as the default. The actual length and
returned length are always in bytes if OCIEnvNlsCreate () is used. This behavior for
bind and define handles is different from that when OCIEnvCreate() is used and 0CI_
UTF161ID is the character set ID for the bind and define handles.

Character-Length Semantics in OCI

OCI works as a translator between server and client, and passes around character
information for constraint checking.

There are two kinds of character sets: variable-width and fixed-width. (A single-byte
character set is a special case of a fixed-width character set where each byte stands for
one character.)

For fixed-width character sets, constraint checking is easier, as the number of bytes is
equal to a multiple of the number of characters. Therefore, scanning of the entire string
is not needed to determine the number of characters for fixed-width character sets.
However, for variable-width character sets, complete scanning is needed to determine
the number of characters in a string.

Character Set Support in OCI

See "Character-Length Semantics Support in Describe Operations" on page 6-17 and
"Character Conversion in OCI Binding and Defining" on page 5-26 for a complete
discussion of character set support in OCIL

Other OCI Globalization Support Functions

Many globalization support functions accept either the environment handle or the
user session handle. The OCI environment handle is associated with the client NLS
environment variables. This environment does not change when ALTER SESSION
statements are issued to the server. The character set associated with the environment
handle is the client character set. The OCI session handle (returned by
OClSessionBegin()) is associated with the server session environment. The NLS
settings change when the session environment is modified with an ALTER SESSION
statement. The character set associated with the session handle is the database
character set.

OCI Programming Basics 2-31

OCI Globalization Support

Note that the OCI session handle does not have NLS settings associated with it until
the first transaction begins in the session. SELECT statements do not begin a
transaction.

See Also:
» Chapter 22, "OCI Globalization Support Functions"

» Oracle Database Globalization Support Guide for information about OCI
programming with Unicode

Getting Locale Information in OCI

An Oracle Database locale consists of language, territory, and character set definitions.
The locale determines conventions such as day and month names, as well as date,
time, number, and currency formats. A globalized application follows a user's locale
setting and cultural conventions. For example, when the locale is set to German, users
expect to see day and month names in German.

See Also:
s "OCI Locale Functions" on page 22-3
= "OCINIsEnvironmentVariableGet()" on page 22-6

You can retrieve the following information with the OCINIsGetInfo() function:
= Days of the week (translated)

= Abbreviated days of the week (translated)
= Month names (translated)

= Abbreviated month names (translated)

= Yes/no (translated)

= AM/PM (translated)

= AD/BC (translated)

= Numeric format

s Debit/credit

= Date format

s Currency formats

s Default language

s Default territory

» Default character set

» Default linguistic sort

s Default calendar

The code in Example 2-13 retrieves locale information and checks for errors.

Example 2-13 Getting Locale Information in OCI

sword MyPrintLinguisticName (envhp, errhp)
OCIEnv *envhp;

OCIError *errhp;

{

2-32 Oracle Call Interface Programmer's Guide

OCI Globalization Support

OraText infoBuf[OCI_NLS_MAXBUFSZ];

sword ret;

ret = OCINlsGetInfo (envhp, /* environment handle */
errhp, /* error handle */
infoBuf, /* destination buffer */
(size_t) OCI_NLS_MAXBUFSZ, /* buffer size */
(ub2) OCI_NLS_LINGUISTIC NAME); /* item */

if (ret != OCI_SUCCESS)

checkerr (errhp, ret, OCI_HTYPE_ERROR) ;
ret = OCI_ERROR;
}

else

{
printf ("NLS linguistic: %s\n", infoBuf);
}

return(ret) ;

Manipulating Strings in OCI

Multibyte strings and wide-character strings are supported for string manipulation.

Multibyte strings are encoded in native Oracle character sets. Functions that operate
on multibyte strings take the string as a whole unit with the length of the string
calculated in bytes. Wide-character string (wchar) functions provide more flexibility in
string manipulation. They support character-based and string-based operations where
the length the string calculated in characters.

The wide-character data type, OCIWchar, is Oracle-specific and should not be confused
with the wchar_t data type defined by the ANSI/ISO C standard. The Oracle
wide-character data type is always 4 bytes in all operating systems, whereas the size of
wchar_t depends on the implementation and the operating system. The Oracle
wide-character data type normalizes multibyte characters so that they have a uniform
fixed width for easy processing. This guarantees no data loss for round-trip conversion
between the Oracle wide-character set and the native character set.

String manipulation can be classified into the following categories:
= Conversion of strings between multibyte and wide character

s Character classifications

= Case conversion

= Calculations of display length

= General string manipulation, such as comparison, concatenation, and searching

See Also: "OCI String Manipulation Functions" on page 22-14

Example 2-14 shows a simple case of manipulating strings.

Example 2-14 Basic String Manipulation in OCI

size_t MyConvertMultiByteToWideChar (envhp, dstBuf, dstSize, srcStr)

OCIEnv *envhp;
OCIWchar *dstBuf;
size t dstSize;

OCI Programming Basics 2-33

OCI Globalization Support

OraText *srcStr; /* null terminated source string */
{

sword ret;

size_t dstLen = 0;

size_t srclLen;

/* get length of source string */
srcLen = OCIMultiByteStrlen(envhp, srcStr);

ret = OCIMultiByteInSizeToWideChar (envhp, /* environment handle */
dstBuf, /* destination buffer */
dstSize, /* destination buffer size */
srcStr, /* source string */
srcLen, /* length of source string */
&dstLen) ; /* pointer to destination length */

if (ret != OCI_SUCCESS)
{

checkerr (envhp, ret, OCI_HTYPE_ENV) ;
}

return(dstLen) ;

The OCI character classification functions are described in detail in "OCI Character
Classification Functions" on page 22-44.

Example 2-15 shows how to classify characters in OCL

Example 2-15 Classifying Characters in OCI

boolean MyIsNumberWideCharString (envhp, srcStr)
OCIEnv *envhp;

OCIWchar *srcStr; /* wide char source string */
{
OCIWchar *pstr = srcStr; /* define and init pointer */
boolean status = TRUE; /* define and initialize status variable */

/* Check input */
if (pstr == (OCIWchar*) NULL)
return (FALSE) ;

if (*pstr == (OCIWchar) NULL)
return (FALSE) ;

/* check each character for digit */
do

{
if (OCIWideCharIsDigit (envhp, *pstr) != TRUE)
{
status = FALSE;
break; /* non-decimal digit character */

}
} while (*++pstr != (OCIWchar) NULL);

return(status);

2-34 Oracle Call Interface Programmer's Guide

OCI Globalization Support

Converting Character Sets in OCI

Conversion between Oracle character sets and Unicode (16-bit, fixed-width Unicode
encoding) is supported. Replacement characters are used if a character has no
mapping from Unicode to the Oracle character set. Therefore, conversion back to the
original character set is not always possible without data loss.

Character set conversion functions involving Unicode character sets require data bind
and define buffers to be aligned at a ub2 address or an error is raised.

Example 2-16 shows a simple conversion into Unicode.

See Also: "OCI Character Set Conversion Functions" on
page 22-57

Example 2-16 Converting Character Sets in OCI

/* Example of Converting Character Sets in OCI

size_t MyConvertMultiByteToUnicode (envhp, errhp, dstBuf, dstSize, srcStr)
OCIEnv *envhp;
OCIError *errhp;
ub2 *dstBuf;
size_t dstSize;
OraText *srcStr;
{
size_t dstLen = 0;
size_t srcLen = 0;
OraText tb[OCI_NLS_MAXBUFSZ]; /* NLS info buffer */
ub?2 cid; /* OCIEnv character set ID */

/* get OCIEnv character set */

checkerr (errhp, OCINlsGetInfo(envhp, errhp, tb, sizeof(tb),
OCI_NLS_CHARACTER_SET)) ;

cid = OCINlsCharSetNameToId (envhp, tb);

if (cid == OCI_UTF16ID)

ub2 *srcStrUb2 = (ub2*)srcStr;
while (*srcStrUb2++) ++srclLen;
srclLen *= sizeof (ub2);
}
else
srcLen = OCIMultiByteStrlen(envhp, srcStr);

checkerr (errhp,

OCINlsCharSetConvert (
envhp, /* environment handle */
errhp, /* error handle */
OCI_UTF16ID, /* Unicode character set ID */
dstBuf, /* destination buffer */
dstSize, /* size of destination buffer */
cid, /* OCIEnv character set ID */
srcStr, /* source string */
srclLen, /* length of source string */
&dstLen)) ; /* pointer to destination length */

return dstLen/sizeof (ub2);

OCI Programming Basics 2-35

OCI Globalization Support

OCI Messaging Functions

The user message API provides a simple interface for cartridge developers to retrieve
their own messages and Oracle Database messages.

See Also:

» Oracle Database Data Cartridge Developer’s Guide

s "OCI Messaging Functions" on page 22-63

Example 2-17 creates a message handle, initializes it to retrieve messages from
impus.msg, retrieves message number 128, and closes the message handle. It assumes
that OCI environment handles, OCI session handles, and the product, facility, and
cache size have been initialized properly.

Example 2-17 Retrieving a Message from a Text Message File

OCIMsg msghnd; /* message handle */
/* initialize a message handle for retrieving messages from impus.msg*/
err = OCIMessageOpen (hndl,errhp, &msghnd, prod, fac,O0CI_DURATION_SESSION) ;
if (err != OCI_SUCCESS)
/* error handling */

/* retrieve the message with message number = 128 */
msgptr = OCIMessageGet (msghnd, 128, msgbuf, sizeof (msgbuf));
/* do something with the message, such as display it */

/* close the message handle when there are no more messages to retrieve */
OCIMessageClose (hndl, errhp, msghnd);

Imsgen Utility

The Imsgen utility converts text-based message files (.msg) into binary format (.msb) so
that Oracle Database messages and OCI messages provided by the user can be
returned to OCI functions in the desired language.

The BNF syntax of the Imsgen utility is as follows:

Imsgen text_file product facility [language]

In the preceding syntax:

m text_rileisa message text file.

= product is the name of the product.
» facilityis the name of the facility.

» language is the optional message language corresponding to the language
specified in the NLS_LANG parameter. The language parameter is required if the
message file is not tagged properly with language.

Guidelines for Text Message Files
Text message files must follow these guidelines:

m Lines that start with "/" and "/ /" are treated as internal comments and are
ignored.

= To tag the message file with a specific language, include a line similar to the
following:

2-36 Oracle Call Interface Programmer's Guide

OCI Globalization Support

CHARACTER_SET_NAME= Japanese_Japan.JAl6EUC

= Each message contains three fields:

message_number, warning level, message_text

— The message number must be unique within a message file.
— The warning level is not currently used. Set to 0.
— The message text cannot be longer than 76 bytes.

The following is an example of an Oracle Database message text file:

/ Copyright (c) 2001 by the Oracle Corporation. All rights reserved.
/ This is a test us7ascii message file

CHARACTER_SET _NAME= american_america.us7ascii

/

00000, 00000, "Export terminated unsuccessfully\n"

00003, 00000, "no storage definition found for segment (%lu, %$lu)"

An Example of Creating a Binary Message File from a Text Message File
The following table contains sample values for the lmsgen parameters:

Imsgen Parameter Value

product SHOME /myApplication
facility imp

language AMERICAN

text_file impus.msg

The text message file is found in the following location:

SHOME /myApp/mesg/impus .msg

One of the lines in the text message file is:

00128,2, "Duplicate entry %s found in %s"

The Imsgen utility converts the text message file (impus .msg) into binary format,
resulting in a file called impus.msb:

% lmsgen impus.msg S$HOME/myApplication imp AMERICAN

The following output results:

Generating message file impus.msg -->
/home/scott/myApplication/mesg/impus.msb

NLS Binary Message File Generation Utility: Version 9.2.0.0.0 -Production
Copyright (c) Oracle Corporation 1979, 2001. All rights reserved.

CORE 9.2.0.0.0 Production

OCI Programming Basics 2-37

OCI Globalization Support

2-38 Oracle Call Interface Programmer's Guide

3

Data Types

This chapter provides a reference to Oracle external data types used by OCI
applications. It also discusses Oracle data types and the conversions between internal
and external representations that occur when you transfer data between your program
and an Oracle database.

This chapter contains these topics:
s Oracle Data Types

» Internal Data Types

= External Data Types

s Data Conversions

» Typecodes

» Definitions in oratypes.h

See Also: Oracle Database SQL Language Reference for detailed
information about Oracle internal data types

Oracle Data Types

One of the main functions of an OCI program is to communicate with an Oracle
database. The OCI application may retrieve data from database tables through SQL
SELECT queries, or it may modify existing data in tables through INSERT, UPDATE, or
DELETE statements.

Inside a database, values are stored in columns in tables. Internally, Oracle represents
data in particular formats known as internal data types. Examples of internal data types
include NUMBER, CHAR, and DATE (see Table 3-1).

In general, OCI applications do not work with internal data type representations of
data, but with host language data types that are predefined by the language in which
they are written. When data is transferred between an OCI client application and a
database table, the OCI libraries convert the data between internal data types and
external data types.

External data types are host language types that have been defined in the OCI header
files. When an OCI application binds input variables, one of the bind parameters is an
indication of the external data type code (or SQLT code) of the variable. Similarly, when
output variables are specified in a define call, the external representation of the
retrieved data must be specified.

Data Types 3-1

Oracle Data Types

In some cases, external data types are similar to internal types. External types provide
a convenience for the programmer by making it possible to work with host language
types instead of proprietary data formats.

Note: Even though some external types are similar to internal
types, an OCI application never binds to internal data types. They
are discussed here because it can be useful to understand how
internal types can map to external types.

OCI can perform a wide range of data type conversions when transferring data
between an Oracle database and an OCI application. There are more OCI external data
types than Oracle internal data types. In some cases, a single external type maps to an
internal type; in other cases, multiple external types map to a single internal type.

The many-to-one mappings for some data types provide flexibility for the OCI
programmer. For example, suppose that you are processing the following SQL
statement:

SELECT sal FROM emp WHERE empno = :employee_number

You want the salary to be returned as character data, instead of a binary floating-point
format. Therefore, you specify an Oracle database external string data type, such as
VARCHAR2 (code = 1) or CHAR (code = 96) for the dty parameter in the
"OCIDefineByPos()" call for the sal column. You also must declare a string variable in
your program and specify its address in the valuep parameter. See Table 3-2 for more
information.

If you want the salary information to be returned as a binary floating-point value,
however, specify the FLOAT (code = 4) external data type. You also must define a
variable of the appropriate type for the valuep parameter.

Oracle Database performs most data conversions transparently. The ability to specify
almost any external data type provides a lot of power for performing specialized tasks.
For example, you can input and output DATE values in pure binary format, with no
character conversion involved, by using the DATE external data type. See the
description of the DATE external data type on page 3-13 for more information.

To control data conversion, you must use the appropriate external data type codes in
the bind and define routines. You must tell Oracle Database where the input or output
variables are in your OCI program and their data types and lengths.

OClI also supports an additional set of OCI typecodes that are used by the Oracle
Database type management system to represent data types of object type attributes.
You can use a set of predefined constants to represent these typecodes. The constants
each contain the prefix OCI_TYPECODE.

In summary, the OCI programmer must be aware of the following different data types
or data representations:

= Internal Oracle data types, which are used by table columns in an Oracle database.
These also include data types used by PL/SQL that are not used by Oracle
Database columns (for example, indexed table, boolean, record).

See Also: '"Internal Data Types" on page 3-3

= External OCI data types, which are used to specify host language representations
of Oracle data.

3-2 Oracle Call Interface Programmer's Guide

Internal Data Types

See Also: "External Data Types" on page 3-6 and "Using External
Data Type Codes" on page 3-3

= OCI_TYPECODE values, which are used by Oracle Database to represent type
information for object type attributes.

See Also: "Typecodes" on page 3-25, and "Relationship Between
SQLT and OCI_TYPECODE Values" on page 3-27

Information about a column's internal data type is conveyed to your application in the
form of an internal data type code. With this information about what type of data is to
be returned, your application can determine how to convert and format the output
data. The Oracle internal data type codes are listed in the section "Internal Data Types"
on page 3-3.

See Also:

» Oracle Database SQL Language Reference for detailed information
about Oracle internal data types

s "Describing Select-List Items" on page 4-9 for information about
describing select-list items in a query

Using External Data Type Codes

An external data type code indicates to Oracle Database how a host variable represents
data in your program. This determines how the data is converted when it is returned
to output variables in your program, or how it is converted from input (bind) variables
to Oracle Database column values. For example, to convert a NUMBER in an Oracle
database column to a variable-length character array, you specify the VARCHAR2
external data type code in the OCIDefineByPos () call that defines the output variable.

To convert a bind variable to a value in an Oracle Database column, specify the
external data type code that corresponds to the type of the bind variable. For example,
to input a character string such as 02-FEB-65 to a DATE column, specify the data type as
a character string and set the length parameter to 9.

It is always the programmer's responsibility to ensure that values are convertible. If
you try to insert the string "MY BIRTHDAY" into a DATE column, you get an error
when you execute the statement.

See Also: Table 3-2 for a complete list of the external data types
and data type codes

Internal Data Types

Table 3-1 lists the internal Oracle Database data types (also known as built-in), along
with each type's maximum internal length and data type code.

Table 3—1 Internal Oracle Database Data Types

Data Type
Internal Oracle Database Data Type Maximum Internal Length Code
VARCHAR2, NVARCHAR2 4000 bytes 1
NUMBER 21 bytes 2
LONG 2/31-1 bytes (2 gigabytes) 8

Data Types 3-3

Internal Data Types

Table 3—-1 (Cont.) Internal Oracle Database Data Types

Data Type

Internal Oracle Database Data Type Maximum Internal Length Code
DATE 7 bytes 12
RAW 2000 bytes 23
LONG RAW 2/31-1 bytes 24
ROWID 10 bytes 69
CHAR, NCHAR 2000 bytes 96
BINARY_FLOAT 4 bytes 100
BINARY_DOUBLE 8 bytes 101
User-defined type (object type, VARRAY, Not Applicable 108
nested table)
REF Not Applicable 111
CLOB, NCLOB 128 terabytes 112
BLOB 128 terabytes 113
BFILE Maximum operating system 114

file size or UBSMAXVAL
TIMESTAMP 11 bytes 180
TIMESTAMP WITH TIME ZONE 13 bytes 181
INTERVAL YEAR TO MONTH 5 bytes 182
INTERVAL DAY TO SECOND 11 bytes 183
UROWID 3950 bytes 208
TIMESTAMP WITH LOCAL TIME ZONE 11 bytes 231

See Also: Oracle Database SQL Language Reference for more
information about these built-in data types

LONG, RAW, LONG RAW, VARCHAR2

You can use the piecewise capabilities provided by OCIBindByName(),
OCIBindByPos(), OCIDefineByPos(), OCIStmtGetPiecelnfo(), and
OCIStmtSetPiecelnfo() to perform inserts, updates or fetches involving column data of
the LONG, RAW, LONG RAW, and VARCHAR2 data types.

Character Strings and Byte Arrays

3-4

You can use following Oracle internal data types to specify columns that contain
characters or arrays of bytes: CHAR, VARCHAR2, RAW, LONG, and LONG RAW.

Note: LOBs can contain characters and BFILEs can contain binary
data. They are handled differently than other types, so they are not
included in this discussion. See Chapter 7 for more information
about these data types.

CHAR, VARCHAR2, and LONG columns normally hold character data. RAW and LONG RAW
hold bytes that are not interpreted as characters (for example, pixel values in a

Oracle Call Interface Programmer's Guide

Internal Data Types

UROWID

bit-mapped graphic image). Character data can be transformed when it is passed
through a gateway between networks. Character data passed between machines using
different languages, where single characters may be represented by differing numbers
of bytes, can be significantly changed in length. Raw data is never converted in this
way.

It is the responsibility of the database designer to choose the appropriate Oracle
internal data type for each column in the table. The OCI programmer must be aware of
the many possible ways that character and byte-array data can be represented and
converted between variables in the OCI program and Oracle Database tables.

When an array holds characters, the length parameter for the array in an OCI call is
always passed in and returned in bytes, not characters.

The Universal ROWID (UROWID) is a data type that can store both logical and physical
rowids of Oracle Database tables. Logical rowids are primary key-based logical
identifiers for the rows of index-organized tables (I0Ts).

To use columns of the UROWID data type, the value of the COMPATIBLE initialization
parameter must be set to 8.1 or higher.

The following host variables can be bound to Universal ROWIDs:
» SQLT_CHR (VARCHAR2)

= SQLT_VCS (VARCHAR)

= SQLT_STR (NULL-terminated string)

s SQLT_LVC (LONG VARCHAR)

» SQLT_AFC (CHAR)

» SQLT_AVC (CHARZ)

= SQLT_vST (OCI String)

= SQLT_RDD (ROWID descriptor)

BINARY_FLOAT and BINARY_DOUBLE

The BINARY_FLOAT and BINARY_DOUBLE data types represent single-precision and
double-precision floating point values that mostly conform to the IEEE754 Standard
for Floating-Point Arithmetic.

Prior to the addition of these data types with release 10.1, all numeric values in an
Oracle Database were stored in the Oracle NUMBER format. These new binary floating
point types do not replace Oracle NUMBER. Rather, they are alternatives to Oracle
NUMBER that provide the advantage of using less disk storage.

These internal types are represented by the following codes:
= SQLT_IBFLOAT for BINARY FLOAT
= SQLT_IBDOUBLE for BINARY DOUBLE

All the following host variables can be bound to BINARY_FLOAT and BINARY_DOUBLE
data types:

= SQLT_BFLOAT (native float)

s SQLT BDOUBLE (native double)

Data Types 3-5

External Data Types

= SQLT_INT (integer)

s SQLT_FLT (float)

= SQLT_NUM (Oracle NUMBER)
= SQLT_UIN (unsigned)

= SQLT_VNU (VARNUM)

» SQLT_CHR (VARCHAR2)

= SQLT_VCS (VARCHAR)

= SQLT_STR (NULL-terminated String)
s SQLT_LVC (LONG VARCHAR)
» SQLT_AFC (CHAR)

» SQLT_AVC (CHARZ)

= SQLT_vST (OCIString)

For best performance, use external types SQLT_BFLOAT and SQLT_BDOUBLE in
conjunction with the BINARY_FLOAT and BINARY_DOUBLE data types.

External Data Types

Table 3-2 lists data type codes for external data types. For each data type, the table lists
the program variable types for C from or to which Oracle Database internal data is
normally converted.

Table 3-2 External Data Types and Codes

External Data Type Code Program Variable' OCI-Defined Constant
VARCHAR2 1 char[n] SQLT_CHR
NUMBER 2 unsigned char[21] SQLT_NUM
8-bit signed INTEGER 3 signed char SQLT_INT
16-bit signed INTEGER 3 signed short, signed int SQLT_INT
32-bit signed INTEGER 3 signed int, signed long SQLT_INT
64-bit signed INTEGER 3 signed long, signed long long SQLT_INT
FLOAT 4 float, double SQLT_FLT
NULL-terminated STRING 5 char[n+1] SQLT_STR
VARNUM 6 char[22] SQLT_VNU
LONG 8 char[n] SQLT_LNG
VARCHAR 9 char[n+sizeof(short integer)] SQLT_VCS
DATE 12 char[7] SQLT_DAT
VARRAW 15 unsigned char[n+sizeof(short SQLT_VBI
integer)]
native float 21 float SQLT_BFLOAT
native double 22 double SQLT_BDOUBLE
RAW 23 unsigned char[n] SQLT_BIN
LONG RAW 24 unsigned char[n] SQLT_LBI

3-6 Oracle Call Interface Programmer's Guide

External Data Types

Table 3-2 (Cont.) External Data Types and Codes

External Data Type Code Program Variable' OCI-Defined Constant
UNSIGNED INT 68 unsigned SQLT_UIN

LONG VARCHAR 94 char[n+sizeof(integer)] SQLT_LVC

LONG VARRAW 95 unsigned char[n+sizeof(integer)] SQLT_LVB

CHAR 96 char[n] SQLT_AFC

CHARZ 97 char[n+1] SQLT_AVC

ROWID descriptor 104 OCIRowid * SQLT_RDD

NAMED DATATYPE 108 struct SQLT_NTY

REF 110 OCIRef SQLT_REF
Character LOB descriptor 112 OCILobLocator? SQLT_CLOB

Binary LOB descriptor 113 OCILobLocator? SQLT_BLOB

Binary FILE descriptor 114 OCILobLocator SQLT FILE

OCI STRING type 155 OCIString SQLT _VST®

OCI DATE type 156 OCIDate * SQLT_ODT?

ANSI DATE descriptor 184 OCIDateTime * SQLT_DATE
TIMESTAMP descriptor 187 OCIDateTime * SQLT_TIMESTAMP
TIMESTAMP WITH TIME ZONE 188 OCIDateTime * SQLT_TIMESTAMP_TZ
descriptor

INTERVAL YEAR TO MONTH descriptor 189 OClInterval * SQLT_INTERVAL_YM
INTERVAL DAY TO SECOND descriptor 190 OCllnterval * SQLT_INTERVAL_DS
TIMESTAMP WITH LOCAL TIME ZONE 232 OCIDateTime * SQLT_TIMESTAMP_LTZ

descriptor

1
ROWID).

mapped as OCIBlobLocator. For more information, see Chapter 15.

VARCHAR2

For more information about the use of these data types, see Chapter 12.

Where the length is shown as n, it is a variable, and depends on the requirements of the program (or of the operating system for

In applications using data type mappings generated by OTT, CLOBs may be mapped as OCIClobLocator, and BLOBs may be

The following two types are internal to PL/SQL and cannot be returned as values by

OCIL:

s Boolean, SQLT_BOL

s Record, SQLT_REC

The VARCHAR?2 data type is a variable-length string of characters with a maximum

length of 4000 bytes.

Note: If you are using Oracle Database objects, you can work with
a special 0OCIString external data type using a set of predefined
OCI functions. See Chapter 12 for more information about this data

type.

Data Types 3-7

External Data Types

Input

The value_sz parameter determines the length in the OCIBindByName() or
OCIBindByPos() call.

If the value_sz parameter is greater than zero, Oracle Database obtains the bind
variable value by reading exactly that many bytes, starting at the buffer address in
your program. Trailing blanks are stripped, and the resulting value is used in the SQL
statement or PL/SQL block. If, with an INSERT statement, the resulting value is longer
than the defined length of the database column, the INSERT fails, and an error is
returned.

Note: A trailing NULL is not stripped. Variables should be
blank-padded but not NULL-terminated.

If the value_sz parameter is zero, Oracle Database treats the bind variable as a NULL,
regardless of its actual content. Of course, a NULL must be allowed for the bind variable
value in the SQL statement. If you try to insert a NULL into a column that has a NOT
NULL integrity constraint, Oracle Database issues an error, and the row is not inserted.

When the Oracle internal (column) data type is NUMBER, input from a character string
that contains the character representation of a number is legal. Input character strings
are converted to internal numeric format. If the VARCHAR2 string contains an illegal
conversion character, Oracle Database returns an error and the value is not inserted
into the database.

Output

Specify the desired length for the return value in the value_sz parameter of the
OClIDefineByPos() call, or the value_sz parameter of OCIBindByName() or
OCIBindByPos() for PL/SQL blocks. If zero is specified for the length, no data is
returned.

If you omit the rlenp parameter of OCIDefineByPos (), returned values are
blank-padded to the buffer length, and NULLs are returned as a string of blank
characters. If rlenp is included, returned values are not blank-padded. Instead, their
actual lengths are returned in the rlenp parameter.

To check if a NULL is returned or if character truncation has occurred, include an
indicator parameter in the 0OCIDefineByPos () call. Oracle Database sets the indicator
parameter to -1 when a NULL is fetched and to the original column length when the
returned value is truncated. Otherwise, it is set to zero. If you do not specify an
indicator parameter and a NULL is selected, the fetch call returns the error code 0CI_
SUCCESS_WITH_INFO. Retrieving diagnostic information for the error returns ORA-1405.

See Also: "Indicator Variables" on page 2-24

NUMBER

You should not need to use NUMBER as an external data type. If you do use it, Oracle
Database returns numeric values in its internal 21-byte binary format and expects this
format on input. The following discussion is included for completeness only.

3-8 Oracle Call Interface Programmer's Guide

External Data Types

Note: If you are using objects in an Oracle database, you can work
with a special OCINumber data type using a set of predefined OCI
functions. See "Number (OCINumber)" on page 12-9 for more
information about this data type.

Oracle Database stores values of the NUMBER data type in a variable-length format. The
first byte is the exponent and is followed by 1 to 20 mantissa bytes. The high-order bit
of the exponent byte is the sign bit; it is set for positive numbers, and it is cleared for
negative numbers. The lower 7 bits represent the exponent, which is a base-100 digit
with an offset of 65.

To calculate the decimal exponent, add 65 to the base-100 exponent and add another
128 if the number is positive. If the number is negative, you do the same, but
subsequently the bits are inverted. For example, -5 has a base-100 exponent = 62
(0x3e). The decimal exponent is thus (~0x3e) -128 - 65 = Oxc1 -128 -65 = 193 -128 -65 = 0.

Each mantissa byte is a base-100 digit, in the range 1..100. For positive numbers, the
digit has 1 added to it. So, the mantissa digit for the value 5 is 6. For negative numbers,
instead of adding 1, the digit is subtracted from 101. So, the mantissa digit for the
number -5 is 96 (101 - 5). Negative numbers have a byte containing 102 appended to
the data bytes. However, negative numbers that have 20 mantissa bytes do not have
the trailing 102 byte. Because the mantissa digits are stored in base 100, each byte can
represent 2 decimal digits. The mantissa is normalized; leading zeros are not stored.

Up to 20 data bytes can represent the mantissa. However, only 19 are guaranteed to be
accurate. The 19 data bytes, each representing a base-100 digit, yield a maximum
precision of 38 digits for an Oracle NUMBER.

If you specify the data type code 2 in the dty parameter of an OCIDefineByPos() call,
your program receives numeric data in this Oracle internal format. The output
variable should be a 21-byte array to accommodate the largest possible number. Note
that only the bytes that represent the number are returned. There is no blank padding
or NULL termination. If you must know the number of bytes returned, use the VARNUM
external data type instead of NUMBER.

See Also:
"OCINumber Examples" on page 12-10

= "VARNUM" on page 3-12 for a description of the internal
NUMBER format

64-Bit Integer Host Data Type

Starting with release 11.2, OCI supports the ability to bind and define integer values
greater than 32-bit size (more than nine digits of precision) from and into a NUMBER
column using a 64-bit native host variable and SQLT_INT or SQLT_UIN as the external
data type in an OCI application.

This feature enables an application to bind and define 8-byte native host variables
using SQLT_INT or SQLT_UIN external data types in the OCI bind and define function
calls on all platforms. The OCIDefineByPos (), 0CIBindByName (), and OCIBindByPos()
function calls can specify an 8-byte integer data type pointer as the valuep parameter.
This feature enables you to insert and fetch large integer values (up to 18 decimal
digits of precision) directly into and from native host variables and to perform free
arithmetic on them.

Data Types 3-9

External Data Types

OCI Bind and Define for 64-Bit Integers

Example 3-1 shows a code fragment that works without errors.
Example 3—1 OCI Bind and Define Support for 64-Bit Integers

/* Variable declarations */
orasb8 sbigvall, sbigval2, sbigval3; // Signed 8-byte variables.
oraub8 ubigvall, ubigval2, ubigval3; // Unsigned 8-byte variables.

/* Bind Statements */

OCIBindByPos (..., (void *) &sbigvall, sizeof(sbigvall), ..., SQLT_INT, ...);
OCIBindByPos (..., (void *) &ubigvall, sizeof (ubigvall), ..., SQLT UIN, ...);
OCIBindByName (..., (void *) &sbigval2, sizeof (sbigval2), ..., SQLT_INT,)
OCIBindByName (..., (void *) &ubigval2, sizeof (ubigval2), ..., SQLT_UIN,)
/* Define Statements */

OCIDefineByPos (..., (void *) &sbigval3, sizeof(sbigval3), ..., SQLT_INT, ...);
OCIDefineByPos(..., (void *) &ubigval3, sizeof (ubigval3), ..., SQLT UIN, ...);

Support for OUT Bind DML Returning Statements

Example 3-2 shows a code fragment that illustrates binding 8-byte integer data types
for OUT binds of a DML returning statement.

Example 3-2 Binding 8-Byte Integer Data Types for OUT Binds of a DML Returning
Statement

/* Define SQL statements to be used in program. */

static text *dml_stmt = (text *) " UPDATE emp SET sal = sal + :1
WHERE empno = :2
RETURNING sal INTO :outl";

/* Declare all handles to be used in program. */
OCIStmt *stmthp;
OCIError *errhp;

OCIBind *bndlp = (OCIBind *) 0;
OCIBind *bnd2p = (OCIBind *) 0;
OCIBind *bnd3p = (OCIBind *) 0;

/* Bind variable declarations */
orasb8 sbigval; // OUT bind variable (8-byte size).
sword eno, hike; // IN bind variables.

/* get values for IN bind variables */

/* Bind Statements */
OCIBindByPos (stmthp, &bndlp, errhp, 1, (dvoid *) &hike,

(sb4) sizeof (hike), SQLT_INT, (dvoid *) 0,

(ub2 *) 0, (ub2 *) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT);
0CIBindByPos (stmthp, &bnd2p, errhp, 2, (dvoid *) &eno,

(sb4) sizeof(eno), SQLT_INT, (dvoid *) 0,

(ub2 *) 0, (ub2 *) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT);

3-10 Oracle Call Interface Programmer's Guide

External Data Types

INTEGER

FLOAT

STRING

OCIBindByName (stmthp, &bnd3p, errhp, (text *) ":outl", -1,
(dvoid *) &sbigval, sizeof(sbigval), SQLT_INT, (dvoid *) O,
(ub2 *) 0, (ub2 *) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT);

/* Use the returned OUT bind variable value */

The INTEGER data type converts numbers. An external integer is a signed binary
number; the size in bytes is system-dependent. The host system architecture
determines the order of the bytes in the variable. A length specification is required for
input and output. If the number being returned from Oracle Database is not an integer,
the fractional part is discarded, and no error or other indication is returned. If the
number to be returned exceeds the capacity of a signed integer for the system, Oracle
Database returns an "overflow on conversion" error.

The FLOAT data type processes numbers that have fractional parts or that exceed the
capacity of an integer. The number is represented in the host system's floating-point
format. Normally the length is either 4 or 8 bytes. The length specification is required
for both input and output.

The internal format of an Oracle number is decimal, and most floating-point
implementations are binary; therefore, Oracle Database can represent numbers with
greater precision than floating-point representations.

Note: You may receive a round-off error when converting between
FLOAT and NUMBER. Using a FLOAT as a bind variable in a query may
return an ORA-1403 error. You can avoid this situation by converting
the FLOAT into a STRING and then using VARCHAR2 or a NULL-terminated
string for the operation.

The NULL-terminated STRING format behaves like the VARCHAR2 format, except that the
string must contain a NULL terminator character. This data type is most useful for C
language programs.

Input

The string length supplied in the 0CIBindByName () or OCIBindByPos () call limits the
scan for the NULL terminator. If the NULL terminator is not found within the length
specified, Oracle Database issues the following error:

ORA-01480: trailing NULL missing from STR bind value

If the length is not specified in the bind call, OCI uses an implied maximum string
length of 4000.

The minimum string length is 2 bytes. If the first character is a NULL terminator and the
length is specified as 2, a NULL is inserted into the column, if permitted. Unlike types
VARCHAR2 and CHAR, a string containing all blanks is not treated as a NULL on input; it is
inserted as is.

Data Types 3-11

External Data Types

VARNUM

LONG

VARCHAR

Note: You cannot pass -1 for the string length parameter of a NULL-terminated
string

Output

A NULL terminator is placed after the last character returned. If the string exceeds the
field length specified, it is truncated and the last character position of the output
variable contains the NULL terminator.

A NULL select-list item returns a NULL terminator character in the first character
position. An ORA-01405 error is also possible.

The VARNUM data type is like the external NUMBER data type, except that the first byte
contains the length of the number representation. This length does not include the
length byte itself. Reserve 22 bytes to receive the longest possible VARNUM. Set the
length byte when you send a VARNUM value to Oracle Database.

Table 3-3 shows several examples of the VARNUM values returned for numbers in a
table.

Table 3-3 VARNUM Examples

Decimal Exponent

Value Length Byte Byte Mantissa Bytes Terminator Byte
0 1 128 Not applicable Not applicable

5 2 193 6 Not applicable
-5 3 62 96 102

2767 3 194 28, 68 Not applicable
-2767 4 61 74,34 102

100000 2 195 11 Not applicable
1234567 5 196 2,24,46, 68 Not applicable

The LONG data type stores character strings longer than 4000 bytes. You can store up to
2 gigabytes (2/31-1 bytes) in a LONG column. Columns of this type are used only for
storage and retrieval of long strings. They cannot be used in functions, expressions, or
WHERE clauses. LONG column values are generally converted to and from character
strings.

Do not create tables with LONG columns. Use LOB columns (CLOB, NCLOB, or BLOB)
instead. LONG columns are supported only for backward compatibility.

Oracle also recommends that you convert existing LONG columns to LOB columns. LOB
columns are subject to far fewer restrictions than LONG columns. Furthermore, LOB
functionality is enhanced in every release, but LONG functionality has been static for
several releases.

The VARCHAR data type stores character strings of varying length. The first 2 bytes
contain the length of the character string, and the remaining bytes contain the string.

3-12 Oracle Call Interface Programmer's Guide

External Data Types

DATE

RAW

The specified length of the string in a bind or a define call must include the two length
bytes, so the largest VARCHAR string that can be received or sent is 65533 bytes long, not
65535.

The DATE data type can update, insert, or retrieve a date value using the Oracle internal
date binary format. A date in binary format contains 7 bytes, as shown in Table 3—4.

Table 3—-4 Format of the DATE Data Type

Byte 1 2 3 4 5 6 7
Meaning Century Year Month Day Hour Minute Second
Example (for 119 192 11 30 16 18 1

30-NOV-1992, 3:17 PM)

The century and year bytes (bytes 1 and 2) are in excess-100 notation. The first byte
stores the value of the year, which is 1992, as an integer, divided by 100, giving 119 in
excess-100 notation. The second byte stores year modulo 100, giving 192. Dates Before
Common Era (BCE) are less than 100. The era begins on 01-JAN-4712 BCE, which is
Julian day 1. For this date, the century byte is 53, and the year byte is 88. The hour,
minute, and second bytes are in excess-1 notation. The hour byte ranges from 1 to 24,
the minute and second bytes from 1 to 60. If no time was specified when the date was
created, the time defaults to midnight (1, 1, 1).

When you enter a date in binary format using the DATE external data type, the database
does not do consistency or range checking. All data in this format must be carefully
validated before input.

Note: There is little need to use the Oracle external DATE data type
in ordinary database operations. It is much more convenient to
convert DATE into character format, because the program usually
deals with data in a character format, such as DD-MON-YY.

When a DATE column is converted to a character string in your program, it is returned
using the default format mask for your session, or as specified in the INIT.ORA file.

If you are using objects in an Oracle database, you can work with a special OCIDate
data type using a set of predefined OCI functions.

See Also:

s "Date (OCIDate)" on page 12-5 for more information about the
OCIDate data type

s "Datetime and Interval Data Type Descriptors" on page 3-19 for
information about DATETIME and INTERVAL data types

The RAW data type is used for binary data or byte strings that are not to be interpreted
by Oracle Database, for example, to store graphics character sequences. The maximum
length of a RAW column is 2000 bytes.

See Also: Oracle Database SQL Language Reference

Data Types 3-13

External Data Types

VARRAW

LONG RAW

UNSIGNED

When RAW data in an Oracle Database table is converted to a character string in a
program, the data is represented in hexadecimal character code. Each byte of the RAW
data is returned as two characters that indicate the value of the byte, from '00' to 'FF".
To input a character string in your program to a RAW column in an Oracle Database
table, you must code the data in the character string using this hexadecimal code.

You can use the piecewise capabilities provided by 0CIDefineByPos (),
OCIBindByName (), OCIBindByPos (), OCIStmtGetPieceInfo (), and
0CIStmtSetPieceInfo() to perform inserts, updates, or fetches involving RAW (or LONG
RAW) columns.

If you are using objects in an Oracle database, you can work with a special OCIRaw data
type using a set of predefined OCI functions. See "Raw (OCIRaw)" on page 12-13 for
more information about this data type.

The VARRAW data type is similar to the RAW data type. However, the first 2 bytes contain
the length of the data. The specified length of the string in a bind or a define call must
include the two length bytes, so the largest VARRAW string that can be received or sent is
65533 bytes, not 65535. For converting longer strings, use the LONG VARRAW external
data type.

The LONG RAW data type is similar to the RAW data type, except that it stores raw data
with a length up to 2 gigabytes (231-1 bytes).

The UNSIGNED data type is used for unsigned binary integers. The size in bytes is
system-dependent. The host system architecture determines the order of the bytes in a
word. A length specification is required for input and output. If the number being
output from Oracle Database is not an integer, the fractional part is discarded, and no
error or other indication is returned. If the number to be returned exceeds the capacity
of an unsigned integer for the system, Oracle Database returns an "overflow on
conversion" error.

LONG VARCHAR

The LONG VARCHAR data type stores data from and into an Oracle Database LONG
column. The first 4 bytes of a LONG VARCHAR contain the length of the item. So, the
maximum length of a stored item is 2/31-5 bytes.

LONG VARRAW

CHAR

The LONG VARRAW data type is used to store data from and into an Oracle Database LONG
RAW column. The length is contained in the first four bytes. The maximum length is
2131-5 bytes.

The CHAR data type is a string of characters, with a maximum length of 2000. CHAR
strings are compared using blank-padded comparison semantics.

See Also: Oracle Database SQL Language Reference

3-14 Oracle Call Interface Programmer's Guide

External Data Types

CHARZ

Input

The length is determined by the value_sz parameter in the OCIBindByName() or
OCIBindByPos() call.

Note: The entire contents of the buffer (value_sz chars) is passed
to the database, including any trailing blanks or NULLs.

If the value_sz parameter is zero, Oracle Database treats the bind variable as a NULL,
regardless of its actual content. Of course, a NULL must be allowed for the bind variable
value in the SQL statement. If you try to insert a NULL into a column that has a NOT
NULL integrity constraint, Oracle Database issues an error and does not insert the row.

Negative values for the value_sz parameter are not allowed for CHARs.

When the Oracle internal (column) data type is NUMBER, input from a character string
that contains the character representation of a number is legal. Input character strings
are converted to internal numeric format. If the CHAR string contains an illegal
conversion character, Oracle Database returns an error and does not insert the value.
Number conversion follows the conventions established by globalization support
settings for your system. For example, your system might be configured to recognize a
comma (,) rather than a period (.) as the decimal point.

Output

Specify the desired length for the return value in the value_sz parameter of the
OClIDefineByPos() call. If zero is specified for the length, no data is returned.

If you omit the rlenp parameter of 0OCIDefineByPos (), returned values are blank
padded to the buffer length, and NULLs are returned as a string of blank characters. If
rlenp is included, returned values are not blank-padded. Instead, their actual lengths
are returned in the rlenp parameter.

To check whether a NULL is returned or character truncation occurs, include an
indicator parameter or array of indicator parameters in the OCIDefineByPos() call. An
indicator parameter is set to -1 when a NULL is fetched and to the original column
length when the returned value is truncated. Otherwise, it is set to zero. If you do not
specify an indicator parameter and a NULL is selected, the fetch call returns an
ORA-01405 error.

See Also: "Indicator Variables" on page 2-24

You can also request output to a character string from an internal NUMBER data type.
Number conversion follows the conventions established by the globalization support
settings for your system. For example, your system might use a comma (,) rather than
a period (.) as the decimal point.

The CHARZ external data type is similar to the CHAR data type, except that the string
must be NULL-terminated on input, and Oracle Database places a NULL-terminator
character at the end of the string on output. The NULL terminator serves only to delimit
the string on input or output; it is not part of the data in the table.

On input, the length parameter must indicate the exact length, including the NULL
terminator. For example, if an array in C is declared as follows, then the length
parameter when you bind my_num must be seven. Any other value would return an
error for this example.

Data Types 3-15

External Data Types

char my_num[] = "123.45";

The following new external data types were introduced with or after release 8.0. These
data types are not supported when you connect to an Oracle release 7 server.

Note: Both internal and external data types have Oracle-defined constant
values, such as SQLT_NTY, SQLT_REF, corresponding to their data type codes.
Although the constants are not listed for all of the types in this chapter, they
are used in this section when discussing new Oracle data types. The data type
constants are also used in other chapters of this guide when referring to these
new types.

Named Data Types: Object, VARRAY, Nested Table

Named data types are user-defined types that are specified with the CREATE TYPE
command in SQL. Examples include object types, varrays, and nested tables. In OClI,
named data type refers to a host language representation of the type. The SQLT_NTY data
type code is used when binding or defining named data types.

In a C application, named data types are represented as C structs. These structs can be
generated from types stored in the database by using the Object Type Translator. These
types correspond to OCI_TYPECODE_OBJECT.

See Also:

= "Object Type Information Storage and Access" on page 12-20 for
more information about working with named data types in OCI

» Chapter 15 for information about how named data types are
represented as C structs

REF

This is a reference to a named data type. The C language representation of a REF is a
variable declared to be of type OCIRef *.The SQLT_REF data type code is used when
binding or defining REFs.

Access to REFs is only possible when an OCI application has been initialized in object
mode. When REFs are retrieved from the server, they are stored in the client-side object
cache.

To allocate a REF for use in your application, you should declare a variable to be a
pointer to a REF, and then call OCIObjectNew(), passing OCI_TYPECODE_REF as the
typecode parameter.

See Also: Chapter 14 for more information about working with
REFs in the OCI

ROWID Descriptor

The ROWID data type identifies a particular row in a database table. ROWID can be a
select-list item in a query, such as:

SELECT ROWID, ename, empno FROM emp

In this case, you can use the returned ROWID in further DELETE statements.

If you are performing a SELECT for UPDATE, the ROWID is implicitly returned. This ROWID
can be read into a user-allocated ROWID descriptor by using OCIAttrGet() on the

3-16 Oracle Call Interface Programmer's Guide

External Data Types

statement handle and used in a subsequent UPDATE statement. The prefetch operation
fetches all ROWIDs on a SELECT for UPDATE; use prefetching and then a single row fetch.

You access rowids using a ROWID descriptor, which you can use as a bind or define
variable.

See Also: "OCI Descriptors" on page 2-9 and "Positioned Updates
and Deletes" on page 2-25 for more information about the use of the
ROWID descriptor

LOB Descriptor

A LOB (large object) stores binary or character data up to 128 terabytes (TB) in length.
Binary data is stored in a BLOB (binary LOB), and character data is stored in a CLOB
(character LOB) or NCLOB (national character LOB).

LOB values may or may not be stored inline with other row data in the database. In
either case, LOBs have the full transactional support of the Oracle database. A
database table stores a LOB locator that points to the LOB value, which may be in a
different storage space.

When an OCI application issues a SQL query that includes a LOB column or attribute
in its select list, fetching the results of the query returns the locator, rather than the
actual LOB value. In OCI, the LOB locator maps to a variable of type 0OCILobLocator.

Note: Depending on your application, you may or may not want
to use LOB locators. You can use the data interface for LOBs, which
does not require LOB locators. In this interface, you can bind or
define character data for CLOB columns or RAW data for BLOB
columns.

See Also:

"OCI Descriptors" on page 2-9 for more information about
descriptors, including the LOB locator

s Oracle Database SQL Language Reference and Oracle Database
SecureFiles and Large Objects Developer’s Guide for more
information about LOBs

= "Binding LOB Data" on page 5-9
s "Defining LOB Data" on page 5-16
The OCI functions for LOBs take a LOB locator as one of their arguments. The OCI

functions assume that the locator has already been created, whether or not the LOB to
which it points contains data.

Bind and define operations are performed on the LOB locator, which is allocated with
the OCIDescriptorAlloc() function.

The locator is always fetched first using SQL or OCIObjectPin(), and then operations
are performed using the locator. The OCI functions never take the actual LOB value as
a parameter.

See Also: Chapter 7 for more information about OCI LOB
functions

The data type codes available for binding or defining LOBs are:

Data Types 3-17

External Data Types

= SQLT_BLOB - A binary LOB data type
= SQLT_CLOB - A character LOB data type
The NCLOB is a special type of CLOB with the following requirements:

s To write into or read from an NCLOB, the user must set the character set form
(csfrm) parameter to be SQLCS_NCHAR.

s The amount (amtp) parameter in calls involving CLOBs and NCLOBs is always
interpreted in terms of characters, rather than bytes, for fixed-width character sets.

See Also: "LOB and BFILE Functions in OCI" on page 7-8

BFILE

Oracle Database supports access to binary files (BFILEs). The BFILE data type provides
access to LOBs that are stored in file systems outside an Oracle database.

A BFILE column or attribute stores a file LOB locator, which serves as a pointer to a
binary file on the server's file system. The locator maintains the directory object and
the file name. The maximum size of a BFILE is the smaller of the operating system
maximum file size or UBSMAXVAL.

Binary file LOBs do not participate in transactions. Rather, the underlying operating
system provides file integrity and durability.

The database administrator must ensure that the file exists and that Oracle Database
processes have operating system read permissions on the file.

The BFILE data type allows read-only support of large binary files; you cannot modify
a file through Oracle Database. Oracle Database provides APIs to access file data.

The data type code available for binding or defining BFILEs is SQLT_BFILE (a binary
FILE LOB data type)

See Also: Oracle Database SecureFiles and Large Objects Developer’s
Guide for more information about directory aliases

BLOB

The BLOB data type stores unstructured binary large objects. BLOBs can be thought of as
bit streams with no character set semantics. BLOBs can store up to 128 terabytes of
binary data.

BLOBs have full transactional support; changes made through OCI participate fully in
the transaction. The BLOB value manipulations can be committed or rolled back. You
cannot save a BLOB locator in a variable in one transaction and then use it in another
transaction or session.

CLOB

The CLOB data type stores fixed-width or variable-width character data. CLOBs can store
up to 128 terabytes of character data.

CLOBs have full transactional support; changes made through OCI participate fully in
the transaction. The CLOB value manipulations can be committed or rolled back. You
cannot save a CLOB locator in a variable in one transaction and then use it in another
transaction or session.

3-18 Oracle Call Interface Programmer's Guide

External Data Types

NCLOB

An NCLOB is a national character version of a CLOB. It stores fixed-width, single-byte or
multibyte national character set (NCHAR) data, or variable-width character set data.
NCLOBs can store up to 128 terabytes of character text data.

NCLOBs have full transactional support; changes made through OCI participate fully in
the transaction. NCLOB value manipulations can be committed or rolled back. You
cannot save an NCLOB locator in a variable in one transaction and then use it in another
transaction or session.

Datetime and Interval Data Type Descriptors

The datetime and interval data type descriptors are briefly summarized here.

See Also: Oracle Database SQL Language Reference

ANSI DATE

ANSI DATE is based on DATE, but contains no time portion. It also has no time zone. ANSI
DATE follows the ANSI specification for the DATE data type. When assigning an ANSI
DATE to a DATE or a time stamp data type, the time portion of the Oracle DATE and the
time stamp are set to zero. When assigning a DATE or a time stamp to an ANSI DATE, the
time portion is ignored.

Instead of using the ANSI DATE data type, Oracle recommends that you use the
TIMESTAMP data type, which contains both date and time.

TIMESTAMP

The TIMESTAMP data type is an extension of the DATE data type. It stores the year,
month, and day of the DATE data type, plus the hour, minute, and second values. It has
no time zone. The TIMESTAMP data type has the following form:

TIMESTAMP (fractional_seconds_precision)

In this form, the optional fractional_seconds_precision specifies the number of
digits in the fractional part of the SECOND datetime field and can be a number in the
range 0 to 9. The default is 6.

TIMESTAMP WITH TIME ZONE

TIMESTAMP WITH TIME ZONE (TSTZ) is a variant of TIMESTAMP that includes an explicit
time zone displacement in its value. The time zone displacement is the difference in
hours and minutes between local time and UTC (coordinated universal
time—formerly Greenwich mean time). The TIMESTAMP WITH TIME ZONE data type has
the following form:

TIMESTAMP (fractional_seconds_precision) WITH TIME ZONE
In this form, fractional_seconds_precision optionally specifies the number of digits

in the fractional part of the SECOND datetime field, and can be a number in the range 0
to 9. The default is 6.

Two TIMESTAMP WITH TIME ZONE values are considered identical if they represent the
same instant in UTC, regardless of the TIME ZONE offsets stored in the data.

TIMESTAMP WITH LOCAL TIME ZONE

TIMESTAMP WITH LOCAL TIME ZONE (TSLTZ) is another variant of TIMESTAMP that includes
a time zone displacement in its value. Storage is in the same format as for TIMESTAMP.

Data Types 3-19

External Data Types

This type differs from TIMESTAMP WITH TIME ZONE in that data stored in the database is
normalized to the database time zone, and the time zone displacement is not stored as
part of the column data. When retrieving the data, Oracle Database returns it in your
local session time zone.

The time zone displacement is the difference (in hours and minutes) between local
time and UTC (coordinated universal time—formerly Greenwich mean time). The
TIMESTAMP WITH LOCAL TIME ZONE data type has the following form:

TIMESTAMP (fractional_seconds_precision) WITH LOCAL TIME ZONE

In this form, fractional_seconds_precision optionally specifies the number of digits
in the fractional part of the SECOND datetime field and can be a number in the range 0
to 9. The default is 6.

INTERVAL YEAR TO MONTH

INTERVAL YEAR TO MONTH stores a period of time using the YEAR and MONTH datetime
fields. The INTERVAL YEAR TO MONTH data type has the following form:

INTERVAL YEAR (year_precision) TO MONTH

In this form, the optional year_precision is the number of digits in the YEAR datetime
field. The default value of year_precisionis 2.

INTERVAL DAY TO SECOND

INTERVAL DAY TO SECOND stores a period of time in terms of days, hours, minutes, and
seconds. The INTERVAL DAY TO SECOND data type has the following form:

INTERVAL DAY (day_precision) TO SECOND(fractional_seconds_precision)

In this form:

» day precisionis the number of digits in the DAY datetime field. It is optional.
Accepted values are 0 to 9. The default is 2.

» fractional seconds_precision is the number of digits in the fractional part of
the SECOND datetime field. Accepted values are 0 to 9. The default is 6.

Avoiding Unexpected Results Using Datetime

Note: To avoid unexpected results in your data manipulation language
(DML) operations on datetime data, you can verify the database and session
time zones by querying the built-in SQL functions DBTIMEZONE and
SESSIONTIMEZONE. If the time zones have not been set manually, Oracle
Database uses the operating system time zone by default. If the operating
system time zone is not a valid Oracle Database time zone, Oracle Database
uses UTC as the default value.

Native Float and Native Double

The native float (SQLT_BFLOAT) and native double (SQLT_BDOUBLE) data types represent
the single-precision and double-precision floating-point values. They are represented
natively, that is, in the host system's floating-point format.

These external types were added in release 10.1 to externally represent the BINARY_
FLOAT and BINARY_DOUBLE internal data types. Thus, performance for the internal types
is best when used in conjunction with external types native float and native double

3-20 Oracle Call Interface Programmer's Guide

Data Conversions

respectively. This draws a clear distinction between the existing representation of
floating-point values (SQLT_FLT) and these types.

C Object-Relational Data Type Mappings

OCI supports Oracle-defined C data types for mapping user-defined data types to C
representations (for example, OCINumber, OCIArray). OCI provides a set of calls to
operate on these data types, and to use these data types in bind and define operations,
in conjunction with OCI external data types.

See Also: Chapter 12 for information about using these
Oracle-defined C data types

Data Conversions

Table 3-5 shows the supported conversions from internal data types to external data
types, and from external data types into internal column representations, for all data
types available through release 7.3. Information about data conversions for data types
newer than release 7.3 is listed here:

s REFs stored in the database are converted to SQLT_REF on output.
= SQLT_REF is converted to the internal representation of REFs on input.

= Named data types stored in the database can be converted to SQLT_NTY (and
represented by a C struct in the application) on output.

= SQLT_NTY (represented by a C struct in an application) is converted to the internal
representation of the corresponding type on input.

LOBs are shown in Table 3-6, because of the width limitation.

See Also: Chapter 12 for information about 0CIString, OCINumber, and other
new data types

Table 3-5 Data Conversions

INTERNAL

DATA
NA' TYPES-> NA NA NA NA NA NA NA NA
EXTERNAL LONG
DATATYPES VARCHAR2 NUMBER LONG ROWID UROWID DATE RAW RAW CHAR
VARCHAR2 1/0? 1/0 1/0 I/0° 1/0° I/0* 1/0° 1/0° NA
NUMBER I/0° I/0 r NA NA NA NA NA 1/0°
INTEGER I/0° I/0 I NA NA NA NA NA 1/0°
FLOAT I/0° I/0 I NA NA NA NA NA 1/0°
STRING I/0 I/0 I/0 I/0° 1/0° /0 170° 1/0°¢ 1/0
VARNUM I/0° I/0 I NA NA NA NA NA 1/0°
DECIMAL I/0° I/0 I NA NA NA NA NA 1/0°
LONG 1/0 1/0 1/0 I/0° 1/0° /0 1/0° 1008 /O
VARCHAR I/0 I/0 I/0 I/0° 1I/0° /0 170° 1/0°¢ 1/0
DATE 170 NA I NA NA 170 NA NA I/0

Data Types 3-21

Data Conversions

Table 3-5 (Cont.) Data Conversions

INTERNAL

DATA
NA' TYPES-> NA NA NA NA NA NA NA NA
EXTERNAL LONG
DATATYPES VARCHAR2 NUMBER LONG ROWID UROWID DATE RAW RAW CHAR
VARRAW I/0° NA B2 NA NA NA 1/0 1/0 1/0°
RAW I/0° NA B NA NA NA 1/0 1/0 1/0°
LONG RAW Q09 NA B2 NA NA NA 1/0 1/0 o°
UNSIGNED I/0° I/0 I NA NA NA NA NA 1/0°
LONG VARCHAR 1/O I/0 I/0 1/0° 1/0° /0 170° 1/0°¢ 1/0
LONG VARRAW 1/0° NA B2 NA NA NA 1/0 1/0 1/0°
CHAR I/0 I/0 I/0 I/0° 1I/0° 1/0* 1/0° P 1/0
CHARZ I/0 I/0 I/0 I/0° 1I/0° /0% 1/0° g 1/0
ROWID B NA NA I/0 1/0 NA NA NA B
descriptor
1 NA means not applicable.

2
3

1/0 = Conversion is valid for input or output.

For input, host string must be in Oracle ROWID/UROWID format. On output, column value is returned in Oracle
ROWID/UROWID format.

For input, host string must be in the Oracle DATE character format. On output, column value is returned in Oracle DATE format.
For input, host string must be in hexadecimal format. On output, column value is returned in hexadecimal format.

For output, column value must represent a valid number.

I = Conversion is valid for input only.

Length must be less than or equal to 2000.

On input, column value is stored in hexadecimal format. On output, column value must be in hexadecimal format.

© ® N U W

10O = Conversion is valid for output only.

Data Conversions for LOB Data Type Descriptors

Table 3—-6 shows the data conversions for LOBs. For example, the external character
data types (VARCHAR, CHAR, LONG, and LONG VARCHAR) convert to the internal CLOB data
type, whereas the external raw data types (RAW, VARRAW, LONG RAW, and LONG VARRAW)
convert to the internal BLOB data type.

Table 3—-6 Data Conversions for LOBs

EXTERNAL DATA TYPES INTERNAL CLOB INTERNAL BLOB
VARCHAR 1/0! NAZ2

CHAR I/0 NA

LONG I/0 NA

LONG VARCHAR I/0 NA

RAW NA I/0

VARRAW NA I/0

LONG RAW NA I/0

LONG VARRAW NA I/0

1 1/O = Conversion is valid for input or output.

3-22 Oracle Call Interface Programmer's Guide

Data Conversions

2 NA means not applicable.

Data Conversions for Datetime and Interval Data Types

You can also use one of the character data types for the host variable used in a fetch or
insert operation from or to a datetime or interval column. Oracle Database does the
conversion between the character data type and datetime or interval data type for you
(see Table 3-7.

Table 3-7 Data Conversion for Datetime and Interval Types

INTERVAL INTERVAL

VARCHAR, YEAR TO DAY TO
External Types/Internal Types CHAR DATE TS TSTZ TSLTZ MONTH SECOND
VARCHAR2, CHAR I/0! I/0 1/0 1I/0 I/0 I/0 1/0
DATE I/0 I/0 1/0 1/0 1/0 NA?2 NA
OCI DATE I/0 I/0 1I/0 1I/0 1I/0 NA NA
ANSI DATE I/0 I/0 1I/0 1I/0 1I/0 NA NA
TIMESTAMP (TS) I/0 I/0 1/0 1/0 1/0 NA NA
TIMESTAMP WITH TIME ZONE I/0 I/0 1I/0 1I/0 1I/0 NA NA
(TSTZ)
TIMESTAMP WITH LOCAL TIME I/O I/0 1I/0 1I/0 1I/0 NA NA
ZONE (TSLTZ)
INTERVAL YEAR TO MONTH I/0 NA NA NA NA 1I/0 NA
INTERVAL DAY TO SECOND I/0 NA NA NA NA NA 1I/0

1 1/0 = Conversion is valid for input or output.
2 NA means not applicable.

Assignment Notes

When you assign a source with a time zone to a target without a time zone, the time
zone portion of the source is ignored. When you assign a source without a time zone to
a target with a time zone, the time zone of the target is set to the session's default time
zone.

When you assign an Oracle Database DATE to a TIMESTAMP, the TIME portion of the DATE
is copied over to the TIMESTAMP. When you assign a TIMESTAMP to Oracle Database
DATE, the TIME portion of the result DATE is set to zero. This is done to encourage
upgrading of Oracle Database DATE to ANSI-compliant DATETIME data types.

When you assign an ANSI DATE to an Oracle DATE or a TIMESTAMP, the TIME portion of
the Oracle Database DATE and the TIMESTAMP are set to zero. When you assign an
Oracle Database DATE or a TIMESTAMP to an ANSI DATE, the TIME portion is ignored.

When you assign a DATETIME to a character string, the DATETIME is converted using the
session's default DATETIME format. When you assign a character string to a DATETIME,
the string must contain a valid DATETIME value based on the session's default DATETIME
format

When you assign a character string to an INTERVAL, the character string must be a valid
INTERVAL character format.

Data Types 3-23

Data Conversions

Data Conversion Notes for Datetime and Interval Types
When you convert from TSLTZ to CHAR, DATE, TIMESTAMP, and TSTZ, the value is
adjusted to the session time zone.

When you convert from CHAR, DATE, and TIMESTAMP to TSLTZ, the session time zone is
stored in memory.

When you assign TSLTZ to ANSI DATE, the time portion is zero.

When you convert from TSTZ, the time zone that the time stamp is in is stored in
memory.

When you assign a character string to an interval, the character string must be a valid
interval character format.

Datetime and Date Upgrading Rules

OCT has full forward and backward compatibility between a client application and the
Oracle database for datetime and date columns.

Pre-9.0 Client with 9.0 or Later Server

The only datetime data type available to a pre-9.0 application is the DATE data type,
SQLT_DAT. When a pre-9.0 client that defined a buffer as SQLT_DAT tries to obtain data
from a TSLTZ column, only the date portion of the value is returned to the client.

Pre-9.0 Server with 9.0 or Later Client

When a pre-9.0 server is used with a 9.0 or later client, the client can have a bind or
define buffer of type SQLT_TIMESTAMP_LTZ. The following compatibilities are
maintained in this case.

If any client application tries to insert a SQLT_TIMESTAMP_LTZ (or any of the new
datetime data types) into a DATE column, an error is issued because there is potential
data loss in this situation.

When a client has an OUT bind or a define buffer that is of data type SQLT_TIMESTAMP_
LTZ and the underlying server-side SQL buffer or column is of DATE type, then the
session time zone is assigned.

Data Conversion for BINARY_ FLOAT and BINARY _DOUBLE in OCI

Table 3-8 shows the supported conversions between internal numeric data types and
all relevant external types. An (I) implies that the conversion is valid for input only
(binds), and (O) implies that the conversion is valid for output only (defines). An (I/O)
implies that the conversion is valid for input and output (binds and defines).

Table 3-8 Data Conversion for External Data Types to Internal Numeric Data Types

External Types/Internal Types BINARY_FLOAT BINARY_DOUBLE
VARCHAR I/0 I/0
VARCHAR2 I/0 I/0
NUMBER I/0 I/0
INTEGER I/0 I/0
FLOAT I/0 I/0
STRING I/0 1/0

3-24 Oracle Call Interface Programmer's Guide

Typecodes

Typecodes

Table 3-8 (Cont.) Data Conversion for External Data Types to Internal Numeric Data

External Types/Internal Types BINARY_FLOAT BINARY_DOUBLE
VARNUM I/0 I/0
LONG I/0 I/0
UNSIGNED INT I/0 I/0
LONG VARCHAR 1/0 I/0
CHAR 1/0 1/0
BINARY FLOAT I/0 1/0
BINARY DOUBLE I/0 1/0

1 An (1/0) implies that the conversion is valid for input and output (binds and defines)

Table 3-9 shows the supported conversions between all relevant internal types and
numeric external types. An (I) implies that the conversion is valid for input only (only
for binds), and (O) implies that the conversion is valid for output only (only for
defines). An (I/O) implies that the conversion is valid for input and output (binds and
defines).

Table 3-9 Data Conversions for Internal to External Numeric Data Types

Internal Types/External Types Native Float Native Double
VARCHAR2 I/0! I/0

NUMBER 1I/0 I/0

LONG ? I

CHAR 1I/0 I/0

BINARY_ FLOAT 1I/0 I/0

BINARY DOUBLE I/0 I/0

1 An (I/0) implies that the conversion is valid for input and output (binds and defines)
2 An (I) implies that the conversion is valid for input only (only for binds)

A unique typecode is associated with each Oracle Database type, whether scalar,
collection, reference, or object type. This typecode identifies the type, and is used by
Oracle Database to manage information about object type attributes. This typecode
system is designed to be generic and extensible. It is not tied to a direct one-to-one
mapping to Oracle data types. Consider the following SQL statements:

CREATE TYPE my_type AS OBJECT
(attrl NUMBER,

attr2 INTEGER,

attr3 SMALLINT) ;

CREATE TABLE my_table AS TABLE OF my_type;

These statements create an object type and an object table. When it is created, my_table
has three columns, all of which are of Oracle NUMBER type, because SMALLINT and
INTEGER map internally to NUMBER. The internal representation of the attributes of my_
type, however, maintains the distinction between the data types of the three attributes:
attrlis OCI_TYPECODE_NUMBER, attr2 is OCI_TYPECODE_INTEGER, and attr3 is OCI_
TYPECODE_SMALLINT. If an application describes my_type, these typecodes are returned.

Data Types 3-25

Typecodes

0CITypeCode is the C data type of the typecode. The typecode is used by some OCI
functions, like OCIObjectNew(), where it helps determine what type of object is

created. It is also returned as the value of some attributes when an object is described;

for example, querying the OCI_ATTR_TYPECODE attribute of a type returns an

OCITypeCode value.

Table 3-10 lists the possible values for an 0CITypeCode. There is a value corresponding

to each Oracle data type.

Table 3-10 OCITypeCode Values and Data Types

Value Data Type
OCI_TYPECODE_REF REF
OCI_TYPECODE_DATE DATE
OCI_TYPECODE_TIMESTAMP TIMESTAMP

OCI_TYPECODE_TIMESTAMP_TZ
OCI_TYPECODE_TIMESTAMP_LTZ
OCI_TYPECODE_INTERVAL_YM
OCI_TYPECODE_INTERVAL_DS
OCI_TYPECODE_REAL
OCI_TYPECODE_DOUBLE
OCI_TYPECODE_FLOAT
OCI_TYPECODE_NUMBER
OCI_TYPECODE_BFLOAT
OCI_TYPECODE_BDOUBLE
OCI_TYPECODE_DECIMAL
OCI_TYPECODE_OCTET
OCI_TYPECODE_INTEGER
OCI_TYPECODE_SMALLINT
OCI_TYPECODE_RAW
OCI_TYPECODE_VARCHAR2
OCI_TYPECODE_VARCHAR

OCI_TYPECODE_CHAR

OCI_TYPECODE_VARRAY
OCI_TYPECODE_TABLE
OCI_TYPECODE_CLOB
OCI_TYPECODE_BLOB
OCI_TYPECODE_BFILE
OCI_TYPECODE_OBJECT

OCI_TYPECODE_NAMEDCOLLECTION

TIMESTAMP WITH TIME ZONE
TIMESTAMP WITH LOCAL TIME ZONE
INTERVAL YEAR TO MONTH

INTERVAL DAY TO SECOND
Single-precision real

Double-precision real

Floating-point

Oracle NUMBER

BINARY_FLOAT

BINARY_DOUBLE

Decimal

Octet

Integer

Small int

RAW

Variable string ANSI SQL, that is, VARCHAR?2
Variable string Oracle SQL, that is, VARCHAR

Fixed-length string inside SQL, that is SQL
CHAR

Variable-length array (varray)
Multiset

Character large object (CLOB)
Binary large object (BLOB)

Binary large object file (BFILE)
Named object type, or SYS.XMLType

Domain (named primitive type)

3-26 Oracle Call Interface Programmer's Guide

Typecodes

Relationship Between SQLT and OCI_TYPECODE Values

Oracle Database recognizes two different sets of data type code values. One set is
distinguished by the SQLT_ prefix, the other by the OCI_TYPECODE_ prefix.

The SQLT typecodes are used by OCI to specify a data type in a bind or define
operation, enabling you to control data conversions between Oracle Database and OCI
client applications. The OCI_TYPECODE types are used by Oracle's type system to
reference or describe predefined types when manipulating or creating user-defined
types.

In many cases, there are direct mappings between SQLT and OCI_TYPECODE values. In
other cases, however, there is not a direct one-to-one mapping. For example, OCI_
TYPECODE_SIGNEDS, OCI_TYPECODE_SIGNED16, OCI_TYPECODE_SIGNED32, OCI_TYPECODE_
INTEGER, OCI_TYPECODE_OCTET, and OCI_TYPECODE_SMALLINT are all mapped to the
SQLT_INT type.

Table 3-11 illustrates the mappings between SQLT and OCI_TYPECODE types.

Table 3-11 OCI_TYPECODE to SQLT Mappings

Oracle Type System Typename Oracle Type System Type Equivalent SQLT Type
BFILE OCI_TYPECODE_BFILE SQLT_BFILE

BLOB OCI_TYPECODE_BLOB SQLT_BLOB

CHAR OCI_TYPECODE_CHAR (n) SQLT_AFC(n)!

CLOB OCI_TYPECODE_CLOB SQLT_CLOB
COLLECTION 0CI_TYPECODE_NAMEDCOLLECTION SQLT_NCO

DATE OCI_TYPECODE_DATE SQLT_DAT
TIMESTAMP OCI_TYPECODE_TIMESTAMP SQLT_TIMESTAMP
TIMESTAMP WITH TIME ZONE OCI_TYPECODE_TIMESTAMP_TZ SQLT_TIMESTAMP_TZ
TIMESTAMP WITH LOCAL TIME ZONE OCI_TYPECODE_TIMESTAMP_LTZ SQLT_TIMESTAMP_LTZ
INTERVAL YEAR TO MONTH OCI_TYPECODE_INTERVAL_YM SQLT_INTERVAL_YM
INTERVAL DAY TO SECOND OCI_TYPECODE_INTERVAL_DS SQLT_INTERVAL_DS
FLOAT OCI_TYPECODE_FLOAT (b) SQLT_FLT (8)2
DECIMAL OCI_TYPECODE_DECIMAL (p) SQLT_NUM (p, 0)°
DOUBLE OCI_TYPECODE_DOUBLE SQLT_FLT (8)
BINARY_FLOAT OCI_TYPECODE_BFLOAT SQLT_BFLOAT
BINARY_DOUBLE OCI_TYPECODE_BDOUBLE SQLT_BDOUBLE
INTEGER OCI_TYPECODE_INTEGER SQLT_INT (i)*
NUMBER OCI_TYPECODE_NUMBER (p, S) SQLT_NUM (p, s)?
OCTET OCI_TYPECODE_OCTET SQLT _INT (1)
POINTER OCI_TYPECODE_PTR <NONE>

RAW OCI_TYPECODE_RAW SQLT_LVB

REAL OCI_TYPECODE_REAL SQLT_FLT (4)

REF OCI_TYPECODE_REF SQLT_REF

OBJECT or SYS.XMLType OCI_TYPECODE_OBJECT SQLT_NTY

Data Types 3-27

Definitions in oratypes.h

Table 3-11 (Cont.) OCI_TYPECODE to SQLT Mappings

Oracle Type System Typename

Oracle Type System Type

Equivalent SQLT Type

SIGNED(8)
SIGNED(16)
SIGNED(32)

SMALLINT

TABLE®
UNSIGNED (8)
UNSIGNED (16)
UNSIGNED (32)
VARRAY®

VARCHAR

VARCHAR2

OCI_TYPECODE_SIGNEDS
OCI_TYPECODE_SIGNED16
OCI_TYPECODE_SIGNED32
OCI_TYPECODE_SMALLINT
OCI_TYPECODE_TABLE
OCI_TYPECODE_UNSIGNEDS
OCI_TYPECODE_UNSIGNED16
OCI_TYPECODE_UNSIGNED32
OCI_TYPECODE_VARRAY

OCI_TYPECODE_VARCHAR (n)

OCI_TYPECODE_VARCHAR?2 (n)

SQLT_INT (1)
SQLT_INT (2)
SQLT_INT (4)
SOLT_INT (i)*
<NONE>

SQLT_UIN (1)
SQLT_UIN (2)
SQLT_UIN (4)
<NONE>

SOLT_CHR (n)?

SQLT_VCS (n)!

digits.

o G e W

n is the size of the string in bytes.
These are floating-point numbers, the precision is given in terms of binary digits. b is the precision of the number in binary

This is equivalent to a NUMBER with no decimal places.

iis the size of the number in bytes, set as part of an OCI call.

p is the precision of the number in decimal digits; s is the scale of the number in decimal digits.
Can only be part of a named collection type.

Definitions in oratypes.h

Throughout this guide there are references to data types like ub2 or sb4, or to constants
like UB4MAXVAL. These types are defined in the oratypes.h header file, which is found
in the public directory. The exact contents may vary according to the operating system
that you are using.

Note: The use of the data types in oratypes.h is the only
supported means of supplying parameters to OCL

3-28 Oracle Call Interface Programmer's Guide

4

Using SQL Statements in OCI

This chapter discusses the concepts and steps involved in processing SQL statements
with Oracle Call Interface.

This chapter contains these topics:

s Overview of SQL Statement Processing
m Preparing Statements

» Binding Placeholders in OCI

= Executing Statements

s Describing Select-List Items

s Defining Output Variables in OCI

s Fetching Results

= Using Scrollable Cursors in OCI

Overview of SQL Statement Processing

Chapter 2 discussed the basic steps involved in any OCI application. This chapter
presents a more detailed look at the specific tasks involved in processing SQL
statements in an OCI program.

One of the most common tasks of an OCI program is to accept and process SQL
statements. This section outlines the specific steps involved in this processing.

Once you have allocated the necessary handles and connected to an Oracle database,
follow the steps illustrated in Figure 4-1.

Using SQL Statements in OCI 4-1

Overview of SQL Statement Processing

Figure 4-1 Steps in Processing SQL Statements

—> SFt)arsepné:re?nt OCIStmtPrepare() or OCIStmtPrepare2()
indByName() or indByPos
v OCIBindByN OCIBindByP:
Bind OCIBindObiject()
Placeholders* OCIBindArrayOfStruct()
s OCIBindDynamic()
Execute
—> Statement OCIStmtExecute()
v
Describe OClIParamGet()
Select-list ltems* OCIAttrGet()
v OCIDefineByPos()
Define OCIDefineObject()
Output Variables* OCIDefineArrayOfStruct()
3 OCIDefineDynamic()
Fetch and
Process Data* OCIStmtFetch()

* These steps performed
if necessary

1. Prepare the statement. Define an application request using OCIStmtPrepare2() or
OCIStmtPrepare(). OCIStmtPrepare2() is an enhanced version of
OCIStmtPrepare() that was introduced to support statement caching.

2. Bind placeholders, if necessary. For DML statements and queries with input
variables, perform one or more of the following bind calls to bind the address of
each input variable (or PL/SQL output variable) or array to each placeholder in
the statement.

= OCIBindByPos()

s OCIBindByName()

= OCIBindObject()

= OCIBindDynamic()

s OCIBindArrayOfStruct()

3. Execute the statement by calling OCIStmtExecute(). For DDL statements, no
further steps are necessary.

4. Describe the select-list items, if necessary, using OCIParamGet() and OCIAttrGet().
This is optional step is not required if the number of select-list items and the
attributes of each item (such as its length and data type) are known at compile
time.

5. Define output variables, if necessary. For queries, perform one or more define calls
to OClIDefineByPos(), OCIDefineObject(), OCIDefineDynamic(), or
OClIDefineArrayOfStruct() to define an output variable for each select-list item in
the SQL statement. Note that you do not use a define call to define the output
variables in an anonymous PL/SQL block. You did this when you bound the data.

6. Fetch the results of the query, if necessary, by calling OCIStmtFetch2().

After these steps have been completed, the application can free allocated handles and
then detach from the server, or it may process additional statements.

4-2 Oracle Call Interface Programmer's Guide

Preparing Statements

7.x Upgrade Note: OCI programs no longer require an explicit
parse step. If a statement must be parsed, that step occurs upon
execution, meaning that release 8.0 or later applications must issue
an execute command for both DML and DDL statements.

The following sections describe each step in detail.

Note: Some variation in the order of steps is possible. For
example, it is possible to do the define step before the execute step
if the data types and lengths of returned values are known at
compile time.

Additional steps beyond those listed earlier may be required if your application must
do any of the following;:

= Initiate and manage multiple transactions
= Manage multiple threads of execution

» Perform piecewise inserts, updates, or fetches

See Also: "Statement Caching in OCI" on page 9-26

Preparing Statements

SQL and PL/SQL statements are prepared for execution by using the statement
prepare call and any necessary bind calls. In this phase, the application specifies a SQL
or PL/SQL statement and binds associated placeholders in the statement to data for
execution. The client-side library allocates storage to maintain the statement prepared
for execution.

An application requests a SQL or PL/SQL statement to be prepared for execution
using the OCIStmtPrepare2() or OCIStmtPrepare() call and passes to this call a
previously allocated statement handle. This is a completely local call, requiring no
round-trip to the server. No association is made between the statement and a
particular server at this point.

Following the request call, an application can call OCIAttrGet() on the statement
handle, passing OCI_ATTR_STMT_TYPE to the attrtype parameter, to determine what
type of SQL statement was prepared. The possible attribute values and corresponding
statement types are listed in Table 4-1.

Table 4-1 OCI_ATTR_STMT_TYPE Values and Statement Types

Attribute Value Statement Type
OCI_STMT_SELECT SELECT statement
OCI_STMT_UPDATE UPDATE statement
OCI_STMT_DELETE DELETE statement
OCI_STMT_INSERT INSERT statement
OCI_STMT_CREATE CREATE statement
OCI_STMT_DROP DROP statement
OCI_STMT_ALTER ALTER statement

Using SQL Statements in OCI 4-3

Binding Placeholders in OCI

Table 4-1 (Cont.) OCI_ATTR_STMT_TYPE Values and Statement Types

Attribute Value Statement Type

OCI_STMT_BEGIN BEGIN... (PL/SQL)

OCI_STMT_DECLARE DECLARE... (PL/SQL)
See Also:

s "Using PL/SQL in an OCI Program" on page 2-29

s "OCIStmtPrepare2()" on page 17-12 or "OCIStmtPrepare()" on
page 17-10

Using Prepared Statements on Multiple Servers

A prepared application request can be executed on multiple servers at run time by
reassociating the statement handle with the respective service context handles for the
servers. All information about the current service context and statement handle
association is lost when a new association is made.

For example, consider an application such as a network manager, which manages
multiple servers. In many cases, it is likely that the same SELECT statement must be
executed against multiple servers to retrieve information for display. OCI allows the
network manager application to prepare a SELECT statement once and execute it
against multiple servers. It must fetch all of the required rows from each server before
reassociating the prepared statement with the next server.

Note: If a prepared statement must be reexecuted frequently on
the same server, it is more efficient to prepare a new statement for
another service context.

Binding Placeholders in OCI

Most DML statements, and some queries (such as those with a WHERE clause), require a
program to pass data to Oracle Database as part of a SQL or PL/SQL statement. This
data can be constant or literal, known when your program is compiled. For example,
the following SQL statement, which adds an employee to a database, contains several
literals, such as 'BESTRY' and 2365:

INSERT INTO emp VALUES
(2365, 'BESTRY', 'PROGRAMMER', 2000, 20)

Coding a statement like this into an application would severely limit its usefulness.
You must change the statement and recompile the program each time you add a new
employee to the database. To make the program more flexible, you can write the
program so that a user can supply input data at run time.

When you prepare a SQL statement or PL/SQL block that contains input data to be
supplied at run time, placeholders in the SQL statement or PL/SQL block mark where
data must be supplied. For example, the following SQL statement contains five
placeholders, indicated by the leading colons (: ename), that show where input data
must be supplied by the program.

INSERT INTO emp VALUES
(:empno, :ename, :job, :sal, :deptno)

4-4 Oracle Call Interface Programmer's Guide

Executing Statements

You can use placeholders for input variables in any DELETE, INSERT, SELECT, or UPDATE
statement, or in a PL/SQL block, in any position in the statement where you can use
an expression or a literal value. In PL/SQL, placeholders can also be used for output
variables.

Placeholders cannot be used to represent other Oracle objects such as tables. For
example, the following is not a valid use of the emp placeholder:

INSERT INTO :emp VALUES
(12345, 'OERTEL', 'WRITER', 50000, 30)

For each placeholder in a SQL statement or PL/SQL block, you must call an OCI
routine that binds the address of a variable in your program to that placeholder. When
the statement executes, the database gets the data that your program placed in the
input variables or bind variables and passes it to the server with the SQL statement.

Binding is used for both input and output variables in nonquery operations. In
Example 4-1, the variables empno_out, ename_out, job_out, sal_out, and deptno_out
should be bound. These are outbinds (as opposed to regular inbinds).

Example 4-1 Binding Both Input and Output Variables in Nonquery Operations
INSERT INTO emp VALUES
(:empno, :ename, :job, :sal, :deptno)
RETURNING
(empno, ename, job, sal, deptno)
INTO
(:empno_out, :ename_out, :job_out, :sal_out, :deptno_out)

See Also: Chapter 5 for detailed information about implementing
bind operations

Rules for Placeholders
The rules for forming placeholders are as follows:
» The first character is a colon (":").

= The colon is followed by a combination of underscore ("_"), Ato Z,ato z, or 0 to 9.
However, the first character following the colon cannot be an underscore.

» The letters must be only from the English alphabet, and only the first 30 characters
after the colon are significant. The name is case-insensitive.

s The placeholder can consist of only digits after the colon. If it is only digits, the
placeholder must be less than 65536. If the name starts with a digit, then only
digits are allowed.

s The hyphen ("-") is not allowed.

Executing Statements

An OCI application executes prepared statements individually using
OCIStmtExecute().

When an OCI application executes a query, it receives from the Oracle database data
that matches the query specifications. Within the database, the data is stored in
Oracle-defined formats. When the results are returned, the OCI application can request
that data be converted to a particular host language format, and stored in a particular
output variable or buffer.

Using SQL Statements in OCI 4-5

Executing Statements

For each item in the select list of a query, the OCI application must define an output
variable to receive the results of the query. The define step indicates the address of the
buffer and the type of the data to be retrieved.

Note: If output variables are defined for a SELECT statement before
a call to OCIStmtExecute(), the number of rows specified by the
iters parameter are fetched directly into the defined output buffers
and additional rows equivalent to the prefetch count are
prefetched. If there are no additional rows, then the fetch is
complete without calling OCIStmtFetch2().

For nonqueries, the number of times the statement is executed during array operations
equals iters - rowoff, where rowoff is the offset in the bound array, and is also a
parameter of the OCIStmtExecute() call.

For example, if an array of 10 items is bound to a placeholder for an INSERT statement,
and iters is set to 10, all 10 items are inserted in a single execute call when rowoff is
zero. If rowoff is set to 2, only 8 items are inserted.

See Also: "Defining Output Variables in OCI" on page 4-12

Execution Snapshots

The OCIStmtExecute() call provides the ability to ensure that multiple service contexts
operate on the same consistent snapshot of the database's committed data. This is
achieved by taking the contents of the snap_out parameter of one OCIStmtExecute()
call and passing that value as the snap_in parameter of the next OCIStmtExecute()
call.

Note: Uncommitted data in one service context is not visible to
another context, even when both calls are using the same snapshot.

The data type of both the snap_out and snap_in parameter is OCISnapshot.
OClISnapshot is an OCI snapshot descriptor that is allocated with the
OClIDescriptorAlloc() function.

See Also: "OCI Descriptors" on page 2-9

It is not necessary to specify a snapshot when calling 0CIStmtExecute (). The following
sample code shows a basic execution in which the snapshot parameters are passed as
NULL.

checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(OCISnapshot *)NULL, (OCISnapshot *) NULL, OCI_DEFAULT));

Note: The checkerr () function, which is user-developed,
evaluates the return code from an OCI application.

Execution Modes of OCIStmtExecute()

You can specify a number of modes for the OCIStmtExecute() call. This section
describes the OCIStmtExecute() call. See "OCIStmtExecute()" on page 17-3 for other
values of the parameter mode.

4-6 Oracle Call Interface Programmer's Guide

Executing Statements

Batch Error Mode

OCI provides the ability to perform array DML operations. For example, an
application can process an array of INSERT, UPDATE, or DELETE statements with a single
statement execution. If one of the operations fails due to an error from the server, such
as a unique constraint violation, the array operation terminates, and OCI returns an
error. Any rows remaining in the array are ignored. The application must then
reexecute the remainder of the array, and go through the whole process again if it
encounters more errors, which causes additional round-trips.

To facilitate processing of array DML operations, OCI provides the batch error mode
(also called the enhanced DML array feature). This mode, which is specified in the
OCIStmtExecute() call, simplifies DML array processing if there are one or more
errors. In this mode, OCI attempts to insert, update, or delete all rows, and collects
information about any errors that occurred. The application can then retrieve error
information and reexecute any DML operations that failed during the first call. In this
way, all DML operations in the array are attempted in the first call, and any failed
operations can be reissued in a second call.

Note: This feature is only available to applications linked with
release 8.1 or later OCI libraries running against a release 8.1 or
later server. Applications must also be recoded to account for the
new program logic described in this section.

This mode is used as follows:

1. The user specifies OCI_BATCH_ERRORS as the mode parameter of the
OCIStmtExecute() call.

2. After performing an array DML operation with OCIStmtExecute(), the application
can retrieve the number of errors encountered during the operation by calling
OCIAttrGet() on the statement handle to retrieve the OCI_ATTR_NUM_DML_ERRORS
attribute, as shown in Example 4-2.

Example 4-2 Calling OCIAttrGet() to Retrieve the Number of Errors Encountered During
an Array DML Operation
ub4 num_errs;
OCIAttrGet (stmtp, OCI_HTYPE STMT, &num_errs, 0, OCI_ATTR_NUM_ DML_ERRORS,
errhp) ;

3. The application extracts each error using OCIParamGet(), along with its row
information, from the error handle that was passed to the OCIStmtExecute() call.
To retrieve the information, the application must allocate an additional new error
handle for the OCIParamGet() call, populating the new error handle with batched
error information. The application obtains the syntax of each error with
OClErrorGet(), and the row offset into the DML array at which the error occurred,
by calling OCIAttrGet() on the new error handle.

For example, after the num_errs amount has been retrieved, the application can
issue the following calls shown in Example 4-3.

Example 4-3 Retrieving Information About Each Error Following an Array DML
Operation

OCIError errhndl, errhp2;
for (i=0; i<num_errs; i++)

{

Using SQL Statements in OCI 4-7

Executing Statements

OCIParamGet (errhp, OCI_HTYPE_ERROR, errhp2, (void **)&errhndl, i);

OCIAttrGet (errhndl, OCI_HTYPE ERROR, &row_offset, O,
OCI_ATTR_DML_ROW_OFFSET, errhp2);

OCIErrorGet (..., errhndl, ...);

Following this operation, the application can correct the bind information for the
appropriate entry in the array using the diagnostic information retrieved from the
batched error. Once the appropriate bind buffers are corrected or updated, the
application can reexecute the associated DML statements.

Because it cannot be determined at compile time which rows in the first execution
may cause errors, the binds for the subsequent DML should be done dynamically
by passing in the appropriate buffers at run time. The bind buffers used in the
array binds done on the first DML operation can be reused.

Example of Batch Error Mode

Example 44 shows an example of how the batch error execution mode might be used.
In this example, assume that you have an application that inserts five rows (with two
columns, of types NUMBER and CHAR) into a table. Furthermore, assume that only two
rows (1 and 3) are successfully inserted in the initial DML operation. The user then
proceeds to correct the data (wrong data was being inserted the first time) and to issue
an update with the corrected data. The user uses statement handles stmtpl and stmtp2
to issue the INSERT and UPDATE statements, respectively.

Example 4-4 Using Batch Error Execution Mode

0CIBind *bindpl[2], *bindp2([2];

ub4 num_errs, row_off [MAXROWS], number [MAXROWS] = {1,2,3,4,5};
char grade[MAXROWS] = {'A','B','C','D','E'};

OCIError *errhp2;

OCIError *errhndl [MAXROWS];

/* Array bind all the positions */
OCIBindByPos (stmtpl,&bindpl[0],errhp,1, (void *)&number([0],
sizeof (number[0]),SQLT_INT, (void *)0, (ub2 *)0, (ub2 *)O0,
0, (ub4 *)0,0CI_DEFAULT) ;
OCIBindByPos (stmtpl,&bindpl([1],errhp,2, (void *)&gradel0],
sizeof (grade[0]),SQLT CHR, (void *)0, (ub2 *)0, (ub2 *)0,0,
(ub4 *)0,0CI_DEFAULT) ;
/* execute the array INSERT */
OCIStmtExecute (svchp,stmtpl,errhp,5,0,0,0,0CI_BATCH_ERRORS) ;
/* get the number of errors. A different error handler errhp2 is used so that
* the state of errhp is not changed */
OCIAttrGet (stmtpl, OCI_HTYPE_STMT, &num_errs, 0,
OCI_ATTR_NUM_DML_ERRORS, errhp2);
if (num_errs) {
/* The user can do one of two things: 1) Allocate as many */
/* error handles as number of errors and free all handles */
/* at a later time; or 2) Allocate one err handle and reuse */
/* the same handle for all the errors */
for (1 = 0; 1 < num_errs; i++) {
OCIHandleAlloc((void *)envhp, (void **)&errhndl[i],
(ub4) OCI_HTYPE_ERROR, 0, (void *) 0);
OCIParamGet (errhp, OCI_HTYPE_ERROR, errhp2, &errhndl[i], 1i);
OCIAttrGet (errhndl[i], OCI_HTYPE_ERROR, &row_off[i], 0,
OCI_ATTR_DMIL_ROW_OFFSET, errhp2);
/* get server diagnostics */
OCIErrorGet (..., errhndl[i], ...);
}

4-8 Oracle Call Interface Programmer's Guide

Describing Select-List Items

}
/* make corrections to bind data */
OCIBindByPos (stmtp2,&bindp2[0],errhp,1, (void *)0,sizeof (grade[0]),SQLT_INT,
(void *)0, (ub2 *)0, (ub2 *)0,0, (ub4 *)0,0CI_DATA_AT EXEC);
OCIBindByPos (stmtp2,&bindp2[1],errhp,2, (void *)0,sizeof (number[0]), SQLT_DAT,
(void *)0, (ub2 *)0, (ub2 *)0,0, (ub4d *)0,0CI_DATA_ AT_EXEC);
/* register the callback for each bind handle, row_off and position
* information can be passed to the callback function by means of context
* pointers.
*/
OCIBindDynamic (bindp2[0],errhp,ctxpl,my callback,0,0);
OCIBindDynamic (bindp2[1],errhp,ctxp2,my_callback,0,0);
/* execute the UPDATE statement */
OCIStmtExecute (svchp,stmtp2,errhp,num_errs,0,0,0,0CI_BATCH_ERRORS) ;

In Example 44, OCIBindDynamic() is used with a callback because the user does not
know at compile time what rows may return with errors. With a callback, you can
simply pass the erroneous row numbers, stored in row_off, through the callback
context and send only those rows that must be updated or corrected. The same bind
buffers can be shared between the INSERT and the UPDATE statement executions.

Describing Select-List ltems

If your OCI application is processing a query, you may need to obtain more
information about the items in the select list. This is particularly true for dynamic
queries whose contents are not known until run time. In this case, the program may
need to obtain information about the data types and column lengths of the select-list
items. This information is necessary to define output variables that may receive query
results.

For example, consider a query where the program has no prior information about the
columns in the employees table:

SELECT * FROM employees

There are two types of describes available: implicit and explicit.

An implicit describe does not require any special calls to retrieve describe information
from the server, although special calls are necessary to access the information. An
implicit describe allows an application to obtain select-list information as an attribute
of the statement handle after a statement has been executed without making a specific
describe call. It is called implicit because no describe call is required. The describe
information comes free with the statement execution.

An explicit describe requires the application to call a particular function to bring the
describe information from the server. An application may describe a select list (query)
either implicitly or explicitly. Other schema elements must be described explicitly.

You can describe a query explicitly before execution by specifying 0CI_DESCRIBE_ONLY
as the mode of OCIStmtExecute(), which does not execute the statement, but returns
the select-list description. For performance reasons, Oracle recommends that
applications use the implicit describe, which comes free with a standard statement
execution.

An explicit describe with the OCIDescribeAny() call obtains information about schema
objects rather than select lists.

In all cases, the specific information about columns and data types is retrieved by
reading handle attributes.

Using SQL Statements in OCI 4-9

Describing Select-List Items

See Also: Chapter 6 for information about using
OClIDescribeAny() to obtain metadata pertaining to schema objects

Implicit Describe

After a SQL statement is executed, information about the select list is available as an
attribute of the statement handle. No explicit describe call is needed.

To retrieve information about multiple select-list items, an application can call
OCIParamGet() with the pos parameter set to 1 the first time, and then iterate the value
of pos and repeat the OCIParamGet() call until OCI_ERROR with ORA-24334 is returned.
An application could also specify any position 7 to get a column at random.

Once a parameter descriptor has been allocated for a position in the select list, the
application can retrieve specific information by calling OCIAttrGet() on the parameter
descriptor. Information available from the parameter descriptor includes the data type
and maximum size of the parameter.

The sample code in Example 4-5Implicit Describe - Select List Is Available as an
Attribute of the Statement Handle shows a loop that retrieves the column names and
data types corresponding to a query following query execution. The query was
associated with the statement handle by a prior call to OCIStmtPrepare2() or
OCIStmtPrepare().

Example 4-5 Implicit Describe - Select List Is Available as an Attribute of the Statement

Handle

OCIParam *mypard = (OCIParam *) 0;

ub?2 dtype;

text *col_name;

ub4 counter, col_name_len, char_ semantics;
ub2 col_width;

sbd parm_status;

text *sglstmt = (text *)"SELECT * FROM employees WHERE employee_id = 100";

checkerr (errhp, OCIStmtPrepare(stmthp, errhp, (OraText *)sglstmt,
(ubd)strlen((char *)sglstmt),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, 0, 0, (OCISnapshot *)O0,
(OCISnapshot *)0, OCI_DEFAULT));

/* Request a parameter descriptor for position 1 in the select list */
counter = 1;
parm_status = OCIParamGet ((void *)stmthp, OCI_HTYPE_STMT, errhp,

(void **)&mypard, (ub4) counter);

/* Loop only if a descriptor was successfully retrieved for
current position, starting at 1 */

while (parm_status == OCI_SUCCESS) ({
/* Retrieve the data type attribute */
checkerr (errhp, OCIAttrGet((void*) mypard, (ub4) OCI_DTYPE_PARAM,
(void*) &dtype, (ub4 *) 0, (ub4) OCI_ATTR_DATA_TYPE,
(OCIError *) errhp));

/* Retrieve the column name attribute */
col_name_len = 0;

4-10 Oracle Call Interface Programmer's Guide

Describing Select-List Items

checkerr (errhp, OCIAttrGet((void*) mypard, (ub4) OCI_DTYPE_PARAM,
(void**) &col_name, (ub4 *) &col_name_len, (ub4) OCI_ATTR_NAME,
(OCIError *) errhp));

/* Retrieve the length semantics for the column */
char_semantics = 0;
checkerr (errhp, OCIAttrGet((void*) mypard, (ub4) OCI_DTYPE_PARAM,
(void*) &char_semantics, (ub4 *) 0, (ub4) OCI_ATTR_CHAR_USED,
(OCIError *) errhp));
col _width = 0;
if (char_semantics)
/* Retrieve the column width in characters */
checkerr (errhp, OCIAttrGet((void*) mypard, (ub4) OCI_DTYPE_PARAM,
(void*) &col_width, (ub4 *) 0, (ub4) OCI_ATTR_CHAR_SIZE,
(OCIError *) errhp));
else
/* Retrieve the column width in bytes */
checkerr (errhp, OCIAttrGet ((void*) mypard, (ub4) OCI_DTYPE_PARAM,
(void*) &col_width, (ub4 *) 0, (ub4) OCI_ATTR_DATA_ SIZE,
(OCIError *) errhp));

/* increment counter and get next descriptor, if there is one */
counter++;
parm_status = OCIParamGet ((void *)stmthp, OCI_HTYPE_STMT, errhp,
(void **)s&mypard, (ub4) counter);
} /* while */

The checkerr () function in Example 4-5 is used for error handling. The complete
listing can be found in the first sample application in Appendix B.

The calls to OCIAttrGet() and OCIParamGet() are local calls that do not require a
network round-trip, because all of the select-list information is cached on the client
side after the statement is executed.

See Also:
s "OCIParamGet()" on page 16-59
s "OCIArrayDescriptorAlloc()" on page 16-48

s '"Parameter Attributes" on page 6-4 for a list of the specific
attributes of the parameter descriptor that may be read by
OClIArrayDescriptorAlloc()

Explicit Describe of Queries

You can describe a query explicitly before execution by specifying 0CI_DESCRIBE_ONLY
as the mode of OCIStmtExecute(); this does not execute the statement, but returns the
select-list description.

Note: To maximize performance, Oracle recommends that
applications execute the statement in default mode and use the
implicit describe that accompanies the execution.

The code in Example 4-6 demonstrates the use of explicit describe in a select list to
return information about columns.

Using SQL Statements in OCI 4-11

Defining Output Variables in OCI

Example 4-6 Explicit Describe - Returning the Select-List Description for Each Column

int 1 = 0;

ub4 numcols = 0;
ub2 type = 0;
OCIParam *colhd = (OCIParam *) 0; /* column handle */

text *sglstmt = (text *)"SELECT * FROM employees WHERE employee_id = 100";

checkerr (errhp, OCIStmtPrepare(stmthp, errhp, (OraText *)sglstmt,
(ub4)strlen((char *)sqglstmt),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

/* initialize svchp, stmhp, errhp, rowoff, iters, snap_in, snap_out */

/* set the execution mode to OCI_DESCRIBE_ONLY. Note that setting the mode to
OCI_DEFAULT does an implicit describe of the statement in addition to executing
the statement */

checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, 0, 0,
(OCISnapshot *) 0, (OCISnapshot *) 0, OCI_DESCRIBE_ONLY)) ;

/* Get the number of columns in the query */
checkerr (errhp, OCIAttrGet((void *)stmthp, OCI_HTYPE_STMT, (void *)&numcols,
(ub4 *)0, OCI_ATTR_PARAM_COUNT, errhp));

/* go through the column list and retrieve the data type of each column.
Start from pos = 1 */
for (1 = 1; 1 <= numcols; i++)
{

/* get parameter for column i */

checkerr (errhp, OCIParamGet ((void *)stmthp, OCI_HTYPE_STMT, errhp, (void
**)&colhd, 1i));

/* get data-type of column i */

type = 0;

checkerr (errhp, OCIAttrGet ((void *)colhd, OCI_DTYPE_PARAM,
(void *)&type, (ub4 *)0, OCI_ATTR_DATA_TYPE, errhp));

Defining Output Variables in OCI

Query statements return data from the database to your application. When processing
a query, you must define an output variable or an array of output variables for each
item in the select list from which to retrieve data. The define step creates an association
that determines where returned results are stored, and in what format.

For example, to process the following statement you would normally define two
output variables: one to receive the value returned from the name column, and one to
receive the value returned from the ssn column:

SELECT name, ssn FROM employees
WHERE empno = :empnum

See Also: Chapter 5, "Binding and Defining in OCI"

4-12 Oracle Call Interface Programmer's Guide

Fetching Results

Fetching Results

If an OCI application has processed a query, it is typically necessary to fetch the results
with OCIStmtFetch2() after the statement has completed execution. The
0CIStmtFetch2 () function supports scrollable cursors.

See Also: "Using Scrollable Cursors in OCI" on page 4-14

Fetched data is retrieved into output variables that have been specified by define
operations.

Note: If output variables are defined for a SELECT statement before
a call to OCIStmtExecute(), the number of rows specified by the
iters parameter is fetched directly into the defined output buffers

See Also:

» These statements mentioned previously fetch data associated
with the sample code in "Steps Used in OCI Defining" on
page 5-14. See that example for more information.

= "Overview of Defining in OCI" on page 5-13 for information
about defining output variables

Fetching LOB Data

If LOB columns or attributes are part of a select list, they can be returned as LOB
locators or actual LOB values, depending on how you define them. If LOB locators are
fetched, then the application can perform further operations on these locators through
the OCILobXXX functions.

See Also:

s Chapter 7 for more information about working with LOB
locators in OCI

s "Defining LOB Output Variables" on page 5-16 for usage and
examples of selecting LOB data without the use of locators

Setting Prefetch Count

To minimize server round-trips and optimize performance, OCI can prefetch result set
rows when executing a query. You can customize this prefetching by setting either the
OCI_ATTR_PREFETCH_ROWS or OCI_ATTR_PREFETCH_MEMORY attribute of the statement
handle using the OCIAttrSet() function. These attributes are used as follows:

»s OCI_ATTR_PREFETCH_ROWS sets the number of rows to be prefetched. If it is not set,
then the default value is 1. If the iters parameter of OCIStmtExecute() is 0 and
prefetching is enabled, the rows are buffered during calls to OCIStmtFetch2(). The
prefetch value can be altered after execution and between fetches.

ms OCI_ATTR_PREFETCH_MEMORY sets the memory allocated for rows to be prefetched.
The application then fetches as many rows as can fit into that much memory.

When both of these attributes are set, OCI prefetches rows up to the OCI_ATTR_
PREFETCH_ROWS limit unless the OCI_ATTR_PREFETCH_MEMORY limit is reached, in which
case OCI returns as many rows as can fit in a buffer of size 0CI_ATTR_PREFETCH_
MEMORY.

Using SQL Statements in OCI 4-13

Using Scrollable Cursors in OClI

By default, prefetching is turned on, and OCI fetches one extra row, except when
prefetching cannot be supported for a query (see the note that follows). To turn
prefetching off, set both the OCI_ATTR_PREFETCH_ROWS and OCI_ATTR_PREFETCH_MEMORY
attributes to zero.

If both 0OCI_ATTR_PREFETCH_ROWS and OCI_ATTR_PREFETCH_MEMORY attributes are
explicitly set, OCI uses the tighter of the two constraints to determine the number of
rows to prefetch.

To prefetch exclusively based on the memory constraint, set the OCI_ATTR_PREFETCH_
MEMORY attribute and be sure to disable the OCI_ATTR_PREFETCH_ROWS attribute by
setting it to zero (to override the default setting of 1 row).

To prefetch exclusively based on the number of rows constraint, set the OCI_ATTR_
PREFETCH_ROWS attribute and disable the OCI_ATTR_PREFETCH_MEMORY attribute by
setting it to zero (if it was ever explicitly set to a non-zero value).

Prefetching is possible for REF CURSORs and nested cursor columns. By default,
prefetching is not turned on for REF CURSORs. To turn on prefetching for REF CURSORS,
set the OCI_ATTR_PREFETCH ROWS or OCI_ATTR_PREFETCH MEMORY attribute before
fetching rows from the REF CURSOR. When a REF CURSOR is passed multiple times
between an OCI application and PL/SQL and fetches on the REF CURSOR are done in
OCI and in PL/SQL, the rows prefetched by OCI (if enabled) cause the application to
behave as if out-of-order rows are being fetched in PL/SQL. In such situations, OCI
prefetch should not be enabled on REF CURSORs.

Note: Prefetching is not in effect if LONG, LOB or Opaque Type columns
(such as XMLType) are part of the query.

See Also: "Statement Handle Attributes” on page A-27

Using Scrollable Cursors in OCI

A cursor is a current position in a result set. Execution of a cursor puts the results of the
query into a set of rows called the result set that can be fetched either sequentially or
nonsequentially. In the latter case, the cursor is known as a scrollable cursor.

A scrollable cursor supports forward and backward access into the result set from a
given position, by using either absolute or relative row number offsets into the result
set.

Rows are numbered starting at one. For a scrollable cursor, you can fetch previously
fetched rows, the nth row in the result set, or the nth row from the current position.
Client-side caching of either the partial or entire result set improves performance by
limiting calls to the server.

Oracle Database does not support DML operations on scrollable cursors. A cursor
cannot be made scrollable if the LONG data type is part of the select list.

Moreover, fetches from a scrollable statement handle are based on the snapshot at
execution time. OCI client prefetching works with OCI scrollable cursors. The size of
the client prefetch cache can be controlled by the existing OCI attributes OCI_ATTR_
PREFETCH_ROWS and OCI_ATTR_PREFETCH_MEMORY.

Note: Do not use scrollable cursors unless you require their
functionality, because they use more server resources and can have
greater response times than nonscrollable cursors.

4-14 Oracle Call Interface Programmer's Guide

Using Scrollable Cursors in OCI

The OCIStmtExecute() call has an execution mode for scrollable cursors, 0CI_STMT
SCROLLABLE_READONLY. The default for statement handles is nonscrollable, forward
sequential access only, where the mode is 0OCI_FETCH_NEXT. You must set this execution
mode each time the statement handle is executed.

The statement handle attribute OCI_ATTR_CURRENT_POSITION can be retrieved only by
using OCIAttrGet(). This attribute cannot be set by the application; it indicates the
current position in the result set.

For nonscrollable cursors, OCI_ATTR_ROW_COUNT is the total number of rows fetched
into the user buffers with the OCIStmtFetch2() calls since this statement handle was
executed. Because nonscrollable cursors are forward sequential only, OCI_ATTR_ROW_
COUNT also represents the highest row number detected by the application.

For scrollable cursors, OCI_ATTR_ROW_COUNT represents the maximum (absolute) row
number fetched into the user buffers. Because the application can arbitrarily position
the fetches, this does not have to be the total number of rows fetched into the user’s
buffers since the (scrollable) statement was executed.

The attribute OCI_ATTR_ROWS_FETCHED on the statement handle represents the number
of rows that were successfully fetched into the user's buffers in the last fetch call or
execute. It works for both scrollable and nonscrollable cursors.

Use the OCIStmtFetch2() call, instead of the 0CIStmtFetch () call, which is retained for
backward compatibility. You are encouraged to use OCIStmtFetch2() for all new
applications, even those not using scrollable cursors. This call also works for
nonscrollable cursors, but can raise an error if any other orientation besides 0CI_
DEFAULT or OCI_FETCH_NEXT is passed.

Scrollable cursors are supported for remote mapped queries. Transparent application
failover (TAF) is supported for scrollable cursors.

Note: If you call OCIStmtFetch2() with the nrows parameter set to
0, the cursor is canceled.

See Also:
s "OCIStmtFetch2()" on page 17-6
» "Setting Prefetch Count” on page 4-13

Increasing Scrollable Cursor Performance

Response time is improved if you use OCI client-side prefetch buffers. After calling
OCIStmtExecute() for a scrollable cursor, call OCIStmtFetch2() using OCI_FETCH_LAST
to obtain the size of the result set. Then set O0CI_ATTR_PREFETCH_ROWS to about 20% of
that size, and set OCI_PREFETCH_MEMORY if the result set uses a large amount of
memory.

Example of Access on a Scrollable Cursor

Assume that a result set is returned by the following SQL query, and that the table EMP
has 14 rows:

SELECT empno, ename FROM emp

One use of scrollable cursors is shown in Example 4-7.

Using SQL Statements in OCI 4-15

Using Scrollable Cursors in OClI

Example 4-7 Access on a Scrollable Cursor

/* execute the scrollable cursor in the scrollable mode */
OCIStmtExecute(svchp, stmthp, errhp, (ub4)0, (ub4)0, (CONST OCISnapshot *)NULL,
(OCISnapshot *) NULL, OCI_STMT SCROLLABLE_READONLY) ;

/* Fetches rows with absolute row numbers 6, 7, 8. After this call,

OCI_ATTR_CURRENT_POSITION = 8, OCI_ATTR_ROW_COUNT = 8 */

checkprint (errhp, OCIStmtFetch2 (stmthp, errhp, (ub4) 3,
OCI_FETCH_ABSOLUTE, (sb4) 6, OCI_DEFAULT);

/* Fetches rows with absolute row numbers 6, 7, 8. After this call,

OCI_ATTR_CURRENT_POSITION = 8, OCI_ATTR_ROW_COUNT = 8 */

checkprint (errhp, OCIStmtFetch2 (stmthp, errhp, (ub4) 3,
OCI_FETCH_RELATIVE, (sb4) -2, OCI_DEFAULT);

/* Fetches rows with absolute row numbers 14. After this call,

OCI_ATTR_CURRENT_POSITION = 14, OCI_ATTR_ROW_COUNT = 14 */

checkprint (errhp, OCIStmtFetch2 (stmthp, errhp, (ub4) 1,
OCI_FETCH_LAST, (sb4) 0, OCI_DEFAULT);

/* Fetches rows with absolute row number 1. After this call,
OCI_ATTR_CURRENT POSITION = 1, OCI_ATTR_ROW_COUNT = 14 */
checkprint (errhp, OCIStmtFetch2 (stmthp, errhp, (ub4) 1,
OCI_FETCH_FIRST, (sb4) 0, OCI_DEFAULT);

/* Fetches rows with absolute row numbers 2, 3, 4. After this call,
OCI_ATTR_CURRENT POSITION = 4, OCI_ATTR_ROW_COUNT = 14 */
checkprint (errhp, OCIStmtFetch2 (stmthp, errhp, (ub4) 3,
OCI_FETCH NEXT, (sb4) 0, OCI_DEFAULT);
/* Fetches rows with absolute row numbers 3,4,5,6,7. After this call,
OCI_ATTR_CURRENT_POSITION = 7, OCI_ATTR_ROW_COUNT = 14. It is assumed
the user's define memory is allocated. */
checkprint (errhp, OCIStmtFetch2 (stmthp, errhp, (ub4) 5,
OCI_FETCH_PRIOR, (sb4) 0, OCI_DEFAULT);

}
checkprint (errhp, status)
{
ub4 rows_fetched;
/* This checks for any OCI errors before printing the results of the fetch call
in the define buffers */
checkerr (errhp, status);
checkerr (errhp, OCIAttrGet ((CONST void *) stmthp, OCI_HTYPE_STMT,
(void *) &rows_fetched, (uint *) 0, OCI_ATTR_ROWS_FETCHED, errhp));

4-16 Oracle Call Interface Programmer's Guide

O

Binding and Defining in OCI

This chapter contains these topics:

s Overview of Binding in OCI

= Advanced Bind Operations in OCI

s Overview of Defining in OCI

= Advanced Define Operations in OCI

= Binding and Defining Arrays of Structures in OCI

= Binding and Defining Multiple Buffers

= DML with a RETURNING Clause in OCI

s Character Conversion in OCI Binding and Defining
s PL/SQL REF CURSORs and Nested Tables in OCI

= Runtime Data Allocation and Piecewise Operations in OCI

Overview of Binding in OCI

This chapter expands on the basic concepts of binding and defining, and provides
more detailed information about the different types of binds and defines you can use
in OCI applications. Additionally, this chapter discusses the use of arrays of structures,
and other issues involved in binding, defining, and character conversions.

For example, given the INSERT statement:
INSERT INTO emp VALUES

(:empno, :ename, :job, :sal, :deptno)
Then given the following variable declarations:
text *ename, *job;

sword empno, sal, deptno;

the bind step makes an association between the placeholder name and the address of
the program variables. The bind also indicates the data type and length of the program
variables, as illustrated in Figure 5-1.

See Also: "Steps Used in OCI Binding" on page 5-5 for the code
that implements this example

Binding and Defining in OCI 5-1

Overview of Binding in OCI

Figure 5-1 Using OCIBindByName() to Associate Placeholders with Program Variables

INSERT INTO emp (empno, ename, job, sal, deptno)

VALUES (:empno, :ename, :j sal, :deptno)
OCIBindByName () \ \\’\l
Address &empno ename &sal &deptno
Data Type integer string string integer integer
Length sizeof (empno) strlen(ename)+1l strlen(job)+l @ sizeof(sal) sizeof (deptno)

If you change only the value of a bind variable, it is not necessary to rebind it to
execute the statement again. Because the bind is by reference, as long as the address of
the variable and handle remain valid, you can reexecute a statement that references the
variable without rebinding.

Note: At the interface level, all bind variables are considered at
least IN and must be properly initialized. If the variable is a pure
OUT bind variable, you can set the variable to 0. You can also
provide a NULL indicator and set that indicator to -1 (NULL).

In the Oracle database, data types have been implemented for named data types, REFs
and LOBs, and they can be bound as placeholders in a SQL statement.

Note: For opaque data types (descriptors or locators) whose sizes
are not known, pass the address of the descriptor or locator pointer.
Set the size parameter to the size of the appropriate data structure,

(sizeof (structure)).

Named Binds and Positional Binds

The SQL statement in Figure 5-1 is an example of a named bind. Each placeholder in the
statement has a name associated with it, such as 'ename' or 'sal'. When this statement is
prepared and the placeholders are associated with values in the application, the
association is made by the name of the placeholder using the OCIBindByName() call
with the name of the placeholder passed in the placeholder parameter.

A second type of bind is known as a positional bind. In a positional bind, the
placeholders are referred to by their position in the statement rather than by their
names. For binding purposes, an association is made between an input value and the
position of the placeholder, using the OCIBindByPos() call.

To use the previous example for a positional bind:
INSERT INTO emp VALUES

(:empno, :ename, :job, :sal, :deptno)

The five placeholders are then each bound by calling OCIBindByPos() and passing the
position number of the placeholder in the position parameter. For example, the
:empno placeholder would be bound by calling OCIBindByPos() with a position of 1,
:ename with a position of 2, and so on.

5-2 Oracle Call Interface Programmer's Guide

Overview of Binding in OCI

In a duplicate bind, only a single bind call may be necessary. Consider the following
SQL statement, which queries the database for employees whose commission and
salary are both greater than a given amount:

SELECT empno FROM emp
WHERE sal > :some_value
AND comm > :some_value

An OCI application could complete the binds for this statement with a single call to
OCIBindByName() to bind the : some_value placeholder by name. In this case, all bind
placeholders for :some_value get assigned the same value as provided by the
OCIBindByName() call.

Now consider the case where a 6th placeholder is added that is a duplicate. For
example, add : ename as the 6th placeholder in the first previous example:

INSERT INTO emp VALUES
(:empno, :ename, :job, :sal, :deptno, :ename)

If you are using the OCIBindByName() call, just one bind call suffices to bind both
occurrences of the :ename placeholder. All occurrences of : ename in the statement will
get bound to the same value. Moreover, if new bind placeholders get added as a result
of which bind positions for existing bind placeholders change, you do not need to
change your existing bind calls in order to update bind positions. This is a distinct
advantage in using the OCIBindByName() call if your program evolves to add more
bind variables in your statement text.

If you are using the OCIBindByPos() call, however, you have increased flexibility in
terms of binding duplicate bind-parameters separately, if you need it. You have the
option of binding any of the duplicate occurrences of a bind parameter separately. Any
unbound duplicate occurrences of a parameter inherit the value from the first
occurrence of the bind parameter with the same name. The first occurrence must be
explicitly bound.

In the context of SQL statements, the position n indicates the bind parameter at the nth
position. However, in the context of PL/SQL statements, OCIBindByPos() has a
different interpretation for the position parameter: the position 7 in the bind call
indicates a binding for the nth unique parameter name in the statement when scanned
left to right.

Using the previous example again and the same SQL statement text, if you want to
bind the 6th position separately, the : ename placeholder would be bound by calling
OCIBindByPos() with a position of 6. Otherwise, if left unbound, : ename would inherit
the value from the first occurrence of the bind parameter with the same name, in this
case, from :ename in position 2.

OClI Array Interface

You can pass data to the Oracle database in various ways.

You can execute a SQL statement repeatedly using the OCIStmtExecute() routine and
supply different input values on each iteration.

You can use the Oracle array interface and input many values with a single statement
and a single call to OCIStmtExecute(). In this case, you bind an array to an input
placeholder, and the entire array can be passed at the same time, under the control of
the iters parameter.

Binding and Defining in OCl 5-3

Overview of Binding in OCI

The array interface significantly reduces round-trips to the database when you are
updating or inserting a large volume of data. This reduction can lead to considerable
performance gains in a busy client/server environment. For example, consider an
application that inserts 10 rows into the database. Calling OCIStmtExecute() 10 times
with single values results in 10 network round-trips to insert all the data. The same
result is possible with a single call to OCIStmtExecute() using an input array, which
involves only one network round-trip.

Note: When you use the OCI array interface to perform inserts,
row triggers in the database are fired as each row is inserted.

The maximum number of rows allowed in an array DML statement
is 4 billion -1 (3,999,999,999).

Binding Placeholders in PL/SQL

You process a PL/SQL block by placing the block in a string variable, binding any
variables, and then executing the statement containing the block, just as you would
with a single SQL statement.

When you bind placeholders in a PL/SQL block to program variables, you must use
OCIBindByName() or OCIBindByPos() to perform the basic binds for host variables
that are either scalars or arrays.

The following short PL/SQL block contains two placeholders, which represent IN
parameters to a procedure that updates an employee's salary, when given the
employee number and the new salary amount:

char plsqgl_statement[] = "BEGIN\
RAISE_SALARY (:emp_number, :new_sal);\
END; " ;

These placeholders can be bound to input variables in the same way as placeholders in
a SQL statement.

When processing PL/SQL statements, output variables are also associated with
program variables by using bind calls.

For example, consider the following PL/SQL block:

BEGIN
SELECT ename, sal,comm INTO :emp_name, :salary, :commission
FROM emp
WHERE empno = :emp_number;

END;

In this block, you would use OCIBindByName() to bind variables in place of the : emp_
name, :salary, and :commission output placeholders, and in place of the input
placeholder : emp_number.

Note: All buffers, even pure OUT buffers, must be initialized by
setting the buffer length to zero in the bind call, or by setting the
corresponding indicator to -1.

See Also: "Information for Named Data Type and REF Binds" on
page 12-26 for more information about binding PL/SQL
placeholders

5-4 Oracle Call Interface Programmer's Guide

Overview of Binding in OCI

Steps Used in OCI Binding

Placeholders are bound in several steps. For a simple scalar or array bind, it is only
necessary to specify an association between the placeholder and the data, by using
OCIBindByName() or OCIBindByPos().

Once the bind is complete, the OCI library detects where to find the input data or
where to put the PL/SQL output data when the SQL statement is executed. Program
input data does not need to be in the program variable when it is bound to the
placeholder, but the data must be there when the statement is executed.

The following code example in Example 5-1 shows handle allocation and binding for
each placeholder in a SQL statement.

Example 5-1 Handle Allocation and Binding for Each Placeholder in a SQL Statement

/* The SQL statement, associated with stmthp (the statement handle)

by calling OCIStmtPrepare() */

text *insert = (text *) "INSERT INTO emp (empno, ename, job, sal, deptno)\
VALUES (:empno, :ename, :job, :sal, :deptno)";

/* Bind the placeholders in the SQL statement, one per bind handle. */

checkerr (errhp, OCIBindByName (stmthp, &bndlp, errhp, (text *) ":ENAME",
strlen(":ENAME"), (ubl *) ename, enamelen+l, SQLT_STR, (void *) 0,
(ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT));

checkerr (errhp, OCIBindByName (stmthp, &bnd2p, errhp, (text *) ":JOB",
strlen(":J0OB"), (ubl *) job, joblen+l, SQLT STR, (void *)
&job_ind, (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT));

checkerr (errhp, OCIBindByName (stmthp, &bnd3p, errhp, (text *) ":SAL",
strlen(":SAL"), (ubl *) &sal, (sword) sizeof(sal), SQLT INT,
(void *) &sal_ind, (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0,
OCI_DEFAULT)) ;

checkerr (errhp, OCIBindByName (stmthp, &bnd4p, errhp, (text *) ":DEPTNO",
strlen(":DEPTNO"), (ubl *) &deptno, (sword) sizeof (deptno), SQLT INT,
(void *) 0, (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT));

checkerr (errhp, OCIBindByName (stmthp, &bnd5p, errhp, (text *) ":EMPNO",
strlen(":EMPNO"), (ubl *) &empno, (sword) sizeof (empno), SQLT_INT,
(void *) 0, (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0,0CI_DEFAULT));

Note: The checkerr () function evaluates the return code from an
OCI application. The code for the function is in the Example for
"OCIErrorGet()" on page 17-165.

PL/SQL Block in an OCI Program

Perhaps the most common use for PL/SQL blocks in OCI is to call stored procedures
or stored functions. Assume that there is a procedure named RAISE_SALARY stored in
the database, and you embed a call to that procedure in an anonymous PL/SQL block,
and then process the PL/SQL block.

The following program fragment shows how to embed a stored procedure call in an
OCI application. The program passes an employee number and a salary increase as
inputs to a stored procedure called raise_salary:

raise_salary (employee_num IN, sal_increase IN, new_salary OUT);

Binding and Defining in OCl 5-5

Overview of Binding in OCI

This procedure raises a given employee's salary by a given amount. The increased
salary that results is returned in the stored procedure's variable, new_salary, and the
program displays this value.

Note that the PL/SQL procedure argument, new_salary, although a PL/SQL OUT
variable, must be bound, not defined. This is explained in Defining PL/SQL Output
Variables and in Information for Named Data Type and REF Defines, and PL/SQL
OUT Binds.

Example 5-2 demonstrates how to perform a simple scalar bind where only a single
bind call is necessary. In some cases, additional bind calls are needed to define
attributes for specific bind data types or execution modes.

Example 5-2 Defining a PL/SQL Statement to Be Used in OCI

/* Define PL/SQL statement to be used in program. */
text *give_raise = (text *) "BEGIN\
RAISE_SALARY (:emp_number, :sal_increase, :new_salary);\

END; ";
OCIBind *bndlp = NULL; /* the first bind handle */
OCIBind *bnd2p = NULL; /* the second bind handle */
OCIBind *bnd3p = NULL; /* the third bind handle */

static void checkerr();

sbd status;

main ()

{
sword empno, raise, new_sal;
void *tmp;

0CISession *usrhp = (OCISession *)NULL;

/* attach to Oracle database, and perform necessary initializations
and authorizations */

/* allocate a statement handle */
checkerr (errhp, OCIHandleAlloc((void *) envhp, (void **) &stmthp,
OCI_HTYPE_STMT, 100, (void **) &tmp));

/* prepare the statement request, passing the PL/SQL text
block as the statement to be prepared */
checkerr (errhp, OCIStmtPrepare(stmthp, errhp, (text *) give_raise, (ub4)
strlen(give_raise), OCI_NTV_SYNTAX, OCI_DEFAULT)) ;

/* bind each of the placeholders to a program variable */
checkerr(errhp, OCIBindByName (stmthp, &bndlp, errhp, (text *) ":emp_number",
-1, (ubl *) &empno,
(sword) sizeof (empno), SQLT_INT, (void *) O,
(ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT));

checkerr(errhp, OCIBindByName (stmthp, &bnd2p, errhp, (text *) ":sal_increase",
-1, (ubl *) &raise,
(sword) sizeof (raise), SQLT_INT, (void *) 0,
(ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT)) ;

/* remember that PL/SQL OUT variables are bound, not defined */
checkerr(errhp, OCIBindByName (stmthp, &bnd3p, errhp, (text *) ":new_salary",

-1, (ubl *) &new_sal,
(sword) sizeof (new_sal), SQLT INT, (void *) 0,

5-6 Oracle Call Interface Programmer's Guide

Advanced Bind Operations in OCI

(ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT));

/* prompt the user for input values */
printf ("Enter the employee number: ");
scanf ("%d", &empno) ;

/* flush the input buffer */
myfflush();

printf ("Enter employee's raise: ");
scanf ("%d", &raise);

/* flush the input buffer */
myfflush();

/* execute PL/SQL block*/
checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(OCISnapshot *) NULL, (OCISnapshot *) NULL, OCI_DEFAULT));

/* display the new salary, following the raise */
printf ("The new salary is %d\n", new_sal);

}

Advanced Bind Operations in OCI

"Binding Placeholders in OCI" on page 4-4 discussed how a basic bind operation is
performed to create an association between a placeholder in a SQL statement and a
program variable by using OCIBindByName() or OCIBindByPos(). This section covers
more advanced bind operations, including multistep binds, and binds of named data
types and REFs.

In some cases, additional bind calls are necessary to define specific attributes for
certain bind data types or certain execution modes.

The following sections describe these special cases, and the information about binding
is summarized in Table 5-1.

Table 5-1 Information Summary for Bind Types

Type of Bind

Bind Data Type Notes

Scalar
Array of scalars

Named data type

REF

LOB
BFILE

Any scalar data Bind a single scalar using OCIBindByName() or

type OCIBindByPos().

Any scalar data Bind an array of scalars using OCIBindByName() or
type OCIBindByPos().

SQLT_NTY Two bind calls are required:

= OCIBindByName() or OCIBindByPos()
s OCIBindObject()

SQLT_REF Two bind calls are required:
= OCIBindByName() or OCIBindByPos()
s OCIBindObject()
SQLT_BLOB Allocate the LOB locator using OCIDescriptorAlloc(), and then

bind its address, 0OCILobLocator **, with OCIBindByName() or

SQLT_CLOB OCIBindByPos(), by using one of the LOB data types.

Binding and Defining in OCl 5-7

Advanced Bind Operations in OCI

Table 5-1 (Cont.) Information Summary for Bind Types

Type of Bind Bind Data Type Notes
Array of structures or ~ Varies Two bind calls are required:
static arrays « OCIBindByName() or OCIBindByPos()
= OCIBindArrayOfStruct()
Piecewise insert Varies OCIBindByName() or OCIBindByPos() is required. The

application may also need to call OCIBindDynamic() to register
piecewise callbacks.

REF CURSOR variables SQLT_RSET Allocate a statement handle, 0CIStmt, and then bind its address,
OCIStmt **, using the SQLT_RSET data type.

See Also:

= "Named Data Type Binds" on page 12-25 for information about
binding named data types (objects)

= '"Binding REFs" on page 12-25

Binding LOBs
There are two ways of binding LOBs:

s Bind the LOB locator, rather than the actual LOB values. In this case the LOB value
is written or read by passing a LOB locator to the OCI LOB functions.

= Bind the LOB value directly, without using the LOB locator.

Binding LOB Locators

Either a single locator or an array of locators can be bound in a single bind call. In each
case, the application must pass the address of a LOB locator and not the locator itself. For
example, suppose that an application has prepared this SQL statement where one_lob
is a bind variable corresponding to a LOB column:

INSERT INTO some_table VALUES (:one_lob)

Then your application makes the following declaration:

OCILobLocator * one_lob;

Then the calls in Example 5-3 would be used to bind the placeholder and execute the
statement:

Example 5-3 Binding the Placeholder and Executing the Statement to Insert a Single
Locator

/* initialize single locator */

one_lob = OCIDescriptorAlloc(...0CI_DTYPE_LOB...);

/* pass the address of the locator */
0CIBindByName (..., (void *) &one_lob, ... SQLT CLOB, ...);

OCIStmtExecute(...,1,...) /* 1 is the iters parameter */

You can also insert an array using the same SQL INSERT statement. In this case, the
application would include the code shown in Example 5-4.

5-8 Oracle Call Interface Programmer's Guide

Advanced Bind Operations in OCI

Example 5-4 Binding the Placeholder and Executing the Statement to Insert an Array of
Locators

OCILobLocator * lob_array[10];

for (i=0; 1<10, 1i++)
lob_array[i] = OCIDescriptorAlloc(...0OCI_DTYPE_LOB...);
/* initialize array of locators */

OCIBindByName (..., (void *) lob_array,...);
OCIStmtExecute(...,10,...); /* 10 is the iters parameter */

You must allocate descriptors with the OCIDescriptorAlloc() function before they can
be used. In an array of locators, you must initialize each array element using
OClDescriptorAlloc(). Use OCI_DTYPE_LOB as the type parameter when allocating
BLOBs, CLOBs, and NCLOBs. Use OCI_DTYPE_FILE when allocating BFILES.

Restrictions on Binding LOB Locators Observe the following restrictions when you bind
LOB locators:

= Piecewise and callback INSERT or UPDATE operations are not supported.

s When using a FILE locator as a bind variable for an INSERT or UPDATE statement,
you must first initialize the locator with a directory object and file name, by using
OCILobFileSetName() before issuing the INSERT or UPDATE statement.

See Also: Chapter 7 for more information about the OCI LOB
functions

Binding LOB Data

Oracle Database allows nonzero binds for INSERTs and UPDATEs of any size LOB. So
you can bind data into a LOB column using OCIBindByPos(), OCIBindByName(), and
PL/SQL binds.

The bind of more than 4 kilobytes of data to a LOB column uses space from the
temporary tablespace. Ensure that your temporary tablespace is big enough to hold at
least the amount of data equal to the sum of all the bind lengths for LOBs. If your
temporary tablespace is extendable, it is extended automatically after the existing
space is fully consumed. Use the following command to create an extendable
temporary tablespace:

CREATE TABLESPACE ... AUTOEXTEND ON ... TEMPORARY ...;

Restrictions on Binding LOB Data Observe the following restrictions when you bind LOB
data:

» If a table has both LONG and LOB columns, then you can have binds of greater than
4 kilobytes for either the LONG column or the LOB columns, but not both in the
same statement.

= Inan INSERT AS SELECT operation, Oracle Database does not allow binding of any
length data to LOB columns.

= A special consideration applies on the maximum size of bind variables that are
neither LONG or LOB, but that appear after any LOB or LONG bind variable in
the SQL statement. You receive an ORA-24816 error from Oracle Database if the
maximum size for such bind variables exceeds 4000 bytes. To avoid this error, you
must set OCI_ATTR_MAXDATA_SIZE to 4000 bytes for any such binds whose
maximum size may exceed 4000 bytes on the server side after character set

Binding and Defining in OCl 5-9

Advanced Bind Operations in OCI

conversion. Alternatively, reorder the binds so that such binds are placed before
any LONG or LOBs in the bind list.

See Also: "Using the OCI_ATTR_MAXDATA_SIZE Attribute" on
page 5-28

= Oracle Database does not do implicit conversions, such as HEX to RAW or RAW to HEX,
for data of size more than 4000 bytes. The PL/SQL code in Example 5-5 illustrates
this:

Example 5-5 Demonstrating Some Implicit Conversions That Cannot Be Done

create table t (cl clob, c2 blob);
declare

text varchar (32767) ;

binbuf raw(32767);

begin
text := 1lpad ('a', 12000, 'a');
binbuf := utl_raw.cast_to_raw(text);

-- The following works:
insert into t values (text, binbuf);

-- The following does not work because Oracle dpes not do implicit
-- hex to raw conversion.
insert into t (c2) values (text);

-- The following does not work because Oracle does not do implicit
-- raw to hex conversion.
insert into t (cl) values (binbuf);

-- The following does not work because you cannot combine the
-- utl_raw.cast_to_raw() operator with the >4k bind.
insert into t (c2) values (utl_raw.cast_to_raw(text));

end;
/

s If you bind more than 4000 bytes of data to a BLOB or a CLOB, and the data is
filtered by a SQL operator, then Oracle Database limits the size of the result to at
most 4000 bytes.

For example:

create table t (cl clob, c2 blob);

-- The following command inserts only 4000 bytes because the result of
-- LPAD is limited to 4000 bytes

insert into t(cl) values (lpad('a', 5000, 'a'));

-- The following command inserts only 2000 bytes because the result of
-- LPAD is limited to 4000 bytes, and the implicit hex to raw conversion
-- converts it to 2000 bytes of RAW data.

insert into t(c2) values (lpad('a', 5000, 'a'));

Examples of Binding LOB Data The following SQL statements are used in Example 5-6
through Example 5-13:

CREATE TABLE foo (a INTEGER);
CREATE TYPE lob_typ AS OBJECT (Al CLOB);
CREATE TABLE lob_long_tab (Cl CLOB, C2 CLOB, CT3 lob_typ, L LONG);

5-10 Oracle Call Interface Programmer's Guide

Advanced Bind Operations in OCI

Example 5-6 Allowed: Inserting into C1, C2, and L Columns Up to 8000, 8000, and 2000
Byte-Sized Bind Variable Data Values, Respectively

void insert () /* A function in an OCI program */

{

/* The following is allowed */

ubl buffer([8000];

text *insert_sqgl = (text *) "INSERT INTO lob_long_tab (Cl, C2, L) \

VALUES (:1, :2, :3)";
OCIStmtPrepare (stmthp, errhp, insert_sqgl, strlen((char*)insert_sql),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);

OCIBindByPos (stmthp, &bindhpl0], errhp, 1, (void *)buffer, 8000,
SQLT LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT) ;

OCIBindByPos (stmthp, &bindhpll], errhp, 2, (void *)buffer, 8000,
SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);

0CIBindByPos (stmthp, &bindhp([2], errhp, 3, (void *)buffer, 2000,
SQLT ING, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);

OCIStmtExecute(svchp, stmthp, errhp, 1, 0, (OCISnapshot *) NULL,

(OCISnapshot *) NULL, OCI_DEFAULT);

Example 5-7 Allowed: Inserting into C1 and L Columns up to 2000 and 8000 Byte-Sized
Bind Variable Data Values, Respectively

void insert()

{

/* The following is allowed */

ubl buffer([8000];

text *insert_sqgl = (text *) "INSERT INTO lob_long_tab (Cl, L) \

VALUES (:1, :2)";
OCIStmtPrepare (stmthp, errhp, insert_sqgl, strlen((char*)insert_sql),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);

0CIBindByPos (stmthp, &bindhp[0], errhp, 1, (void *)buffer, 2000,
SQLT LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);

OCIBindByPos (stmthp, &bindhpll], errhp, 2, (void *)buffer, 8000,
SQLT LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT) ;

OCIStmtExecute(svchp, stmthp, errhp, 1, 0, (OCISnapshot *) NULL,

(OCISnapshot *) NULL, OCI_DEFAULT) ;

Example 5-8 Allowed: Updating C1, C2, and L Columns up to 8000, 8000, and 2000
Byte-Sized Bind Variable Data Values, Respectively

void update ()

{

/* The following is allowed, no matter how many rows it updates */
ubl buffer([8000];
text *update_sqgl = (text *)"UPDATE lob_long tab SET \
cl = :1, C2=:2, L=:3";
OCIStmtPrepare(stmthp, errhp, update_sqgl, strlen((char*)update_sql),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT) ;
OCIBindByPos (stmthp, &bindhp[0], errhp, 1, (void *)buffer, 8000,
SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
0CIBindByPos (stmthp, &bindhp([1l], errhp, 2, (void *)buffer, 8000,
SQLT ING, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
OCIBindByPos (stmthp, &bindhpl2], errhp, 3, (void *)buffer, 2000,
SQLT LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
OCIStmtExecute(svchp, stmthp, errhp, 1, 0, (OCISnapshot *) NULL,
(OCISnapshot *) NULL, OCI_DEFAULT);

Binding and Defining in OCI

Advanced Bind Operations in OCI

Example 5-9 Allowed: Updating C1, C2, and L Columns up to 2000, 2000, and 8000
Byte-Sized Bind Variable Data Values, Respectively

void update()
{
/* The following is allowed, no matter how many rows it updates */
ubl buffer[8000];
text *update_sgl = (text *)"UPDATE lob_long tab SET \
Cl =:1, C2=:2, L=:3";
OCIStmtPrepare(stmthp, errhp, update_sqgl, strlen((char*)update_sql),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
OCIBindByPos (stmthp, &bindhpl0], errhp, 1, (void *)buffer, 2000,
SQLT LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT) ;
OCIBindByPos (stmthp, &bindhpll], errhp, 2, (void *)buffer, 2000,
SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
0CIBindByPos (stmthp, &bindhp([2], errhp, 3, (void *)buffer, 8000,
SQLT ING, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
OCIStmtExecute(svchp, stmthp, errhp, 1, 0, (OCISnapshot *) NULL,
(OCISnapshot *) NULL, OCI_DEFAULT);

Example 5-10 Allowed: Piecewise, Callback, and Array Insert or Update Operations

void insert()

{
/* Piecewise, callback and array insert/update operations similar to
* the allowed regular insert/update operations are also allowed */

Example 5-11 Not Allowed: Inserting More Than 4000 Bytes into Both LOB and LONG
Columns Using the Same INSERT Statement

void insert()
{
/* The following is NOT allowed because you cannot insert >4000 bytes
* into both LOB and LONG columns */
ubl buffer[8000];
text *insert_sqgl = (text *)"INSERT INTO lob_long_tab (Cl, L) \
VALUES (:1, :2)";
OCIStmtPrepare(stmthp, errhp, insert_sqgl, strlen((char*)insert_sql),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
0CIBindByPos (stmthp, &bindhp[0], errhp, 1, (void *)buffer, 8000,
SQLT ING, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
OCIBindByPos (stmthp, &bindhpll], errhp, 2, (void *)buffer, 8000,
SQLT LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT) ;
OCIStmtExecute(svchp, stmthp, errhp, 1, 0, (OCISnapshot *) NULL,
(OCISnapshot *) NULL, OCI_DEFAULT);

Example 5-12 Allowed: Inserting into the CT3 LOB Column up to 2000 Byte-Sized Bind
Variable Data Values

void insert ()

{

/* Insert of data into LOB attributes is allowed */

ubl buffer[8000];

text *insert_sqgl = (text *)"INSERT INTO lob_long tab (CT3) \
VALUES (lob_typ(:1))";

5-12 Oracle Call Interface Programmer's Guide

Overview of Defining in OCI

OCIStmtPrepare (stmthp, errhp, insert_sqgl, strlen((char*)insert_sql),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
OCIBindByPos (stmthp, &bindhpl0], errhp, 1, (void *)buffer, 2000,
SQLT LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
OCIStmtExecute(svchp, stmthp, errhp, 1, 0, (OCISnapshot *) NULL,
(OCISnapshot *) NULL, OCI_DEFAULT);

Example 5-13 Not Allowed: Binding Any Length Data to a LOB Column in an Insert As
Select Operation

void insert ()

{

/* The following is NOT allowed because you cannot do insert as
* gelect character data into LOB column */

ubl buffer([8000];

text *insert_sqgl = (text *)"INSERT INTO lob_long tab (Cl) SELECT \
:1 from FOO";

OCIStmtPrepare (stmthp, errhp, insert_sqgl, strlen((char*)insert_sql),

(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT) ;
OCIBindByPos (stmthp, &bindhp[0], errhp, 1, (void *)buffer, 8000,
SQLT LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT) ;

OCIStmtExecute(svchp, stmthp, errhp, 1, 0, (OCISnapshot *) NULL,

(OCISnapshot *) NULL, OCI_DEFAULT) ;

Binding in OCI_DATA_AT_EXEC Mode

If the mode parameter in a call to OCIBindByName() or OCIBindByPos() is set to 0OCI_
DATA_AT EXEC, an additional call to OCIBindDynamic() is necessary if the application
uses the callback method for providing data at run time. The call to
OCIBindDynamic() sets up the callback routines, if necessary, for indicating the data or
piece provided. If the OCI_DATA_AT_EXEC mode is chosen, but the standard OCI
piecewise polling method is used instead of callbacks, the call to OCIBindDynamic() is
not necessary.

When binding RETURN clause variables, an application must use OCI_DATA_AT_EXEC
mode, and it must provide callbacks.

See Also: "Runtime Data Allocation and Piecewise Operations in
OCI" on page 5-33 for more information about piecewise operations

Binding REF CURSOR Variables

REF CURSORs are bound to a statement handle with a bind data type of SQLT_RSET.

See Also: "PL/SQL REF CURSORs and Nested Tables in OCI" on
page 5-32

Overview of Defining in OCI

Query statements return data from the database to your application. When processing
a query, you must define an output variable or an array of output variables for each
item in the select list for retrieving data. The define step creates an association that
determines where returned results are stored, and in what format.

Binding and Defining in OCI 5-13

Overview of Defining in OCI

For example, if your program processes the following statement then you would
normally define two output variables: one to receive the value returned from the name
column, and one to receive the value returned from the ssn column:

SELECT name, ssn FROM employees
WHERE empno = :empnum

If you were only interested in retrieving values from the name column, you would not
need to define an output variable for ssn. If the SELECT statement being processed
returns more than a single row for a query, the output variables that you define can be
arrays instead of scalar values.

Depending on the application, the define step can occur before or after an execute
operation. If you know the data types of select-list items at compile time, the define
can occur before the statement is executed. If your application is processing dynamic
SQL statements entered by you at run time or statements that do not have a clearly
defined select list, the application must execute the statement to retrieve describe
information. After the describe information is retrieved, the type information for each
select-list item is available for use in defining output variables.

OCI processes the define call locally on the client side. In addition to indicating the
location of buffers where results should be stored, the define step determines what
data conversions must occur when data is returned to the application.

Note: Output buffers must be 2-byte aligned.

The dty parameter of the OCIDefineByPos() call specifies the data type of the output
variable. OCI can perform a wide range of data conversions when data is fetched into
the output variable. For example, internal data in Oracle DATE format can be
automatically converted to a String data type on output.

See Also:

= Chapter 3 for more information about data types and
conversions

s "Describing Select-List Items" on page 4-9

Steps Used in OCI Defining

A basic define is done with a position call, OCIDefineByPos(). This step creates an
association between a select-list item and an output variable. Additional define calls
may be necessary for certain data types or fetch modes. Once the define step is
complete, the OCI library determines where to put retrieved data. You can make your
define calls again to redefine the output variables without having to reprepare or
reexecute the SQL statement.

Example 5-14 shows a scalar output variable being defined following an execute and
describe operation.

Example 5-14 Defining a Scalar Output Variable Following an Execute and Describe
Operation

SELECT department_name FROM departments WHERE department_id = :dept_input

/* The input placeholder was bound earlier, and the data comes from the
user input below */

printf ("Enter employee dept: ");

5-14 Oracle Call Interface Programmer's Guide

Advanced Define Operations in OCI

scanf ("%d", &deptno);

/* Execute the statement. If OCIStmtExecute() returns OCI_NO_DATA, meaning that
no data matches the query, then the department number is invalid. */

if ((status = OCIStmtExecute(svchp, stmthp, errhp, 0, 0, (OCISnapshot *) 0,
(OCISnapshot *) 0,
OCI_DEFAULT))
&& (status != OCI_NO_DATA))

checkerr (errhp, status);
return OCI_ERROR;
}
if (status == OCI_NO_DATA) {
printf ("The dept you entered does not exist.\n");
return 0;

/* The next two statements describe the select-list item, dname, and
return its length */
checkerr (errhp, OCIParamGet ((void *)stmthp, (ub4) OCI_HTYPE_STMT, errhp, (void
**)&parmdp, (ubd) 1));
checkerr (errhp, OCIAttrGet ((void*) parmdp, (ub4) OCI_DTYPE_PARAM,
(void*) &deptlen, (ub4 *) &sizelen, (ub4) OCI_ATTR_DATA_SIZE,
(OCIError *) errhp));

/* Use the retrieved length of dname to allocate an output buffer, and
then define the output variable. If the define call returns an error,
exit the application */

dept = (text *) malloc((int) deptlen + 1);

if (status = OCIDefineByPos (stmthp, &defnp, errhp,

1, (void *) dept, (sb4) deptlen+l,
SQLT_STR, (void *) 0, (ub2 *) 0,
(ub2 *) 0, OCI_DEFAULT))

checkerr (errhp, status);
return OCI_ERROR;

See Also: '"Describing Select-List Items" on page 4-9 for an
explanation of the describe step

Advanced Define Operations in OCI

This section covers advanced define operations, including multistep defines and
defines of named data types and REFs.

In some cases, the define step requires additional calls than just a call to
OClIDefineByPos(); for example, that define the attributes of an array fetch,
OClIDefineArrayOfStruct(), or a named data type fetch, OCIDefineObject(). For
example, to fetch multiple rows with a column of named data types, all the three calls
must be invoked for the column. To fetch multiple rows of scalar columns only,
OClIDefineArrayOfStruct() and OCIDefineByPos() are sufficient.

Oracle Database also provides predefined C data types that map object type attributes.

Binding and Defining in OCI 5-15

Advanced Define Operations in OCI

See Also:
s Chapter 12, "Object-Relational Data Types in OCI"
= "Advanced Define Operations in OCI" on page 5-15

Defining LOB Output Variables
There are two ways of defining LOBs:

s Define a LOB locator, rather than the actual LOB values. In this case, the LOB
value is written or read by passing a LOB locator to the OCI LOB functions.

s Define a LOB value directly, without using the LOB locator.

Defining LOB Locators

Either a single locator or an array of locators can be defined in a single define call. In
each case, the application must pass the address of a LOB locator and not the locator
itself. For example, suppose that an application has prepared the following SQL
statement:

SELECT lobl FROM some_table;

In this statement, 1obl is the LOB column, and one_1lob is a define variable
corresponding to a LOB column with the following declaration:

OCILobLocator * one_lob;

Then the following calls would be used to bind the placeholder and execute the
statement:

/* initialize single locator */
OCIDescriptorAlloc(...&one_lob, OCI_DTYPE_LOB...);

/* pass the address of the locator */
0CIBindByName (..., (void *) &one_lob, ... SQLT CLOB, ...);
OCIStmtExecute(...,1,...); /* 1 is the iters parameter */

You can also insert an array using this same SQL SELECT statement. In this case, the
application would include the following code:

OCILobLocator * lob_array[10];

for (i=0; 1<10, 1i++)
OCIDescriptorAlloc(...&lob_array[i], OCI_DTYPE_LOB...);
/* initialize array of locators */

OCIBindByName (..., (void *) lob_array,...);
OCIStmtExecute(...,10,...); /* 10 is the iters parameter */

Note that you must allocate descriptors with the 0CIDescriptoraAlloc () function
before they can be used. In an array of locators, you must initialize each array element
using OCIDescriptorAlloc (). Use OCI_DTYPE_LOB as the type parameter when
allocating BLOBs, CLOBs, and NCLOBs. Use OCI_DTYPE_FILE when allocating BFILEs.

Defining LOB Data

Oracle Database allows nonzero defines for SELECTs of any size LOB. So you can select
up to the maximum allowed size of data from a LOB column using OCIDefineByPos()
and PL/SQL defines. Because there can be multiple LOBs in a row, you can select the
maximum size of data from each one of those LOBs in the same SELECT statement.

5-16 Oracle Call Interface Programmer's Guide

Advanced Define Operations in OCI

The following SQL statement is the basis for Example 5-15 and Example 5-16:

CREATE TABLE lob_tab (Cl CLOB, C2 CLOB);

Example 5-15 Defining LOBs Before Execution

void select_define_before_execute() /* A function in an OCI program */
{
/* The following is allowed */
ubl buffer1[8000];
ubl buffer2[8000];
text *select_sgl = (text *)"SELECT cl, c2 FROM lob_tab";
OCIStmtPrepare (stmthp, errhp, select_sqgl, (ub4)strlen((char*)select_sql),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
0OCIDefineByPos (stmthp, &defhp[0], errhp, 1, (void *)bufferl, 8000,
SQLT_LNG, (void *)0, (ub2 *)0, (ub2 *)0, (ub4) OCI_DEFAULT);
OCIDefineByPos (stmthp, &defhp[l], errhp, 2, (void *)buffer2, 8000,
SQLT ING, (void *)0, (ub2 *)0, (ub2 *)0, (ub4) OCI_DEFAULT);
OCIStmtExecute (svchp, stmthp, errhp, 1, 0, (OCISnapshot *)0,
(OCISnapshot *)0, OCI_DEFAULT) ;

Example 5-16 Defining LOBs After Execution

void select_execute_before_define()
{
/* The following is allowed */
ubl buffer1[8000];
ubl buffer2([8000];
text *select_sqgl = (text *)"SELECT cl, c2 FROM lob_tab";

OCIStmtPrepare (stmthp, errhp, select_sqgl, (ub4)strlen((char*)select_sql),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT) ;
OCIStmtExecute(svchp, stmthp, errhp, 0, 0, (OCISnapshot *)0,
(OCISnapshot *)0, OCI_DEFAULT) ;
0CIDefineByPos (stmthp, &defhp([0], errhp, 1, (void *)bufferl, 8000,
SQLT_LNG, (void *)0, (ub2 *)0, (ub2 *)0, (ub4) OCI_DEFAULT);
OCIDefineByPos (stmthp, &defhp[l], errhp, 2, (void)bufferZ 8000,
SQLT _ING, (void *)0, (ub2 *)0, (ub2 *)0, (ub4) OCI_DEFAULT);
OCIStmtFetch(stmthp, errhp, 1, OCI_FETCH_NEXT, OCI_DEFAULT);

Defining PL/SQL Output Variables

Do not use the define calls to define output variables for select-list items in a SQL
SELECT statement inside a PL/SQL block. Use OCI bind calls instead.

See Also: "Information for Named Data Type and REF Defines,
and PL/SQL OUT Binds" on page 12-27 for more information about
defining PL/SQL output variables

Defining for a Piecewise Fetch

A piecewise fetch requires an initial call to OCIDefineByPos(). An additional call to
OClIDefineDynamic() is necessary if the application uses callbacks rather than the
standard polling mechanism.

Binding and Defining in OCI 5-17

Binding and Defining Arrays of Structures in OCI

Binding and Defining Arrays of Structures in OCI

Defining arrays of structures requires an initial call to OCIDefineByPos(). An
additional call to OCIDefineArrayOfStruct() is necessary to set up each additional
parameter, including the skip parameter necessary for arrays of structures operations.

Using arrays of structures can simplify the processing of multirow, multicolumn
operations. You can create a structure of related scalar data items, and then fetch
values from the database into an array of these structures, or insert values into the
database from an array of these structures.

For example, an application may need to fetch multiple rows of data from columns
NAME, AGE, and SALARY. The application can include the definition of a structure
containing separate fields to hold the NAME, AGE, and SALARY data from one row in the
database table. The application would then fetch data into an array of these structures.

To perform a multirow, multicolumn operation using an array of structures, associate
each column involved in the operation with a field in a structure. This association,
which is part of OCIDefineArrayOfStruct() and OCIBind ArrayOfStruct() calls,
specifies where data is stored.

Skip Parameters

When you split column data across an array of structures, it is no longer stored
contiguously in the database. The single array of structures stores data as though it
were composed of several arrays of scalars. For this reason, you must specify a skip
parameter for each field that you are binding or defining. This skip parameter is the
number of bytes that must be skipped in the array of structures before the same field is
encountered again. In general, this is equivalent to the byte size of one structure.

Figure 5-2 shows how a skip parameter is determined. In this case, the skip parameter
is the sum of the sizes of the fields fieldl (2 bytes), field2 (4 bytes), and field3 (2
bytes), which is 8 bytes. This equals the size of one structure.

Figure 5-2 Determining Skip Parameters

Array of Structures

field 1 field 2 field 3 | field 1 field 2 field 3 | field 1 field 2 field 3
2 bytes ‘ 4 bytes ‘ 2 bytes | 2 bytes ‘ 4 bytes ‘ 2 bytes | 2 bytes ‘ 4 bytes ‘ 2 bytes
|« ‘ > | ‘ >|
skip 8 bytes skip 8 bytes

On some operating systems it may be necessary to set the skip parameter to
sizeof(one_array_element) rather than sizeof(struct), because some compilers
insert extra bytes into a structure.

Consider an array of C structures consisting of two fields, a ub4 and a ubl:

struct demo {
ubd fieldl;
ubl field2;
I
struct demo demo_array[MAXSIZE];

5-18 Oracle Call Interface Programmer's Guide

Binding and Defining Arrays of Structures in OClI

Some compilers insert 3 bytes of padding after the ubl so that the ub4 that begins the
next structure in the array is properly aligned. In this case, the following statement
may return an incorrect value:

skip_parameter = sizeof (struct demo) ;
On some operating systems this produces a proper skip parameter of 8. On other

systems, skip_parameter is set to 5 bytes by this statement. In the latter case, use the
following statement to get the correct value for the skip parameter:

skip_parameter = sizeof (demo_array[0]);

Skip Parameters for Standard Arrays

Arrays of structures are an extension of binding and defining arrays of single
variables. When you specify a single-variable array operation, the related skip equals
the size of the data type of the array under consideration. For example, consider an
array declared as follows:

text emp_names[4][20];

The skip parameter for the bind or define operation is 20. Each data element in the
array is then recognized as a separate unit, rather than being part of a structure.

OCI Calls Used with Arrays of Structures

Two OCI calls must be used when you perform operations involving arrays of
structures:

s Use OCIBindArrayOfStruct() for binding fields in arrays of structures for input
variables

» Use OCIDefineArrayOfStruct() for defining arrays of structures for output
variables.

Note: Binding or defining for arrays of structures requires
multiple calls. A call to OCIBindByName() or OCIBindByPos()
must precede a call to OCIBind ArrayOfStruct(), and a call to
OClIDefineByPos() must precede a call to
OClIDefineArrayOfStruct().

Arrays of Structures and Indicator Variables

The implementation of arrays of structures in addition supports the use of indicator
variables and return codes. You can declare parallel arrays of column-level indicator
variables and return codes that correspond to the arrays of information being fetched,
inserted, or updated. These arrays can have their own skip parameters, which are
specified during OCIBind ArrayOfStruct() or OCIDefine ArrayOfStruct() calls.

You can set up arrays of structures of program values and indicator variables in many
ways. Consider an application that fetches data from three database columns into an
array of structures containing three fields. You can set up a corresponding array of
indicator variable structures of three fields, each of which is a column-level indicator
variable for one of the columns being fetched from the database. A one-to-one
relationship between the fields in an indicator struct and the number of select-list
items is not necessary.

See Also: '"Indicator Variables" on page 2-24

Binding and Defining in OCI 5-19

Binding and Defining Multiple Buffers

Binding and Defining Multiple Buffers

You can specify multiple buffers for use with a single bind or define call. Performance
is improved because the number of round-trips is decreased when data stored at
different noncontiguous addresses is not copied to one contiguous location. CPU time
spent and memory used are thus reduced.

The data type 0CIIOV is defined as:

typedef struct OCIIOV
{
void *bfp; /* The pointer to a buffer for the data */
ubd bfl; /* The size of the buffer */
}OCIIOV;

The value 0CI_I0V for the mode parameter is used in the OCIBindByPos() and
OCIBindByName() functions for binding multiple buffers. If this value of mode is
specified, the address of 0CIIOV must be passed in parameter valuep. The size of the
data type must be passed in the parameter valuesz. For example:

OCIIOV vecarr[NumBuffers];

/* For bind at position 1 with data type int */

0CIBindByPos (stmthp, bindp, errhp, 1, (void *)&vecarr[0],
sizeof (int), ... OCI_IOV);

The value 0CI_I0V for the mode parameter is used in the OCIDefineByPos() function
for defining multiple buffers. If this value of mode is specified, the address of 0OCIIOV is
passed in parameter valuep. The size of the data type must be passed in the parameter
valuesz.

See Also:

s "OCIBindByName()" on page 16-64

= "OCIBindByPos()" on page 16-68

= "OCIDefineByPos()" on page 16-78

Example 5-17 illustrates the use of the structure 0CIIOV and its mode values.

Example 5-17 Using Multiple Bind and Define Buffers

/* The following macros mention the maximum length of the data in the
* different buffers. */

#define LENGTH_DATE 10
#define LENGTH_EMP_NAME 100

/* These two macros represent the number of elements in each bind and define
array */

#define NUM_BIND 30

#define NUM_DEFINE 45

/* The bind buffers for inserting dates */
char buf_1[NUM_BIND] [LENGTH_DATE],
char buf_2[NUM_BIND * 2] [LENGTH_DATE],

/* The bind buffer for inserting emp name */

5-20 Oracle Call Interface Programmer's Guide

Binding and Defining Multiple Buffers

char buf_3[NUM_BIND * 3] [LENGTH_EMP_NAME],

/* The define buffers */
char buf_4[NUM_DEFINE] [LENGTH_EMP_NAME] ;
char Dbuf_5[NUM_DEFINE] [LENGTH_EMP_NAME] ;

/* The size of data value for buffers corresponding to the same column must be
the same, and that value is passed in the OCIBind or Define calls.
buf_4 and buf_5 above have the same data values; that is, LENGTH_EMP_NAME
although the number of elements are different in the two buffers.

*/

0CIBind *bndhpl = (OCIBind *)0;
0OCIBind *bndhp2 = (OCIBind *)0;
OCIDefine *defhp = (OCIDefine *)O0;
OCIStmt *stmthp = (OCIStmt *)0;
OCIError *errhp = (OCIError *)0;

OCIIOV bvec([2], dvec[2];

/*

Example of how to use indicators and return codes with this feature,
showing the allocation when using with define. You allocate memory
for indicator, return code, and the length buffer as one chunk of
NUM_DEFINE * 2 elements.

*/

short *indname[NUM_DEFINE*2]; /* indicators */

ub4 *alenname [NUM_DEFINE*2] ; /* return lengths */
ub?2 *rcodename [NUM_DEFINE*2] ; /* return codes */

static text *insertstr =
"INSERT INTO EMP (EMP_NAME, JOIN_DATE) VALUES (:1, :2)";
static text *selectstr = "SELECT EMP_NAME FROM EMP";

/* Allocate environment, error handles, and so on, and then initialize the
environment. */

/* Prepare the statement with the insert query in order to show the
binds. */
OCIStmtPrepare (stmthp, errhp, insertstr,
(ubd)strlen((char *)insertstr),
(ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT);

/* Populate buffers with values. The following represents the simplest
* way of populating the buffers. However, in an actual scenario
* these buffers may have been populated by data received from different

* sources. */

/* Store the date in the bind buffers for the date. */
strcpy (buf_1[0], "21-SEP-02");

strcpy (buf_1[NUM_BIND - 1], "21-0CT-02");
strcpy (buf_2[0], "22-0CT-02");
strcpy (buf_2[2*NUM_BIND - 1], "21-DEC-02");

memset (bvec[0], 0, sizeof (OCIIOV));
memset (bvec[1], 0, sizeof (OCIIOV));

Binding and Defining in OCI 5-21

Binding and Defining Multiple Buffers

/* Set up the addresses in the IO Vector structure */
bvec[0].bfp = buf_1[0]; /* Buffer address of the data */
bvec[0].bfl = NUM_BIND*LENGTH_DATE; /* Size of the buffer */

/* And so on for other structures as well. */
bvec[l].bfp = buf_2[0]; /* Buffer address of the data */
bvec[1l].bfl = NUM_BIND*2*LENGTH_DATE; /* Size of the buffer */

/* Do the bind for date, using OCIIOV */

OCIBindByPos (stmthp, &bindhp2, errhp, 2, (void *)&bvec[0],
sizeof (buf_1[0]), SQLT STR,
(void *)inddate, (ub2 *)alendate, (ub2 *)rcodedate, 0,
(ub4 *)0, OCI_IOV);

/* Store the employee names in the bind buffers, 3 for the names */
strcpy (buf_3[0], "JOHN ");

strepy (buf_3[NUM_BIND *3 - 1], "HARRY");

/* Do the bind for employee name */

0CIBindByPos (stmthp, &bindhpl, errhp, 1, buf_3[0], sizeof (buf_3[0]),
SQLT_STR, (void *)indemp, (ub2 *)alenemp, (ub2 *)rcodeemp, 0,
(ub4 *)0, OCI_DEFAULT);

OCIStmtExecute (svchp, stmthp, errhp, NUM_BIND*3, O,
(OCISnapshot *)0, (OCISnapshot *)0, OCI_DEFAULT) ;

/* Now the statement to depict defines */
/* Prepare the statement with the select query in order to show the
defines */
OCIStmtPrepare(stmthp, errhp, selectstr, (ub4)strlen((char *)selectstr),
(ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT);

memset (dvec[0], 0, sizeof (OCIIOV);
memset (dvec[1], 0, sizeof (OCIIOV));

/* Set up the define vector */
dvec([0].bfp = buf_4[0];
dvec[0].bfl = NUM_DEFINE*LENGTH_EMP_NAME;

dvec[l].bfp = buf_5[0];
dvec[1l].bfl = NUM_DEFINE*LENGTH_EMP_NAME;

/*
Pass the buffers for the indicator, length of the data, and the
return code. Note that the buffer where you receive
the data is split into two locations,
each having NUM_DEFINE number of elements. However, the indicator
buffer, the actual length buffer, and the return code buffer comprise a
single chunk of NUM_DEFINE * 2 elements.
*/
OCIDefineByPos (stmthp, &defhp, errhp, 1, (void *)&dvec[0],
sizeof (buf_4[0]), SQLT STR, (void *)indname,
(ub2 *)alenname, (ub2 *)rcodename, OCI_IOV);

OCIStmtExecute (svchp, stmthp, errhp, NUM_DEFINE*2, O,

(OCISnapshot*)0,
(OCISnapshot*)0, OCI_DEFAULT);

5-22 Oracle Call Interface Programmer's Guide

DML with a RETURNING Clause in OCI

DML with a RETURNING Clause in OCI

OCI supports the use of the RETURNING clause with SQL INSERT, UPDATE, and DELETE
statements. This section outlines the rules for correctly implementing DML statements
with the RETURNING clause.

See Also:

s The Database demonstration programs included with your
Oracle installation for complete examples. For additional
information, see Appendix B.

» Oracle Database SQL Language Reference for more information
about the use of the RETURNING clause with INSERT, UPDATE, or
DELETE statements

Using DML with a RETURNING Clause to Combine Two SQL Statements

Using the RETURNING clause with a DML statement enables you to combine two SQL
statements into one, possibly saving a server round-trip. This is accomplished by
adding an extra clause to the traditional UPDATE, INSERT, and DELETE statements. The
extra clause effectively adds a query to the DML statement.

In OCI, values are returned to the application as OUT bind variables. In the following
examples, the bind variables are indicated by a preceding colon, ":". These examples
assume the existence of tablel, a table that contains columns coll, col2, and col3.

The following statement inserts new values into the database and then retrieves the
column values of the affected row from the database, for manipulating inserted rows.

INSERT INTO tablel VALUES (:1, :2, :3)
RETURNING coll, col2, col3
INTO :outl, :out2, :out3

The next example updates the values of all columns where the value of col1 falls
within a given range, and then returns the affected rows that were modified.

UPDATE tablel SET coll = coll + :1, col2 = :2, col3 = :3
WHERE coll >= :low AND coll <= :high
RETURNING coll, col2, col3
INTO :outl, :out2, :out3

The DELETE statement deletes the rows where coll value falls within a given range,
and then returns the data from those rows.

DELETE FROM tablel WHERE coll >= :low AND col2 <= :high
RETURNING coll, col2, col3
INTO :outl, :out2, :out3

Binding RETURNING...INTO Variables

Because both the UPDATE and DELETE statements can affect multiple rows in the table,
and a DML statement can be executed multiple times in a single OCIStmtExecute()
call, how much data is returned may not be known at run time. As a result, the
variables corresponding to the RETURNING...INTO placeholders must be bound in 0CI_
DATA_AT_EXEC mode. An application must define its own dynamic data handling
callbacks rather than using a polling mechanism.

Binding and Defining in OCI 5-23

DML with a RETURNING Clause in OCI

The returning clause can be particularly useful when working with LOBs. Normally,
an application must insert an empty LOB locator into the database, and then select it
back out again to operate on it. By using the RETURNING clause, the application can
combine these two steps into a single statement:

INSERT INTO some_table VALUES (:in_locator)
RETURNING lob_column
INTO :out_locator

An OCI application implements the placeholders in the RETURNING clause as pure OUT
bind variables. However, all binds in the RETURNING clause are initially IN and must be
properly initialized. To provide a valid value, you can provide a NULL indicator and set
that indicator to -1.

An application must adhere to the following rules when working with bind variables
in a RETURNING clause:

= Bind RETURNING clause placeholders in OCI_DATA_AT_EXEC mode using
OCIBindByName() or OCIBindByPos(), followed by a call to OCIBindDynamic()
for each placeholder.

= When binding RETURNING clause placeholders, supply a valid ouT bind function as
the ocbfp parameter of the OCIBindDynamic() call. This function must provide
storage to hold the returned data.

s The ichfp parameter of OCIBindDynamic() call should provide a default function
that returns NULL values when called.

» The piecep parameter of OCIBindDynamic() must be set to 0CI_ONE_PIECE.

No duplicate binds are allowed in a DML statement with a RETURNING clause, and no
duplication is allowed between bind variables in the DML section and the RETURNING
section of the statement.

Note: OCI supports only the callback mechanism for RETURNING
clause binds. The polling mechanism is not supported.

OCI Error Handling

The oUT bind function provided to 0CIBindDynamic () must be prepared to receive
partial results of a statement if there is an error. If the application has issued a DML
statement that is executed 10 times, and an error occurs during the fifth iteration, the
Oracle database returns the data from iterations 1 through 4. The callback function is
still called to receive data for the first four iterations.

DML with RETURNING REF...INTO Clause in OCI

5-24

The RETURNING clause can also be used to return a REF to an object that is being
inserted into or updated in the database:

UPDATE extaddr e SET e.zip = '12345', e.state ='AZ'
WHERE e.state = 'CA' AND e.zip = '95117'
RETURNING REF (e), =zip
INTO :addref, :zip

The preceding statement updates several attributes of an object in an object table and
returns a REF to the object (and a scalar postal code (ZIP)) in the RETURNING clause.

Oracle Call Interface Programmer's Guide

DML with a RETURNING Clause in OCI

Binding the Output Variable
Binding the REF output variable in an OCI application requires three steps:

1. Set the initial bind information is set using OCIBindByName().

2. Set additional bind information for the REF, including the type description object
(TDO), is set with OCIBindObject().

3. Make a call is made to OCIBindDynamic().

The following pseudocode in Example 5-18 shows a function that performs the binds
necessary for the preceding three steps.

Example 5-18 Binding the REF Output Variable in an OCI Application

sword bind_output (stmthp, bndhp, errhp)
OCIStmt *stmthp;
OCIBind *bndhp(];
OCIError *errhp;
{
ubd 1i;
/* get TDO for BindObject call */
if (OCITypeByName (envhp, errhp, svchp, (CONST text *) 0,
(ub4) 0, (CONST text *) "ADDRESS_OBJECT",
(ub4) strlen((CONST char *) "ADDRESS_OBJECT"),
(CONST text *) 0, (ub4) 0,
OCI_DURATION_SESSION, OCI_TYPEGET_HEADER, &addrtdo))

return OCI_ERROR;

/* initial bind call for both variables */
if (OCIBindByName (stmthp, &bndhp[2], errhp,
(text *) ":addref", (sb4) strlen((char *) ":addref"),
(void *) 0, (sb4) sizeof (OCIRef *), SQLT_REF,
(void *) 0, (ub2 *)0, (ub2 *)O0,
(ub4) 0, (ub4 *) 0, (ub4) OCI_DATA_AT_EXEC)
|| OCIBindByName (stmthp, &bndhp([3], errhp,
(text *) ":zip", (sb4) strlen((char *) ":zip"),
(void *) 0, (sb4) MAXZIPLEN, SQLT CHR,
(void *) 0, (ub2 *)0, (ub2 *)O0,
(ub4) 0, (ub4 *) 0, (ub4) OCI_DATA_AT_EXEC))

return OCI_ERROR;

/* object bind for REF variable */
if (OCIBindObject (bndhp(2], errhp, (OCIType *) addrtdo,
(void **) &addrref[0], (ub4 *) 0, (void **) 0, (ub4 *) 0))

return OCI_ERROR;

for (1 = 0; 1 < MAXCOLS; i++)

i =i,
/* dynamic binds for both RETURNING variables */

if (OCIBindDynamic (bndhp[2], errhp, (void *) &pos[0], cbf_no_data,
(void *) &pos[0], cbf_get_data)

|| 0CIBindDynamic(bndhp(3], errhp, (void *) &pos[l], cbf_no_data,
(void *) &pos[l], cbf_get_data))

Binding and Defining in OCI 5-25

Character Conversion in OCI Binding and Defining

{
return OCI_ERROR;

}

return OCI_SUCCESS;
}

Additional Notes About OCI Callbacks

When a callback function is called, the 0OCI_ATTR_ROWS_RETURNED attribute of the bind
handle tells the application the number of rows being returned in that particular
iteration. During the first callback of an iteration, you can allocate space for all rows
that are returned for that bind variable. During subsequent callbacks of the same
iteration, you increment the buffer pointer to the correct memory within the allocated
space.

Array Interface for DML RETURNING Statements in OCI

OCI provides additional functionality for single-row DML and array DML operations
in which each iteration returns more than one row. To take advantage of this feature,
you must specify an OUT buffer in the bind call that is at least as big as the iteration
count specified by the OCIStmtExecute() call. This is in addition to the bind buffers
provided through callbacks.

If any of the iterations returns more than one row, then the application receives an
OCI_SUCCESS_WITH_INFO return code. In this case, the DML operation is successful. At
this point, the application may choose to roll back the transaction or ignore the
warning.

Character Conversion in OCI Binding and Defining

This section discusses issues involving character conversions between the client and
the server.

Choosing a Character Set

If a database column containing character data is defined to be an NCHAR or NVARCHAR2
column, then a bind or define involving that column must make special considerations
for dealing with character set specifications.

These considerations are necessary in case the width of the client character set is
different from the server character set, and also for proper character conversion.
During conversion of data between different character sets, the size of the data may
increase or decrease by a factor of four. Ensure that buffers that are provided to hold
the data are of sufficient size.

In some cases, it may also be easier for an application to deal with NCHAR or NVARCHAR2
data in terms of numbers of characters, rather than numbers of bytes, which is the
usual case.

Character Set Form and ID

Each OCI bind and define handle is associated with the 0OCI_ATTR_CHARSET_ FORM and
OCI_ATTR_CHARSET_ID attributes. An application can set these attributes with the
OCIAttrSet() call to specify the character form and character set ID of the bind or
define buffer.

5-26 Oracle Call Interface Programmer's Guide

Character Conversion in OCI Binding and Defining

The csform attribute (OCI_ATTR_CHARSET_FORM) indicates the character set of the client
buffer for binds, and the character set in which to store fetched data for defines. It has
two possible values:

m SQLCS_IMPLICIT - Default value indicates that the database character set ID for the
bind or define buffer and the character buffer data are converted to the server
database character set

s SQLCS_NCHAR - Indicates that the national character set ID for the bind or define
buffer and the client buffer data are converted to the server national character set.

If the character set ID attribute, OCI_ATTR_CHARSET_ID, is not specified, either the
default value of the database or the national character set ID of the client is used,
depending on the value of csform. They are the values specified in the NLS_LANG and
NLS_NCHAR environment variables, respectively.

Note:

» The data is converted and inserted into the database according to the
server's database character set ID or national character set ID, regardless of
the client-side character set ID.

s OCI_ATTR_CHARSET ID mustnever be set to 0.

s The define handle attributes OCI_ATTR_CHARSET_FORM and OCI_ATTR_
CHARSET_ID do not affect the LOB types. LOB locators fetched from the
server retain their original csforms. There is no CLOB/NCLOB conversion as
part of define conversion based on these attributes.

See Also: Oracle Database Reference for more information about NCHAR data

Implicit Conversion Between CHAR and NCHAR

As the result of implicit conversion between database character sets and national
character sets, OCI can support cross binding and cross defining between CHAR and
NCHAR. Although the OCI_ATTR_CHARSET_ FORM attribute is set to SQLCS_NCHAR, OCI
enables conversion of data to the database character set if the data is inserted into a
CHAR column.

Setting Client Character Sets in OCI

You can set the client character sets through the OCIEnvNIsCreate() function
parameters charset and ncharset. Both of these parameters can be set as 0CI_
UTF161D. The charset parameter controls coding of the metadata and CHAR data. The
ncharset parameter controls coding of NCHAR data. The function
OCINIsEnvironmentVariableGet() returns the character set from NLS_LANG and the
national character set from NLS_NCHAR.

Example 5-19 illustrates the use of these functions (OCI provides a typedef called
utext to facilitate binding and defining of UTF-16 data):

Example 5-19 Setting the Client Character Set to OCI_UTF16ID in OCI

OCIEnv *envhp;

ub2 ncsid = 2; /* we8dec */

ub2 hdlcsid, hdlncsid;

OraText thename[20];

utext *selstmt = L"SELECT ename FROM emp"; /* UTF1l6 statement */
OCIStmt *stmthp;

Binding and Defining in OCI 5-27

Character Conversion in OCI Binding and Defining

0CIDefine *defhp;
OCIError *errhp;

OCIEnvNlsCreate (OCIEnv **envhp, ..., OCI_UTF16ID, ncsid);
OCIStmtPrepare(stmthp, ..., selstmt, ...); /* prepare UTF1l6 statement */
0CIDefineByPos (stmthp, defnp, ..., 1, thename, sizeof (thename), SQLT CHR,...);

OCINlsEnvironmentVariableGet (&hdlcsid, (size_t)0, OCI_NLS_CHARSET ID, (ub2)O0,
(size_t*)NULL) ;
OCIAttrSet(defnp, ..., &hdlcsid, 0, OCI_ATTR_CHARSET_ID, errhp);
/* change charset ID to NLS_LANG setting*/

See Also:
= "OCIEnvNIsCreate()" on page 16-17
= "OCINIsEnvironmentVariableGet()" on page 22-6

Binding Variables in OCI

Update or insert operations are done through variable binding. When binding
variables, specify the OCI_ATTR_MAXDATA SIZE attribute and OCI_ATTR_MAXCHAR_SIZE
attribute in the bind handle to indicate the byte and character constraints used when
inserting data in to the Oracle database.

These attributes are defined as:

s The OCI_ATTR_MAXDATA_SIZE attribute sets the maximum number of bytes allowed
in the buffer on the server side (see Using the OCI_ATTR_MAXDATA_SIZE
Attribute for more information).

s The OCI_ATTR_MAXCHAR_SIZE attribute sets the maximum number of characters
allowed in the buffer on the server side (see Using the OCI_ATTR_MAXCHAR_
SIZE Attribute for more information).

Using the OCI_ATTR_MAXDATA_SIZE Attribute

Every bind handle has an OCI_ATTR_MAXDATA_SIZE attribute that specifies the number
of bytes allocated on the server to accommodate client-side bind data after character
set conversions.

An application typically sets OCI_ATTR_MAXDATA_SIZE to the maximum size of the
column or the size of the PL/SQL variable, depending on how it is used. Oracle
Database issues an error if OCI_ATTR_MAXDATA_SIZE is not large enough to
accommodate the data after conversion, and the operation fails.

For IN/INOUT binds, when OCI_ATTR_MAXDATA SIZE attribute is set, the bind buffer
must be large enough to hold the number of characters multiplied by the bytes in each
character of the character set.

If OCI_ATTR_MAXCHAR_SIZE is set to a nonzero value such as 100, then if the character
set has 2 bytes in each character, the minimum possible allocated size is 200 bytes.

The following scenarios demonstrate some uses of the OCI_ATTR_MAXDATA_SIZE
attribute:

m Scenario 1: CHAR (source data) converted to non-CHAR (destination column)

There are implicit bind conversions of the data. The recommended value of 0CI_
ATTR_MAXDATA_SIZE is the size of the source buffer multiplied by the worst-case
expansion factor between the client and Oracle Database character sets.

5-28 Oracle Call Interface Programmer's Guide

Character Conversion in OCI Binding and Defining

» Scenario 2: CHAR (source data) converted to CHAR (destination column) or non-CHAR
(source data) converted to CHAR (destination column)

The recommended value of OCI_ATTR_MAXDATA_SIZE is the size of the column.
m Scenario 3: CHAR (source data) converted to a PL/SQL variable

In this case, the recommended value of OCI_ATTR_MAXDATA_SIZE is the size of the
PL/SQL variable.

Using the OCI_ATTR_MAXCHAR_SIZE Attribute

OCI_ATTR_MAXCHAR_SIZE enables processing to work with data in terms of number of
characters, rather than number of bytes.

For binds, the 0CI_ATTR_MAXCHAR_SIZE attribute sets the number of characters
reserved in the Oracle database to store the bind data.

For example, if OCI_ATTR_MAXDATA_SIZE is set to 100, and OCI_ATTR_MAXCHAR_
SIZEis set to 0, then the maximum possible size of the data in the Oracle database after
conversion is 100 bytes. However, if 0CI_ATTR_MAXDATA_SIZE is set to 300, and OCI_
ATTR_MAXCHAR_SIZE is set to a nonzero value, such as 100, then if the character set has 2
bytes/character, the maximum possible allocated size is 200 bytes.

For defines, the OCI_ATTR_MAXCHAR_SIZE attribute specifies the maximum number of
characters that the client application allows in the return buffer. Its derived byte length
overrides the maxlength parameter specified in the OCIDefineByPos() call.

Note: Regardless of the value of the attribute OCI_ATTR_MAXCHAR_
SIZE, the buffer lengths specified in a bind or define call are always
in terms of bytes. The actual length values sent and received by you
are also in bytes.

Buffer Expansion During OCI Binding

Do not set OCI_ATTR_MAXDATA_SIZE for OUT binds or for PL/SQL binds. Only set 0CI_
ATTR_MAXDATA_SIZE for INSERT or UPDATE statements.

If neither of these two attributes is set, OCI expands the buffer using its best estimates.

IN Binds For an IN bind, if the underlying column was created using character-length
semantics, then it is preferable to specify the constraint using OCI_ATTR_MAXCHAR_SIZE.
As long as the actual buffer contains fewer characters than specified in OCI_ATTR_
MAXCHAR_SIZE, no constraints are violated at OCI level.

If the underlying column was created using byte-length semantics, then use OCI_ATTR_
MAXDATA_SIZE in the bind handle to specify the byte constraint on the server. If you
also specify an OCI_ATTR_MAXCHAR_SIZE value, then this constraint is imposed when
allocating the receiving buffer on the server side.

Dynamic SQL For dynamic SQL, you can use the explicit describe to get OCI_ATTR_
DATA_SIZE and OCI_ATTR_CHAR_SIZE in parameter handles, as a guide for setting 0CI_
ATTR_MAXDATA SIZE and OCI_ATTR_MAXCHAR_SIZE attributes in bind handles. It is a
good practice to specify OCI_ATTR_MAXDATA SIZE and OCI_ATTR_MAXCHAR_SIZE to be no
more than the actual column width in bytes or characters.

Buffer Expansion During Inserts Use OCI_ATTR_MAXDATA_SIZE to avoid unexpected
behavior caused by buffer expansion during inserts.

Binding and Defining in OCl 5-29

Character Conversion in OCI Binding and Defining

Consider what happens when the database column has character-length semantics,
and the user tries to insert data using OCIBindByPos() or OCIBindByName() while
setting only the OCI_ATTR_MAXCHAR_SIZE to 3000 bytes. The database character set is
UTF8 and the client character set is ASCII. Then, in this case although 3000 characters
tits in a buffer of size 3000 bytes for the client, on the server side it might expand to
more than 4000 bytes. Unless the underlying column is a LONG or a LOB type, the
server returns an error. To avoid this problem specify the 0CI_ATTR_MAXDATA_SIZE to
be 4000 to guarantee that the Oracle database never exceeds 4000 bytes.

Constraint Checking During Defining

To select data from columns into client buffers, OCI uses defined variables. You can set
an OCI_ATTR_MAXCHAR_SIZE value on the define buffer to impose an additional
character-length constraint. There is no OCI_ATTR_MAXDATA_SIZE attribute for define
handles because the buffer size in bytes serves as the limit on byte length. The define
buffer size provided in the OCIDefineByPos() call can be used as the byte constraint.

Dynamic SQL Selects When sizing buffers for dynamic SQL, always use the OCI_ATTR_
DATA_SIZE value in the implicit describe to avoid data loss through truncation. If the
database column is created using character-length semantics known through the 0CI_
ATTR_CHAR_USED attribute, then you can use the OCI_ATTR_MAXCHAR_SIZE value to set
an additional constraint on the define buffer. A maximum number of OCI_ATTR_
MAXCHAR_SIZE characters is put in the buffer.

Return Lengths The following return length values are always in bytes regardless of the
character-length semantics of the database:
s The value returned in the alen, or the actual length field in binds and defines

s The value that appears in the length, prefixed in special data types such as
VARCHAR and LONG VARCHAR

s The value of the indicator variable in case of truncation

The only exception to this rule is for string buffers in the 0OCI_UTF161ID character set ID;
then the return lengths are in UTF-16 units.

Note: The buffer sizes in the bind and define calls and the piece
sizes in the OCIStmtGetPiecelnfo() and OCIStmtSetPiecelnfo() and
the callbacks are always in bytes.

General Compatibility Issues for Character-Length Semantics in OCI

= For arelease 9.0 or later client communicating with a release 8.1 or earlier Oracle
database, OCI_ATTR_MAXCHAR_SIZE is not known by the Oracle database, so this
value is ignored. If you specify only this value, OCI derives the corresponding
OCI_ATTR_MAXDATA_SIZE value based on the maximum number of bytes for each
character for the client-side character set.

» For arelease 8.1 or earlier client communicating with a release 9.0 or later Oracle
database, the client can never specify an 0OCI_ATTR_MAXCHAR_SIZE value, so the
Oracle database considers the client as always expecting byte-length semantics.
This is similar to the situation when the client specifies only OCI_ATTR_MAXDATA_
SIZE.

So in both cases, the Oracle database and client can exchange information in an
appropriate manner.

5-30 Oracle Call Interface Programmer's Guide

Character Conversion in OCI Binding and Defining

Code Example for Inserting and Selecting Using OCI_ATTR_MAXCHAR_SIZE When a column is
created by specifying a number N of characters, the actual allocation in the database
considers the worst case scenario, as shown in Example 5-20. The real number of bytes
allocated is a multiple of N, say M times N. Currently, Mis 3 as the maximum number of
bytes allocated for each character in UTE-8.

For example, in Example 5-20, in the EMP table, the ENAME column is defined as 30
characters and the ADDRESS column is defined as 80 characters. Thus, the
corresponding byte lengths in the database are M*30 or 3*30=90, and M*80 or
3*80=240, respectively.

Example 5-20 Insert and Select Operations Using the OCI_ATTR_MAXCHAR_SIZE
Attribute

utext ename[31], address[81];
/* E' <= 30+ 1, D' <= 80+ 1, considering null-termination */
sb4 ename_max_chars = EC=20, address_max_chars = ED=60;
/* EC <= (E' - 1), ED <= (D' - 1) */
sb4d ename_max_bytes = EB=80, address_max bytes = DB=200;
/* EB <=M * EC, DB <= M * DC */
text *insstmt = (text *)"INSERT INTO EMP(ENAME, ADDRESS) VALUES (:ENAME, \
:ADDRESS) ";
text *selstmt = (text *)"SELECT ENAME, ADDRESS FROM EMP";

/* Inserting Column Data */

OCIStmtPrepare (stmthpl, errhp, insstmt, (ub4)strlen((char *)insstmt),
(ub4)0CI_NTV_SYNTAX, (ub4)OCI_DEFAULT) ;

0CIBindByName (stmthpl, &bndlp, errhp, (text *)":ENAME",
(sb4)strlen((char *)":ENAME")
(void *)ename, sizeof (ename), SQLT STR, (void *)&insname_ind,
(ub2 *)alenp, (ub2 *)rcodep, (ub4)maxarr_len, (ub4 *)curelep, OCI_DEFAULT) ;

/* either */

OCIAttrSet((void *)bndlp, (ub4)OCI_HTYPE_BIND, (void *)&ename_max_bytes,
(ub4)0, (ub4)OCI_ATTR_MAXDATA SIZE, errhp);

/* or */

OCIAttrSet((void *)bndlp, (ub4)OCI_HTYPE BIND, (void *)&ename_max_chars,
(ub4)0, (ub4)OCI_ATTR_MAXCHAR SIZE, errhp);

/* Retrieving Column Data */
OCIStmtPrepare(stmthp2, errhp, selstmt, strlen((char *)selstmt),
(ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT);

OCIDefineByPos (stmthp2, &dfnlp, errhp, (ub4)l, (void *)ename,
(sbd)sizeof (ename),
SQLT STR, (void *)&selname_ind, (ub2 *)alenp, (ub2 *)rcodep,
(ub4)OCI_DEFAULT) ;

/* if not called, byte semantics is by default */

OCIAttrSet((void *)dfnlp, (ub4)OCI_HTYPE DEFINE, (void *)&ename_max_chars,
(ub4)0,
(ub4)OCI_ATTR_MAXCHAR_SIZE, errhp);

Code Example for UTF-16 Binding and Defining The character set ID in bind and define of
the CHAR or VARCHAR2, or in NCHAR or NVARCHAR? variant handles can be set to assume
that all data is passed in UTF-16 (Unicode) encoding. To specify UTF-16, set 0CI_ATTR_
CHARSET_ID = OCI_UTF161ID.

See Also: "Bind Handle Attributes" on page A-34

Binding and Defining in OCI 5-31

PL/SQL REF CURSORs and Nested Tables in OCI

OCI provides a typedef called utext to facilitate binding and defining of UTF-16 data.

The internal representation of utext is a 16-bit unsigned integer, ub2. Operating

systems where the encoding scheme of the wchar_t data type conforms to UTF-16 can

easily convert utext to the wchar_t data type using cast operators.

Even for UTF-16 data, the buffer size in bind and define calls is assumed to be in bytes.

Users should use the utext data type as the buffer for input and output data.

Example 5-21 shows pseudocode that illustrates a bind and define for UTF-16 data.

Example 5-21 Binding and Defining UTF-16 Data

OCIStmt *stmthpl, *stmthp2;
0CIDefine *dfnlp, *dfn2p;
0CIBind *bndlp, *bnd2p;

text *insstmt=

(text *) "INSERT INTO EMP(ENAME, ADDRESS) VALUES (:ename,

text *selname =
(text *) "SELECT ENAME, ADDRESS FROM EMP";
utext ename[21]; /* Name - UTF-16 */
utext address[51]; /* Address - UTF-16 */
ub2 csid = OCI_UTF16ID;
sb4 ename_col_len = 20;
sb4 address_col_len = 50;

/* Inserting UTF-16 data */

OCIStmtPrepare (stmthpl, errhp, insstmt, (ub4)strlen ((char *)insstmt),

(ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT) ;
(stmthpl, &bndlp, errhp, (text*)":ENAME",
(sb4)strlen((char *)":ENAME")

(void *) ename, sizeof (ename), SQLT_ STR,
(void *)&insname_ind, (ub2 *) 0, (ub2 *) 0,
(ubd *)0, OCI_DEFAULT) ;

((void *) bndlp, (ub4) OCI_HTYPE BIND, (void *)
(ub4) 0, (ub4)OCI_ATTR_CHARSET ID, errhp);
(
(

0CIBindByName

OCIAttrsSet

OCIAttrSet((void *) bndlp, (ub4) OCI_HTYPE_BIND, (void *)
ub4) 0, (ub4)OCI_ATTR_MAXDATA_SIZE, errhp);

/* Retrieving UTF-16 data */

OCIStmtPrepare (stmthp2, errhp, selname, strlen((char *) selname),

(ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT);

OCIDefineByPos (stmthp2, &dfnlp, errhp, (ub4)l, (void *)ename,

(sb4) sizeof (ename), SQLT STR,

(void *)0, (ub2 *)0, (ub2 *)0, (ub4)OCI_DEFAULT);
OCIAttrSet ((void *) dfnlp, (ub4) OCI_HTYPE_DEFINE, (void *)

(ub4) 0, (ub4)OCI_ATTR_CHARSET ID, errhp);

PL/SQL REF CURSORs and Nested Tables in OCI

&ename_col_len,

\

OCI provides the ability to bind and define PL/SQL REF CURSORs and nested tables. An
application can use a statement handle to bind and define these types of variables. As

an example, consider this PL/SQL block:

static const text *plsgl_block = (text *)
"begin \

OPEN :cursorl FOR SELECT employee_id, last_name, job_id, manager_id,

salary, department_id \

5-32 Oracle Call Interface Programmer's Guide

Runtime Data Allocation and Piecewise Operations in OCI

FROM employees WHERE job_id=:job ORDER BY employee_id; \
OPEN :cursor2 FOR SELECT * FROM departments ORDER BY department_id;
end;";

An application allocates a statement handle for binding by calling OCIHandleAlloc(),
and then binds the :cursorl placeholder to the statement handle, as in the following
code, where :cursorl is bound to stm2p.

Example 5-22 Binding the :cursor1 Placeholder to the Statement Handle stm2p as a
REF CURSOR

status = OCIStmtPrepare (stmlp, errhp, (text *) plsqgl_block,
strlen((char *)plsgl_block), OCI_NTV_SYNTAX, OCI_DEFAULT);

status = OCIBindByName (stmlp, (OCIBind **) &bndlp, errhp,

(text *)":cursorl", (sbd)strlen((char *)":cursorl"),
(void *)&stm2p, (sb4) 0, SQLT _RSET, (void *)O0,
(ub2 *)0, (ub2 *)0, (ub4)0, (ub4 *)O, (ub4)OCI_DEFAULT) ;

In this code in Example 5-22, stmlp is the statement handle for the PL/SQL block,
whereas stm2p is the statement handle that is bound as a REF CURSOR for later data
retrieval. A value of SQLT_RSET is passed for the dty parameter.

As another example, consider the following:

static const text *nst_tab = (text *)
"SELECT last_name, CURSOR (SELECT department_name, location_id \
FROM departments) FROM employees WHERE last_name = 'FORD'";

The second position is a nested table, which an OCI application can define as a
statement handle shown in Example 5-23.

Example 5-23 Defining a Nested Table (Second Position) as a Statement Handle

status = OCIStmtPrepare (stmlp, errhp, (text *) nst_tab,
strlen((char *)nst_tab), OCI_NTV_SYNTAX, OCI_DEFAULT) ;

status = OCIDefineByPos (stmlp, (OCIDefine **) &dfn2p, errhp, (ub4)2,
(void *)&stm2p, (sb4)0, SQLT_RSET, (void *)0, (ub2 *)O0,
(ub2 *)0, (ub4)OCI_DEFAULT) ;

After execution, when you fetch a row into stm2p it becomes a valid statement handle.

Note: If you have retrieved multiple REF CURSORs, you must take
care when fetching them into stm2p. If you fetch the first one, you
can then perform fetches on it to retrieve its data. However, after
you fetch the second REF CURSOR into stm2p, you no longer have
access to the data from the first REF CURSOR.

OCI does not support PL/SQL REF CURSORs that were executed in
scrollable mode.

OCI does not support scrollable REF CURSORs because you cannot
scroll back to the rows already fetched by a REF CURSOR.

Runtime Data Allocation and Piecewise Operations in OCI

You can use OCI to perform piecewise inserts, updates, and fetches of data. You can
also use OCI to provide data dynamically in case of array inserts or updates, instead of

Binding and Defining in OCI 5-33

Runtime Data Allocation and Piecewise Operations in OClI

providing a static array of bind values. You can insert or retrieve a very large column
as a series of chunks of smaller size, minimizing client-side memory requirements.

The size of individual pieces is determined at run time by the application and can be
uniform or not.

The piecewise functionality of OCl is particularly useful when performing operations
on extremely large blocks of string or binary data, operations involving database
columns that store CLOB, BLOB, LONG, RAW, or LONG RAW data.

The piecewise fetch is complete when the final OCIStmtFetch2() call returns a value of
OCI_SUCCESS.

In both the piecewise fetch and insert, it is important to understand the sequence of
calls necessary for the operation to complete successfully. For a piecewise insert, you
must call OCIStmtExecute() one time more than the number of pieces to be inserted (if
callbacks are not used). This is because the first time OCIStmtExecute() is called, it
returns a value indicating that the first piece to be inserted is required. As a result, if
you are inserting n pieces, you must call OCIStmtExecute() a total of n+1 times.

Similarly, when performing a piecewise fetch, you must call OCIStmtFetch2() once
more than the number of pieces to be fetched.

Valid Data Types for Piecewise Operations

Only some data types can be manipulated in pieces. OCI applications can perform
piecewise fetches, inserts, or updates of all the following data types:

s VARCHAR2
s STRING

= LONG

= LONG RAW
= RAW

= CLOB

= BLOB

Another way of using this feature for all data types is to provide data dynamically for
array inserts or updates. The callbacks should always specify 0CI_ONE_PIECE for the
piecep parameter of the callback for data types that do not support piecewise
operations.

Types of Piecewise Operations

You can perform piecewise operations in two ways:

» Use calls provided in the OCI library to execute piecewise operations under a
polling paradigm.

= Employ user-defined callback functions to provide the necessary information and
data blocks.

When you set the mode parameter of an OCIBindByPos() or OCIBindByName() call to
OCI_DATA_ AT_EXEC, it indicates that an OCI application is providing data for an INSERT
or UPDATE operation dynamically at runtime.

Similarly, when you set the mode parameter of an OCIDefineByPos() call to 0CI_
DYNAMIC_FETCH, it indicates that an application dynamically provides allocation space
for receiving data at the time of the fetch.

5-34 Oracle Call Interface Programmer's Guide

Runtime Data Allocation and Piecewise Operations in OCI

In each case, you can provide the runtime information for the INSERT, UPDATE, or FETCH
operation in one of two ways: through callback functions, or by using piecewise
operations. If callbacks are desired, an additional bind or define call is necessary to
register the callbacks.

The following sections give specific information about runtime data allocation and
piecewise operations for inserts, updates, and fetches.

Note: Piecewise operations are also valid for SQL and PL/SQL blocks.

Providing INSERT or UPDATE Data at Runtime

When you specify the 0CI_DATA_AT EXEC mode in a call to OCIBindByPos() or
OCIBindByName(), the value_sz parameter defines the total size of the data that can
be provided at run time. The application must be ready to provide to the OCI library
the run time IN data buffers on demand as many times as is necessary to complete the
operation. When the allocated buffers are no longer required, they must be freed by
the client.

Runtime data is provided in one of two ways:

= You can define a callback using the OCIBindDynamic() function, which when
called at run time returns either a piece of the data or all of it.

= If no callbacks are defined, the call to OCIStmtExecute() to process the SQL
statement returns the OCI_NEED_DATA error code. The client application then
provides the IN/OUT data buffer or piece using the OCIStmtSetPieceInfo() call that
specifies which bind and piece are being used.

Performing a Piecewise Insert or Update

Once the OCI environment has been initialized, and a database connection and session
have been established, a piecewise insert begins with calls to prepare a SQL or
PL/SQL statement and to bind input values. Piecewise operations using standard OCI
calls rather than user-defined callbacks do not require a call to OCIBindDynamic().

Note: Additional bind variables that are not part of piecewise operations
may require additional bind calls, depending on their data types.

Following the statement preparation and bind, the application performs a series of
calls to OCIStmtExecute(), OCIStmtGetPiecelnfo(), and OCIStmtSetPiecelnfo() to
complete the piecewise operation. Each call to OCIStmtExecute() returns a value that
determines what action should be performed next. In general, the application retrieves
a value indicating that the next piece must be inserted, populates a buffer with that
piece, and then executes an insert. When the last piece has been inserted, the operation
is complete.

Keep in mind that the insert buffer can be of arbitrary size and is provided at run time.
In addition, each inserted piece does not need to be of the same size. The size of each
piece to be inserted is established by each OCIStmtSetPiecelnfo() call.

Note: If the same piece size is used for all inserts, and the size of the data
being inserted is not evenly divisible by the piece size, the final inserted piece
is expected to be smaller. You must account for this by indicating the smaller
size in the final OCIStmtSetPiecelnfo() call.

Binding and Defining in OCl 5-35

Runtime Data Allocation and Piecewise Operations in OClI

The procedure is illustrated in Figure 5-3 and expanded in the steps following the
figure.

Figure 5-3 Performing Piecewise Insert

Prepare Statement
OCIStmtPrepare()

v
Bind
OCIBindByName()/
OCIBindByPos()

Set Piece Info R
OCIStmtSetPiecelnfo() v

Error

Get Piece Info OCINEED_DATA | Execute Other
OCIStmtGetPiecelnfo()] ~ | OCIStmtExecute() >

l OCI_SUCCESS

‘ Done

1. Initialize the OCI environment, allocate the necessary handles, connect to a server,
authorize a user, and prepare a statement request by using OCIStmtPrepare2().

2. Bind a placeholder by using OCIBindByName() or OCIBindByPos(). You do not
need to specify the actual size of the pieces you use, but you must provide the total
size of the data that can be provided at run time.

3. Call OCIStmtExecute() for the first time. No data is being inserted here, and the
OCI_NEED_DATA error code is returned to the application. If any other value is
returned, it indicates that an error occurred.

4. Call OCIStmtGetPiecelnfo() to retrieve information about the piece that must be
inserted. The parameters of OCIStmtGetPieceInfo() include a pointer to a value
indicating if the required piece is the first piece, OCI_FIRST_PIECE, or a subsequent
piece, OCI_NEXT_PIECE.

5. The application populates a buffer with the piece of data to be inserted and calls
OCIStmtSetPieceInfo() with these parameters:

= A pointer to the piece
= A pointer to the length of the piece

= A value indicating whether this is the first piece (OCI_FIRST_PIECE), an
intermediate piece (OCI_NEXT_PIECE), or the last piece (OCI_LAST_PIECE)

6. Call OCIStmtExecute() again. If OCI_LAST PIECE was indicated in Step 5 and
OCIStmtExecute() returns OCI_SUCCESS, all pieces were inserted successfully. If
OCIStmtExecute() returns OCI_NEED_DATA, go back to Step 3 for the next insert. If
OCIStmtExecute() returns any other value, an error occurred.

The piecewise operation is complete when the final piece has been successfully
inserted. This is indicated by the 0CI_SUCCESS return value from the final
OCIStmtExecute() call.

Piecewise updates are performed in a similar manner. In a piecewise update operation
the insert buffer is populated with data that is being updated, and OCIStmtExecute() is
called to execute the update.

See Also: "Polling Mode Operations in OCI" on page 2-27

5-36 Oracle Call Interface Programmer's Guide

Runtime Data Allocation and Piecewise Operations in OCI

Piecewise Operations with PL/SQL

An OCI application can perform piecewise operations with PL/SQL for IN, OUT, and
IN/OUT bind variables in a method similar to that outlined previously. Keep in mind
that all placeholders in PL/SQL statements are bound, rather than defined. The call to
OCIBindDynamic() specifies the appropriate callbacks for OUT or IN/OUT parameters.

PL/SQL Indexed Table Binding Support

PL/SQL indexed tables can be passed as IN/OUT binds into PL/SQL anonymous
blocks using OCIL. The procedure for binding PL/SQL indexed tables is quite similar to
performing an array bind for SQL statements. The OCI program must bind the
location of an array with other metadata for the array as follows, using either
OCIBindByName() or OCIBindByPos().

The process of binding a C array into a PL/SQL indexed table bind variable must
provide the following information during the bind call:

= void *valuep (IN/OUT) - A pointer to a location that specifies the beginning of
the array in client memory

= ub2 dty (IN) - The data type of the elements of the array as represented on the
client

s sb4 value_sz (IN) - The maximum size (in bytes) of each element of the array as
represented on the client

= ubd maxarr_len (IN) - The maximum number of elements of the data type the
array is expected to hold in its lifetime

If allocating the entire array up front for doing static bindings, the array must be
sized sufficiently to contain maxarr_len number of elements, each of size value_
sz. This information is also used to constrain the indexed table as seen by PL/SQL.
PL/SQL cannot look up the indexed table (either for read or write) beyond this
specified limit.

= ub4 *curelep (IN/OUT) - A pointer to the number of elements in the array (from
the beginning of the array) that are currently valid.

This should be less than or equal to the maximum array length. Note that this
information is also used to constrain the indexed table as seen by PL/SQL. For IN
binds, PL/SQL cannot read from the indexed table beyond this specified limit. For
OUT binds, PL/SQL can write to the indexed table beyond this limit, but not
beyond the maxarr_len limit.

For IN indexed table binds, before performing OCIStmtExecute(), the user must set up
the current array length (*curelep) for that execution. In addition, the user also must
set up the actual length and indicator as applicable for each element of the array.

For oUT binds, OCI must return the current array length (*curelep) and the actual
length, indicator and return code as applicable for each element of the array.

For best performance, keep the array allocated with maximum array length, and then
vary the current array length between executes based on how many elements are
actually being passed back and forth. Such an approach does not require repeatedly
deallocating and reallocating the array for every execute, thereby helping overall
application performance.

It is also possible to bind using OCI piecewise calls for PL/SQL indexed tables. Such
an approach does not require preallocating the entire array up front. The
OCIStmtSetPieceInfo() and OCIStmtGetPiecelnfo() calls can be used to pass in
individual elements piecewise.

Binding and Defining in OCI 5-37

Runtime Data Allocation and Piecewise Operations in OClI

See Also:
= "OCIBindByName()" on page 16-64
= "OCIBindByPos()" on page 16-68

Restrictions
The PL/SQL indexed table OCI binding interface does not support binding:

= Arrays of ADTs or REFs

= Arrays of descriptor types such as LOB descriptors, ROWID descriptors, datetime
or interval descriptors

= Arrays of PLSQL record types

Providing FETCH Information at Run Time

When a call is made to OCIDefineByPos() with the mode parameter set to 0OCI_
DYNAMIC_FETCH, an application can specify information about the data buffer at the
time of fetch. You may also need to call OCIDefineDynamic() to set a callback function
that is invoked to get information about your data buffer.

Runtime data is provided in one of two ways:

= You can define a callback using the OCIDefineDynamic() function. The value_sz
parameter defines the maximum size of the data that is provided at run time.
When the client library needs a buffer to return the fetched data, the callback is
invoked to provide a runtime buffer into which either a piece of the data or all of it
is returned.

s If no callbacks are defined, the OCI_NEED_DATA error code is returned and the OUT
data buffer or piece can then be provided by the client application by using
OCIStmtSetPiecelnfo(). The OCIStmtGetPiecelnfo() call provides information
about which define and which piece are involved.

Performing a Piecewise Fetch

The fetch buffer can be of arbitrary size. In addition, each fetched piece does not need
to be of the same size. The only requirement is that the size of the final fetch must be
exactly the size of the last remaining piece. The size of each piece to be fetched is
established by each OCIStmtSetPiecelnfo() call. This process is illustrated in Figure 54
and explained in the steps following the figure.

5-38 Oracle Call Interface Programmer's Guide

Runtime Data Allocation and Piecewise Operations in OCI

Figure 5-4 Performing Piecewise Fetch

Execute Statement
OCIStmtExecute()

v

Define
OCIDefineByPos()

Set Piece Info R
OCIStmtSetPiecelnfo() v
f OCI_NEED_DATA Other
Get Piece Info o= - | Fetch
‘OCIStthetPieceInfo() < | ocCistmtFetch) | Error

l OCI_SUCCESS

‘ Done

1. Initialize the OCI environment, allocate necessary handles, connect to a database,
authorize a user, prepare a statement, and execute the statement by using
OCIStmtExecute().

2. Define an output variable by using OCIDefineByPos(), with mode set to 0CI_
DYNAMIC_FETCH. At this point you do not need to specify the actual size of the
pieces you use, but you must provide the total size of the data that is to be fetched
at run time.

3. Call OCIStmtFetch2() for the first time. No data is retrieved, and the OCI_NEED_
DATA error code is returned to the application. If any other value is returned, then
an error occurred.

4. Call OCIStmtGetPiecelnfo() to obtain information about the piece to be fetched.
The piecep parameter indicates whether it is the first piece (OCI_FIRST_ PIECE), a
subsequent piece (OCI_NEXT_PIECE), or the last piece (OCI_LAST_PIECE).

5. Call OCIStmtSetPiecelnfo() to specify the fetch buffer.

6. Call OCIStmtFetch2() again to retrieve the actual piece. If OCIStmtFetch2() returns
OCI_SUCCESS, all the pieces have been fetched successfully. If OCIStmtFetch?2()
returns OCI_NEED_DATA, return to Step 4 to process the next piece. If any other
value is returned, an error occurred.

See Also: "Polling Mode Operations in OCI" on page 2-27

Piecewise Binds and Defines for LOBs

There are two ways of doing piecewise binds and defines for LOBs:
= Using the data interface

You can bind or define character data for CLOB columns using SQLT_CHR (VARCHAR2)
or SQLT_LNG (LONG) as the input data type for the following functions. You can also
bind or define raw data for BLOB columns using SQLT_LBI (LONG RAW), and SQLT_
BIN (RAW) as the input data type for these functions:

- OClIDefineByPos()
- OCIBindByName()
- OCIBindByPos()

Binding and Defining in OCl 5-39

Runtime Data Allocation and Piecewise Operations in OClI

See Also:

= "Binding LOB Data" on page 5-9 for usage and examples for
both INSERT and UPDATE statements

s "Defining LOB Data" on page 5-16 for usage and examples of
SELECT statements
All the piecewise operations described later are supported for CLOB and BLOB
columns in this case.
= Using the LOB locator

You can bind or define a LOB locator for CLOB and BLOB columns using SQLT_CLOB
(CLOB) or SQLT_BLOB (BLOB) as the input data type for the following functions.

- OClIDefineByPos()
- OCIBindByName()
- OCIBindByPos()

You must then call OCILob* functions to read and manipulate the data.
OCILobRead2() and OCILobWrite2() support piecewise and callback modes.

See Also:
s "OCILobRead2()" on page 17-73
s "OCILobWrite2()" on page 17-81

= "LOB Read and Write Callbacks" on page 7-11 for information about
streaming using callbacks with 0CILobWrite2 () and OCILobRead2 ()

5-40 Oracle Call Interface Programmer's Guide

6

Describing Schema Metadata

This chapter discusses the use of the OCIDescribeAny() function to obtain information
about schema elements.

This chapter contains these topics:

s Using OCIDescribeAny()

» Parameter Attributes

s Character-Length Semantics Support in Describe Operations

= Examples Using OCIDescribe Any()

Using OCIDescribeAny()

The OCIDescribeAny() function enables you to perform an explicit describe of the
following schema objects and their subschema objects:

» Tables and views
= Synonyms

= Procedures

s Functions

= Packages

= Sequences

n Collections

s Types

s Schemas

= Databases

Information about other schema elements (function arguments, columns, type
attributes, and type methods) is available through a describe of one of the preceding
schema objects or an explicit describe of the subschema object.

When an application describes a table, it can then retrieve information about that
table's columns. Additionally, OCIDescribeAny() can directly describe subschema
objects such as columns of a table, packages of a function, or fields of a type if given
the name of the subschema object.

The OCIDescribeAny() call requires a describe handle as one of its arguments. The
describe handle must be previously allocated with a call to OCIHandleAlloc().

Describing Schema Metadata 6-1

Using OCIDescribeAny()

The information returned by OCIDescribeAny() is organized hierarchically like a tree,
as shown in Figure 6-1.

Figure 6—1 OCIDescribeAny() Table Description

describe
handle

v

table
description

v

columns

column 1 column 2

data type name

The describe handle returned by the OCIDescribeAny() call has an attribute, 0CI_
ATTR_PARAYN, that points to such a description tree. Each node of the tree has attributes
associated with that node, as well as attributes that are like recursive describe handles
and point to subtrees containing further information. If all the attributes are
homogenous, as with elements of a column list, they are called parameters. The
attributes associated with any node are returned by OCIAttrGet(), and the parameters
are returned by OCIParamGet().

A call to OCIAttrGet() on the describe handle for the table returns a handle to the
column-list information. An application can then use OCIParamGet() to retrieve the
handle to the column description of a particular column in the column list. The handle
to the column descriptor can be passed to OCIAttrGet() to get further information
about the column, such as the name and data type.

After a SQL statement is executed, information about the select list is available as an
attribute of the statement handle. No explicit describe call is needed. To retrieve
information about select-list items from the statement handle, the application must call
OCIParamGet() once for each position in the select list to allocate a parameter
descriptor for that position.

Note: No subsequent OCIAttrGet() or OCIParamGet() call
requires extra round-trips, as the entire description is cached on the
client side by OCIDescribe Any().

Limitations on OCIDescribeAny()

The OCIDescribeAny() call limits information returned to the basic information and
stops expanding a node if it amounts to another describe operation. For example, if a
table column is of an object type, then OCI does not return a subtree describing the
type, because this information can be obtained by another describe call.

The table name is not returned by OCIDescribeAny() or the implicit use of
OCIStmtExecute(). Sometimes a column is not associated with a table. In most cases,
the table is already known.

6-2 Oracle Call Interface Programmer's Guide

Using OCIDescribeAny()

See Also:
s "Describing Select-List Items" on page 4-9
s "OClIDescribeAny()" on page 16-86

Notes on Types and Attributes

When performing describe operations, you should be aware of the following topics.

Data Type Codes

The OCI_ATTR_TYPECODE attribute returns typecodes that represent the types supplied
by the user when a new type is created using the CREATE TYPE statement. These
typecodes are of the enumerated type 0CITypeCode, and are represented by 0CI_
TYPECODE constants. Internal PL/SQL type (boolean) is not supported.

The OCI_ATTR_DATA_TYPE attribute returns typecodes that represent the data types
stored in database columns. These are similar to the describe values returned by
previous versions of Oracle Database. These values are represented by SQLT constants
(ub2 values). Boolean types return SQLT_BOL.

See Also:

= "External Data Types" on page 3-6 for more information about
SQLT_BOL

= "Typecodes" on page 3-25 for more information about
typecodes, such as the OCI_TYPECODE values returned in the
OCI_ATTR_TYPECODE attribute and the SQLT typecodes returned
in the OCI_ATTR_DATA_TYPE attribute

Describing Types
To describe type objects, it is necessary to initialize the OCI process in object mode, as
shown in Example 6-1.

Example 6-1 |Initializing the OCI Process in Object Mode

/* Initialize the OCI Process */
if (OCIEnvCreate((OCIEnv **) &envhp, (ub4) OCI_OBJECT, (voivoid *) 0,
(void * (*) (void *,size_t)) O,
(void * (*) (void *, void *, size_t)) 0,
(void (*) (void *, void *)) 0, (size_t) 0, (void **) 0))
{
printf ("FAILED: OCIEnvCreate()\n");
return OCI_ERROR;
}

See Also: "OCIEnvCreate()" on page 16-13

Implicit and Explicit Describe Operations

The column attribute OCI_ATTR_PRECISION can be returned using an implicit describe
with OCIStmtExecute() and an explicit describe with OCIDescribeAny(). When you
use an implicit describe, set the precision to sb2. When you use an explicit describe, set
the precision to ubl for a placeholder. This is necessary to match the data type of
precision in the dictionary.

Describing Schema Metadata 6-3

Parameter Attributes

OCI_ATTR_LIST_ARGUMENTS Attribute

The OCI_ATTR_LIST_ARGUMENTS attribute for type methods represents second-level
arguments for the method.

For example, consider the following record my_type and the procedure my_proc that
takes an argument of type my_type:

my_type record(a number, b char)

my_proc (my_input my_type)

In this example, the OCI_ATTR_LIST_ARGUMENTS attribute would apply to arguments a
and b of the my_type record.

Parameter Attributes

A parameter is returned by OCIParamGet(). Parameters can describe different types of
objects or information, and have attributes depending on the type of description they
contain, or type-specific attributes. This section describes the attributes and handles
that belong to different parameters.

The OCIDescribeAny() call does support more than two name components (for
example, schema.type.attrl.attr2.methodl). With more than one component, the
first component is interpreted as the schema name (unless some other flag is set).
There is a flag to specify that the object must be looked up under PUBLIC, that is,

non

describe "a", where "a" can be either in the current schema or a public synonym.

If you do not know what the object type is, specify OCI_PTYPE_UNK. Otherwise, an error
is returned if the actual object type does not match the specified type.

Table 6-1 lists the attributes of all parameters.

Table 6-1 Attributes of All Parameters

Attribute
Attribute Description Data Type
OCI_ATTR_OBJ_ID Object or schema ID ubd
OCI_ATTR_OBJ_NAME Database name or object name in a schema OraText *

6-4 Oracle Call Interface Programmer's Guide

Parameter Attributes

Table 6-1 (Cont.) Attributes of All Parameters

Attribute
Attribute Description Data Type
OCI_ATTR_OBJ_SCHEMA Schema name where the object is located OraText *
OCI_ATTR_PTYPE Type of information described by the parameter. Possible values: ubl

OCI_ATTR_TIMESTAMP

OCI_PTYPE_TABLE - table

OCI_PTYPE_VIEW - view

OCI_PTYPE_PROC - procedure

OCI_PTYPE_FUNC - function

OCI_PTYPE_PKG - package

OCI_PTYPE_TYPE - type

OCI_PTYPE_TYPE_ATTR - attribute of a type
OCI_PTYPE_TYPE_COLL - collection type information
OCI_PTYPE_TYPE_METHOD - method of a type
OCI_PTYPE_SYN - synonym

OCI_PTYPE_SEQ - sequence

OCI_PTYPE_COL - column of a table or view
OCI_PTYPE_ARG - argument of a function or procedure
OCI_PTYPE_TYPE_ARG - argument of a type method

OCI_PTYPE_TYPE_RESULT - results of a method

OCI_PTYPE_LIST - column list for tables and views, argument list for

functions and procedures, or subprogram list for packages
OCI_PTYPE_SCHEMA - schema

OCI_PTYPE_DATABASE - database

OCI_PTYPE_UNK - unknown schema object

The time stamp of the object on which the description is based in Oracle ubl *

date format

The following sections list the attributes and handles specific to different types of
parameters.

Table or View Parameters

Table 6-2 lists the type-specific attributes for parameters for a table or view (type 0CI_
PTYPE_TABLE or OCI_PTYPE_VIEW).

Table 6-2 Attributes of Tables or Views

Attribute Description Attribute Data Type
OCI_ATTR_OBJID Object ID ub4
OCI_ATTR_NUM_COLS Number of columns ub2
OCI_ATTR_LIST_COLUMNS Column list (type OCI_PTYPE_LIST) OCIParam *
OCI_ATTR_REF_TDO REF to the type description object (TDO) of the OCIRef *

base type for extent tables

Describing

Schema Metadata 6-5

Parameter Attributes

Table 6-2 (Cont.) Attributes of Tables or Views

Attribute Description Attribute Data Type
OCI_ATTR_IS_TEMPORARY Indicates that the table is temporary ubl
OCI_ATTR_IS_TYPED Indicates that the table is typed ubl
OCI_ATTR_DURATION Duration of a temporary table. Values canbe: =~ 0CIDuration

OCI_DURATION_SESSION - session
OCI_DURATION_TRANS - transaction
OCI_DURATION_NULL - table not temporary

Table 6-3 lists additional attributes that belong to tables.

Table 6-3 Attributes Specific to Tables

Attribute Description Attribute Data Type
OCI_ATTR_RDBA Data block address of the segment header ub4
OCI_ATTR_TABLESPACE Tablespace that the table resides in word
OCI_ATTR_CLUSTERED Indicates that the table is clustered ubl
OCI_ATTR_PARTITIONED Indicates that the table is partitioned ubl
OCI_ATTR_INDEX_ONLY Indicates that the table is index-only ubl

Procedure, Function, and Subprogram Attributes

Table 64 lists the type-specific attributes when a parameter is for a procedure or
function (type OCI_PTYPE_PROC or OCI_PTYPE_FUNC).

Table 6—4 Attributes of Procedures or Functions

Attribute Description Attribute Data Type
OCI_ATTR_LIST ARGUMENTS Argument list. See "List Attributes" on void *

page 6-14.
OCI_ATTR_IS_INVOKER_RIGHTS Indicates that the procedure or function has ubl

invoker's rights

Table 6-5 lists the attributes that are defined only for package subprograms.

Table 6-5 Attributes Specific to Package Subprograms

Attribute Description Attribute Data Type
OCI_ATTR_NAME Name of the procedure or function OraText *
OCI_ATTR_OVERLOAD_ID Overloading ID number (relevant in case the ~ ub2

procedure or function is part of a package and
is overloaded). Values returned may be
different from direct query of a PL/SQL
function or procedure.

Package Attributes

Table 6-6 lists the attributes when a parameter is for a package (type OCI_PTYPE_PKG).

6-6 Oracle Call Interface Programmer's Guide

Parameter Attributes

Table 6—6 Attributes of Packages

Attribute Description Attribute Data Type
OCI_ATTR_LIST_ SUBPROGRAMS Subprogram list. See "List Attributes" on void *
page 6-14.

OCI_ATTR_IS_INVOKER_RIGHTS

Indicates that the package has invoker's rights? ubl

Type Attributes

Table 6-7 lists the attributes when a parameter is for a type (type OCI_PTYPE_TYPE).
These attributes are only valid if the application initialized the OCI process in OCI_
OBJECT mode in a call to OCIEnvCreate().

Table 6-7 Attributes of Types

Attribute

Description

Attribute Data
Type

OCI_ATTR_REF TDO

OCI_ATTR_TYPECODE

OCI_ATTR_COLLECTION_TYPECODE

OCI_ATTR_IS_INCOMPLETE_TYPE
OCI_ATTR_IS_SYSTEM_TYPE
OCI_ATTR_IS_PREDEFINED_TYPE
OCI_ATTR_IS_TRANSIENT TYPE
OCI_ATTR_IS_SYSTEM_GENERATED_TYPE
OCI_ATTR_HAS_NESTED_TABLE
OCI_ATTR_HAS_LOB
OCI_ATTR_HAS_FILE

OCI_ATTR_COLLECTION_ELEMENT

OCI_ATTR_NUM_TYPE_ATTRS

OCI_ATTR_LIST TYPE_ATTRS

OCI_ATTR_NUM_TYPE_METHODS

OCI_ATTR_LIST_TYPE_METHODS

OCI_ATTR_MAP_METHOD

Returns the in-memory REF of the type descriptor
object (TDO) for the type, if the column type is an
object type. If space has not been reserved for the
OCIRef, then it is allocated implicitly in the cache.
The caller can then pin the TDO with
0CIObjectPin().

Typecode. See "Data Type Codes" on page 6-3.
Currently can be only OCI_TYPECODE_OBJECT or
OCI_TYPECODE_NAMEDCOLLECTION.

Typecode of collection if type is collection; invalid
otherwise. See "Data Type Codes" on page 6-3.
Currently can be only OCI_TYPECODE_VARRAY or
OCI_TYPECODE_TABLE. If this attribute is queried
for a type that is not a collection, an error is
returned.

Indicates that this is an incomplete type
Indicates that this is a system type

Indicates that this is a predefined type
Indicates that this is a transient type
Indicates that this is a system-generated type
This type contains a nested table attribute.
This type contains a LOB attribute.

This type contains a BFILE attribute.

Handle to collection element. See "Collection
Attributes" on page 6-10.

Number of type attributes

List of type attributes. See "List Attributes" on
page 6-14.

Number of type methods

List of type methods. See "List Attributes" on
page 6-14.

Map method of type. See "Type Method
Attributes” on page 6-9.

OCIRef *

0CITypeCode

OCITypeCode

ubl
ubl
ubl
ubl
ubl
ubl
ubl
ubl

void *

ub2

void *

ub2

void *

void *

Describing Schema Metadata 6-7

Parameter Attributes

Table 6-7 (Cont.) Attributes of Types

Attribute Data

Attribute Description Type

OCI_ATTR_ORDER_METHOD Order method of type. See "Type Method void *
Attributes" on page 6-9.

OCI_ATTR_IS_INVOKER_RIGHTS Indicates that the type has invoker's rights ubl

OCI_ATTR_NAME A pointer to a string that is the type attribute OraText *
name

OCI_ATTR_SCHEMA_NAME A string with the schema name where the type OraText *
has been created

OCI_ATTR_IS_FINAL_TYPE Indicates that this is a final type ubl

OCI_ATTR_IS_INSTANTIABLE_ TYPE Indicates that this is an instantiable type ubl

OCI_ATTR_IS_SUBTYPE Indicates that this is a subtype ubl

OCI_ATTR_SUPERTYPE_SCHEMA NAME Name of the schema that contains the supertype = OraText *

OCI_ATTR_SUPERTYPE_NAME Name of the supertype OraText *

Type Attribute Attributes

Table 6-8 lists the attributes when a parameter is for an attribute of a type (type 0CI_

PTYPE_TYPE_ATTR).

Table 6-8 Atiributes of Type Attributes

Attribute

Description

Attribute Data Type

OCI_ATTR_DATA_SIZE

OCI_ATTR_TYPECODE

OCI_ATTR_DATA_TYPE

OCI_ATTR_NAME

OCI_ATTR_PRECISION

OCI_ATTR_SCALE

OCI_ATTR_TYPE_NAME

OCI_ATTR_SCHEMA_NAME

The maximum size of the type attribute. This
length is returned in bytes and not characters for
strings and raws. It returns 22 for NUMBERs.

Typecode. See "Data Type Codes" on page 6-3.

The data type of the type attribute. See "Data
Type Codes" on page 6-3.

A pointer to a string that is the type attribute
name

The precision of numeric type attributes. If the
precision is nonzero and scale is -127, then itis a
FLOAT; otherwise, it is a NUMBER (precision,
scale). When precision is 0, NUMBER (precision,
scale) can be represented simply as NUMBER.

The scale of numeric type attributes. If the
precision is nonzero and scale is -127, then it is a
FLOAT; otherwise, it is a NUMBER (precision,
scale). When precision is 0, NUMBER (precision,
scale) can be represented simply as NUMBER.

A string that is the type name. The returned
value contains the type name if the data type is
SQLT_NTY or SQLT_REF. If the data type is SQLT_
NTY, the name of the named data type's type is
returned. If the data type is SQLT_REF, the type
name of the named data type pointed to by the
REF is returned.

A string with the schema name under which the
type has been created

6-8 Oracle Call Interface Programmer's Guide

ub2

OCITypeCode

ub2

OraText *

ubl for explicit
describe
sb2 for implicit
describe

sbl

OraText *

OraText *

Parameter Attributes

Table 6-8 (Cont.) Attributes of Type Attributes

Attribute

Description

Attribute Data Type

OCI_ATTR_REF_TDO

Returns the in-memory REF of the TDO for the
type, if the column type is an object type. If space

has not been reserved for the OCIRef, then it is
allocated implicitly in the cache. The caller can
then pin the TDO with 0CIObjectPin().

OCI_ATTR_CHARSET_ID

The character set ID, if the type attribute is of a

string or character type

OCI_ATTR_CHARSET FORM

The character set form, if the type attribute is of a

string or character type

OCI_ATTR_FSPRECISION

The fractional seconds precision of a datetime or

interval

OCI_ATTR_LFPRECISION

The leading field precision of an interval

OCIRef *

ub2

ubl

ubl

ubl

Type Method Attributes

Table 6-9 lists the attributes when a parameter is for a method of a type (type 0CI_

PTYPE_TYPE_METHOD).

Table 6-9 Attributes of Type Methods

Attribute

Description

Attribute Data Type

OCI_ATTR_NAME

OCI_ATTR_ENCAPSULATION

OCI_ATTR_LIST_ARGUMENTS

OCI_ATTR_IS_CONSTRUCTOR
OCI_ATTR_IS_DESTRUCTOR
OCI_ATTR_IS_OPERATOR
OCI_ATTR_IS_SELFISH
OCI_ATTR_IS_MAP
OCI_ATTR_IS_ORDER

OCI_ATTR_IS_RNDS

OCI_ATTR_IS_RNPS

OCI_ATTR_IS_WNDS

OCI_ATTR_IS_WNPS

OCI_ATTR_IS_FINAL_METHOD

OCI_ATTR_IS_INSTANTIABLE_METHOD

OCI_ATTR_IS_OVERRIDING_METHOD

Name of method (procedure or function)

Encapsulation level of the method (either
OCI_TYPEENCAP_PRIVATE or OCI_
TYPEENCAP_PUBLIC)

Argument list. See "OCI_ATTR_LIST_
ARGUMENTS Attribute" on page 6-4, and
"List Attributes" on page 6-14.

Indicates that method is a constructor
Indicates that method is a destructor
Indicates that method is an operator
Indicates that method is selfish

Indicates that method is a map method
Indicates that method is an order method

Indicates that "Read No Data State" is set
for method

Indicates that "Read No Process State" is
set for method

Indicates that "Write No Data State" is set
for method

Indicates that "Write No Process State" is
set for method

Indicates that this is a final method

Indicates that this is an instantiable
method

Indicates that this is an overriding method

OraText *

OCITypeEncap

void *

ubl
ubl
ubl
ubl
ubl
ubl
ubl

ubl

ubl

ubl

ubl
ubl

ubl

Describing Schema Metadata 6-9

Parameter Attributes

Collection Attributes

Table 6-10 lists the attributes when a parameter is for a collection type (type OCI_

PTYPE_COLL).

Table 6-10 Attributes of Collection Types

Attribute

Description

Attribute Data Type

OCI_ATTR_DATA_SIZE

OCI_ATTR_TYPECODE

OCI_ATTR_DATA_TYPE

OCI_ATTR_NUM_ELEMS

OCI_ATTR_NAME

OCI_ATTR_PRECISION

OCI_ATTR_SCALE

OCI_ATTR_TYPE_NAME

OCI_ATTR_SCHEMA_NAME

OCI_ATTR_REF_TDO

OCI_ATTR_CHARSET ID

OCI_ATTR_CHARSET_FORM

The maximum size of the type attribute. This
length is returned in bytes and not characters for
strings and raws. It returns 22 for NUMBERs.

Typecode. See "Data Type Codes" on page 6-3.

The data type of the type attribute. See "Data
Type Codes" on page 6-3.

The number of elements in an array. It is only
valid for collections that are arrays.

A pointer to a string that is the type attribute
name

The precision of numeric type attributes. If the
precision is nonzero and scale is -127, then it is a
FLOAT; otherwise, it is a NUMBER (precision,
scale). When precision is 0, NUMBER (precision,
scale) can be represented simply as NUMBER.

The scale of numeric type attributes. If the
precision is nonzero and scale is -127, then it is a
FLOAT; otherwise, it is a NUMBER (precision,
scale). When precision is 0, NUMBER (precision,
scale) can be represented simply as NUMBER.

A string that is the type name. The returned
value contains the type name if the data type is
SQLT_NTY or SQLT_REF. If the data type is SQLT_
NTY, the name of the named data type's type is
returned. If the data type is SQLT_REF, the type
name of the named data type pointed to by the
REF is returned.

A string with the schema name under which the
type has been created

Returns the in-memory REF of the type descriptor
object (TDO) for the type, if the column type is an
object type. If space has not been reserved for the
OCIRef, then it is allocated implicitly in the cache.
The caller can then pin the TDO with
0CIObjectPin().

The character set ID, if the type attribute is of a
string or character type

The character set form, if the type attribute is of a
string or character type

ub2

OCITypeCode

ub2

ub4d

OraText *

ubl for explicit
describe
sb2 for implicit
describe

sbl

OraText *

OraText *

OCIRef *

ub2

ubl

Synonym Attributes

Table 6-11 lists the attributes when a parameter is for a synonym (type OCI_PTYPE_

SYN).

6-10 Oracle Call Interface Programmer's Guide

Parameter Attributes

Table 6-11 Attributes of Synonyms
Attribute Description Attribute Data Type
OCI_ATTR_OBJID Object ID ub4
OCI_ATTR_SCHEMA_NAME A string containing the schema name of the OraText *

synonym translation
OCI_ATTR_NAME A NULL-terminated string containing the object OraText *

name of the synonym translation
OCI_ATTR_LINK A NULL-terminated string containing the database OraText *

link name of the synonym translation

Sequence Attributes

Table 6-12 lists the attributes when a parameter is for a sequence (type OCI_PTYPE_

SEQ).

Table 6-12 Attributes of Sequences

Attribute

Description

Attribute Data Type

OCI_ATTR_OBJID
OCI_ATTR_MIN
OCI_ATTR_MAX
OCI_ATTR_INCR

OCI_ATTR_CACHE

OCI_ATTR_ORDER

OCI_ATTR_HW_MARK

Object ID

Minimum value (in Oracle NUMBER format)
Maximum value (in Oracle NUMBER format)
Increment (in Oracle NUMBER format)

Number of sequence numbers cached; zero if
the sequence is not a cached sequence (in
Oracle NUMBER format)

Whether the sequence is ordered

High-water mark (in NUMBER format)

ub4

ubl *
ubl*
ubl *

ubl *

ubl
ubl *

Column Attributes

See Also: "OCINumber Examples" on page 12-10

Note: For BINARY_FLOAT and BINARY_DOUBLE:

If OCIDescribeAny() is used to retrieve the column data type (0CI_
ATTR_DATA_TYPE) for BINARY_FLOAT or BINARY_DOUBLE columns in a

table, it returns the internal data type code.

The SQLT codes corresponding to the internal data type codes for
BINARY_FLOAT and BINARY_DOUBLE are SQLT_IBFLOAT and SQLT_

IBDOUBLE.

Table 6-13 lists the attributes when a parameter is for a column of a table or view (type
OCI_PTYPE_COL).

Describing Schema Metadata 6-11

Parameter Attributes

Table 6-13 Attributes of Columns of Tables or Views

Attribute

Description

Attribute Data Type

OCI_ATTR_CHAR_USED

OCI_ATTR_CHAR_SIZE

OCI_ATTR_DATA_SIZE

OCI_ATTR_DATA_TYPE

OCI_ATTR_NAME

OCI_ATTR_PRECISION

OCI_ATTR_SCALE

OCI_ATTR_IS_NULL

OCI_ATTR_TYPE_NAME

OCI_ATTR_SCHEMA_NAME

OCI_ATTR_REF_TDO

OCI_ATTR_CHARSET_ID

OCI_ATTR_CHARSET_FORM

Returns the type of length semantics of the
column. Zero (0) means byte-length semantics
and 1 means character-length semantics. See
"Character-Length Semantics Support in
Describe Operations" on page 6-17.

Returns the column character length that is the
number of characters allowed in the column. It
is the counterpart of OCI_ATTR_DATA_SIZE,
which gets the byte length. See
"Character-Length Semantics Support in
Describe Operations” on page 6-17.

The maximum size of the column. This length
is returned in bytes and not characters for
strings and raws. It returns 22 for NUMBERs.

The data type of the column. See "Data Type
Codes" on page 6-3.

A pointer to a string that is the column name

The precision of numeric columns. If the
precision is nonzero and scale is -127, then it is
a FLOAT; otherwise, it is a NUMBER (precision,
scale). When precision is 0,

NUMBER (precision, scale) canbe represented
simply as NUMBER.

The scale of numeric columns. If the precision
is nonzero and scale is -127, then it is a FLOAT;
otherwise, it is a NUMBER(precision, scale).
When precision is 0, NUMBER (precision,
scale) can be represented simply as NUMBER.

Returns 0 if null values are not permitted for
the column. Does not return a correct value for
a CUBE or ROLLUP operation.

Returns a string that is the type name. The
returned value contains the type name if the
data type is SQLT_NTY or SQLT_REF. If the data
type is SQLT_NTY, the name of the named data

type's type is returned. If the data type is SQLT_

REF, the type name of the named data type
pointed to by the REF is returned.

Returns a string with the schema name under
which the type has been created

The REF of the TDO for the type, if the column
type is an object type

The character set ID, if the column is of a string
or character type

The character set form, if the column is of a
string or character type

ubl

ub2

ub2

ub2

OraText *

ubl for explicit
describe

sb2 for implicit
describe

sbl

ubl

OraText *

OraText *

OCIRef *

ub2

ubl

Argument and Result Attributes

Table 6-14 lists the attributes when a parameter is for an argument of a procedure or
function (type OCI_PTYPE_ARG), for a type method argument (type OCI_PTYPE_TYPE_
ARG), or for method results (type OCI_PTYPE_TYPE_RESULT).

6-12 Oracle Call Interface Programmer's Guide

Parameter Attributes

Table 6-14 Attributes of Arguments and Results

Attribute

Description

Attribute Data Type

OCI_ATTR_NAME

OCI_ATTR_POSITION

OCI_ATTR_TYPECODE

OCI_ATTR_DATA_TYPE

OCI_ATTR_DATA_SIZE

OCI_ATTR_PRECISION

OCI_ATTR_SCALE

OCI_ATTR_LEVEL

OCI_ATTR_HAS_DEFAULT

OCI_ATTR_LIST_ARGUMENTS

OCI_ATTR_IOMODE

OCI_ATTR_RADIX

OCI_ATTR_IS_NULL

OCI_ATTR_TYPE_NAME

OCI_ATTR_SCHEMA_NAME

OCI_ATTR_SUB_NAME

Returns a pointer to a string that is the
argument name

The position of the argument in the argument
list. Always returns zero.

Typecode. See "Data Type Codes" on page 6-3.

The data type of the argument. See "Data
Type Codes" on page 6-3.

The size of the data type of the argument.
This length is returned in bytes and not
characters for strings and raws. It returns 22
for NUMBERS.

The precision of numeric arguments. If the
precision is nonzero and scale is -127, then it
is a FLOAT; otherwise, it is a

NUMBER (precision, scale). When precision
is 0, NUMBER (precision, scale) can be
represented simply as NUMBER.

The scale of numeric arguments. If the
precision is nonzero and scale is -127, then it
is a FLOAT; otherwise, it is a

NUMBER (precision, scale). When precision
is 0, NUMBER (precision, scale) can be
represented simply as NUMBER.

The data type levels. This attribute always
returns zero.

Indicates whether an argument has a default

The list of arguments at the next level (when
the argument is of a record or table type)

Indicates the argument mode:

0is IN (OCI_TYPEPARAM_IN),

1is OUT (OCI_TYPEPARAM OUT),

2is IN/OUT (OCI_TYPEPARAM INOUT)

Returns a radix (if number type)

Returns 0 if null values are not permitted for
the column

Returns a string that is the type name or the
package name for package local types. The
returned value contains the type name if the
data type is SOLT_NTY or SQLT_REF. If the data
type is SQLT_NTY, the name of the named data
type's type is returned. If the data type is
SQLT_REF, the type name of the named data
type pointed to by the REF is returned.

For SQLT_NTY or SQLT_REF, returns a string
with the schema name under which the type
was created, or under which the package was
created for package local types

For SQLT_NTY or SQLT_REF, returns a string
with the type name, for package local types

OraText *
ub2

OCITypeCode

ub2

ub2

bl for explicit describe

sb2 for implicit
describe

sbl

ub2

ubl

void *

OCITypeParamMode

ubl
ubl

OraText *

OraText *

OraText *

Describing Schema Metadata 6-13

Parameter Attributes

Table 6-14 (Cont.) Attributes of Arguments and Results
Attribute

Description Attribute Data Type

OCI_ATTR_LINK ForSQLT_NTYorSQLT_REF,nﬁurnsashjng OraText *
with the database link name of the database

on which the type exists. This can happen

only for package local types, when the

package is remote.

OCI_ATTR_REF_TDO Returns the REF of the type descriptor object ~ OCIRef *
(TDO) for the type, if the argument type is an

object

OCI_ATTR_CHARSET ID Returns the character set ID if the argumentis ub2

of a string or character type

Returns the character set form if the ubl
argument is of a string or character type

OCI_ATTR_CHARSET_FORM

List Attributes

When a parameter is for a list of columns, arguments, or subprograms (type 0CI_
PTYPE_LIST), it has the type-specific attributes and handles (parameters) shown in
Table 6-15.

The list has an OCI_ATTR_LTYPE attribute that designates the list type. Table 6-15 lists
the possible values and their lower bounds when traversing the list.

Table 6-15 List Attributes

List Attribute

Description

Lower Bound

OCI_LTYPE_COLUMN
OCI_LTYPE_ARG_PROC
OCI_LTYPE_ARG_FUNC
OCI_LTYPE_SUBPRG
OCI_LTYPE_TYPE_ATTR
OCI_LTYPE_TYPE_METHOD
OCI_LTYPE_TYPE_ARG_PROC
OCI_LTYPE_TYPE_ARG_FUNC
OCI_LTYPE_SCH_OBRJ

OCI_LTYPE_DB_SCH

Column list

Procedure argument list

Function argument list

Subprogram list

Type attribute list

Type method list

Type method without result argument list
Type method without result argument list
Object list within a schema

Schema list within a database

O O R O R =k O O =

The list has an OCI_ATTR_NUM_PARAMS attribute, which tells the number of elements in

the list.

Each list has LowerBound ... OCI_ATTR_NUM_PARAMS parameters. LowerBound is the value
in the Lower Bound column of Table 6-15. For a function argument list, position 0 has
a parameter for the return value (type OCI_PTYPE_ARG).

Schema Attributes

Table 6-16 lists the attributes when a parameter is for a schema type (type OCI_PTYPE_

SCHEMA).

6-14 Oracle Call Interface Programmer's Guide

Parameter Attributes

Table 6-16 Attributes Specific to Schemas

Attribute Description Attribute Data Type
OCI_ATTR_LIST OBJECTS List of objects in the schema OCIParam *
Database Attributes

Table 6-17 lists the attributes when a parameter is for a database type (type 0CI_
PTYPE_DATABASE).

Table 6-17 Attributes Specific to Databases

Attribute Description Attribute Data Type
OCI_ATTR_VERSION Database version OraText *
OCI_ATTR_CHARSET ID Database character set ID from the server ub2
handle
OCI_ATTR_NCHARSET ID Database national character set ID from ub2
the server handle
OCI_ATTR_LIST_SCHEMAS List of schemas (type OCI_PTYPE_SCHEMA) ubl
in the database
OCI_ATTR_MAX_PROC_LEN Maximum length of a procedure name ub4
OCI_ATTR_MAX_COLUMN_LEN Maximum length of a column name ub4
OCI_ATTR_CURSOR_COMMIT_BEHAVIOR How a COMMIT operation affects cursors ubl
and prepared statements in the database.
Values are:

OCI_CURSOR_OPEN - Preserve cursor state as
before the commit operation.

OCI_CURSOR_CLOSED - Cursors are closed
on COMMIT, but the application can still
reexecute the statement without preparing
it again.

OCI_ATTR_MAX_ CATALOG_NAMELEN Maximum length of a catalog (database) ubl
name

OCI_ATTR_CATALOG_LOCATION Position of the catalog in a qualified table. ubl
Values are OCI_CL_START and OCI_CL_END.

OCI_ATTR_SAVEPOINT_SUPPORT Does database support savepoints? Values ubl
are OCI_SP_SUPPORTED and OCI_SP_
UNSUPPORTED.

OCI_ATTR_NOWAIT SUPPORT Does database support the nowait clause? ubl
Values are OCI_NW_SUPPORTED and OCI_NW_
UNSUPPORTED.

OCI_ATTR_AUTOCOMMIT_DDL Is autocommit mode required for DDL ubl
statements? Values are OCI_AC_DDL and
OCI_NO_AC_DDL.

OCI_ATTR_LOCKING_MODE Locking mode for the database. Values are ubl
OCI_LOCK_IMMEDIATE and OCI_LOCK_
DELAYED.

Rule Attributes

Table 6-18 lists the attributes when a parameter is for a rule (type OCI_PTYPE_RULE).

Describing Schema Metadata 6-15

Parameter Attributes

Table 6-18 Attributes Specific to Rules

Attribute Description Attribute Data Type

OCI_ATTR_CONDITION Rule condition OraText *

OCI_ATTR_EVAL_CONTEXT OWNER Owner name of the evaluation context OraText *
associated with the rule, if any

OCI_ATTR_EVAL_CONTEXT NAME Object name of the evaluation context OraText *
associated with the rule, if any

OCI_ATTR_COMMENT Comment associated with the rule, if any OraText *

OCI_ATTR_LIST_ACTION_CONTEXT List of name-value pairs in the action context void *

(type OCI_PTYPE_LIST)

Rule Set Attributes

Table 6-19 lists the attributes when a parameter is for a rule set (type OCI_PTYPE_RULE_
SET).

Table 6-19 Attributes Specific to Rule Sets

Attribute Description Attribute Data Type
OCI_ATTR_EVAL_CONTEXT OWNER Owner name of the evaluation context OraText *
associated with the rule set, if any
OCI_ATTR_EVAL_CONTEXT NAME Object name of the evaluation context OraText *
associated with the rule set, if any
OCI_ATTR_COMMENT Comment associated with the rule set, if any OraText *
OCI_ATTR_LIST_RULES List of rules in the rule set (type OCI_PTYPE_ void *
LIST)

Evaluation Context Attributes

Table 6-20 lists the attributes when a parameter is for an evaluation context (type 0CI_
PTYPE_EVALUATION_CONTEXT).

Table 6-20 Attributes Specific to Evaluation Contexts

Attribute Description Attribute Data Type

OCI_ATTR_EVALUATION_FUNCTION Evaluation function associated with the OraText *
evaluation context, if any

OCI_ATTR_COMMENT Comment associated with the evaluation OraText *
context, if any

OCI_ATTR_LIST_TABLE_ALIASES List of table aliases in the evaluation context void *
(type OCI_PTYPE_LIST)

OCI_ATTR_LIST VARIABLE_TYPES List of variable types in the evaluation context void *
(type OCI_PTYPE_LIST)

Table Alias Attributes

Table 6-21 lists the attributes when a parameter is for a table alias (type OCI_PTYPE_
TABLE_ALIAS).

6-16 Oracle Call Interface Programmer's Guide

Character-Length Semantics Support in Describe Operations

Table 6-21 Attributes Specific to Table Aliases

Attribute Description Attribute Data Type
OCI_ATTR_NAME Table alias name OraText *
OCI_ATTR_TABLE_NAME Table name associated with the alias OraText *
Variable Type Attributes

Table 6-22 lists the attributes when a parameter is for a variable (type OCI_PTYPE_
VARIABLE_TYPE).

Table 6-22 Attributes Specific to Variable Types

Attribute Data

Attribute Description Type

OCI_ATTR_NAME Variable name OraText *
OCI_ATTR_TYPE Variable type OraText *
OCI_ATTR_VAR_VALUE_FUNCTION Variable value function associated with the OraText *

variable, if any

OCI_ATTR_VAR_METHOD_FUNCTION Variable method function associated with the OraText *
variable, if any

Name Value Attributes

Table 6-23 lists the attributes when a parameter is for a name-value pair (type 0CI_
PTYPE_NAME_VALUE).

Table 6-23 Attributes Specific to Name-Value Pair

Attribute Description Attribute Data Type
OCI_ATTR_NAME Name OraText *
OCI_ATTR_VALUE Value OCIAnyData*

Character-Length Semantics Support in Describe Operations

Since release Oracle9i, query and column information are supported with
character-length semantics.

The following attributes of describe handles support character-length semantics:

= OCI_ATTR_CHAR_SIZE gets the column character length, which is the number of
characters allowed in the column. It is the counterpart of OCI_ATTR_DATA_SIZE,
which gets the byte length.

L] Calling OCIAttrGet () with attribute OCI_ATTR CHAR_SIZE or OCI_ATTR DATA SIZE
does not return data on stored procedure parameters, because stored procedure
parameters are not bounded.

= OCI_ATTR_CHAR_USED gets the type of length semantics of the column. Zero (0)
means byte-length semantics and 1 means character-length semantics.

An application can describe a select-list query either implicitly or explicitly through
OCIStmtExecute(). Other schema elements must be described explicitly through
OClIDescribeAny().

Describing Schema Metadata 6-17

Examples Using OCIDescribeAny()

Implicit Describing
If the database column was created using character-length semantics, then the implicit
describe information contains the character length, the byte length, and a flag
indicating how the database column was created. OCI_ATTR_CHAR_SIZE is the character
length of the column or expression. The OCI_ATTR_CHAR_USED flag is 1 in this case,
indicating that the column or expression was created with character-length semantics.

The OCI_ATTR_DATA_SIZE value is always large enough to hold all the data, as many as
OCI_ATTR_CHAR_SIZE number of characters. The OCI_ATTR_DATA_SIZE is usually set to
(OCI_ATTR_CHAR_SIZE)*(the client's maximum number of bytes) for each character
value.

If the database column was created with byte-length semantics, then for the implicit
describe (it behaves exactly as it does before release 9.0) the OCI_ATTR_DATA_SIZE value
returned is (column's byte length)*(the maximum conversion ratio between the client
and server's character set). That is, the column byte length divided by the server's
maximum number of bytes for each character multiplied by the client's maximum
number of bytes for each character. The OCI_ATTR_CHAR_USED value is 0 and the 0CI_
ATTR_CHAR_SIZE value is set to the same value as OCI_ATTR_DATA_SIZE.

Explicit Describing
Explicit describes of tables have the following attributes:
= OCI_ATTR_DATA SIZE gets the column's size in bytes, as it appears in the server
m OCI_ATTR_CHAR_SIZE indicates the length of the column in characters

s OCI_ATTR_CHAR_USED, is a flag that indicates how the column was created, as
described previously in terms of the type of length semantics of the column

When inserting, if the OCI_ATTR_CHAR_USED flag is set, you can set the OCI_ATTR_
MAXCHAR_SIZE in the bind handle to the value returned by OCI_ATTR_CHAR_SIZE in the
parameter handle. This prevents you from violating the size constraint for the column.

See Also: "IN Binds" on page 5-29

Client and Server Compatibility Issues for Describing

When an Oracle9i or later client talks to an Oracle8i or earlier server, it behaves as if
the database is only using byte-length semantics.

When an Oracle8i or earlier client talks to a Oracle9i or later server, the attributes 0CI_
ATTR_CHAR_SIZE and OCI_ATTR_CHAR_USED are not available on the client side.

In both cases, the character-length semantics cannot be described when either the
server or client has an Oracle8i or earlier software release.

Examples Using OClIDescribeAny()

The following examples demonstrate the use of OCIDescribeAny() for describing
different types of schema objects. For a more detailed code sample, see the
demonstration program cdemodsa. ¢ included with your Oracle Database installation.

See Also: Appendix B for additional information about the
demonstration programs

6-18 Oracle Call Interface Programmer's Guide

Examples Using OCIDescribeAny()

Retrieving Column Data Types for a Table

Example 6-2 illustrates the use of an explicit describe that retrieves the column data
types for a table.

Example 6-2 Using an Explicit Describe to Retrieve Column Data Types for a Table

int 1=0;

text objptr[] = "EMPLOYEES"; /* the name of a table to be described */
ub2 numcols, col_width;

ubl char_semantics;

ub2 coltyp;

ub4 objp_len = (ub4) strlen((char *)objptr);

OCIParam *parmh = (OCIParam *) 0; /* parameter handle */
OCIParam *collsthd = (OCIParam *) 0; /* handle to list of columns */
OCIParam *colhd = (OCIParam *) O0; /* column handle */

OCIDescribe *dschp = (OCIDescribe *)0; /* describe handle */

OCIHandleAlloc((void *)envhp, (void **)&dschp,
(ub4)OCI_HTYPE_DESCRIBE, (size_t)0, (void **)0);

/* get the describe handle for the table */
if (OCIDescribeAny (svch, errh, (void *)objptr, objp_len, OCI_OTYPE NAME, 0,
OCI_PTYPE_TABLE, dschp))
return OCI_ERROR;

/* get the parameter handle */
if (OCIAttrGet((void *)dschp, OCI_HTYPE_DESCRIBE, (void *)&parmh, (ub4 *)O0,
OCI_ATTR_PARAM, errh))
return OCI_ERROR;

/* The type information of the object, in this case, OCI_PTYPE_TABLE,
is obtained from the parameter descriptor returned by the OCIAttrGet(). */
/* get the number of columns in the table */
numcols = 0;
if (OCIAttrGet((void *)parmh, OCI_DTYPE_PARAM, (void *)&numcols, (ub4 *)O0,
OCI_ATTR_NUM_COLS, errh))
return OCI_ERROR;

/* get the handle to the column list of the table */
if (OCIAttrGet((void *)parmh, OCI_DTYPE_PARAM, (void *)&collsthd, (ub4 *)O0,
OCI_ATTR_LIST_COLUMNS, errh)==0CI_NO_DATA)
return OCI_ERROR;

/* go through the column list and retrieve the data type of each column,
and then recursively describe column types. */

for (1 = 1; 1 <= numcols; i++)
{
/* get parameter for column i */
if (OCIParamGet ((void *)collsthd, OCI_DTYPE PARAM, errh, (void **)&colhd,
(ubd)i))
return OCI_ERROR;

/* for example, get data type for ith column */
coltyp = 0;
if (OCIAttrGet ((void *)colhd, OCI_DTYPE_PARAM, (void *)&coltyp, (ub4d *)O0,
OCI_ATTR_DATA TYPE, errh))
return OCI_ERROR;

Describing Schema Metadata 6-19

Examples Using OCIDescribeAny()

/* Retrieve the length semantics for the column */

char_semantics = 0;

OCIAttrGet ((void*) colhd, (ub4) OCI_DTYPE_PARAM,
(void*) &char_semantics, (ub4 *) 0, (ub4) OCI_ATTR_CHAR_USED,
(OCIError *) errh);

col_width = 0;
if (char_semantics)
/* Retrieve the column width in characters */
OCIAttrGet ((void*) colhd, (ub4) OCI_DTYPE_PARAM,
(void*) &col_width, (ub4 *) 0, (ub4) OCI_ATTR_CHAR_SIZE,
(OCIError *) errh);
else
/* Retrieve the column width in bytes */
OCIAttrGet ((void*) colhd, (ub4) OCI_DTYPE_ PARAM,
(void*) &col_width, (ub4 *) 0, (ub4) OCI_ATTR_DATA_SIZE,
(OCIError *) errh);

if (dschp)
OCIHandleFree((void *) dschp, OCI_HTYPE_DESCRIBE);

Describing the Stored Procedure

The difference between a procedure and a function is that the latter has a return type
at position 0 in the argument list, whereas the former has no argument associated with
position 0 in the argument list. The steps required to describe type methods (also
divided into functions and procedures) are identical to those of regular PL/SQL
functions and procedures. Note that procedures and functions can take the default
types of objects as arguments. Consider the following procedure:

P1 (argl emp.sal%type, arg2 emp%rowtype)

In Example 6-3, assume that each row in emp table has two columns:

name (VARCHAR2 (20)) and sal (NUMBER). In the argument list for P1, there are two
arguments (argl and arg2 at positions 1 and 2, respectively) at level 0 and arguments
(name and sal at positions 1 and 2, respectively) at level 1. Description of P1 returns the
number of arguments as two while returning the higher level (> 0) arguments as
attributes of the 0 zero level arguments.

Example 6-3 Describing the Stored Procedure

int i =0, j =0;

text objptr[] = "add_job_history"; /* the name of a procedure to be described */
ub4 objp_len = (ub4)strlen((char *)objptr);

ub2 numargs = 0, numargsl, pos, level;

text *name, *namel;

ub4 namelen, namelenl;

OCIParam *parmh = (OCIParam *) 0; /* parameter handle */
OCIParam *arglst = (OCIParam *) 0; /* list of args */
OCIParam *arg = (OCIParam *) O0; /* argument handle */
OCIParam *arglstl = (OCIParam *) O0; /* list of args */
OCIParam *argl = (OCIParam *) O0; /* argument handle */
OCIDescribe *dschp = (OCIDescribe *)O0; /* describe handle */

OCIHandleAlloc((void *)envhp, (void **)&dschp,
(ub4)OCI_HTYPE_DESCRIBE, (size_t)0, (void **)0);

6-20 Oracle Call Interface Programmer's Guide

Examples Using OCIDescribeAny()

/* get the describe handle for the procedure */
if (OCIDescribeAny (svch, errh, (void *)objptr, objp_len, OCI_OTYPE NAME, 0,
OCI_PTYPE_PROC, dschp))
return OCI_ERROR;

/* get the parameter handle */
if (OCIAttrGet((void *)dschp, OCI_HTYPE_DESCRIBE, (void *)&parmh, (ub4 *)O0,
OCI_ATTR_PARAM, errh))
return OCI_ERROR;

/* Get the number of arguments and the arg list */
if (OCIAttrGet((void *)parmh, OCI_DTYPE_PARAM, (void *)&arglst,
(ub4 *)0, OCI_ATTR LIST ARGUMENTS, errh))
return OCI_ERROR;

if (OCIAttrGet((void *)arglst, OCI_DTYPE_PARAM, (void *)&numargs, (ub4 *)0,
OCI_ATTR_NUM_PARAMS, errh))
return OCI_ERROR;

/* For a procedure, you begin with i = 1; for a
function, you begin with i = 0. */

for (i = 1; i <= numargs; i++) {
OCIParamGet ((void *)arglst, OCI_DTYPE PARAM, errh, (void **)&arg, (ub4)i);
namelen = 0;
OCIAttrGet((void *)arg, OCI_DTYPE_PARAM, (void *)&name, (ub4 *)&namelen,
OCI_ATTR_NAME, errh);

/* to print the attributes of the argument of type record
(arguments at the next level), traverse the argument list */

OCIAttrGet((void *)arg, OCI_DTYPE_PARAM, (void *)&arglstl, (ub4 *)O0,
OCI_ATTR_LIST_ARGUMENTS, errh);

/* check if the current argument is a record. For argl in the procedure
arglstl is NULL. */

if (arglstl) {
numargsl = 0;
OCIAttrGet((void *)arglstl, OCI_DTYPE_PARAM, (void *)&numargsl, (ub4 *)O0,
OCI_ATTR_NUM_PARAMS, errh);

/* Note that for both functions and procedures, the next higher level
arguments start from index 1. For arg2 in the procedure, the number of
arguments at the level 1 would be 2 */

for (j = 1; j <= numargsl; Jj++) {
OCIParamGet ((void *)arglstl, OCI_DTYPE PARAM, errh, (void **)&argl,
(ubd)3j);
namelenl = 0;
OCIAttrGet((void *)argl, OCI_DTYPE_PARAM, (void *)&namel, (ub4 *)&namelenl,
OCI_ATTR_NAME, errh);

if (dschp)
OCIHandleFree((void *) dschp, OCI_HTYPE_DESCRIBE);

Describing Schema Metadata 6-21

Examples Using OCIDescribeAny()

Retrieving Attributes of an Object Type

Example 64 illustrates the use of an explicit describe on a named object type. It
illustrates how you can describe an object by its name or by its object reference
(oc1Ref). The following code fragment attempts to retrieve the data type value of each
of the object type's attributes.

Example 6-4 Using an Explicit Describe on a Named Object Type

int 1 = 0;

text type_name[] = "inventory_typ";
ub4d type_name_len = (ub4d)strlen((char *)type_name);

OCIRef *type_ref = (OCIRef *) 0;

ub2 numattrs = 0, describe_by_name = 1;
ub2 datatype = 0;

OCITypeCode typecode = 0;

OCIDescribe *dschp = (OCIDescribe *) 0; /* describe handle */
OCIParam *parmh = (OCIParam *) 0; /* parameter handle */
OCIParam *attrlsthd = (OCIParam *) 0; /* handle to list of attrs */
OCIParam *attrhd = (OCIParam *) 0; /* attribute handle */

/* allocate describe handle */
if (OCIHandleAlloc((void *)envh, (void **)&dschp,
(ub4)OCI_HTYPE_DESCRIBE, (size_t)0, (void **)0))
return OCI_ERROR;

/* get the describe handle for the type */
if (describe_by _name) {
if (OCIDescribeAny(svch, errh, (void *)type_name, type_name_len,
OCI_OTYPE_NAME, 0, OCI_PTYPE_TYPE, dschp))
return OCI_ERROR;
}
else {
/* get ref to type using OCIAttrGet */

/* get the describe handle for the type */
if (OCIDescribeAny(svch, errh, (void*)type_ref, 0, OCI_OTYPE_REF,
0, OCI_PTYPE_TYPE, dschp))
return OCI_ERROR;

/* get the parameter handle */
if (OCIAttrGet((void *)dschp, OCI_HTYPE_DESCRIBE, (void *)&parmh, (ub4 *)0,
OCI_ATTR_PARAM, errh))
return OCI_ERROR;

/* The type information of the object, in this case, OCI_PTYPE_TYPE, is
obtained from the parameter descriptor returned by OCIAttrGet */

/* get the number of attributes in the type */

if (OCIAttrGet((void *)parmh, OCI_DTYPE_PARAM, (void *)&numattrs, (ub4 *)O0,
OCI_ATTR_NUM_TYPE_ATTRS, errh))
return OCI_ERROR;

/* get the handle to the attribute list of the type */

if (OCIAttrGet((void *)parmh, OCI_DTYPE_PARAM, (void *)&attrlsthd, (ub4 *)O0,
OCI_ATTR_LIST TYPE_ATTRS, errh))

6-22 Oracle Call Interface Programmer's Guide

Examples Using OCIDescribeAny()

return OCI_ERROR;

/* go through the attribute list and retrieve the data type of each attribute,
and then recursively describe attribute types. */

for (1 = 1; 1 <= numattrs; i++)

{

/* get parameter for attribute i */

if (OCIParamGet ((void *)attrlsthd, OCI_DTYPE PARAM, errh, (void **)&attrhd, 1))
return OCI_ERROR;

/* for example, get data type and typecode for attribute; note that
OCI_ATTR_DATA_TYPE returns the SQLT code, whereas OCI_ATTR_TYPECODE returns the
Oracle Type System typecode. */

datatype = 0;
if (OCIAttrGet((void *)attrhd, OCI_DTYPE_PARAM, (void *)&datatype, (ub4 *)O0,
OCI_ATTR_DATA_ TYPE, errh))
return OCI_ERROR;

typecode = 0;
if (OCIAttrGet((void *)attrhd, OCI_DTYPE_PARAM, (void *)&typecode, (ub4 *)0,
OCI_ATTR_TYPECODE, errh))
return OCI_ERROR;

/* if attribute is an object type, recursively describe it */
if (typecode == OCI_TYPECODE_OBJECT)
{

OCIRef *attr_type_ref;

OCIDescribe *nested_dschp;

/* allocate describe handle */

if (OCIHandleAlloc((void *)envh, (void**)&nested_dschp,
(ub4)OCI_HTYPE_DESCRIBE, (size_t)0, (void **)0))
return OCI_ERROR;

if (OCIAttrGet((void *)attrhd, OCI_DTYPE_PARAM,
(void *)&attr_type_ref, (ub4 *)0, OCI_ATTR_REF_TDO,errh))
return OCI_ERROR;

OCIDescribeAny (svch, errh, (void*)attr_type_ref, 0,
OCI_OTYPE_REF, 0, OCI_PTYPE_TYPE, nested_dschp);
/* go on describing the attribute type... */

if (dschp)
OCIHandleFree((void *) dschp, OCI_HTYPE_DESCRIBE);

Retrieving the Collection Element's Data Type of a Named Collection Type

Example 6-5 illustrates the use of an explicit describe on a named collection type.

Example 6-5 Using an Explicit Describe on a Named Collection Type

text type_name[] = "phone_list_typ";
ub4 type_name_len = (ub4) strlen((char *)type_name);
OCIRef *type_ref = (OCIRef *) 0;

Describing Schema Metadata 6-23

Examples Using OCIDescribeAny()

ub2 describe_by_name 1;
ub4 num_elements = 0;

OCITypeCode typecode = 0, collection_typecode = 0, element_typecode = 0;

void *collection_element_parmh = (void *) 0;
OCIDescribe *dschp = (OCIDescribe *) 0; /* describe handle */
OCIParam *parmh = (OCIParam *) O0; /* parameter handle */

/* allocate describe handle */
if (OCIHandleAlloc((void *)envh, (void **)&dschp,
(ub4)OCI_HTYPE_DESCRIBE, (size_t)0, (void **)0))
return OCI_ERROR;

/* get the describe handle for the type */
if (describe_by_name) {
if (OCIDescribeAny(svch, errh, (void *)type_name, type_name_len,
OCI_OTYPE_NAME, 0, OCI_PTYPE_TYPE, dschp))
return OCI_ERROR;
}
else {
/* get ref to type using OCIAttrGet */

/* get the describe handle for the type */
if (OCIDescribeAny(svch, errh, (void*)type_ref, 0, OCI_OTYPE_REF,
0, OCI_PTYPE_TYPE, dschp))
return OCI_ERROR;

/* get the parameter handle */
if (OCIAttrGet((void *)dschp, OCI_HTYPE_DESCRIBE, (void *)&parmh, (ub4 *)0,
OCI_ATTR_PARAM, errh))
return OCI_ERROR;

/* get the Oracle Type System type code of the type to determine that this is a
collection type */
typecode = 0;
if (OCIAttrGet((void *)parmh, OCI_DTYPE_PARAM, (void *)&typecode, (ub4 *)0,
OCI_ATTR_TYPECODE, errh))
return OCI_ERROR;

/* if typecode is OCI_TYPECODE_NAMEDCOLLECTION,
proceed to describe collection element */
if (typecode == OCI_TYPECODE_NAMEDCOLLECTION)
{
/* get the collection's type: OCI_TYPECODE_VARRAY or OCI_TYPECODE_TABLE */
collection_typecode = 0;
if (OCIAttrGet((void *)parmh, OCI_DTYPE_PARAM, (void *)&collection_typecode,
(ub4d *)O0,
OCI_ATTR_COLLECTION_TYPECODE, errh))
return OCI_ERROR;

/* get the collection element; you MUST use this to further retrieve information

about the collection's element */
if (OCIAttrGet((void *)parmh, OCI_DTYPE_PARAM, &collection_element_parmh,

(ubd *)O0,
OCI_ATTR_COLLECTION_ELEMENT, errh))

return OCI_ERROR;

/* get the number of elements if collection is a VARRAY; not valid for nested
tables */

if (collection_typecode == OCI_TYPECODE_VARRAY) {

if (OCIAttrGet((void *)collection_element_parmh, OCI_DTYPE_PARAM,

6-24 Oracle Call Interface Programmer's Guide

Examples Using OCIDescribeAny()

(void *)&num_elements, (ub4 *)0, OCI_ATTR_NUM_ELEMS, errh))

return OCI_ERROR;
}
/* now use the collection_element parameter handle to retrieve information about

the collection element */
element_typecode = 0;
if (OCIAttrGet((void *)collection_element_parmh, OCI_DTYPE_ PARAM,

(void *)&element_typecode, (ub4 *)0, OCI_ATTR_TYPECODE, errh))
return OCI_ERROR;

/* do the same to describe additional collection element information; this is
very similar to describing type attributes */

if (dschp)
OCIHandleFree((void *) dschp, OCI_HTYPE_DESCRIBE);

Describing with Character-Length Semantics

Example 6-6 shows a loop that retrieves the column names and data types
corresponding to a query following query execution. The query was associated with
the statement handle by a prior call to OCIStmtPrepare().

Example 6-6 Using a Parameter Descriptor to Retrieve the Data Types, Column Names,
and Character-Length Semantics

OCIParam *mypard = (OCIParam *) 0;

ub2 dtype;

text *col_name;

ub4 counter, col_name_len, char_ semantics;
ub2 col_width;

sbd parm_status;

text *sglstmt = (text *)"SELECT * FROM employees WHERE employee_id = 100";

checkerr (errhp, OCIStmtPrepare(stmthp, errhp, (OraText *)sglstmt,
(ub4)strlen((char *)sglstmt),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));
checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, 0, 0, (OCISnapshot *)O0,
(OCISnapshot *)0, OCI_DEFAULT));

/* Request a parameter descriptor for position 1 in the select list */
counter = 1;
parm_status = OCIParamGet ((void *)stmthp, OCI_HTYPE_STMT, errhp,
(void **)&mypard, (ub4) counter);
/* Loop only if a descriptor was successfully retrieved for
current position, starting at 1 */
while (parm_status == OCI_SUCCESS) {
/* Retrieve the data type attribute */
checkerr (errhp, OCIAttrGet((void*) mypard, (ub4) OCI_DTYPE_PARAM,
(void*) &dtype, (ub4 *) 0, (ub4) OCI_ATTR_DATA_ TYPE,
(OCIError *) errhp));
/* Retrieve the column name attribute */
col_name_len = 0;
checkerr (errhp, OCIAttrGet((void*) mypard, (ub4) OCI_DTYPE_PARAM,
(void**) &col_name, (ub4d *) &col_name_len, (ub4) OCI_ATTR_NAME,
(OCIError *) errhp));

Describing Schema Metadata 6-25

Examples Using OCIDescribeAny()

/* Retrieve the length semantics for the column */
char_semantics = 0;
checkerr (errhp, OCIAttrGet((void*) mypard, (ub4) OCI_DTYPE_PARAM,
(void*) &char_semantics, (ub4 *) 0, (ub4) OCI_ATTR_CHAR_USED,
(OCIError *) errhp));
col_width = 0;
if (char_semantics)
/* Retrieve the column width in characters */
checkerr (errhp, OCIAttrGet((void*) mypard, (ub4) OCI_DTYPE_PARAM,
(void*) &col_width, (ub4 *) 0, (ub4) OCI_ATTR_CHAR_SIZE,
(OCIError *) errhp));
else
/* Retrieve the column width in bytes */
checkerr (errhp, OCIAttrGet((void*) mypard, (ub4) OCI_DTYPE_PARAM,
(void*) &col_width, (ub4 *) 0, (ub4) OCI_ATTR_DATA SIZE,
(OCIError *) errhp));
/* increment counter and get next descriptor, if there is one */
counter++;
parm_status = OCIParamGet ((void *)stmthp, OCI_HTYPE_STMT, errhp,
(void **)&mypard, (ub4) counter);
} /* while */

6-26 Oracle Call Interface Programmer's Guide

7

LOB and BFILE Operations

This chapter contains these topics:

Using OCI Functions for LOBs

Creating and Modifying Persistent LOBs

Associating a BFILE in a Table with an Operating System File
LOB Attributes of an Object

Array Interface for LOBs

Using LOBs of Size Greater than 4 GB

LOB and BFILE Functions in OCI

Temporary LOB Support

Prefetching of LOB Data, Length, and Chunk Size

Options of SecureFiles LOBs

Using OCI Functions for LOBs

OCl includes a set of functions for performing operations on large objects (LOBs) in a
database. Persistent LOBs (BLOBs, CLOBs, NCLOBs) are stored in the database tablespaces
in a way that optimizes space and provides efficient access. These LOBs have the full
transactional support of the Oracle database. BFILEs are large data objects stored in the
server's operating system files outside the database tablespaces.

OClI also provides support for temporary LOBs, which can be used like local variables
for operating on LOB data.

BFILEs are read-only. Oracle Database supports only binary BFILEs.

See Also:
= Appendix B for code samples showing the use of LOBs

= $ORACLE_HOME/rdbms/demo/lobs/oci/ for specific LOB code
samples

» Oracle Database PL/SQL Packages and Types Reference for the
DBMS_LOB package

» Oracle Database SecureFiles and Large Objects Developer’s Guide

LOB and BFILE Operations 7-1

Creating and Modifying Persistent LOBs

Creating and Modifying Persistent LOBs

LOB instances can be either persistent (stored in the database) or temporary (existing
only in the scope of your application). Do not confuse the concept of a persistent LOB
with a persistent object.

There are two ways of creating and modifying persistent LOBs:
= Using the data interface

You can create a LOB by inserting character data into a CLOB column or RAW data
into a BLOB column directly. You can also modify LOBs by using a SQL UPDATE
statement, to bind character data into a CLOB column or RAW data into a BLOB
column.

Insert, update, and select of remote LOBs (over a dblink) is supported because
neither the remote server nor the local server is of a release earlier than Oracle
Database 10g Release 2. The data interface only supports data size up to 2 GB -1,
the maximum size of an sb4 data type.

See Also: Oracle Database SecureFiles and Large Objects Developer’s Guide
chapter about data interface for persistent LOBs for more information and
examples

= Using the LOB locator

You create a new internal LOB by initializing a new LOB locator using
OClIDescriptorAlloc(), calling OCIAttrSet() to set it to empty (using the OCI_ATTR_
LOBEMPTY attribute), and then binding the locator to a placeholder in an INSERT
statement. Doing so inserts the empty locator into a table with a LOB column or
attribute. You can then perform a SELECT...FOR UPDATE operation on this row to get
the locator, and write to it using one of the OCI LOB functions.

Note: To modify a LOB column or attribute (write, copy, trim, and so forth),
you must lock the row containing the LOB. One way to do this is to use a
SELECT. . .FOR UPDATE statement to select the locator before performing the
operation.

See Also: "Binding LOB Data" on page 5-9 for usage and examples for both
INSERT and UPDATE

For any LOB write command to be successful, a transaction must be open. If you
commit a transaction before writing the data, you must lock the row again (by
reissuing the SELECT. . .FOR UPDATE statement, for example), because the commit
closes the transaction.

Associating a BFILE in a Table with an Operating System File

The BFILENAME function can be used in an INSERT statement to associate an external
server-side (operating system) file with a BFILE column or attribute in a table. Using
BFILENAME in an UPDATE statement associates the BFILE column or attribute with a
different operating system file. OCILobFileSetName() can also be used to associate a
BFILE in a table with an operating system file. BFILENAME is usually used in an INSERT
or UPDATE statement without bind variables, and OCILobFileSetName() is used for
bind variables.

7-2 Oracle Call Interface Programmer's Guide

Array Interface for LOBs

See Also:
s "OCILobFileSetName()" on page 17-52

» Oracle Database SecureFiles and Large Objects Developer’s Guide
for more information about the BFILENAME function

LOB Attributes of an Object

An OCI application can use the OCIObjectNew() function to create a persistent or
transient object with a LOB attribute.

Writing to a LOB Attribute of an Object

It is possible to use OCI to create a new persistent object with a LOB attribute and

write to that LOB attribute. The application would follow these steps when using a
LOB locator:

1. Call OCIObjectNew() to create a persistent object with a LOB attribute.
2. Mark the object as "dirty" (modified).

3. Flush the object, thereby inserting a row into the table.

4

Repin the latest version of the object (or refresh the object), thereby retrieving the
object from the database and acquiring a valid locator for the LOB.

5. Call OCILobWrite2() using the LOB locator in the object to write the data.

See Also: Chapter 11 and the chapters that follow it for more
information about objects

There is a second way of writing to a LOB attribute. When using the data interface, you
can bind or define character data for a CLOB attribute or RAW data for a BLOB attribute.

See Also:

= "Binding LOB Data" on page 5-9 for usage and examples for
both INSERT and UPDATE statements

= "Defining LOB Data" on page 5-16 for usage and examples of
SELECT statements

Transient Objects with LOB Attributes

An application can call OCIObjectNew() and create a transient object with an internal
LOB (BLOB, CLOB, NCLOB) attribute. However, you cannot perform any operations, such
as read or write, on the LOB attribute because transient objects with LOB attributes are
not supported. Calling OCIObjectNew() to create a transient internal LOB type does
not fail, but the application cannot use any LOB operations with the transient LOB.

An application can, however, create a transient object with a BFILE attribute and use
the BFILE attribute to read data from a file stored in the server's file system. The
application can also call OCIObjectNew() to create a transient BFILE.

Array Interface for LOBs

You can use the OCI array interface with LOBs, just as with any other data type. There
are two ways of using the array interface.

LOB and BFILE Operations 7-3

Using LOBs of Size Greater than 4 GB

= Using the data interface

You can bind or define arrays of character data for a CLOB column or RAW data for a
BLOB column. You can use array bind and define interfaces to insert and select
multiple rows with LOBs in one round-trip to the server.

See Also:

= "Binding LOB Data" on page 5-9 for usage and examples for
both INSERT and UPDATE statements

= "Defining LOB Data" on page 5-16 for usage and examples of
SELECT statements

s Using the LOB locator

When using the LOB locator you must allocate the descriptors, as shown in
Example 7-1.

Example 7-1 Using the LOB Locator and Allocating the Descriptors

/* First create an array of OCILobLocator pointers: */
OCILobLocator *lobp[l10];

for (i=0; i < 10; i++)
{ OCIDescriptorAlloc (...,&lobp[i],...);

/* Then bind the descriptor as follows */
OCIBindByPos(... &lobp[il, ...);

Using LOBs of Size Greater than 4 GB

Starting with Oracle Database 10g Release 1 of OCI, functions were introduced to
support LOBs of size greater than 4 GB. These new functions can also be used in new
applications for LOBs of less than 4 GB.

Oracle Database enables you to create tablespaces with block sizes different from the
database block size. The maximum size of a LOB depends on the size of the tablespace
blocks. The tablespace block size in which the LOB is stored controls the value of
CHUNK, which is a parameter of LOB storage. When you create a LOB column, you
specify a value for CHUNK, which is the number of bytes to be allocated for LOB
manipulation. The value must be a multiple of the tablespace block size, or Oracle
Database rounds up to the next multiple. (If the tablespace block size equals the
database block size, then CHUNK is also a multiple of the database block size.) The
default CHUNK size is one tablespace block, and the maximum value is 32 KB.

In this guide, 4 GB is defined as 4 gigabytes — 1, or 4,294,967,295 bytes. The maximum
size of a LOB, persistent or temporary, is (4 gigabytes — 1) * (CHUNK). The maximum
LOB size can range from 8 terabytes (TB) to 128 TB.

For example, suppose that your database block size is 32 KB and you create a
tablespace with a nonstandard block size of 8 KB. Further suppose that you create a
table with a LOB column and specify a CHUNK size of 16 KB (which is a multiple of the 8
KB tablespace block size). Then the maximum size of a LOB in this column is (4
gigabytes —1) * 16 KB.

The maximum size of a BFILE is the maximum file size allowed in the operating
system, or UBSMAXVAL, whichever is smaller.

7-4 Oracle Call Interface Programmer's Guide

Using LOBs of Size Greater than 4 GB

Older LOB functions use ub4 as the data types of some parameters, and the ub4 data
type can only hold up to 4 GB. The newer functions use parameters of 8-byte length,
oraub8, which is a data type defined in oratypes.h. The data types oraub8 and orasb8
are mapped to appropriate 64-bit native data types depending on the compiler and
operating system. Macros are used to not define oraub8 and orasb8 if compiling in
32-bit mode with strict ANSI option.

OCILobGetChunkSize() returns the usable chunk size in bytes for BLOBs, CLOBs, and
NCLOBs. The number of bytes stored in a chunk is actually less than the size of the
CHUNK parameter due to internal storage overhead. The function
OCILobGetStorageLimit() is provided to return the maximum size in bytes of internal
LOBs in the current installation.

Note: Oracle Database does not support BFILEs larger than 4
gigabytes in any programmatic environment. An additional file size
limit imposed by your operating system also applies to BFILEs.

Functions to Use for the Increased LOB Sizes

Eight functions with names that end in "2" and that use the data type oraub8 in place
of the data type ub4 were introduced in Oracle Database 10g Release 1. Other changes
were made in the read and write functions (OCILobRead2(), OCILobWrite2(), and
OCILobWriteAppend2()) to solve several problems:

Problem: Before Oracle Database 10g Release 1, the parameter amtp assumed either
byte or char length for LOBs based on the locator type and character set. It was
complicated and users did not have the flexibility to use byte length or char length
according to their requirements.

Solution: Read /Write calls should take both byte_amtp and char_amtp parameters as
replacement for the amtp parameter. The char_amtp parameter is preferred for CLOB
and NCLOB, and the byte_amtp parameter is only considered as input if char_amtp is
zero. On output for CLOB and NCLOB, both byte_amtp and char_amtp parameters are
filled. For BLOB and BFILE, the char_ampt parameter is ignored for both input and
output.

Problem: For OCILobRead?2(), there is no flag to indicate polling mode. There is no
easy way for the users to say "l have a 100-byte buffer. Fill it as much as you can.”
Previously, they had to estimate how many characters to specify for the amount. If
they guessed too much, they were forced into polling mode unintentionally. The user
code thus can get trapped in the polling mode and subsequent OCI calls are all
blocked.

Solution: This call should take piece as an input parameter and if OCI_ONE_PIECE is
passed, it should fill the buffer as much as possible and come out even if the amount
indicated by the byte_amtp parameter or char_amtp parameter is more than the buffer
length. The value of bufl is used to specify the maximum amount of bytes to read.

Problem: After calling for a LOB write in polling mode, users do not know how many
chars or bytes are actually fetched till the end of the polling.

Solution: Both the byte_amtp and char_amtp parameters must be updated after each
call in polling mode.

Problem: While reading or writing data in streaming mode with callback, users must
use the same buffer for each piece of data.

LOB and BFILE Operations 7-5

Using LOBs of Size Greater than 4 GB

Solution: The callback function must have two new parameters to provide the buffer
and the buffer length. Callback functions can set the buffer parameter to NULL to follow
old behavior: to use the default buffer passed in the first call for all the pieces.

See Also:

"LOB Functions" on page 17-17
"OCILobRead2()" on page 17-73
"OCILobWrite2()" on page 17-81
"OCILobWriteAppend2()" on page 17-85

Compatibility and Migration

Existing OCI programs can be enhanced to process larger amounts of LOB data that
are greater than 4 GB. Table 7-1 summarizes compatibility issues in this table, "old"
refers to releases before Oracle Database 10g Release 1, and NA means not applicable.

Table 7-1

LOB Functions Compatibility and Migration

LOB Function

Old Client/New or Old
Server!

New Client/Old Server

New Client/New Server

OCILobArrayRead()

OCILobArrayWrite()

OCILobCopy2 ()

OCILobCopy ()

OCILobErase?2 ()

OCILobErase()
OCILobGetLength?2 ()

OCILobGetLength ()

OCILobLoadFromFile2 ()

OCILobLoadFromFile ()

OCILobRead2 ()

NA

NA

NA

OK; limit is 4 GB.

NA

OK; limit is 4 GB.
NA
OK; limit is 4 GB.

NA

OK; limit is 4 GB.
NA

7-6 Oracle Call Interface Programmer's Guide

OK until piece size and
offset are < 4 GB.

OK until piece size and
offset are < 4 GB.

OK until LOB size, piece
size (amount) and offset
are <4 GB.

OK

OK until piece size and
offset are < 4 GB.

OK
OK
OK

OK until LOB size, piece
size (amount), and offset
are <4 GB.

OK

OK until LOB size, piece
size (amount), and offset
are <4 GB.

OK

OK

OK

OK; limit is 4 GB.
OK

OK; limit is 4 GB.
OK

OK; OCI_ERROR if LOB
size > 4 GB.

OK

OK; limit is 4 GB.
OK

Using LOBs of Size Greater than 4 GB

Table 7-1 (Cont.) LOB Functions Compatibility and Migration

LOB Function

Old Client/New or Old
Server’

New Client/Old Server

New Client/New Server

OCILobRead()

OCILobTrim2 ()
OCILobTrim()

OCILobWrite2 ()

OCILobWrite()

OK; limit 4 GB.

With new server:
OCI_ERROR is returned if
you try to read any
amount >= 4 GB from any
offset < 4 GB. This is
because when you read
any amount >= 4 GB, that
results in an overflow of
returned value in *amtp,
and so it is flagged as an
error.

Note:

= If youread up to 4 GB
—1 from offset, that is
not flagged as an
error.

= When you use
streamingmodewith
polling, no error is
returned if no attempt
is made to use piece
size >4 GB (you can
read data >4 GB in
this case).

NA
OK; limit 4 GB.
NA

OK; limit 4 GB.
With new server:

OCI_ERROR is returned if
you write any amount >=
4 GB (from any offset < 4
GB) because that results an
in overflow of returned
value in *amtp.

Note: Updating a LOB of
10 GB from any offset

up to4 GB-1by up to 4
GB -1 amount of data is
not flagged as an error.

OK until LOB size, piece
size (amount) and offset

OK.

OCI_ERROR is returned if
you try to

read any amount >= 4
GB from any

offset < 4 GB. This is
becausewhenyouread
any amount >= 4 GB,
that results in an
overflow of returned
value in *amtp, and so it
is flagged as an error.

Note:

= Ifyouread up to 4
GB -1 from offset,
that is not to be
flagged as an error.

= When you use
streaming mode
with
polling, no error is
returned if no
attempt is made to
use piece size > 4
GB.

OK
OK; limit 4 GB.
OK

OK.

OCI_ERROR is returned if
you write any amount >
=4 GB (from any offset <
4 GB) because that

results in an overflow of
returned value in *amtp.

Note: Updating a LOB
of 10 GB from any
offset up to 4 GB -1 by
up to 4 GB -1 amount of
data is not flagged as an
error.

LOB and BFILE Operations 7-7

LOB and BFILE Functions in OCI

Table 7-1 (Cont.) LOB Functions Compatibility and Migration

LOB Function

Old Client/New or Old
Server’

New Client/Old Server

New Client/New Server

OCILobWriteAppend? () NA OK until LOB size and OK
piece size are <4 GB.
OCILobWriteAppend () OK; limit 4 GB. OK OK; limit 4 GB.
With new server: 0OCI_ OCI_ERROR is returned if
ERROR is returned if you you append any amount
append any amount >= 4 >= 4 GB of data because
GB of data because that that results in an
results in an overflow of overflow of returned
returned value in *amtp. value in *amtp.
OCILobGetStorageLimit () NA Error OK

! The term "old" refers to releases before Oracle Database 10g Release 1.
2 NA means not applicable.

Use the functions that end in "2" when using the current server and current client.
Mixing deprecated functions with functions that end in "2" can result in unexpected
situations, such as data written using OCILobWrite2() being greater than 4 GB if the
application tries to read it with OCILobRead() and gets only partial data (if a callback
function is not used). In most cases, the application gets an error message when the
size crosses 4 GB and the deprecated functions are used. However, there is no issue if
you use those deprecated functions for LOBs of size smaller than 4 GB.

LOB and BFILE Functions in OCI

In all LOB operations that involve offsets into the data, the offset begins at 1. For LOB
operations, such as OCILobCopy2(), OCILobErase2(), OCILobLoadFromFile2(), and
OCILobTrim2(), the amount parameter is in characters for CLOBs and NCLOBs, regardless
of the client-side character set.

These LOB operations refer to the amount of LOB data on the server. When the
client-side character set is of varying width, the following general rules apply to the
amount and offset parameters in LOB calls:

= amount - When the amount parameter refers to the server-side LOB, the amount is
in characters. When the amount parameter refers to the client-side buffer, the
amount is in bytes.

= offset - Regardless of whether the client-side character set is varying-width, the
offset parameter is always in characters for CLOBs or NCLOBs and in bytes for BLOBs
or BFILES.

Exceptions to these general rules are noted in the description of the specific LOB call.

See Also:
s "LOB Functions" on page 17-17
= "Buffer Expansion During OCI Binding" on page 5-29

Improving LOB Read/Write Performance

Here are some hints to improve performance.

7-8 Oracle Call Interface Programmer's Guide

LOB and BFILE Functions in OCI

Using Data Interface for LOBs

You can bind or define character data for a CLOB column or RAW data for a BLOB column.
This requires only one round-trip for inserting or selecting a LOB, as opposed to the
traditional LOB interface that requires multiple round-trips.

See Also:

= "Binding LOB Data" on page 5-9 for usage and examples for
both INSERT and UPDATE statements

= "Defining LOB Data" on page 5-16 for usage and examples of
SELECT statements

Using OCILobGetChunkSize()

OCILobGetChunkSize() returns the usable chunk size in bytes for BLOBs, CLOBs, and
NCLOBs. You can use the OCILobGetChunkSize() call to improve the performance of
LOB read and write operations for BasicFile LOBs. When a read or write is done on
BasicFile LOB data whose size is a multiple of the usable chunk size and the operation
starts on a chunk boundary, performance is improved. There is no requirement for
SecureFile LOBs to be written or read with OCILobGetChunkSize() alignment.

See Also: ""'Options of SecureFiles LOBs" on page 7-22

Calling OCILobGetChunkSize() returns the usable chunk size of the LOB, so that an
application can batch a series of write operations for the entire chunk, rather than
issuing multiple LOB write calls for the same chunk.

Using OCILobWriteAppend2()

OCI provides a shortcut for more efficient writing of data to the end of a LOB. The
OCILobWriteAppend2() call appends data to the end of a LOB without first requiring
a call to OCILobGetLength2() to determine the starting point for an OCILobWrite2()
operation. OCILobWriteAppend2() does both steps.

Using OClLobArrayRead() and OCILobArrayWrite()

You can improve performance by using by using OCILobArrayRead() to read LOB
data for multiple LOB locators and OCILobArrayWrite() to write LOB data for
multiple LOB locators. These functions, which were introduced in Oracle Database 10g
Release 2, reduce the number of round-trips for these operations.

See Also: Oracle Database SecureFiles and Large Objects Developer’s
Guide, sections "LOB Array Read" and "LOB Array Write" for more
information and code examples that show how to use these
functions with callback functions and in piecewise mode

LOB Buffering Functions

OCI provides several calls for controlling LOB buffering for small reads and writes of
internal LOB values:

s OCILobEnableBuffering()
= OCILobDisableBuffering()
s OCILobFlushBuffer()

These functions enable applications that are using internal LOBs (BLOB, CLOB, NCLOB) to
buffer small reads and writes in client-side buffers. This reduces the number of

LOB and BFILE Operations 7-9

LOB and BFILE Functions in OCI

network round-trips and LOB versions, thereby improving LOB performance
significantly.

See Also:

» Oracle Database SecureFiles and Large Objects Developer’s Guide. For more
information on LOB buffering, see the chapter about using LOB APlIs.

= "LOB Function Round-Trips" on page C-3 for a list of the server
round-trips required for each function

Functions for Opening and Closing LOBs

OCI provides functions to explicitly open a LOB, OCILobOpen(), to close a LOB,
OCILobClose(), and to test whether a LOB is open, OCILoblsOpen(). These functions
mark the beginning and end of a series of LOB operations so that specific processing,
such as updating indexes, can be performed when a LOB is closed.

For internal LOBs, the concept of openness is associated with a LOB and not its locator.
The locator does not store any information about the state of the LOB. It is possible for
more than one locator to point to the same open LOB. However, for BFILEs, being open
is associated with a specific locator. Hence, more than one open call can be performed
on the same BFILE by using different locators.

If an application does not wrap LOB operations within a set of OCILobOpen() and
OCILobClose() calls, then each modification to the LOB implicitly opens and closes the
LOB, thereby firing any triggers associated with changes to the LOB.

If LOB operations are not wrapped within open and close calls, any extensible indexes
on the LOB are updated as LOB modifications are made, and thus are always valid
and may be used at any time. If the LOB is modified within a set of OCILobOpen() and
OCILobClose() calls, triggers are not fired for individual LOB modifications. Triggers
are only fired after the OCILobClose() call, so indexes are not updated until after the
close call and thus are not valid within the open and close calls. OCILoblsOpen() can
be used with internal LOBs and BFILEs.

An error is returned when you commit the transaction before closing all opened LOBs
that were opened by the transaction. When the error is returned, the LOB is no longer
marked as open, but the transaction is successfully committed. Hence, all the changes
made to the LOB and non-LOB data in the transaction are committed, but the domain
and functional indexing are not updated. If this happens, rebuild your functional and
domain indexes on the LOB column.

A LOB opened when there is no transaction must be closed before the end of the
session. If there are LOBs open at the end of session, the LOB is no longer marked as
open and the domain and functional indexing is not updated. If this happens, rebuild
your functional and domain indexes on the LOB column.

Restrictions on Opening and Closing LOBs
The LOB opening and closing mechanism has the following restrictions:

= An application must close all previously opened LOBs before committing a
transaction. Failing to do so results in an error. If a transaction is rolled back, all
open LOBs are discarded along with the changes made. Because the LOBs are not
closed, so the associated triggers are not fired.

= Although there is no limit to the number of open internal LOBs, there is a limit on
the number of open files. See the SESSTON_MAX_OPEN_FILES parameter in Oracle
Database Reference. Assigning an already opened locator to another locator does not
count as opening a new LOB.

7-10 Oracle Call Interface Programmer's Guide

LOB and BFILE Functions in OCI

= Itis an error to open or close the same internal LOB twice within the same
transaction, either with different locators or the same locator.

» Itisan error to close a LOB that has not been opened.

Note: The definition of a transaction within which an open LOB
value must be closed is one of the following:

s Between SET TRANSACTION and COMMIT

= Between DATA MODIFYING DML or SELECT ... FOR UPDATE and
COMMIT.

s Within an autonomous transaction block

See Also:

= Appendix B for examples of the use of the OCILobOpen() and
OCILobClose() calls in the online demonstration programs

» Table C-2, " Server Round-Trips for OCILob Calls"

LOB Read and Write Callbacks

OCI supports read and write callback functions. The following sections describe the
use of callbacks in more detail.

Callback Interface for Streaming

User-defined read and write callback functions for inserting or retrieving data provide
an alternative to the polling methods for streaming LOBs. These functions are
implemented by you and registered with OCI through the OCILobRead?2(),
OCILobWriteAppend2(), and OCILobWrite2() calls. These callback functions are called
by OCI whenever they are required.

Reading LOBs by Using Callbacks

The user-defined read callback function is registered through the OCILobRead?2()
function. The callback function should have the following prototype:

CallbackFunctionName (void *ctxp, CONST void *bufp, oraub8 len, ubl piece,
void **changed_bufpp, oraub8 *changed_lenp);

The first parameter, ctxp, is the context of the callback that is passed to OCI in the
OCILobRead2() function call. When the callback function is called, the information
provided by you in ctxp is passed back to you (OCI does not use this information on
the way IN). The bufp parameter in OCILobRead?2()) is the pointer to the storage
where the LOB data is returned and buf1 is the length of this buffer. It tells you how
much data has been read into the buffer provided.

If the buffer length provided in the original OCILobRead?2() call is insufficient to store
all the data returned by the server, then the user-defined callback is called. In this case,
the piece parameter indicates whether the information returned in the buffer is the
first, next, or last piece.

The parameters changed_bufpp and changed_lenp can be used inside the callback
function to change the buffer dynamically. The changed_bufpp parameter should point
to the address of the changed buffer and the changed_lenp parameter should point to
the length of the changed buffer. The changed_bufpp and changed_lenp parameters

LOB and BFILE Operations 7-11

LOB and BFILE Functions in OCI

need not be used inside the callback function if the application does not change the
buffer dynamically.

Example 7-2 shows a code fragment that implements read callback functions using
OCILobRead?2(). Assume that 1obl is a valid locator that has been previously selected,
svchp is a valid service handle, and errhp is a valid error handle. In the example, the
user-defined function cbk_read_lob() is repeatedly called until all the LOB data has
been read.

Example 7-2 Implementing Read Callback Functions Using OCILobRead2()

oraub8 offset = 1;
oraub8 loblen = 0;
oraub8 byte_amt = 0;
oraub8 char_amt = 0
ubl bufp [MAXBUFLEN] ;

sword retval;
byte_amtp = 4294967297; /* 4 gigabytes plus 1 */

if (retval = OCILobRead2 (svchp, errhp, lobl, &byte_amt, &char_amt, offset,
(void *) bufp, (oraub8) MAXBUFLEN, (void *) 0, OCI_FIRST_PIECE,
cbk_read_lob, (ub2) 0, (ubl) SQLCS_IMPLICIT))

(void) printf ("ERROR: OCILobRead2() LOB.\n");
report_error() ;

}

sbd cbk_read_lob(ctxp, bufxp, len, piece, changed_bufpp, changed_lenp)

void *otxp;

CONST void *bufxp;

oraub8 len;

ubl piece;

void **changed_bufpp;
oraub8 *changed_lenp;

{
static ub4 piece_count = 0;
piece_count++;

switch (piece)
{
case OCI_LAST PIECE: /*--- buffer processing code goes here ---*/
(void) printf("callback read the %d th piece\n\n", piece_count);
piece_count = 0;
break;
case OCI_FIRST_ PIECE: /*--- buffer processing code goes here ---*/
(void) printf("callback read the %d th piece\n", piece_count);
/* --Optional code to set changed_bufpp and changed_lenp if the
buffer must be changed dynamically --*/
break;
case OCI_NEXT_PIECE: /*--- buffer processing code goes here ---*/
(void) printf("callback read the %d th piece\n", piece_count);
/* --Optional code to set changed_bufpp and changed_lenp if the
buffer must be changed dynamically --*/
break;
default:
(void) printf("callback read error: unknown piece = %d.\n", piece);
return OCI_ERROR;

7-12 Oracle Call Interface Programmer's Guide

LOB and BFILE Functions in OCI

return OCI_CONTINUE;

Writing LOBs by Using Callbacks

Similar to read callbacks, the user-defined write callback function is registered through
the OCILobWrite2() function. The callback function should have the following

prototype:

CallbackFunctionName (void *ctxp, void *bufp, oraub8 *lenp, ubl *piecep,
void **changed_bufpp, oraub8 *changed_lenp);

The first parameter, ctxp, is the context of the callback that is passed to OCI in the
OCILobWrite2() function call. The information provided by you in ctxp is passed back
to you when the callback function is called by OCI (OCI does not use this information
on the way IN). The bufp parameter is the pointer to a storage area; you provide this
pointer in the call to OCILobWrite2().

After inserting the data provided in the call to OCILobWrite2() any data remaining is
inserted by the user-defined callback. In the callback, provide the data to insert in the
storage indicated by bufp and also specify the length in lenp. You also indicate
whether it is the next (OCI_NEXT_PIECE) or the last (OCI_LAST_PIECE) piece using the
piecep parameter. You must ensure that the storage pointer that is provided by the
application does not write more than the allocated size of the storage.

The parameters changed_bufpp and changed_lenp can be used inside the callback
function to change the buffer dynamically. The changed_bufpp parameter should point
to the address of the changed buffer and the changed_lenp parameter should point to
the length of the changed buffer. The changed_bufpp and changed_lenp parameters
need not be used inside the callback function if the application does not change the
buffer dynamically.

Example 7-3 shows a code fragment that implements write callback functions using
OCILobWrite2(). Assume that 1obl is a valid locator that has been locked for updating,
svchp is a valid service handle, and errhp is a valid error handle. The user-defined
function cbk_write_lob() is repeatedly called until the piecep parameter indicates
that the application is providing the last piece.

Example 7-3 Implementing Write Callback Functions Using OCILobWrite2()

ubl bufp [MAXBUFLEN] ;

oraub8 byte_amt = MAXBUFLEN * 20;
oraub8 char_amt = 0;

oraub8 offset = 1;

oraub8 nbytes = MAXBUFLEN;

/*-- code to fill bufp with data goes here. nbytes should reflect the size and
should be less than or equal to MAXBUFLEN --*/
if (retval = OCILobWrite2 (svchp, errhp, lobl, &byte_amt, &char_amt, offset,
(void*)bufp, (ub4)nbytes, OCI_FIRST PIECE, (void *)0, cbk_write_lob,
(ub2) 0, (ubl) SQLCS_IMPLICIT))

(void) printf ("ERROR: OCILobWrite2().\n");

report_error();
return;

LOB and BFILE Operations 7-13

Temporary LOB Support

sbd cbk_write_lob(ctxp, bufxp, lenp, piecep, changed_bufpp, changed_lenp)
void *ctxp;
void *bufxp;
oraub8 *lenp;
ubl *piecep;
void **changed_bufpp;
oraub8 *changed_lenp;
{
/*-- code to fill bufxp with data goes here. *lenp should reflect the
size and should be less than or equal to MAXBUFLEN -- */
/* --Optional code to set changed_bufpp and changed lenp if the
buffer must be changed dynamically --*/
if (this is the last data buffer)
*piecep = OCI_LAST_PIECE;
else
*piecep = OCI_NEXT_PIECE;
return OCI_CONTINUE;

Temporary LOB Support

OCI provides functions for creating and freeing temporary LOBs,
OCILobCreateTemporary() and OCILobFreeTemporary(), and a function for
determining whether a LOB is temporary, OCILobIsTemporary().

Temporary LOBs are not permanently stored in the database, but act like local
variables for operating on LOB data. OCI functions that operate on standard
(persistent) LOBs can also be used on temporary LOBs.

As with persistent LOBs, all functions operate on the locator for the temporary LOB,
and the actual LOB data is accessed through the locator.

Temporary LOB locators can be used as arguments to the following types of SQL
statements:

m UPDATE - The temporary LOB locator can be used as a value in a WHERE clause when
testing for nullity or as a parameter to a function. The locator can also be used in a
SET clause.

» DELETE - The temporary LOB locator can be used in a WHERE clause when testing
for nullity or as a parameter to a function.

m SELECT - The temporary LOB locator can be used in a WHERE clause when testing
for nullity or as a parameter to a function. The temporary LOB can also be used as
a return variable in a SELECT. . . INTO statement when selecting the return value of
a function.

Note: If you select a permanent locator into a temporary locator, the
temporary locator is overwritten with the permanent locator. In this case, the
temporary LOB is not implicitly freed. You must explicitly free the temporary
LOB before the SELECT. . . INTO operation. If the temporary LOB is not freed
explicitly, it is not freed until the end of its specified duration. Unless you
have another temporary locator pointing to the same LOB, you no longer have
a locator pointing to the temporary LOB, because the original locator was
overwritten by the SELECT. . . INTO operation.

7-14 Oracle Call Interface Programmer's Guide

Temporary LOB Support

Creating and Freeing Temporary LOBs

You create a temporary LOB with the OCILobCreatelemporary() function. The
parameters passed to this function include a value for the duration of the LOB. The
default duration is for the length of the current session. All temporary LOBs are
deleted at the end of the duration. Users can reclaim temporary LOB space by
explicitly freeing the temporary LOB with the OCILobFreeTemporary() function. A
temporary LOB is empty when it is created.

When creating a temporary LOB, you can also specify whether the temporary LOB is
read into the server's buffer cache.

To make a temporary LOB permanent, use OCILobCopy?2() to copy the data from the
temporary LOB into a permanent one. You can also use the temporary LOB in the
VALUES clause of an INSERT statement, as the source of the assignment in an UPDATE
statement, or assign it to a persistent LOB attribute and then flush the object.
Temporary LOBs can be modified using the same functions that are used for standard
LOBs.

Note: The most efficient way to insert an empty LOB is to bind a
temporary LOB with no value assigned to it. This uses less resources than
the following method.

INSERT INTO tabl VALUES (EMPTY_CLOB())

Temporary LOB Durations

OCI supports several predefined durations for temporary LOBs, and a set of functions
that the application can use to define application-specific durations. The predefined
durations and their associated attributes are:

= Call, OCI_DURATION_CALL, only on the server side
s Session, OCI_DURATION_SESSION

The session duration expires when the containing session or connection ends. The call
duration expires at the end of the current OCI call.

When you run in object mode, you can also define application-specific durations. An
application-specific duration, also referred to as a user duration, is defined by
specifying the start of a duration using OCIDurationBegin() and the end of the
duration using OCIDurationEndJ().

Note: User-defined durations are only available if an application
has been initialized in object mode.

Each application-specific duration has a duration identifier that is returned by
OCIDurationBegin() and is guaranteed to be unique until OCIDurationEnd() is called.
An application-specific duration can be as long as a session duration.

At the end of a duration, all temporary LOBs associated with that duration are freed.
The descriptor associated with the temporary LOB must be freed explicitly with the
OClIDescriptorFree() call.

User-defined durations can be nested; one duration can be defined as a child duration
of another user duration. It is possible for a parent duration to have child durations
that have their own child durations.

LOB and BFILE Operations 7-15

Temporary LOB Support

Note: When a duration is started with OCIDurationBegin(), one of
the parameters is the identifier of a parent duration. When a parent
duration is ended, all child durations are also ended.

Freeing Temporary LOBs

Any time that your OCI program obtains a LOB locator from SQL or PL/SQL, use the
OClILoblsTemporary() function to check that the locator is temporary. If it is, then free
the locator when your application is finished with it by using the
OCILobFreeTemporary() call. The locator can be from a define during a select or an
out bind. A temporary LOB duration is always upgraded to a session duration when it
is shipped to the client side. The application must do the following before the locator is
overwritten by the locator of the next row:

OCILobIsTemporary (env, err, locator, is_temporary);
if (is_temporary)
OCILobFreeTemporary (svc, err, locator);

See Also:
s "OCILoblsTemporary()" on page 17-65
= "OCILobFreeTemporary()" on page 17-54

Take Care When Assigning Pointers

Special care must be taken when assigning 0OCILobLocator pointers. Pointer
assignments create a shallow copy of the LOB. After the pointer assignment, source
and target LOBs point to the same copy of data. This behavior is different from using
LOB APIs, such as OCILobAssign() or OCILobLocatorAssign(), to perform
assignments. When the APIs are used, the locators logically point to independent
copies of data after assignment.

For temporary LOBs, before pointer assignments, you must ensure that any temporary
LOB in the target LOB locator is freed by OCILobFreeTemporary(). When
OCILobLocatorAssign() is used, the original temporary LOB in the target LOB locator
variable, if any, is freed before the assignment happens.

Before an out-bind variable is reused in executing a SQL statement, you must free any
temporary LOB in the existing out-bind LOB locator buffer by using the
OCILobFreeTemporary() call.

See Also:

» Oracle Database SecureFiles and Large Objects Developer’s Guide,
"Temporary LOB Performance Guidelines" section

» Oracle Database SecureFiles and Large Objects Developer’s Guide,
for a discussion of optimal performance of temporary LOBs

Temporary LOB Example

Example 7-4 shows how temporary LOBs can be used.

Example 7-4 Using Temporary LOBs

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

7-16 Oracle Call Interface Programmer's Guide

Temporary LOB Support

#include <oci.h>

/* Function Prototype */
static void checkerr (/*_ OCIError *errhp, sword status _*/);
sbd select_and_createtemp (OCILobLocator *lob_loc,

OCIError *errhp,
0CISveCtx *svchp,
0OCIStmt *stmthp,
OCIEnv *envhp) ;

/* This function reads in a single video frame from the print_media table.

Then it creates a temporary LOB. The temporary LOB that is created is read
through the CACHE, and is automatically cleaned up at the end of the user's
session, if it is not explicitly freed sooner. This function returns OCI_SUCCESS
if it completes successfully or OCI_ERROR if it fails. */

sbd select_and_createtemp (OCILobLocator *lob_loc,

OCIError *errhp,
0CISvcCtx *svchp,
OCIStmt *stmthp,
OCIEnv *envhp)
{

OCIDefine *defnpl;

0CIBind *bndhp;

text *sqglstmt;

int rowind =1;

ub4 loblen = 0;

OCILobLocator *tblob;

printf ("in select_and_createtemp \n");
if (OCIDescriptorAlloc ((void*)envhp, (void **)&tblob,

(ub4)OCI_DTYPE_LOB, (size_t)0, (void**)0))

{
printf("failed in OCIDescriptor Alloc in select_and_createtemp \n");
return OCI_ERROR;

/* arbitrarily select where Clip_ID =1 */
sglstmt=(text *)"SELECT Frame FROM print_media WHERE product_ID = 1 FOR UPDATE";
if (OCIStmtPrepare(stmthp, errhp, sglstmt, (ub4) strlen((char *)sglstmt),

(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))

(void) printf ("FAILED: OCIStmtPrepare() sglstmt\n");
return OCI_ERROR;
}
/* Define for BLOB */
if (OCIDefineByPos (stmthp, &defnpl, errhp, (ub4)1l, (void *) &lob_loc, (sb4)O0,
(ub2) SQLT_BLOB, (void *)0, (ub2 *)0, (ub2 *)0, (ub4) OCI_DEFAULT))

(void) printf ("FAILED: Select locator: OCIDefineByPos()\n");
return OCI_ERROR;
}
/* Execute the select and fetch one row */
if (OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(CONST OCISnapshot*) 0, (OCISnapshot*) 0, (ub4) OCI_DEFAULT))

(void) printf ("FAILED: OCIStmtExecute() sglstmt\n");
return OCI_ERROR;
}
if (OCILobCreateTemporary (svchp, errhp, tblob, (ub2)0, SQLCS_IMPLICIT,
OCI_TEMP_BLOB, OCI_ATTR_NOCACHE, OCI_DURATION_SESSION))

(void) printf("FAILED: CreateTemporary() \n");

LOB and BFILE Operations 7-17

Temporary LOB Support

}

return OCI_ERROR;
}

if (OCILobGetLength(svchp, errhp, lob_loc, &loblen) != OCI_SUCCESS)

{
printf ("OCILobGetLength FAILED\n");
return OCI_ERROR;
}
if (OCILobCopy (svchp, errhp, tblob,lob_loc, (ub4)loblen,
{
printf("OCILobCopy FAILED \n");
}
if (OCILobFreeTemporary (svchp, errhp, thlob))
{
printf ("FAILED: OCILobFreeTemporary call \n");
return OCI_ERROR;

return OCI_SUCCESS;

int main(char *argv, int argc)

{

/* OCI Handles */

OCIEnv *envhp;
OCIServer *srvhp;
OCISvcCtx *svchp;
OCIError *errhp;
0OCISession *authp;
OCIStmt *stmthp;

OCILobLocator *clob, *blob;
OCILobLocator *1lob_loc;
int type =1;
/* Initialize and Log on */
OCIEnvCreate (&envhp, OCI_DEFAULT, (void *)0, 0, 0, O,
(size_t)0, (void *)0);
(void) OCIHandleAlloc((void *) envhp, (void **) &errhp,
(size_t) 0, (void **) 0);
/* server contexts */
(void) OCIHandleAlloc((void *) envhp, (void **) &srvhp,
(size_t) 0, (void **) 0);
/* service context */
(void) OCIHandleAlloc((void *) envhp, (void **) &svchp,
(size_t) 0, (void **) 0);
/* attach to Oracle Database */

(ubd) 1, (ub4) 1))

OCI_HTYPE_ERROR,

OCI_HTYPE_SERVER,

OCI_HTYPE_SVCCTX,

(void) OCIServerAttach(srvhp, errhp, (text *)"", strlen(""), 0);

/* set attribute server context in the service context
(void) OCIAttrSet ((void *) svchp, OCI_HTYPE_SVCCTX,
(void *)srvhp, (ub4) 0,
OCI_ATTR_SERVER, (OCIError *) errhp);
(void) OCIHandleAlloc((wvoid *) envhp,
(

(size_t) 0, (void **) 0);

*/

void **)&authp, (ub4) OCI_HTYPE_SESSION,

(void) OCIAttrSet((void *) authp, (ub4) OCI_HTYPE_SESSION,

void *) "scott", (ub4)5,

(void) OCIAttrSet((void *) authp, (ub4) OCI_HTYPE_SESSION,

(
(
(ub4) OCI_ATTR_USERNAME, errhp);
(
(

void *) "password", (ub4) 5,
(ub4) OCI_ATTR_PASSWORD, errhp);
/* Begin a User Session */

checkerr (errhp, OCISessionBegin (svchp, errhp, authp, OCI_CRED_RDBMS,

(ub4) OCI_DEFAULT));
(void) OCIAttrSet((void *) svchp, (ub4) OCI_HTYPE_SVCCTX,

7-18 Oracle Call Interface Programmer's Guide

Prefetching of LOB Data, Length, and Chunk Size

(void *) authp, (ub4) 0,
(ub4) OCI_ATTR_SESSION, errhp);
[* ——mmm Done logging in -------------------ommm */
/* allocate a statement handle */
checkerr (errhp, OCIHandleAlloc((void *) envhp, (void **) &stmthp,
OCI_HTYPE_STMT, (size_t) 0, (void **) 0));
checkerr (errhp, OCIDescriptorAlloc((void *)envhp, (void **)&lob_loc,
(ub4) OCI_DTYPE_LOB, (size_t) 0, (void **) 0));
/* Subroutine calls begin here */
printf ("calling select_and_createtemp\n");
select_and_createtemp (lob_loc, errhp, svchp,stmthp,envhp);
return 0;
}
void checkerr (errhp, status)
OCIError *errhp;
sword status;
{
text errbuf[512];
sbd errcode = 0;
switch (status)
{
case OCI_SUCCESS:
break;
case OCI_SUCCESS_WITH_INFO:
(void) printf("Error - OCI_SUCCESS_WITH_INFO\n");
break;
case OCI_NEED_DATA:
(void) printf("Error - OCI_NEED_DATA\n");
break;
case OCI_NO_DATA:
(void) printf("Error - OCI_NODATA\n");
break;
case OCI_ERROR:
(void) OCIErrorGet((void *)errhp, (ub4) 1, (text *) NULL, &errcode,
errbuf, (ub4) sizeof (errbuf), OCI_HTYPE_ERROR) ;
(void) printf("Error - %.*s\n", 512, errbuf);
break;
case OCI_INVALID HANDLE:
(void) printf("Error - OCI_INVALID_HANDLE\n");
break;
case OCI_STILL_EXECUTING:
(void) printf("Error - OCI_STILL_EXECUTE\n");
break;
case OCI_CONTINUE:
(void) printf("Error - OCI_CONTINUE\n");
break;
default:
break;

Prefetching of LOB Data, Length, and Chunk Size

To improve OCI access of smaller LOBs, LOB data can be prefetched and cached while
also fetching the locator. This applies to internal LOBs, temporary LOBs, and BFILEs.
Take the following steps to prepare your application:

1. Set the OCI_ATTR_DEFAULT LOBPREFETCH_SIZE attribute for the session handle. The
value of this attribute indicates the default prefetch data size for a LOB locator.

LOB and BFILE Operations 7-19

Prefetching of LOB Data, Length, and Chunk Size

This attribute value enables prefetching for all the LOB locators fetched in the
session. The default value for this attribute is zero (no prefetch of LOB data). This
option relieves the application developer from setting the prefetch LOB size for
each define handle. You can either set this attribute or set (in Step 3) OCI_ATTR_
LOBPREFETCH_SIZE.

2, Perform the prepare and define steps for the statement to be executed.

3. You can override the default prefetch size, if required, for the LOB locators to be
fetched, by setting OCI_ATTR_LOBPREFETCH_SIZE attribute for the define handle.
This optional attribute provides control of the prefetch size for the locators fetched
from a particular column.

4. Set the OCI_ATTR_LOBPREFETCH_LENGTH attribute to the prefetch LOB length and
chunk size.

5. Execute the statement.

6. Call OCILobRead?2() or OCILobArrayRead() with individual LOB locators; OCI
takes the data from the prefetch buffer, does the necessary character conversion,
and copies the data into the LOB read buffer (no change in LOB semantic). If the
data requested is bigger than the prefetch buffer, then it will require additional
round-trips.

7. Call OCILobGetLength2() and OCILobGetChunkSize() to obtain the length and
chunk size without making round-trips to the server.

Note that the prefetch size is in number of bytes for BLOBs and BFILEs and in number
of characters for CLOBs.

Example 7-5 shows a code fragment illustrating these steps.
Example 7-5 Prefetching of LOB Data, Length, and Chunk Size

ubd default_lobprefetch_size = 2000; /* Set default size to 2K */

/* set LOB prefetch attribute to session */
OCIAttrSet (sesshp, (ub4) OCI_HTYPE_SESSION,

(void *)&default_lobprefetch_size, /* attribute value */
0, /* attribute size; not required to specify; */
(ub4) OCI_ATTR_DEFAULT LOBPREFETCH_SIZE,

errhp) ;

/* select statement */
char *stmt = "SELECT lobl FROM lob_table";

/* declare and allocate LOB locator */
OCILobLocator * lob_locator;
lob_locator = OCIDescriptorAlloc(..., OCI_DTYPE_LOB, ...);

OCIDefineByPos(..., 1, (void *) &lob_locator, ..., SQLT CLOB, ...);
/* Override the default prefetch size to 4KB */

ub4d prefetch_size = 4000;
OCIAttrSet (defhp, OCI_HTYPE_DEFINE,

(void *) &prefetch_size /* attr value */,
0 /* restricting prefetch size to be ub4 max val */,
OCI_ATTR_LOBPREFETCH_SIZE /* attr type */,
errhp) ;

/* Set prefetch length attribute */

7-20 Oracle Call Interface Programmer's Guide

Prefetching of LOB Data, Length, and Chunk Size

boolean prefetch_length = TRUE;

OCIAttrSet(defhp, OCI_HTYPE_DEFINE,
(dvoid *) &prefetch_length /* attr value */,
0,
OCI_ATTR_LOBPREFETCH_LENGTH /* attr type */,
errhp);

/* execute the statement. 4KB of data for the LOB is read and
* cached in descriptor cache buffer.

*/
OCIStmtExecute (svchp, stmthp, errhp,
1, /* iters */
0, /* row offset */
NULL, /* snapshot IN */
NULL, /* snapshot out */
OCI_DEFAULT) ; /* mode */

oraub8 char_amtp = 4000;
oraub8 lob_len;
ub4 chunk_size;

/* LOB chunk size, length, and data are read from cache. No round-trip. */
OCILobGetChunkSize (svchp, errhp, lob_locator, &chunk_size);
OCILobGetLength?2 (svchp, errhp, lob_locator, &lob_len);

OCILobRead2 (svchp, errhp, lob_locator, NULL, &char_amtp, ...);

Prefetch cache allocation: The prefetch cache buffer for a descriptor is allocated while
fetching a LOB locator. The allocated buffer size is determined by the OCI_ATTR_
LOBPREFETCH_SIZE attribute for the define handle; the default value of this attribute is
indicated by the OCI_ATTR_DEFAULT_LOBPREFETCH_SIZE attribute value of the session
handle. If the cache buffer is already allocated, then it is resized if required.

For the following two LOB APIs, if the source locator has cached data, then the
destination locator cache is allocated or resized and cached data is copied from source
to destination.

s OCILobAssign()
s OCILobLocatorAssign()

Once allocated, the cache buffer memory for a descriptor is released when the
descriptor itself is freed.

Prefetch cache invalidation: The cache for a descriptor gets invalidated when LOB
data is updated using the locator. Meaning the cache is no longer used for reading data
and the next OCILobRead?2() call on the locator makes a round-trip.

The following LOB APIs invalidate the prefetch cache for the descriptor used:
s OClILobErase() (deprecated)

s OCILobErase2()

s OCILobTrim() (deprecated)

s OCILobTrim2()

s OCILobWrite() (deprecated)

s OCILobWrite2()

LOB and BFILE Operations 7-21

Options of SecureFiles LOBs

s OCILobWriteAppend() (deprecated)

s OCILobWriteAppend2()

s OCILobArrayWrite()

The following LOB APlIs invalidate the cache for the destination LOB locator:
s OCILobAppend()

s OCILobCopy() (deprecated)

s OCILobCopy2()

s OCILobLoadFromFile() (deprecated)

s OCILobLoadFromFile2()

Performance Tuning: The prefetch buffer size must be decided upon based on average
LOB size and client-side memory. If a large amount of data is prefetched, you must
ensure the memory availability. Performance gain may not be significant for
prefetching large LOBs, because the cost of fetching data is much higher compared to
the cost of a round-trip to the server.

You must have a fair idea of the LOB data size to be able to make best use of this LOB
prefetch feature. Because the parameters are part of application design, the application
must be rebuilt if any parameter value must be modified.

See Also:

= "OCI_ATTR_DEFAULT_LOBPREFETCH_SIZE" on page A-18
= "OCI_ATTR_LOBPREFETCH_LENGTH" on page A-38

= "OCI_ATTR_LOBPREFETCH_SIZE" on page A-38

Upgrading: LOB prefetching cannot be used against a pre-11.1 release server or in a
pre-11.1 client against an 11.1 or later server. When you use a pre-11.1 server with an
11.1 or later client, OCIAttrSet() returns an error or an error-with-information saying
that "server does not support this functionality.”

Options of SecureFiles LOBs

For SecureFiles (LOBs with the STORE AS SECUREFILE option, which were introduced
in Oracle Database 11g Release 1) you can specify the SQL parameter DEDUPLICATE in
CREATE TABLE and ALTER TABLE statements. This parameter value enables you to
specify that LOB data that is identical in two or more rows in a LOB column shares the
same data blocks, thus saving disk space. KEEP_DUPLICATES turns off this capability.
The following options are also used with SECUREFILE:

The parameter COMPRESS turns on LOB compression. NOCOMPRESS turns LOB
compression off.

The parameter ENCRYPT turns on LOB encryption and optionally selects an encryption
algorithm. NOENCRYPT turns off LOB encryption. Each LOB column can have its own
encryption specification, independent of the encryption of other LOB or non-LOB
columns. Valid algorithms are 3DES168, AES128, AES192, and AES256.

The LOBs paradigm used before release 11.1 is the default. This default LOBs
paradigm is also now explicitly set by the option STORE AS BASICFILE.

The following OCI functions are used with the SECUREFILE features:
s OCILobGetOptions()

7-22 Oracle Call Interface Programmer's Guide

Options of SecureFiles LOBs

s OCILobSetOptions()
s OCILobGetContentType()
s OCILobSetContentType()
See Also: Oracle Database SecureFiles and Large Objects Developer’s Guide

for complete details of relevant SQL functions and cross-references to
PL/SQL packages and information about migrating to SecureFiles

LOB and BFILE Operations 7-23

Options of SecureFiles LOBs

7-24 Oracle Call Interface Programmer's Guide

8

Managing Scalable Platforms

This chapter contains these topics:

= OCI Support for Transactions

» Levels of Transactional Complexity
= Password and Session Management
= Middle-Tier Applications in OCI

= Externally Initialized Context in OCI
= Client Application Context

= Edition-Based Redefinition

= OCI Security Enhancements

s Overview of OCI Multithreaded Development
s OClIThread Package

OCI Support for Transactions

OCI has a set of API calls to support operations on both local and global transactions.
These calls include object support, so that if an OCI application is running in object
mode, the commit and rollback calls synchronize the object cache with the state of the
transaction.

The functions listed later perform transaction operations. Each call takes a service
context handle that must be initialized with the proper server context and user session
handle. The transaction handle is the third element of the service context; it stores
specific information related to a transaction. When a SQL statement is prepared, it is
associated with a particular service context. When the statement is executed, its effects
(query, fetch, insert) become part of the transaction that is currently associated with the
service context.

s OClITransStart() marks the start of a transaction.
s OClITransDetach() detaches a transaction.

s OCITransCommit() commits a transaction.

s OClITransRollback() rolls back a transaction.

s OClITransPrepare() prepares a transaction to be committed in a distributed
processing environment.

s OCITransMultiPrepare() prepares a transaction with multiple branches in a single
call.

Managing Scalable Platforms 8-1

Levels of Transactional Complexity

s OClITransForget() causes the server to forget a heuristically completed global
transaction.

Depending on the level of transactional complexity in your application, you may need
all or only a few of these calls. The following section discusses this in more detail.

See Also: "Transaction Functions" on page 17-147

Levels of Transactional Complexity
OCI supports several levels of transaction complexity, including the following;:
= Simple Local Transactions
= Serializable or Read-Only Local Transactions

s Global Transactions

Simple Local Transactions

Many applications work with only simple local transactions. In these applications, an
implicit transaction is created when the application makes database changes. The only
transaction-specific calls needed by such applications are:

s OCITransCommit() to commit the transaction
s OClITransRollback() to roll back the transaction

As soon as one transaction has been committed or rolled back, the next modification to
the database creates a new implicit transaction for the application.

Only one implicit transaction can be active at any time on a service context. Attributes
of the implicit transaction are opaque to the user.

If an application creates multiple sessions, each one can have an implicit transaction
associated with it.

See Also: "OCITransCommit()" on page 17-148 for sample code
showing the use of simple local transactions.

Serializable or Read-Only Local Transactions

Applications requiring serializable or read-only transactions require an additional OCI
OClTransStart() call to start the transaction.

The OCITransStart() call must specify OCI_TRANS_SERIALIZABLE or OCI_TRANS_
READONLY, as appropriate, for the flags parameter. If no flag is specified, the default
value is OCI_TRANS_READWRITE for a standard read /write transaction.

Specifying the read-only option in the OCITransStart() call saves the application from
performing a server round-trip to execute a SET TRANSACTION READ ONLY statement.

Global Transactions

Global transactions are necessary only in more sophisticated transaction-processing
applications.

Transaction Identifiers

Three-tier applications such as transaction processing (TP) monitors create and
manage global transactions. They supply a global transaction identifier (XID) that a
server associates with a local transaction.

8-2 Oracle Call Interface Programmer's Guide

Levels of Transactional Complexity

A global transaction has one or more branches. Each branch is identified by an XID. The
XID consists of a global transaction identifier (gtrid) and a branch qualifier (bqual). This
structure is based on the standard XA specification.

Table 8-1 provides the structure for one possible XID of 1234.

Table 8-1 Global Transaction Identifier

Component Value
gtrid 12
bqual 34
gtrid+bqual=XID 1234

The transaction identifier used by OCI transaction calls is set in the OCI_ATTR_XID
attribute of the transaction handle, by using OCIAttrSet(). Alternately, the transaction
can be identified by a name set in the OCI_ATTR_TRANS_NAME attribute.

Attribute OCI_ATTR_TRANS_NAME

When this attribute is set in a transaction handle, the length of the name can be at most
64 bytes. The formatid of the XID is 0 and the branch qualifier is 0.

When this attribute is retrieved from a transaction handle, the returned transaction
name is the global transaction identifier. The size is the length of the global transaction
identifier.

Transaction Branches

Within a single global transaction, Oracle Database supports both tightly coupled and
loosely coupled relationships between a pair of branches.

s Tightly coupled branches share the same local transaction. The gtrid references a
unique local transaction, and multiple branches point to that same transaction. The
owner of the transaction is the branch that was created first.

= Loosely coupled branches use different local transactions. The gtrid and bqual
together map to a unique local transaction. Each branch points to a different
transaction.

The flags parameter of OCITransStart() allows applications to pass OCI_TRANS_TIGHT
or OCI_TRANS_LOOSE values to specify the type of coupling.

A session corresponds to a user session, created with OCISessionBegin().

Figure 8-1 illustrates tightly coupled branches within an application. The XIDs of the
two branches (B1 and B2) share the same gtrid, because they are operating on the
same transaction (T), but they have a different bqual, because they are on separate
branches.

Managing Scalable Platforms 8-3

Levels of Transactional Complexity

Figure 8—-1 Multiple Tightly Coupled Branches

SRes

B1 B2

\ / @ Session
Il Branch

A Transaction

Figure 8-2 illustrates how a single session operates on different branches. The gtrid
components of the XIDs are different, because they represent separate global
transactions.

Figure 8-2 Session Operating on Multiple Branches

B1 B2

* * @ Session
A Transaction

It is possible for a single session to operate on multiple branches that share the same
transaction, but this scenario does not have much practical value.

See Also: "OClITransStart()" on page 17-156 for sample code
demonstrating this scenario

Branch States

Transaction branches are classified into two states: active branches and inactive branches.
A branch is active if a server process is executing requests on the branch. A branch is
inactive if no server processes are executing requests in the branch. In this case, no

session is the parent of the branch, and the branch becomes owned by the PMON process
in the server.

Detaching and Resuming Branches

A branch becomes inactive when an OCI application detaches it, using the
OClITransDetach() call. The branch can be made active again by resuming it with a call
to OCITransStart() with the flags parameter set to OCI_TRANS_RESUME.

8-4 Oracle Call Interface Programmer's Guide

Levels of Transactional Complexity

When an application detaches a branch with OCITransDetach(), it uses the value
specified in the timeout parameter of the OCITransStart() call that created the branch.
The timeout specifies the number of seconds the transaction can remain dormant as a
child of PMON before being deleted.

To resume a branch, the application calls OCITransStart(), specifying the XID of the
branch as an attribute of the transaction handle, OCI_TRANS_RESUME for the flags
parameter, and a different timeout parameter. This timeout value for this call specifies
the length of time that the session waits for the branch to become available if it is
currently in use by another process. If no other processes are accessing the branch, it
can be resumed immediately. A transaction can be resumed by a different process than
the one that detached it, if that process has the same authorization as the one that
detached the transaction.

Setting the Client Database Name

The server handle has OCI_ATTR_EXTERNAL_ NAME and OCI_ATTR_INTERNAL NAME
attributes. These attributes set the client database name recorded when performing
global transactions. The name can be used by the database administrator to track
transactions that may be pending in a prepared state because of failures.

Note: An OCI application sets these attributes, by using
OCIAttrSet() before logging on and using global transactions.

One-Phase Commit Versus Two-Phase Commit

Global transactions can be committed in one or two phases. The simplest situation is
when a single transaction is operating against a single database. In this case, the
application can perform a one-phase commit of the transaction by calling
OClITransCommit(), because the default value of the call is for one-phase commit.

The situation is more complicated if the application is processing transactions against
multiple Oracle databases. In this case, a two-phase commit is necessary. A two-phase
commit operation consists of these steps:

1. Prepare - The application issues an OCITransPrepare() call against each
transaction. Each transaction returns a value indicating whether or not it can
commit its current work (0OCI_SUCCESS) or not (OCI_ERROR).

2. Commit - If each OCITransPrepare() call returns a value of OCI_SUCCESS, the
application can issue an OCITransCommit() call to each transaction. The flags
parameter of the commit call must be explicitly set to 0CI_TRANS_TWOPHASE for the
appropriate behavior, because the default for this call is for one-phase commit.

Note: The OCITransPrepare() call can also return 0CI_SUCCESS_WITH_INFO if
a transaction must indicate that it is read-only. Thus a commit is neither
appropriate nor necessary.

An additional call, OCITransForget(), causes a database to "forget" a completed
transaction. This call is for situations in which a problem has occurred that requires
that a two-phase commit be terminated. When an Oracle database receives an
OClTransForget() call, it removes all information about the transaction.

Managing Scalable Platforms 8-5

Levels of Transactional Complexity

Preparing Multiple Branches in a Single Message

Sometimes when multiple applications use different branches of a global transaction
against the same Oracle database. Before such a transaction can be committed, all
branches must be prepared.

Most often, the applications using the branches are responsible for preparing their
own branches. However, some architectures turn this responsibility over to an external
transaction service. This external transaction service must then prepare each branch of
the global transaction. The traditional OCITransPrepare() call is inefficient for this task
as each branch must be individually prepared. The OCITransMultiPrepare() call,
prepares multiple branches involved in the same global transaction in one round-trip.
This call is more efficient and can greatly reduce the number of messages sent from the
client to the server.

Transaction Examples

Table 8-1 through Table 8-5 illustrate how to use the transaction OCI calls.

They show a series of OCI calls and other actions, along with their resulting behavior.
For simplicity, not all parameters to these calls are listed; rather, it is the flow of calls
that is being demonstrated.

The OCI Action column indicates what the OCI application is doing, or what call it is
making. The XID column lists the transaction identifier, when necessary. The Flags
column lists the values passed in the flags parameter. The Result column describes
the result of the call.

Initialization Parameters

Two initialization parameters relate to the use of global transaction branches and
migratable open connections:

= TRANSACTIONS - This parameter specifies the maximum number of global
transaction branches in the entire system. In contrast, the maximum number of
branches on a single global transaction is 8.

= OPEN_LINKS_PER_INSTANCE - This parameter specifies the maximum number of
migratable open connections. Migratable open connections are used by global
transactions to cache connections after committing a transaction. Contrast this
with the OPEN_LINKS parameter, which controls the number of connections from a
session and is not applicable to applications that use global transactions.

Update Successfully, One-Phase Commit
Table 8-2 lists the steps for a one-phase commit operation.

Table 8-2 One-Phase Commit

Step OCI Action XID Flags Resulit
1 OCITransStart() 1234 OCI_TRANS_NEW Starts new read /write transaction
2 SQL UPDATE - - Update rows
3 OCITransCommit () - - Commit succeeds.
Start a Transaction, Detach, Resume, Prepare, Two-Phase Commit
Table 8-3 lists the steps for a two-phase commit operation.
8-6 Oracle Call Interface Programmer's Guide

Password and Session Management

Table 8-3 Two-Phase Commit

Step OCI Action XID Flags Resulit

1 OCITransStart () 1234 OCI_TRANS_NEW Starts new read-only transaction

2 SQL UPDATE - - Updates rows

3 OCITransDetach() - - Transaction is detached.

4 OCITransStart () 1234 OCI_TRANS_RESUME Transaction is resumed.

5 SQL UPDATE - - -

6 OCITransPrepare() - - Transaction is prepared for two-phase
commit.

7 OCITransCommit () - OCI_TRANS_TWOPHASE Transaction is committed.

In Step 4, the transaction can be resumed by a different process, as long as it had the
same authorization.

Read-Only Update Fails
Table 84 lists the steps in a failed read-only update operation.

Table 8-4 Read-Only Update Fails
Step OCI Action XID Flags Result

1 OCITransStart() 1234 OCI_TRANS_NEW | Starts new read-only transaction.
OCI_TRANS_READONLY

2 SQL UPDATE - - Update fails, because the transaction is read-only.

3 OCITransCommit () - - Commit has no effect.

Start a Read-Only Transaction, Select, and Commit
Table 8-5 lists the steps for a read-only transaction.

Table 8-5 Read-Only Transaction
Step OCI Action XID Flags Resulit

1 OCITransStart() 1234 OCI_TRANS_NEW | Starts new read-only transaction
OCI_TRANS_READONLY

2 SQL SELECT - - Queries the database

3 OCITransCommit () - - No effect — transaction is read-only,
no changes made

Password and Session Management

OCI can authenticate and maintain multiple users.

OCI Authentication Management

The OClISessionBegin() call authenticates a user against the server set in the service
context handle. It must be the first call for any given server handle. OCISessionBegin()
authenticates the user for access to the Oracle database specified by the server handle
and the service context of the call: after OCIServerAttach() initializes a server handle,
OClISessionBegin() must be called to authenticate the user for that server.

Managing Scalable Platforms 8-7

Password and Session Management

When OClSessionBegin() is called for the first time on a server handle, the user session
may not be created in migratable mode (OCI_MIGRATE). After OCISessionBegin() has
been called for a server handle, the application can call OCISessionBegin() again to
initialize another user session handle with different or the same credentials and
different or the same operation modes. For an application to authenticate a user in
OCI_MIGRATE mode, the service handle must already be associated with a
nonmigratable user handle. The userid of that user handle becomes the ownership ID
of the migratable user session. Every migratable session must have a nonmigratable
parent session.

= If OCI_MIGRATE mode is not specified, then the user session context can be used
only with the server handle specified with the OCISessionBegin().

s If OCI_MIGRATE mode is specified, then the user authentication can be set with
other server handles. However, the user session context can only be used with
server handles that resolve to the same database instance. Security checking is
performed during session switching.

A migratable session can switch to a different server handle only if the ownership ID
of the session matches the userid of a nonmigratable session currently connected to
that same server.

OCI_SYSDBA, OCI_SYSOPER, and OCI_PRELIM AUTH settings can only be used with a
primary user session context.

A migratable session can be switched, or migrated, to a server handle within an
environment represented by an environment handle. It can also migrate or be cloned
to a server handle in another environment in the same process, or in a different process
in a different mode. To perform this migration or cloning, you must do the following;:

1. Extract the session ID from the session handle using OCI_ATTR_MIGSESSION. This is
an array of bytes that must not be modified by the caller.

See Also: "User Session Handle Attributes" on page A-14

2. Transport this session ID to another process.

3. In the new environment, create a session handle and set the session ID using 0CI_
ATTR_MIGSESSION.

4. Execute 0OCISessionBegin (). The resulting session handle is fully authenticated.

To provide credentials for a call to OCISessionBegin(), you must provide a valid user
name and password pair for database authentication in the user session handle
parameter. This involves using OCIAttrSet() to set the OCI_ATTR_USERNAME and OCI_
ATTR_PASSWORD attributes on the user session handle. Then OCISessionBegin() is called
with OCI_CRED_RDBUS.

When the user session handle is terminated using OCISessionEnd(), the user name
and password attributes are changed and thus cannot be reused in a future call to
OClSessionBegin(). They must be reset to new values before the next
OClISessionBegin() call.

Or, you can supply external credentials. No attributes need to be set on the user
session handle before calling OCISessionBegin(). The credential type is OCI_CRED_EXT.
If values have been set for OCI_ATTR_USERNAME and OCI_ATTR_PASSWORD, these are
ignored if OCI_CRED_EXT is used.

8-8 Oracle Call Interface Programmer's Guide

Password and Session Management

OCI Password Management

The OCIPasswordChange() call enables an application to modify a user's database
password as necessary. This is particularly useful if a call to OCISessionBegin() returns
an error message or warning indicating that a user's password has expired.

Applications can also use OCIPasswordChange() to establish a user authentication
context and to change the password. If OCIPasswordChange() is called with an
uninitialized service context, it establishes a service context and authenticates the
user's account using the old password, and then changes the password to the new
password. If the OCI_AUTH flag is set, the call leaves the user session initialized.
Otherwise, the user session is cleared.

If the service context passed to OCIPasswordChange() is already initialized, then
OCIPasswordChange() authenticates the given account using the old password and
changes the password to the new password. In this case, no matter how the flag is set,
the user session remains initialized.

Secure External Password Store

For large-scale deployments where applications use password credentials to connect to
databases, it is possible to store such credentials in a client-side Oracle wallet. An
Oracle wallet is a secure software container that is used to store authentication and
signing credentials.

Storing database password credentials in a client-side Oracle wallet eliminates the
need to embed user names and passwords in application code, batch jobs, or scripts.
This reduces the risk of exposing passwords in the clear in scripts and application
code, and simplifies maintenance because you need not change your code each time
user names and passwords change. In addition, not having to change application code
makes it easier to enforce password management policies for these user accounts.

When you configure a client to use the external password store, applications can use
the following syntax to connect to databases that use password authentication:

CONNECT /@database_alias

Note that you need not specify database login credentials in this CONNECT statement.
Instead your system looks for database login credentials in the client wallet.

See Also: Oracle Database Administrator’s Guide for information
about configuring your client to use the secure external password
store

OCI Session Management

Transaction servers that actively balance user load by multiplexing user sessions over
a few server connections must group these connections into a server group. Oracle
Database uses server groups to identify these connections so that sessions can be
managed effectively and securely.

The attribute OCI_ATTR_SERVER_GROUP must be defined to specify the server group
name by using the OCIAttrSet() call, as shown in Example 8-1.

Example 8-1 Defining the OCI_ATTR_SERVER_GROUP Attribute to Pass the Server
Group Name

OCIAttrSet ((void *) srvhp, (ub4) OCI_HTYPE_SERVER, (void *) group_name,
(ub4) strlen ((CONST char *) group_name),
(ub4) OCI_ATTR_SERVER_GROUP, errhp);

Managing Scalable Platforms 8-9

Middle-Tier Applications in OCI

The server group name is an alphanumeric string not exceeding 30 characters. This
attribute can only be set after calling OCIServerAttach(). OCI_ATTR_SERVER_GROUP
attribute must be set in the server context before creating the first nonmigratable
session that uses that context. After the session is created successfully and the
connection to the server is established, the server group name cannot be changed.

See Also: "Server Handle Attributes" on page A-11

All migratable sessions created on servers within a server group can only migrate to
other servers in the same server group. Servers that terminate are removed from the
server group. New servers can be created within an existing server group at any time.

The use of server groups is optional. If no server group is specified, the server is
created in a server group called DEFAULT.

The owner of the first nonmigratable session created in a nondefault server group
becomes the owner of the server group. All subsequent nonmigratable sessions for any
server in this server group must be created by the owner of the server group.

The server group feature is useful when dedicated servers are used. It has no effect on
shared servers. All shared servers effectively belong to the server group DEFAULT.

Middle-Tier Applications in OCI

A middle-tier application receives requests from browser clients. The application
determines database access and whether to generate an HTML page. Applications can
have multiple lightweight user sessions within a single database session. These
lightweight sessions allow each user to be authenticated without the overhead of a
separate database connection, and they preserve the identity of the real user through
the middle tier.

As long as the client authenticates itself with the middle tier, and the middle tier
authenticates itself with the database, and the middle tier is authorized to act on behalf
of the client by the administrator, client identities can be maintained all the way into
the database without compromising the security of the client.

The design of a secure three-tier architecture is developed around a set of three trust
zones.

The first is the client trust zone. Clients connecting to a web application server are
authenticated by the middle tier using any means: password, cryptographic token, or
another. This method can be entirely different from the method used to establish the
other trust zones.

The second trust zone is the application server. The data server verifies the identity of
the application server and trusts it to pass the correct identity of the client.

The third trust zone is the data server interaction with the authorization server to
obtain the roles assigned to the client and the application server.

The application server creates a primary session for itself after it connects to a server. It
authenticates itself in the normal manner to the database, creating the application
server trust zone. The application server identity is now well known and trusted by
the data server.

When the application verifies the identity of a client connecting to the application
server, it creates the first trust zone. The application server now needs a session handle
for the client so that it can service client requests. The middle-tier process allocates a
session handle and then sets the following attributes of the client using OCIAttrSet():

8-10 Oracle Call Interface Programmer's Guide

Middle-Tier Applications in OCI

s OCI_ATTR_USERNAME sets the database user name of the client.

»s OCI_ATTR_PROXY_CREDENTIALS indicates the authenticated application making the
proxy request.

To specify a list of roles activated after the application server connects as the client, it
can call OCIAttrSet() with the attribute OCI_ATTR_INITIAL_CLIENT_ROLES and an array
of strings that contains the list of roles before the OCISessionBegin() call. Then the role
is established and proxy capability is verified in one round-trip. If the application
server is not allowed to act on behalf of the client, or if the application server is not
allowed to activate the specified roles, the OCISessionBegin() call fails.

OCI Attributes for Middle-Tier Applications

The following attributes enable you to specify the external name and initial privileges
of a client. These credentials are used by applications as alternative means of
identifying or authenticating the client.

OCI_CRED_PROXY

Use OCI_CRED_PROXY as the value passed in the credt parameter of OCISessionBegin()
when an application server starts a session on behalf of a client, rather than 0CI_CRED_
RDBUS (database user name and password required) or OCI_CRED_EXT (externally
provided credentials).

OCI_ATTR_PROXY_CREDENTIALS

Use the OCI_ATTR_PROXY_CREDENTIALS attribute to specify the credentials of the
application server in client authentication. You can code the following declarations
and OCIAttrSet() call, as shown in Example 8-2.

Example 8-2 Defining the OCI_ATTR_PROXY_CREDENTIALS Attribute to Specify the
Credentials of the Application Server for Client Authentication

OCISession *session_handle;
0CISveCtx *application_server_session_handle;
OCIError *error_handle;

OCIAttrSet ((void *)session_handle, (ub4) OCI_HTYPE_SESSION,
(void *)application_server_session_handle, (ub4) 0,
OCI_ATTR_PROXY_CREDENTIALS, error_handle);

OCI_ATTR_DISTINGUISHED_NAME
Your applications can use the distinguished name contained within a X.509 certificate
as the login name of the client, instead of the database user name.

To pass the distinguished name of the client, the middle-tier server calls OCIAttrSet(),
passing OCI_ATTR_DISTINGUISHED_NAME, as shown in Example 8-3.

Example 8-3 Defining the OCI_ATTR_DISTINGUISHED_NAME Attribute to Pass the
Distinguished Name of the Client

/* Declarations */
OCIAttrSet ((void *)session_handle, (ub4) OCI_HTYPE_SESSION,

(void *)distinguished_name, (ub4) 0,
OCI_ATTR_DISTINGUISHED_NAME, error_handle);

Managing Scalable Platforms 8-11

Middle-Tier Applications in OCI

OCI_ATTR_CERTIFICATE

Certificate-based proxy authentication using OCI_ATTR_CERTIFICATE will not be
supported in future Oracle Database releases. Use OCI_ATTR_DISTINGUISHED_NAME or
OCI_ATTR_USERNAME attribute instead. This method of authentication is similar to the
use of the distinguished name. The entire X.509 certificate is passed by the middle-tier
server to the database.

To pass over the entire certificate, the middle tier calls OCIAttrSet(), passing OCI_ATTR_
CERTIFICATE, as shown in Example 8—4.

Example 8-4 Defining the OCI_ATTR_CERTIFICATE Attribute to Pass the Entire X.509
Certificate

OCIAttrSet ((void *)session_handle, (ub4) OCI_HTYPE_SESSION,
(void *)certificate, ub4 certificate_length,
OCI_ATTR_CERTIFICATE, error_handle);

OCI_ATTR_INITIAL_CLIENT_ROLES

Use the OCI_ATTR_INITIAL_CLIENT_ROLES attribute to specify the roles the client is to
possess when the application server connects to the Oracle database. To enable a set of
roles, the function OCIAttrSet() is called with the attribute, an array of
NULL-terminated strings, and the number of strings in the array, as shown in

Example 8-5.

Example 8-5 Defining the OCI_ATTR_INITIAL_CLIENT_ROLES Attribute to Pass the
Client Roles

OCIAttrSet((void *)session_handle, (ub4) OCI_HTYPE_SESSION,
(void *)role_array, (ub4) number_of_strings,
OCI_ATTR_INITIAL_CLIENT_ROLES, error_handle);

OCI_ATTR_CLIENT_IDENTIFIER

Many middle-tier applications connect to the database as an application, and rely on
the middle tier to track end-user identity. To integrate tracking of the identity of these
users in various database components, the database client can set the CLIENT_
IDENTIFIER (a predefined attribute from the application context namespace USERENV)
in the session handle at any time. Use the OCI attribute 0OCI_ATTR_CLIENT_IDENTIFIER
in the call to OCIAttrSet(), as shown in Example 8-6. On the next request to the server,
the information is propagated and stored in the server session.

OCI_ATTR_CLIENT_IDENTIFIER can also be used in conjunction with the global
application context to restrict availability of the context to the selected identity of these
users.

Example 8-6 Defining the OCI_ATTR_CLIENT IDENTIFIER Attribute to Pass the

End-User Identity
OCIAttrSet ((void *)session_handle, (ub4) OCI_HTYPE_SESSION,
(void *)"janedoe", (ub4)strlen("janedoe"),

OCI_ATTR_CLIENT_IDENTIFIER, error_handle);

When a client has multiple sessions, execute OCIAttrSet() for each session using the
same client identifier. OCIAttrSet() must be executed manually for sessions that are
reestablished through transparent application failover (TAF).

The client identifier is found in V$SESSION as a CLIENT_IDENTIFIER column or through
the system context with this SQL statement:

8-12 Oracle Call Interface Programmer's Guide

Middle-Tier Applications in OCI

SELECT SYS_CONTEXT ('userenv', 'client_identifier') FROM DUAL;

See Also:

» Oracle Database Security Guide, the section about preserving user
identity in multi-tiered environments"

s "Transparent Application Failover in OCI" on page 9-37

OCI_ATTR_PASSWORD

A middle tier can ask the database server to authenticate a client on its behalf by
validating the password of the client rather than doing the authentication itself.
Although it appears that this is the same as a client/server connection, the client does
not have to have Oracle Database software installed on the client's system to be able to
perform database operations. To use the password of the client, the application server
supplies OCIAttrSet() with the authentication data, using the existing attribute 0CI_
ATTR_PASSWORD, as shown in Example 8-7.

Example 8-7 Defining the OCI_ATTR_PASSWORD Attribute to Pass the Password for
Validation

OCIAttrSet((void *)session_handle, (ub4) OCI_HTYPE SESSION, (void *)password,
(ub4)0, OCI_ATTR_PASSWORD, error_handle);

See Also: "User Session Handle Attributes" on page A-14

Example 8-8 shows OCI attributes that enable you to specify the external name and
initial privileges of a client. These credentials are used by OCI applications as
alternative means of identifying or authenticating the client.

Example 8—-8 OCI Attributes That Let You Specify the External Name and Initial
Privileges of a Client

*OCIEnv *environment_handle;

OCIServer *data_server_ handle;

OCIError *error_handle;

OCISveCtx *application_server_ service_handle;

OraText *client_roles([2];

OCISession *first_client_session_handle, second_client_session_handle;

/*
** General initialization and allocation of contexts.

*/

(void) OCIInitialize((ub4) OCI_DEFAULT, (void *)O0,
(void * (*) (void *, size_t))
(void * (*) (void *, void *, size t))O0,
(void (*) (void *, void *)) 0);

(void) OCIEnvInit((OCIEnv **) &environment_handle, OCI_DEFAULT, (size_t) O,

(void **) 0);
(void) OCIHandleAlloc((void *) environment_handle, (void **) &error_handle,
OCI_HTYPE_ERROR, (size_t) 0, (void **) 0);

0,

/*
** Allocate and initialize the server and service contexts used by the
** gpplication server.

*/

Managing Scalable Platforms 8-13

Middle-Tier Applications in OCI

(void) OCIHandleAlloc((void *) environment_handle,

(void **)&data_server_handle, OCI_HTYPE SERVER, (size_t) 0, (void **) 0);

(void) OCIHandleAlloc((void *) environment_handle, (void **)
&application_server_ service_handle, OCI_HTYPE_SVCCTX, (size_t) O,

(void **) 0);

(void) OCIAttrSet((void *) application_server_service_handle,
OCI_HTYPE_SVCCTX, (void *) data_server_handle, (ub4) 0, OCI_ATTR_SERVER,
error_handle) ;

/*

** Authenticate the application server. In this case, external authentication is

** being used.
*/

(void) OCIHandleAlloc ((void *) environment_handle,
(void **)&application_server_session_handle, (ub4) OCI_HTYPE_SESSION,
(size_t) 0, (void **) 0);

checkerr (error_handle, OCISessionBegin(application_server_service_handle,
error_handle, application_server_session_handle, OCI_CRED_EXT,
OCI_DEFAULT)) ;

/*

** Authenticate the first client.

** Note that no password is specified by the

** gpplication server for the client as it is trusted.

*/

(void) OCIHandleAlloc ((void *) environment_handle,
(void **)&first_client_session_handle, (ub4) OCI_HTYPE SESSION,
(size_t) 0, (void **) 0);

(void) OCIAttrSet((void *) first_client_session_handle,
(ub4) OCI_HTYPE SESSION, (void *) "jeff", (ub4) strlen("jeff"),
OCI_ATTR_USERNAME, error_handle);

/*

** In place of specifying a password, pass the session handle of the application

** gerver instead.

*/

(void) OCIAttrSet((void *) first_client_session_handle,
ub4) OCI_HTYPE_SESSION, (void *) application_server_session_handle,
ub4) 0, OCI_ATTR_PROXY_CREDENTIALS, error_handle);

ub4) OCI_HTYPE_SESSION, (void *) "jeff@VeryBigBank.com",
ub4) strlen("jeff@VeryBigBank.com"), OCI_ATTR_EXTERNAL_NAME,
error_handle) ;

)
(
(
(void) OCIAttrSet((void *) first_client_session_handle,
(
(

/*
** Establish the roles that the application server can use as the client.
*/

client_roles[0] = (OraText *) "TELLER";

client_roles[1l] = (OraText *) "SUPERVISOR";

(void) OCIAttrSet((void *) first_client_session_handle,
OCI_ATTR_INITIAL_CLIENT_ROLES, error_handle);

checkerr (error_handle, OCISessionBegin(application_server_service_handle,
error_handle, first_client_session_handle, OCI_CRED_PROXY, OCI_DEFAULT));

/*

** To start a session as another client, the application server does the

** following.

** This code is unchanged from the current way of doing session switching.

*/

8-14 Oracle Call Interface Programmer's Guide

Externally Initialized Context in OCI

(void) OCIHandleAlloc ((void *) environment_handle,
(void **)&second_client_session_handle, (ub4) OCI_HTYPE SESSION,
(size_t) 0, (void **) 0);

(void) OCIAttrSet((void *) second_client_session_handle,
(

ub4) OCI_HTYPE_SESSION, (void *) "mutt", (ub4) strlen("mutt"),
OCI_ATTR_USERNAME, error_handle);

OCIAttrSet((void *) second_client_session_handle,

) OCI_HTYPE_SESSION, (void *) application_server_session_handle,
) 0, OCI_ATTR_PROXY_ CREDENTIALS, error_handle);

OCIAttrSet ((void *) second_client_session_handle,

ub4) OCI_HTYPE_SESSION, (void *) "mutt@VeryBigBank.com",

ub4) strlen("mutt@VeryBigBank.com"), OCI_ATTR_EXTERNAL_NAME,
error_handle) ;

(void)

(ub4d
(ub4d
)
(
(

(void

/*

** Note that the application server has not specified any initial roles to have
** as the second client.

*/

checkerr (error_handle, OCISessionBegin(application_server_service_handle,
error_handle, second_client_session_handle, OCI_CRED_PROXY, OCI_DEFAULT));

/*

** To switch to the first user, the application server applies the session

** handle obtained by the first

** QCISessionBegin() call. This is the same as is currently done.

*/

(void) OCIAttrSet((void *)application_server_service_handle,
(ub4) OCI_HTYPE_SVCCTX, (void *)first_client_session_handle,
(ub4)0, (ub4)OCI_ATTR_SESSION, error_handle);

/*

** After doing some operations, the application server can switch to

** the second client. That

** ig be done by the following call:

*/

(void) OCIAttrSet((void *)application_server_ service_handle,
(ub4) OCI_HTYPE_SVCCTX,
(void *)second_client_session_handle, (ub4)0, (ub4)OCI_ATTR_SESSION,
error_handle) ;

/*

** and then do operations as that client

*/

Externally Initialized Context in OCI

An externally initialized context is an application context where attributes can be
initialized from OCI. Use the SQL statement CREATE CONTEXT to create a context
namespace in the server with the option INITIALIZED EXTERNALLY.

Then, you can initialize an OCI interface when establishing a session using
OCIAttrSet() and OCISessionBegin(). Issue subsequent commands to write to any
attributes inside the namespace only with the PL/SQL package designated in the
CREATE CONTEXT statement.

You can set default values and other session attributes through the OCISessionBegin()
call, thus reducing server round-trips.

Managing Scalable Platforms 8-15

Externally Initialized Context in OCI

See Also:

s Oracle Database Security Guide, the chapter about managing
security for application developers

» Oracle Database SQL Language Reference, the CREATE CONTEXT
statement and the SYS_CONTEXT function

Externally Initialized Context Attributes in OCI

The client applications you develop can set application contexts explicitly in the
session handle before authentication, using the following attributes in OCI functions:

OCI_ATTR_APPCTX_SIZE

Use the OCI_ATTR_APPCTX_SIZE attribute to initialize the context array size with the
desired number of context attributes in the OCIAttrSet() call, as shown in
Example 8-9.

Example 8-9 Defining the OCI_ATTR_APPCTX_SIZE Attribute to Initialize the Context
Array Size with the Desired Number of Context Attributes

OCIAttrSet(session, (ub4) OCI_HTYPE_SESSION,
(void *)&size, (ub4)0, OCI_ATTR_APPCTX_ SIZE, error_handle);

OCI_ATTR_APPCTX_LIST

Use the OCI_ATTR_APPCTX_LIST attribute to get a handle on the application context list
descriptor for the session in the OCIAttrGet() call, as shown in Example 8-10. (The
parameter ctxl_desc must be of data type OCIParam *).

Example 8-10 Using the OCI_ATTR_APPCTX_LIST Attribute to Get a Handle on the
Application Context List Descriptor for the Session

OCIAttrGet (session, (ub4) OCI_HTYPE_SESSION,
(void *)&ctxl_desc, (ub4)0, OCI_ATTR_APPCTX LIST, error_handle);

Example 8-11 shows how to use the application context list descriptor to obtain an
individual descriptor for the i-th application context in a call to OCIParamGety().

Example 8-11 Calling OCIParamGet() to Obtain an Individual Descriptor for the i-th
Application Context Using the Application Context List Descriptor

OCIParamGet (ctxl_desc, OCI_DTYPE_PARAM, error_handle, (void **)&ctx_desc, 1i);

Session Handle Attributes Used to Set an Externally Initialized Context
Set the appropriate values of the application context using these attributes:

= OCI_ATTR_APPCTX_NAME to set the namespace of the context, which must be a valid
SQL identifier.

= OCI_ATTR_APPCTX_ATTR to set an attribute name in the given context, a
non-case-sensitive string of up to 30 bytes.

" OCI_ATTR_APPCTX_VALUE to set the value of an attribute in the given context.

Each namespace can have many attributes, each of which has one value. Example 8-12
shows the calls you can use to set them.

8-16 Oracle Call Interface Programmer's Guide

Externally Initialized Context in OCI

Example 8-12 Defining Session Handle Attributes to Set Externally Initialized Context

OCIAttrSet (ctx_desc, OCI_DTYPE_PARAM,
(void *)ctx_name, sizeof (ctx_name), OCI_ATTR_APPCTX_NAME, error_handle);

OCIAttrSet (ctx_desc, OCI_DTYPE_PARAM,
(void *)attr_name, sizeof (attr_name), OCI_ATTR_APPCTX_ATTR, error_handle);

OCIAttrSet (ctx_desc, OCI_DTYPE_PARAM,
(void *)value, sizeof(value), OCI_ATTR_APPCTX_VALUE, error_handle);

Note that only character type is supported, because application context operations are
based on the VARCHAR2 data type.

See Also: "User Session Handle Attributes" on page A-14

End-to-End Application Tracing

Use the following attributes to measure server call time, not including server
round-trips. These attributes can also be set by using the PL/SQL package DBMS_
APPLICATION_INFO, which incurs one round-trip to the server. Using OCI to set the
attributes does not incur a round-trip.

OCI_ATTR_COLLECT_CALL_TIME

Set a boolean variable to TRUE or FALSE. After you set the OCI_ATTR_COLLECT_CALL_
TIME attribute by calling OCIAttrSet(), the server measures each call time. All server
times between setting the variable to TRUE and setting it to FALSE are measured.

OCI_ATTR_CALL_TIME

The elapsed time, in microseconds, of the last server call is returned in a ub8 variable
by calling OCIAttrGet() with the OCI_ATTR_CALL_TIME attribute. Example 8-13 shows
how to do this in a code fragment.

Example 8-13 Using the OCI_ATTR_CALL_TIME Attribute to Get the Elapsed Time of the
Last Server Call

boolean enable_call_time;
ub8 call_time;

enable_call_time = TRUE;

OCIAttrSet (session, OCI_HTYPE SESSION, (void *)&enable_call_time,
(ub4)0, OCI_ATTR_COLLECT CALI, TIME,
(OCIError *)error_handle);

OCIStmtExecute(...);

OCIAttrGet (session, OCI_HTYPE_SESSION, (void *)&call_time,
(ub4)0, OCI_ATTR_CALL_TIME,
(OCIError *)error_handle);

Attributes for End-to-End Application Tracing
Set these attributes for tracing and debugging applications:

= OCI_ATTR_MODULE - Name of the current module in the client application.

s OCI_ATTR_ACTION - Name of the current action within the current module. Set to
NULL if you do not want to specify an action.

ms OCI_ATTR_CLIENT_INFO - Client application additional information.

Managing Scalable Platforms 8-17

Externally Initialized Context in OCI

See Also: "User Session Handle Attributes" on page A-14

Using OCISessionBegin() with an Externally Initialized Context

When you call OCISessionBegin(), the context set in the session handle is pushed to
the server. No additional contexts are propagated to the server session. Example 8-14
illustrates the use of these calls and attributes.

Example 8-14 Using OCISessionBegin() with an Externally Initialized Context

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oci.h>

static OraText *username = (OraText *) "HR";
static OraText *password = (OraText *) "HR";

static OCIEnv *envhp;
static OCIError *errhp;

int main(/*_ int argc, char *argv([] _*/);

static sword status;

int main(argc, argv)
int argc;
char *argvl[];

{

OCISession *authp = (OCISession *) 0;
OCIServer *srvhp;

0CISvcCtx *svchp;

OCIDefine *defnp = (OCIDefine *) O0;
void *parmdp;

ub4d ctxsize;

OCIParam *ctxldesc;

OCIParam *ctxedesc;

OCIEnvCreate (&envhp, OCI_DEFAULT, (void *)0, 0, 0, O,
(size_t)0, (void *)0);

(void) OCIHandleAlloc((void *) envhp, (void **) &errhp, OCI_HTYPE_ERROR,
(size_t) 0, (void **) 0);

/* server contexts */
(void) OCIHandleAlloc((void *) envhp, (void **) &srvhp, OCI_HTYPE_SERVER,

(size_t) 0, (void **) 0);

(void) OCIHandleAlloc((void *) envhp, (void **) &svchp, OCI_HTYPE_ SVCCTX,
(size_t) 0, (void **) 0);

(void) OCIServerAttach(srvhp, errhp, (OraText *)"", strlen(""), 0);

/* set attribute server context in the service context */

(void) OCIAttrSet((void *) svchp, OCI_HTYPE_SVCCTX, (void *)srvhp,
(ub4) 0, OCI_ATTR_SERVER, (OCIError *) errhp);

(void) OCIHandleAlloc((void *) envhp, (void **)&authp,

(ub4) OCI_HTYPE_SESSION, (size_t) 0, (void **) 0);

8-18 Oracle Call Interface Programmer's Guide

Externally Initialized Context in OCI

/**/

/* set app ctx size to 2 because you want to set up 2 application contexts */
ctxsize = 2;

/* set up app ctx buffer */

(void) OCIAttrSet((void *) authp, (ub4) OCI_HTYPE_SESSION,
(void *) &ctxsize, (ub4) 0,
(ub4) OCI_ATTR_APPCTX_SIZE, errhp);

/* retrieve the list descriptor */
(void) OCIAttrGet((void *)authp, (ub4) OCI_HTYPE_SESSION,
(void *)&ctxldesc, 0, OCI_ATTR_APPCTX_LIST, errhp);

/* retrieve the lst ctx element descriptor */
(void) OCIParamGet (ctxldesc, OCI_DTYPE_PARAM, errhp, (void**)&ctxedesc, 1);

(void) OCIAttrSet((void *) ctxedesc, (ub4) OCI_DTYPE_ PARAM,
(void *) "HR", (ubd4) strlen((char *)"HR")
(ub4) OCI_ATTR_APPCTX_NAME, errhp);

(void) OCIAttrSet((void *) ctxedesc, (ub4) OCI_DTYPE_ PARAM,
(void *) "ATTR1", (ub4) strlen((char *)"ATTR1"),
(ub4) OCI_ATTR_APPCTX_ATTR, errhp);

(void) OCIAttrSet((void *) ctxedesc, (ub4) OCI_DTYPE_ PARAM,
(void *) "VALUEl", (ub4) strlen((char *)"VALUE1l"),
(ub4) OCI_ATTR_APPCTX_VALUE, errhp);

/* set second context */
(void) OCIParamGet (ctxldesc, OCI_DTYPE_PARAM, errhp, (void**)&ctxedesc, 2);

(void) OCIAttrSet((void *) ctxedesc, (ub4) OCI_DTYPE_ PARAM,
(void *) "HR", (ub4) strlen((char *)"HR")
(ub4) OCI_ATTR_APPCTX_NAME, errhp);

(void) OCIAttrSet((void *) ctxedesc, (ub4) OCI_DTYPE_ PARAM,
(void *) "ATTR2", (ub4) strlen((char *)"ATTR2"),
(ub4) OCI_ATTR_APPCTX_ATTR, errhp);

(void) OCIAttrSet((void *) ctxedesc, (ub4) OCI_DTYPE_PARAM,
(void *) "VALUE2", (ub4) strlen((char *)"VALUE2"),
(ub4) OCI_ATTR_APPCTX_VALUE, errhp);
/**/
(void) OCIAttrSet((void *) authp, (ub4) OCI_HTYPE_SESSION,
(void *) username, (ub4) strlen((char *)username),
(ub4) OCI_ATTR_USERNAME, errhp);

(void) OCIAttrSet((void *) authp, (ub4) OCI_HTYPE_SESSION,
(void *) password, (ub4) strlen((char *)password),

(ub4) OCI_ATTR_PASSWORD, errhp);

OCISessionBegin (svchp, errhp, authp, OCI_CRED_EXT, (ub4) OCI_DEFAULT);

Managing Scalable Platforms 8-19

Client Application Context

Client Application Context

Application context enables database clients (such as mid-tier applications) to set and
send arbitrary session data to the server with each executed statement in only one
round-trip. The server stores this data in the session context before statement
execution, from which it can be used to restrict queries or DML operations. All
database features such as views, triggers, virtual private database (VPD) policies, or
PL/SQL stored procedures can use session data to constrain their operations.

A public writable namespace, nm, is created:

CREATE CONTEXT nm USING hr.packagel;

To modify the data grouped in that namespace, users must execute the designated
PL/SQL package, hr.packagel. However, no privilege is needed to query this
information in a user session.

The variable length application context data that is stored in the user session is in the
form of an attribute and value pair grouped under the context namespace.

For example, if you want a human resources application to store an end-user's
responsibility information in the user session, then it could create an nm namespace
and an attribute called "responsibility" that can be assigned a value such as "manager”
or "accountant”. This is referred to as the set operation in this document.

If you want the application to clear the value of the "responsibility" attribute in the nm
namespace, then it could set it to NULL or an empty string. This is referred to as the
clear operation in this document.

To clear all information in the nm namespace, the application can send the namespace
information as a part of the clear-all operation to the server. This is referred to as the
clear-all operation in a namespace in this document.

If there is no package security defined for a namespace, then this namespace is
deemed to be a client namespace, and any OCI client can transport data for that
namespace to the server. No privilege or package security check is done.

Network transport of application context data is done in a single round-trip to the
server.

Multiple SET Operations

Use the OCIAppCtxSet() function to perform a series of set operations on the
"responsibility" attribute in the CLIENTCONTEXT namespace. When this information is
sent to the server, the latest value prevails for that particular attribute in a namespace.
To change the value of the "responsibility" attribute in the CLIENTCONTEXT namespace
from "manager"” to "vp", use the code fragment shown in Example 8-15, on the client
side. When this information is transported to the server, the server shows the latest
value "vp" for the "responsibility” attribute in the CLIENTCONTEXT namespace.

Example 8-15 Changing the "responsibility" Attribute Value in the CLIENTCONTEXT

err = OCIAppCtxSet ((void sesshndl, (void*)"CLIENTCONTEXT", 13,
void *)'"responsibility", 14, (void *)"vp",2, errhp,
OCI_DEFAULT) ;

Namespace
err = OCIAppCtxSet ((void *) sesshndl, (void *)"CLIENTCONTEXT", (ub4) 13,
(void *)"responsibility", 14
(void *) "manager", 7, errhp, OCI_DEFAULT);
(*)
(

8-20 Oracle Call Interface Programmer's Guide

Client Application Context

You can clear specific attribute information in a client namespace. This can be done by
setting the value of an attribute to NULL or to an empty string, as shown in
Example 8-16 using the OCIAppCtxSet() function.

Example 8-16 Two Ways to Clear Specific Attribute Information in a Client Namespace
(void) OCIAppCtxSet((void *) sesshndl, (void *)"CLIENTCONTEXT", 13,

(void *)'"responsibility", 14, (void *)0, 0,errhp,
OCI_DEFAULT) ;

(void) OCIAppCtxSet((void *) sesshndl, (void *)"CLIENTCONTEXT", 13
(void *)"responsibility", 14, (void *)"", 0,errhp,
OCI_DEFAULT) ;

CLEAR-ALL Operations Between SET Operations

You can clear all the context information in a specific client namespace, using the
OCIAppCtxClearAll() function, and it will also be cleared on the server-side user
session, during the next network transport.

If the client application performs a clear-all operation in a namespace after several set
operations, then values of all attributes in that namespace that were set before this
clear-all operation are cleaned up on the client side and the server side. Only the set
operations that were done after the clear-all operation are reflected on the server side.
On the client side, the code appears, as shown in Example 8-17.

Example 8-17 Clearing All the Context Information in a Specific Client Namespace
err = OCIAppCtxSet ((void *) sesshndl, (void *)"CLIENTCONTEXT", 13,
(void *)"responsibility", 14,
(void *)"manager", 7,errhp, OCI_DEFAULT);
err = OCIAppCtxClearAll((void *) sesshndl, (void *)"CLIENTCONTEXT", 13, errhp,
OCI_DEFAULT) ;
err = OCIAppCtxSet ((void *) sesshndl, (void*)"CLIENTCONTEXT",13
(void *)"office",6, (void *)"20pl23", 5, errhp, OCI_DEFAULT);

The clear-all operation clears any information set by earlier operations in the
namespace CLIENTCONTEXT: "responsibility” = "manager" is removed. The information
that was set subsequently will not be reflected on the server side.

Network Transport and PL/SQL on Client Namespace

It is possible that an application could send application context information on an
OCIStmtExecute() call to the server, and also attempt to change the same context
information during that call by executing the DBMS_SESSION package.

In general, on the server side, the transported information is processed first and the
main call is processed later. This behavior applies to the application context network
transports as well.

If they are both writing to the same client namespace and attribute set, then the main
call's information overwrites the information set provided by the fast network
transport mechanism. If an error occurs in the network transport call, the main call is
not executed.

However, an error in the main call does not affect the processing of the network
transport call. Once the network transport call is processed, then there is no way to
undo it. When the error is reported to the caller (by an OCI function), it is reported as a

Managing Scalable Platforms 8-21

Edition-Based Redefinition

generic ORA error. Currently, there is no easy way to distinguish an error in the
network transport call from an error in the main call. The client should not assume
that an error from the main call will undo the round-trip network processing and
should implement appropriate exception-handling mechanisms to prevent any
inconsistencies.

See Also:
s "OCIAppCtxClearAll()" on page 16-4
s "OCIAppCtxSet()" on page 16-5

Edition-Based Redefinition

An edition provides a staging area where "editionable" objects changed by an
application patch can be installed and executed while the existing application is still
available. You can specify an edition other than the database default by setting the
attribute OCI_ATTR_EDITION at session initiation time. The application can call
OCIAttrSet() specifying this attribute name and the edition as the value, as shown in
Example 8-18.

Example 8-18 Calling OCIAttrSet() to Set the OCI_ATTR_EDITION Attribute

static void workerFunction()
{
0CISvcCtx *svchp = (OCISveCtx *) 0;
OCIAuthInfo *authp = (OCIAuthInfo *)0;
sword err;
err = OCIHandleAlloc((void *) envhp, (void **)&authp,
(ub4) OCI_HTYPE AUTHINFO,
(size_t) 0, (void **) 0);
if (err)
checkerr (errhp, err);

checkerr (errhp, OCIAttrSet((void *) authp, (ub4) OCI_HTYPE_AUTHINFO,
(void *) username, (ub4) strlen((char *)username),
(ub4) OCI_ATTR_USERNAME, errhp));

checkerr (errhp, OCIAttrSet ((void *) authp, (ub4) OCI_HTYPE_AUTHINFO,
(void *) password, (ub4) strlen((char *)password),
(ub4) OCI_ATTR_PASSWORD, errhp));

(void) OCIAttrSet((void *) authp, (ub4) OCI_HTYPE_SESSION,
(void *) "Patch_Bug 12345",
(ub4) strlen((char *)"Patch_Bug_12345"),
(ub4) OCI_ATTR_EDITION, errhp);
printf (("Create a new session that connects to the specified edition\n");
if (err = OCISessionGet (envhp, errhp, &svchp, authp,
(OraText *)connstr, (ub4)strlen((char *)connstr), NULL,
0, NULL, NULL, NULL, OCI_DEFAULT))
{
checkerr (errhp, err);
exit(1);
}

checkerr (errhp, OCISessionRelease(svchp, errhp, NULL, (ub4)0, OCI_DEFAULT));

OCIHandleFree((void *)authp, OCI_HTYPE_AUTHINFO) ;

8-22 Oracle Call Interface Programmer's Guide

OCI Security Enhancements

If OCIAttrSet() is not called, the value of the edition name is obtained from the
operating system environment variable ORA_EDITION. If that variable is not set, then
the value of OCI_ATTR_EDITION is the empty string. If a nonempty value was specified,
then the server sets the specified edition for the session, or the session uses the
database default edition. The server then checks that the user has the USE privilege on
the edition. If not, then the connect fails. If a nonexistent edition name was specified,
then an error is returned.

See Also:
= "OCI_ATTR_EDITION" on page A-19

» Oracle Database Advanced Application Developer’s Guide for a more complete
description of edition-based redefinition

= "Restrictions on Attributes Supported for OCI Session Pools" on
page 16-38

OCI Security Enhancements

The following security enhancements use configured parameters in the init.ora file
or the sglnet.ora file (the latter file is specifically noted for that feature), and are
described in more detail in Oracle Database Security Guide. These initialization
parameters apply to all instances of the database.

See Also: Oracle Database Security Guide, section about embedding calls in
middle-tier applications to get, set, and clear client session IDs

Controlling the Database Version Banner Displayed

The OClIServerVersion() function can be issued before authentication (on a connected
server handle after calling OCIServerAttach()) to get the database version. To avoid
disclosing the database version string before authentication, set the SEC_RETURN_
SERVER_RELEASE_BANNER initialization parameter to NO. For example:

SEC_RETURN_SERVER_RELEASE_BANNER = NO

This displays the following string for Oracle Database Release 11.1 and all subsequent
11.1 releases and patch sets:

Oracle Database 11g Release 11.1.0.0.0 - Production

Set SEC_RETURN_SERVER_RELEASE_BANNER to YES and then the current banner is

displayed. If you have installed Oracle Database Release 11.2.0.2, the banner displayed
is:

Oracle Database 1lg Enterprise Edition Release 11.2.0.2 - Production

This feature works with an Oracle Database Release 11.1 or later server, and any
version client.

Banners for Unauthorized Access and User Actions Auditing

The following systemwide parameters are in sqlnet.ora and warn users against
unauthorized access and possible auditing of user actions. These features are available
in Oracle Database Release 11.1 and later servers and clients. The content of the
banners is in text files that the database administrator creates. There is a 512 byte

Managing Scalable Platforms 8-23

Overview of OCI Multithreaded Development

buffer limit for displaying the banner content. If this buffer limit is exceeded, the
banner content will appear to be cut off. The access banner syntax is:

SEC_USER_UNAUTHORIZED_ACCESS_BANNER = file pathl

In this syntax, file_pathl is the path of a text file. To retrieve the banner, get the value
of the attribute OCI_ATTR_ACCESS_BANNER from the server handle after calls to either
OClServerAttach() or OCISessionGet().

See Also: "OCI_ATTR_ACCESS_BANNER" on page A-11

The audit banner syntax is:

SEC_USER_AUDIT_ACTION BANNER = file path2

In this syntax, file_path2 is the path of a text file. To retrieve the banner, get the value
of the attribute OCI_ATTR_AUDIT_BANNER from the session handle after calls to either
OClSessionBegin(), OCISessionGet(), OCILogon(), or OCILogon2().

See Also: "OCI_ATTR_AUDIT_BANNER" on page A-16

Non-Deferred Linkage

Non-deferred linkage of applications is no longer supported and the Makefile is
modified to remove it. This method of linking was used before OCI V7.

Overview of OCI Multithreaded Development

Threads are lightweight processes that exist within a larger process. Threads share the
same code and data segments but have their own program counters, system registers,
and stacks. Global and static variables are common to all threads, and a mutual
exclusion mechanism is required to manage access to these variables from multiple
threads within an application.

Once spawned, threads run asynchronously with respect to one another. They can
access common data elements and make OCI calls in any order. Because of this shared
access to data elements, a synchronized mechanism is required to maintain the
integrity of data being accessed.

The mechanism to manage data access takes the form of mutexes (mutual exclusion
locks). This mechanism is implemented to ensure that no conflicts arise between
multiple threads accessing shared internal data that are opaque to users. In OCI,
mutexes are granted for each environment handle.

The thread safety feature of Oracle Database and the OCI libraries allows developers
to use OCI in a multithreaded environment. Thread safety ensures that code can be
reentrant, with multiple threads making OCI calls without side effects.

Note: Thread safety is not available on every operating system.
Check your Oracle Database system-specific documentation for
more information.

In a multithreaded Linux or UNIX environment, OCI calls except
OClIBreak() are not allowed in a user signal handler.

The correct way to use and free handles is to create the handle, use
the handle, then free the handle only after all the threads have been
destroyed, when the application is terminating.

8-24 Oracle Call Interface Programmer's Guide

Overview of OCI Multithreaded Development

Advantages of OCI Thread Safety

The implementation of thread safety in OCI has the following advantages:

= Multiple threads of execution can make OCI calls with the same result as
successive calls made by a single thread.

s When multiple threads make OCI calls, there are no side effects between threads.

s Users who do not write multithreaded programs do not pay a performance
penalty for using thread-safe OCI calls.

s Use of multiple threads can improve program performance. Gains may be seen on
multiprocessor systems where threads run concurrently on separate processors,
and on single processor systems where overlap can occur between slower
operations and faster operations.

OCI Thread Safety and Three-Tier Architectures

In addition to client/server applications, where the client can be a multithreaded
program, a typical use of multithreaded applications is in three-tier
(client-agent-server) architectures. In this architecture, the client is concerned only
with presentation services. The agent (application server) processes the application
logic for the client application. Typically, this relationship is a many-to-one
relationship, with multiple clients sharing the same application server.

The server tier in this scenario is a database. The application server (agent) is very well
suited to being a multithreaded application server, with each thread serving a single
client application. In an Oracle Database environment, this application server is an
OCI or precompiler program.

Implementing Thread Safety

To take advantage of thread safety, an application must be running on a thread-safe
operating system. The application specifies that it is running in a multithreaded
environment by making an OCIEnvNIsCreate() call with OCI_THREADED as the value of
the mode parameter.

All subsequent calls to OCIEnvNIsCreate() must also be made with OCI_THREADED.

Note: Applications running on non-thread-safe operating systems
must not pass a value of OCI_THREADED to OCIEnvCreate() or
OCIEnvNIsCreate().

If an application is single-threaded, whether or not the operating system is thread-safe,
the application must pass a value of 0OCI_DEFAULT to OCIEnvCreate() or
OCIEnvNIsCreate(). Single-threaded applications that run in OCI_THREADED mode may
incur lower performance.

If a multithreaded application is running on a thread-safe operating system, the OCI
library manages mutexes for the application for each environment handle. An
application can override this feature and maintain its own mutex scheme by specifying
a value of OCI_ENV_NO_MUTEX in the mode parameter of either the OCIEnvCreate() or
OCIEnvNIsCreate() calls.

The following scenarios are possible, depending on how many connections exist in
each environment handle, and how many threads are spawned in each connection.

Managing Scalable Platforms 8-25

OCIThread Package

s If an application has multiple environment handles, with a single thread in each,

mutexes are not required.

s If an application running in OCI_THREADED mode maintains one or more

environment handles, with multiple connections, it has these options:

— Pass a value of 0OCI_ENV_NO_MUTEX for the mode of OCIEnvNIsCreate(). The
application must set mutual exclusion locks (mutex) for OCI calls made on the
same environment handle. This has the advantage that the mutex scheme can
be optimized to the application design. The programmer must also ensure that
only one OCI call is in process on the environment handle connection at any
given time.

— Pass a value of 0CI_DEFAULT for the mode of OCIEnvNIsCreate(). The OCI
library automatically gets a mutex on every OCI call on the same environment
handle.

Note: Most processing of an OCI call happens on the server, so if
two threads using OCI calls go to the same connection, then one of
them can be blocked while the other finishes processing at the
server.

Use one error handle for each thread in an application, because OCI
errors can be overwritten by other threads.

Polling Mode Operations and Thread Safety

OCI supports polling mode operations. When OCl is operating in threaded mode, OCI
calls that poll for completion acquire mutexes when the OCI call is actively executing.
However, when OCI returns control to the application, OCI releases any acquired
mutexes. The caller should ensure that no other OCI call is made on the connection
until the polling mode OCI operation in progress completes.

See Also: "Polling Mode Operations in OCI" on page 2-27

Mixing 7.x and Later Release OCI Calls

If an application is mixing later release and 7.x OCI calls, and the application has been
initialized as thread-safe (with the appropriate calls of the later release), it is not
necessary to call opinit () to achieve thread safety. The application gets 7.x behavior
on any subsequent 7.x function calls.

OCIThread Package

The 0CIThread package provides some commonly used threading primitives. It offers
a portable interface to threading capabilities native to various operating systems, but
does not implement threading on operating systems that do not have native threading
capability.

0CIThread does not provide a portable implementation, but it serves as a set of
portable covers for native multithreaded facilities. Therefore, operating systems that
do not have native support for multithreading are only able to support a limited
implementation of the 0CIThread package. As a result, products that rely on all of the
0CIThread functionality do not port to all operating systems. Products that must be
ported to all operating systems must use only a subset of the 0CIThread functionality.

The 0CIThread API consists of three main parts. Each part is described briefly here.
The following subsections describe each in greater detail.

8-26 Oracle Call Interface Programmer's Guide

OCIThread Package

» Initialization and Termination. These calls deal with the initialization and
termination of 0CIThread context, which is required for other 0OCIThread calls.

0CIThread only requires that the process initialization function,
OClIThreadProcessInit(), is called when OCIThread is being used in a
multithreaded application. Failing to call OCIThreadProcessInit() in a
single-threaded application is not an error.

Separate calls to OCIThreadInit() all return the same 0CIThread context. Each call
to OCIThreadInit() must eventually be matched by a call to OCIThread Term().

s Passive Threading Primitives. Passive threading primitives are used to manipulate
mutual exclusion locks (mutex), thread IDs, and thread-specific data keys. These
primitives are described as passive because although their specifications allow for
the existence of multiple threads, they do not require it. It is possible for these
primitives to be implemented according to specification in both single-threaded
and multithreaded environments. As a result, OCIThread clients that use only these
primitives do not require a multiple-thread environment to work correctly. They
are able to work in single-threaded environments without branching code.

s Active Threading Primitives. Active threading primitives deal with the creation,
termination, and manipulation of threads. These primitives are described as active
because they can only be used in true multithreaded environments. Their
specification explicitly requires multiple threads. If you must determine at run
time whether you are in a multithreaded environment, call OCIThreadIsMulti()
before using an OCIThread active threading primitive.

To write a version of the same application to run on single-threaded operating
system, it is necessary to branch your code, whether by branching versions of the
source file or by branching at run time with the OCIThreadIsMulti() call.

See Also:

= "Thread Management Functions" on page 17-121

» cdemothr.c in the demo directory is an example of a
multithreading application

Initialization and Termination

The types and functions described in this section are associated with the initialization
and termination of the 0CIThread package. 0CIThread must be initialized before you
can use any of its functionality.

The observed behavior of the initialization and termination functions is the same
regardless of whether 0CIThread is in a single-threaded or a multithreaded
environment. Table 86 lists functions for thread initialization and termination.

Table 8—6 Initialization and Termination Multithreading Functions

Function Purpose

OClIThreadProcessInit() Performs OCIThread process initialization

OCIThreadInit () Initializes OCIThread context

OCIThreadTerm() Terminates the OCIThread layer and frees context memory
0CIThreadIsMulti () Tells the caller whether the application is running in a

multithreaded environment or a single-threaded environment

See Also: "Thread Management Functions" on page 17-121

Managing Scalable Platforms 8-27

OCIThread Package

OCIThread Context

Most calls to 0CIThread functions use the OCI environment or user session handle as a
parameter. The OCIThread context is part of the OCI environment or user session
handle, and it must be initialized by calling OCIThreadInit(). Termination of the
0CIThread context occurs by calling OCIThread Termy().

Note:

The 0CIThread context is an opaque data structure. Do not

attempt to examine the contents of the context.

Passive Threading Primitives

The passive threading primitives deal with the manipulation of mutex, thread IDs, and
thread-specific data. Because the specifications of these primitives do not require the
existence of multiple threads, they can be used both in multithreaded and
single-threaded operating systems. Table 8-7 lists functions used to implement passive

8-28 Oracle Call Interface Programmer's Guide

threading.

Table 8-7 Passive Threading Primitives

Function Purpose

OCIThreadMutexInit () Allocates and initializes a mutex
0CIThreadMutexDestroy () Destroys and deallocates a mutex
OCIThreadMutexAcquire () Acquires a mutex for the thread in which it is called
OCIThreadMutexRelease () Releases a mutex

0CIThreadKeyInit () Allocates and generates a new key
OCIThreadKeyDestroy () Destroys and deallocates a key

0CIThreadKeyGet () Gets the calling thread's current value for a key
0CIThreadKeySet () Sets the calling thread's value for a key
OCIThreadIdInit () Allocates and initializes a thread ID
OCIThreadIdDestroy () Destroys and deallocates a thread ID

OCIThreadIdSet () Sets one thread ID to another

OCIThreadIdSetNull () Nulls a thread ID

OCIThreadIdGet () Retrieves a thread ID for the thread in which it is called
OCIThreadIdSame () Determines if two thread IDs represent the same thread
OCIThreadIdNull () Determines if a thread ID is NULL

OCIThreadMutex

The 0CIThreadMutex data type is used to represent a mutex. This mutex is used to

ensure that either:

= Only one thread accesses a given set of data at a time

= Only one thread executes a given critical section of code at a time

Mutex pointers can be declared as parts of client structures or as standalone variables.
Before they can be used, they must be initialized using OCIThreadMutexInit(). Once
they are no longer needed, they must be destroyed using OCIThreadMutexDestroy().

A thread can acquire a mutex by using OCIThreadMutexAcquire(). This ensures that
only one thread at a time is allowed to hold a given mutex. A thread that holds a

OCIThread Package

mutex can release it by calling OCIThreadMutexRelease().

OCIThreadKey

The data type 0CIThreadKey can be thought of as a process-wide variable with a
thread-specific value. Thus all threads in a process can use a given key, but each thread
can examine or modify that key independently of the other threads. The value that a
thread sees when it examines the key is always the same as the value that it last set for
the key. It does not see any values set for the key by other threads. The data type of the
value held by a key is a void * generic pointer.

Keys can be created using OCIThreadKeyInit(). Key value are initialized to NULL for all
threads.

A thread can set a key's value using OCIThreadKeySet(). A thread can get a key's
value using OCIThreadKeyGet().

The 0CIThread key functions save and retrieve data specific to the thread. When
clients maintain a pool of threads and assign them to different tasks, it may not be
appropriate for a task to use 0CIThread key functions to save data associated with it.

Here is a scenario of how things can fail: A thread is assigned to execute the
initialization of a task. During initialization, the task stores data in the thread using
0CIThread key functions. After initialization, the thread is returned to the threads pool.
Later, the threads pool manager assigns another thread to perform some operations on
the task, and the task must retrieve the data it stored earlier in initialization. Because
the task is running in another thread, it is not able to retrieve the same data.
Application developers that use thread pools must be aware of this.

OCIThreadKeyDestFunc

0CIThreadKeyDestFunc is the type of a pointer to a key's destructor routine. Keys can
be associated with a destructor routine when they are created using
OCIThreadKeylnit(). A key's destructor routine is called whenever a thread with a
non-NULL value for the key terminates. The destructor routine returns nothing and
takes one parameter, the value that was set for key when the thread terminated.

The destructor routine is guaranteed to be called on a thread's value in the key after
the termination of the thread and before process termination. No more precise
guarantee can be made about the timing of the destructor routine call; no code in the
process may assume any post-condition of the destructor routine. In particular, the
destructor is not guaranteed to execute before a join call on the terminated thread
returns.

OCIThreadld

0CIThreadId data type is used to identify a thread. At any given time, no two threads
can have the same 0CIThreadld, but 0CIThreadId values can be recycled; after a thread
dies, a new thread may be created that has the same 0CIThreadId value. In particular,
the thread ID must uniquely identify a thread T within a process, and it must be
consistent and valid in all threads U of the process for which it can be guaranteed that T
is running concurrently with U. The thread ID for a thread T must be retrievable within
thread T. This is done using OCIThreadldGet().

The 0CIThreadId type supports the concept of a NULL thread ID: the NULL thread ID
can never be the same as the ID of an actual thread.

Managing Scalable Platforms 8-29

OCIThread Package

Active Threading Primitives

The active threading primitives deal with manipulation of actual threads. Because
specifications of most of these primitives require multiple threads, they work correctly
only in the enabled 0CIThread. In the disabled 0CIThread, they always return an error.
The exception is OCIThreadHandleGet(); it may be called in a single-threaded
environment and has no effect.

Active primitives can only be called by code running in a multithreaded environment.
You can call OCIThreadIsMulti() to determine whether the environment is
multithreaded or single-threaded. Table 8-8 lists functions used to implement active
threading.

Table 8-8 Active Threading Primitives

Function Purpose

OCIThreadHndInit () Allocates and initializes a thread handle
OCIThreadHndDestroy () Destroys and deallocates a thread handle
0CIThreadCreate () Creates a new thread

OCIThreadJoin() Allows the calling thread to join with another
OCIThreadClose() Closes a thread handle

OCIThreadHandleGet () Retrieves a thread handle
OCIThreadHandle

Data type 0CIThreadHandle is used to manipulate a thread in the active primitives,
OClThreadJoin() and OCIThreadClose(). A thread handle opened by
OClIThreadCreate() must be closed in a matching call to OCIThreadClose(). A thread
handle is invalid after the call to OCIThreadClose().

8-30 Oracle Call Interface Programmer's Guide

9

OCI Programming Advanced Topics

This chapter contains these topics:

Connection Pooling in OCI

Session Pooling in OCI

Database Resident Connection Pooling

When to Use Connection Pooling, Session Pooling, or Neither
Statement Caching in OCI

User-Defined Callback Functions in OCI

Transparent Application Failover in OCI

HA Event Notification

OCI and Streams Advanced Queuing

Publish-Subscribe Notification in OCI

Connection Pooling in OClI

This section includes the following topics:

OCI Connection Pooling Concepts
OCI Calls for Connection Pooling

Examples of OCI Connection Pooling

Connection pooling is the use of a group (the pool) of reusable physical connections by
several sessions to balance loads. The pool is managed by OCI, not the application.
Applications that can use connection pooling include middle-tier applications for web
application servers and email servers.

One use of this feature is in a web application server connected to a back-end Oracle
database. Suppose that a web application server gets several concurrent requests for
data from the database server. The application can create a pool (or a set of pools) in
each environment during application initialization.

OCI Connection Pooling Concepts

Oracle Database has several transaction monitoring capabilities such as the
fine-grained management of database sessions and connections. Fine-grained
management of database sessions is done by separating the notion of database
sessions (user handles) from connections (server handles). By using OCI calls for
session switching and session migration, an application server or transaction monitor

OCI Programming Advanced Topics 9-1

Connection Pooling in OCI

can multiplex several sessions over fewer physical connections, thus achieving a high
degree of scalability by pooling connections and back-end Oracle server processes.

The connection pool itself is normally configured with a shared pool of physical
connections, translating to a back-end server pool containing an identical number of
dedicated server processes.

The number of physical connections is less than the number of database sessions in
use by the application. The number of physical connections and back-end server
processes are also reduced by using connection pooling. Thus many more database
sessions can be multiplexed.

Similarities and Differences from a Shared Server

Connection pooling on the middletier is similar to what a shared server offers on the
back end. Connection pooling makes a dedicated server instance behave like a shared
server instance by managing the session multiplexing logic on the middle tier.

The connection pool on the middle tier controls the pooling of dedicated server
processes including incoming connections into the dedicated server processes. The
main difference between connection pooling and a shared server is that in the latter
case, the connection from the client is normally to a dispatcher in the database
instance. The dispatcher is responsible for directing the client request to an appropriate
shared server. However, the physical connection from the connection pool is
established directly from the middletier to the dedicated server process in the
back-end server pool.

Connection pooling is beneficial only if the middle tier is multithreaded. Each thread
can maintain a session to the database. The actual connections to the database are
maintained by the connection pool, and these connections (including the pool of
dedicated database server processes) are shared among all the threads in the middle
tier.

Stateless Sessions Versus Stateful Sessions

Stateless sessions are serially reusable across mid-tier threads. After a thread is done
processing a database request on behalf of a three-tier user, the same database session
can be reused for a completely different request on behalf of a completely different
three-tier user.

Stateful sessions to the database, however, are not serially reusable across mid-tier
threads because they may have some particular state associated with a particular
three-tier user. Examples of such state may include open transactions, the fetch state
from a statement, or a PL/SQL package state. So long as the state exists, the session is
not reusable for a different request.

Note: Stateless sessions too may have open transactions, open
statement fetch state, and so on. However, such a state persists for a
relatively short duration (only during the processing of a particular
three-tier request by a mid-tier thread) that allows the session to be
serially reused for a different three-tier user (when such state is
cleaned up).

Stateless sessions are typically used in conjunction with statement
caching.

What connection pooling offers is stateless connections and stateful sessions. If you
must work with stateless sessions, see "Session Pooling in OCI" on page 9-7.

9-2 Oracle Call Interface Programmer's Guide

Connection Pooling in OCI

Multiple Connection Pools

You can use the advanced concept of multiple connection pools for different database
connections. Multiple connection pools can also be used when different priorities are
assigned to users. Different service-level guarantees can be implemented using

connection pooling.

Figure 9-1 illustrates OCI connection pooling.

Figure 9—1 OCI Connection Pooling

Application

Thread 1

Thread 2

Sessions

Transparent Application Failover

Transaction application failover (TAF) is enabled for connection pooling. The concepts
of TAF apply equally well with connections in the connection pool except that the
BACKUP and PRECONNECT clauses should not be used in the connect string and do not

work with connection pooling and TAF.

Pool 2

Physical
Connections

N
N

Server 1

~

R
N

Server 2

~

When a connection in the connection pool fails over, it uses the primary connect string
itself to connect. Sessions fail over when they use the pool for a database round-trip
after their instance failure. The listener is configured to route the connection to a good
instance if available, as is typical with service-based connect strings.

OCI Calls for Connection Pooling

See Also:

Oracle Database Net Services Administrator’s Guide, the

chapter about configuring transparent application failover

To use connection pooling in your application, you must:

Allocate the Pool Handle

1.

N o g » 0 Db

Create the Connection Pool

Log On to the Database

Deal with SGA Limitations in Connection Pooling

Log Off from the Database

Destroy the Connection Pool

Free the Pool Handle

OCI Programming Advanced Topics 9-3

Connection Pooling in OCI

Allocate the Pool Handle

Connection pooling requires that the pool handle 0OCI_HTYPE_CPOOL be allocated by
OCIHandleAlloc(). Multiple pools can be created for a given environment handle.

For a single connection pool, here is an allocation example:

0OCICPool *poolhp;
OCIHandleAlloc((void *) envhp, (void **) &poolhp, OCI_HTYPE_CPOOL,
(size_t) 0, (void **) 0));

Create the Connection Pool

The function OCIConnectionPoolCreate() initializes the connection pool handle. It has
these IN parameters:

= connMin, the minimum number of connections to be opened when the pool is
created.

= connIncr, the incremental number of connections to be opened when all the
connections are busy and a call needs a connection. This increment is used only
when the total number of open connections is less than the maximum number of
connections that can be opened in that pool.

= connMax, the maximum number of connections that can be opened in the pool.
When the maximum number of connections are open in the pool, and all the
connections are busy, if a call needs a connection, it waits until it gets one.
However, if the OCI_ATTR_CONN_NOWAIT attribute is set for the pool, an error is
returned.

s A poolUsername and a poolPassword, to allow user sessions to transparently
migrate between connections in the pool.

s In addition, an attribute OCI_ATTR_CONN_TIMEOUT, can be set to time out the
connections in the pool. Connections idle for more than this time are terminated
periodically to maintain an optimum number of open connections. If this attribute
is not set, then the connections are never timed out.

Note: Shrinkage of the pool only occurs when there is a network round-trip.
If there are no operations, then the connections stay active.

Because all the preceding attributes can be configured dynamically, the application can
read the current load (number of open connections and number of busy connections)
and tune these attributes appropriately.

If the pool attributes (connMax, connMin, connIncr) are to be changed dynamically,
OCIConnectionPoolCreate() must be called with mode set to 0CI_CPOOL_REINITIALIZE.

The OUT parameters poolName and poolNameLen contain values to be used in
subsequent OCIServerAttach() and OCILogon2() calls in place of the database name
and the database name length arguments.

There is no limit on the number of pools that can be created by an application.
Middle-tier applications can create multiple pools to connect to the same server or to
different servers, to balance the load based on the specific needs of the application.

Here is an example of this call:

OCIConnectionPoolCreate((OCIEnv *)envhp,
(OCIError *)errhp, (OCICPool *)poolhp,
&poolName, &poolNameLen,
(text *)database,strlen(database),

9-4 Oracle Call Interface Programmer's Guide

Connection Pooling in OCI

(ub4) connMin, (ub4) connMax, (ub4) connIncr,
(text *)poolUsername,strlen(poolUserLen),
(text *)poolPassword,strlen(poolPassLen),
OCI_DEFAULT)) ;

Log On to the Database

The application must log on to the database for each thread, using one of the following
interfaces.

OCILogon2()

This is the simplest interface. Use this interface when you need a simple
connection pool connection and do not need to alter any attributes of the session
handle. This interface can also be used to make proxy connections to the database.

Here is an example using 0OCILogon2 ():

for (1 = 0; i < MAXTHREADS; ++1i)
{
OCILogon2 (envhp, errhp, &svchpl[i], "hr", 2, "hr", 2, poolName,
poolNameLen, OCI_LOGON2_CPOOL)) ;

}

To use this interface to get a proxy connection, set the password parameter to NULL.
OClISessionGet()

This is the recommended interface. It gives the user the additional option of using
external authentication methods, such as certificates, distinguished name, and so
on. OCISessionGet () is the recommended uniform function call to retrieve a
session.

Here is an example using 0CISessionGet ():

for (i = 0; i < MAXTHREADS; ++1i)
{
0CISessionGet (envhp, errhp, &svchp, authp,
(OraText *) poolName,
strlen(poolName), NULL, O, NULL, NULL, NULL,
OCI_SESSGET_CPOOL)
}

OClIServerAttach() and OCISessionBegin()

You can use another interface if the application must set any special attributes on
the user session handle and server handle. For such a requirement, applications
must allocate all the handles (connection pool handle, server handles, session
handles, and service context handles). You would follow this sequence:

1. Create the connection pool.

Connection pooling does the multiplexing of a virtual server handle over
physical connections transparently, eliminating the need for users to do so.
The user gets the feeling of a session having a dedicated (virtual) connection.
Because the multiplexing is done transparently to the user, users must not
attempt to multiplex sessions over the virtual server handles themselves. The
concepts of session migration and session switching, which require explicit
multiplexing at the user level, are defunct for connection pooling and should
not be used.

2. Call OCIServerAttach() with mode set to 0OCI_CPOOL.

OCI Programming Advanced Topics 9-5

Connection Pooling in OCI

In an OCI program, the user should create (0CIServerAttach() with mode set
to OCI_CPOOL), a unique virtual server handle for each session that is created
using the connection pool. There should be a one-to-one mapping between
virtual server handles and sessions.

3. Call OCISessionBegin() with mode set to OCI_DEFAULT.

Credentials can be set to OCI_CRED_RDBMS, OCI_CRED_EXT, or OCI_CRED_PROXY
using OCISessionBegin (). If the credentials are set to OCI_CRED_EXT, no user
name and no password need to be set on the session handle. If the credentials
are set to OCI_CRED_PROXY, only the user name must be set on the session
handle. (no explicit primary session must be created and OCI_ATTR_
MIGSESSION need not be set).

The user should not set 0CI_MIGRATE flag in the call to OCISessionBegin()
when the virtual server handle points to a connection pool (OCIServerAttach()
called with mode set to 0OCI_CPOOL). Oracle supports passing the OCI_MIGRATE
flag only for compatibility reasons. Do not use the 0OCI_MIGRATE flag, because
the perception that the user gets when using a connection pool is of sessions
having their own dedicated (virtual) connections that are transparently
multiplexed onto real connections.

Deal with SGA Limitations in Connection Pooling

With 0CI_CPOOL mode (connection pooling), the session memory (UGA) in the
back-end database comes out of the SGA. This may require some SGA tuning on the
back-end database to have a larger SGA if your application consumes more session
memory than the SGA can accommodate. The memory tuning requirements for the
back-end database are similar to configuring the LARGE POOL in a shared server
back end except that the instance is still in dedicated mode.

See Also: Oracle Database Performance Tuning Guide, the section
about configuring a shared server

If you are still running into the SGA limitation, you must consider:

= Reducing the session memory consumption by having fewer open statements for
each session

= Reducing the number of sessions in the back end by pooling sessions on the
mid-tier
= Or otherwise, turning off connection pooling

The application must avoid using dedicated database links on the back end with
connection pooling.

If the back end is a dedicated server, effective connection pooling is not possible
because sessions using dedicated database links are tied to a physical connection
rendering that same connection unusable by other sessions. If your application uses
dedicated database links and you do not see effective sharing of back-end processes
among your sessions, you must consider using shared database links.

See Also: Oracle Database Administrator's Guide, the section on shared
database links for more information about distributed databases

Log Off from the Database

From the following calls, choose the one that corresponds to the logon call and use it to
log off from the database in connection pooling mode.

9-6 Oracle Call Interface Programmer's Guide

Session Pooling in OCI

OClILogoff():

If OCILogon2() was used to make the connection, OCILogoff () must be used to
log off.

OClISessionRelease()

If OCISessionGet() was called to make the connection, then 0OCISessionRelease ()
must be called to log off.

OClISessionEnd() and OCIServerDetach()

If OCIServerAttach() and OCISessionBegin() were called to make the connection
and start the session, then 0CISessionEnd () must be called to end the session and
OCIServerDetach () must be called to release the connection.

Destroy the Connection Pool
Use OCIConnectionPoolDestroy() to destroy the connection pool.

Free the Pool Handle
The pool handle is freed using OCIHandleFree().

These last three actions are illustrated in this code fragment:

for (i = 0; i1 < MAXTHREADS; ++1i)

checkerr (errhp, OCILogoff((void *) svchp([i], errhp));

checkerr (errhp, OCIConnectionPoolDestroy(poolhp, errhp, OCI_DEFAULT)) ;
checkerr (errhp, OCIHandleFree((void *)poolhp, OCI_HTYPE CPOOL)) ;

See Also:
= "Connection Pool Handle Attributes" on page A-22

s "OCIConnectionPoolCreate()" on page 16-7, "OCILogon2()" on
page 16-24, and "OCIConnectionPoolDestroy()" on page 16-9

Examples of OCI Connection Pooling

Examples of connection pooling in tested complete programs can be found in
cdemocp.c and cdemocpproxy.c in directory demo.

Session Pooling in OCI

This section includes the following topics:

Functionality of OCI Session Pooling
Homogeneous and Heterogeneous Session Pools
Using Tags in Session Pools

OCI Handles for Session Pooling

Using OCI Session Pooling

OCI Calls for Session Pooling

Example of OCI Session Pooling

Runtime Connection Load Balancing

OCI Programming Advanced Topics 9-7

Session Pooling in OCI

Session pooling means that the application creates and maintains a group of stateless
sessions to the database. These sessions are provided to thin clients as requested. If no
sessions are available, a new one may be created. When the client is done with the
session, the client releases it to the pool. Thus, the number of sessions in the pool can
increase dynamically.

Some of the sessions in the pool may be tagged with certain properties. For instance, a
user may request a default session, set certain attributes on it, label it or tag it, and
return it to the pool. That user, or some other user, can require a session with the same
attributes, and thus request a session with the same tag. There may be several sessions
in the pool with the same tag. The tag on a session can be changed or reset.

See Also: "Using Tags in Session Pools" on page 9-8

Proxy sessions, too, can be created and maintained through session pooling in OCI.

The behavior of the application when no free sessions are available and the pool has
reached its maximum size depends on certain attributes. A new session may be
created or an error returned, or the thread may just block and wait for a session to
become free.

The main benefit of session pooling is performance. Making a connection to the
database is a time-consuming activity, especially when the database is remote. Thus,
instead of a client spending time connecting to the server, authenticating its
credentials, and then receiving a valid session, it can just pick one from the pool.

Functionality of OCI Session Pooling

Session pooling can perform the following tasks:
s Create, maintain, and manage a pool of stateless sessions transparently.

= Provide an interface for the application to create a pool and specify the minimum,
increment, and maximum number of sessions in the pool.

= Provide an interface for the user to obtain and release a default or tagged session
to the pool. A tagged session is one with certain client-defined properties.

= Allow the application to dynamically change the number of minimum and
maximum number of sessions.

= Provide a mechanism to always maintain an optimum number of open sessions,
by closing sessions that have been idle for a very long time, and creating sessions
when required.

= Allow for session pooling with authentication.

Homogeneous and Heterogeneous Session Pools

A session pool can be either homogeneous or heterogeneous. Homogeneous session
pooling means that sessions in the pool are alike for authentication (they have the
same user name, password, and privileges). Heterogeneous session pooling means that
you must provide authentication information because the sessions can have different
security attributes and privileges.

Using Tags in Session Pools

The tags provide a way for users to customize sessions in the pool. A client can get a
default or untagged session from a pool, set certain attributes on the session (such as
NLS settings), and return the session to the pool, labeling it with an appropriate tag in

9-8 Oracle Call Interface Programmer's Guide

Session Pooling in OCI

the OClISessionRelease() call.

The user, or some other user, can request a session with the same tags to have a session
with the same attributes, and can do so by providing the same tag in the
OClISessionGet() call.

See Also: "OClSessionGet()" on page 16-34 for a further
discussion of tagging sessions

OCI Handles for Session Pooling

The following handle types are for session pooling.

OCISPool

This is the session pool handle. It is allocated using OCIHandleAlloc(). It must be
passed to OClISessionPoolCreate() and OCISessionPoolDestroy(). It has the attribute
type OCI_HTYPE_SPOOL.

An example of the 0CIHandleAlloc () call follows:

0CISPool *spoolhp;
OCIHandleAlloc((void *) envhp, (void **) &spoolhp, OCI_HTYPE_SPOOL,
(size_t) 0, (void **) 0));

For an environment handle, multiple session pools can be created.

OClAuthinfo

This is the authentication information handle. It is allocated using OCIHandleAlloc().
It is passed to OCISessionGet(). It supports all the attributes that are supported for a
user session handle. See User Session Handle Attributes for more information. The
authentication information handle has the attribute type OCI_HTYPE_AUTHINFO (see
Table 2-1).

An example of the 0CIHandleAlloc () call follows:

OCIAuthInfo *authp;
OCIHandleAlloc((void *) envhp, (void **) &authp, OCI_HTYPE_AUTHINFO,
(size_t) 0, (void **) 0));

See Also:

s "User Session Handle Attributes" on page A-14 for the
attributes that belong to the authentication information handle

= "Session Pool Handle Attributes" on page A-24 for more
information about the session pooling attributes

= "Connect, Authorize, and Initialize Functions" on page 16-3 for
complete information about the functions used in session
pooling

= See "OClISessionGet()" on page 16-34 for details of the session
handle attributes that you can use with this call

Using OCI Session Pooling

The steps in writing a simple session pooling application that uses a user name and
password are as follows:

OCI Programming Advanced Topics 9-9

Session Pooling in OCI

1. Allocate the session pool handle using 0CIHandleAlloc () for an OCISPool handle.
Multiple session pools can be created for an environment handle.

2. Create the session pool using OCISessionPoolCreate() with mode set to 0OCI_
DEFAULT (for a new session pool). See the function for a discussion of the other
modes.

3. Loop for each thread. Create the thread with a function that does the following:

a. Allocates an authentication information handle of type 0CIAuthInfo using
OCIHandleAlloc()

b. Sets the user name and password in the authentication information handle
using OCIAttrSet()

c. Gets a pooled session using OCISessionGet() with mode set to OCI_SESSGET_
SPOOL

d. Performs the transaction
e. Allocates the handle

f. Prepares the statement

Note: When using service contexts obtained from OCI session pool,
you are required to use the service context returned by
OClSessionGet() (or OCILogon2()), and not create other service
contexts outside of these calls.

Any statement handle obtained using OCIStmtPrepare2() with the
service context should be subsequently used only in conjunction with
the same service context, and never with a different service context.

Executes the statement
Commits or rolls back the transactions
i. Releases the session (log off) with OCISessionRelease()
j- Frees the authentication information handle with OCIHandleFree()
k. Ends the loop for each thread
4. Destroy the session pool using OCISessionPoolDestroyy().

OCI Calls for Session Pooling

Here are the usages for OCI calls for session pooling. OCI provides calls for session
pooling to perform the following tasks:

= Allocate the Pool Handle

s Create the Connection Pool
= Log On to the Database

= Log Off from the Database

= Destroy the Connection Pool

s Free the Pool Handle

9-10 Oracle Call Interface Programmer's Guide

Session Pooling in OCI

Allocate the Pool Handle

Session pooling requires that the pool handle 0CI_HTYPE_SPOOL be allocated by calling
OCIHandleAlloc().

Multiple pools can be created for a given environment handle. For a single session
pool, here is an allocation example:

0CISPool *poolhp;
OCIHandleAlloc((void *) envhp, (void **) &poolhp, OCI_HTYPE SPOOL, (size_t) 0,
(void **) 0));

Create the Pool Session

You can use the function OCISessionPoolCreate() to create the session pool. Here is an
example of how to use this call:

OCISessionPoolCreate(envhp, errhp, poolhp, (OraText **)&poolName,
(ub4 *)&poolNameLen, database,
(ubd)strlen((const signed char *)database),
sessMin, sessMax, sessIncr,
(OraText *)appusername,
(ub4d)strlen((const signed char *)appusername),
(OraText *)apppassword,
(ubd)strlen((const signed char *)apppassword),
OCI_DEFAULT) ;

Log On to the Database

You can use these calls to log on to the database in session pooling mode.
s OCILogon2()

This is the simplest call. However, it does not give the user the option of using
tagging. Here is an example of how to use 0CILogon2 () to log on to the database
in session pooling mode:

for (i = 0; 1 < MAXTHREADS; ++1i)
{
OCILogon2 (envhp, errhp, &svchplil, "hr", 2, "hr", 2, poolName,
poolNameLen, OCI_LOGON2_SPOOL)) ;
}

n OClISessionGet()

This is the recommended call to use. It gives the user the option of using tagging
to label sessions in the pool, which makes it easier to retrieve specific sessions. An
example of using OCISessionGet () follows. It is taken from cdemosp. c in the demo
directory.

0CISessionGet (envhp, errhp, &svchp, authInfop,
(OraText *)database,strlen(database), tag,
strlen(tag), &retTag, &retTagLen, &found,
OCI_SESSGET_SPOOL) ;

When using service contexts obtained from an OCI session pool, you are required
to use the service context returned by OCISessionGet() (or OCILogon2()), and not
create other service contexts outside of these calls.

Any statement handle obtained using OCIStmtPrepare2() with the service context
should be subsequently used only in conjunction with the same service context,
and never with a different service context.

OCI Programming Advanced Topics 9-11

Session Pooling in OCI

Log Off from the Database

From the following calls, choose the one that corresponds to the logon call and use it to
log off from the database in session pooling mode.

= OCILogoff()

If you used OCILogon2() to make the connection, you must call 0CILogoff () to
log off.

s OClISessionRelease()

If you used OCISessionGet() to make the connection, then you must call
OCISessionRelease() to log off. Pending transactions are automatically
committed.

Destroy the Session Pool

Call OCISessionPoolDestroy() to destroy the session pool, as shown in the following
example:

0CISessionPoolDestroy (poolhp, errhp, OCI_DEFAULT);

Free the Pool Handle

Call OCIHandleFree() to free the session pool handle, as shown in the following
example:

OCIHandleFree ((void *)poolhp, OCI_HTYPE_SPOOL) ;

Note: Developers: You are advised to commit or roll back any open
transaction before releasing the connection back to the pool. If this is not done,
Oracle Database automatically commits any open transaction when the
connection is released.

If an instance failure is detected while the session pool is being used, OCI tries
to clean up the sessions to that instance.

Example of OCI Session Pooling

For an example of session pooling in a tested complete program, see cdemosp.c in
directory demo.

Runtime Connection Load Balancing

Oracle Real Application Clusters (Oracle RAC) is a database option in which a single
database is hosted by multiple instances on multiple nodes. The Oracle RAC shared
disk method of clustering databases increases scalability. The nodes can easily be
added or freed to meet current needs and improve availability, because if one node
fails, another can assume its workload. Oracle RAC adds high availability and failover
capacity to the database, because all instances have access to the whole database.

Balancing of work requests occurs at two different times: at connect time and at
runtime. These are referred to as connect time load balancing (provided by Oracle Net
Services) and runtime connection load balancing. For Oracle RAC environments, session
pools use service metrics received from the Oracle RAC load balancing advisory
through Fast Application Notification (FAN) events to balance application session
requests. The work requests coming into the session pool can be distributed across the
instances of Oracle RAC offering a service, using the current service performance.

9-12 Oracle Call Interface Programmer's Guide

Database Resident Connection Pooling

See Also:
= cdemosp.c in the directory demo

= "Database Resident Connection Pooling" on page 9-13

Connect time load balancing occurs when a session is first created by the application.
It is necessary that the sessions that are part of the pool be well distributed across
Oracle RAC instances, when they are first created. This ensures that sessions on each
of the instances get a chance to execute work.

Runtime connection load balancing routes work requests to sessions in a session pool
that best serve the work. It occurs when an application selects a session from an
existing session pool and thus is a very frequent activity. For session pools that
support services at one instance only, the first available session in the pool is adequate.
When the pool supports services that span multiple instances, there is a need to
distribute the work requests across instances so that the instances that are providing
better service or have greater capacity get more requests.

Runtime connection load balancing is enabled by default in an Oracle Database
Release 11.1 or later client communicating with a server of Oracle Database Release
10.2 or later. Setting the mode parameter to OCI_SPC_NO_RLB when calling
OClSessionPoolCreate() disables runtime connection load balancing.

Receiving Load Balancing Advisory FAN Events

To receive the service metrics based on the service time, the following requirements
must be met:

= Oracle RAC environment with Oracle Clusterware must be set up and enabled.
» The application must have been linked with the threads library.
s The OCI environment must be created in 0OCI_EVENTS and OCI_THREADED mode.

s The service must be modified to set up its goal and the connection load balancing
goal as follows:

EXEC DBMS_SERVICE.MODIFY_SERVICE ("myService",
DBMS_SERVICE.GOAL_SERVICE_TIME,
clb_goal => dbms_service.clb_goal_short);

See Also:
s "OClISessionPoolCreate()" on page 16-40

» Oracle Real Application Clusters Administration and Deployment Guide, the
section about enabling OCI clients to receive FAN events

» Oracle Database PL/SQL Packages and Types Reference, "'DBMS_SERVICE"

Database Resident Connection Pooling
This section includes the following topics:
s Configuring Database Resident Connection Pooling
= Using OCI Session Pool APIs with DRCP
= Session Purity and Connection Class
= Starting the Database Resident Connection Pool

= Enabling Database Resident Connection Pooling

OCI Programming Advanced Topics 9-13

Database Resident Connection Pooling

= Benefiting from the Scalability of DRCP in an OCI Application
= Best Practices for Using DRCP

s Compatibility and Migration

= Restrictions on Using Database Resident Connection Pooling

s Using DRCP with Custom Pools

= Marking Sessions Explicitly as Stateful or Stateless

s DRCP with Real Application Clusters

s DRCP with Data Guard

Database resident connection pooling (DRCP) provides a connection pool in the
database server for typical web application usage scenarios where the application
acquires a database connection, works on it for a relatively short duration, and then
releases it. DRCP pools server processes, each of which is the equivalent of a dedicated
server process and a database session combined, which are referred to as pooled
servers. Pooled servers can be shared across multiple applications running on the
same or several hosts. A connection broker process manages the pooled servers at the
database instance level. DRCP is a configurable feature chosen at program runtime,
allowing traditional and DRCP-based connection architectures to be in concurrent use.

DRCP is especially relevant for architectures with multiprocess single-threaded
application servers (such as PHP and Apache) that cannot do middle-tier connection
pooling. DRCP is also very useful in large scale Web deployments where hundreds or
thousands of web servers or mid-tiers need database access, client-side pools (even in
multithreaded systems and languages such as Java). Using DRCP, the database can
scale to tens of thousands of simultaneous connections. If your Database web
application must scale with large numbers of connections, DRCP is your connection
pooling solution.

DRCP complements middle-tier connection pools that share connections between
threads in a middle-tier process. In addition, DRCP enables sharing of database
connections across middle-tier processes on the same middle-tier host, across multiple
middle-tier hosts, and across multiple middle-tiers (web servers, containers)
accommodating applications written in different languages. This results in significant
reduction in key database resources needed to support a large number of client
connections, thereby reducing the database tier memory footprint and boosting the
scalability of both middle-tier and database tiers. Having a pool of readily available
servers has the additional benefit of reducing the cost of creating and tearing down
client connections.

Clients get connections out of the database resident connection pool connect to an
Oracle Database background process known as the connection broker. The connection
broker implements the pool functionality and multiplexes pooled servers among
persistent inbound connections from the client

When a client requires database access, the connection broker picks up a server process
from the pool and hands it off to the client. The client is then directly connected to the
server process until the request is served. After the server has finished, the server
process is released back into the pool and the connection from the client is restored to
the connection broker as a persistent inbound connection from the client process. In
DRCP, releasing resources leaves the session intact, but no longer associated with a
connection (server process). Because this session stores its user global area (UGA) in
the program global area (PGA), not in the system global area (SGA), a client can
reestablish a connection transparently upon detecting activity.

9-14 Oracle Call Interface Programmer's Guide

Database Resident Connection Pooling

DRCP is typically preferred for applications with a large number of connections.
Shared servers are useful for a medium number of connections and dedicated sessions
are preferred for small numbers of connections. The threshold sizes are relative to the
amount of memory available on the database host.

DRCP provides the following advantages:

= It enables resource sharing among multiple client applications and middle-tier
application servers.

» It improves scalability of databases and applications by reducing resource usage
on the database host.

Compared to shared servers, DRCP offers theses additional benefits:

s DRCP provides a direct tie with the database server furnished by client-side
connection pooling (that is, there is no man-in-the-middle like client-side
connection pooling, but unlike shared servers)

s DRCP can pool database servers (like client-side connection pooling and shared
servers),

s DRCP can pool sessions (like client-side connection pooling and unlike shared
servers)

s DRCP can share connections across mid-tier boundaries (unlike client-side
connection pooling)

DRCP offers a unique connection pooling solution that addresses scalability
requirements in environments requiring large numbers of connections with minimal
database resource usage.

See Also:

» Oracle Database Concepts for details about the DRCP architecture

Configuring Database Resident Connection Pooling

The pool is managed by the DBA using the DBMS_CONNECTION_POOL package. The pool
is installed by default, but is shutdown. The DBA must start it and specify DRCP
configuration options that include, for example, the minimum and maximum number
of pooled servers to be allowed in the pool, the number of connection brokers to be
created, and the maximum number of connections that each connection broker can
handle, and so forth. See the references for more information.

OCI session pool APIs have been extended to interoperate with the database resident
connection pool. See the references for more information.
See Also:

» Oracle Database PL/SQL Packages and Types Reference for details
about the DBMS_CONNECTION_POOL package

» Oracle Database Administrator’s Guide for the details of configuring
a database for DRCP

Using OCI Session Pool APIs with DRCP

The sections that follow describe OCI session pool APIs that have been extended to
interoperate with the database resident connection pool. An OCI application typically
initializes the environment for the OCI session pool for DRCP using
OClSessionPoolCreate() by specifying the database connection string (connStr),

OCI Programming Advanced Topics 9-15

Database Resident Connection Pooling

whether a user name (userid) and password (password) are associated with each
session, the minimum (sessMin) and the next increment (sessIncr) of sessions to be
started if the mode parameter is specified as OCI_SPC_HOMOGENEOUS to allow all sessions
in the pool to be authenticated with the user name and password passed in, the
maximum (sessMax) number of sessions allowed in the session pool, and so forth.

Sessions are obtained from DRCP from the OCI session pool using OCISessionGet(),
by specifying the 0OCI_SESSGET_SPOOL attribute in the mode parameter and sessions are
released to DRCP to the OCI session pool using OCISessionRelease(). The OCI session
pool can also transparently keep connections to the connection broker cached to
improve performance. OCI applications can reuse the sessions within which the
application leaves sessions of a similar state by using OCISessionGet() (authInfop)
and setting the OCI_ATTR_CONNECTION_CLASS attribute and specifying a connection
class name or by using the 0CIAuthInfo handle before calling OCISessionGet(). Using
OClISessionGet() (mode), OCI applications can also specify session purity, that is,
whether to reuse a pooled session (set the OCI_SESSGET_PURITY_SELF attribute) or to
use a new session (set the OCI_SESSGET_PURITY_NEW attribute).

In addition, features offered by the traditional client-side OCI session pool, such as
tagging, statement caching, and transparent application failover (TAF) are also
supported with DRCP.

Session Purity and Connection Class

In Oracle Database Release 11.1, OCI introduced two settings that can be specified
when obtaining a session using OCISessionGet():

= Session Purity
s Connection Class

s Defaults for Session Purity and Connection Class

Session Purity

Session purity specifies whether the application logic is set up to reuse a pooled session
or to use a new session. OCISessionGet() has been enhanced to take in a purity setting
of OCI_SESSGET PURITY NEW or OCI_SESSGET PURITY_ SELF. Alternatively, you can set
OCI_ATTR_PURITY_NEW or OCI_ATTR_PURITY_SELF on the OCIAuthInfo handle before
calling OCISessionGet (). Both methods are equivalent.

Note: When reusing a session from the pool, the NLS attributes of the server
take precedence over those of the client.

For example, if the client has NLS_LANG set to french_france.us7ascii and if
it is assigned a German session from the pool, the client session would be
German.

You can use connection classes to restrict sharing and to avoid this problem.

Example 9-1 shows how a connection pooling application sets up a NEW session.

Example 9—1 Setting Session Purity
/* OCIAttrSet method */
ub4 purity = OCI_ATTR_PURITY_NEW;

OCIAttrSet (authInfop, OCI_HTYPE_AUTHINFO, &purity, sizeof (purity),
OCI_ATTR_PURITY, errhp);

9-16 Oracle Call Interface Programmer's Guide

Database Resident Connection Pooling

0CISessionGet (envhp, errhp, &svchp, authInfop, poolName, poolNameLen, NULL, 0,
NULL, NULL, NULL, OCI_SESSGET SPOOL) ;
/* poolName is the name returned by OCISessionPoolCreate() */

/* 0CISessionGet mode method */

0CISessionGet (envhp, errhp, &svchp, authInfop, poolName, poolNameLen, NULL, 0,
NULL, NULL, NULL, OCI_SESSGET_ SPOOL | OCI_SESSGET_ PURITY_NEW) ;

/* poolName is the name returned by OCISessionPoolCreate() */

Connection Class

Connection class defines a logical name for the type of connection required by the
application. Sessions from the OCI session pool cannot be shared by different users (A
session first created for user HR is only given out to subsequent requests by user HR.)
The connection class setting allows for further separation between the sessions of a
given user. The connection class setting lets different applications (connecting as the
same database user) identify their sessions using a logical name that corresponds to
the application. OCI then ensures that such sessions belonging to a particular
connection class are not shared outside of the connection class.

You can use the OCI_ATTR_CONNECTION_CLASS attribute on the 0OCIAuthInfo handle to
set the connection class. The connection class is a string attribute. OCI supports a
maximum connection class length of 1024 bytes. The asterisk (*) is a special character
and is not allowed in the connection class name.

Example 9-2 shows that an HRMS application needs sessions identified with the
connection class HRMS.

Example 9-2 Setting the Connection Class as HRMS

0CISessionPoolCreate (envhp, errhp, spoolhp, &poolName, &poolNameLen, "HRDB",
strlen("HRDB"), 0, 10, 1, "HR", strlen("HR"), "HR", strlen("HR"),
OCI_SPC_HOMOGENEOUS) ;

OCIAttrSet (authInfop, OCI_HTYPE_AUTHINFO, "HRMS", strlen ("HRMS"),
OCI_ATTR_CONNECTION_CLASS, errhp);

0CISessionGet (envhp, errhp, &svchp, authInfop, poolName, poolNameLen, NULL, 0,
NULL, NULL, NULL, OCI_SESSGET_SPOOL) ;

Example 9-3 shows that a recruitment application needs sessions identified with the
connection class RECMS.

Example 9-3 Setting the Connection Class as RECMS

OCISessionPoolCreate (envhp, errhp, spoolhp, &poolName, &poolNameLen, "HRDB",
strlen("HRDB"), 0, 10, 1, "HR", strlen("HR"), "HR", strlen("HR"),
OCI_SPC_HOMOGENEQUS) ;

OCIAttrSet (authInfop, OCI_HTYPE_AUTHINFO, "RECMS", strlen("RECMS"),
OCI_ATTR_CONNECTION_CLASS, errhp);

OCISessionGet (envhp, errhp, &svchp, authInfop, poolName, poolNameLen, NULL, O,
NULL, NULL, NULL, OCI_SESSGET_SPOOL) ;

Defaults for Session Purity and Connection Class
Table 9-1 illustrates the defaults used in various client scenarios.

OCI Programming Advanced Topics 9-17

Database Resident Connection Pooling

Table 9-1 Defaults Used in Various Client Scenarios

Application Uses OCISessionGet() = Other Connections Are Not
Attribute or Setting from Session Pool Obtained from OCI Session Pool

OCI_ATTR_PURITY OCI_ATTR_PURITY_SELF OCI_ATTR_PURITY_NEW

OCI_ATTR_CONNECTION_CLASS OClI-generated globally unique name = SHARED
for each client-side session pool that is
used as the default connection class for
all connections in the OCI session pool.

Sharing of sessions Sharing of sessions between threads Sharing among all connections of
requesting sessions from the OCI a particular database using the
session pool. default SHARED connection class.

Starting the Database Resident Connection Pool

The database administrator (DBA) must log on as SYSDBA and start the default pool,
SYS_DEFAULT_CONNECTION_POOL, using DBMS_CONNECTION_POOL.START POOL with the
default settings.

For detailed information about configuring the pool, see Oracle Database
Administrator’s Guide.

Enabling Database Resident Connection Pooling

Any application can benefit from database resident connection pool by specifying
:POOLED in the Easy Connect string (see Example 9—4) or by specifying
(SERVER=POOLED) in the TNS connect string (see Example 9-5).

Example 9-4 Specifying :POOLED in the Easy Connect String for Enabling DRCP

oraclehost.company.com:1521/books.company .com: POOLED

Example 9-5 Specifying SERVER=POOLED in a TNS Connect String for Enabling DRCP

BOOKSDB = (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp) (HOST=oraclehost.company.com)
(PORT=1521)) (CONNECT_DATA = (SERVICE_NAME=books.company.com) (SERVER=POOLED)))

Benefiting from the Scalability of DRCP in an OCI Application

Consider the following three types of application scenarios and note how each benefits
from DRCP:

= Applications that do not use OCI session pooling and also do not specify any
connection class or purity setting (or specify a purity setting of NEW) get a new
session from the DRCP. Similarly, when the application releases a connection back
to the pool, the session is not shared with other instances of the same application
by default. SQL*Plus is an example of a client that does not use OCI session
pooling. It holds on to connections even when the connection is idle. As result, the
pool server remains assigned to the client if the client session exists or if the client
session does not log off. The application, however, does get the benefit of reusing
an existing pooled server process.

= Applications that use the OCISessionGet() call outside of an OCI session pool, or
to specify the connection class and set purity=SELF can reuse both DRCP pooled
server processes and sessions. However, following an OCISessionRelease() call,
OCI terminates the connection to the connection broker. On the next

9-18 Oracle Call Interface Programmer's Guide

Database Resident Connection Pooling

OCISessionGet () call, the application reconnects to the broker. Once it reconnects,
the DRCP assigns a pooled server (and session) belonging to the connection class
specified. Reconnecting, however, incurs the cost of connection establishment and
reauthentication. Such applications achieve better sharing of DRCP resources
(processes and sessions) but do not get the benefit of caching connections to the
connection broker.

= Applications that use OCI session pool APIs and specify the connection class and
set purity=SELF make full use of the DRCP functionality through reuse of both the
pooled server process and the associated session. They get the benefit of cached
connections to the connection broker. Cached connections do not incur the cost of
reauthentication on th