

Oracle® Database
Utilities

11g Release 2 (11.2)

E22490-07

April 2014

Oracle Database Utilities, 11g Release 2 (11.2)

E22490-07

Copyright © 1996, 2014, Oracle and/or its affiliates. All rights reserved.

Primary Author: Kathy Rich

Contributors: Lee Barton, Ellen Batbouta, Janet Blowney, Steve DiPirro, Bill Fisher, Steve Fogel, Dean
Gagne, John Kalogeropoulos, Jonathan Klein, Cindy Lim, Brian McCarthy, Rod Payne, Rich Phillips, Mike
Sakayeda, Francisco Sanchez, Marilyn Saunders, Jim Stenoish, Randy Urbano, Hui-ling Yu

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... xxxv

Audience... xxxv
Documentation Accessibility ... xxxv
Related Documentation.. xxxvi
Syntax Diagrams.. xxxvi
Conventions ... xxxvi

What's New in Database Utilities? ... xxxvii

Oracle Database 11g Release 2 (11.2.0.3) New Features in Oracle Database Utilities xxxvii
Oracle Database 11g Release 2 (11.2.0.2) New Features in Oracle Database Utilities xxxvii
Oracle Database 11g Release 2 (11.2.0.1) New Features in Oracle Database Utilities xxxvii
New Features in Oracle Database Utilities 11g Release 1.. xxxix

Part I Oracle Data Pump

1 Overview of Oracle Data Pump

Data Pump Components ... 1-1
How Does Data Pump Move Data? .. 1-2

Using Data File Copying to Move Data.. 1-2
Using Direct Path to Move Data .. 1-3
Using External Tables to Move Data... 1-4
Using Conventional Path to Move Data ... 1-5
Using Network Link Import to Move Data.. 1-5

Required Roles for Data Pump Export and Import Operations.. 1-6
What Happens During Execution of a Data Pump Job? ... 1-6

Coordination of a Job... 1-6
Tracking Progress Within a Job.. 1-6
Filtering Data and Metadata During a Job ... 1-7
Transforming Metadata During a Job ... 1-7
Maximizing Job Performance ... 1-8
Loading and Unloading of Data .. 1-8

Monitoring Job Status ... 1-9
Monitoring the Progress of Executing Jobs .. 1-9

File Allocation .. 1-10
Specifying Files and Adding Additional Dump Files ... 1-10

iv

Default Locations for Dump, Log, and SQL Files .. 1-10
Oracle RAC Considerations ... 1-12
Using Directory Objects When Oracle Automatic Storage Management Is Enabled 1-12

Using Substitution Variables ... 1-13
Moving Data Between Different Database Releases ... 1-13
SecureFiles LOB Considerations.. 1-14
Data Pump Exit Codes .. 1-15

2 Data Pump Export

What Is Data Pump Export? ... 2-1
Invoking Data Pump Export .. 2-2

Data Pump Export Interfaces ... 2-2
Data Pump Export Modes... 2-2

Full Export Mode .. 2-3
Schema Mode .. 2-3
Table Mode .. 2-3
Tablespace Mode... 2-4
Transportable Tablespace Mode... 2-4

Network Considerations ... 2-5
Filtering During Export Operations ... 2-6

Data Filters .. 2-6
Metadata Filters.. 2-6

Parameters Available in Export's Command-Line Mode ... 2-7
ABORT_STEP ... 2-8
ACCESS_METHOD... 2-9
ATTACH ... 2-9
CLUSTER.. 2-10
COMPRESSION .. 2-11
CONTENT.. 2-12
DATA_OPTIONS.. 2-13
DIRECTORY .. 2-13
DUMPFILE... 2-14
ENCRYPTION ... 2-15
ENCRYPTION_ALGORITHM.. 2-16
ENCRYPTION_MODE... 2-17
ENCRYPTION_PASSWORD .. 2-18
ESTIMATE.. 2-20
ESTIMATE_ONLY.. 2-20
EXCLUDE... 2-21
FILESIZE... 2-23
FLASHBACK_SCN... 2-23
FLASHBACK_TIME ... 2-24
FULL ... 2-25
HELP ... 2-26
INCLUDE ... 2-26
JOB_NAME .. 2-28
KEEP_MASTER... 2-28

v

LOGFILE... 2-29
METRICS .. 2-30
NETWORK_LINK... 2-30
NOLOGFILE .. 2-31
PARALLEL... 2-32
PARFILE ... 2-33
QUERY.. 2-34
REMAP_DATA ... 2-35
REUSE_DUMPFILES.. 2-36
SAMPLE ... 2-37
SCHEMAS.. 2-37
SERVICE_NAME .. 2-38
SOURCE_EDITION .. 2-39
STATUS .. 2-40
TABLES... 2-40
TABLESPACES.. 2-42
TRANSPORT_FULL_CHECK... 2-43
TRANSPORT_TABLESPACES ... 2-44
TRANSPORTABLE... 2-45
VERSION.. 2-46

Commands Available in Export's Interactive-Command Mode .. 2-47
ADD_FILE.. 2-48
CONTINUE_CLIENT... 2-49
EXIT_CLIENT.. 2-49
FILESIZE... 2-49
HELP ... 2-50
KILL_JOB.. 2-50
PARALLEL... 2-50
START_JOB.. 2-51
STATUS .. 2-51
STOP_JOB... 2-52

Examples of Using Data Pump Export .. 2-52
Performing a Table-Mode Export ... 2-52
Data-Only Unload of Selected Tables and Rows.. 2-53
Estimating Disk Space Needed in a Table-Mode Export .. 2-53
Performing a Schema-Mode Export ... 2-53
Performing a Parallel Full Database Export.. 2-54
Using Interactive Mode to Stop and Reattach to a Job .. 2-54

Syntax Diagrams for Data Pump Export... 2-54

3 Data Pump Import

What Is Data Pump Import?... 3-1
Invoking Data Pump Import.. 3-1

Data Pump Import Interfaces ... 3-2
Data Pump Import Modes .. 3-2

Full Import Mode.. 3-3
Schema Mode .. 3-3

vi

Table Mode .. 3-3
Tablespace Mode... 3-4
Transportable Tablespace Mode... 3-4

Network Considerations ... 3-5
Filtering During Import Operations... 3-5

Data Filters .. 3-6
Metadata Filters.. 3-6

Parameters Available in Import's Command-Line Mode .. 3-6
ABORT_STEP ... 3-8
ACCESS_METHOD... 3-9
ATTACH ... 3-9
CLUSTER.. 3-10
CONTENT.. 3-11
DATA_OPTIONS.. 3-11
DIRECTORY .. 3-12
DUMPFILE... 3-13
ENCRYPTION_PASSWORD .. 3-14
ESTIMATE.. 3-15
EXCLUDE... 3-16
FLASHBACK_SCN... 3-18
FLASHBACK_TIME ... 3-18
FULL ... 3-19
HELP ... 3-20
INCLUDE ... 3-20
JOB_NAME .. 3-22
KEEP_MASTER... 3-22
LOGFILE... 3-23
MASTER_ONLY.. 3-24
METRICS .. 3-24
NETWORK_LINK... 3-24
NOLOGFILE .. 3-26
PARALLEL... 3-26
PARFILE ... 3-28
PARTITION_OPTIONS ... 3-29
QUERY.. 3-30
REMAP_DATA ... 3-31
REMAP_DATAFILE ... 3-32
REMAP_SCHEMA.. 3-33
REMAP_TABLE .. 3-35
REMAP_TABLESPACE ... 3-35
REUSE_DATAFILES... 3-36
SCHEMAS.. 3-37
SERVICE_NAME .. 3-37
SKIP_UNUSABLE_INDEXES ... 3-38
SOURCE_EDITION .. 3-39
SQLFILE.. 3-40
STATUS .. 3-41

vii

STREAMS_CONFIGURATION.. 3-41
TABLE_EXISTS_ACTION ... 3-42
TABLES... 3-43
TABLESPACES.. 3-45
TARGET_EDITION .. 3-46
TRANSFORM .. 3-46
TRANSPORT_DATAFILES ... 3-49
TRANSPORT_FULL_CHECK... 3-50
TRANSPORT_TABLESPACES ... 3-51
TRANSPORTABLE... 3-52
VERSION.. 3-53

Commands Available in Import's Interactive-Command Mode ... 3-54
CONTINUE_CLIENT... 3-55
EXIT_CLIENT.. 3-55
HELP ... 3-55
KILL_JOB.. 3-56
PARALLEL... 3-56
START_JOB.. 3-57
STATUS .. 3-57
STOP_JOB... 3-57

Examples of Using Data Pump Import ... 3-58
Performing a Data-Only Table-Mode Import ... 3-58
Performing a Schema-Mode Import... 3-58
Performing a Network-Mode Import... 3-59

Syntax Diagrams for Data Pump Import .. 3-59

4 Data Pump Legacy Mode

Parameter Mappings.. 4-1
Using Original Export Parameters with Data Pump .. 4-1
Using Original Import Parameters with Data Pump.. 4-4

Management of File Locations in Data Pump Legacy Mode ... 4-7
Adjusting Existing Scripts for Data Pump Log Files and Errors .. 4-9

Log Files... 4-9
Error Cases .. 4-9
Exit Status.. 4-9

5 Data Pump Performance

Data Performance Improvements for Data Pump Export and Import ... 5-1
Tuning Performance .. 5-2

Controlling Resource Consumption.. 5-2
Effects of Compression and Encryption on Performance .. 5-2

Initialization Parameters That Affect Data Pump Performance ... 5-2
Setting the Size Of the Buffer Cache In a Streams Environment... 5-3

6 The Data Pump API

How Does the Client Interface to the Data Pump API Work? .. 6-1

viii

Job States.. 6-1
What Are the Basic Steps in Using the Data Pump API? ... 6-3
Examples of Using the Data Pump API ... 6-4

Part II SQL*Loader

7 SQL*Loader Concepts

SQL*Loader Features ... 7-1
SQL*Loader Parameters .. 7-2
SQL*Loader Control File .. 7-3
Input Data and Data Files... 7-3

Fixed Record Format ... 7-4
Variable Record Format .. 7-4
Stream Record Format .. 7-5
Logical Records .. 7-6
Data Fields... 7-6

LOBFILEs and Secondary Data Files (SDFs) .. 7-7
Data Conversion and Datatype Specification... 7-7
Discarded and Rejected Records ... 7-8

The Bad File... 7-8
SQL*Loader Rejects .. 7-8
Oracle Database Rejects ... 7-8

The Discard File.. 7-8
Log File and Logging Information .. 7-9
Conventional Path Loads, Direct Path Loads, and External Table Loads 7-9

Conventional Path Loads.. 7-9
Direct Path Loads ... 7-9

Parallel Direct Path .. 7-10
External Table Loads .. 7-10
Choosing External Tables Versus SQL*Loader .. 7-10
Behavior Differences Between SQL*Loader and External Tables.. 7-11

Multiple Primary Input Data Files .. 7-11
Syntax and Datatypes.. 7-11
Byte-Order Marks .. 7-11
Default Character Sets, Date Masks, and Decimal Separator.. 7-11
Use of the Backslash Escape Character... 7-11

Loading Objects, Collections, and LOBs .. 7-12
Supported Object Types ... 7-12

column objects .. 7-12
row objects .. 7-12

Supported Collection Types .. 7-12
Nested Tables ... 7-12
VARRAYs.. 7-12

Supported LOB Types .. 7-13
Partitioned Object Support ... 7-13
Application Development: Direct Path Load API .. 7-13
SQL*Loader Case Studies.. 7-13

ix

Case Study Files... 7-14
Running the Case Studies .. 7-15
Case Study Log Files... 7-15
Checking the Results of a Case Study .. 7-16

8 SQL*Loader Command-Line Reference

Invoking SQL*Loader ... 8-1
Specifying Parameters on the Command Line .. 8-1
Alternative Ways to Specify Parameters .. 8-2
Loading Data Across a Network.. 8-2

Command-Line Parameters .. 8-2
BAD (bad file) ... 8-2
BINDSIZE (maximum size) .. 8-3
COLUMNARRAYROWS.. 8-3
CONTROL (control file) .. 8-3
DATA (data file) ... 8-4
DATE_CACHE ... 8-4
DIRECT (data path) ... 8-4
DISCARD (file name) .. 8-4
DISCARDMAX (integer)... 8-5
ERRORS (errors to allow) ... 8-5
EXTERNAL_TABLE .. 8-5

Restrictions When Using EXTERNAL_TABLE .. 8-7
FILE (tablespace file to load into) .. 8-7
LOAD (number of records to load) ... 8-7
LOG (log file) .. 8-7
MULTITHREADING... 8-7
NO_INDEX_ERRORS.. 8-8
PARALLEL (parallel load).. 8-8
PARFILE (parameter file).. 8-8
READSIZE (read buffer size).. 8-8
RESUMABLE .. 8-9
RESUMABLE_NAME ... 8-9
RESUMABLE_TIMEOUT ... 8-9
ROWS (rows per commit) ... 8-9
SILENT (feedback mode) ... 8-10
SKIP (records to skip) ... 8-11
SKIP_INDEX_MAINTENANCE... 8-11
SKIP_UNUSABLE_INDEXES ... 8-11
STREAMSIZE... 8-12
USERID (username/password) .. 8-12

Exit Codes for Inspection and Display ... 8-12

9 SQL*Loader Control File Reference

Control File Contents... 9-1
Comments in the Control File .. 9-3

x

Specifying Command-Line Parameters in the Control File... 9-3
OPTIONS Clause.. 9-3

Specifying File Names and Object Names.. 9-4
File Names That Conflict with SQL and SQL*Loader Reserved Words.................................... 9-4
Specifying SQL Strings .. 9-4
Operating System Considerations ... 9-4

Specifying a Complete Path... 9-4
Backslash Escape Character... 9-4
Nonportable Strings ... 9-5
Using the Backslash as an Escape Character .. 9-5
Escape Character Is Sometimes Disallowed ... 9-5

Identifying XMLType Tables .. 9-5
Specifying Data Files... 9-6

Examples of INFILE Syntax.. 9-7
Specifying Multiple Data Files ... 9-8

Identifying Data in the Control File with BEGINDATA ... 9-8
Specifying Data File Format and Buffering .. 9-9
Specifying the Bad File ... 9-9

Examples of Specifying a Bad File Name .. 9-10
How Bad Files Are Handled with LOBFILEs and SDFs ... 9-10
Criteria for Rejected Records... 9-10

Specifying the Discard File ... 9-11
Specifying the Discard File in the Control File ... 9-11
Specifying the Discard File from the Command Line ... 9-12
Examples of Specifying a Discard File Name ... 9-12
Criteria for Discarded Records.. 9-12
How Discard Files Are Handled with LOBFILEs and SDFs .. 9-12
Limiting the Number of Discarded Records ... 9-12

Handling Different Character Encoding Schemes ... 9-13
Multibyte (Asian) Character Sets .. 9-13
Unicode Character Sets .. 9-13
Database Character Sets ... 9-14
Data File Character Sets ... 9-14
Input Character Conversion .. 9-14

Considerations When Loading Data into VARRAYs or Primary-Key-Based REFs....... 9-15
CHARACTERSET Parameter... 9-15
Control File Character Set... 9-16
Character-Length Semantics .. 9-17

Shift-sensitive Character Data ... 9-18
Interrupted Loads .. 9-18

Discontinued Conventional Path Loads .. 9-19
Discontinued Direct Path Loads ... 9-19

Load Discontinued Because of Space Errors ... 9-19
Load Discontinued Because Maximum Number of Errors Exceeded 9-19
Load Discontinued Because of Fatal Errors ... 9-20
Load Discontinued Because a Ctrl+C Was Issued .. 9-20

Status of Tables and Indexes After an Interrupted Load .. 9-20

xi

Using the Log File to Determine Load Status ... 9-20
Continuing Single-Table Loads... 9-20

Assembling Logical Records from Physical Records ... 9-21
Using CONCATENATE to Assemble Logical Records... 9-21
Using CONTINUEIF to Assemble Logical Records... 9-21

Loading Logical Records into Tables .. 9-24
Specifying Table Names... 9-24

INTO TABLE Clause ... 9-24
Table-Specific Loading Method .. 9-25

Loading Data into Empty Tables ... 9-25
Loading Data into Nonempty Tables.. 9-25

Table-Specific OPTIONS Parameter... 9-26
Loading Records Based on a Condition... 9-27

Using the WHEN Clause with LOBFILEs and SDFs .. 9-27
Specifying Default Data Delimiters .. 9-27

fields_spec ... 9-28
termination_spec.. 9-28
enclosure_spec.. 9-28

Handling Short Records with Missing Data ... 9-28
TRAILING NULLCOLS Clause... 9-29

Index Options... 9-29
SORTED INDEXES Clause .. 9-29
SINGLEROW Option.. 9-30

Benefits of Using Multiple INTO TABLE Clauses .. 9-30
Extracting Multiple Logical Records .. 9-30

Relative Positioning Based on Delimiters .. 9-31
Distinguishing Different Input Record Formats... 9-31

Relative Positioning Based on the POSITION Parameter ... 9-32
Distinguishing Different Input Row Object Subtypes... 9-32
Loading Data into Multiple Tables... 9-33
Summary .. 9-33

Bind Arrays and Conventional Path Loads .. 9-34
Size Requirements for Bind Arrays .. 9-34
Performance Implications of Bind Arrays ... 9-34
Specifying Number of Rows Versus Size of Bind Array... 9-35
Calculations to Determine Bind Array Size .. 9-35

Determining the Size of the Length Indicator ... 9-36
Calculating the Size of Field Buffers ... 9-36

Minimizing Memory Requirements for Bind Arrays .. 9-38
Calculating Bind Array Size for Multiple INTO TABLE Clauses .. 9-38

10 SQL*Loader Field List Reference

Field List Contents .. 10-1
Specifying the Position of a Data Field .. 10-2

Using POSITION with Data Containing Tabs .. 10-3
Using POSITION with Multiple Table Loads... 10-3
Examples of Using POSITION .. 10-4

xii

Specifying Columns and Fields .. 10-4
Specifying Filler Fields ... 10-4
Specifying the Datatype of a Data Field .. 10-6

SQL*Loader Datatypes... 10-6
Nonportable Datatypes .. 10-6

INTEGER(n) .. 10-7
SMALLINT ... 10-7
FLOAT ... 10-8
DOUBLE.. 10-8
BYTEINT .. 10-8
ZONED.. 10-8
DECIMAL ... 10-9
VARGRAPHIC ... 10-9
VARCHAR.. 10-10
VARRAW .. 10-11
LONG VARRAW ... 10-11

Portable Datatypes .. 10-11
CHAR... 10-12
Datetime and Interval Datatypes... 10-12
GRAPHIC.. 10-15
GRAPHIC EXTERNAL .. 10-15
Numeric EXTERNAL .. 10-15
RAW... 10-16
VARCHARC ... 10-16
VARRAWC ... 10-17
Conflicting Native Datatype Field Lengths ... 10-17
Field Lengths for Length-Value Datatypes .. 10-17

Datatype Conversions .. 10-18
Datatype Conversions for Datetime and Interval Datatypes ... 10-18
Specifying Delimiters.. 10-19

Syntax for Termination and Enclosure Specification.. 10-19
Delimiter Marks in the Data ... 10-20
Maximum Length of Delimited Data ... 10-21
Loading Trailing Blanks with Delimiters ... 10-21

How Delimited Data Is Processed .. 10-21
Fields Using Only TERMINATED BY .. 10-22
Fields Using ENCLOSED BY Without TERMINATED BY ... 10-22
Fields Using ENCLOSED BY With TERMINATED BY ... 10-22
Fields Using OPTIONALLY ENCLOSED BY With TERMINATED BY........................ 10-23

Conflicting Field Lengths for Character Datatypes ... 10-24
Predetermined Size Fields .. 10-24
Delimited Fields ... 10-24
Date Field Masks.. 10-24

Specifying Field Conditions ... 10-25
Comparing Fields to BLANKS .. 10-26
Comparing Fields to Literals ... 10-27

Using the WHEN, NULLIF, and DEFAULTIF Clauses.. 10-27

xiii

Examples of Using the WHEN, NULLIF, and DEFAULTIF Clauses 10-29
Loading Data Across Different Platforms .. 10-30
Byte Ordering... 10-31

Specifying Byte Order .. 10-32
Using Byte Order Marks (BOMs).. 10-32

Suppressing Checks for BOMs... 10-34
Loading All-Blank Fields... 10-34
Trimming Whitespace .. 10-35

Datatypes for Which Whitespace Can Be Trimmed .. 10-36
Specifying Field Length for Datatypes for Which Whitespace Can Be Trimmed 10-37

Predetermined Size Fields ... 10-37
Delimited Fields ... 10-37

Relative Positioning of Fields .. 10-37
No Start Position Specified for a Field .. 10-38
Previous Field Terminated by a Delimiter ... 10-38
Previous Field Has Both Enclosure and Termination Delimiters................................... 10-38

Leading Whitespace ... 10-38
Previous Field Terminated by Whitespace ... 10-39
Optional Enclosure Delimiters .. 10-39

Trimming Trailing Whitespace .. 10-39
Trimming Enclosed Fields ... 10-40

How the PRESERVE BLANKS Option Affects Whitespace Trimming 10-40
How [NO] PRESERVE BLANKS Works with Delimiter Clauses.. 10-40

Applying SQL Operators to Fields .. 10-41
Referencing Fields... 10-42
Common Uses of SQL Operators in Field Specifications.. 10-43
Combinations of SQL Operators... 10-44
Using SQL Strings with a Date Mask... 10-44
Interpreting Formatted Fields ... 10-44
Using SQL Strings to Load the ANYDATA Database Type... 10-44

Using SQL*Loader to Generate Data for Input ... 10-45
Loading Data Without Files .. 10-45
Setting a Column to a Constant Value ... 10-45

CONSTANT Parameter .. 10-45
Setting a Column to an Expression Value ... 10-46

EXPRESSION Parameter... 10-46
Setting a Column to the Data File Record Number ... 10-46

RECNUM Parameter ... 10-46
Setting a Column to the Current Date .. 10-47

SYSDATE Parameter ... 10-47
Setting a Column to a Unique Sequence Number.. 10-47

SEQUENCE Parameter ... 10-47
Generating Sequence Numbers for Multiple Tables.. 10-48

Example: Generating Different Sequence Numbers for Each Insert 10-48

11 Loading Objects, LOBs, and Collections

Loading Column Objects ... 11-1

xiv

Loading Column Objects in Stream Record Format .. 11-2
Loading Column Objects in Variable Record Format.. 11-2
Loading Nested Column Objects.. 11-3
Loading Column Objects with a Derived Subtype .. 11-3
Specifying Null Values for Objects... 11-4

Specifying Attribute Nulls.. 11-4
Specifying Atomic Nulls ... 11-5

Loading Column Objects with User-Defined Constructors.. 11-6
Loading Object Tables ... 11-9

Loading Object Tables with a Subtype .. 11-10
Loading REF Columns.. 11-11

Specifying Table Names in a REF Clause .. 11-11
System-Generated OID REF Columns ... 11-12
Primary Key REF Columns.. 11-12
Unscoped REF Columns That Allow Primary Keys .. 11-13

Loading LOBs... 11-14
Loading LOB Data from a Primary Data File .. 11-14

LOB Data in Predetermined Size Fields ... 11-15
LOB Data in Delimited Fields .. 11-15
LOB Data in Length-Value Pair Fields.. 11-16

Loading LOB Data from LOBFILEs.. 11-17
Dynamic Versus Static LOBFILE Specifications.. 11-18
Examples of Loading LOB Data from LOBFILEs.. 11-18
Considerations When Loading LOBs from LOBFILEs... 11-21

Loading BFILE Columns.. 11-21
Loading Collections (Nested Tables and VARRAYs) .. 11-22

Restrictions in Nested Tables and VARRAYs... 11-23
Secondary Data Files (SDFs).. 11-24

Dynamic Versus Static SDF Specifications.. 11-25
Loading a Parent Table Separately from Its Child Table.. 11-25

Memory Issues When Loading VARRAY Columns .. 11-26

12 Conventional and Direct Path Loads

Data Loading Methods ... 12-1
Loading ROWID Columns .. 12-2

Conventional Path Load... 12-3
Conventional Path Load of a Single Partition... 12-3
When to Use a Conventional Path Load.. 12-3

Direct Path Load .. 12-4
Data Conversion During Direct Path Loads ... 12-4
Direct Path Load of a Partitioned or Subpartitioned Table .. 12-5
Direct Path Load of a Single Partition or Subpartition .. 12-5
Advantages of a Direct Path Load.. 12-5
Restrictions on Using Direct Path Loads ... 12-6
Restrictions on a Direct Path Load of a Single Partition.. 12-7
When to Use a Direct Path Load... 12-7
Integrity Constraints... 12-7

xv

Field Defaults on the Direct Path.. 12-7
Loading into Synonyms ... 12-7

Using Direct Path Load .. 12-8
Setting Up for Direct Path Loads .. 12-8
Specifying a Direct Path Load ... 12-8
Building Indexes.. 12-8

Improving Performance.. 12-8
Temporary Segment Storage Requirements .. 12-9

Indexes Left in an Unusable State... 12-9
Using Data Saves to Protect Against Data Loss.. 12-10

Using the ROWS Parameter ... 12-10
Data Save Versus Commit .. 12-10

Data Recovery During Direct Path Loads ... 12-10
Media Recovery and Direct Path Loads ... 12-11
Instance Recovery and Direct Path Loads.. 12-11

Loading Long Data Fields.. 12-11
Loading Data As PIECED... 12-11

Optimizing Performance of Direct Path Loads ... 12-12
Preallocating Storage for Faster Loading... 12-12
Presorting Data for Faster Indexing ... 12-13

SORTED INDEXES Clause ... 12-13
Unsorted Data... 12-13
Multiple-Column Indexes... 12-13
Choosing the Best Sort Order... 12-14

Infrequent Data Saves... 12-14
Minimizing Use of the Redo Log .. 12-14

Disabling Archiving .. 12-14
Specifying the SQL*Loader UNRECOVERABLE Clause .. 12-15
Setting the SQL NOLOGGING Parameter... 12-15

Specifying the Number of Column Array Rows and Size of Stream Buffers....................... 12-15
Specifying a Value for the Date Cache... 12-16

Optimizing Direct Path Loads on Multiple-CPU Systems ... 12-17
Avoiding Index Maintenance ... 12-18
Direct Loads, Integrity Constraints, and Triggers .. 12-18

Integrity Constraints... 12-18
Enabled Constraints... 12-18
Disabled Constraints .. 12-19
Reenable Constraints .. 12-19

Database Insert Triggers .. 12-20
Replacing Insert Triggers with Integrity Constraints... 12-20
When Automatic Constraints Cannot Be Used ... 12-20
Preparation.. 12-20
Using an Update Trigger .. 12-21
Duplicating the Effects of Exception Conditions .. 12-21
Using a Stored Procedure ... 12-21

Permanently Disabled Triggers and Constraints ... 12-22
Increasing Performance with Concurrent Conventional Path Loads.................................... 12-22

xvi

Parallel Data Loading Models .. 12-22
Concurrent Conventional Path Loads.. 12-23
Intersegment Concurrency with Direct Path .. 12-23
Intrasegment Concurrency with Direct Path .. 12-23
Restrictions on Parallel Direct Path Loads .. 12-23
Initiating Multiple SQL*Loader Sessions .. 12-24
Parameters for Parallel Direct Path Loads... 12-24

Using the FILE Parameter to Specify Temporary Segments ... 12-24
Enabling Constraints After a Parallel Direct Path Load.. 12-25
PRIMARY KEY and UNIQUE KEY Constraints .. 12-26

General Performance Improvement Hints ... 12-26

Part III External Tables

13 External Tables Concepts

How Are External Tables Created? .. 13-1
Location of Data Files and Output Files .. 13-2
Access Parameters... 13-3

Datatype Conversion During External Table Use .. 13-3
External Table Restrictions.. 13-4

14 The ORACLE_LOADER Access Driver

access_parameters Clause .. 14-2
record_format_info Clause .. 14-3

FIXED length.. 14-4
VARIABLE size ... 14-5
DELIMITED BY ... 14-5
CHARACTERSET ... 14-6
PREPROCESSOR... 14-6

Using Parallel Processing with the PREPROCESSOR Clause... 14-8
Restriction When Using the PREPROCESSOR Clause... 14-8

LANGUAGE .. 14-9
TERRITORY ... 14-9
DATA IS...ENDIAN.. 14-9
BYTEORDERMARK (CHECK | NOCHECK).. 14-10
STRING SIZES ARE IN .. 14-10
LOAD WHEN.. 14-10
BADFILE | NOBADFILE... 14-11
DISCARDFILE | NODISCARDFILE ... 14-11
LOG FILE | NOLOGFILE.. 14-11
SKIP .. 14-12
READSIZE.. 14-12
DISABLE_DIRECTORY_LINK_CHECK... 14-12
DATE_CACHE .. 14-12
string ... 14-13
condition_spec ... 14-13

xvii

[directory object name:] filename ... 14-13
condition... 14-14

range start : range end... 14-14
IO_OPTIONS clause ... 14-15

field_definitions Clause... 14-15
delim_spec.. 14-17

Example: External Table with Terminating Delimiters.. 14-18
Example: External Table with Enclosure and Terminator Delimiters 14-18
Example: External Table with Optional Enclosure Delimiters.. 14-18

trim_spec .. 14-19
MISSING FIELD VALUES ARE NULL ... 14-20
field_list .. 14-20
pos_spec Clause... 14-21

start... 14-21
* ... 14-22
increment... 14-22
end.. 14-22
length ... 14-22

datatype_spec Clause ... 14-22
[UNSIGNED] INTEGER [EXTERNAL] [(len)] .. 14-23
DECIMAL [EXTERNAL] and ZONED [EXTERNAL].. 14-24
ORACLE_DATE... 14-24
ORACLE_NUMBER .. 14-24
Floating-Point Numbers ... 14-24
DOUBLE.. 14-25
FLOAT [EXTERNAL].. 14-25
BINARY_DOUBLE .. 14-25
BINARY_FLOAT.. 14-25
RAW... 14-25
CHAR... 14-25
date_format_spec ... 14-26
VARCHAR and VARRAW... 14-28
VARCHARC and VARRAWC... 14-29

init_spec Clause... 14-30
column_transforms Clause .. 14-30

transform .. 14-30
column_name ... 14-31
NULL ... 14-31
CONSTANT ... 14-31
CONCAT... 14-31
LOBFILE.. 14-31
lobfile_attr_list.. 14-32

Example: Creating and Loading an External Table Using ORACLE_LOADER..................... 14-32
Parallel Loading Considerations for the ORACLE_LOADER Access Driver 14-34
Performance Hints When Using the ORACLE_LOADER Access Driver 14-34
Restrictions When Using the ORACLE_LOADER Access Driver... 14-35
Reserved Words for the ORACLE_LOADER Access Driver .. 14-36

xviii

15 The ORACLE_DATAPUMP Access Driver

access_parameters Clause .. 15-1
comments ... 15-2
COMPRESSION .. 15-2
ENCRYPTION ... 15-3
LOGFILE | NOLOGFILE... 15-3

File Names for LOGFILE .. 15-4
VERSION Clause... 15-4
Effects of Using the SQL ENCRYPT Clause.. 15-4

Unloading and Loading Data with the ORACLE_DATAPUMP Access Driver 15-5
Parallel Loading and Unloading... 15-8
Combining Dump Files .. 15-8

Supported Datatypes .. 15-9
Unsupported Datatypes ... 15-10

Unloading and Loading BFILE Datatypes .. 15-10
Unloading LONG and LONG RAW Datatypes ... 15-12
Unloading and Loading Columns Containing Final Object Types 15-13
Tables of Final Object Types.. 15-14

Performance Hints When Using the ORACLE_DATAPUMP Access Driver 15-15
Restrictions When Using the ORACLE_DATAPUMP Access Driver 15-16
Reserved Words for the ORACLE_DATAPUMP Access Driver ... 15-16

Part IV Other Utilities

16 ADRCI: ADR Command Interpreter

About the ADR Command Interpreter (ADRCI) Utility ... 16-1
Definitions.. 16-2
Starting ADRCI and Getting Help .. 16-4

Using ADRCI in Interactive Mode ... 16-4
Getting Help... 16-5
Using ADRCI in Batch Mode .. 16-6

Setting the ADRCI Homepath Before Using ADRCI Commands .. 16-6
Viewing the Alert Log .. 16-8
Finding Trace Files.. 16-9
Viewing Incidents ... 16-10
Packaging Incidents .. 16-10

About Packaging Incidents.. 16-10
Creating Incident Packages ... 16-11

Creating a Logical Incident Package ... 16-12
Adding Diagnostic Information to a Logical Incident Package...................................... 16-13
Generating a Physical Incident Package... 16-14

ADRCI Command Reference.. 16-14
CREATE REPORT... 16-15
ECHO.. 16-16
EXIT... 16-16
HOST... 16-17

xix

IPS.. 16-17
Using the <ADR_HOME> and <ADR_BASE> Variables in IPS Commands............... 16-18
IPS ADD .. 16-18
IPS ADD FILE... 16-20
IPS ADD NEW INCIDENTS .. 16-20
IPS COPY IN FILE ... 16-20
IPS COPY OUT FILE ... 16-21
IPS CREATE PACKAGE... 16-22
IPS DELETE PACKAGE ... 16-24
IPS FINALIZE... 16-24
IPS GENERATE PACKAGE... 16-24
IPS GET MANIFEST.. 16-25
IPS GET METADATA ... 16-25
IPS PACK .. 16-26
IPS REMOVE .. 16-27
IPS REMOVE FILE... 16-28
IPS SET CONFIGURATION... 16-29
IPS SHOW CONFIGURATION... 16-29
IPS SHOW FILES ... 16-32
IPS SHOW INCIDENTS.. 16-33
IPS SHOW PACKAGE .. 16-33
IPS UNPACK FILE .. 16-34

PURGE.. 16-34
QUIT.. 16-35
RUN... 16-35
SELECT... 16-36

AVG ... 16-38
CONCAT... 16-38
COUNT.. 16-38
DECODE ... 16-39
LENGTH ... 16-39
MAX... 16-40
MIN .. 16-40
NVL.. 16-41
REGEXP_LIKE.. 16-41
SUBSTR.. 16-41
SUM ... 16-42
TIMESTAMP_TO_CHAR ... 16-42
TOLOWER .. 16-43
TOUPPER.. 16-43

SET BASE.. 16-44
SET BROWSER .. 16-44
SET CONTROL.. 16-44
SET ECHO.. 16-45
SET EDITOR... 16-45
SET HOMEPATH.. 16-45
SET TERMOUT.. 16-46

xx

SHOW ALERT ... 16-46
SHOW BASE .. 16-48
SHOW CONTROL .. 16-49
SHOW HM_RUN.. 16-50
SHOW HOMEPATH .. 16-51
SHOW HOMES ... 16-51
SHOW INCDIR ... 16-51
SHOW INCIDENT.. 16-52
SHOW PROBLEM... 16-56
SHOW REPORT .. 16-57
SHOW TRACEFILE .. 16-57
SPOOL .. 16-58

Troubleshooting ADRCI ... 16-58

17 DBVERIFY: Offline Database Verification Utility

Using DBVERIFY to Validate Disk Blocks of a Single Data File.. 17-1
Syntax.. 17-1
Parameters.. 17-2
Sample DBVERIFY Output For a Single Data File ... 17-3

Using DBVERIFY to Validate a Segment ... 17-3
Syntax.. 17-4
Parameters.. 17-4
Sample DBVERIFY Output For a Validated Segment ... 17-4

18 DBNEWID Utility

What Is the DBNEWID Utility?.. 18-1
Ramifications of Changing the DBID and DBNAME ... 18-1

Considerations for Global Database Names ... 18-2
Changing the DBID and DBNAME of a Database... 18-2

Changing the DBID and Database Name.. 18-2
Changing Only the Database ID ... 18-4
Changing Only the Database Name... 18-5
Troubleshooting DBNEWID.. 18-7

DBNEWID Syntax... 18-8
Parameters.. 18-8
Restrictions and Usage Notes.. 18-9
Additional Restrictions for Releases Earlier Than Oracle Database 10g................................. 18-9

19 Using LogMiner to Analyze Redo Log Files

LogMiner Benefits... 19-1
Introduction to LogMiner .. 19-2

LogMiner Configuration .. 19-2
Sample Configuration ... 19-3
Requirements.. 19-3

Directing LogMiner Operations and Retrieving Data of Interest .. 19-4
LogMiner Dictionary Files and Redo Log Files .. 19-5

xxi

LogMiner Dictionary Options ... 19-5
Using the Online Catalog.. 19-6
Extracting a LogMiner Dictionary to the Redo Log Files... 19-7
Extracting the LogMiner Dictionary to a Flat File .. 19-8

Redo Log File Options.. 19-8
Starting LogMiner ... 19-9
Querying V$LOGMNR_CONTENTS for Redo Data of Interest .. 19-10

How the V$LOGMNR_CONTENTS View Is Populated .. 19-12
Querying V$LOGMNR_CONTENTS Based on Column Values... 19-13

The Meaning of NULL Values Returned by the MINE_VALUE Function................... 19-14
Usage Rules for the MINE_VALUE and COLUMN_PRESENT Functions 19-14

Querying V$LOGMNR_CONTENTS Based on XMLType Columns and Tables 19-14
Restrictions When Using LogMiner With XMLType Data.. 19-17
Example of a PL/SQL Procedure for Assembling XMLType Data................................ 19-17

Filtering and Formatting Data Returned to V$LOGMNR_CONTENTS 19-19
Showing Only Committed Transactions ... 19-20
Skipping Redo Corruptions... 19-22
Filtering Data by Time.. 19-23
Filtering Data by SCN... 19-23
Formatting Reconstructed SQL Statements for Re-execution .. 19-23
Formatting the Appearance of Returned Data for Readability .. 19-24

Reapplying DDL Statements Returned to V$LOGMNR_CONTENTS 19-25
Calling DBMS_LOGMNR.START_LOGMNR Multiple Times ... 19-25
Supplemental Logging ... 19-26

Database-Level Supplemental Logging ... 19-27
Minimal Supplemental Logging.. 19-27
Database-Level Identification Key Logging... 19-27

Disabling Database-Level Supplemental Logging... 19-28
Table-Level Supplemental Logging ... 19-29

Table-Level Identification Key Logging ... 19-29
Table-Level User-Defined Supplemental Log Groups ... 19-30
Usage Notes for User-Defined Supplemental Log Groups ... 19-31

Tracking DDL Statements in the LogMiner Dictionary .. 19-31
DDL_DICT_TRACKING and Supplemental Logging Settings ... 19-32
DDL_DICT_TRACKING and Specified Time or SCN Ranges .. 19-33

Accessing LogMiner Operational Information in Views .. 19-34
Querying V$LOGMNR_LOGS.. 19-34
Querying Views for Supplemental Logging Settings .. 19-35

Steps in a Typical LogMiner Session .. 19-37
Enable Supplemental Logging .. 19-37
Extract a LogMiner Dictionary.. 19-38
Specify Redo Log Files for Analysis ... 19-38
Start LogMiner... 19-39
Query V$LOGMNR_CONTENTS .. 19-40
End the LogMiner Session ... 19-40

Examples Using LogMiner .. 19-40
Examples of Mining by Explicitly Specifying the Redo Log Files of Interest 19-41

xxii

Example 1: Finding All Modifications in the Last Archived Redo Log File.................. 19-41
Example 2: Grouping DML Statements into Committed Transactions 19-43
Example 3: Formatting the Reconstructed SQL... 19-45
Example 4: Using the LogMiner Dictionary in the Redo Log Files 19-48
Example 5: Tracking DDL Statements in the Internal Dictionary 19-56
Example 6: Filtering Output by Time Range ... 19-58

Examples of Mining Without Specifying the List of Redo Log Files Explicitly................... 19-60
Example 1: Mining Redo Log Files in a Given Time Range .. 19-61
Example 2: Mining the Redo Log Files in a Given SCN Range....................................... 19-63
Example 3: Using Continuous Mining to Include Future Values in a Query 19-65

Example Scenarios .. 19-65
Scenario 1: Using LogMiner to Track Changes Made by a Specific User 19-65
Scenario 2: Using LogMiner to Calculate Table Access Statistics 19-66

Supported Datatypes, Storage Attributes, and Database and Redo Log File Versions 19-67
Supported Datatypes and Table Storage Attributes .. 19-67
Unsupported Datatypes and Table Storage Attributes ... 19-69
Supported Databases and Redo Log File Versions .. 19-69
SecureFiles LOB Considerations ... 19-69

20 Using the Metadata APIs

Why Use the DBMS_METADATA API?.. 20-1
Overview of the DBMS_METADATA API ... 20-2
Using the DBMS_METADATA API to Retrieve an Object's Metadata 20-2

Typical Steps Used for Basic Metadata Retrieval ... 20-3
Retrieving Multiple Objects... 20-4
Placing Conditions on Transforms ... 20-6
Accessing Specific Metadata Attributes... 20-8

Using the DBMS_METADATA API to Re-Create a Retrieved Object..................................... 20-10
Using the DBMS_METADATA API to Retrieve Collections of Different Object Types 20-12

Filtering the Return of Heterogeneous Object Types .. 20-14
Using the DBMS_METADATA_DIFF API to Compare Object Metadata 20-15
Performance Tips for the Programmatic Interface of the DBMS_METADATA API 20-23
Example Usage of the DBMS_METADATA API ... 20-24

What Does the DBMS_METADATA Example Do? ... 20-25
Output Generated from the GET_PAYROLL_TABLES Procedure 20-27

Summary of DBMS_METADATA Procedures ... 20-28
Summary of DBMS_METADATA_DIFF Procedures .. 20-30

21 Original Export

What is the Export Utility? .. 21-2
Before Using Export .. 21-2

Running catexp.sql or catalog.sql ... 21-2
Ensuring Sufficient Disk Space for Export Operations.. 21-3
Verifying Access Privileges for Export and Import Operations .. 21-3

Invoking Export ... 21-3
Invoking Export as SYSDBA ... 21-3
Command-Line Entries .. 21-4

xxiii

Parameter Files .. 21-4
Interactive Mode ... 21-5

Restrictions When Using Export's Interactive Method .. 21-5
Getting Online Help.. 21-5

Export Modes ... 21-5
Table-Level and Partition-Level Export... 21-8

Table-Level Export... 21-8
Partition-Level Export ... 21-8

Export Parameters ... 21-9
BUFFER... 21-9

Example: Calculating Buffer Size .. 21-9
COMPRESS .. 21-9
CONSISTENT .. 21-10
CONSTRAINTS... 21-11
DIRECT... 21-11
FEEDBACK .. 21-11
FILE ... 21-12
FILESIZE... 21-12
FLASHBACK_SCN... 21-13
FLASHBACK_TIME ... 21-13
FULL ... 21-13

Points to Consider for Full Database Exports and Imports ... 21-14
GRANTS... 21-14
HELP ... 21-15
INDEXES .. 21-15
LOG ... 21-15
OBJECT_CONSISTENT ... 21-15
OWNER .. 21-15
PARFILE ... 21-15
QUERY.. 21-16

Restrictions When Using the QUERY Parameter.. 21-16
RECORDLENGTH.. 21-16
RESUMABLE ... 21-17
RESUMABLE_NAME .. 21-17
RESUMABLE_TIMEOUT .. 21-17
ROWS.. 21-17
STATISTICS ... 21-18
TABLES... 21-18

Table Name Restrictions ... 21-19
TABLESPACES.. 21-19
TRANSPORT_TABLESPACE.. 21-20
TRIGGERS.. 21-20
TTS_FULL_CHECK .. 21-20
USERID (username/password) .. 21-20
VOLSIZE... 21-21

Example Export Sessions ... 21-21
Example Export Session in Full Database Mode .. 21-21

xxiv

Example Export Session in User Mode.. 21-22
Example Export Sessions in Table Mode... 21-22

Example 1: DBA Exporting Tables for Two Users .. 21-23
Example 2: User Exports Tables That He Owns.. 21-23
Example 3: Using Pattern Matching to Export Various Tables....................................... 21-24

Example Export Session Using Partition-Level Export ... 21-24
Example 1: Exporting a Table Without Specifying a Partition.. 21-24
Example 2: Exporting a Table with a Specified Partition... 21-25
Example 3: Exporting a Composite Partition... 21-25

Warning, Error, and Completion Messages ... 21-26
Log File .. 21-26
Warning Messages .. 21-26
Nonrecoverable Error Messages ... 21-26
Completion Messages... 21-27

Exit Codes for Inspection and Display ... 21-27
Conventional Path Export Versus Direct Path Export.. 21-27
Invoking a Direct Path Export .. 21-28

Security Considerations for Direct Path Exports.. 21-28
Performance Considerations for Direct Path Exports.. 21-28
Restrictions for Direct Path Exports ... 21-29

Network Considerations .. 21-29
Transporting Export Files Across a Network ... 21-29
Exporting with Oracle Net... 21-29

Character Set and Globalization Support Considerations.. 21-29
User Data .. 21-30

Effect of Character Set Sorting Order on Conversions ... 21-30
Data Definition Language (DDL) ... 21-30
Single-Byte Character Sets and Export and Import ... 21-31
Multibyte Character Sets and Export and Import ... 21-31

Using Instance Affinity with Export and Import.. 21-31
Considerations When Exporting Database Objects ... 21-31

Exporting Sequences... 21-31
Exporting LONG and LOB Datatypes ... 21-32
Exporting Foreign Function Libraries.. 21-32
Exporting Offline Locally Managed Tablespaces... 21-32
Exporting Directory Aliases .. 21-32
Exporting BFILE Columns and Attributes .. 21-32
Exporting External Tables.. 21-32
Exporting Object Type Definitions ... 21-33
Exporting Nested Tables .. 21-33
Exporting Advanced Queue (AQ) Tables.. 21-33
Exporting Synonyms .. 21-33
Possible Export Errors Related to Java Synonyms ... 21-34
Support for Fine-Grained Access Control ... 21-34

Transportable Tablespaces .. 21-34
Exporting From a Read-Only Database .. 21-35
Using Export and Import to Partition a Database Migration.. 21-35

xxv

Advantages of Partitioning a Migration .. 21-35
Disadvantages of Partitioning a Migration ... 21-35
How to Use Export and Import to Partition a Database Migration 21-35

Using Different Releases of Export and Import.. 21-36
Restrictions When Using Different Releases of Export and Import 21-36
Examples of Using Different Releases of Export and Import... 21-36

22 Original Import

What Is the Import Utility?.. 22-2
Table Objects: Order of Import ... 22-2

Before Using Import ... 22-2
Running catexp.sql or catalog.sql ... 22-2
Verifying Access Privileges for Import Operations ... 22-3

Importing Objects Into Your Own Schema.. 22-3
Importing Grants ... 22-4
Importing Objects Into Other Schemas... 22-4
Importing System Objects... 22-4

Processing Restrictions... 22-5
Importing into Existing Tables... 22-5

Manually Creating Tables Before Importing Data ... 22-5
Disabling Referential Constraints ... 22-5
Manually Ordering the Import ... 22-6

Effect of Schema and Database Triggers on Import Operations ... 22-6
Invoking Import .. 22-6

Command-Line Entries .. 22-7
Parameter Files .. 22-7
Interactive Mode ... 22-8
Invoking Import As SYSDBA.. 22-8
Getting Online Help.. 22-8

Import Modes... 22-8
Import Parameters ... 22-11

BUFFER... 22-11
COMMIT .. 22-12
COMPILE ... 22-12
CONSTRAINTS... 22-12
DATA_ONLY .. 22-12
DATAFILES ... 22-13
DESTROY ... 22-13
FEEDBACK .. 22-13
FILE ... 22-13
FILESIZE... 22-13
FROMUSER.. 22-14
FULL ... 22-14

Points to Consider for Full Database Exports and Imports ... 22-14
GRANTS... 22-15
HELP ... 22-16
IGNORE.. 22-16

xxvi

INDEXES .. 22-16
INDEXFILE .. 22-17
LOG ... 22-17
PARFILE ... 22-17
RECORDLENGTH.. 22-17
RESUMABLE ... 22-18
RESUMABLE_NAME .. 22-18
RESUMABLE_TIMEOUT .. 22-18
ROWS.. 22-18
SHOW ... 22-18
SKIP_UNUSABLE_INDEXES ... 22-19
STATISTICS ... 22-19
STREAMS_CONFIGURATION.. 22-20
STREAMS_INSTANTIATION .. 22-20
TABLES... 22-20

Table Name Restrictions ... 22-21
TABLESPACES.. 22-22
TOID_NOVALIDATE .. 22-22
TOUSER.. 22-23
TRANSPORT_TABLESPACE.. 22-23
TTS_OWNERS ... 22-24
USERID (username/password) .. 22-24
VOLSIZE... 22-24

Example Import Sessions .. 22-24
Example Import of Selected Tables for a Specific User ... 22-25
Example Import of Tables Exported by Another User .. 22-25
Example Import of Tables from One User to Another .. 22-25
Example Import Session Using Partition-Level Import .. 22-26

Example 1: A Partition-Level Import .. 22-26
Example 2: A Partition-Level Import of a Composite Partitioned Table 22-27
Example 3: Repartitioning a Table on a Different Column.. 22-28

Example Import Using Pattern Matching to Import Various Tables 22-29
Exit Codes for Inspection and Display ... 22-30
Error Handling During an Import.. 22-30

Row Errors ... 22-30
Failed Integrity Constraints.. 22-30
Invalid Data .. 22-31

Errors Importing Database Objects .. 22-31
Object Already Exists .. 22-31
Sequences .. 22-31
Resource Errors .. 22-32
Domain Index Metadata ... 22-32

Table-Level and Partition-Level Import ... 22-32
Guidelines for Using Table-Level Import.. 22-32
Guidelines for Using Partition-Level Import .. 22-32
Migrating Data Across Partitions and Tables ... 22-33

Controlling Index Creation and Maintenance... 22-34

xxvii

Delaying Index Creation .. 22-34
Index Creation and Maintenance Controls ... 22-34

Example of Postponing Index Maintenance .. 22-34
Network Considerations .. 22-35
Character Set and Globalization Support Considerations.. 22-35

User Data .. 22-35
Effect of Character Set Sorting Order on Conversions ... 22-35

Data Definition Language (DDL) ... 22-36
Single-Byte Character Sets ... 22-36
Multibyte Character Sets.. 22-36

Using Instance Affinity.. 22-37
Considerations When Importing Database Objects... 22-37

Importing Object Identifiers .. 22-37
Importing Existing Object Tables and Tables That Contain Object Types 22-38
Importing Nested Tables.. 22-38
Importing REF Data.. 22-39
Importing BFILE Columns and Directory Aliases ... 22-39
Importing Foreign Function Libraries.. 22-39
Importing Stored Procedures, Functions, and Packages .. 22-40
Importing Java Objects ... 22-40
Importing External Tables ... 22-40
Importing Advanced Queue (AQ) Tables ... 22-40
Importing LONG Columns ... 22-40
Importing LOB Columns When Triggers Are Present .. 22-41
Importing Views.. 22-41
Importing Partitioned Tables .. 22-42

Support for Fine-Grained Access Control .. 22-42
Snapshots and Snapshot Logs .. 22-42

Snapshot Log ... 22-42
Snapshots.. 22-42

Importing a Snapshot .. 22-43
Importing a Snapshot into a Different Schema ... 22-43

Transportable Tablespaces .. 22-43
Storage Parameters .. 22-44

The OPTIMAL Parameter .. 22-44
Storage Parameters for OID Indexes and LOB Columns .. 22-44
Overriding Storage Parameters... 22-44

Read-Only Tablespaces.. 22-45
Dropping a Tablespace .. 22-45
Reorganizing Tablespaces ... 22-45
Importing Statistics... 22-46
Using Export and Import to Partition a Database Migration.. 22-46

Advantages of Partitioning a Migration .. 22-46
Disadvantages of Partitioning a Migration ... 22-47
How to Use Export and Import to Partition a Database Migration 22-47

Tuning Considerations for Import Operations ... 22-47
Changing System-Level Options .. 22-47

xxviii

Changing Initialization Parameters.. 22-48
Changing Import Options.. 22-48
Dealing with Large Amounts of LOB Data ... 22-48
Dealing with Large Amounts of LONG Data ... 22-49

Using Different Releases of Export and Import.. 22-49
Restrictions When Using Different Releases of Export and Import 22-49
Examples of Using Different Releases of Export and Import... 22-50

Part V Appendixes

A SQL*Loader Syntax Diagrams

Index

xxix

List of Examples

2–1 Performing a Table-Mode Export.. 2-52
2–2 Data-Only Unload of Selected Tables and Rows .. 2-53
2–3 Estimating Disk Space Needed in a Table-Mode Export ... 2-53
2–4 Performing a Schema Mode Export .. 2-53
2–5 Parallel Full Export .. 2-54
2–6 Stopping and Reattaching to a Job .. 2-54
3–1 Performing a Data-Only Table-Mode Import.. 3-58
3–2 Performing a Schema-Mode Import.. 3-58
3–3 Network-Mode Import of Schemas... 3-59
6–1 Performing a Simple Schema Export ... 6-4
6–2 Importing a Dump File and Remapping All Schema Objects .. 6-6
6–3 Using Exception Handling During a Simple Schema Export... 6-7
6–4 Displaying Dump File Information... 6-10
7–1 Loading Data in Fixed Record Format... 7-4
7–2 Loading Data in Variable Record Format ... 7-5
7–3 Loading Data in Stream Record Format .. 7-6
9–1 Sample Control File .. 9-2
9–2 Identifying XMLType Tables in the SQL*Loader Control File .. 9-5
9–3 CONTINUEIF THIS Without the PRESERVE Parameter .. 9-23
9–4 CONTINUEIF THIS with the PRESERVE Parameter .. 9-23
9–5 CONTINUEIF NEXT Without the PRESERVE Parameter ... 9-23
9–6 CONTINUEIF NEXT with the PRESERVE Parameter .. 9-24
10–1 Field List Section of Sample Control File ... 10-1
10–2 DEFAULTIF Clause Is Not Evaluated .. 10-29
10–3 DEFAULTIF Clause Is Evaluated .. 10-29
10–4 DEFAULTIF Clause Specifies a Position .. 10-29
10–5 DEFAULTIF Clause Specifies a Field Name.. 10-30
11–1 Loading Column Objects in Stream Record Format ... 11-2
11–2 Loading Column Objects in Variable Record Format .. 11-2
11–3 Loading Nested Column Objects... 11-3
11–4 Loading Column Objects with a Subtype... 11-3
11–5 Specifying Attribute Nulls Using the NULLIF Clause... 11-4
11–6 Loading Data Using Filler Fields ... 11-5
11–7 Loading a Column Object with Constructors That Match... 11-6
11–8 Loading a Column Object with Constructors That Do Not Match................................... 11-7
11–9 Using SQL to Load Column Objects When Constructors Do Not Match........................ 11-8
11–10 Loading an Object Table with Primary Key OIDs .. 11-9
11–11 Loading OIDs ... 11-9
11–12 Loading an Object Table with a Subtype.. 11-10
11–13 Loading System-Generated REF Columns... 11-12
11–14 Loading Primary Key REF Columns... 11-12
11–15 Loading LOB Data in Predetermined Size Fields.. 11-15
11–16 Loading LOB Data in Delimited Fields .. 11-16
11–17 Loading LOB Data in Length-Value Pair Fields.. 11-17
11–18 Loading LOB DATA with One LOB per LOBFILE... 11-18
11–19 Loading LOB Data Using Predetermined Size LOBs ... 11-19
11–20 Loading LOB Data Using Delimited LOBs .. 11-19
11–21 Loading LOB Data Using Length-Value Pair Specified LOBs .. 11-20
11–22 Loading Data Using BFILEs: Only File Name Specified Dynamically 11-22
11–23 Loading Data Using BFILEs: File Name and Directory Specified Dynamically 11-22
11–24 Loading a VARRAY and a Nested Table ... 11-23
11–25 Loading a Parent Table with User-Provided SIDs .. 11-26
11–26 Loading a Child Table with User-Provided SIDs.. 11-26
12–1 Setting the Date Format in the SQL*Loader Control File... 12-4

xxx

12–2 Setting an NLS_DATE_FORMAT Environment Variable ... 12-4
14–1 Specifying the PREPROCESSOR Clause .. 14-8
14–2 Using the PREPROCESSOR Clause with a Shell Script ... 14-8
20–1 Using the DBMS_METADATA Programmatic Interface to Retrieve Data 20-3
20–2 Using the DBMS_METADATA Browsing Interface to Retrieve Data 20-4
20–3 Retrieving Multiple Objects.. 20-5
20–4 Placing Conditions on Transforms.. 20-6
20–5 Modifying an XML Document... 20-7
20–6 Using Parse Items to Access Specific Metadata Attributes.. 20-8
20–7 Using the Submit Interface to Re-Create a Retrieved Object... 20-10
20–8 Retrieving Heterogeneous Object Types .. 20-13
20–9 Filtering the Return of Heterogeneous Object Types ... 20-14
20–10 Comparing Object Metadata .. 20-15

xxxi

List of Figures

7–1 SQL*Loader Overview ... 7-2
10–1 Example of Field Conversion .. 10-35
10–2 Relative Positioning After a Fixed Field .. 10-38
10–3 Relative Positioning After a Delimited Field .. 10-38
10–4 Relative Positioning After Enclosure Delimiters .. 10-38
10–5 Fields Terminated by Whitespace ... 10-39
10–6 Fields Terminated by Optional Enclosure Delimiters .. 10-39
12–1 Database Writes on SQL*Loader Direct Path and Conventional Path............................. 12-2
19–1 Sample LogMiner Database Configuration ... 19-3
19–2 Decision Tree for Choosing a LogMiner Dictionary... 19-6

xxxii

List of Tables

1–1 Data Pump Exit Codes ... 1-15
2–1 Supported Activities in Data Pump Export's Interactive-Command Mode 2-47
3–1 Valid Object Types For the Data Pump Import TRANSFORM Parameter 3-47
3–2 Supported Activities in Data Pump Import's Interactive-Command Mode.................. 3-54
4–1 How Data Pump Export Handles Original Export Parameters.. 4-2
4–2 How Data Pump Import Handles Original Import Parameters ... 4-4
6–1 Valid Job States in Which DBMS_DATAPUMP Procedures Can Be Executed 6-2
7–1 Case Studies and Their Related Files ... 7-15
8–1 Exit Codes for SQL*Loader.. 8-13
9–1 Parameters for the INFILE Keyword .. 9-7
9–2 Parameters for the CONTINUEIF Clause ... 9-22
9–3 Fixed-Length Fields .. 9-37
9–4 Nongraphic Fields... 9-37
9–5 Graphic Fields.. 9-37
9–6 Variable-Length Fields ... 9-37
10–1 Parameters for the Position Specification Clause... 10-2
10–2 Datatype Conversions for Datetime and Interval Datatypes ... 10-19
10–3 Parameters Used for Specifying Delimiters .. 10-20
10–4 Parameters for the Field Condition Clause ... 10-26
10–5 Behavior Summary for Trimming Whitespace... 10-36
10–6 Parameters Used for Column Specification .. 10-47
16–1 ADRCI Command Line Parameters for Batch Operation... 16-6
16–2 List of ADRCI commands.. 16-14
16–3 IPS Command Set ... 16-17
16–4 Arguments of IPS ADD command... 16-19
16–5 Arguments of IPS CREATE PACKAGE command ... 16-22
16–6 Arguments of IPS PACK command... 16-26
16–7 Arguments of IPS REMOVE command... 16-28
16–8 IPS Configuration Parameters... 16-31
16–9 Flags for the PURGE command .. 16-35
16–10 Flags for the SELECT command... 16-36
16–11 ADRCI Utility Functions for the SELECT Command ... 16-37
16–12 Flags for the SHOW ALERT command ... 16-47
16–13 Alert Fields for SHOW ALERT... 16-47
16–14 Fields for Health Monitor Runs .. 16-50
16–15 Flags for SHOW INCIDENT command... 16-53
16–16 Incident Fields for SHOW INCIDENT .. 16-53
16–17 Flags for SHOW PROBLEM command ... 16-56
16–18 Problem Fields for SHOW PROBLEM... 16-56
16–19 Arguments for SHOW TRACEFILE Command... 16-57
16–20 Flags for SHOW TRACEFILE Command.. 16-58
18–1 Parameters for the DBNEWID Utility.. 18-8
20–1 DBMS_METADATA Procedures Used for Retrieving Multiple Objects 20-28
20–2 DBMS_METADATA Procedures Used for the Browsing Interface 20-29
20–3 DBMS_METADATA Procedures and Functions for Submitting XML Data 20-29
20–4 DBMS_METADATA_DIFF Procedures and Functions .. 20-30
21–1 Objects Exported in Each Mode.. 21-6
21–2 Sequence of Events During Updates by Two Users .. 21-10
21–3 Maximum Size for Dump Files ... 21-12
21–4 Exit Codes for Export ... 21-27
21–5 Using Different Releases of Export and Import ... 21-37
22–1 Privileges Required to Import Objects into Your Own Schema....................................... 22-3
22–2 Privileges Required to Import Grants.. 22-4

xxxiii

22–3 Objects Imported in Each Mode ... 22-9
22–4 Exit Codes for Import ... 22-30
22–5 Using Different Releases of Export and Import ... 22-50

xxxiv

xxxv

Preface

This document describes how to use Oracle Database utilities for data transfer, data
maintenance, and database administration.

Audience
The utilities described in this book are intended for database administrators (DBAs),
application programmers, security administrators, system operators, and other Oracle
users who perform the following tasks:

■ Archive data, back up an Oracle database, or move data between Oracle databases
using the Export and Import utilities (both the original versions and the Data
Pump versions)

■ Load data into Oracle tables from operating system files using SQL*Loader, or
from external sources using the external tables feature

■ Perform a physical data structure integrity check on an offline database, using the
DBVERIFY utility

■ Maintain the internal database identifier (DBID) and the database name
(DBNAME) for an operational database, using the DBNEWID utility

■ Extract and manipulate complete representations of the metadata for database
objects, using the Metadata API

■ Query and analyze redo log files (through a SQL interface), using the LogMiner
utility

■ Use the Automatic Diagnostic Repository Command Interpreter (ADRCI) utility to
manage Oracle Database diagnostic data.

To use this manual, you need a working knowledge of SQL and of Oracle
fundamentals. You can find such information in Oracle Database Concepts. In addition,
to use SQL*Loader, you must know how to use the file management facilities of your
operating system.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or

xxxvi

visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documentation
For more information, see these Oracle resources:

The Oracle Database documentation set, especially:

■ Oracle Database Concepts

■ Oracle Database SQL Language Reference

■ Oracle Database Administrator's Guide

■ Oracle Database PL/SQL Packages and Types Reference

Oracle error message documentation is only available in HTML. If you only have
access to the Oracle Database Documentation CD, you can browse the error messages
by range. Once you find the specific range, use your browser's "find in page" feature to
locate the specific message. When connected to the Internet, you can search for a
specific error message using the error message search feature of the Oracle online
documentation.

To download free release notes, installation documentation, white papers, and other
collateral, visit the Oracle Technology Network (OTN). To use OTN, you must have a
username and password. If you do not already have these, you can register online for
free at

http://www.oracle.com/technology

Syntax Diagrams
Syntax descriptions are provided in this book for various SQL, PL/SQL, or other
command-line constructs in graphic form or Backus Naur Form (BNF). See Oracle
Database SQL Language Reference for information about how to interpret these
descriptions.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xxxvii

What's New in Database Utilities?

This section describes new features of the Oracle Database 11g utilities, and provides
pointers to additional information. For information about features that were
introduced in earlier releases of Oracle Database, refer to the documentation for those
releases.

Oracle Database 11g Release 2 (11.2.0.3) New Features in Oracle
Database Utilities

This section lists the major new and changed features in Oracle Database 11g release 2
(11.2.0.3).

■ Oracle LogMiner now supports XMLType data stored as binary XML.

■ Oracle LogMiner now supports XMLType data stored in object-relational format.

Support for both of these storage formats is available only on Oracle Database 11g
Release 2 (11.2.0.3) or higher with a redo compatibility setting of 11.2.0.3 or higher. See
"Supported Datatypes, Storage Attributes, and Database and Redo Log File Versions"
on page 19-67 for more information about Oracle LogMiner supported data types.

Oracle Database 11g Release 2 (11.2.0.2) New Features in Oracle
Database Utilities

This section lists the major new and changed features in Oracle Database 11g release 2
(11.2.0.2).

■ The Data Pump Import TRANSFORM parameter has a new transform named
SEGMENT_CREATION which allows you to alter the segment creation attributes for
the table(s) being loaded. See the Data Pump Import "TRANSFORM" parameter
on page 3-46 for more information.

■ The default size of the first extent of any new segment for a partitioned table is
now 8 MB instead of 64 KB. This helps improve performance of inserts and queries
on partitioned tables. Although partitioned tables will start with a larger initial
size, once sufficient data is inserted the space consumption will be the same as in
previous releases. You can override the default by setting the INITIAL size in the
storage clause for the table. This new default only applies to table partitions and
LOB partitions.

Oracle Database 11g Release 2 (11.2.0.1) New Features in Oracle

xxxviii

Database Utilities
This section lists the major new and changed features in Oracle Database 11g release 2
(11.2.0.1).

Data Pump Export and Data Pump Import
■ Data Pump provides a legacy mode in which you can use original Export and

Import parameters when performing Data Pump Export and Import operations.
See Chapter 4, "Data Pump Legacy Mode" for more information.

■ The restriction that in Tables mode all tables had to reside in the same schema has
been removed. You can now specify tables in multiple schemas.

■ The restriction that only one object (table or partition) could be specified if a
wildcard character, %, was used as part of the object name has been removed. You
can now specify multiple tables and partitions and use the wildcard character, %,
in all of them.

■ Data Pump worker processes can be distributed across Oracle Real Application
Clusters (Oracle RAC) instances, a subset of Oracle RAC instances, or confined to
the instance where the Data Pump job is started. It is also now possible to start
Data Pump jobs and run them on different Oracle RAC instances simultaneously.
See the Export CLUSTER parameter on page 2-10 and the Import CLUSTER
parameter on page 3-10.

■ Specific editions can be exported and imported. See the Export SOURCE_
EDITION parameter on page 2-39 and the Import TARGET_EDITION parameter
on page 3-46.

■ When performing an import operation, you can use the new DISABLE_APPEND_
HINT value on the DATA_OPTIONS parameter to specify that you do not want the
import operation to use the APPEND hint while loading the data object. See the
Import DATA_OPTIONS parameter on page 3-11.

External Tables
■ The ORACLE_LOADER access driver has been enhanced to allow the specification of a

user-supplied preprocessor program that reads data from a file that is not in a
format supported by the driver. See the PREPROCESSOR parameter on page 14-6.

Original Export
■ In Oracle Database 11g release 2 (11.2), the DEFERRED_SEGMENT_CREATION parameter

is set to TRUE by default. This means that any tables you create do not have any
segments until the first row of data is inserted into the table. Original Export
ignores tables without segments. Therefore, if you create any new tables and do
not insert any data before performing an export, those tables are not exported.
(Note that Data Pump Export does not have this limitation because it does not
ignore tables without segments.)

Other Utilities
■ A new PL/SQL package, DBMS_METADATA_DIFF, allows you to compare the

metadata for two SQL objects (tables, indexes, and so on) and get the following
information in return:

– An XML document showing the metadata for both objects, including the ways
they are the same and the ways they are different

– A set of ALTER statements to make one object like the other

xxxix

New Features in Oracle Database Utilities 11g Release 1
This section lists the major new features that have been added for Oracle Database 11g
release 1 (11.1).

Data Pump Export and Data Pump Import
For the Data Pump Export and Data Pump Import products, new features have been
added that allow you to do the following:

■ Compress both data and metadata, only data, only metadata, or no data during an
export. See the Export COMPRESSION parameter on page 2-11.

■ Specify additional encryption options in the following areas:

– You can choose to encrypt both data and metadata, only data, only metadata,
no data, or only encrypted columns during an export. See the Export
ENCRYPTION parameter on page 2-15.

– You can specify a specific encryption algorithm to use during an export. See
the Export ENCRYPTION_ALGORITHM parameter on page 2-16.

– You can specify the type of security to use for performing encryption and
decryption during an export. For example, perhaps the dump file set will be
imported into a different or remote database and it must remain secure in
transit. Or perhaps the dump file set will be imported on-site using the Oracle
encryption wallet but it may also need to be imported offsite where the
wallet is not available. See the Export ENCRYPTION_MODE parameter on
page 2-17.

■ Perform table mode exports and imports using the transportable method. For
information on using this feature during export, see the Export TRANSPORTABLE
parameter on page 2-45. For information on using this feature during import, see
the Import TRANSPORTABLE parameter on page 3-52.

■ Specify how partitioned tables should be handled during import operations. See
the Import PARTITION_OPTIONS parameter on page 3-29 for a description of this
parameter.

■ Overwrite existing dump files during an export operation. See the Export REUSE_
DUMPFILES parameter on page 2-36.

■ Rename tables during an import operation. See the Import REMAP_TABLE
parameter on page 3-35.

■ Specify that a data load should proceed even if non-deferred constraint violations
are encountered. This is valid only for import operations that use the external
tables access method. See the Import DATA_OPTIONS parameter on page 3-11.

■ Specify that XMLType columns are to be exported in uncompressed CLOB format
regardless of the XMLType storage format that was defined for them. See the
Export DATA_OPTIONS parameter on page 2-13.

■ During an export, specify a remap function that takes as a source the original
value of the designated column and returns a remapped value that will replace the
original value in the dump file. See the Export REMAP_DATA parameter on

See Also:

■ Oracle Database PL/SQL Packages and Types Reference for a
description of the DBMS_METADATA_DIFF API

■ Chapter 20, "Using the Metadata APIs"

xl

page 2-35.

■ During an import, remap data as it is being loaded into a new database. See the
Import REMAP_DATA parameter on page 3-31.

■ Automatic restart of workers on the same instance.

Additionally, Data Pump now performs a one-time automatic restart of workers (on
the same instance) that have stopped due to certain errors. For example, if someone
manually stops a process, the worker is automatically restarted one time, on the same
instance. If the process stops a second time, it must be manually restarted.

External Tables
For the External Tables functionality, the following new features have been added to
the ORACLE_DATAPUMP access driver:

■ Ability to compress data before it is written to the dump file set. See the external
tables COMPRESSION parameter on page 15-2.

■ Ability to encrypt data before it is written to the dump file set. See the external
tables ENCRYPTION parameter on page 15-3.

LogMiner Utility
LogMiner now provides the following additional support:

■ The LogMiner utility now supports XMLType data when it is stored in CLOB format.

See "Supported Datatypes and Table Storage Attributes" on page 19-67.

Automatic Diagnostic Repository Command Interpreter (ADRCI)
The Automatic Diagnostic Repository Command Interpreter (ADRCI) provides a way
for you to work with the diagnostic data contained in the Automatic Diagnostic
Repository (ADR). The ADR is a file-based repository for database diagnostic data,
such as traces, dumps, the alert log, health monitor reports, and more. It has a unified
directory structure across multiple instances and multiple products.

See Chapter 16, "ADRCI: ADR Command Interpreter" for more information.

Part I
Part I Oracle Data Pump

This part contains the following chapters:

■ Chapter 1, "Overview of Oracle Data Pump"

This chapter provides an overview of Oracle Data Pump technology, which
enables very high-speed movement of data and metadata from one database to
another.

■ Chapter 2, "Data Pump Export"

This chapter describes the Oracle Data Pump Export utility, which is used to
unload data and metadata into a set of operating system files called a dump file
set.

■ Chapter 3, "Data Pump Import"

This chapter describes the Oracle Data Pump Import utility, which is used to load
an export dump file set into a target system. It also describes how to perform a
network import to load a target database directly from a source database with no
intervening files.

■ Chapter 4, "Data Pump Legacy Mode"

This chapter describes Data Pump legacy mode, which lets you use original
Export and Import parameters on the Data Pump Export and Data Pump Import
command lines.

■ Chapter 5, "Data Pump Performance"

This chapter discusses why the performance of Data Pump Export and Import is
better than that of original Export and Import. It also suggests specific steps you
can take to enhance performance of export and import operations.

■ Chapter 6, "The Data Pump API"

This chapter describes how the Data Pump API, DBMS_DATAPUMP, works.

1

Overview of Oracle Data Pump 1-1

1 Overview of Oracle Data Pump

Oracle Data Pump technology enables very high-speed movement of data and
metadata from one database to another.

This chapter discusses the following topics:

■ Data Pump Components

■ How Does Data Pump Move Data?

■ Required Roles for Data Pump Export and Import Operations

■ What Happens During Execution of a Data Pump Job?

■ Monitoring Job Status

■ File Allocation

■ Moving Data Between Different Database Releases

■ SecureFiles LOB Considerations

■ Data Pump Exit Codes

Data Pump Components
Oracle Data Pump is made up of three distinct parts:

■ The command-line clients, expdp and impdp

■ The DBMS_DATAPUMP PL/SQL package (also known as the Data Pump API)

■ The DBMS_METADATA PL/SQL package (also known as the Metadata API)

The Data Pump clients, expdp and impdp, invoke the Data Pump Export utility and
Data Pump Import utility, respectively.

The expdp and impdp clients use the procedures provided in the DBMS_DATAPUMP
PL/SQL package to execute export and import commands, using the parameters
entered at the command line. These parameters enable the exporting and importing of
data and metadata for a complete database or for subsets of a database.

When metadata is moved, Data Pump uses functionality provided by the DBMS_
METADATA PL/SQL package. The DBMS_METADATA package provides a centralized facility
for the extraction, manipulation, and re-creation of dictionary metadata.

The DBMS_DATAPUMP and DBMS_METADATA PL/SQL packages can be used independently
of the Data Pump clients.

How Does Data Pump Move Data?

1-2 Oracle Database Utilities

How Does Data Pump Move Data?
For information about how Data Pump moves data in and out of databases, see the
following sections:

■ Using Data File Copying to Move Data

■ Using Direct Path to Move Data

■ Using External Tables to Move Data

■ Using Conventional Path to Move Data

■ Using Network Link Import to Move Data

The following sections briefly explain how and when each of these data movement
mechanisms is used.

Using Data File Copying to Move Data
The fastest method of moving data is to copy the database data files to the target
database without interpreting or altering the data. With this method, Data Pump
Export is used to unload only structural information (metadata) into the dump file.
This method is used in the following situations:

■ The TRANSPORT_TABLESPACES parameter is used to specify a transportable mode
export. Only metadata for the specified tablespaces is exported.

■ The TRANSPORTABLE=ALWAYS parameter is supplied on a table mode export
(specified with the TABLES parameter). Only metadata for the tables, partitions,
and subpartitions specified on the TABLES parameter is exported.

Note: All Data Pump Export and Import processing, including the
reading and writing of dump files, is done on the system (server)
selected by the specified database connect string. This means that for
unprivileged users, the database administrator (DBA) must create
directory objects for the Data Pump files that are read and written
on that server file system. (For security reasons, DBAs must ensure
that only approved users are allowed access to directory objects.) For
privileged users, a default directory object is available. See "Default
Locations for Dump, Log, and SQL Files" on page 1-10 for more
information about directory objects.

See Also:

■ Oracle Database PL/SQL Packages and Types Reference for
descriptions of the DBMS_DATAPUMP and DBMS_METADATA packages

■ Oracle Database SecureFiles and Large Objects Developer's Guide for
information about guidelines to consider when creating directory
objects

Note: Data Pump does not load tables with disabled unique indexes.
To load data into the table, the indexes must be either dropped or
reenabled.

How Does Data Pump Move Data?

Overview of Oracle Data Pump 1-3

When an export operation uses data file copying, the corresponding import job always
also uses data file copying. During the ensuing import operation, both the data files
and the export dump file must be loaded.

When data is moved by using data file copying, the character sets must be identical on
both the source and target databases.

In addition to copying the data, you may need to prepare it by using the Recovery
Manager (RMAN) CONVERT command to perform some data conversions. You can do
this at either the source or target database.

Using Direct Path to Move Data
After data file copying, direct path is the fastest method of moving data. In this
method, the SQL layer of the database is bypassed and rows are moved to and from
the dump file with only minimal interpretation. Data Pump automatically uses the
direct path method for loading and unloading data when the structure of a table
allows it. For example, if a table contains a column of type BFILE, then direct path
cannot be used to load that table and external tables is used instead.

The following sections describe situations in which direct path cannot be used for
loading and unloading:

■ Situations in Which Direct Path Load Is Not Used

■ Situations in Which Direct Path Unload Is Not Used

Situations in Which Direct Path Load Is Not Used
If any of the following conditions exist for a table, then Data Pump uses external tables
rather than direct path to load the data for that table:

■ A global index on multipartition tables exists during a single-partition load. This
includes object tables that are partitioned.

■ A domain index exists for a LOB column.

■ A table is in a cluster.

■ There is an active trigger on a preexisting table.

■ Fine-grained access control is enabled in insert mode on a preexisting table.

■ A table contains BFILE columns or columns of opaque types.

■ A referential integrity constraint is present on a preexisting table.

■ A table contains VARRAY columns with an embedded opaque type.

■ The table has encrypted columns.

■ The table into which data is being imported is a preexisting table and at least one
of the following conditions exists:

– There is an active trigger

– The table is partitioned

See Also:

■ Oracle Database Backup and Recovery Reference for information
about the RMAN CONVERT command

■ Oracle Database Administrator's Guide for a description and
example (including how to convert the data) of transporting
tablespaces between databases

How Does Data Pump Move Data?

1-4 Oracle Database Utilities

– Fine-grained access control is in insert mode

– A referential integrity constraint exists

– A unique index exists

■ Supplemental logging is enabled and the table has at least one LOB column.

■ The Data Pump command for the specified table used the QUERY, SAMPLE, or
REMAP_DATA parameter.

■ A table contains a column (including a VARRAY column) with a TIMESTAMP WITH
TIME ZONE datatype and the version of the time zone data file is different between
the export and import systems.

Situations in Which Direct Path Unload Is Not Used
If any of the following conditions exist for a table, then Data Pump uses the external
table method to unload data, rather than the direct path method:

■ Fine-grained access control for SELECT is enabled.

■ The table is a queue table.

■ The table contains one or more columns of type BFILE or opaque, or an object type
containing opaque columns.

■ The table contains encrypted columns.

■ The table contains a column of an evolved type that needs upgrading.

■ The table contains a column of type LONG or LONG RAW that is not last.

■ The Data Pump command for the specified table used the QUERY, SAMPLE, or
REMAP_DATA parameter.

Using External Tables to Move Data
When data file copying is not selected and the data cannot be moved using direct path,
the external table mechanism is used. The external table mechanism creates an external
table that maps to the dump file data for the database table. The SQL engine is then
used to move the data. If possible, the APPEND hint is used on import to speed the
copying of the data into the database. The representation of data for direct path data
and external table data is the same in a dump file. Therefore, Data Pump might use the
direct path mechanism at export time, but use external tables when the data is
imported into the target database. Similarly, Data Pump might use external tables for
the export, but use direct path for the import.

In particular, Data Pump uses external tables in the following situations:

■ Loading and unloading very large tables and partitions in situations where it is
advantageous to use parallel SQL capabilities

■ Loading tables with global or domain indexes defined on them, including
partitioned object tables

■ Loading tables with active triggers or clustered tables

■ Loading and unloading tables with encrypted columns

■ Loading tables with fine-grained access control enabled for inserts

■ Loading tables that are partitioned differently at load time and unload time

■ Loading a table not created by the import operation (the table exists before the
import starts)

How Does Data Pump Move Data?

Overview of Oracle Data Pump 1-5

Using Conventional Path to Move Data
In situations where there are conflicting table attributes, Data Pump is not able to load
data into a table using either direct path or external tables. In such cases, conventional
path is used, which can affect performance.

Using Network Link Import to Move Data
When the Import NETWORK_LINK parameter is used to specify a network link for an
import operation, SQL is directly used to move the data using an INSERT SELECT
statement. The SELECT clause retrieves the data from the remote database over the
network link. The INSERT clause uses SQL to insert the data into the target database.
There are no dump files involved.

When the Export NETWORK_LINK parameter is used to specify a network link for an
export operation, the data from the remote database is written to dump files on the
target database. (Note that to export from a read-only database, the NETWORK_LINK
parameter is required.)

Because the link can identify a remotely networked database, the terms database link
and network link are used interchangeably.

Because reading over a network is generally slower than reading from a disk, network
link is the slowest of the four access methods used by Data Pump and may be
undesirable for very large jobs.

Supported Link Types
The following types of database links are supported for use with Data Pump Export
and Import:

■ Public (both public and shared)

■ Fixed user

■ Connected user

Unsupported Link Types
The database link type, Current User, is not supported for use with Data Pump Export
or Import.

Note: When Data Pump uses external tables as the data access
mechanism, it uses the ORACLE_DATAPUMP access driver. However, it is
important to understand that the files that Data Pump creates when it
uses external tables are not compatible with files created when you
manually create an external table using the SQL CREATE TABLE ...
ORGANIZATION EXTERNAL statement.

See Also:

■ Chapter 15, "The ORACLE_DATAPUMP Access Driver"

■ Oracle Database SQL Language Reference for information about
using the APPEND hint

Required Roles for Data Pump Export and Import Operations

1-6 Oracle Database Utilities

Required Roles for Data Pump Export and Import Operations
Many Data Pump Export and Import operations require the user to have the
DATAPUMP_EXP_FULL_DATABASE role and/or the DATAPUMP_IMP_FULL_DATABASE role.
These roles are automatically defined for Oracle databases when you run the standard
scripts that are part of database creation. (Note that although the names of these roles
contain the word FULL, these roles are actually required for all export and import
modes, not only Full mode.)

The DATAPUMP_EXP_FULL_DATABASE role affects only export operations. The DATAPUMP_
IMP_FULL_DATABASE role affects import operations and operations that use the Import
SQLFILE parameter. These roles allow users performing exports and imports to do the
following:

■ Perform the operation outside the scope of their schema

■ Monitor jobs that were initiated by another user

■ Export objects (such as tablespace definitions) and import objects (such as
directory definitions) that unprivileged users cannot reference

These are powerful roles. Database administrators should use caution when granting
these roles to users.

Although the SYS schema does not have either of these roles assigned to it, all security
checks performed by Data Pump that require these roles also grant access to the SYS
schema.

What Happens During Execution of a Data Pump Job?
Data Pump jobs use a master table, a master process, and worker processes to perform
the work and keep track of progress.

Coordination of a Job
For every Data Pump Export job and Data Pump Import job, a master process is
created. The master process controls the entire job, including communicating with the
clients, creating and controlling a pool of worker processes, and performing logging
operations.

Tracking Progress Within a Job
While the data and metadata are being transferred, a master table is used to track the
progress within a job. The master table is implemented as a user table within the

See Also:

■ The Export NETWORK_LINK parameter on page 2-30 for
information about performing exports over a database link

■ The Import NETWORK_LINK parameter on page 3-24 for
information about performing imports over a database link

■ Oracle Database SQL Language Reference for information about
database links

See Also: Oracle Database Security Guide for more information about
predefined roles in an Oracle Database installation

What Happens During Execution of a Data Pump Job?

Overview of Oracle Data Pump 1-7

database. The specific function of the master table for export and import jobs is as
follows:

■ For export jobs, the master table records the location of database objects within a
dump file set. Export builds and maintains the master table for the duration of the
job. At the end of an export job, the content of the master table is written to a file in
the dump file set.

■ For import jobs, the master table is loaded from the dump file set and is used to
control the sequence of operations for locating objects that need to be imported
into the target database.

The master table is created in the schema of the current user performing the export or
import operation. Therefore, that user must have the CREATE TABLE system privilege
and a sufficient tablespace quota for creation of the master table. The name of the
master table is the same as the name of the job that created it. Therefore, you cannot
explicitly give a Data Pump job the same name as a preexisting table or view.

For all operations, the information in the master table is used to restart a job.

The master table is either retained or dropped, depending on the circumstances, as
follows:

■ Upon successful job completion, the master table is dropped.

■ If a job is stopped using the STOP_JOB interactive command, then the master table
is retained for use in restarting the job.

■ If a job is killed using the KILL_JOB interactive command, then the master table is
dropped and the job cannot be restarted.

■ If a job terminates unexpectedly, then the master table is retained. You can delete it
if you do not intend to restart the job.

■ If a job stops before it starts running (that is, before any database objects have been
copied), then the master table is dropped.

Filtering Data and Metadata During a Job
Within the master table, specific objects are assigned attributes such as name or
owning schema. Objects also belong to a class of objects (such as TABLE, INDEX, or
DIRECTORY). The class of an object is called its object type. You can use the EXCLUDE and
INCLUDE parameters to restrict the types of objects that are exported and imported. The
objects can be based upon the name of the object or the name of the schema that owns
the object. You can also specify data-specific filters to restrict the rows that are
exported and imported.

Transforming Metadata During a Job
When you are moving data from one database to another, it is often useful to perform
transformations on the metadata for remapping storage between tablespaces or
redefining the owner of a particular set of objects. This is done using the following

See Also: "JOB_NAME" on page 2-28 for more information about
how job names are formed

See Also:

■ "Filtering During Export Operations" on page 2-6

■ "Filtering During Import Operations" on page 3-5

What Happens During Execution of a Data Pump Job?

1-8 Oracle Database Utilities

Data Pump Import parameters: REMAP_DATAFILE, REMAP_SCHEMA, REMAP_TABLE,REMAP_
TABLESPACE, TRANSFORM, and PARTITION_OPTIONS.

Maximizing Job Performance
Data Pump can employ multiple worker processes, running in parallel, to increase job
performance. Use the PARALLEL parameter to set a degree of parallelism that takes
maximum advantage of current conditions. For example, to limit the effect of a job on
a production system, the database administrator (DBA) might want to restrict the
parallelism. The degree of parallelism can be reset at any time during a job. For
example, PARALLEL could be set to 2 during production hours to restrict a particular job
to only two degrees of parallelism, and during nonproduction hours it could be reset
to 8. The parallelism setting is enforced by the master process, which allocates work to
be executed to worker processes that perform the data and metadata processing within
an operation. These worker processes operate in parallel. In general, the degree of
parallelism should be set to no more than twice the number of CPUs on an instance.

Loading and Unloading of Data
The worker processes unload and load metadata and table data. During import they
also rebuild indexes. Some of these operations may be done in parallel: unloading and
loading table data, rebuilding indexes, and loading package bodies. Worker processes
are created as needed until the number of worker processes equals the value supplied
for the PARALLEL command-line parameter. The number of active worker processes can
be reset throughout the life of a job. Worker processes can be started on different nodes
in an Oracle Real Application Clusters (Oracle RAC) environment.

When a worker process is assigned the task of loading or unloading a very large table
or partition, it may choose to use the external tables access method to make maximum
use of parallel execution. In such a case, the worker process becomes a parallel
execution coordinator. The actual loading and unloading work is divided among some
number of parallel I/O execution processes (sometimes called slaves) allocated from a
pool of available processes in an Oracle RAC environment.

Note: The ability to adjust the degree of parallelism is available
only in the Enterprise Edition of Oracle Database.

See Also:

■ "Using PARALLEL During An Export In An Oracle RAC
Environment" on page 2-32

■ "Using PARALLEL During An Import In An Oracle RAC
Environment" on page 3-27

Note: The value of PARALLEL is restricted to 1 in the Standard
Edition of Oracle Database.

See Also:

■ The Export PARALLEL parameter on page 2-32

■ The Import PARALLEL parameter on page 3-26

Monitoring Job Status

Overview of Oracle Data Pump 1-9

Monitoring Job Status
The Data Pump Export and Import utilities can attach to a job in either logging mode
or interactive-command mode.

In logging mode, real-time detailed status about the job is automatically displayed
during job execution. The information displayed can include the job and parameter
descriptions, an estimate of the amount of data to be exported, a description of the
current operation or item being processed, files used during the job, any errors
encountered, and the final job state (Stopped or Completed).

In interactive-command mode, job status can be displayed on request. The information
displayed can include the job description and state, a description of the current
operation or item being processed, files being written, and a cumulative status.

A log file can also be optionally written during the execution of a job. The log file
summarizes the progress of the job, lists any errors that were encountered during
execution of the job, and records the completion status of the job.

 An alternative way to determine job status or to get other information about Data
Pump jobs, would be to query the DBA_DATAPUMP_JOBS, USER_DATAPUMP_JOBS, or DBA_
DATAPUMP_SESSIONS views. See Oracle Database Reference for descriptions of these
views.

Monitoring the Progress of Executing Jobs
Data Pump operations that transfer table data (export and import) maintain an entry
in the V$SESSION_LONGOPS dynamic performance view indicating the job progress (in
megabytes of table data transferred). The entry contains the estimated transfer size
and is periodically updated to reflect the actual amount of data transferred.

Use of the COMPRESSION, ENCRYPTION, ENCRYPTION_ALGORITHM, ENCRYPTION_MODE,
ENCRYPTION_PASSWORD, QUERY, and REMAP_DATA parameters are not reflected in the
determination of estimate values.

See Also:

■ The Export STATUS parameter on page 2-51 for information
about changing the frequency of the status display in
command-line Export

■ The Import STATUS parameter on page 3-41 for information
about changing the frequency of the status display in
command-line Import

See Also:

■ The interactive Export STATUS command on page 2-51

■ The interactive Import STATUS command on page 3-57

See Also:

■ The Export LOGFILE parameter on page 2-29 for information on
how to set the file specification for an export log file

■ The Import LOGFILE parameter on page 3-23 for information on
how to set the file specification for a import log file

File Allocation

1-10 Oracle Database Utilities

The usefulness of the estimate value for export operations depends on the type of
estimation requested when the operation was initiated, and it is updated as required if
exceeded by the actual transfer amount. The estimate value for import operations is
exact.

The V$SESSION_LONGOPS columns that are relevant to a Data Pump job are as follows:

■ USERNAME - job owner

■ OPNAME - job name

■ TARGET_DESC - job operation

■ SOFAR - megabytes transferred thus far during the job

■ TOTALWORK - estimated number of megabytes in the job

■ UNITS - megabytes (MB)

■ MESSAGE - a formatted status message of the form:

'job_name: operation_name : nnn out of mmm MB done'

File Allocation
Data Pump jobs manage the following types of files:

■ Dump files to contain the data and metadata that is being moved.

■ Log files to record the messages associated with an operation.

■ SQL files to record the output of a SQLFILE operation. A SQLFILE operation is
invoked using the Data Pump Import SQLFILE parameter and results in all the
SQL DDL that Import would be executing based on other parameters, being
written to a SQL file.

■ Files specified by the DATA_FILES parameter during a transportable import.

An understanding of how Data Pump allocates and handles these files will help you to
use Export and Import to their fullest advantage.

Specifying Files and Adding Additional Dump Files
For export operations, you can specify dump files at the time the job is defined, and
also at a later time during the operation. For example, if you discover that space is
running low during an export operation, then you can add additional dump files by
using the Data Pump Export ADD_FILE command in interactive mode.

For import operations, all dump files must be specified at the time the job is defined.

Log files and SQL files overwrite previously existing files. For dump files, you can use
the Export REUSE_DUMPFILES parameter to specify whether to overwrite a preexisting
dump file.

Default Locations for Dump, Log, and SQL Files
Because Data Pump is server-based rather than client-based, dump files, log files, and
SQL files are accessed relative to server-based directory paths. Data Pump requires
that directory paths be specified as directory objects. A directory object maps a name
to a directory path on the file system. DBAs must ensure that only approved users are
allowed access to the directory object associated with the directory path.

The following example shows a SQL statement that creates a directory object named
dpump_dir1 that is mapped to a directory located at /usr/apps/datafiles.

File Allocation

Overview of Oracle Data Pump 1-11

SQL> CREATE DIRECTORY dpump_dir1 AS '/usr/apps/datafiles';

The reason that a directory object is required is to ensure data security and integrity.
For example:

■ If you were allowed to specify a directory path location for an input file, then you
might be able to read data that the server has access to, but to which you should
not.

■ If you were allowed to specify a directory path location for an output file, then the
server might overwrite a file that you might not normally have privileges to
delete.

On UNIX and Windows NT systems, a default directory object, DATA_PUMP_DIR, is
created at database creation or whenever the database dictionary is upgraded. By
default, it is available only to privileged users. (The user SYSTEM has read and write
access to the DATA_PUMP_DIR directory, by default.)

If you are not a privileged user, then before you can run Data Pump Export or Data
Pump Import, a directory object must be created by a database administrator (DBA) or
by any user with the CREATE ANY DIRECTORY privilege.

After a directory is created, the user creating the directory object must grant READ or
WRITE permission on the directory to other users. For example, to allow the Oracle
database to read and write files on behalf of user hr in the directory named by dpump_
dir1, the DBA must execute the following command:

SQL> GRANT READ, WRITE ON DIRECTORY dpump_dir1 TO hr;

Note that READ or WRITE permission to a directory object only means that the Oracle
database reads or writes that file on your behalf. You are not given direct access to
those files outside of the Oracle database unless you have the appropriate operating
system privileges. Similarly, the Oracle database requires permission from the
operating system to read and write files in the directories.

Data Pump Export and Import use the following order of precedence to determine a
file's location:

1. If a directory object is specified as part of the file specification, then the location
specified by that directory object is used. (The directory object must be separated
from the file name by a colon.)

2. If a directory object is not specified as part of the file specification, then the
directory object named by the DIRECTORY parameter is used.

3. If a directory object is not specified as part of the file specification, and if no
directory object is named by the DIRECTORY parameter, then the value of the
environment variable, DATA_PUMP_DIR, is used. This environment variable is
defined using operating system commands on the client system where the Data
Pump Export and Import utilities are run. The value assigned to this client-based
environment variable must be the name of a server-based directory object, which
must first be created on the server system by a DBA. For example, the following
SQL statement creates a directory object on the server system. The name of the
directory object is DUMP_FILES1, and it is located at '/usr/apps/dumpfiles1'.

SQL> CREATE DIRECTORY DUMP_FILES1 AS '/usr/apps/dumpfiles1';

Then, a user on a UNIX-based client system using csh can assign the value DUMP_
FILES1 to the environment variable DATA_PUMP_DIR. The DIRECTORY parameter can
then be omitted from the command line. The dump file employees.dmp, and the
log file export.log, are written to '/usr/apps/dumpfiles1'.

File Allocation

1-12 Oracle Database Utilities

%setenv DATA_PUMP_DIR DUMP_FILES1
%expdp hr TABLES=employees DUMPFILE=employees.dmp

4. If none of the previous three conditions yields a directory object and you are a
privileged user, then Data Pump attempts to use the value of the default
server-based directory object, DATA_PUMP_DIR. This directory object is
automatically created at database creation or when the database dictionary is
upgraded. You can use the following SQL query to see the path definition for
DATA_PUMP_DIR:

SQL> SELECT directory_name, directory_path FROM dba_directories
2 WHERE directory_name='DATA_PUMP_DIR';

If you are not a privileged user, then access to the DATA_PUMP_DIR directory object
must have previously been granted to you by a DBA.

Do not confuse the default DATA_PUMP_DIR directory object with the client-based
environment variable of the same name.

Oracle RAC Considerations
Keep the following considerations in mind when working in an Oracle RAC
environment.

■ To use Data Pump or external tables in an Oracle RAC configuration, you must
ensure that the directory object path is on a cluster-wide file system.

The directory object must point to shared physical storage that is visible to, and
accessible from, all instances where Data Pump and/or external tables processes
may run.

■ The default Data Pump behavior is that worker processes can run on any instance
in an Oracle RAC configuration. Therefore, workers on those Oracle RAC
instances must have physical access to the location defined by the directory object,
such as shared storage media. If the configuration does not have shared storage for
this purpose, but you still require parallelism, then you can use the CLUSTER=no
parameter to constrain all worker processes to the instance where the Data Pump
job was started.

■ Under certain circumstances, Data Pump uses parallel query slaves to load or
unload data. In an Oracle RAC environment, Data Pump does not control where
these slaves run, and they may run on other instances in the Oracle RAC,
regardless of what is specified for CLUSTER and SERVICE_NAME for the Data Pump
job. Controls for parallel query operations are independent of Data Pump. When
parallel query slaves run on other instances as part of a Data Pump job, they also
require access to the physical storage of the dump file set.

Using Directory Objects When Oracle Automatic Storage Management Is Enabled
If you use Data Pump Export or Import with Oracle Automatic Storage Management
(Oracle ASM) enabled, then you must define the directory object used for the dump
file so that the Oracle ASM disk group name is used (instead of an operating system
directory path). A separate directory object, which points to an operating system
directory path, should be used for the log file. For example, you would create a
directory object for the Oracle ASM dump file as follows:

SQL> CREATE or REPLACE DIRECTORY dpump_dir as '+DATAFILES/';

Then you would create a separate directory object for the log file:

SQL> CREATE or REPLACE DIRECTORY dpump_log as '/homedir/user1/';

Moving Data Between Different Database Releases

Overview of Oracle Data Pump 1-13

To enable user hr to have access to these directory objects, you would assign the
necessary privileges, for example:

SQL> GRANT READ, WRITE ON DIRECTORY dpump_dir TO hr;
SQL> GRANT READ, WRITE ON DIRECTORY dpump_log TO hr;

You would then use the following Data Pump Export command (you will be
prompted for a password):

> expdp hr DIRECTORY=dpump_dir DUMPFILE=hr.dmp LOGFILE=dpump_log:hr.log

Using Substitution Variables
Instead of, or in addition to, listing specific file names, you can use the DUMPFILE
parameter during export operations to specify multiple dump files, by using a
substitution variable (%U) in the file name. This is called a dump file template. The new
dump files are created as they are needed, beginning with 01 for %U, then using 02, 03,
and so on. Enough dump files are created to allow all processes specified by the
current setting of the PARALLEL parameter to be active. If one of the dump files
becomes full because its size has reached the maximum size specified by the FILESIZE
parameter, then it is closed and a new dump file (with a new generated name) is
created to take its place.

If multiple dump file templates are provided, they are used to generate dump files in a
round-robin fashion. For example, if expa%U, expb%U, and expc%U were all specified for
a job having a parallelism of 6, then the initial dump files created would be
expa01.dmp, expb01.dmp, expc01.dmp, expa02.dmp, expb02.dmp, and expc02.dmp.

For import and SQLFILE operations, if dump file specifications expa%U, expb%U, and
expc%U are specified, then the operation begins by attempting to open the dump files
expa01.dmp, expb01.dmp, and expc01.dmp. It is possible for the master table to span
multiple dump files, so until all pieces of the master table are found, dump files
continue to be opened by incrementing the substitution variable and looking up the
new file names (for example, expa02.dmp, expb02.dmp, and expc02.dmp). If a dump file
does not exist, then the operation stops incrementing the substitution variable for the
dump file specification that was in error. For example, if expb01.dmp and expb02.dmp
are found but expb03.dmp is not found, then no more files are searched for using the
expb%U specification. Once the entire master table is found, it is used to determine
whether all dump files in the dump file set have been located.

Moving Data Between Different Database Releases
Because most Data Pump operations are performed on the server side, if you are using
any release of the database other than COMPATIBLE, then you must provide the server
with the specific release information. Otherwise, errors may occur. To specify release
information, use the VERSION parameter.

See Also:

■ The Export DIRECTORY parameter on page 2-13

■ The Import DIRECTORY parameter on page 3-12

■ Oracle Database SQL Language Reference for information about
the CREATE DIRECTORY command

■ Oracle Automatic Storage Management Administrator's Guide for
more information about Oracle ASM

SecureFiles LOB Considerations

1-14 Oracle Database Utilities

Keep the following information in mind when you are using Data Pump Export and
Import to move data between different database releases:

■ If you specify a database release that is older than the current database release,
then certain features may be unavailable. For example, specifying VERSION=10.1
causes an error if data compression is also specified for the job because
compression was not supported in Oracle Database 10g release 1 (10.1).

■ On a Data Pump export, if you specify a database release that is older than the
current database release, then a dump file set is created that you can import into
that older release of the database. However, the dump file set does not contain any
objects that the older database release does not support.

■ Data Pump Import can always read dump file sets created by older releases of the
database.

■ Data Pump Import cannot read dump file sets created by a database release that is
newer than the current database release, unless those dump file sets were created
with the VERSION parameter set to the release of the target database. Therefore, the
best way to perform a downgrade is to perform your Data Pump export with the
VERSION parameter set to the release of the target database.

■ When operating across a network link, Data Pump requires that the source and
target databases differ by no more than one version. For example, if one database
is Oracle Database 11g, then the other database must be either 11g or 10g. Note that
Data Pump checks only the major version number (for example, 10g and 11g), not
specific release numbers (for example, 10.1, 10.2, 11.1, or 11.2).

SecureFiles LOB Considerations
When you use Data Pump Export to export SecureFiles LOBs, the resulting behavior
depends on several things, including the value of the Export VERSION parameter,
whether ContentType is present, and whether the LOB is archived and data is cached.
The following scenarios cover different combinations of these variables:

■ If a table contains SecureFiles LOBs with ContentType and the Export VERSION
parameter is set to a value earlier than 11.2.0.0.0, then the ContentType is not
exported.

■ If a table contains SecureFiles LOBs with ContentType and the Export VERSION
parameter is set to a value of 11.2.0.0.0 or later, then the ContentType is
exported and restored on a subsequent import.

■ If a table contains a SecureFiles LOB that is currently archived and the data is
cached, and the Export VERSION parameter is set to a value earlier than
11.2.0.0.0, then the SecureFiles LOB data is exported and the archive metadata is
dropped. In this scenario, if VERSION is set to 11.1 or later, then the SecureFiles
LOB becomes a vanilla SecureFiles LOB. But if VERSION is set to a value earlier
than 11.1, then the SecureFiles LOB becomes a BasicFiles LOB.

■ If a table contains a SecureFiles LOB that is currently archived but the data is not
cached, and the Export VERSION parameter is set to a value earlier than
11.2.0.0.0, then an ORA-45001 error is returned.

See Also:

■ The Export VERSION parameter on page 2-46

■ The Import VERSION parameter on page 3-53

Data Pump Exit Codes

Overview of Oracle Data Pump 1-15

■ If a table contains a SecureFiles LOB that is currently archived and the data is
cached, and the Export VERSION parameter is set to a value of 11.2.0.0.0 or later,
then both the cached data and the archive metadata is exported.

Data Pump Exit Codes
Oracle Data Pump provides the results of export and import operations immediately
upon completion. In addition to recording the results in a log file, Data Pump may also
report the outcome in a process exit code. This allows you to check the outcome of a
Data Pump job from the command line or a script.

Table 1–1 describes the Data Pump exit codes for Unix and Windows NT.

See Also: Oracle Database SecureFiles and Large Objects Developer's
Guide for more information about SecureFiles

Table 1–1 Data Pump Exit Codes

Exit Code Meaning

EX_SUCC 0 The export or import job completed successfully. No errors are displayed to the
output device or recorded in the log file, if there is one.

EX_SUCC_ERR 5 The export or import job completed successfully but there were errors encountered
during the job. The errors are displayed to the output device and recorded in the log
file, if there is one.

EX_FAIL 1 The export or import job encountered one or more fatal errors, including the
following:

■ Errors on the command line or in command syntax

■ Oracle database errors from which export or import cannot recover

■ Operating system errors (such as malloc)

■ Invalid parameter values that prevent the job from starting (for example, an
invalid directory object specified in the DIRECTORY parameter)

A fatal error is displayed to the output device but may not be recorded in the log file.
Whether it is recorded in the log file can depend on several factors, including:

■ Was a log file specified at the start of the job?

■ Did the processing of the job proceed far enough for a log file to be opened?

Data Pump Exit Codes

1-16 Oracle Database Utilities

2

Data Pump Export 2-1

2 Data Pump Export

This chapter describes the Oracle Data Pump Export utility (expdp). The following
topics are discussed:

■ What Is Data Pump Export?

■ Invoking Data Pump Export

■ Filtering During Export Operations

■ Parameters Available in Export's Command-Line Mode

■ Commands Available in Export's Interactive-Command Mode

■ Examples of Using Data Pump Export

■ Syntax Diagrams for Data Pump Export

What Is Data Pump Export?
Data Pump Export (hereinafter referred to as Export for ease of reading) is a utility for
unloading data and metadata into a set of operating system files called a dump file set.
The dump file set can be imported only by the Data Pump Import utility. The dump
file set can be imported on the same system or it can be moved to another system and
loaded there.

The dump file set is made up of one or more disk files that contain table data, database
object metadata, and control information. The files are written in a proprietary, binary
format. During an import operation, the Data Pump Import utility uses these files to
locate each database object in the dump file set.

Because the dump files are written by the server, rather than by the client, the database
administrator (DBA) must create directory objects that define the server locations to
which files are written. See "Default Locations for Dump, Log, and SQL Files" on
page 1-10 for more information about directory objects.

Data Pump Export enables you to specify that a job should move a subset of the data
and metadata, as determined by the export mode. This is done using data filters and
metadata filters, which are specified through Export parameters. See "Filtering During
Export Operations" on page 2-6.

To see some examples of the various ways in which you can use Data Pump Export,
refer to "Examples of Using Data Pump Export" on page 2-52.

Invoking Data Pump Export

2-2 Oracle Database Utilities

Invoking Data Pump Export
The Data Pump Export utility is invoked using the expdp command. The
characteristics of the export operation are determined by the Export parameters you
specify. These parameters can be specified either on the command line or in a
parameter file.

The following sections contain more information about invoking Export:

■ "Data Pump Export Interfaces" on page 2-2

■ "Data Pump Export Modes" on page 2-2

■ "Network Considerations" on page 2-5

Data Pump Export Interfaces
You can interact with Data Pump Export by using a command line, a parameter file, or
an interactive-command mode.

■ Command-Line Interface: Enables you to specify most of the Export parameters
directly on the command line. For a complete description of the parameters
available in the command-line interface, see "Parameters Available in Export's
Command-Line Mode" on page 2-7.

■ Parameter File Interface: Enables you to specify command-line parameters in a
parameter file. The only exception is the PARFILE parameter, because parameter
files cannot be nested. The use of parameter files is recommended if you are using
parameters whose values require quotation marks. See "Use of Quotation Marks
On the Data Pump Command Line" on page 2-7.

■ Interactive-Command Interface: Stops logging to the terminal and displays the
Export prompt, from which you can enter various commands, some of which are
specific to interactive-command mode. This mode is enabled by pressing Ctrl+C
during an export operation started with the command-line interface or the
parameter file interface. Interactive-command mode is also enabled when you
attach to an executing or stopped job.

For a complete description of the commands available in interactive-command
mode, see "Commands Available in Export's Interactive-Command Mode" on
page 2-47.

Data Pump Export Modes
Export provides different modes for unloading different portions of the database. The
mode is specified on the command line, using the appropriate parameter. The
available modes are described in the following sections:

■ "Full Export Mode" on page 2-3

■ "Schema Mode" on page 2-3

■ "Table Mode" on page 2-3

■ "Tablespace Mode" on page 2-4

Note: Do not invoke Export as SYSDBA, except at the request of
Oracle technical support. SYSDBA is used internally and has
specialized functions; its behavior is not the same as for general
users.

Invoking Data Pump Export

Data Pump Export 2-3

■ "Transportable Tablespace Mode" on page 2-4

Full Export Mode
A full export is specified using the FULL parameter. In a full database export, the entire
database is unloaded. This mode requires that you have the DATAPUMP_EXP_FULL_
DATABASE role.

Schema Mode
A schema export is specified using the SCHEMAS parameter. This is the default export
mode. If you have the DATAPUMP_EXP_FULL_DATABASE role, then you can specify a list of
schemas, optionally including the schema definitions themselves and also system
privilege grants to those schemas. If you do not have the DATAPUMP_EXP_FULL_
DATABASE role, then you can export only your own schema.

The SYS schema cannot be used as a source schema for export jobs.

Cross-schema references are not exported unless the referenced schema is also
specified in the list of schemas to be exported. For example, a trigger defined on a
table within one of the specified schemas, but that resides in a schema not explicitly
specified, is not exported. This is also true for external type definitions upon which
tables in the specified schemas depend. In such a case, it is expected that the type
definitions already exist in the target instance at import time.

Table Mode
A table mode export is specified using the TABLES parameter. In table mode, only a
specified set of tables, partitions, and their dependent objects are unloaded.

If you specify the TRANSPORTABLE=ALWAYS parameter with the TABLES parameter, then
only object metadata is unloaded. To move the actual data, you copy the data files to
the target database. This results in quicker export times. If you are moving data files
between releases or platforms, then the data files may need to be processed by Oracle
Recovery Manager (RMAN).

You must have the DATAPUMP_EXP_FULL_DATABASE role to specify tables that are not in
your own schema. Note that type definitions for columns are not exported in table
mode. It is expected that the type definitions already exist in the target instance at
import time. Also, as in schema exports, cross-schema references are not exported.

Note: Several system schemas cannot be exported because they are
not user schemas; they contain Oracle-managed data and metadata.
Examples of system schemas that are not exported include SYS,
ORDSYS, and MDSYS.

See Also: "Examples of Using Data Pump Export" on page 2-52

See Also: "FULL" on page 2-25 for a description of the Export
FULL parameter

See Also: "SCHEMAS" on page 2-37 for a description of the
Export SCHEMAS parameter

See Also: Oracle Database Backup and Recovery User's Guide for more
information on transporting data across platforms

Invoking Data Pump Export

2-4 Oracle Database Utilities

Tablespace Mode
A tablespace export is specified using the TABLESPACES parameter. In tablespace mode,
only the tables contained in a specified set of tablespaces are unloaded. If a table is
unloaded, then its dependent objects are also unloaded. Both object metadata and data
are unloaded. In tablespace mode, if any part of a table resides in the specified set,
then that table and all of its dependent objects are exported. Privileged users get all
tables. Unprivileged users get only the tables in their own schemas.

Transportable Tablespace Mode
A transportable tablespace export is specified using the TRANSPORT_TABLESPACES
parameter. In transportable tablespace mode, only the metadata for the tables (and
their dependent objects) within a specified set of tablespaces is exported. The
tablespace data files are copied in a separate operation. Then, a transportable
tablespace import is performed to import the dump file containing the metadata and
to specify the data files to use.

Transportable tablespace mode requires that the specified tables be completely
self-contained. That is, all storage segments of all tables (and their indexes) defined
within the tablespace set must also be contained within the set. If there are
self-containment violations, then Export identifies all of the problems without actually
performing the export.

Transportable tablespace exports cannot be restarted once stopped. Also, they cannot
have a degree of parallelism greater than 1.

Encrypted columns are not supported in transportable tablespace mode.

Considerations for Time Zone File Versions in Transportable Tablespace Mode
Jobs performed in transportable tablespace mode have the following requirements
concerning time zone file versions:

■ If the source is Oracle Database 11g release 2 (11.2.0.2) or later and there are tables
in the transportable set that use TIMESTAMP WITH TIMEZONE (TSTZ) columns,
then the time zone file version on the target database must exactly match the time
zone file version on the source database.

■ If the source is earlier than Oracle Database 11g release 2 (11.2.0.2), then the time
zone file version must be the same on the source and target database for all
transportable jobs regardless of whether the transportable set uses TSTZ columns.

See Also:

■ "TABLES" on page 2-40 for a description of the Export TABLES
parameter

■ "TRANSPORTABLE" on page 2-45 for a description of the
Export TRANSPORTABLE parameter

See Also:

■ "TABLESPACES" on page 2-42 for a description of the Export
TABLESPACES parameter

Note: You cannot export transportable tablespaces and then import
them into a database at a lower release level. The target database must
be at the same or higher release level as the source database.

Invoking Data Pump Export

Data Pump Export 2-5

If these requirements are not met, then the import job aborts before anything is
imported. This is because if the import job were allowed to import the objects, there
might be inconsistent results when tables with TSTZ columns were read.

To identify the time zone file version of a database, you can execute the following SQL
statement:

SQL> SELECT VERSION FROM V$TIMEZONE_FILE;

Network Considerations
You can specify a connect identifier in the connect string when you invoke the Data
Pump Export utility. This identifier can specify a database instance that is different
from the current instance identified by the current Oracle System ID (SID). The
connect identifier can be an Oracle*Net connect descriptor or a net service name
(usually defined in the tnsnames.ora file) that maps to a connect descriptor. Use of a
connect identifier requires that you have Oracle Net Listener running (to start the
default listener, enter lsnrctl start). The following is an example of this type of
connection, in which inst1 is the connect identifier:

expdp hr@inst1 DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp TABLES=employees

Export then prompts you for a password:

Password: password

The local Export client connects to the database instance defined by the connect
identifier inst1 (a net service name), retrieves data from inst1, and writes it to the
dump file hr.dmp on inst1.

Specifying a connect identifier when you invoke the Export utility is different from
performing an export operation using the NETWORK_LINK parameter. When you start an
export operation and specify a connect identifier, the local Export client connects to the
database instance identified by the connect identifier, retrieves data from that database
instance, and writes it to a dump file set on that database instance. Whereas, when you
perform an export using the NETWORK_LINK parameter, the export is performed using a
database link. (A database link is a connection between two physical database servers
that allows a client to access them as one logical database.)

See Also:

■ "TRANSPORT_FULL_CHECK" on page 2-43

■ "TRANSPORT_TABLESPACES" on page 2-44

■ Oracle Database Administrator's Guide for more information
about transportable tablespaces

■ Oracle Database Globalization Support Guide for more information
about time zone file versions

See Also:

■ "NETWORK_LINK" on page 2-30

■ Oracle Database Administrator's Guide for more information
about database links

■ Oracle Database Net Services Administrator's Guide for more
information about connect identifiers and Oracle Net Listener

■ Oracle Database Heterogeneous Connectivity User's Guide

Filtering During Export Operations

2-6 Oracle Database Utilities

Filtering During Export Operations
Data Pump Export provides data and metadata filtering capability to help you limit
the type of information that is exported.

Data Filters
Data specific filtering is implemented through the QUERY and SAMPLE parameters,
which specify restrictions on the table rows that are to be exported.

Data filtering can also occur indirectly because of metadata filtering, which can
include or exclude table objects along with any associated row data.

Each data filter can be specified once per table within a job. If different filters using the
same name are applied to both a particular table and to the whole job, then the filter
parameter supplied for the specific table takes precedence.

Metadata Filters
Metadata filtering is implemented through the EXCLUDE and INCLUDE parameters. The
EXCLUDE and INCLUDE parameters are mutually exclusive.

Metadata filters identify a set of objects to be included or excluded from an Export or
Import operation. For example, you could request a full export, but without Package
Specifications or Package Bodies.

To use filters correctly and to get the results you expect, remember that dependent
objects of an identified object are processed along with the identified object. For example, if a
filter specifies that an index is to be included in an operation, then statistics from that
index will also be included. Likewise, if a table is excluded by a filter, then indexes,
constraints, grants, and triggers upon the table will also be excluded by the filter.

If multiple filters are specified for an object type, then an implicit AND operation is
applied to them. That is, objects pertaining to the job must pass all of the filters applied
to their object types.

The same metadata filter name can be specified multiple times within a job.

To see a list of valid object types, query the following views: DATABASE_EXPORT_
OBJECTS for full mode, SCHEMA_EXPORT_OBJECTS for schema mode, and TABLE_EXPORT_
OBJECTS for table and tablespace mode. The values listed in the OBJECT_PATH column
are the valid object types. For example, you could perform the following query:

SQL> SELECT OBJECT_PATH, COMMENTS FROM SCHEMA_EXPORT_OBJECTS
 2 WHERE OBJECT_PATH LIKE '%GRANT' AND OBJECT_PATH NOT LIKE '%/%';

The output of this query looks similar to the following:

OBJECT_PATH
--
COMMENTS
--
GRANT
Object grants on the selected tables

OBJECT_GRANT
Object grants on the selected tables

PROCDEPOBJ_GRANT
Grants on instance procedural objects

Parameters Available in Export's Command-Line Mode

Data Pump Export 2-7

PROCOBJ_GRANT
Schema procedural object grants in the selected schemas

ROLE_GRANT
Role grants to users associated with the selected schemas

SYSTEM_GRANT
System privileges granted to users associated with the selected schemas

Parameters Available in Export's Command-Line Mode
This section describes the parameters available in the command-line mode of Data
Pump Export. Be sure to read the following sections before using the Export
parameters:

■ "Specifying Export Parameters" on page 2-7

■ "Use of Quotation Marks On the Data Pump Command Line" on page 2-7

 Many of the parameter descriptions include an example of how to use the parameter.
For background information on setting up the necessary environment to run the
examples, see:

■ "Using the Export Parameter Examples" on page 2-8

Specifying Export Parameters
For parameters that can have multiple values specified, the values can be separated by
commas or by spaces. For example, you could specify TABLES=employees,jobs or
TABLES=employees jobs.

For every parameter you enter, you must enter an equal sign (=) and a value. Data
Pump has no other way of knowing that the previous parameter specification is
complete and a new parameter specification is beginning. For example, in the
following command line, even though NOLOGFILE is a valid parameter, it would be
interpreted as another dumpfile name for the DUMPFILE parameter:

expdp DIRECTORY=dpumpdir DUMPFILE=test.dmp NOLOGFILE TABLES=employees

This would result in two dump files being created, test.dmp and nologfile.dmp.

To avoid this, specify either NOLOGFILE=YES or NOLOGFILE=NO.

Use of Quotation Marks On the Data Pump Command Line
Some operating systems treat quotation marks as special characters and will therefore
not pass them to an application unless they are preceded by an escape character, such
as the backslash (\). This is true both on the command line and within parameter files.
Some operating systems may require an additional set of single or double quotation
marks on the command line around the entire parameter value containing the special
characters.

The following examples are provided to illustrate these concepts. Be aware that they
may not apply to your particular operating system and that this documentation cannot
anticipate the operating environments unique to each user.

Suppose you specify the TABLES parameter in a parameter file, as follows:

TABLES = \"MixedCaseTableName\"

See Also: "EXCLUDE" on page 2-21 and "INCLUDE" on
page 2-26

Parameters Available in Export's Command-Line Mode

2-8 Oracle Database Utilities

If you were to specify that on the command line, some operating systems would
require that it be surrounded by single quotation marks, as follows:

TABLES = '\"MixedCaseTableName\"'

To avoid having to supply additional quotation marks on the command line, Oracle
recommends the use of parameter files. Also, note that if you use a parameter file and
the parameter value being specified does not have quotation marks as the first
character in the string (for example, TABLES=scott."EmP"), then the use of escape
characters may not be necessary on some systems.

Using the Export Parameter Examples
If you try running the examples that are provided for each parameter, be aware of the
following:

■ After you enter the username and parameters as shown in the example, Export is
started and you are prompted for a password. You must enter the password before
a database connection is made.

■ Most of the examples use the sample schemas of the seed database, which is
installed by default when you install Oracle Database. In particular, the human
resources (hr) schema is often used.

■ The examples assume that the directory objects, dpump_dir1 and dpump_dir2,
already exist and that READ and WRITE privileges have been granted to the hr user
for these directory objects. See "Default Locations for Dump, Log, and SQL Files"
on page 1-10 for information about creating directory objects and assigning
privileges to them.

■ Some of the examples require the DATAPUMP_EXP_FULL_DATABASE and DATAPUMP_
IMP_FULL_DATABASE roles. The examples assume that the hr user has been granted
these roles.

If necessary, ask your DBA for help in creating these directory objects and assigning
the necessary privileges and roles.

Syntax diagrams of these parameters are provided in "Syntax Diagrams for Data Pump
Export" on page 2-54.

Unless specifically noted, these parameters can also be specified in a parameter file.

ABORT_STEP
Default: Null

See Also:

■ The Export "PARFILE" parameter on page 2-33

■ "Default Locations for Dump, Log, and SQL Files" on page 1-10
for information about creating default directory objects

■ "Examples of Using Data Pump Export" on page 2-52

■ Your Oracle operating system-specific documentation for
information about how special and reserved characters are
handled on your system

Parameters Available in Export's Command-Line Mode

Data Pump Export 2-9

Purpose
Used to stop the job after it is initialized. This allows the master table to be queried
before any data is exported.

Syntax and Description
ABORT_STEP=[n | -1]

The possible values correspond to a process order number in the master table. The
result of using each number is as follows:

■ n -- If the value is zero or greater, then the export operation is started and the job is
aborted at the object that is stored in the master table with the corresponding
process order number.

■ -1 -- If the value is negative one (-1) then abort the job after setting it up, but before
exporting any objects or data.

Restrictions
■ None

Example
> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=expdat.dmp SCHEMAS=hr ABORT_STEP=-1

ACCESS_METHOD
Default: AUTOMATIC

Purpose
Instructs Export to use a particular method to unload data.

Syntax and Description
ACCESS_METHOD=[AUTOMATIC | DIRECT_PATH | EXTERNAL_TABLE]

The ACCESS_METHOD parameter is provided so that you can try an alternative method if
the default method does not work for some reason. Oracle recommends that you use
the default option (AUTOMATIC) whenever possible because it allows Data Pump to
automatically select the most efficient method.

Restrictions
■ If the NETWORK_LINK parameter is also specified, then direct path mode is not

supported.

Example
> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=expdat.dmp SCHEMAS=hr
ACCESS_METHOD=EXTERNAL_TABLE

ATTACH
Default: job currently in the user's schema, if there is only one

Parameters Available in Export's Command-Line Mode

2-10 Oracle Database Utilities

Purpose
Attaches the client session to an existing export job and automatically places you in the
interactive-command interface. Export displays a description of the job to which you
are attached and also displays the Export prompt.

Syntax and Description
ATTACH [=[schema_name.]job_name]

The schema_name is optional. To specify a schema other than your own, you must have
the DATAPUMP_EXP_FULL_DATABASE role.

The job_name is optional if only one export job is associated with your schema and the
job is active. To attach to a stopped job, you must supply the job name. To see a list of
Data Pump job names, you can query the DBA_DATAPUMP_JOBS view or the USER_
DATAPUMP_JOBS view.

When you are attached to the job, Export displays a description of the job and then
displays the Export prompt.

Restrictions
■ When you specify the ATTACH parameter, the only other Data Pump parameter you

can specify on the command line is ENCRYPTION_PASSWORD.

■ If the job you are attaching to was initially started using an encryption password,
then when you attach to the job you must again enter the ENCRYPTION_PASSWORD
parameter on the command line to re-specify that password. The only exception to
this is if the job was initially started with the ENCRYPTION=ENCRYPTED_COLUMNS_
ONLY parameter. In that case, the encryption password is not needed when
attaching to the job.

■ You cannot attach to a job in another schema unless it is already running.

■ If the dump file set or master table for the job have been deleted, then the attach
operation will fail.

■ Altering the master table in any way will lead to unpredictable results.

Example
The following is an example of using the ATTACH parameter. It assumes that the job,
hr.export_job, already exists.

> expdp hr ATTACH=hr.export_job

CLUSTER
Default: YES

Purpose
Determines whether Data Pump can use Oracle Real Application Clusters (Oracle
RAC) resources and start workers on other Oracle RAC instances.

Syntax and Description
CLUSTER=[YES | NO]

See Also: "Commands Available in Export's
Interactive-Command Mode" on page 2-47

Parameters Available in Export's Command-Line Mode

Data Pump Export 2-11

To force Data Pump Export to use only the instance where the job is started and to
replicate pre-Oracle Database 11g release 2 (11.2) behavior, specify CLUSTER=NO.

To specify a specific, existing service and constrain worker processes to run only on
instances defined for that service, use the SERVICE_NAME parameter with the
CLUSTER=YES parameter.

Use of the CLUSTER parameter may affect performance because there is some additional
overhead in distributing the export job across Oracle RAC instances. For small jobs, it
may be better to specify CLUSTER=NO to constrain the job to run on the instance where it
is started. Jobs whose performance benefits the most from using the CLUSTER
parameter are those involving large amounts of data.

Example
The following is an example of using the CLUSTER parameter:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr_clus%U.dmp CLUSTER=NO PARALLEL=3

This example starts a schema-mode export (the default) of the hr schema. Because
CLUSTER=NO is specified, the job uses only the instance on which it started. (If the
CLUSTER parameter had not been specified at all, then the default value of Y would
have been used and workers would have been started on other instances in the Oracle
RAC, if necessary.) The dump files will be written to the location specified for the
dpump_dir1 directory object. The job can have up to 3 parallel processes.

COMPRESSION
Default: METADATA_ONLY

Purpose
Specifies which data to compress before writing to the dump file set.

Syntax and Description
COMPRESSION=[ALL | DATA_ONLY | METADATA_ONLY | NONE]

■ ALL enables compression for the entire export operation. The ALL option requires
that the Oracle Advanced Compression option be enabled.

■ DATA_ONLY results in all data being written to the dump file in compressed format.
The DATA_ONLY option requires that the Oracle Advanced Compression option be
enabled.

■ METADATA_ONLY results in all metadata being written to the dump file in
compressed format. This is the default.

■ NONE disables compression for the entire export operation.

See Also:

■ "SERVICE_NAME" on page 2-38

■ "Oracle RAC Considerations" on page 1-12

See Also: Oracle Database Licensing Information for information about
licensing requirements for the Oracle Advanced Compression option

Parameters Available in Export's Command-Line Mode

2-12 Oracle Database Utilities

Restrictions
■ To make full use of all these compression options, the COMPATIBLE initialization

parameter must be set to at least 11.0.0.

■ The METADATA_ONLY option can be used even if the COMPATIBLE initialization
parameter is set to 10.2.

■ Compression of data using ALL or DATA_ONLY is valid only in the Enterprise Edition
of Oracle Database 11g and also requires that the Oracle Advanced Compression
option be enabled.

Example
The following is an example of using the COMPRESSION parameter:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr_comp.dmp COMPRESSION=METADATA_ONLY

This command will execute a schema-mode export that will compress all metadata
before writing it out to the dump file, hr_comp.dmp. It defaults to a schema-mode
export because no export mode is specified.

CONTENT
Default: ALL

Purpose
Enables you to filter what Export unloads: data only, metadata only, or both.

Syntax and Description
CONTENT=[ALL | DATA_ONLY | METADATA_ONLY]

■ ALL unloads both data and metadata. This is the default.

■ DATA_ONLY unloads only table row data; no database object definitions are
unloaded.

■ METADATA_ONLY unloads only database object definitions; no table row data is
unloaded. Be aware that if you specify CONTENT=METADATA_ONLY, then when the
dump file is subsequently imported, any index or table statistics imported from
the dump file will be locked after the import.

Restrictions
■ The CONTENT=METADATA_ONLY parameter cannot be used with the TRANSPORT_

TABLESPACES (transportable-tablespace mode) parameter or with the QUERY
parameter.

Example
The following is an example of using the CONTENT parameter:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp CONTENT=METADATA_ONLY

This command will execute a schema-mode export that will unload only the metadata
associated with the hr schema. It defaults to a schema-mode export of the hr schema
because no export mode is specified.

Parameters Available in Export's Command-Line Mode

Data Pump Export 2-13

DATA_OPTIONS
Default: There is no default. If this parameter is not used, then the special data
handling options it provides simply do not take effect.

Purpose
The DATA_OPTIONS parameter designates how certain types of data should be handled
during export operations.

Syntax and Description
DATA_OPTIONS=XML_CLOBS

The XML_CLOBS option specifies that XMLType columns are to be exported in
uncompressed CLOB format regardless of the XMLType storage format that was
defined for them.

If a table has XMLType columns stored only as CLOBs, then it is not necessary to
specify the XML_CLOBS option because Data Pump automatically exports them in CLOB
format.

If a table has XMLType columns stored as any combination of object-relational
(schema-based), binary, or CLOB formats, then Data Pump exports them in
compressed format, by default. This is the preferred method. However, if you need to
export the data in uncompressed CLOB format, you can use the XML_CLOBS option to
override the default.

Restrictions
■ Using the XML_CLOBS option requires that the same XML schema be used at both

export and import time.

■ The Export DATA_OPTIONS parameter requires the job version to be set at 11.0.0 or
higher. See "VERSION" on page 2-46.

Example
This example shows an export operation in which any XMLType columns in the
hr.xdb_tab1 table are exported in uncompressed CLOB format regardless of the
XMLType storage format that was defined for them.

> expdp hr TABLES=hr.xdb_tab1 DIRECTORY=dpump_dir1 DUMPFILE=hr_xml.dmp
VERSION=11.2 DATA_OPTIONS=XML_CLOBS

DIRECTORY
Default: DATA_PUMP_DIR

Purpose
Specifies the default location to which Export can write the dump file set and the log
file.

Syntax and Description
DIRECTORY=directory_object

See Also: Oracle XML DB Developer's Guide for information specific
to exporting and importing XMLType tables

Parameters Available in Export's Command-Line Mode

2-14 Oracle Database Utilities

The directory_object is the name of a database directory object (not the file path of an
actual directory). Upon installation, privileged users have access to a default directory
object named DATA_PUMP_DIR. Users with access to the default DATA_PUMP_DIR
directory object do not need to use the DIRECTORY parameter at all.

A directory object specified on the DUMPFILE or LOGFILE parameter overrides any
directory object that you specify for the DIRECTORY parameter.

Example
The following is an example of using the DIRECTORY parameter:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=employees.dmp CONTENT=METADATA_ONLY

The dump file, employees.dmp, will be written to the path that is associated with the
directory object dpump_dir1.

DUMPFILE
Default: expdat.dmp

Purpose
Specifies the names, and optionally, the directory objects of dump files for an export
job.

Syntax and Description
DUMPFILE=[directory_object:]file_name [, ...]

The directory_object is optional if one has already been established by the
DIRECTORY parameter. If you supply a value here, then it must be a directory object that
already exists and that you have access to. A database directory object that is specified
as part of the DUMPFILE parameter overrides a value specified by the DIRECTORY
parameter or by the default directory object.

You can supply multiple file_name specifications as a comma-delimited list or in
separate DUMPFILE parameter specifications. If no extension is given for the file name,
then Export uses the default file extension of .dmp. The file names can contain a
substitution variable (%U), which implies that multiple files may be generated. The
substitution variable is expanded in the resulting file names into a 2-digit, fixed-width,
incrementing integer starting at 01 and ending at 99. If a file specification contains two
substitution variables, both are incremented at the same time. For example,
exp%Uaa%U.dmp would resolve to exp01aa01.dmp, exp02aa02.dmp, and so forth.

If the FILESIZE parameter is specified, then each dump file will have a maximum of
that size and be nonextensible. If more space is required for the dump file set and a
template with a substitution variable (%U) was supplied, then a new dump file is

See Also:

■ "Default Locations for Dump, Log, and SQL Files" on page 1-10
for more information about default directory objects and the
order of precedence Data Pump uses to determine a file's
location

■ "Oracle RAC Considerations" on page 1-12

■ Oracle Database SQL Language Reference for information about
the CREATE DIRECTORY command

Parameters Available in Export's Command-Line Mode

Data Pump Export 2-15

automatically created of the size specified by the FILESIZE parameter, if there is room
on the device.

As each file specification or file template containing a substitution variable is defined,
it is instantiated into one fully qualified file name and Export attempts to create it. The
file specifications are processed in the order in which they are specified. If the job
needs extra files because the maximum file size is reached, or to keep parallel workers
active, then additional files are created if file templates with substitution variables
were specified.

Although it is possible to specify multiple files using the DUMPFILE parameter, the
export job may only require a subset of those files to hold the exported data. The
dump file set displayed at the end of the export job shows exactly which files were
used. It is this list of files that is required to perform an import operation using this
dump file set. Any files that were not used can be discarded.

Restrictions
■ Any resulting dump file names that match preexisting dump file names will

generate an error and the preexisting dump files will not be overwritten. You can
override this behavior by specifying the Export parameter REUSE_DUMPFILES=YES.

Example
The following is an example of using the DUMPFILE parameter:

> expdp hr SCHEMAS=hr DIRECTORY=dpump_dir1 DUMPFILE=dpump_dir2:exp1.dmp,
 exp2%U.dmp PARALLEL=3

The dump file, exp1.dmp, will be written to the path associated with the directory
object dpump_dir2 because dpump_dir2 was specified as part of the dump file name,
and therefore overrides the directory object specified with the DIRECTORY parameter.
Because all three parallel processes will be given work to perform during this job,
dump files named exp201.dmp and exp202.dmp will be created based on the specified
substitution variable exp2%U.dmp. Because no directory is specified for them, they will
be written to the path associated with the directory object, dpump_dir1, that was
specified with the DIRECTORY parameter.

ENCRYPTION
Default: The default value depends upon the combination of encryption-related
parameters that are used. To enable encryption, either the ENCRYPTION or ENCRYPTION_
PASSWORD parameter, or both, must be specified.

If only the ENCRYPTION_PASSWORD parameter is specified, then the ENCRYPTION
parameter defaults to ALL.

If only the ENCRYPTION parameter is specified and the Oracle encryption wallet is open,
then the default mode is TRANSPARENT. If only the ENCRYPTION parameter is specified
and the wallet is closed, then an error is returned.

If neither ENCRYPTION nor ENCRYPTION_PASSWORD is specified, then ENCRYPTION defaults
to NONE.

See Also:

■ "Using Substitution Variables" on page 1-13 for more
information on how substitution variables are handled when
you specify them in dump file names

Parameters Available in Export's Command-Line Mode

2-16 Oracle Database Utilities

Purpose
Specifies whether to encrypt data before writing it to the dump file set.

Syntax and Description
ENCRYPTION = [ALL | DATA_ONLY | ENCRYPTED_COLUMNS_ONLY | METADATA_ONLY | NONE]

ALL enables encryption for all data and metadata in the export operation.

DATA_ONLY specifies that only data is written to the dump file set in encrypted format.

ENCRYPTED_COLUMNS_ONLY specifies that only encrypted columns are written to the
dump file set in encrypted format. To use this option, you must have Oracle Advanced
Security transparent data encryption enabled. See Oracle Database Advanced Security
Administrator's Guide for more information about transparent data encryption.

METADATA_ONLY specifies that only metadata is written to the dump file set in
encrypted format.

NONE specifies that no data is written to the dump file set in encrypted format.

Restrictions
■ To specify the ALL, DATA_ONLY, or METADATA_ONLY options, the COMPATIBLE

initialization parameter must be set to at least 11.0.0.

■ This parameter is valid only in the Enterprise Edition of Oracle Database 11g.

■ Data Pump encryption features require that the Oracle Advanced Security option
be enabled. See Oracle Database Advanced Security Administrator's Guide for
information about licensing requirements for the Oracle Advanced Security
option.

Example
The following example performs an export operation in which only data is encrypted
in the dump file:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr_enc.dmp JOB_NAME=enc1
ENCRYPTION=data_only ENCRYPTION_PASSWORD=foobar

ENCRYPTION_ALGORITHM
Default: AES128

Purpose
Specifies which cryptographic algorithm should be used to perform the encryption.

Syntax and Description
ENCRYPTION_ALGORITHM = [AES128 | AES192 | AES256]

Note: If the data being exported includes SecureFiles that you want
to be encrypted, then you must specify ENCRYPTION=ALL to encrypt the
entire dump file set. Encryption of the entire dump file set is the only
way to achieve encryption security for SecureFiles during a Data
Pump export operation. For more information about SecureFiles, see
Oracle Database SecureFiles and Large Objects Developer's Guide.

Parameters Available in Export's Command-Line Mode

Data Pump Export 2-17

See Oracle Database Advanced Security Administrator's Guide for information about
encryption algorithms.

Restrictions
■ To use this encryption feature, the COMPATIBLE initialization parameter must be set

to at least 11.0.0.

■ The ENCRYPTION_ALGORITHM parameter requires that you also specify either the
ENCRYPTION or ENCRYPTION_PASSWORD parameter; otherwise an error is returned.

■ This parameter is valid only in the Enterprise Edition of Oracle Database 11g.

■ Data Pump encryption features require that the Oracle Advanced Security option
be enabled. See Oracle Database Advanced Security Administrator's Guide for
information about licensing requirements for the Oracle Advanced Security
option.

Example
> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr_enc3.dmp
ENCRYPTION_PASSWORD=foobar ENCRYPTION_ALGORITHM=AES128

ENCRYPTION_MODE
Default: The default mode depends on which other encryption-related parameters are
used. If only the ENCRYPTION parameter is specified and the Oracle encryption wallet is
open, then the default mode is TRANSPARENT. If only the ENCRYPTION parameter is
specified and the wallet is closed, then an error is returned.

If the ENCRYPTION_PASSWORD parameter is specified and the wallet is open, then the
default is DUAL. If the ENCRYPTION_PASSWORD parameter is specified and the wallet is
closed, then the default is PASSWORD.

Purpose
Specifies the type of security to use when encryption and decryption are performed.

Syntax and Description
ENCRYPTION_MODE = [DUAL | PASSWORD | TRANSPARENT]

DUAL mode creates a dump file set that can later be imported either transparently or by
specifying a password that was used when the dual-mode encrypted dump file set
was created. When you later import the dump file set created in DUAL mode, you can
use either the wallet or the password that was specified with the ENCRYPTION_
PASSWORD parameter. DUAL mode is best suited for cases in which the dump file set will
be imported on-site using the wallet, but which may also need to be imported offsite
where the wallet is not available.

PASSWORD mode requires that you provide a password when creating encrypted dump
file sets. You will need to provide the same password when you import the dump file
set. PASSWORD mode requires that you also specify the ENCRYPTION_PASSWORD
parameter. The PASSWORD mode is best suited for cases in which the dump file set will
be imported into a different or remote database, but which must remain secure in
transit.

TRANSPARENT mode allows an encrypted dump file set to be created without any
intervention from a database administrator (DBA), provided the required wallet is
available. Therefore, the ENCRYPTION_PASSWORD parameter is not required, and will in
fact, cause an error if it is used in TRANSPARENT mode. This encryption mode is best

Parameters Available in Export's Command-Line Mode

2-18 Oracle Database Utilities

suited for cases in which the dump file set will be imported into the same database
from which it was exported.

Restrictions
■ To use DUAL or TRANSPARENT mode, the COMPATIBLE initialization parameter must

be set to at least 11.0.0.

■ When you use the ENCRYPTION_MODE parameter, you must also use either the
ENCRYPTION or ENCRYPTION_PASSWORD parameter. Otherwise, an error is returned.

■ When you use the ENCRYPTION=ENCRYPTED_COLUMNS_ONLY, you cannot use the
ENCRYPTION_MODE parameter. Otherwise, an error is returned.

■ This parameter is valid only in the Enterprise Edition of Oracle Database 11g.

■ Data Pump encryption features require that the Oracle Advanced Security option
be enabled. See Oracle Database Advanced Security Administrator's Guide for
information about licensing requirements for the Oracle Advanced Security
option.

Example
> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr_enc4.dmp
ENCRYPTION=all ENCRYPTION_PASSWORD=secretwords
ENCRYPTION_ALGORITHM=AES256 ENCRYPTION_MODE=DUAL

ENCRYPTION_PASSWORD
Default: There is no default; the value is user-provided.

Purpose
Specifies a password for encrypting encrypted column data, metadata, or table data in
the export dumpfile. This prevents unauthorized access to an encrypted dump file set.

Syntax and Description
ENCRYPTION_PASSWORD = password

Thee password value that is supplied specifies a key for re-encrypting encrypted table
columns, metadata, or table data so that they are not written as clear text in the dump
file set. If the export operation involves encrypted table columns, but an encryption
password is not supplied, then the encrypted columns will be written to the dump file
set as clear text and a warning will be issued.

Note: Data Pump encryption functionality changed as of Oracle
Database 11g release 1 (11.1). Before release 11.1, the ENCRYPTION_
PASSWORD parameter applied only to encrypted columns. However, as
of release 11.1, the new ENCRYPTION parameter provides options for
encrypting other types of data. This means that if you now specify
ENCRYPTION_PASSWORD without also specifying ENCRYPTION and a
specific option, then all data written to the dump file will be encrypted
(equivalent to specifying ENCRYPTION=ALL). If you want to re-encrypt
only encrypted columns, then you must now specify
ENCRYPTION=ENCRYPTED_COLUMNS_ONLY in addition to ENCRYPTION_
PASSWORD.

Parameters Available in Export's Command-Line Mode

Data Pump Export 2-19

For export operations, this parameter is required if the ENCRYPTION_MODE parameter is
set to either PASSWORD or DUAL.

Restrictions
■ This parameter is valid only in the Enterprise Edition of Oracle Database 11g.

■ Data Pump encryption features require that the Oracle Advanced Security option
be enabled. See Oracle Database Advanced Security Administrator's Guide for
information about licensing requirements for the Oracle Advanced Security
option.

■ If ENCRYPTION_PASSWORD is specified but ENCRYPTION_MODE is not specified, then it
is not necessary to have Oracle Advanced Security transparent data encryption
enabled since ENCRYPTION_MODE will default to PASSWORD.

■ The ENCRYPTION_PASSWORD parameter is not valid if the requested encryption
mode is TRANSPARENT.

■ To use the ENCRYPTION_PASSWORD parameter if ENCRYPTION_MODE is set to DUAL, you
must have Oracle Advanced Security transparent data encryption enabled. See
Oracle Database Advanced Security Administrator's Guide for more information about
transparent data encryption.

■ For network exports, the ENCRYPTION_PASSWORD parameter in conjunction with
ENCRYPTION=ENCRYPTED_COLUMNS_ONLY is not supported with user-defined external
tables that have encrypted columns. The table will be skipped and an error
message will be displayed, but the job will continue.

■ Encryption attributes for all columns must match between the exported table
definition and the target table. For example, suppose you have a table, EMP, and
one of its columns is named EMPNO. Both of the following situations would result in
an error because the encryption attribute for the EMP column in the source table
would not match the encryption attribute for the EMP column in the target table:

– The EMP table is exported with the EMPNO column being encrypted, but before
importing the table you remove the encryption attribute from the EMPNO
column.

– The EMP table is exported without the EMPNO column being encrypted, but
before importing the table you enable encryption on the EMPNO column.

Example
In the following example, an encryption password, 123456, is assigned to the dump
file, dpcd2be1.dmp.

expdp hr TABLES=employee_s_encrypt DIRECTORY=dpump_dir1
DUMPFILE=dpcd2be1.dmp ENCRYPTION=ENCRYPTED_COLUMNS_ONLY

Note: There is no connection or dependency between the key
specified with the Data Pump ENCRYPTION_PASSWORD parameter and
the key specified with the ENCRYPT keyword when the table with
encrypted columns was initially created. For example, suppose a table
is created as follows, with an encrypted column whose key is xyz:

CREATE TABLE emp (col1 VARCHAR2(256) ENCRYPT IDENTIFIED BY "xyz");

When you export the emp table, you can supply any arbitrary value for
ENCRYPTION_PASSWORD. It does not have to be xyz.

Parameters Available in Export's Command-Line Mode

2-20 Oracle Database Utilities

ENCRYPTION_PASSWORD=123456

Encrypted columns in the employee_s_encrypt table, will not be written as clear text
in the dpcd2be1.dmp dump file. Note that to subsequently import the dpcd2be1.dmp
file created by this example, you will need to supply the same encryption password.
(See "ENCRYPTION_PASSWORD" on page 3-14 for an example of an import
operation using the ENCRYPTION_PASSWORD parameter.)

ESTIMATE
Default: BLOCKS

Purpose
Specifies the method that Export will use to estimate how much disk space each table
in the export job will consume (in bytes). The estimate is printed in the log file and
displayed on the client's standard output device. The estimate is for table row data
only; it does not include metadata.

Syntax and Description
ESTIMATE=[BLOCKS | STATISTICS]

■ BLOCKS - The estimate is calculated by multiplying the number of database blocks
used by the source objects, times the appropriate block sizes.

■ STATISTICS - The estimate is calculated using statistics for each table. For this
method to be as accurate as possible, all tables should have been analyzed recently.
(Table analysis can be done with either the SQL ANALYZE statement or the DBMS_
STATS PL/SQL package.)

Restrictions
■ If the Data Pump export job involves compressed tables, then the default size

estimation given for the compressed table is inaccurate when ESTIMATE=BLOCKS is
used. This is because the size estimate does not reflect that the data was stored in a
compressed form. To get a more accurate size estimate for compressed tables, use
ESTIMATE=STATISTICS.

■ The estimate may also be inaccurate if either the QUERY or REMAP_DATA parameter is
used.

Example
The following example shows a use of the ESTIMATE parameter in which the estimate is
calculated using statistics for the employees table:

> expdp hr TABLES=employees ESTIMATE=STATISTICS DIRECTORY=dpump_dir1
 DUMPFILE=estimate_stat.dmp

ESTIMATE_ONLY
Default: NO

Purpose
Instructs Export to estimate the space that a job would consume, without actually
performing the export operation.

Parameters Available in Export's Command-Line Mode

Data Pump Export 2-21

Syntax and Description
ESTIMATE_ONLY=[YES | NO]

If ESTIMATE_ONLY=YES, then Export estimates the space that would be consumed, but
quits without actually performing the export operation.

Restrictions
■ The ESTIMATE_ONLY parameter cannot be used in conjunction with the QUERY

parameter.

Example
The following shows an example of using the ESTIMATE_ONLY parameter to determine
how much space an export of the HR schema will take.

> expdp hr ESTIMATE_ONLY=YES NOLOGFILE=YES SCHEMAS=HR

EXCLUDE
Default: There is no default

Purpose
Enables you to filter the metadata that is exported by specifying objects and object
types to be excluded from the export operation.

Syntax and Description
EXCLUDE=object_type[:name_clause] [, ...]

The object_type specifies the type of object to be excluded. To see a list of valid values
for object_type, query the following views: DATABASE_EXPORT_OBJECTS for full mode,
SCHEMA_EXPORT_OBJECTS for schema mode, and TABLE_EXPORT_OBJECTS for table and
tablespace mode. The values listed in the OBJECT_PATH column are the valid object
types.

All object types for the given mode of export will be included in the export except those
specified in an EXCLUDE statement. If an object is excluded, then all of its dependent
objects are also excluded. For example, excluding a table will also exclude all indexes
and triggers on the table.

The name_clause is optional. It allows selection of specific objects within an object
type. It is a SQL expression used as a filter on the type's object names. It consists of a
SQL operator and the values against which the object names of the specified type are
to be compared. The name_clause applies only to object types whose instances have
names (for example, it is applicable to TABLE, but not to GRANT). It must be separated
from the object type with a colon and enclosed in double quotation marks, because
single quotation marks are required to delimit the name strings. For example, you
could set EXCLUDE=INDEX:"LIKE 'EMP%'" to exclude all indexes whose names start
with EMP.

The name that you supply for the name_clause must exactly match, including upper
and lower casing, an existing object in the database. For example, if the name_clause
you supply is for a table named EMPLOYEES, then there must be an existing table named
EMPLOYEES using all upper case. If the name_clause were supplied as Employees or
employees or any other variation, then the table would not be found.

If no name_clause is provided, then all objects of the specified type are excluded.

More than one EXCLUDE statement can be specified.

Parameters Available in Export's Command-Line Mode

2-22 Oracle Database Utilities

Depending on your operating system, the use of quotation marks when you specify a
value for this parameter may also require that you use escape characters. Oracle
recommends that you place this parameter in a parameter file, which can reduce the
number of escape characters that might otherwise be needed on the command line.

If the object_type you specify is CONSTRAINT, GRANT, or USER, then you should be
aware of the effects this will have, as described in the following paragraphs.

Excluding Constraints
The following constraints cannot be explicitly excluded:

■ NOT NULL constraints

■ Constraints needed for the table to be created and loaded successfully; for
example, primary key constraints for index-organized tables, or REF SCOPE and
WITH ROWID constraints for tables with REF columns

This means that the following EXCLUDE statements will be interpreted as follows:

■ EXCLUDE=CONSTRAINT will exclude all (nonreferential) constraints, except for NOT
NULL constraints and any constraints needed for successful table creation and
loading.

■ EXCLUDE=REF_CONSTRAINT will exclude referential integrity (foreign key)
constraints.

Excluding Grants and Users
Specifying EXCLUDE=GRANT excludes object grants on all object types and system
privilege grants.

Specifying EXCLUDE=USER excludes only the definitions of users, not the objects
contained within users' schemas.

To exclude a specific user and all objects of that user, specify a command such as the
following, where hr is the schema name of the user you want to exclude.

expdp FULL=YES DUMPFILE=expfull.dmp EXCLUDE=SCHEMA:"='HR'"

Note that in this situation, an export mode of FULL is specified. If no mode were
specified, then the default mode, SCHEMAS, would be used. This would cause an error
because the command would indicate that the schema should be both exported and
excluded at the same time.

If you try to exclude a user by using a statement such as EXCLUDE=USER:"='HR'", then
only the information used in CREATE USER hr DDL statements will be excluded, and
you may not get the results you expect.

Restrictions
■ The EXCLUDE and INCLUDE parameters are mutually exclusive.

Example
The following is an example of using the EXCLUDE statement.

See Also:

■ "INCLUDE" on page 2-26 for an example of using a parameter
file

■ "Use of Quotation Marks On the Data Pump Command Line"
on page 2-7

Parameters Available in Export's Command-Line Mode

Data Pump Export 2-23

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr_exclude.dmp EXCLUDE=VIEW,
PACKAGE, FUNCTION

This will result in a schema-mode export (the default export mode) in which all of the
hr schema will be exported except its views, packages, and functions.

FILESIZE
Default: 0 (equivalent to the maximum size of 16 terabytes)

Purpose
Specifies the maximum size of each dump file. If the size is reached for any member of
the dump file set, then that file is closed and an attempt is made to create a new file, if
the file specification contains a substitution variable or if additional dump files have
been added to the job.

Syntax and Description
FILESIZE=integer[B | KB | MB | GB | TB]

The integer can be immediately followed (do not insert a space) by B, KB, MB, GB, or TB
(indicating bytes, kilobytes, megabytes, gigabytes, and terabytes respectively). Bytes is
the default. The actual size of the resulting file may be rounded down slightly to
match the size of the internal blocks used in dump files.

Restrictions
■ The minimum size for a file is ten times the default Data Pump block size, which is

4 kilobytes.

■ The maximum size for a file is 16 terabytes.

Example
The following shows an example in which the size of the dump file is set to 3
megabytes:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr_3m.dmp FILESIZE=3MB

If 3 megabytes had not been sufficient to hold all the exported data, then the following
error would have been displayed and the job would have stopped:

ORA-39095: Dump file space has been exhausted: Unable to allocate 217088 bytes

The actual number of bytes that could not be allocated may vary. Also, this number
does not represent the amount of space needed to complete the entire export
operation. It indicates only the size of the current object that was being exported when
the job ran out of dump file space.

This situation can be corrected by first attaching to the stopped job, adding one or
more files using the ADD_FILE command, and then restarting the operation.

FLASHBACK_SCN
Default: There is no default

See Also:

■ "Filtering During Export Operations" on page 2-6 for more
information about the effects of using the EXCLUDE parameter

Parameters Available in Export's Command-Line Mode

2-24 Oracle Database Utilities

Purpose
Specifies the system change number (SCN) that Export will use to enable the
Flashback Query utility.

Syntax and Description
FLASHBACK_SCN=scn_value

The export operation is performed with data that is consistent up to the specified SCN.
If the NETWORK_LINK parameter is specified, then the SCN refers to the SCN of the
source database.

Restrictions
■ FLASHBACK_SCN and FLASHBACK_TIME are mutually exclusive.

■ The FLASHBACK_SCN parameter pertains only to the Flashback Query capability of
Oracle Database. It is not applicable to Flashback Database, Flashback Drop, or
Flashback Data Archive.

Example
The following example assumes that an existing SCN value of 384632 exists. It exports
the hr schema up to SCN 384632.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr_scn.dmp FLASHBACK_SCN=384632

FLASHBACK_TIME
Default: There is no default

Purpose
The SCN that most closely matches the specified time is found, and this SCN is used to
enable the Flashback utility. The export operation is performed with data that is
consistent up to this SCN.

Syntax and Description
FLASHBACK_TIME="TO_TIMESTAMP(time-value)"

Because the TO_TIMESTAMP value is enclosed in quotation marks, it would be best to
put this parameter in a parameter file. See "Use of Quotation Marks On the Data Pump
Command Line" on page 2-7.

Restrictions
■ FLASHBACK_TIME and FLASHBACK_SCN are mutually exclusive.

■ The FLASHBACK_TIME parameter pertains only to the flashback query capability of
Oracle Database. It is not applicable to Flashback Database, Flashback Drop, or
Flashback Data Archive.

Note: If you are on a logical standby system and using a network
link to access the logical standby primary, then the FLASHBACK_SCN
parameter is ignored because SCNs are selected by logical standby.
See Oracle Data Guard Concepts and Administration for information
about logical standby databases.

Parameters Available in Export's Command-Line Mode

Data Pump Export 2-25

Example
You can specify the time in any format that the DBMS_FLASHBACK.ENABLE_AT_TIME
procedure accepts. For example, suppose you have a parameter file, flashback.par,
with the following contents:

DIRECTORY=dpump_dir1
DUMPFILE=hr_time.dmp
FLASHBACK_TIME="TO_TIMESTAMP('25-08-2008 14:35:00', 'DD-MM-YYYY HH24:MI:SS')"

You could then issue the following command:

> expdp hr PARFILE=flashback.par

The export operation will be performed with data that is consistent with the SCN that
most closely matches the specified time.

FULL
Default: NO

Purpose
Specifies that you want to perform a full database mode export.

Syntax and Description
FULL=[YES | NO]

FULL=YES indicates that all data and metadata are to be exported. Filtering can restrict
what is exported using this export mode. See "Filtering During Export Operations" on
page 2-6.

To perform a full export, you must have the DATAPUMP_EXP_FULL_DATABASE role.

Restrictions
■ A full export does not export system schemas that contain Oracle-managed data

and metadata. Examples of system schemas that are not exported include SYS,
ORDSYS, and MDSYS.

Note: If you are on a logical standby system and using a network
link to access the logical standby primary, then the FLASHBACK_SCN
parameter is ignored because SCNs are selected by logical standby.
See Oracle Data Guard Concepts and Administration for information
about logical standby databases.

See Also: Oracle Database Advanced Application Developer's Guide
for information about using Flashback Query

Note: Be aware that when you later import a dump file that was
created by a full-mode export, the import operation attempts to copy
the password for the SYS account from the source database. This
sometimes fails (for example, if the password is in a shared password
file). If it does fail, then after the import completes, you must set the
password for the SYS account at the target database to a password of
your choice.

Parameters Available in Export's Command-Line Mode

2-26 Oracle Database Utilities

■ Grants on objects owned by the SYS schema are never exported.

■ If you are exporting data that is protected by a realm, then you must have
authorization for that realm.

Example
The following is an example of using the FULL parameter. The dump file, expfull.dmp
is written to the dpump_dir2 directory.

> expdp hr DIRECTORY=dpump_dir2 DUMPFILE=expfull.dmp FULL=YES NOLOGFILE=YES

HELP
Default: NO

Purpose
Displays online help for the Export utility.

Syntax and Description
HELP = [YES | NO]

If HELP=YES is specified, then Export displays a summary of all Export command-line
parameters and interactive commands.

Example
> expdp HELP = YES

This example will display a brief description of all Export parameters and commands.

INCLUDE
Default: There is no default

Purpose
Enables you to filter the metadata that is exported by specifying objects and object
types for the current export mode. The specified objects and all their dependent objects
are exported. Grants on these objects are also exported.

Syntax and Description
INCLUDE = object_type[:name_clause] [, ...]

The object_type specifies the type of object to be included. To see a list of valid values
for object_type, query the following views: DATABASE_EXPORT_OBJECTS for full mode,
SCHEMA_EXPORT_OBJECTS for schema mode, and TABLE_EXPORT_OBJECTS for table and
tablespace mode. The values listed in the OBJECT_PATH column are the valid object
types.

Only object types explicitly specified in INCLUDE statements, and their dependent
objects, are exported. No other object types, including the schema definition
information that is normally part of a schema-mode export when you have the
DATAPUMP_EXP_FULL_DATABASE role, are exported.

See Also: Oracle Database Vault Administrator's Guide for information
about configuring realms

Parameters Available in Export's Command-Line Mode

Data Pump Export 2-27

The name_clause is optional. It allows fine-grained selection of specific objects within
an object type. It is a SQL expression used as a filter on the object names of the type. It
consists of a SQL operator and the values against which the object names of the
specified type are to be compared. The name_clause applies only to object types whose
instances have names (for example, it is applicable to TABLE, but not to GRANT). It must
be separated from the object type with a colon and enclosed in double quotation
marks, because single quotation marks are required to delimit the name strings.

The name that you supply for the name_clause must exactly match, including upper
and lower casing, an existing object in the database. For example, if the name_clause
you supply is for a table named EMPLOYEES, then there must be an existing table named
EMPLOYEES using all upper case. If the name_clause were supplied as Employees or
employees or any other variation, then the table would not be found.

Depending on your operating system, the use of quotation marks when you specify a
value for this parameter may also require that you use escape characters. Oracle
recommends that you place this parameter in a parameter file, which can reduce the
number of escape characters that might otherwise be needed on the command line. See
"Use of Quotation Marks On the Data Pump Command Line" on page 2-7.

For example, suppose you have a parameter file named hr.par with the following
content:

SCHEMAS=HR
DUMPFILE=expinclude.dmp
DIRECTORY=dpump_dir1
LOGFILE=expinclude.log
INCLUDE=TABLE:"IN ('EMPLOYEES', 'DEPARTMENTS')"
INCLUDE=PROCEDURE
INCLUDE=INDEX:"LIKE 'EMP%'"

You could then use the hr.par file to start an export operation, without having to enter
any other parameters on the command line. The EMPLOYEES and DEPARTMENTS tables, all
procedures, and all index names with an EMP prefix will be included in the export.

> expdp hr PARFILE=hr.par

Including Constraints
If the object_type you specify is a CONSTRAINT, then you should be aware of the
effects this will have.

The following constraints cannot be explicitly included:

■ NOT NULL constraints

■ Constraints needed for the table to be created and loaded successfully; for
example, primary key constraints for index-organized tables, or REF SCOPE and
WITH ROWID constraints for tables with REF columns

This means that the following INCLUDE statements will be interpreted as follows:

■ INCLUDE=CONSTRAINT will include all (nonreferential) constraints, except for NOT
NULL constraints and any constraints needed for successful table creation and
loading

■ INCLUDE=REF_CONSTRAINT will include referential integrity (foreign key)
constraints

Restrictions
■ The INCLUDE and EXCLUDE parameters are mutually exclusive.

Parameters Available in Export's Command-Line Mode

2-28 Oracle Database Utilities

■ Grants on objects owned by the SYS schema are never exported.

Example
The following example performs an export of all tables (and their dependent objects)
in the hr schema:

> expdp hr INCLUDE=TABLE DUMPFILE=dpump_dir1:exp_inc.dmp NOLOGFILE=YES

JOB_NAME
Default: system-generated name of the form SYS_EXPORT_<mode>_NN

Purpose
Used to identify the export job in subsequent actions, such as when the ATTACH
parameter is used to attach to a job, or to identify the job using the DBA_DATAPUMP_JOBS
or USER_DATAPUMP_JOBS views.

Syntax and Description
JOB_NAME=jobname_string

The jobname_string specifies a name of up to 30 bytes for this export job. The bytes
must represent printable characters and spaces. If spaces are included, then the name
must be enclosed in single quotation marks (for example, 'Thursday Export'). The job
name is implicitly qualified by the schema of the user performing the export
operation. The job name is used as the name of the master table, which controls the
export job.

The default job name is system-generated in the form SYS_EXPORT_<mode>_NN, where
NN expands to a 2-digit incrementing integer starting at 01. An example of a default
name is 'SYS_EXPORT_TABLESPACE_02'.

Example
The following example shows an export operation that is assigned a job name of exp_
job:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=exp_job.dmp JOB_NAME=exp_job
NOLOGFILE=YES

KEEP_MASTER
Default: NO

Purpose
Indicates whether the master table should be deleted or retained at the end of a Data
Pump job that completes successfully. The master table is automatically retained for
jobs that do not complete successfully.

Syntax and Description
KEEP_MASTER=[YES | NO]

Restrictions
■ None

Parameters Available in Export's Command-Line Mode

Data Pump Export 2-29

Example
> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=expdat.dmp SCHEMAS=hr KEEP_MASTER=YES

LOGFILE
Default: export.log

Purpose
Specifies the name, and optionally, a directory, for the log file of the export job.

Syntax and Description
LOGFILE=[directory_object:]file_name

You can specify a database directory_object previously established by the DBA,
assuming that you have access to it. This overrides the directory object specified with
the DIRECTORY parameter.

The file_name specifies a name for the log file. The default behavior is to create a file
named export.log in the directory referenced by the directory object specified in the
DIRECTORY parameter.

All messages regarding work in progress, work completed, and errors encountered are
written to the log file. (For a real-time status of the job, use the STATUS command in
interactive mode.)

A log file is always created for an export job unless the NOLOGFILE parameter is
specified. As with the dump file set, the log file is relative to the server and not the
client.

An existing file matching the file name will be overwritten.

Restrictions
■ To perform a Data Pump Export using Oracle Automatic Storage Management

(Oracle ASM), you must specify a LOGFILE parameter that includes a directory
object that does not include the Oracle ASM + notation. That is, the log file must
be written to a disk file, and not written into the Oracle ASM storage.
Alternatively, you can specify NOLOGFILE=YES. However, this prevents the writing
of the log file.

Example
The following example shows how to specify a log file name if you do not want to use
the default:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp LOGFILE=hr_export.log

Note: Data Pump Export writes the log file using the database
character set. If your client NLS_LANG environment setting sets up a
different client character set from the database character set, then it
is possible that table names may be different in the log file than
they are when displayed on the client output screen.

Parameters Available in Export's Command-Line Mode

2-30 Oracle Database Utilities

METRICS
Default: NO

Purpose
Indicates whether additional information about the job should be reported to the Data
Pump log file.

Syntax and Description
METRICS=[YES | NO]

When METRICS=YES is used, the number of objects and the elapsed time are recorded in
the Data Pump log file.

Restrictions
■ None

Example
> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=expdat.dmp SCHEMAS=hr METRICS=YES

NETWORK_LINK
Default: There is no default

Purpose
Enables an export from a (source) database identified by a valid database link. The
data from the source database instance is written to a dump file set on the connected
database instance.

Syntax and Description
NETWORK_LINK=source_database_link

The NETWORK_LINK parameter initiates an export using a database link. This means that
the system to which the expdp client is connected contacts the source database
referenced by the source_database_link, retrieves data from it, and writes the data to
a dump file set back on the connected system.

The source_database_link provided must be the name of a database link to an
available database. If the database on that instance does not already have a database
link, then you or your DBA must create one using the SQL CREATE DATABASE LINK
statement.

If the source database is read-only, then the user on the source database must have a
locally managed temporary tablespace assigned as the default temporary tablespace.
Otherwise, the job will fail.

See Also:

■ "STATUS" on page 2-40

■ "Using Directory Objects When Oracle Automatic Storage
Management Is Enabled" on page 1-12 for information about
Oracle Automatic Storage Management and directory objects

Parameters Available in Export's Command-Line Mode

Data Pump Export 2-31

Restrictions
■ The only types of database links supported by Data Pump Export are: public, fixed

user, and connected user. Current-user database links are not supported.

■ Network exports do not support LONG columns.

■ When operating across a network link, Data Pump requires that the source and
target databases differ by no more than one version. For example, if one database
is Oracle Database 11g, then the other database must be either 11g or 10g. Note that
Data Pump checks only the major version number (for example, 10g and 11g), not
specific release numbers (for example, 10.1, 10.2, 11.1, or 11.2).

Example
The following is an example of using the NETWORK_LINK parameter. The source_
database_link would be replaced with the name of a valid database link that must
already exist.

> expdp hr DIRECTORY=dpump_dir1 NETWORK_LINK=source_database_link
 DUMPFILE=network_export.dmp LOGFILE=network_export.log

NOLOGFILE
Default: NO

Purpose
Specifies whether to suppress creation of a log file.

Syntax and Description
NOLOGFILE=[YES | NO]

Specify NOLOGFILE =YES to suppress the default behavior of creating a log file. Progress
and error information is still written to the standard output device of any attached
clients, including the client that started the original export operation. If there are no
clients attached to a running job and you specify NOLOGFILE=YES, then you run the risk
of losing important progress and error information.

Example
The following is an example of using the NOLOGFILE parameter:

Caution: If an export operation is performed over an unencrypted
network link, then all data is exported as clear text even if it is
encrypted in the database. See Oracle Database Advanced Security
Administrator's Guide for information about network security.

See Also:

■ Oracle Database Administrator's Guide for more information about
database links

■ Oracle Database SQL Language Reference for more information about
the CREATE DATABASE LINK statement

■ Oracle Database Administrator's Guide for more information about
locally managed tablespaces

Parameters Available in Export's Command-Line Mode

2-32 Oracle Database Utilities

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp NOLOGFILE=YES

This command results in a schema-mode export (the default) in which no log file is
written.

PARALLEL
Default: 1

Purpose
Specifies the maximum number of processes of active execution operating on behalf of
the export job. This execution set consists of a combination of worker processes and
parallel I/O server processes. The master control process and worker processes acting
as query coordinators in parallel query operations do not count toward this total.

This parameter enables you to make trade-offs between resource consumption and
elapsed time.

Syntax and Description
PARALLEL=integer

The value you specify for integer should be less than, or equal to, the number of files
in the dump file set (or you should specify substitution variables in the dump file
specifications). Because each active worker process or I/O server process writes
exclusively to one file at a time, an insufficient number of files can have adverse
effects. Some of the worker processes will be idle while waiting for files, thereby
degrading the overall performance of the job. More importantly, if any member of a
cooperating group of parallel I/O server processes cannot obtain a file for output, then
the export operation will be stopped with an ORA-39095 error. Both situations can be
corrected by attaching to the job using the Data Pump Export utility, adding more files
using the ADD_FILE command while in interactive mode, and in the case of a stopped
job, restarting the job.

To increase or decrease the value of PARALLEL during job execution, use
interactive-command mode. Decreasing parallelism does not result in fewer worker
processes associated with the job; it decreases the number of worker processes that
will be executing at any given time. Also, any ongoing work must reach an orderly
completion point before the decrease takes effect. Therefore, it may take a while to see
any effect from decreasing the value. Idle workers are not deleted until the job exits.

Increasing the parallelism takes effect immediately if there is work that can be
performed in parallel.

Using PARALLEL During An Export In An Oracle RAC Environment
In an Oracle Real Application Clusters (Oracle RAC) environment, if an export
operation has PARALLEL=1, then all Data Pump processes reside on the instance where
the job is started. Therefore, the directory object can point to local storage for that
instance.

If the export operation has PARALLEL set to a value greater than 1, then Data Pump
processes can reside on instances other than the one where the job was started.
Therefore, the directory object must point to shared storage that is accessible by all
instances of the Oracle RAC.

See Also: "Controlling Resource Consumption" on page 5-2

Parameters Available in Export's Command-Line Mode

Data Pump Export 2-33

Restrictions
■ This parameter is valid only in the Enterprise Edition of Oracle Database 11g.

■ To export a table or table partition in parallel (using PQ slaves), you must have the
DATAPUMP_EXP_FULL_DATABASE role.

Example
The following is an example of using the PARALLEL parameter:

> expdp hr DIRECTORY=dpump_dir1 LOGFILE=parallel_export.log
JOB_NAME=par4_job DUMPFILE=par_exp%u.dmp PARALLEL=4

This results in a schema-mode export (the default) of the hr schema in which up to
four files could be created in the path pointed to by the directory object, dpump_dir1.

PARFILE
Default: There is no default

Purpose
Specifies the name of an export parameter file.

Syntax and Description
PARFILE=[directory_path]file_name

Unlike dump files, log files, and SQL files which are created and written by the server,
the parameter file is opened and read by the expdp client. Therefore, a directory object
name is neither required nor appropriate. The default is the user's current directory.
The use of parameter files is highly recommended if you are using parameters whose
values require the use of quotation marks.

Restrictions
■ The PARFILE parameter cannot be specified within a parameter file.

Example
The content of an example parameter file, hr.par, might be as follows:

SCHEMAS=HR
DUMPFILE=exp.dmp
DIRECTORY=dpump_dir1
LOGFILE=exp.log

You could then issue the following Export command to specify the parameter file:

> expdp hr PARFILE=hr.par

See Also:

■ "DUMPFILE" on page 2-14

■ "Commands Available in Export's Interactive-Command Mode"
on page 2-47

■ "Performing a Parallel Full Database Export" on page 2-54

See Also: "Use of Quotation Marks On the Data Pump Command
Line" on page 2-7

Parameters Available in Export's Command-Line Mode

2-34 Oracle Database Utilities

QUERY
Default: There is no default

Purpose
Allows you to specify a query clause that is used to filter the data that gets exported.

Syntax and Description
QUERY = [schema.][table_name:] query_clause

The query_clause is typically a SQL WHERE clause for fine-grained row selection, but
could be any SQL clause. For example, an ORDER BY clause could be used to speed up a
migration from a heap-organized table to an index-organized table. If a schema and
table name are not supplied, then the query is applied to (and must be valid for) all
tables in the export job. A table-specific query overrides a query applied to all tables.

When the query is to be applied to a specific table, a colon must separate the table
name from the query clause. More than one table-specific query can be specified, but
only one query can be specified per table.

If the NETWORK_LINK parameter is specified along with the QUERY parameter, then any
objects specified in the query_clause that are on the remote (source) node must be
explicitly qualified with the NETWORK_LINK value. Otherwise, Data Pump assumes that
the object is on the local (target) node; if it is not, then an error is returned and the
import of the table from the remote (source) system fails.

For example, if you specify NETWORK_LINK=dblink1, then the query_clause of the
QUERY parameter must specify that link, as shown in the following example:

QUERY=(hr.employees:"WHERE last_name IN(SELECT last_name
FROM hr.employees@dblink1)")

Depending on your operating system, the use of quotation marks when you specify a
value for this parameter may also require that you use escape characters. Oracle
recommends that you place this parameter in a parameter file, which can reduce the
number of escape characters that might otherwise be needed on the command line. See
"Use of Quotation Marks On the Data Pump Command Line" on page 2-7.

To specify a schema other than your own in a table-specific query, you must be
granted access to that specific table.

Restrictions
■ The QUERY parameter cannot be used with the following parameters:

– CONTENT=METADATA_ONLY

– ESTIMATE_ONLY

– TRANSPORT_TABLESPACES

■ When the QUERY parameter is specified for a table, Data Pump uses external tables
to unload the target table. External tables uses a SQL CREATE TABLE AS SELECT
statement. The value of the QUERY parameter is the WHERE clause in the SELECT
portion of the CREATE TABLE statement. If the QUERY parameter includes references
to another table with columns whose names match the table being unloaded, and
if those columns are used in the query, then you will need to use a table alias to
distinguish between columns in the table being unloaded and columns in the
SELECT statement with the same name. The table alias used by Data Pump for the
table being unloaded is KU$.

Parameters Available in Export's Command-Line Mode

Data Pump Export 2-35

For example, suppose you want to export a subset of the sh.sales table based on
the credit limit for a customer in the sh.customers table. In the following example,
KU$ is used to qualify the cust_id field in the QUERY parameter for unloading
sh.sales. As a result, Data Pump exports only rows for customers whose credit
limit is greater than $10,000.

QUERY='sales:"WHERE EXISTS (SELECT cust_id FROM customers c
 WHERE cust_credit_limit > 10000 AND ku$.cust_id = c.cust_id)"'

If, as in the following query, KU$ is not used for a table alias, then the result will be
that all rows are unloaded:

QUERY='sales:"WHERE EXISTS (SELECT cust_id FROM customers c
 WHERE cust_credit_limit > 10000 AND cust_id = c.cust_id)"'

■ The maximum length allowed for a QUERY string is 4000 bytes including quotation
marks, which means that the actual maximum length allowed is 3998 bytes.

Example
The following is an example of using the QUERY parameter:

> expdp hr PARFILE=emp_query.par

The contents of the emp_query.par file are as follows:

QUERY=employees:"WHERE department_id > 10 AND salary > 10000"
NOLOGFILE=YES
DIRECTORY=dpump_dir1
DUMPFILE=exp1.dmp

This example unloads all tables in the hr schema, but only the rows that fit the query
expression. In this case, all rows in all tables (except employees) in the hr schema will
be unloaded. For the employees table, only rows that meet the query criteria are
unloaded.

REMAP_DATA
Default: There is no default

Purpose
The REMAP_DATA parameter allows you to specify a remap function that takes as a
source the original value of the designated column and returns a remapped value that
will replace the original value in the dump file. A common use for this option is to
mask data when moving from a production system to a test system. For example, a
column of sensitive customer data such as credit card numbers could be replaced with
numbers generated by a REMAP_DATA function. This would allow the data to retain its
essential formatting and processing characteristics without exposing private data to
unauthorized personnel.

The same function can be applied to multiple columns being dumped. This is useful
when you want to guarantee consistency in remapping both the child and parent
column in a referential constraint.

Syntax and Description
REMAP_DATA=[schema.]tablename.column_name:[schema.]pkg.function

The description of each syntax element, in the order in which they appear in the
syntax, is as follows:

Parameters Available in Export's Command-Line Mode

2-36 Oracle Database Utilities

schema -- the schema containing the table to be remapped. By default, this is the
schema of the user doing the export.

tablename -- the table whose column will be remapped.

column_name -- the column whose data is to be remapped. The maximum number of
columns that can be remapped for a single table is 10.

schema -- the schema containing the PL/SQL package you have created that contains
the remapping function. As a default, this is the schema of the user doing the export.

pkg -- the name of the PL/SQL package you have created that contains the remapping
function.

function -- the name of the function within the PL/SQL that will be called to remap the
column table in each row of the specified table.

Restrictions
■ The datatypes of the source argument and the returned value should both match

the data type of the designated column in the table.

■ Remapping functions should not perform commits or rollbacks except in
autonomous transactions.

■ The maximum number of columns you can remap on a single table is 10. You can
remap 9 columns on table a and 8 columns on table b, and so on, but the
maximum for each table is 10.

■ The use of synonyms as values for the REMAP_DATA parameter is not supported. For
example, if the regions table in the hr schema had a synonym of regn, an error
would be returned if you specified regn as part of the REMPA_DATA specification.

■ Remapping LOB column data of a remote table is not supported.

Example
The following example assumes a package named remap has been created that
contains functions named minus10 and plusx which change the values for employee_
id and first_name in the employees table.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=remap1.dmp TABLES=employees
REMAP_DATA=hr.employees.employee_id:hr.remap.minus10
REMAP_DATA=hr.employees.first_name:hr.remap.plusx

REUSE_DUMPFILES
Default: NO

Purpose
Specifies whether to overwrite a preexisting dump file.

Syntax and Description
REUSE_DUMPFILES=[YES | NO]

Normally, Data Pump Export will return an error if you specify a dump file name that
already exists. The REUSE_DUMPFILES parameter allows you to override that behavior
and reuse a dump file name. For example, if you performed an export and specified
DUMPFILE=hr.dmp and REUSE_DUMPFILES=YES, then hr.dmp would be overwritten if it
already existed. Its previous contents would be lost and it would contain data for the
current export instead.

Parameters Available in Export's Command-Line Mode

Data Pump Export 2-37

Example
The following export operation creates a dump file named enc1.dmp, even if a dump
file with that name already exists.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=enc1.dmp
TABLES=employees REUSE_DUMPFILES=YES

SAMPLE
Default: There is no default

Purpose
Allows you to specify a percentage of the data rows to be sampled and unloaded from
the source database.

Syntax and Description
SAMPLE=[[schema_name.]table_name:]sample_percent

This parameter allows you to export subsets of data by specifying the percentage of
data to be sampled and exported. The sample_percent indicates the probability that a
row will be selected as part of the sample. It does not mean that the database will
retrieve exactly that amount of rows from the table. The value you supply for sample_
percent can be anywhere from .000001 up to, but not including, 100.

The sample_percent can be applied to specific tables. In the following example, 50% of
the HR.EMPLOYEES table will be exported:

SAMPLE="HR"."EMPLOYEES":50

If you specify a schema, then you must also specify a table. However, you can specify
a table without specifying a schema; the current user will be assumed. If no table is
specified, then the sample_percent value applies to the entire export job.

Note that you can use this parameter with the Data Pump Import PCTSPACE transform,
so that the size of storage allocations matches the sampled data subset. (See
"TRANSFORM" on page 3-46.)

Restrictions
■ The SAMPLE parameter is not valid for network exports.

Example
In the following example, the value 70 for SAMPLE is applied to the entire export job
because no table name is specified.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=sample.dmp SAMPLE=70

SCHEMAS
Default: current user's schema

Purpose
Specifies that you want to perform a schema-mode export. This is the default mode for
Export.

Syntax and Description
SCHEMAS=schema_name [, ...]

Parameters Available in Export's Command-Line Mode

2-38 Oracle Database Utilities

If you have the DATAPUMP_EXP_FULL_DATABASE role, then you can specify a single
schema other than your own or a list of schema names. The DATAPUMP_EXP_FULL_
DATABASE role also allows you to export additional nonschema object information for
each specified schema so that the schemas can be re-created at import time. This
additional information includes the user definitions themselves and all associated
system and role grants, user password history, and so on. Filtering can further restrict
what is exported using schema mode (see "Filtering During Export Operations" on
page 2-6).

Restrictions
■ If you do not have the DATAPUMP_EXP_FULL_DATABASE role, then you can specify

only your own schema.

■ The SYS schema cannot be used as a source schema for export jobs.

Example
The following is an example of using the SCHEMAS parameter. Note that user hr is
allowed to specify more than one schema because the DATAPUMP_EXP_FULL_DATABASE
role was previously assigned to it for the purpose of these examples.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=expdat.dmp SCHEMAS=hr,sh,oe

This results in a schema-mode export in which the schemas, hr, sh, and oe will be
written to the expdat.dmp dump file located in the dpump_dir1 directory.

SERVICE_NAME
Default: There is no default

Purpose
Used to specify a service name to be used in conjunction with the CLUSTER parameter.

Syntax and Description
SERVICE_NAME=name

The SERVICE_NAME parameter can be used with the CLUSTER=YES parameter to specify
an existing service associated with a resource group that defines a set of Oracle Real
Application Clusters (Oracle RAC) instances belonging to that resource group,
typically a subset of all the Oracle RAC instances.

The service name is only used to determine the resource group and instances defined
for that resource group. The instance where the job is started is always used,
regardless of whether it is part of the resource group.

The SERVICE_NAME parameter is ignored if CLUSTER=NO is also specified.

Suppose you have an Oracle RAC configuration containing instances A, B, C, and D.
Also suppose that a service named my_service exists with a resource group consisting
of instances A, B, and C only. In such a scenario, the following would be true:

■ If you start a Data Pump job on instance A and specify CLUSTER=YES (or accept the
default, which is Y) and you do not specify the SERVICE_NAME parameter, then Data
Pump creates workers on all instances: A, B, C, and D, depending on the degree of
parallelism specified.

Parameters Available in Export's Command-Line Mode

Data Pump Export 2-39

■ If you start a Data Pump job on instance A and specify CLUSTER=YES and SERVICE_
NAME=my_service, then workers can be started on instances A, B, and C only.

■ If you start a Data Pump job on instance D and specify CLUSTER=YES and SERVICE_
NAME=my_service, then workers can be started on instances A, B, C, and D. Even
though instance D is not in my_service it is included because it is the instance on
which the job was started.

■ If you start a Data Pump job on instance A and specify CLUSTER=NO, then any
SERVICE_NAME parameter you specify is ignored and all processes will start on
instance A.

Example
The following is an example of using the SERVICE_NAME parameter:

expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr_svname2.dmp SERVICE_NAME=sales

This example starts a schema-mode export (the default mode) of the hr schema. Even
though CLUSTER=YES is not specified on the command line, it is the default behavior, so
the job will use all instances in the resource group associated with the service name
sales. A dump file named hr_svname2.dmp will be written to the location specified by
the dpump_dir1 directory object.

SOURCE_EDITION
Default: the default database edition on the system

Purpose
Specifies the database edition from which objects will be exported.

Syntax and Description
SOURCE_EDITION=edition_name

If SOURCE_EDITION=edition_name is specified, then the objects from that edition are
exported. Data Pump selects all inherited objects that have not changed and all actual
objects that have changed.

If this parameter is not specified, then the default edition is used. If the specified
edition does not exist or is not usable, then an error message is returned.

Restrictions
■ This parameter is only useful if there are two or more versions of the same

versionable objects in the database.

■ The job version must be 11.2 or higher. See "VERSION" on page 2-46.

See Also: "CLUSTER" on page 2-10

See Also:

■ Oracle Database SQL Language Reference for information about how
editions are created

■ Oracle Database Advanced Application Developer's Guide for more
information about the editions feature, including inherited and
actual objects

Parameters Available in Export's Command-Line Mode

2-40 Oracle Database Utilities

Example
The following is an example of using the SOURCE_EDITION parameter:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=exp_dat.dmp SOURCE_EDITION=exp_edition
EXCLUDE=USER

This example assumes the existence of an edition named exp_edition on the system
from which objects are being exported. Because no export mode is specified, the
default of schema mode will be used. The EXCLUDE=user parameter excludes only the
definitions of users, not the objects contained within users' schemas.

STATUS
Default: 0

Purpose
Specifies the frequency at which the job status display is updated.

Syntax and Description
STATUS=[integer]

If you supply a value for integer, it specifies how frequently, in seconds, job status
should be displayed in logging mode. If no value is entered or if the default value of 0
is used, then no additional information is displayed beyond information about the
completion of each object type, table, or partition.

This status information is written only to your standard output device, not to the log
file (if one is in effect).

Example
The following is an example of using the STATUS parameter.

> expdp hr DIRECTORY=dpump_dir1 SCHEMAS=hr,sh STATUS=300

This example will export the hr and sh schemas and display the status of the export
every 5 minutes (60 seconds x 5 = 300 seconds).

TABLES
Default: There is no default

Purpose
Specifies that you want to perform a table-mode export.

Syntax and Description
TABLES=[schema_name.]table_name[:partition_name] [, ...]

Filtering can restrict what is exported using this mode (see "Filtering During Export
Operations" on page 2-6). You can filter the data and metadata that is exported, by
specifying a comma-delimited list of tables and partitions or subpartitions. If a
partition name is specified, then it must be the name of a partition or subpartition in
the associated table. Only the specified set of tables, partitions, and their dependent
objects are unloaded.

Parameters Available in Export's Command-Line Mode

Data Pump Export 2-41

If an entire partitioned table is exported, then it will be imported in its entirety, as a
partitioned table. The only case in which this is not true is if PARTITION_
OPTIONS=DEPARTITION is specified during import.

The table name that you specify can be preceded by a qualifying schema name. The
schema defaults to that of the current user. To specify a schema other than your own,
you must have the DATAPUMP_EXP_FULL_DATABASE role.

Use of the wildcard character, %, to specify table names and partition names is
supported.

The following restrictions apply to table names:

■ By default, table names in a database are stored as uppercase. If you have a table
name in mixed-case or lowercase, and you want to preserve case-sensitivity for the
table name, then you must enclose the name in quotation marks. The name must
exactly match the table name stored in the database.

Some operating systems require that quotation marks on the command line be
preceded by an escape character. The following are examples of how
case-sensitivity can be preserved in the different Export modes.

– In command-line mode:

TABLES='\"Emp\"'

– In parameter file mode:

TABLES='"Emp"'

■ Table names specified on the command line cannot include a pound sign (#),
unless the table name is enclosed in quotation marks. Similarly, in the parameter
file, if a table name includes a pound sign (#), then the Export utility interprets the
rest of the line as a comment, unless the table name is enclosed in quotation marks.

For example, if the parameter file contains the following line, then Export
interprets everything on the line after emp# as a comment and does not export the
tables dept and mydata:

TABLES=(emp#, dept, mydata)

However, if the parameter file contains the following line, then the Export utility
exports all three tables because emp# is enclosed in quotation marks:

TABLES=('"emp#"', dept, mydata)

Using the Transportable Option During Table-Mode Export
To use the transportable option during a table-mode export, specify the
TRANSPORTABLE=ALWAYS parameter with the TABLES parameter. Metadata for the

Note: Some operating systems require single quotation marks
rather than double quotation marks, or the reverse. See your Oracle
operating system-specific documentation. Different operating
systems also have other restrictions on table naming.

For example, the UNIX C shell attaches a special meaning to a
dollar sign ($) or pound sign (#) (or certain other special
characters). You must use escape characters to get such characters
in the name past the shell and into Export.

Parameters Available in Export's Command-Line Mode

2-42 Oracle Database Utilities

specified tables, partitions, or subpartitions is exported to the dump file. To move the
actual data, you copy the data files to the target database.

If only a subset of a table's partitions are exported and the TRANSPORTABLE=ALWAYS
parameter is used, then on import each partition becomes a non-partitioned table.

Restrictions
■ Cross-schema references are not exported. For example, a trigger defined on a

table within one of the specified schemas, but that resides in a schema not
explicitly specified, is not exported.

■ Types used by the table are not exported in table mode. This means that if you
subsequently import the dump file and the type does not already exist in the
destination database, then the table creation will fail.

■ The use of synonyms as values for the TABLES parameter is not supported. For
example, if the regions table in the hr schema had a synonym of regn, then it
would not be valid to use TABLES=regn. An error would be returned.

■ The export of tables that include a wildcard character, %, in the table name is not
supported if the table has partitions.

■ The length of the table name list specified for the TABLES parameter is limited to a
maximum of 4 MB, unless you are using the NETWORK_LINK parameter to an Oracle
Database release 10.2.0.3 or earlier or to a read-only database. In such cases, the
limit is 4 KB.

■ You can only specify partitions from one table if TRANSPORTABLE=ALWAYS is also set
on the export.

Examples
The following example shows a simple use of the TABLES parameter to export three
tables found in the hr schema: employees, jobs, and departments. Because user hr is
exporting tables found in the hr schema, the schema name is not needed before the
table names.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=tables.dmp
TABLES=employees,jobs,departments

The following example assumes that user hr has the DATAPUMP_EXP_FULL_DATABASE
role. It shows the use of the TABLES parameter to export partitions.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=tables_part.dmp
TABLES=sh.sales:sales_Q1_2008,sh.sales:sales_Q2_2008

This example exports the partitions, sales_Q1_2008 and sales_Q2_2008, from the table
sales in the schema sh.

TABLESPACES
Default: There is no default

See Also:

■ "TRANSPORTABLE" on page 2-45

■ The Import "REMAP_TABLE" command on page 3-35

■ "Using Data File Copying to Move Data" on page 1-2

Parameters Available in Export's Command-Line Mode

Data Pump Export 2-43

Purpose
Specifies a list of tablespace names to be exported in tablespace mode.

Syntax and Description
TABLESPACES=tablespace_name [, ...]

In tablespace mode, only the tables contained in a specified set of tablespaces are
unloaded. If a table is unloaded, then its dependent objects are also unloaded. Both
object metadata and data are unloaded. If any part of a table resides in the specified
set, then that table and all of its dependent objects are exported. Privileged users get all
tables. Unprivileged users get only the tables in their own schemas

Filtering can restrict what is exported using this mode (see "Filtering During Export
Operations" on page 2-6).

Restrictions
■ The length of the tablespace name list specified for the TABLESPACES parameter is

limited to a maximum of 4 MB, unless you are using the NETWORK_LINK to an
Oracle Database release 10.2.0.3 or earlier or to a read-only database. In such cases,
the limit is 4 KB.

Example
The following is an example of using the TABLESPACES parameter. The example
assumes that tablespaces tbs_4, tbs_5, and tbs_6 already exist.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=tbs.dmp
TABLESPACES=tbs_4, tbs_5, tbs_6

This results in a tablespace export in which tables (and their dependent objects) from
the specified tablespaces (tbs_4, tbs_5, and tbs_6) will be unloaded.

TRANSPORT_FULL_CHECK
Default: NO

Purpose
Specifies whether to check for dependencies between those objects inside the
transportable set and those outside the transportable set. This parameter is applicable
only to a transportable-tablespace mode export.

Syntax and Description
TRANSPORT_FULL_CHECK=[YES | NO]

If TRANSPORT_FULL_CHECK=YES, then Export verifies that there are no dependencies
between those objects inside the transportable set and those outside the transportable
set. The check addresses two-way dependencies. For example, if a table is inside the
transportable set but its index is not, then a failure is returned and the export
operation is terminated. Similarly, a failure is also returned if an index is in the
transportable set but the table is not.

If TRANSPORT_FULL_CHECK=NO, then Export verifies only that there are no objects
within the transportable set that are dependent on objects outside the transportable
set. This check addresses a one-way dependency. For example, a table is not
dependent on an index, but an index is dependent on a table, because an index
without a table has no meaning. Therefore, if the transportable set contains a table, but

Parameters Available in Export's Command-Line Mode

2-44 Oracle Database Utilities

not its index, then this check succeeds. However, if the transportable set contains an
index, but not the table, then the export operation is terminated.

There are other checks performed as well. For instance, export always verifies that all
storage segments of all tables (and their indexes) defined within the tablespace set
specified by TRANSPORT_TABLESPACES are actually contained within the tablespace set.

Example
The following is an example of using the TRANSPORT_FULL_CHECK parameter. It assumes
that tablespace tbs_1 exists.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=tts.dmp
TRANSPORT_TABLESPACES=tbs_1 TRANSPORT_FULL_CHECK=YES LOGFILE=tts.log

TRANSPORT_TABLESPACES
Default: There is no default

Purpose
Specifies that you want to perform an export in transportable-tablespace mode.

Syntax and Description
TRANSPORT_TABLESPACES=tablespace_name [, ...]

Use the TRANSPORT_TABLESPACES parameter to specify a list of tablespace names for
which object metadata will be exported from the source database into the target
database.

The log file for the export lists the data files that are used in the transportable set, the
dump files, and any containment violations.

The TRANSPORT_TABLESPACES parameter exports metadata for all objects within the
specified tablespaces. If you want to perform a transportable export of only certain
tables, partitions, or subpartitions, then you must use the TABLES parameter with the
TRANSPORTABLE=ALWAYS parameter.

Restrictions
■ Transportable jobs are not restartable.

■ Transportable jobs are restricted to a degree of parallelism of 1.

■ Transportable tablespace mode requires that you have the DATAPUMP_EXP_FULL_
DATABASE role.

■ Transportable mode does not support encrypted columns.

■ The default tablespace of the user performing the export must not be set to one of
the tablespaces being transported.

■ The SYS and SYSAUX tablespaces are not transportable.

■ All tablespaces in the transportable set must be set to read-only.

Note: You cannot export transportable tablespaces and then import
them into a database at a lower release level. The target database must
be at the same or higher release level as the source database.

Parameters Available in Export's Command-Line Mode

Data Pump Export 2-45

■ If the Data Pump Export VERSION parameter is specified along with the
TRANSPORT_TABLESPACES parameter, then the version must be equal to or greater
than the Oracle Database COMPATIBLE initialization parameter.

■ The TRANSPORT_TABLESPACES parameter cannot be used in conjunction with the
QUERY parameter.

Example 1
The following is an example of using the TRANSPORT_TABLESPACES parameter in a
file-based job (rather than network-based). The tablespace tbs_1 is the tablespace
being moved. This example assumes that tablespace tbs_1 exists and that it has been
set to read-only. This example also assumes that the default tablespace was changed
before this export command was issued.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=tts.dmp
TRANSPORT_TABLESPACES=tbs_1 TRANSPORT_FULL_CHECK=YES LOGFILE=tts.log

TRANSPORTABLE
Default: NEVER

Purpose
Specifies whether the transportable option should be used during a table mode export
(specified with the TABLES parameter) to export metadata for specific tables, partitions,
and subpartitions.

Syntax and Description
TRANSPORTABLE = [ALWAYS | NEVER]

The definitions of the allowed values are as follows:

ALWAYS - Instructs the export job to use the transportable option. If transportable is not
possible, then the job will fail. The transportable option exports only metadata for the
specified tables, partitions, or subpartitions specified by the TABLES parameter. You
must copy the actual data files to the target database. See "Using Data File Copying to
Move Data" on page 1-2.

NEVER - Instructs the export job to use either the direct path or external table method to
unload data rather than the transportable option. This is the default.

■ If only a subset of a table's partitions are exported and the TRANSPORTABLE=ALWAYS
parameter is used, then on import each partition becomes a non-partitioned table.

See Also:

■ "Transportable Tablespace Mode" on page 2-4

■ "Using Data File Copying to Move Data" on page 1-2

■ "Considerations for Time Zone File Versions in Transportable
Tablespace Mode" on page 2-4

■ Oracle Database Administrator's Guide for detailed information
about transporting tablespaces between databases

Note: If you want to export an entire tablespace in transportable
mode, then use the TRANSPORT_TABLESPACES parameter.

Parameters Available in Export's Command-Line Mode

2-46 Oracle Database Utilities

■ If only a subset of a table's partitions are exported and the TRANSPORTABLE
parameter is not used at all or is set to NEVER (the default), then on import:

– If PARTITION_OPTIONS=DEPARTITION is used, then each partition included in
the dump file set is created as a non-partitioned table.

– If PARTITION_OPTIONS is not used, then the complete table is created. That is,
all the metadata for the complete table is present so that the table definition
looks the same on the target system as it did on the source. But only the data
that was exported for the specified partitions is inserted into the table.

Restrictions
■ The TRANSPORTABLE parameter is only valid in table mode exports.

■ The user performing a transportable export requires the DATAPUMP_EXP_FULL_
DATABASE privilege.

■ Tablespaces associated with tables, partitions, and subpartitions must be
read-only.

■ Transportable mode does not export any data. Data is copied when the tablespace
data files are copied from the source system to the target system. The tablespaces
that must be copied are listed at the end of the log file for the export operation.

■ To make use of the TRANSPORTABLE parameter, the COMPATIBLE initialization
parameter must be set to at least 11.0.0.

■ The default tablespace of the user performing the export must not be set to one of
the tablespaces being transported.

Example
The following example assumes that the sh user has the DATAPUMP_EXP_FULL_DATABASE
role and that table sales2 is partitioned and contained within tablespace tbs2. (The
tbs2 tablespace must be set to read-only in the source database.)

> expdp sh DIRECTORY=dpump_dir1 DUMPFILE=tto1.dmp
TABLES=sh.sales2 TRANSPORTABLE=ALWAYS

After the export completes successfully, you must copy the data files to the target
database area. You could then perform an import operation using the PARTITION_
OPTIONS and REMAP_SCHEMA parameters to make each of the partitions in sales2 its
own table.

> impdp system PARTITION_OPTIONS=DEPARTITION
TRANSPORT_DATAFILES=oracle/dbs/tbs2 DIRECTORY=dpump_dir1
DUMPFILE=tto1.dmp REMAP_SCHEMA=sh:dp

VERSION
Default: COMPATIBLE

Purpose
Specifies the version of database objects to be exported (that is, only database objects
and attributes that are compatible with the specified release will be exported). This can
be used to create a dump file set that is compatible with a previous release of Oracle
Database. Note that this does not mean that Data Pump Export can be used with
releases of Oracle Database prior to Oracle Database 10g release 1 (10.1). Data Pump
Export only works with Oracle Database 10g release 1 (10.1) or later. The VERSION
parameter simply allows you to identify the version of the objects being exported.

Commands Available in Export's Interactive-Command Mode

Data Pump Export 2-47

Syntax and Description
VERSION=[COMPATIBLE | LATEST | version_string]

The legal values for the VERSION parameter are as follows:

■ COMPATIBLE - This is the default value. The version of the metadata corresponds to
the database compatibility level. Database compatibility must be set to 9.2 or
higher.

■ LATEST - The version of the metadata corresponds to the database release.

■ version_string - A specific database release (for example, 11.2.0). In Oracle
Database 11g, this value cannot be lower than 9.2.

Database objects or attributes that are incompatible with the specified release will not
be exported. For example, tables containing new datatypes that are not supported in
the specified release will not be exported.

Restrictions
■ Exporting a table with archived LOBs to a database release earlier than 11.2 is not

allowed.

■ If the Data Pump Export VERSION parameter is specified along with the
TRANSPORT_TABLESPACES parameter, then the value must be equal to or greater
than the Oracle Database COMPATIBLE initialization parameter.

Example
The following example shows an export for which the version of the metadata will
correspond to the database release:

> expdp hr TABLES=hr.employees VERSION=LATEST DIRECTORY=dpump_dir1
DUMPFILE=emp.dmp NOLOGFILE=YES

Commands Available in Export's Interactive-Command Mode
In interactive-command mode, the current job continues running, but logging to the
terminal is suspended and the Export prompt (Export>) is displayed.

To start interactive-command mode, do one of the following:

■ From an attached client, press Ctrl+C.

■ From a terminal other than the one on which the job is running, specify the ATTACH
parameter in an expdp command to attach to the job. This is a useful feature in
situations in which you start a job at one location and need to check on it at a later
time from a different location.

Table 2–1 lists the activities you can perform for the current job from the Data Pump
Export prompt in interactive-command mode.

See Also: "Moving Data Between Different Database Releases" on
page 1-13

Table 2–1 Supported Activities in Data Pump Export's Interactive-Command Mode

Activity Command Used

Add additional dump files. ADD_FILE on page 2-48

Exit interactive mode and enter logging mode. CONTINUE_CLIENT on
page 2-49

Commands Available in Export's Interactive-Command Mode

2-48 Oracle Database Utilities

The following are descriptions of the commands available in the interactive-command
mode of Data Pump Export.

ADD_FILE

Purpose
Adds additional files or substitution variables to the export dump file set.

Syntax and Description
ADD_FILE=[directory_object:]file_name [,...]

Each file name can have a different directory object. If no directory object is specified,
then the default is assumed.

The file_name must not contain any directory path information. However, it can
include a substitution variable, %U, which indicates that multiple files may be
generated using the specified file name as a template.

The size of the file being added is determined by the setting of the FILESIZE
parameter.

Example
The following example adds two dump files to the dump file set. A directory object is
not specified for the dump file named hr2.dmp, so the default directory object for the
job is assumed. A different directory object, dpump_dir2, is specified for the dump file
named hr3.dmp.

Export> ADD_FILE=hr2.dmp, dpump_dir2:hr3.dmp

Stop the export client session, but leave the job running. EXIT_CLIENT on page 2-49

Redefine the default size to be used for any subsequent
dump files.

FILESIZE on page 2-49

Display a summary of available commands. HELP on page 2-50

Detach all currently attached client sessions and terminate
the current job.

KILL_JOB on page 2-50

Increase or decrease the number of active worker processes
for the current job. This command is valid only in the
Enterprise Edition of Oracle Database 11g.

PARALLEL on page 2-50

Restart a stopped job to which you are attached. START_JOB on page 2-51

Display detailed status for the current job and/or set status
interval.

STATUS on page 2-51

Stop the current job for later restart. STOP_JOB on page 2-52

See Also: "File Allocation" on page 1-10 for information about the
effects of using substitution variables

Table 2–1 (Cont.) Supported Activities in Data Pump Export's Interactive-Command

Activity Command Used

Commands Available in Export's Interactive-Command Mode

Data Pump Export 2-49

CONTINUE_CLIENT

Purpose
Changes the Export mode from interactive-command mode to logging mode.

Syntax and Description
CONTINUE_CLIENT

In logging mode, status is continually output to the terminal. If the job is currently
stopped, then CONTINUE_CLIENT will also cause the client to attempt to start the job.

Example
Export> CONTINUE_CLIENT

EXIT_CLIENT

Purpose
Stops the export client session, exits Export, and discontinues logging to the terminal,
but leaves the current job running.

Syntax and Description
EXIT_CLIENT

Because EXIT_CLIENT leaves the job running, you can attach to the job at a later time.
To see the status of the job, you can monitor the log file for the job or you can query the
USER_DATAPUMP_JOBS view or the V$SESSION_LONGOPS view.

Example
Export> EXIT_CLIENT

FILESIZE

Purpose
Redefines the maximum size of subsequent dump files. If the size is reached for any
member of the dump file set, then that file is closed and an attempt is made to create a
new file, if the file specification contains a substitution variable or if additional dump
files have been added to the job.

Syntax and Description
FILESIZE=integer[B | KB | MB | GB | TB]

The integer can be immediately followed (do not insert a space) by B, KB, MB, GB, or TB
(indicating bytes, kilobytes, megabytes, gigabytes, and terabytes respectively). Bytes is
the default. The actual size of the resulting file may be rounded down slightly to
match the size of the internal blocks used in dump files.

A file size of 0 is equivalent to the maximum file size of 16 TB.

Restrictions
■ The minimum size for a file is ten times the default Data Pump block size, which is

4 kilobytes.

Commands Available in Export's Interactive-Command Mode

2-50 Oracle Database Utilities

■ The maximum size for a file is 16 terabytes.

Example
Export> FILESIZE=100MB

HELP

Purpose
Provides information about Data Pump Export commands available in
interactive-command mode.

Syntax and Description
HELP

Displays information about the commands available in interactive-command mode.

Example
Export> HELP

KILL_JOB

Purpose
Detaches all currently attached client sessions and then terminates the current job. It
exits Export and returns to the terminal prompt.

Syntax and Description
KILL_JOB

A job that is terminated using KILL_JOB cannot be restarted. All attached clients,
including the one issuing the KILL_JOB command, receive a warning that the job is
being terminated by the current user and are then detached. After all clients are
detached, the job's process structure is immediately run down and the master table
and dump files are deleted. Log files are not deleted.

Example
Export> KILL_JOB

PARALLEL

Purpose
Enables you to increase or decrease the number of active processes (worker and
parallel slaves) for the current job.

Syntax and Description
PARALLEL=integer

PARALLEL is available as both a command-line parameter and as an
interactive-command mode parameter. You set it to the desired number of parallel
processes (worker and parallel slaves). An increase takes effect immediately if there
are sufficient files and resources. A decrease does not take effect until an existing

Commands Available in Export's Interactive-Command Mode

Data Pump Export 2-51

process finishes its current task. If the value is decreased, then workers are idled but
not deleted until the job exits.

Restrictions
■ This parameter is valid only in the Enterprise Edition of Oracle Database 11g.

Example
Export> PARALLEL=10

START_JOB

Purpose
Starts the current job to which you are attached.

Syntax and Description
START_JOB

The START_JOB command restarts the current job to which you are attached (the job
cannot be currently executing). The job is restarted with no data loss or corruption
after an unexpected failure or after you issued a STOP_JOB command, provided the
dump file set and master table have not been altered in any way.

Exports done in transportable-tablespace mode are not restartable.

Example
Export> START_JOB

STATUS

Purpose
Displays cumulative status of the job, a description of the current operation, and an
estimated completion percentage. It also allows you to reset the display interval for
logging mode status.

Syntax and Description
STATUS[=integer]

You have the option of specifying how frequently, in seconds, this status should be
displayed in logging mode. If no value is entered or if the default value of 0 is used,
then the periodic status display is turned off and status is displayed only once.

This status information is written only to your standard output device, not to the log
file (even if one is in effect).

Example
The following example will display the current job status and change the logging
mode display interval to five minutes (300 seconds):

Export> STATUS=300

See Also: "PARALLEL" on page 2-32 for more information about
parallelism

Examples of Using Data Pump Export

2-52 Oracle Database Utilities

STOP_JOB

Purpose
Stops the current job either immediately or after an orderly shutdown, and exits
Export.

Syntax and Description
STOP_JOB[=IMMEDIATE]

If the master table and dump file set are not disturbed when or after the STOP_JOB
command is issued, then the job can be attached to and restarted at a later time with
the START_JOB command.

To perform an orderly shutdown, use STOP_JOB (without any associated value). A
warning requiring confirmation will be issued. An orderly shutdown stops the job
after worker processes have finished their current tasks.

To perform an immediate shutdown, specify STOP_JOB=IMMEDIATE. A warning
requiring confirmation will be issued. All attached clients, including the one issuing
the STOP_JOB command, receive a warning that the job is being stopped by the current
user and they will be detached. After all clients are detached, the process structure of
the job is immediately run down. That is, the master process will not wait for the
worker processes to finish their current tasks. There is no risk of corruption or data
loss when you specify STOP_JOB=IMMEDIATE. However, some tasks that were
incomplete at the time of shutdown may have to be redone at restart time.

Example
Export> STOP_JOB=IMMEDIATE

Examples of Using Data Pump Export
This section provides the following examples of using Data Pump Export:

■ Performing a Table-Mode Export

■ Data-Only Unload of Selected Tables and Rows

■ Estimating Disk Space Needed in a Table-Mode Export

■ Performing a Schema-Mode Export

■ Performing a Parallel Full Database Export

■ Using Interactive Mode to Stop and Reattach to a Job

For information that will help you to successfully use these examples, see "Using the
Export Parameter Examples" on page 2-8.

Performing a Table-Mode Export
Example 2–1 shows a table-mode export, specified using the TABLES parameter. Issue
the following Data Pump export command to perform a table export of the tables
employees and jobs from the human resources (hr) schema:

Example 2–1 Performing a Table-Mode Export

expdp hr TABLES=employees,jobs DUMPFILE=dpump_dir1:table.dmp NOLOGFILE=YES

Examples of Using Data Pump Export

Data Pump Export 2-53

Because user hr is exporting tables in his own schema, it is not necessary to specify the
schema name for the tables. The NOLOGFILE=YES parameter indicates that an Export log
file of the operation will not be generated.

Data-Only Unload of Selected Tables and Rows
Example 2–2 shows the contents of a parameter file (exp.par) that you could use to
perform a data-only unload of all tables in the human resources (hr) schema except for
the tables countries and regions. Rows in the employees table are unloaded that have
a department_id other than 50. The rows are ordered by employee_id.

Example 2–2 Data-Only Unload of Selected Tables and Rows

DIRECTORY=dpump_dir1
DUMPFILE=dataonly.dmp
CONTENT=DATA_ONLY
EXCLUDE=TABLE:"IN ('COUNTRIES', 'REGIONS')"
QUERY=employees:"WHERE department_id !=50 ORDER BY employee_id"

You can issue the following command to execute the exp.par parameter file:

> expdp hr PARFILE=exp.par

A schema-mode export (the default mode) is performed, but the CONTENT parameter
effectively limits the export to an unload of just the table's data. The DBA previously
created the directory object dpump_dir1 which points to the directory on the server
where user hr is authorized to read and write export dump files. The dump file
dataonly.dmp is created in dpump_dir1.

Estimating Disk Space Needed in a Table-Mode Export
Example 2–3 shows the use of the ESTIMATE_ONLY parameter to estimate the space that
would be consumed in a table-mode export, without actually performing the export
operation. Issue the following command to use the BLOCKS method to estimate the
number of bytes required to export the data in the following three tables located in the
human resource (hr) schema: employees, departments, and locations.

Example 2–3 Estimating Disk Space Needed in a Table-Mode Export

> expdp hr DIRECTORY=dpump_dir1 ESTIMATE_ONLY=YES TABLES=employees,
departments, locations LOGFILE=estimate.log

The estimate is printed in the log file and displayed on the client's standard output
device. The estimate is for table row data only; it does not include metadata.

Performing a Schema-Mode Export
Example 2–4 shows a schema-mode export of the hr schema. In a schema-mode
export, only objects belonging to the corresponding schemas are unloaded. Because
schema mode is the default mode, it is not necessary to specify the SCHEMAS parameter
on the command line, unless you are specifying more than one schema or a schema
other than your own.

Example 2–4 Performing a Schema Mode Export

> expdp hr DUMPFILE=dpump_dir1:expschema.dmp LOGFILE=dpump_dir1:expschema.log

Syntax Diagrams for Data Pump Export

2-54 Oracle Database Utilities

Performing a Parallel Full Database Export
Example 2–5 shows a full database Export that will have up to 3 parallel processes
(worker or PQ slaves).

Example 2–5 Parallel Full Export

> expdp hr FULL=YES DUMPFILE=dpump_dir1:full1%U.dmp, dpump_dir2:full2%U.dmp
FILESIZE=2G PARALLEL=3 LOGFILE=dpump_dir1:expfull.log JOB_NAME=expfull

Because this is a full database export, all data and metadata in the database will be
exported. Dump files full101.dmp, full201.dmp, full102.dmp, and so on will be created
in a round-robin fashion in the directories pointed to by the dpump_dir1 and dpump_
dir2 directory objects. For best performance, these should be on separate I/O
channels. Each file will be up to 2 gigabytes in size, as necessary. Initially, up to three
files will be created. More files will be created, if needed. The job and master table will
have a name of expfull. The log file will be written to expfull.log in the dpump_dir1
directory.

Using Interactive Mode to Stop and Reattach to a Job
To start this example, reexecute the parallel full export in Example 2–5. While the
export is running, press Ctrl+C. This will start the interactive-command interface of
Data Pump Export. In the interactive interface, logging to the terminal stops and the
Export prompt is displayed.

Example 2–6 Stopping and Reattaching to a Job

At the Export prompt, issue the following command to stop the job:

Export> STOP_JOB=IMMEDIATE
Are you sure you wish to stop this job ([y]/n): y

The job is placed in a stopped state and exits the client.

Enter the following command to reattach to the job you just stopped:

> expdp hr ATTACH=EXPFULL

After the job status is displayed, you can issue the CONTINUE_CLIENT command to
resume logging mode and restart the expfull job.

Export> CONTINUE_CLIENT

A message is displayed that the job has been reopened, and processing status is output
to the client.

Syntax Diagrams for Data Pump Export
This section provides syntax diagrams for Data Pump Export. These diagrams use
standard SQL syntax notation. For more information about SQL syntax notation, see
Oracle Database SQL Language Reference.

Syntax Diagrams for Data Pump Export

Data Pump Export 2-55

ExpInit

ExpStart

ExpModes

expdp

HELP =
YES

NO

username / password
@ connect_identifier AS SYSDBA

ExpStart

ExpModes ExpOpts ExpFileOpts

ATTACH
=

schema_name .
job_name ENCRYPTION_PASSWORD = password

FULL =
YES

NO

SCHEMAS = schema_name

,

TABLES =
schema_name .

table_name
: partition_name

,

TABLESPACES = tablespace_name

,

TRANSPORT_TABLESPACES = tablespace_name

, TRANSPORT_FULL_CHECK =
YES

NO

Syntax Diagrams for Data Pump Export

2-56 Oracle Database Utilities

ExpOpts

COMPRESSION =

ALL

DATA_ONLY

METADATA_ONLY

NONE

CONTENT =

ALL

DATA_ONLY

METADATA_ONLY

DATA_OPTIONS = XML_CLOBS

ESTIMATE =
BLOCKS

STATISTICS

ESTIMATE_ONLY =
YES

NO

ExpEncrypt

ExpFilter

FLASHBACK_SCN = scn_value

FLASHBACK_TIME = timestamp

JOB_NAME = jobname_string

NETWORK_LINK = database_link

PARALLEL = integer

ExpRacOpt

ExpRemap

SOURCE_EDITION = source_edition_name

STATUS = integer

TRANSPORTABLE =
ALWAYS

NEVER

VERSION =

COMPATIBLE

LATEST

version_string

ExpDiagnostics

Syntax Diagrams for Data Pump Export

Data Pump Export 2-57

ExpEncrypt

ExpFilter

ExpRacOpt

ENCRYPTION =

ALL

DATA_ONLY

METADATA_ONLY

ENCRYPTED_COLUMNS_ONLY

NONE

ENCRYPTION_ALGORITHM =

AES128

AES192

AES256

ENCRYPTION_MODE =

PASSWORD

TRANSPARENT

DUAL

ENCRYPTION_PASSWORD = password

EXCLUDE = object_type
: name_clause

INCLUDE = object_type
: name_clause

QUERY =

schema_name .
table_name :

query_clause

SAMPLE =

schema_name .
table_name :

sample_percent

CLUSTER =
YES

NO

SERVICE_NAME = service_name

Syntax Diagrams for Data Pump Export

2-58 Oracle Database Utilities

ExpRemap

ExpFileOpts

REMAP_DATA =
schema .

table . column :
schema .

pkg . function

DIRECTORY = directory_object

DUMPFILE =
directory_object :

file_name

,

FILESIZE = number_of_bytes

LOGFILE =
directory_object :

file_name

NOLOGFILE =
YES

NO

PARFILE =
directory_path

file_name

REUSE_DUMPFILE =
YES

NO

Syntax Diagrams for Data Pump Export

Data Pump Export 2-59

ExpDynOpts

ExpDiagnostics

ADD_FILE =
directory_object :

file_name

,

CONTINUE_CLIENT

EXIT_CLIENT

FILESIZE = number_of_bytes

HELP

KILL_JOB

PARALLEL = integer

START_JOB

= SKIP_CURRENT =
YES

NO

STATUS
= integer

STOP_JOB
= IMMEDIATE

ABORT_STEP = integer

ACCESS_METHOD =

AUTOMATIC

EXTERNAL_TABLE

DIRECT_PATH

KEEP_MASTER =
YES

NO

METRICS =
YES

NO

Syntax Diagrams for Data Pump Export

2-60 Oracle Database Utilities

3

Data Pump Import 3-1

3 Data Pump Import

This chapter describes the Oracle Data Pump Import utility (impdp). The following
topics are discussed:

■ What Is Data Pump Import?

■ Invoking Data Pump Import

■ Filtering During Import Operations

■ Parameters Available in Import's Command-Line Mode

■ Commands Available in Import's Interactive-Command Mode

■ Examples of Using Data Pump Import

■ Syntax Diagrams for Data Pump Import

What Is Data Pump Import?
Data Pump Import (hereinafter referred to as Import for ease of reading) is a utility for
loading an export dump file set into a target system. The dump file set is made up of
one or more disk files that contain table data, database object metadata, and control
information. The files are written in a proprietary, binary format. During an import
operation, the Data Pump Import utility uses these files to locate each database object
in the dump file set.

Import can also be used to load a target database directly from a source database with
no intervening dump files. This is known as a network import.

Data Pump Import enables you to specify whether a job should move a subset of the
data and metadata from the dump file set or the source database (in the case of a
network import), as determined by the import mode. This is done using data filters
and metadata filters, which are implemented through Import commands. See
"Filtering During Import Operations" on page 3-5.

To see some examples of the various ways in which you can use Import, refer to
"Examples of Using Data Pump Import" on page 3-58.

Invoking Data Pump Import
The Data Pump Import utility is invoked using the impdp command. The
characteristics of the import operation are determined by the import parameters you
specify. These parameters can be specified either on the command line or in a
parameter file.

Invoking Data Pump Import

3-2 Oracle Database Utilities

The following sections contain more information about invoking Import:

■ "Data Pump Import Interfaces" on page 3-2

■ "Data Pump Import Modes" on page 3-2

■ "Network Considerations" on page 3-5

Data Pump Import Interfaces
You can interact with Data Pump Import by using a command line, a parameter file, or
an interactive-command mode.

■ Command-Line Interface: Enables you to specify the Import parameters directly
on the command line. For a complete description of the parameters available in
the command-line interface, see "Parameters Available in Import's Command-Line
Mode" on page 3-6.

■ Parameter File Interface: Enables you to specify command-line parameters in a
parameter file. The only exception is the PARFILE parameter because parameter
files cannot be nested. The use of parameter files is recommended if you are using
parameters whose values require quotation marks. See "Use of Quotation Marks
On the Data Pump Command Line" on page 3-7.

■ Interactive-Command Interface: Stops logging to the terminal and displays the
Import prompt, from which you can enter various commands, some of which are
specific to interactive-command mode. This mode is enabled by pressing Ctrl+C
during an import operation started with the command-line interface or the
parameter file interface. Interactive-command mode is also enabled when you
attach to an executing or stopped job.

For a complete description of the commands available in interactive-command
mode, see "Commands Available in Import's Interactive-Command Mode" on
page 3-54.

Data Pump Import Modes
The import mode determines what is imported. The specified mode applies to the
source of the operation, either a dump file set or another database if the NETWORK_LINK
parameter is specified.

When the source of the import operation is a dump file set, specifying a mode is
optional. If no mode is specified, then Import attempts to load the entire dump file set
in the mode in which the export operation was run.

Note: Do not invoke Import as SYSDBA, except at the request of
Oracle technical support. SYSDBA is used internally and has
specialized functions; its behavior is not the same as for general
users.

Note: Be aware that if you are performing a Data Pump Import into
a table or tablespace created with the NOLOGGING clause enabled, then a
redo log file may still be generated. The redo that is generated in such
a case is generally for maintenance of the master table or related to
underlying recursive space transactions, data dictionary changes, and
index maintenance for indices on the table that require logging.

Invoking Data Pump Import

Data Pump Import 3-3

The mode is specified on the command line, using the appropriate parameter. The
available modes are described in the following sections:

■ "Full Import Mode" on page 3-3

■ "Schema Mode" on page 3-3

■ "Table Mode" on page 3-3

■ "Tablespace Mode" on page 3-4

■ "Transportable Tablespace Mode" on page 3-4

Full Import Mode
A full import is specified using the FULL parameter. In full import mode, the entire
content of the source (dump file set or another database) is loaded into the target
database. This is the default for file-based imports. You must have the DATAPUMP_IMP_
FULL_DATABASE role if the source is another database.

Cross-schema references are not imported for non-privileged users. For example, a
trigger defined on a table within the importing user's schema, but residing in another
user's schema, is not imported.

The DATAPUMP_IMP_FULL_DATABASE role is required on the target database and the
DATAPUMP_EXP_FULL_DATABASE role is required on the source database if the NETWORK_
LINK parameter is used for a full import.

Schema Mode
A schema import is specified using the SCHEMAS parameter. In a schema import, only
objects owned by the specified schemas are loaded. The source can be a full, table,
tablespace, or schema-mode export dump file set or another database. If you have the
DATAPUMP_IMP_FULL_DATABASE role, then a list of schemas can be specified and the
schemas themselves (including system privilege grants) are created in the database in
addition to the objects contained within those schemas.

Cross-schema references are not imported for non-privileged users unless the other
schema is remapped to the current schema. For example, a trigger defined on a table
within the importing user's schema, but residing in another user's schema, is not
imported.

Table Mode
A table-mode import is specified using the TABLES parameter. In table mode, only the
specified set of tables, partitions, and their dependent objects are loaded. The source
can be a full, schema, tablespace, or table-mode export dump file set or another
database. You must have the DATAPUMP_IMP_FULL_DATABASE role to specify tables that
are not in your own schema.

Note: When you import a dump file that was created by a full-mode
export, the import operation attempts to copy the password for the
SYS account from the source database. This sometimes fails (for
example, if the password is in a shared password file). If it does fail,
then after the import completes, you must set the password for the
SYS account at the target database to a password of your choice.

See Also: "FULL" on page 3-19

See Also: "SCHEMAS" on page 3-37

Invoking Data Pump Import

3-4 Oracle Database Utilities

You can use the transportable option during a table-mode import by specifying the
TRANPORTABLE=ALWAYS parameter with the TABLES parameter. Note that this requires
use of the NETWORK_LINK parameter, as well.

Tablespace Mode
A tablespace-mode import is specified using the TABLESPACES parameter. In tablespace
mode, all objects contained within the specified set of tablespaces are loaded, along
with the dependent objects. The source can be a full, schema, tablespace, or table-mode
export dump file set or another database. For unprivileged users, objects not
remapped to the current schema will not be processed.

Transportable Tablespace Mode
A transportable tablespace import is specified using the TRANSPORT_TABLESPACES
parameter. In transportable tablespace mode, the metadata from another database is
loaded using a database link (specified with the NETWORK_LINK parameter). There are
no dump files involved. The actual data files, specified by the TRANSPORT_DATAFILES
parameter, must be made available from the source system for use in the target
database, typically by copying them over to the target system.

Encrypted columns are not supported in transportable tablespace mode.

This mode requires the DATAPUMP_IMP_FULL_DATABASE role.

Considerations for Time Zone File Versions in Transportable Tablespace Mode
Jobs performed in transportable tablespace mode have the following requirements
concerning time zone file versions:

■ If the source is Oracle Database 11g release 2 (11.2.0.2) or later and there are tables
in the transportable set that use TIMESTAMP WITH TIMEZONE (TSTZ) columns,
then the time zone file version on the target database must exactly match the time
zone file version on the source database.

■ If the source is earlier than Oracle Database 11g release 2 (11.2.0.2), then the time
zone file version must be the same on the source and target database for all
transportable jobs regardless of whether the transportable set uses TSTZ columns.

If these requirements are not met, then the import job aborts before anything is
imported. This is because if the import job were allowed to import the objects, there
might be inconsistent results when tables with TSTZ columns were read.

To identify the time zone file version of a database, you can execute the following SQL
statement:

SQL> SELECT VERSION FROM V$TIMEZONE_FILE;

See Also:

■ "TABLES" on page 3-43

■ "TRANSPORTABLE" on page 3-52

■ "Using Data File Copying to Move Data" on page 1-2

See Also: "TABLESPACES" on page 3-45

Note: You cannot export transportable tablespaces and then import
them into a database at a lower release level. The target database must
be at the same or higher release level as the source database.

Filtering During Import Operations

Data Pump Import 3-5

Network Considerations
You can specify a connect identifier in the connect string when you invoke the Data
Pump Import utility. The connect identifier can specify a database instance that is
different from the current instance identified by the current Oracle System ID (SID).
The connect identifier can be an Oracle*Net connect descriptor or a net service name
(usually defined in the tnsnames.ora file) that maps to a connect descriptor. Use of a
connect identifier requires that you have Oracle Net Listener running (to start the
default listener, enter lsnrctl start). The following is an example of this type of
connection, in which inst1 is the connect identifier:

impdp hr@inst1 DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp TABLES=employees

Import then prompts you for a password:

Password: password

The local Import client connects to the database instance identified by the connect
identifier inst1 (a net service name), and imports the data from the dump file hr.dmp
to inst1.

Specifying a connect identifier when you invoke the Import utility is different from
performing an import operation using the NETWORK_LINK parameter. When you start an
import operation and specify a connect identifier, the local Import client connects to
the database instance identified by the connect identifier and imports the data from
the dump file named on the command line to that database instance.

Whereas, when you perform an import using the NETWORK_LINK parameter, the import
is performed using a database link, and there is no dump file involved. (A database
link is a connection between two physical database servers that allows a client to
access them as one logical database.)

Filtering During Import Operations
Data Pump Import provides data and metadata filtering capability to help you limit
the type of information that is imported.

See Also:

■ "TRANSPORT_TABLESPACES" on page 3-51

■ "TRANSPORT_FULL_CHECK" on page 3-50

■ "TRANSPORT_DATAFILES" on page 3-49

■ Oracle Database Administrator's Guide for more information
about transportable tablespaces

■ Oracle Database Globalization Support Guide for more information
about time zone file versions

See Also:

■ "NETWORK_LINK" on page 3-24

■ Oracle Database Administrator's Guide for more information
about database links

■ Oracle Database Net Services Administrator's Guide for more
information about connect identifiers and Oracle Net Listener

■ Oracle Database Heterogeneous Connectivity User's Guide

Parameters Available in Import's Command-Line Mode

3-6 Oracle Database Utilities

Data Filters
Data specific filtering is implemented through the QUERY and SAMPLE parameters,
which specify restrictions on the table rows that are to be imported. Data filtering can
also occur indirectly because of metadata filtering, which can include or exclude table
objects along with any associated row data.

Each data filter can only be specified once per table and once per job. If different filters
using the same name are applied to both a particular table and to the whole job, then
the filter parameter supplied for the specific table takes precedence.

Metadata Filters
Data Pump Import provides much greater metadata filtering capability than was
provided by the original Import utility. Metadata filtering is implemented through the
EXCLUDE and INCLUDE parameters. The EXCLUDE and INCLUDE parameters are mutually
exclusive.

Metadata filters identify a set of objects to be included or excluded from a Data Pump
operation. For example, you could request a full import, but without Package
Specifications or Package Bodies.

To use filters correctly and to get the results you expect, remember that dependent
objects of an identified object are processed along with the identified object. For example, if a
filter specifies that a package is to be included in an operation, then grants upon that
package will also be included. Likewise, if a table is excluded by a filter, then indexes,
constraints, grants, and triggers upon the table will also be excluded by the filter.

If multiple filters are specified for an object type, then an implicit AND operation is
applied to them. That is, objects participating in the job must pass all of the filters
applied to their object types.

The same filter name can be specified multiple times within a job.

To see a list of valid object types, query the following views: DATABASE_EXPORT_
OBJECTS for full mode, SCHEMA_EXPORT_OBJECTS for schema mode, and TABLE_EXPORT_
OBJECTS for table and tablespace mode. The values listed in the OBJECT_PATH column
are the valid object types. Note that full object path names are determined by the
export mode, not by the import mode.

Parameters Available in Import's Command-Line Mode
This section describes the parameters available in the command-line mode of Data
Pump Import. Be sure to read the following sections before using the Import
parameters:

■ Specifying Import Parameters

■ Use of Quotation Marks On the Data Pump Command Line

Many of the descriptions include an example of how to use the parameter. For
background information on setting up the necessary environment to run the examples,
see:

See Also:

■ "Metadata Filters" on page 2-6 for an example of using filtering

■ The Import "EXCLUDE" parameter on page 3-16

■ The Import "INCLUDE" parameter on page 3-20

Parameters Available in Import's Command-Line Mode

Data Pump Import 3-7

■ Using the Import Parameter Examples

Specifying Import Parameters
For parameters that can have multiple values specified, the values can be separated by
commas or by spaces. For example, you could specify TABLES=employees,jobs or
TABLES=employees jobs.

For every parameter you enter, you must enter an equal sign (=) and a value. Data
Pump has no other way of knowing that the previous parameter specification is
complete and a new parameter specification is beginning. For example, in the
following command line, even though NOLOGFILE is a valid parameter, it would be
interpreted as another dump file name for the DUMPFILE parameter:

impdp DIRECTORY=dpumpdir DUMPFILE=test.dmp NOLOGFILE TABLES=employees

This would result in two dump files being created, test.dmp and nologfile.dmp.

To avoid this, specify either NOLOGFILE=YES or NOLOGFILE=NO.

Use of Quotation Marks On the Data Pump Command Line
Some operating systems treat quotation marks as special characters and will therefore
not pass them to an application unless they are preceded by an escape character, such
as the backslash (\). This is true both on the command line and within parameter files.
Some operating systems may require an additional set of single or double quotation
marks on the command line around the entire parameter value containing the special
characters.

The following examples are provided to illustrate these concepts. Be aware that they
may not apply to your particular operating system and that this documentation cannot
anticipate the operating environments unique to each user.

Suppose you specify the TABLES parameter in a parameter file, as follows:

TABLES = \"MixedCaseTableName\"

If you were to specify that on the command line, then some operating systems would
require that it be surrounded by single quotation marks, as follows:

TABLES = '\"MixedCaseTableName\"'

To avoid having to supply additional quotation marks on the command line, Oracle
recommends the use of parameter files. Also, note that if you use a parameter file and
the parameter value being specified does not have quotation marks as the first
character in the string (for example, TABLES=scott."EmP"), then the use of escape
characters may not be necessary on some systems.

See Also:

■ The Import "PARFILE" parameter on page 3-28

■ "Default Locations for Dump, Log, and SQL Files" on page 1-10
for information about creating default directory objects

■ "Examples of Using Data Pump Export" on page 2-52

■ Your Oracle operating system-specific documentation for
information about how special and reserved characters are
handled on your system

Parameters Available in Import's Command-Line Mode

3-8 Oracle Database Utilities

Using the Import Parameter Examples
If you try running the examples that are provided for each parameter, then be aware of
the following:

■ After you enter the username and parameters as shown in the example, Import is
started and you are prompted for a password. You must supply a password before
a database connection is made.

■ Most of the examples use the sample schemas of the seed database, which is
installed by default when you install Oracle Database. In particular, the human
resources (hr) schema is often used.

■ Examples that specify a dump file to import assume that the dump file exists.
Wherever possible, the examples use dump files that are generated when you run
the Export examples in Chapter 2.

■ The examples assume that the directory objects, dpump_dir1 and dpump_dir2,
already exist and that READ and WRITE privileges have been granted to the hr user
for these directory objects. See "Default Locations for Dump, Log, and SQL Files"
on page 1-10 for information about creating directory objects and assigning
privileges to them.

■ Some of the examples require the DATAPUMP_EXP_FULL_DATABASE and DATAPUMP_
IMP_FULL_DATABASE roles. The examples assume that the hr user has been granted
these roles.

If necessary, ask your DBA for help in creating these directory objects and assigning
the necessary privileges and roles.

Syntax diagrams of these parameters are provided in "Syntax Diagrams for Data Pump
Import" on page 3-59.

Unless specifically noted, these parameters can also be specified in a parameter file.

ABORT_STEP
Default: Null

Purpose
Used to stop the job after it is initialized. This allows the master table to be queried
before any data is imported.

Syntax and Description
ABORT_STEP=[n | -1]

The possible values correspond to a process order number in the master table. The
result of using each number is as follows:

■ n -- If the value is zero or greater, then the import operation is started and the job
is aborted at the object that is stored in the master table with the corresponding
process order number.

■ -1 and the job is an import using a NETWORK_LINK -- Abort the job after setting it up
but before importing any objects.

■ -1 and the job is an import that does not use NETWORK_LINK -- Abort the job after
loading the master table and applying filters.

Parameters Available in Import's Command-Line Mode

Data Pump Import 3-9

Restrictions
■ None

Example
> impdp hr SCHEMAS=hr DIRECTORY=dpump_dir1 LOGFILE=schemas.log
DUMPFILE=expdat.dmp ABORT_STEP=-1

ACCESS_METHOD
Default: AUTOMATIC

Purpose
Instructs Import to use a particular method to load data.

Syntax and Description
ACCESS_METHOD=[AUTOMATIC | DIRECT_PATH | EXTERNAL_TABLE | CONVENTIONAL]

The ACCESS_METHOD parameter is provided so that you can try an alternative method if
the default method does not work for some reason. Oracle recommends that you use
the default option (AUTOMATIC) whenever possible because it allows Data Pump to
automatically select the most efficient method.

Restrictions
■ If the NETWORK_LINK parameter is also specified, then the ACCESS_METHOD parameter

is ignored.

Example
> impdp hr SCHEMAS=hr DIRECTORY=dpump_dir1 LOGFILE=schemas.log
DUMPFILE=expdat.dmp ACCESS_METHOD=CONVENTIONAL

ATTACH
Default: current job in user's schema, if there is only one running job.

Purpose
Attaches the client session to an existing import job and automatically places you in
interactive-command mode.

Syntax and Description
ATTACH [=[schema_name.]job_name]

Specify a schema_name if the schema to which you are attaching is not your own. You
must have the DATAPUMP_IMP_FULL_DATABASE role to do this.

A job_name does not have to be specified if only one running job is associated with
your schema and the job is active. If the job you are attaching to is stopped, then you
must supply the job name. To see a list of Data Pump job names, you can query the
DBA_DATAPUMP_JOBS view or the USER_DATAPUMP_JOBS view.

When you are attached to the job, Import displays a description of the job and then
displays the Import prompt.

Parameters Available in Import's Command-Line Mode

3-10 Oracle Database Utilities

Restrictions
■ When you specify the ATTACH parameter, the only other Data Pump parameter you

can specify on the command line is ENCRYPTION_PASSWORD.

■ If the job you are attaching to was initially started using an encryption password,
then when you attach to the job you must again enter the ENCRYPTION_PASSWORD
parameter on the command line to re-specify that password. The only exception to
this is if the job was initially started with the ENCRYPTION=ENCRYPTED_COLUMNS_
ONLY parameter. In that case, the encryption password is not needed when
attaching to the job.

■ You cannot attach to a job in another schema unless it is already running.

■ If the dump file set or master table for the job have been deleted, then the attach
operation fails.

■ Altering the master table in any way can lead to unpredictable results.

Example
The following is an example of using the ATTACH parameter.

> impdp hr ATTACH=import_job

This example assumes that a job named import_job exists in the hr schema.

CLUSTER
Default: YES

Purpose
Determines whether Data Pump can use Oracle Real Application Clusters (Oracle
RAC) resources and start workers on other Oracle RAC instances.

Syntax and Description
CLUSTER=[YES | NO]

To force Data Pump Import to use only the instance where the job is started and to
replicate pre-Oracle Database 11g release 2 (11.2) behavior, specify CLUSTER=NO.

To specify a specific, existing service and constrain worker processes to run only on
instances defined for that service, use the SERVICE_NAME parameter with the
CLUSTER=YES parameter.

Use of the CLUSTER parameter may affect performance because there is some additional
overhead in distributing the import job across Oracle RAC instances. For small jobs, it
may be better to specify CLUSTER=NO to constrain the job to run on the instance where it
is started. Jobs whose performance benefits the most from using the CLUSTER
parameter are those involving large amounts of data.

See Also: "Commands Available in Import's
Interactive-Command Mode" on page 3-54

See Also:

■ "SERVICE_NAME" on page 3-37

■ "Oracle RAC Considerations" on page 1-12

Parameters Available in Import's Command-Line Mode

Data Pump Import 3-11

Example
> impdp hr DIRECTORY=dpump_dir1 SCHEMAS=hr CLUSTER=NO PARALLEL=3 NETWORK_LINK=dbs1

This example performs a schema-mode import of the hr schema. Because CLUSTER=NO
is used, the job uses only the instance where it is started. Up to 3 parallel processes can
be used. The NETWORK_LINK value of dbs1 would be replaced with the name of the
source database from which you were importing data. (Note that there is no dump file
generated because this is a network import.)

The NETWORK_LINK parameter is simply being used as part of the example. It is not
required when using the CLUSTER parameter.

CONTENT
Default: ALL

Purpose
Enables you to filter what is loaded during the import operation.

Syntax and Description
CONTENT=[ALL | DATA_ONLY | METADATA_ONLY]

■ ALL loads any data and metadata contained in the source. This is the default.

■ DATA_ONLY loads only table row data into existing tables; no database objects are
created.

■ METADATA_ONLY loads only database object definitions; no table row data is loaded.
Be aware that if you specify CONTENT=METADATA_ONLY, then any index or table
statistics imported from the dump file are locked after the import operation is
complete.

Restrictions
■ The CONTENT=METADATA_ONLY parameter and value cannot be used in conjunction

with the TRANSPORT_TABLESPACES (transportable-tablespace mode) parameter or
the QUERY parameter.

■ The CONTENT=ALL and CONTENT=DATA_ONLY parameter and values cannot be used in
conjunction with the SQLFILE parameter.

Example
The following is an example of using the CONTENT parameter. You can create the
expfull.dmp dump file used in this example by running the example provided for the
Export FULL parameter. See "FULL" on page 2-25.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp CONTENT=METADATA_ONLY

This command will execute a full import that will load only the metadata in the
expfull.dmp dump file. It executes a full import because that is the default for
file-based imports in which no import mode is specified.

DATA_OPTIONS
Default: There is no default. If this parameter is not used, then the special data
handling options it provides simply do not take effect.

Parameters Available in Import's Command-Line Mode

3-12 Oracle Database Utilities

Purpose
The DATA_OPTIONS parameter designates how certain types of data should be handled
during import operations.

Syntax and Description
DATA_OPTIONS = [DISABLE_APPEND_HINT | SKIP_CONSTRAINT_ERRORS]

■ DISABLE_APPEND_HINT - Specifies that you do not want the import operation to use
the APPEND hint while loading the data object. Disabling the APPEND hint can be
useful if there is a small set of data objects to load that already exist in the database
and some other application may be concurrently accessing one or more of the data
objects.

If DISABLE_APPEND_HINT is not set, then the default behavior is to use the APPEND
hint for loading data objects.

■ SKIP_CONSTRAINT_ERRORS - affects how non-deferred constraint violations are
handled while a data object (table, partition, or subpartition) is being loaded. It has
no effect on the load if deferred constraint violations are encountered. Deferred
constraint violations always cause the entire load to be rolled back.

The SKIP_CONSTRAINT_ERRORS option specifies that you want the import operation
to proceed even if non-deferred constraint violations are encountered. It logs any
rows that cause non-deferred constraint violations, but does not stop the load for
the data object experiencing the violation.

If SKIP_CONSTRAINT_ERRORS is not set, then the default behavior is to roll back the
entire load of the data object on which non-deferred constraint violations are
encountered.

Restrictions
■ If DISABLE_APPEND_HINT is used, then it can take longer for data objects to load.

■ If SKIP_CONSTRAINT_ERRORS is used and if a data object has unique indexes or
constraints defined on it at the time of the load, then the APPEND hint will not be
used for loading that data object. Therefore, loading such data objects will take
longer when the SKIP_CONSTRAINT_ERRORS option is used.

■ Even if SKIP_CONSTRAINT_ERRORS is specified, then it is not used unless a data
object is being loaded using the external table access method.

Example
This example shows a data-only table mode import with SKIP_CONSTRAINT_ERRORS
enabled:

> impdp hr TABLES=employees CONTENT=DATA_ONLY
DUMPFILE=dpump_dir1:table.dmp DATA_OPTIONS=skip_constraint_errors

If any non-deferred constraint violations are encountered during this import
operation, then they will be logged and the import will continue on to completion.

DIRECTORY
Default: DATA_PUMP_DIR

Parameters Available in Import's Command-Line Mode

Data Pump Import 3-13

Purpose
Specifies the default location in which the import job can find the dump file set and
where it should create log and SQL files.

Syntax and Description
DIRECTORY=directory_object

The directory_object is the name of a database directory object (not the file path of an
actual directory). Upon installation, privileged users have access to a default directory
object named DATA_PUMP_DIR. Users with access to the default DATA_PUMP_DIR
directory object do not need to use the DIRECTORY parameter at all.

A directory object specified on the DUMPFILE, LOGFILE, or SQLFILE parameter overrides
any directory object that you specify for the DIRECTORY parameter. You must have
Read access to the directory used for the dump file set and Write access to the
directory used to create the log and SQL files.

Example
The following is an example of using the DIRECTORY parameter. You can create the
expfull.dmp dump file used in this example by running the example provided for the
Export FULL parameter. See "FULL" on page 2-25.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp
LOGFILE=dpump_dir2:expfull.log

This command results in the import job looking for the expfull.dmp dump file in the
directory pointed to by the dpump_dir1 directory object. The dpump_dir2 directory
object specified on the LOGFILE parameter overrides the DIRECTORY parameter so that
the log file is written to dpump_dir2.

DUMPFILE
Default: expdat.dmp

Purpose
Specifies the names and optionally, the directory objects of the dump file set that was
created by Export.

Syntax and Description
DUMPFILE=[directory_object:]file_name [, ...]

The directory_object is optional if one has already been established by the
DIRECTORY parameter. If you do supply a value here, then it must be a directory object
that already exists and that you have access to. A database directory object that is

See Also:

■ "Default Locations for Dump, Log, and SQL Files" on page 1-10
for more information about default directory objects and the
order of precedence Data Pump uses to determine a file's
location

■ "Oracle RAC Considerations" on page 1-12

■ Oracle Database SQL Language Reference for more information
about the CREATE DIRECTORY command

Parameters Available in Import's Command-Line Mode

3-14 Oracle Database Utilities

specified as part of the DUMPFILE parameter overrides a value specified by the
DIRECTORY parameter.

The file_name is the name of a file in the dump file set. The file names can also be
templates that contain the substitution variable, %U. If %U is used, then Import examines
each file that matches the template (until no match is found) to locate all files that are
part of the dump file set. The %U expands to a 2-digit incrementing integer starting
with 01.

Sufficient information is contained within the files for Import to locate the entire set,
provided the file specifications in the DUMPFILE parameter encompass the entire set.
The files are not required to have the same names, locations, or order that they had at
export time.

Example
The following is an example of using the Import DUMPFILE parameter. You can create
the dump files used in this example by running the example provided for the Export
DUMPFILE parameter. See "DUMPFILE" on page 2-14.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=dpump_dir2:exp1.dmp, exp2%U.dmp

Because a directory object (dpump_dir2) is specified for the exp1.dmp dump file, the
import job will look there for the file. It will also look in dpump_dir1 for dump files of
the form exp2nn.dmp. The log file will be written to dpump_dir1.

ENCRYPTION_PASSWORD
Default: There is no default; the value is user-supplied.

Purpose
Specifies a password for accessing encrypted column data in the dump file set. This
prevents unauthorized access to an encrypted dump file set.

Syntax and Description
ENCRYPTION_PASSWORD = password

This parameter is required on an import operation if an encryption password was
specified on the export operation. The password that is specified must be the same one
that was specified on the export operation.

Restrictions
■ This parameter is valid only in the Enterprise Edition of Oracle Database 11g.

■ Data Pump encryption features require that the Oracle Advanced Security option
be enabled. See Oracle Database Advanced Security Administrator's Guide for
information about licensing requirements for the Oracle Advanced Security
option.

■ The ENCRYPTION_PASSWORD parameter is not valid if the dump file set was created
using the transparent mode of encryption.

■ The ENCRYPTION_PASSWORD parameter is not valid for network import jobs.

See Also:

■ "File Allocation" on page 1-10

■ "Performing a Data-Only Table-Mode Import" on page 3-58

Parameters Available in Import's Command-Line Mode

Data Pump Import 3-15

■ Encryption attributes for all columns must match between the exported table
definition and the target table. For example, suppose you have a table, EMP, and
one of its columns is named EMPNO. Both of the following situations would result in
an error because the encryption attribute for the EMP column in the source table
would not match the encryption attribute for the EMP column in the target table:

– The EMP table is exported with the EMPNO column being encrypted, but before
importing the table you remove the encryption attribute from the EMPNO
column.

– The EMP table is exported without the EMPNO column being encrypted, but
before importing the table you enable encryption on the EMPNO column.

Example
In the following example, the encryption password, 123456, must be specified because
it was specified when the dpcd2be1.dmp dump file was created (see "ENCRYPTION_
PASSWORD" on page 2-18).

> impdp hr TABLES=employee_s_encrypt DIRECTORY=dpump_dir
 DUMPFILE=dpcd2be1.dmp ENCRYPTION_PASSWORD=123456

During the import operation, any columns in the employee_s_encrypt table that were
encrypted during the export operation are decrypted before being imported.

ESTIMATE
Default: BLOCKS

Purpose
Instructs the source system in a network import operation to estimate how much data
will be generated.

Syntax and Description
ESTIMATE=[BLOCKS | STATISTICS]

The valid choices for the ESTIMATE parameter are as follows:

■ BLOCKS - The estimate is calculated by multiplying the number of database blocks
used by the source objects times the appropriate block sizes.

■ STATISTICS - The estimate is calculated using statistics for each table. For this
method to be as accurate as possible, all tables should have been analyzed recently.
(Table analysis can be done with either the SQL ANALYZE statement or the DBMS_
STATS PL/SQL package.)

The estimate that is generated can be used to determine a percentage complete
throughout the execution of the import job.

Restrictions
■ The Import ESTIMATE parameter is valid only if the NETWORK_LINK parameter is

also specified.

■ When the import source is a dump file set, the amount of data to be loaded is
already known, so the percentage complete is automatically calculated.

■ The estimate may be inaccurate if either the QUERY or REMAP_DATA parameter is
used.

Parameters Available in Import's Command-Line Mode

3-16 Oracle Database Utilities

Example
In the following example, source_database_link would be replaced with the name of
a valid link to the source database.

> impdp hr TABLES=job_history NETWORK_LINK=source_database_link
 DIRECTORY=dpump_dir1 ESTIMATE=STATISTICS

The job_history table in the hr schema is imported from the source database. A log
file is created by default and written to the directory pointed to by the dpump_dir1
directory object. When the job begins, an estimate for the job is calculated based on
table statistics.

EXCLUDE
Default: There is no default

Purpose
Enables you to filter the metadata that is imported by specifying objects and object
types to exclude from the import job.

Syntax and Description
EXCLUDE=object_type[:name_clause] [, ...]

The object_type specifies the type of object to be excluded. To see a list of valid values
for object_type, query the following views: DATABASE_EXPORT_OBJECTS for full mode,
SCHEMA_EXPORT_OBJECTS for schema mode, and TABLE_EXPORT_OBJECTS for table and
tablespace mode. The values listed in the OBJECT_PATH column are the valid object
types.

For the given mode of import, all object types contained within the source (and their
dependents) are included, except those specified in an EXCLUDE statement. If an object is
excluded, then all of its dependent objects are also excluded. For example, excluding a
table will also exclude all indexes and triggers on the table.

The name_clause is optional. It allows fine-grained selection of specific objects within
an object type. It is a SQL expression used as a filter on the object names of the type. It
consists of a SQL operator and the values against which the object names of the
specified type are to be compared. The name_clause applies only to object types whose
instances have names (for example, it is applicable to TABLE and VIEW, but not to
GRANT). It must be separated from the object type with a colon and enclosed in double
quotation marks, because single quotation marks are required to delimit the name
strings. For example, you could set EXCLUDE=INDEX:"LIKE 'DEPT%'" to exclude all
indexes whose names start with dept.

The name that you supply for the name_clause must exactly match, including upper
and lower casing, an existing object in the database. For example, if the name_clause
you supply is for a table named EMPLOYEES, then there must be an existing table named
EMPLOYEES using all upper case. If the name_clause were supplied as Employees or
employees or any other variation, then the table would not be found.

More than one EXCLUDE statement can be specified.

Depending on your operating system, the use of quotation marks when you specify a
value for this parameter may also require that you use escape characters. Oracle
recommends that you place this parameter in a parameter file, which can reduce the
number of escape characters that might otherwise be needed on the command line.

Parameters Available in Import's Command-Line Mode

Data Pump Import 3-17

As explained in the following sections, you should be aware of the effects of specifying
certain objects for exclusion, in particular, CONSTRAINT, GRANT, and USER.

Excluding Constraints
The following constraints cannot be excluded:

■ NOT NULL constraints.

■ Constraints needed for the table to be created and loaded successfully (for
example, primary key constraints for index-organized tables or REF SCOPE and
WITH ROWID constraints for tables with REF columns).

This means that the following EXCLUDE statements will be interpreted as follows:

■ EXCLUDE=CONSTRAINT will exclude all nonreferential constraints, except for NOT
NULL constraints and any constraints needed for successful table creation and
loading.

■ EXCLUDE=REF_CONSTRAINT will exclude referential integrity (foreign key)
constraints.

Excluding Grants and Users
Specifying EXCLUDE=GRANT excludes object grants on all object types and system
privilege grants.

Specifying EXCLUDE=USER excludes only the definitions of users, not the objects
contained within users' schemas.

To exclude a specific user and all objects of that user, specify a command such as the
following, where hr is the schema name of the user you want to exclude.

impdp FULL=YES DUMPFILE=expfull.dmp EXCLUDE=SCHEMA:"='HR'"

Note that in this situation, an import mode of FULL is specified. If no mode were
specified, then the default mode, SCHEMAS, would be used. This would cause an error
because the command would indicate that the schema should be both imported and
excluded at the same time.

If you try to exclude a user by using a statement such as EXCLUDE=USER:"= 'HR'", then
only CREATE USER hr DDL statements will be excluded, and you may not get the
results you expect.

Restrictions
■ The EXCLUDE and INCLUDE parameters are mutually exclusive.

Example
Assume the following is in a parameter file, exclude.par, being used by a DBA or
some other user with the DATAPUMP_IMP_FULL_DATABASE role. (If you want to try the
example, then you must create this file.)

EXCLUDE=FUNCTION
EXCLUDE=PROCEDURE
EXCLUDE=PACKAGE
EXCLUDE=INDEX:"LIKE 'EMP%' "

See Also: "Use of Quotation Marks On the Data Pump Command
Line" on page 3-7

Parameters Available in Import's Command-Line Mode

3-18 Oracle Database Utilities

You could then issue the following command. You can create the expfull.dmp dump
file used in this command by running the example provided for the Export FULL
parameter. See "FULL" on page 2-25.

> impdp system DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp PARFILE=exclude.par

All data from the expfull.dmp dump file will be loaded except for functions,
procedures, packages, and indexes whose names start with emp.

FLASHBACK_SCN
Default: There is no default

Purpose
Specifies the system change number (SCN) that Import will use to enable the
Flashback utility.

Syntax and Description
FLASHBACK_SCN=scn_number

The import operation is performed with data that is consistent up to the specified scn_
number.

Restrictions
■ The FLASHBACK_SCN parameter is valid only when the NETWORK_LINK parameter is

also specified.

■ The FLASHBACK_SCN parameter pertains only to the Flashback Query capability of
Oracle Database. It is not applicable to Flashback Database, Flashback Drop, or
Flashback Data Archive.

■ FLASHBACK_SCN and FLASHBACK_TIME are mutually exclusive.

Example
The following is an example of using the FLASHBACK_SCN parameter.

> impdp hr DIRECTORY=dpump_dir1 FLASHBACK_SCN=123456
NETWORK_LINK=source_database_link

The source_database_link in this example would be replaced with the name of a
source database from which you were importing data.

FLASHBACK_TIME
Default: There is no default

See Also: "Filtering During Import Operations" on page 3-5 for
more information about the effects of using the EXCLUDE parameter

Note: If you are on a logical standby system, then the FLASHBACK_
SCN parameter is ignored because SCNs are selected by logical
standby. See Oracle Data Guard Concepts and Administration for
information about logical standby databases.

Parameters Available in Import's Command-Line Mode

Data Pump Import 3-19

Purpose
Specifies the system change number (SCN) that Import will use to enable the
Flashback utility.

Syntax and Description
FLASHBACK_TIME="TO_TIMESTAMP()"

The SCN that most closely matches the specified time is found, and this SCN is used to
enable the Flashback utility. The import operation is performed with data that is
consistent up to this SCN. Because the TO_TIMESTAMP value is enclosed in quotation
marks, it would be best to put this parameter in a parameter file. See "Use of Quotation
Marks On the Data Pump Command Line" on page 3-7.

Restrictions
■ This parameter is valid only when the NETWORK_LINK parameter is also specified.

■ The FLASHBACK_TIME parameter pertains only to the flashback query capability of
Oracle Database. It is not applicable to Flashback Database, Flashback Drop, or
Flashback Data Archive.

■ FLASHBACK_TIME and FLASHBACK_SCN are mutually exclusive.

Example
You can specify the time in any format that the DBMS_FLASHBACK.ENABLE_AT_TIME
procedure accepts,. For example, suppose you have a parameter file, flashback_
imp.par, that contains the following:

FLASHBACK_TIME="TO_TIMESTAMP('25-08-2008 14:35:00', 'DD-MM-YYYY HH24:MI:SS')"

You could then issue the following command:

> impdp hr DIRECTORY=dpump_dir1 PARFILE=flashback_imp.par NETWORK_LINK=source_
database_link

The import operation will be performed with data that is consistent with the SCN that
most closely matches the specified time.

FULL
Default: YES

Purpose
Specifies that you want to perform a full database import.

Syntax and Description
FULL=YES

Note: If you are on a logical standby system, then the FLASHBACK_
TIME parameter is ignored because SCNs are selected by logical
standby. See Oracle Data Guard Concepts and Administration for
information about logical standby databases.

See Also: Oracle Database Advanced Application Developer's Guide
for information about using flashback

Parameters Available in Import's Command-Line Mode

3-20 Oracle Database Utilities

A value of FULL=YES indicates that all data and metadata from the source (either a
dump file set or another database) is imported.

Filtering can restrict what is imported using this import mode (see "Filtering During
Import Operations" on page 3-5).

If the NETWORK_LINK parameter is used and the USERID that is executing the import job
has the DATAPUMP_IMP_FULL_DATABASE role on the target database, then that user must
also have the DATAPUMP_EXP_FULL_DATABASE role on the source database.

If you are an unprivileged user importing from a file, then only schemas that map to
your own schema are imported.

FULL is the default mode when you are performing a file-based import.

Example
The following is an example of using the FULL parameter. You can create the
expfull.dmp dump file used in this example by running the example provided for the
Export FULL parameter. See "FULL" on page 2-25.

> impdp hr DUMPFILE=dpump_dir1:expfull.dmp FULL=YES
LOGFILE=dpump_dir2:full_imp.log

This example imports everything from the expfull.dmp dump file. In this example, a
DIRECTORY parameter is not provided. Therefore, a directory object must be provided
on both the DUMPFILE parameter and the LOGFILE parameter. The directory objects can
be different, as shown in this example.

HELP
Default: NO

Purpose
Displays online help for the Import utility.

Syntax and Description
HELP=YES

If HELP=YES is specified, then Import displays a summary of all Import command-line
parameters and interactive commands.

Example
> impdp HELP = YES

This example will display a brief description of all Import parameters and commands.

INCLUDE
Default: There is no default

Purpose
Enables you to filter the metadata that is imported by specifying objects and object
types for the current import mode.

Syntax and Description
INCLUDE = object_type[:name_clause] [, ...]

Parameters Available in Import's Command-Line Mode

Data Pump Import 3-21

The object_type specifies the type of object to be included. To see a list of valid values
for object_type, query the following views: DATABASE_EXPORT_OBJECTS for full mode,
SCHEMA_EXPORT_OBJECTS for schema mode, and TABLE_EXPORT_OBJECTS for table and
tablespace mode. The values listed in the OBJECT_PATH column are the valid object
types.

Only object types in the source (and their dependents) that are explicitly specified in
the INCLUDE statement are imported.

The name_clause is optional. It allows fine-grained selection of specific objects within
an object type. It is a SQL expression used as a filter on the object names of the type. It
consists of a SQL operator and the values against which the object names of the
specified type are to be compared. The name_clause applies only to object types whose
instances have names (for example, it is applicable to TABLE, but not to GRANT). It must
be separated from the object type with a colon and enclosed in double quotation
marks, because single quotation marks are required to delimit the name strings.

The name that you supply for the name_clause must exactly match, including upper
and lower casing, an existing object in the database. For example, if the name_clause
you supply is for a table named EMPLOYEES, then there must be an existing table named
EMPLOYEES using all upper case. If the name_clause were supplied as Employees or
employees or any other variation, then the table would not be found.

More than one INCLUDE statement can be specified.

Depending on your operating system, the use of quotation marks when you specify a
value for this parameter may also require that you use escape characters. Oracle
recommends that you place this parameter in a parameter file, which can reduce the
number of escape characters that might otherwise be needed on the command line. See
"Use of Quotation Marks On the Data Pump Command Line" on page 3-7.

To see a list of valid paths for use with the INCLUDE parameter, you can query the
following views: DATABASE_EXPORT_OBJECTS for Full mode, SCHEMA_EXPORT_OBJECTS
for schema mode, and TABLE_EXPORT_OBJECTS for table and tablespace mode.

Restrictions
■ The INCLUDE and EXCLUDE parameters are mutually exclusive.

Example
Assume the following is in a parameter file, imp_include.par, being used by a DBA or
some other user with the DATAPUMP_IMP_FULL_DATABASE role:

INCLUDE=FUNCTION
INCLUDE=PROCEDURE
INCLUDE=PACKAGE
INCLUDE=INDEX:"LIKE 'EMP%' "

You can then issue the following command:

> impdp system SCHEMAS=hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp
PARFILE=imp_include.par

You can create the expfull.dmp dump file used in this example by running the
example provided for the Export FULL parameter. See "FULL" on page 2-25.

The Import operation will load only functions, procedures, and packages from the hr
schema and indexes whose names start with EMP. Although this is a privileged-mode
import (the user must have the DATAPUMP_IMP_FULL_DATABASE role), the schema

Parameters Available in Import's Command-Line Mode

3-22 Oracle Database Utilities

definition is not imported, because the USER object type was not specified in an
INCLUDE statement.

JOB_NAME
Default: system-generated name of the form SYS_<IMPORT or SQLFILE>_<mode>_NN

Purpose
The job name is used to identify the import job in subsequent actions, such as when
the ATTACH parameter is used to attach to a job, or to identify the job via the DBA_
DATAPUMP_JOBS or USER_DATAPUMP_JOBS views.

Syntax and Description
JOB_NAME=jobname_string

The jobname_string specifies a name of up to 30 bytes for this import job. The bytes
must represent printable characters and spaces. If spaces are included, then the name
must be enclosed in single quotation marks (for example, 'Thursday Import'). The job
name is implicitly qualified by the schema of the user performing the import
operation. The job name is used as the name of the master table, which controls the
export job.

The default job name is system-generated in the form SYS_IMPORT_mode_NN or SYS_
SQLFILE_mode_NN, where NN expands to a 2-digit incrementing integer starting at 01.
An example of a default name is 'SYS_IMPORT_TABLESPACE_02'.

Example
The following is an example of using the JOB_NAME parameter. You can create the
expfull.dmp dump file used in this example by running the example provided for the
Export FULL parameter. See "FULL" on page 2-25.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp JOB_NAME=impjob01

KEEP_MASTER
Default: NO

Purpose
Indicates whether the master table should be deleted or retained at the end of a Data
Pump job that completes successfully. The master table is automatically retained for
jobs that do not complete successfully.

Syntax and Description
KEEP_MASTER=[YES | NO]

Restrictions
■ None

Example
> impdp hr SCHEMAS=hr DIRECTORY=dpump_dir1 LOGFILE=schemas.log
DUMPFILE=expdat.dmp KEEP_MASTER=YES

Parameters Available in Import's Command-Line Mode

Data Pump Import 3-23

LOGFILE
Default: import.log

Purpose
Specifies the name, and optionally, a directory object, for the log file of the import job.

Syntax and Description
LOGFILE=[directory_object:]file_name

If you specify a directory_object, then it must be one that was previously established
by the DBA and that you have access to. This overrides the directory object specified
with the DIRECTORY parameter. The default behavior is to create import.log in the
directory referenced by the directory object specified in the DIRECTORY parameter.

If the file_name you specify already exists, then it will be overwritten.

All messages regarding work in progress, work completed, and errors encountered are
written to the log file. (For a real-time status of the job, use the STATUS command in
interactive mode.)

A log file is always created unless the NOLOGFILE parameter is specified. As with the
dump file set, the log file is relative to the server and not the client.

Restrictions
■ To perform a Data Pump Import using Oracle Automatic Storage Management

(Oracle ASM), you must specify a LOGFILE parameter that includes a directory
object that does not include the Oracle ASM + notation. That is, the log file must
be written to a disk file, and not written into the Oracle ASM storage.
Alternatively, you can specify NOLOGFILE=YES. However, this prevents the writing
of the log file.

Example
The following is an example of using the LOGFILE parameter. You can create the
expfull.dmp dump file used in this example by running the example provided for the
Export FULL parameter. See "FULL" on page 2-25.

> impdp hr SCHEMAS=HR DIRECTORY=dpump_dir2 LOGFILE=imp.log
 DUMPFILE=dpump_dir1:expfull.dmp

Because no directory object is specified on the LOGFILE parameter, the log file is
written to the directory object specified on the DIRECTORY parameter.

Note: Data Pump Import writes the log file using the database
character set. If your client NLS_LANG environment sets up a
different client character set from the database character set, then it
is possible that table names may be different in the log file than
they are when displayed on the client output screen.

See Also:

■ "STATUS" on page 3-57

■ "Using Directory Objects When Oracle Automatic Storage
Management Is Enabled" on page 1-12 for information about
Oracle Automatic Storage Management and directory objects

Parameters Available in Import's Command-Line Mode

3-24 Oracle Database Utilities

MASTER_ONLY
Default: NO

Purpose
Indicates whether to import just the master table and then stop the job so that the
contents of the master table can be examined.

Syntax and Description
MASTER_ONLY=[YES | NO]

Restrictions
■ If the NETWORK_LINK parameter is also specified, then MASTER_ONLY=YES is not

supported.

Example
> impdp hr SCHEMAS=hr DIRECTORY=dpump_dir1 LOGFILE=schemas.log
DUMPFILE=expdat.dmp MASTER_ONLY=YES

METRICS
Default: NO

Purpose
Indicates whether additional information about the job should be reported to the Data
Pump log file.

Syntax and Description
METRICS=[YES | NO]

When METRICS=YES is used, the number of objects and the elapsed time are recorded in
the Data Pump log file.

Restrictions
■ None

Example
> impdp hr SCHEMAS=hr DIRECTORY=dpump_dir1 LOGFILE=schemas.log
DUMPFILE=expdat.dmp METRICS=YES

NETWORK_LINK
Default: There is no default

Purpose
Enables an import from a (source) database identified by a valid database link. The
data from the source database instance is written directly back to the connected
database instance.

Syntax and Description
NETWORK_LINK=source_database_link

Parameters Available in Import's Command-Line Mode

Data Pump Import 3-25

The NETWORK_LINK parameter initiates an import via a database link. This means that
the system to which the impdp client is connected contacts the source database
referenced by the source_database_link, retrieves data from it, and writes the data
directly to the database on the connected instance. There are no dump files involved.

The source_database_link provided must be the name of a database link to an
available database. If the database on that instance does not already have a database
link, then you or your DBA must create one using the SQL CREATE DATABASE LINK
statement.

When you perform a network import using the transportable method, you must copy
the source data files to the target database before you start the import.

If the source database is read-only, then the connected user must have a locally
managed tablespace assigned as the default temporary tablespace on the source
database. Otherwise, the job will fail.

This parameter is required when any of the following parameters are specified:
FLASHBACK_SCN, FLASHBACK_TIME, ESTIMATE, TRANSPORT_TABLESPACES, or
TRANSPORTABLE.

Restrictions
■ The Import NETWORK_LINK parameter is not supported for tables containing

SecureFiles that have ContentType set or that are currently stored outside of the
SecureFiles segment through Oracle Database File System Links.

■ Network imports do not support the use of evolved types.

■ Network imports do not support LONG columns.

■ When operating across a network link, Data Pump requires that the source and
target databases differ by no more than one version. For example, if one database
is Oracle Database 11g, then the other database must be either 11g or 10g. Note that
Data Pump checks only the major version number (for example, 10g and 11g), not
specific release numbers (for example, 10.1, 10.2, 11.1, or 11.2).

■ If the USERID that is executing the import job has the DATAPUMP_IMP_FULL_
DATABASE role on the target database, then that user must also have the DATAPUMP_
EXP_FULL_DATABASE role on the source database.

■ The only types of database links supported by Data Pump Import are: public,
fixed user, and connected user. Current-user database links are not supported.

Caution: If an import operation is performed over an unencrypted
network link, then all data is imported as clear text even if it is
encrypted in the database. See Oracle Database Advanced Security
Administrator's Guide for more information about network security.

See Also:

■ Oracle Database Administrator's Guide for more information about
database links

■ Oracle Database SQL Language Reference for more information about
the CREATE DATABASE LINK statement

■ Oracle Database Administrator's Guide for more information about
locally managed tablespaces

Parameters Available in Import's Command-Line Mode

3-26 Oracle Database Utilities

■ Network mode import does not use parallel query (PQ) slaves. See "Using
PARALLEL During a Network Mode Import" on page 3-27.

Example
In the following example, the source_database_link would be replaced with the
name of a valid database link.

> impdp hr TABLES=employees DIRECTORY=dpump_dir1
NETWORK_LINK=source_database_link EXCLUDE=CONSTRAINT

This example results in an import of the employees table (excluding constraints) from
the source database. The log file is written to dpump_dir1, specified on the DIRECTORY
parameter.

NOLOGFILE
Default: NO

Purpose
Specifies whether to suppress the default behavior of creating a log file.

Syntax and Description
NOLOGFILE=[YES | NO]

If you specify NOLOGFILE=YES to suppress creation of a log file, then progress and error
information is still written to the standard output device of any attached clients,
including the client that started the original export operation. If there are no clients
attached to a running job and you specify NOLOGFILE=YES, then you run the risk of
losing important progress and error information.

Example
The following is an example of using the NOLOGFILE parameter.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp NOLOGFILE=YES

This command results in a full mode import (the default for file-based imports) of the
expfull.dmp dump file. No log file is written because NOLOGFILE is set to YES.

PARALLEL
Default: 1

Purpose
Specifies the maximum number of processes of active execution operating on behalf of
the import job.

Syntax and Description
PARALLEL=integer

The value you specify for integer specifies the maximum number of processes of
active execution operating on behalf of the import job. This execution set consists of a
combination of worker processes and parallel I/O server processes. The master control
process, idle workers, and worker processes acting as parallel execution coordinators
in parallel I/O operations do not count toward this total. This parameter enables you
to make trade-offs between resource consumption and elapsed time.

Parameters Available in Import's Command-Line Mode

Data Pump Import 3-27

If the source of the import is a dump file set consisting of files, then multiple processes
can read from the same file, but performance may be limited by I/O contention.

To increase or decrease the value of PARALLEL during job execution, use
interactive-command mode.

Parallelism is used for loading user data and package bodies, and for building indexes.

Using PARALLEL During a Network Mode Import
During a network mode import, the PARALLEL parameter defines the maximum
number of worker processes that can be assigned to the job. To understand the effect of
the PARALLEL parameter during a network import mode, it is important to understand
the concept of "table_data objects" as defined by Data Pump. When Data Pump moves
data, it considers the following items to be individual "table_data objects":

■ a complete table (one that is not partitioned or subpartitioned)

■ partitions, if the table is partitioned but not subpartitioned

■ subpartitions, if the table is subpartitioned

For example:

■ A nonpartitioned table, scott.non_part_table, has 1 table_data object:

 scott.non_part_table

■ A partitioned table, scott.part_table (having partition p1 and partition p2), has 2
table_data objects:

 scott.part_table:p1

 scott.part_table:p2

■ A subpartitioned table, scott.sub_part_table (having partition p1 and p2, and
subpartitions p1s1, p1s2, p2s1, and p2s2) has 4 table_data objects:

scott.sub_part_table:p1s1

scott.sub_part_table:p1s2

scott.sub_part_table:p2s1

scott.sub_part_table:p2s2

During a network mode import, each table_data object is assigned its own worker
process, up to the value specified for the PARALLEL parameter. No parallel query (PQ)
slaves are assigned because network mode import does not use parallel query (PQ)
slaves. Multiple table_data objects can be unloaded at the same time, but each table_
data object is unloaded using a single process.

Using PARALLEL During An Import In An Oracle RAC Environment
In an Oracle Real Application Clusters (Oracle RAC) environment, if an import
operation has PARALLEL=1, then all Data Pump processes reside on the instance where
the job is started. Therefore, the directory object can point to local storage for that
instance.

If the import operation has PARALLEL set to a value greater than 1, then Data Pump
processes can reside on instances other than the one where the job was started.
Therefore, the directory object must point to shared storage that is accessible by all
instances of the Oracle RAC.

See Also: "Controlling Resource Consumption" on page 5-2

Parameters Available in Import's Command-Line Mode

3-28 Oracle Database Utilities

Restrictions
■ This parameter is valid only in the Enterprise Edition of Oracle Database 11g.

■ To import a table or table partition in parallel (using PQ slaves), you must have the
DATAPUMP_IMP_FULL_DATABASE role.

Example
The following is an example of using the PARALLEL parameter.

> impdp hr DIRECTORY=dpump_dir1 LOGFILE=parallel_import.log
JOB_NAME=imp_par3 DUMPFILE=par_exp%U.dmp PARALLEL=3

This command imports the dump file set that is created when you run the example for
the Export PARALLEL parameter. (See "PARALLEL" on page 2-32.) The names of the
dump files are par_exp01.dmp, par_exp02.dmp, and par_exp03.dmp.

PARFILE
Default: There is no default

Purpose
Specifies the name of an import parameter file.

Syntax and Description
PARFILE=[directory_path]file_name

Unlike dump files, log files, and SQL files which are created and written by the server,
the parameter file is opened and read by the impdp client. Therefore, a directory object
name is neither required nor appropriate. The default is the user's current directory.
The use of parameter files is highly recommended if you are using parameters whose
values require the use of quotation marks.

Restrictions
■ The PARFILE parameter cannot be specified within a parameter file.

Example
The content of an example parameter file, hr_imp.par, might be as follows:

TABLES= countries, locations, regions
DUMPFILE=dpump_dir2:exp1.dmp,exp2%U.dmp
DIRECTORY=dpump_dir1
PARALLEL=3

You could then issue the following command to execute the parameter file:

> impdp hr PARFILE=hr_imp.par

The tables named countries, locations, and regions will be imported from the
dump file set that is created when you run the example for the Export DUMPFILE
parameter. (See "DUMPFILE" on page 2-14.) The import job looks for the exp1.dmp file
in the location pointed to by dpump_dir2. It looks for any dump files of the form
exp2nn.dmp in the location pointed to by dpump_dir1. The log file for the job will also
be written to dpump_dir1.

See Also: "Use of Quotation Marks On the Data Pump Command
Line" on page 3-7

Parameters Available in Import's Command-Line Mode

Data Pump Import 3-29

PARTITION_OPTIONS
Default: The default is departition when partition names are specified on the TABLES
parameter and TRANPORTABLE=ALWAYS is set (whether on the import operation or
during the export). Otherwise, the default is none.

Purpose
Specifies how table partitions should be created during an import operation.

Syntax and Description
PARTITION_OPTIONS=[NONE | DEPARTITION | MERGE]

A value of none creates tables as they existed on the system from which the export
operation was performed. You cannot use the none option or the merge option if the
export was performed with the transportable method, along with a partition or
subpartition filter. In such a case, you must use the departition option.

A value of departition promotes each partition or subpartition to a new individual
table. The default name of the new table will be the concatenation of the table and
partition name or the table and subpartition name, as appropriate.

A value of merge combines all partitions and subpartitions into one table.

Parallel processing during import of partitioned tables is subject to the following:

■ If a partitioned table is imported into an existing partitioned table, then Data
Pump only processes one partition or subpartition at a time, regardless of any
value that might be specified with the PARALLEL parameter.

■ If the table into which you are importing does not already exist and Data Pump
has to create it, then the import runs in parallel up to the parallelism specified on
the PARALLEL parameter when the import is started.

Restrictions
■ If the export operation that created the dump file was performed with the

transportable method and if a partition or subpartition was specified, then the
import operation must use the departition option.

■ If the export operation that created the dump file was performed with the
transportable method, then the import operation cannot use PARTITION_
OPTIONS=MERGE.

■ If there are any grants on objects being departitioned, then an error message is
generated and the objects are not loaded.

Example
The following example assumes that the sh.sales table has been exported into a
dump file named sales.dmp. It uses the merge option to merge all the partitions in
sh.sales into one non-partitioned table in scott schema.

> impdp system TABLES=sh.sales PARTITION_OPTIONS=MERGE
DIRECTORY=dpump_dir1 DUMPFILE=sales.dmp REMAP_SCHEMA=sh:scott

See Also: "TRANSPORTABLE" on page 2-45 for an example of
performing an import operation using PARTITION_
OPTIONS=DEPARTITION

Parameters Available in Import's Command-Line Mode

3-30 Oracle Database Utilities

QUERY
Default: There is no default

Purpose
Allows you to specify a query clause that filters the data that gets imported.

Syntax and Description
QUERY=[[schema_name.]table_name:]query_clause

The query_clause is typically a SQL WHERE clause for fine-grained row selection, but
could be any SQL clause. For example, an ORDER BY clause could be used to speed up a
migration from a heap-organized table to an index-organized table. If a schema and
table name are not supplied, then the query is applied to (and must be valid for) all
tables in the source dump file set or database. A table-specific query overrides a query
applied to all tables.

When the query is to be applied to a specific table, a colon (:) must separate the table
name from the query clause. More than one table-specific query can be specified, but
only one query can be specified per table.

If the NETWORK_LINK parameter is specified along with the QUERY parameter, then any
objects specified in the query_clause that are on the remote (source) node must be
explicitly qualified with the NETWORK_LINK value. Otherwise, Data Pump assumes that
the object is on the local (target) node; if it is not, then an error is returned and the
import of the table from the remote (source) system fails.

For example, if you specify NETWORK_LINK=dblink1, then the query_clause of the
QUERY parameter must specify that link, as shown in the following example:

QUERY=(hr.employees:"WHERE last_name IN(SELECT last_name
FROM hr.employees@dblink1)")

Depending on your operating system, the use of quotation marks when you specify a
value for this parameter may also require that you use escape characters. Oracle
recommends that you place this parameter in a parameter file, which can reduce the
number of escape characters that might otherwise be needed on the command line. See
"Use of Quotation Marks On the Data Pump Command Line" on page 3-7.

When the QUERY parameter is used, the external tables method (rather than the direct
path method) is used for data access.

To specify a schema other than your own in a table-specific query, you must be
granted access to that specific table.

Restrictions
■ The QUERY parameter cannot be used with the following parameters:

– CONTENT=METADATA_ONLY

– SQLFILE

– TRANSPORT_DATAFILES

■ When the QUERY parameter is specified for a table, Data Pump uses external tables
to load the target table. External tables uses a SQL INSERT statement with a SELECT
clause. The value of the QUERY parameter is included in the WHERE clause of the
SELECT portion of the INSERT statement. If the QUERY parameter includes references
to another table with columns whose names match the table being loaded, and if
those columns are used in the query, then you will need to use a table alias to

Parameters Available in Import's Command-Line Mode

Data Pump Import 3-31

distinguish between columns in the table being loaded and columns in the SELECT
statement with the same name. The table alias used by Data Pump for the table
being loaded is KU$.

For example, suppose you are importing a subset of the sh.sales table based on
the credit limit for a customer in the sh.customers table. In the following example,
KU$ is used to qualify the cust_id field in the QUERY parameter for loading
sh.sales. As a result, Data Pump imports only rows for customers whose credit
limit is greater than $10,000.

QUERY='sales:"WHERE EXISTS (SELECT cust_id FROM customers c
WHERE cust_credit_limit > 10000 AND ku$.cust_id = c.cust_id)"'

If KU$ is not used for a table alias, then all rows are loaded:

QUERY='sales:"WHERE EXISTS (SELECT cust_id FROM customers c
WHERE cust_credit_limit > 10000 AND cust_id = c.cust_id)"'

■ The maximum length allowed for a QUERY string is 4000 bytes including quotation
marks, which means that the actual maximum length allowed is 3998 bytes.

Example
The following is an example of using the QUERY parameter. You can create the
expfull.dmp dump file used in this example by running the example provided for the
Export FULL parameter. See "FULL" on page 2-25. Because the QUERY value uses
quotation marks, Oracle recommends that you use a parameter file.

Suppose you have a parameter file, query_imp.par, that contains the following:

QUERY=departments:"WHERE department_id < 120"

You can then enter the following command:

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp
 PARFILE=query_imp.par NOLOGFILE=YES

All tables in expfull.dmp are imported, but for the departments table, only data that
meets the criteria specified in the QUERY parameter is imported.

REMAP_DATA
Default: There is no default

Purpose
The REMAP_DATA parameter allows you to remap data as it is being inserted into a new
database. A common use is to regenerate primary keys to avoid conflict when
importing a table into a preexisting table on the target database.

You can specify a remap function that takes as a source the value of the designated
column from either the dump file or a remote database. The remap function then
returns a remapped value that will replace the original value in the target database.

The same function can be applied to multiple columns being dumped. This is useful
when you want to guarantee consistency in remapping both the child and parent
column in a referential constraint.

Syntax and Description
REMAP_DATA=[schema.]tablename.column_name:[schema.]pkg.function

Parameters Available in Import's Command-Line Mode

3-32 Oracle Database Utilities

The description of each syntax element, in the order in which they appear in the
syntax, is as follows:

schema -- the schema containing the table to be remapped. By default, this is the
schema of the user doing the import.

tablename -- the table whose column will be remapped.

column_name -- the column whose data is to be remapped. The maximum number of
columns that can be remapped for a single table is 10.

schema -- the schema containing the PL/SQL package you created that contains the
remapping function. As a default, this is the schema of the user doing the import.

pkg -- the name of the PL/SQL package you created that contains the remapping
function.

function -- the name of the function within the PL/SQL that will be called to remap the
column table in each row of the specified table.

Restrictions
■ The datatypes of the source argument and the returned value should both match

the datatype of the designated column in the table.

■ Remapping functions should not perform commits or rollbacks except in
autonomous transactions.

■ The maximum number of columns you can remap on a single table is 10. You can
remap 9 columns on table a and 8 columns on table b, and so on, but the
maximum for each table is 10.

■ The use of synonyms as values for the REMAP_DATA parameter is not supported. For
example, if the regions table in the hr schema had a synonym of regn, an error
would be returned if you specified regn as part of the REMPA_DATA specification.

■ Remapping LOB column data of a remote table is not supported.

Example
The following example assumes a package named remap has been created that
contains a function named plusx that changes the values for first_name in the
employees table.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expschema.dmp
TABLES=hr.employees REMAP_DATA=hr.employees.first_name:hr.remap.plusx

REMAP_DATAFILE
Default: There is no default

Purpose
Changes the name of the source data file to the target data file name in all SQL
statements where the source data file is referenced: CREATE TABLESPACE, CREATE
LIBRARY, and CREATE DIRECTORY.

Syntax and Description
REMAP_DATAFILE=source_datafile:target_datafile

Remapping data files is useful when you move databases between platforms that have
different file naming conventions. The source_datafile and target_datafile names

Parameters Available in Import's Command-Line Mode

Data Pump Import 3-33

should be exactly as you want them to appear in the SQL statements where they are
referenced. Oracle recommends that you enclose data file names in quotation marks to
eliminate ambiguity on platforms for which a colon is a valid file specification
character.

Depending on your operating system, the use of quotation marks when you specify a
value for this parameter may also require that you use escape characters. Oracle
recommends that you place this parameter in a parameter file, which can reduce the
number of escape characters that might otherwise be needed on the command line.

You must have the DATAPUMP_IMP_FULL_DATABASE role to specify this parameter.

Example
Suppose you had a parameter file, payroll.par, with the following content:

DIRECTORY=dpump_dir1
FULL=YES
DUMPFILE=db_full.dmp
REMAP_DATAFILE="'DB1$:[HRDATA.PAYROLL]tbs6.dbf':'/db1/hrdata/payroll/tbs6.dbf'"

You can then issue the following command:

> impdp hr PARFILE=payroll.par

This example remaps a VMS file specification (DR1$:[HRDATA.PAYROLL]tbs6.dbf) to a
UNIX file specification, (/db1/hrdata/payroll/tbs6.dbf) for all SQL DDL statements
during the import. The dump file, db_full.dmp, is located by the directory object,
dpump_dir1.

REMAP_SCHEMA
Default: There is no default

Purpose
Loads all objects from the source schema into a target schema.

Syntax and Description
REMAP_SCHEMA=source_schema:target_schema

Multiple REMAP_SCHEMA lines can be specified, but the source schema must be different
for each one. However, different source schemas can map to the same target schema.
The mapping may not be 100 percent complete, because there are certain schema
references that Import is not capable of finding; see the Restrictions section below.

If the schema you are remapping to does not already exist, then the import operation
creates it, provided that the dump file set contains the necessary CREATE USER metadata
for the source schema, and provided that you are importing with enough privileges.
For example, the following Export commands create dump file sets with the necessary
metadata to create a schema, because the user SYSTEM has the necessary privileges:

> expdp system SCHEMAS=hr
Password: password

> expdp system FULL=YES
Password: password

See Also: "Use of Quotation Marks On the Data Pump Command
Line" on page 3-7

Parameters Available in Import's Command-Line Mode

3-34 Oracle Database Utilities

If your dump file set does not contain the metadata necessary to create a schema, or if
you do not have privileges, then the target schema must be created before the import
operation is performed. This is because the unprivileged dump files do not contain the
necessary information for the import to create the schema automatically.

If the import operation does create the schema, then after the import is complete, you
must assign it a valid password to connect to it. The SQL statement to do this, which
requires privileges, is:

SQL> ALTER USER schema_name IDENTIFIED BY new_password

Restrictions
■ Unprivileged users can perform schema remaps only if their schema is the target

schema of the remap. (Privileged users can perform unrestricted schema remaps.)
For example, SCOTT can remap his BLAKE's objects to SCOTT, but SCOTT cannot
remap SCOTT's objects to BLAKE.

■ The mapping may not be 100 percent complete because there are certain schema
references that Import is not capable of finding. For example, Import will not find
schema references embedded within the body of definitions of triggers, types,
views, procedures, and packages.

■ If any table in the schema being remapped contains user-defined object types and
that table changes between the time it is exported and the time you attempt to
import it, then the import of that table will fail. However, the import operation
itself will continue.

■ By default, if schema objects on the source database have object identifiers (OIDs),
then they are imported to the target database with those same OIDs. If an object is
imported back into the same database from which it was exported, but into a
different schema, then the OID of the new (imported) object would be the same as
that of the existing object and the import would fail. For the import to succeed you
must also specify the TRANFORM=OID:N parameter on the import. The transform
OID:N causes a new OID to be created for the new object, allowing the import to
succeed.

Example
Suppose that, as user SYSTEM, you execute the following Export and Import commands
to remap the hr schema into the scott schema:

> expdp system SCHEMAS=hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp

> impdp system DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp REMAP_SCHEMA=hr:scott

In this example, if user scott already exists before the import, then the Import REMAP_
SCHEMA command will add objects from the hr schema into the existing scott schema.
You can connect to the scott schema after the import by using the existing password
(without resetting it).

If user scott does not exist before you execute the import operation, then Import
automatically creates it with an unusable password. This is possible because the dump
file, hr.dmp, was created by SYSTEM, which has the privileges necessary to create a
dump file that contains the metadata needed to create a schema. However, you cannot
connect to scott on completion of the import, unless you reset the password for scott
on the target database after the import completes.

Parameters Available in Import's Command-Line Mode

Data Pump Import 3-35

REMAP_TABLE
Default: There is no default

Purpose
Allows you to rename tables during an import operation.

Syntax and Description
You can use either of the following syntaxes (see the Usage Notes below):

REMAP_TABLE=[schema.]old_tablename[.partition]:new_tablename

OR

REMAP_TABLE=[schema.]old_tablename[:partition]:new_tablename

You can use the REMAP_TABLE parameter to rename entire tables or to rename table
partitions if the table is being departitioned. (See "PARTITION_OPTIONS" on
page 3-29.)

You can also use it to override the automatic naming of table partitions that were
exported.

Usage Notes
Be aware that with the first syntax, if you specify REMAP_TABLE=A.B:C, then Import
assumes that A is a schema name, B is the old table name, and C is the new table name.
To use the first syntax to rename a partition that is being promoted to a nonpartitioned
table, you must specify a schema name.

To use the second syntax to rename a partition being promoted to a nonpartitioned
table, you only need to qualify it with the old table name. No schema name is
required.

Restrictions
■ Only objects created by the Import will be remapped. In particular, preexisting

tables will not be remapped.

■ The REMAP_TABLE parameter will not work if the table being remapped has named
constraints in the same schema and the constraints need to be created when the
table is created.

Example
The following is an example of using the REMAP_TABLE parameter to rename the
employees table to a new name of emps:

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expschema.dmp
TABLES=hr.employees REMAP_TABLE=hr.employees:emps

REMAP_TABLESPACE
Default: There is no default

Purpose
Remaps all objects selected for import with persistent data in the source tablespace to
be created in the target tablespace.

Parameters Available in Import's Command-Line Mode

3-36 Oracle Database Utilities

Syntax and Description
REMAP_TABLESPACE=source_tablespace:target_tablespace

Multiple REMAP_TABLESPACE parameters can be specified, but no two can have the
same source tablespace. The target schema must have sufficient quota in the target
tablespace.

Note that use of the REMAP_TABLESPACE parameter is the only way to remap a
tablespace in Data Pump Import. This is a simpler and cleaner method than the one
provided in the original Import utility. That method was subject to many restrictions
(including the number of tablespace subclauses) which sometimes resulted in the
failure of some DDL commands.

By contrast, the Data Pump Import method of using the REMAP_TABLESPACE parameter
works for all objects, including the user, and it works regardless of how many
tablespace subclauses are in the DDL statement.

Restrictions
■ Data Pump Import can only remap tablespaces for transportable imports in

databases where the compatibility level is set to 10.1 or later.

■ Only objects created by the Import will be remapped. In particular, the tablespaces
for preexisting tables will not be remapped if TABLE_EXISTS_ACTION is set to SKIP,
TRUNCATE, or APPEND.

Example
The following is an example of using the REMAP_TABLESPACE parameter.

> impdp hr REMAP_TABLESPACE=tbs_1:tbs_6 DIRECTORY=dpump_dir1
 DUMPFILE=employees.dmp

REUSE_DATAFILES
Default: NO

Purpose
Specifies whether the import job should reuse existing data files for tablespace
creation.

Syntax and Description
REUSE_DATAFILES=[YES | NO]

If the default (n) is used and the data files specified in CREATE TABLESPACE statements
already exist, then an error message from the failing CREATE TABLESPACE statement is
issued, but the import job continues.

If this parameter is specified as y, then the existing data files are reinitialized.

Example
The following is an example of using the REUSE_DATAFILES parameter. You can create
the expfull.dmp dump file used in this example by running the example provided for
the Export FULL parameter. See "FULL" on page 2-25.

Caution: Specifying REUSE_DATAFILES=YES may result in a loss of
data.

Parameters Available in Import's Command-Line Mode

Data Pump Import 3-37

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp LOGFILE=reuse.log
REUSE_DATAFILES=YES

This example reinitializes data files referenced by CREATE TABLESPACE statements in the
expfull.dmp file.

SCHEMAS
Default: There is no default

Purpose
Specifies that a schema-mode import is to be performed.

Syntax and Description
SCHEMAS=schema_name [,...]

If you have the DATAPUMP_IMP_FULL_DATABASE role, then you can use this parameter to
perform a schema-mode import by specifying a list of schemas to import. First, the
user definitions are imported (if they do not already exist), including system and role
grants, password history, and so on. Then all objects contained within the schemas are
imported. Unprivileged users can specify only their own schemas or schemas
remapped to their own schemas. In that case, no information about the schema
definition is imported, only the objects contained within it.

The use of filtering can restrict what is imported using this import mode. See "Filtering
During Import Operations" on page 3-5.

Schema mode is the default mode when you are performing a network-based import.

Example
The following is an example of using the SCHEMAS parameter. You can create the
expdat.dmp file used in this example by running the example provided for the Export
SCHEMAS parameter. See "SCHEMAS" on page 2-37.

> impdp hr SCHEMAS=hr DIRECTORY=dpump_dir1 LOGFILE=schemas.log
DUMPFILE=expdat.dmp

The hr schema is imported from the expdat.dmp file. The log file, schemas.log, is
written to dpump_dir1.

SERVICE_NAME
Default: There is no default

Purpose
Used to specify a service name to be used in conjunction with the CLUSTER parameter.

Syntax and Description
SERVICE_NAME=name

The SERVICE_NAME parameter can be used with the CLUSTER=YES parameter to specify
an existing service associated with a resource group that defines a set of Oracle Real
Application Clusters (Oracle RAC) instances belonging to that resource group,
typically a subset of all the Oracle RAC instances.

Parameters Available in Import's Command-Line Mode

3-38 Oracle Database Utilities

The service name is only used to determine the resource group and instances defined
for that resource group. The instance where the job is started is always used,
regardless of whether it is part of the resource group.

The SERVICE_NAME parameter is ignored if CLUSTER=NO is also specified.

Suppose you have an Oracle RAC configuration containing instances A, B, C, and D.
Also suppose that a service named my_service exists with a resource group consisting
of instances A, B, and C only. In such a scenario, the following would be true:

■ If you start a Data Pump job on instance A and specify CLUSTER=YES (or accept the
default, which is YES) and you do not specify the SERVICE_NAME parameter, then
Data Pump creates workers on all instances: A, B, C, and D, depending on the
degree of parallelism specified.

■ If you start a Data Pump job on instance A and specify CLUSTER=YES and SERVICE_
NAME=my_service, then workers can be started on instances A, B, and C only.

■ If you start a Data Pump job on instance D and specify CLUSTER=YES and SERVICE_
NAME=my_service, then workers can be started on instances A, B, C, and D. Even
though instance D is not in my_service it is included because it is the instance on
which the job was started.

■ If you start a Data Pump job on instance A and specify CLUSTER=NO, then any
SERVICE_NAME parameter you specify is ignored and all processes will start on
instance A.

Example
> impdp system DIRECTORY=dpump_dir1 SCHEMAS=hr
 SERVICE_NAME=sales NETWORK_LINK=dbs1

This example starts a schema-mode network import of the hr schema. Even though
CLUSTER=YES is not specified on the command line, it is the default behavior, so the job
will use all instances in the resource group associated with the service name sales.
The NETWORK_LINK value of dbs1 would be replaced with the name of the source
database from which you were importing data. (Note that there is no dump file
generated because this is a network import.)

The NETWORK_LINK parameter is simply being used as part of the example. It is not
required when using the SERVICE_NAME parameter.

SKIP_UNUSABLE_INDEXES
Default: the value of the Oracle Database configuration parameter, SKIP_UNUSABLE_
INDEXES.

Purpose
Specifies whether Import skips loading tables that have indexes that were set to the
Index Unusable state (by either the system or the user).

Syntax and Description
SKIP_UNUSABLE_INDEXES=[YES | NO]

If SKIP_UNUSABLE_INDEXES is set to YES, and a table or partition with an index in the
Unusable state is encountered, then the load of that table or partition proceeds
anyway, as if the unusable index did not exist.

See Also: "CLUSTER" on page 3-10

Parameters Available in Import's Command-Line Mode

Data Pump Import 3-39

If SKIP_UNUSABLE_INDEXES is set to NO, and a table or partition with an index in the
Unusable state is encountered, then that table or partition is not loaded. Other tables,
with indexes not previously set Unusable, continue to be updated as rows are inserted.

If the SKIP_UNUSABLE_INDEXES parameter is not specified, then the setting of the Oracle
Database configuration parameter, SKIP_UNUSABLE_INDEXES (whose default value is y),
will be used to determine how to handle unusable indexes.

If indexes used to enforce constraints are marked unusable, then the data is not
imported into that table.

Example
The following is an example of using the SKIP_UNUSABLE_INDEXES parameter. You can
create the expfull.dmp dump file used in this example by running the example
provided for the Export FULL parameter. See "FULL" on page 2-25.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp LOGFILE=skip.log
SKIP_UNUSABLE_INDEXES=YES

SOURCE_EDITION
Default: the default database edition on the remote node from which objects will be
fetched

Purpose
Specifies the database edition on the remote node from which objects will be fetched.

Syntax and Description
SOURCE_EDITION=edition_name

If SOURCE_EDITION=edition_name is specified, then the objects from that edition are
imported. Data Pump selects all inherited objects that have not changed and all actual
objects that have changed.

If this parameter is not specified, then the default edition is used. If the specified
edition does not exist or is not usable, then an error message is returned.

Restrictions
■ The SOURCE_EDITION parameter is valid on an import operation only when the

NETWORK_LINK parameter is also specified. See "NETWORK_LINK" on page 3-24.

Note: This parameter is useful only when importing data into an
existing table. It has no practical effect when a table is created as part
of an import because in that case, the table and indexes are newly
created and will not be marked unusable.

See Also:

■ Oracle Database SQL Language Reference for information about how
editions are created

■ Oracle Database Advanced Application Developer's Guide for more
information about the editions feature, including inherited and
actual objects

Parameters Available in Import's Command-Line Mode

3-40 Oracle Database Utilities

■ This parameter is only useful if there are two or more versions of the same
versionable objects in the database.

■ The job version must be set to 11.2 or higher. See "VERSION" on page 3-53.

Example
The following is an example of using the import SOURCE_EDITION parameter:

> impdp hr DIRECTORY=dpump_dir1 SOURCE_EDITION=exp_edition
NETWORK_LINK=source_database_link EXCLUDE=USER

This example assumes the existence of an edition named exp_edition on the system
from which objects are being imported. Because no import mode is specified, the
default of schema mode will be used. The source_database_link would be replaced
with the name of the source database from which you were importing data. The
EXCLUDE=USER parameter excludes only the definitions of users, not the objects
contained within users' schemas. (Note that there is no dump file generated because
this is a network import.)

SQLFILE
Default: There is no default

Purpose
Specifies a file into which all of the SQL DDL that Import would have executed, based
on other parameters, is written.

Syntax and Description
SQLFILE=[directory_object:]file_name

The file_name specifies where the import job will write the DDL that would be
executed during the job. The SQL is not actually executed, and the target system
remains unchanged. The file is written to the directory object specified in the
DIRECTORY parameter, unless another directory_object is explicitly specified here.
Any existing file that has a name matching the one specified with this parameter is
overwritten.

Note that passwords are not included in the SQL file. For example, if a CONNECT
statement is part of the DDL that was executed, then it will be replaced by a comment
with only the schema name shown. In the following example, the dashes (--) indicate
that a comment follows, and the hr schema name is shown, but not the password.

-- CONNECT hr

Therefore, before you can execute the SQL file, you must edit it by removing the
dashes indicating a comment and adding the password for the hr schema.

For Streams and other Oracle database options, anonymous PL/SQL blocks may
appear within the SQLFILE output. They should not be executed directly.

Restrictions
■ If SQLFILE is specified, then the CONTENT parameter is ignored if it is set to either

ALL or DATA_ONLY.

■ To perform a Data Pump Import to a SQL file using Oracle Automatic Storage
Management (Oracle ASM), the SQLFILE parameter that you specify must include

Parameters Available in Import's Command-Line Mode

Data Pump Import 3-41

a directory object that does not use the Oracle ASM + notation. That is, the SQL
file must be written to a disk file, not into the Oracle ASM storage.

■ The SQLFILE parameter cannot be used in conjunction with the QUERY parameter.

Example
The following is an example of using the SQLFILE parameter. You can create the
expfull.dmp dump file used in this example by running the example provided for the
Export FULL parameter. See "FULL" on page 2-25.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp
SQLFILE=dpump_dir2:expfull.sql

A SQL file named expfull.sql is written to dpump_dir2.

STATUS
Default: 0

Purpose
Specifies the frequency at which the job status will be displayed.

Syntax and Description
STATUS[=integer]

If you supply a value for integer, it specifies how frequently, in seconds, job status
should be displayed in logging mode. If no value is entered or if the default value of 0
is used, then no additional information is displayed beyond information about the
completion of each object type, table, or partition.

This status information is written only to your standard output device, not to the log
file (if one is in effect).

Example
The following is an example of using the STATUS parameter. You can create the
expfull.dmp dump file used in this example by running the example provided for the
Export FULL parameter. See "FULL" on page 2-25.

> impdp hr NOLOGFILE=YES STATUS=120 DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp

In this example, the status is shown every two minutes (120 seconds).

STREAMS_CONFIGURATION
Default: YES

Purpose
Specifies whether to import any Streams metadata that may be present in the export
dump file.

Syntax and Description
STREAMS_CONFIGURATION=[YES | NO]

Parameters Available in Import's Command-Line Mode

3-42 Oracle Database Utilities

Example
The following is an example of using the STREAMS_CONFIGURATION parameter. You can
create the expfull.dmp dump file used in this example by running the example
provided for the Export FULL parameter. See "FULL" on page 2-25.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp STREAMS_CONFIGURATION=NO

TABLE_EXISTS_ACTION
Default: SKIP (Note that if CONTENT=DATA_ONLY is specified, then the default is APPEND,
not SKIP.)

Purpose
Tells Import what to do if the table it is trying to create already exists.

Syntax and Description
TABLE_EXISTS_ACTION=[SKIP | APPEND | TRUNCATE | REPLACE]

The possible values have the following effects:

■ SKIP leaves the table as is and moves on to the next object. This is not a valid
option if the CONTENT parameter is set to DATA_ONLY.

■ APPEND loads rows from the source and leaves existing rows unchanged.

■ TRUNCATE deletes existing rows and then loads rows from the source.

■ REPLACE drops the existing table and then creates and loads it from the source. This
is not a valid option if the CONTENT parameter is set to DATA_ONLY.

The following considerations apply when you are using these options:

■ When you use TRUNCATE or REPLACE, ensure that rows in the affected tables are not
targets of any referential constraints.

■ When you use SKIP, APPEND, or TRUNCATE, existing table-dependent objects in the
source, such as indexes, grants, triggers, and constraints, are not modified. For
REPLACE, the dependent objects are dropped and re-created from the source, if they
were not explicitly or implicitly excluded (using EXCLUDE) and they exist in the
source dump file or system.

■ When you use APPEND or TRUNCATE, checks are made to ensure that rows from the
source are compatible with the existing table before performing any action.

If the existing table has active constraints and triggers, then it is loaded using the
external tables access method. If any row violates an active constraint, then the
load fails and no data is loaded. You can override this behavior by specifying
DATA_OPTIONS=SKIP_CONSTRAINT_ERRORS on the Import command line.

If you have data that must be loaded, but may cause constraint violations, then
consider disabling the constraints, loading the data, and then deleting the problem
rows before reenabling the constraints.

■ When you use APPEND, the data is always loaded into new space; existing space,
even if available, is not reused. For this reason, you may want to compress your
data after the load.

See Also: Oracle Streams Replication Administrator's Guide

Parameters Available in Import's Command-Line Mode

Data Pump Import 3-43

■ Also see the description of the Import PARTITION_OPTIONS parameter on
page 3-29 for information about how parallel processing of partitioned tables is
affected depending on whether the target table already exists or not.

Restrictions
■ TRUNCATE cannot be used on clustered tables.

Example
The following is an example of using the TABLE_EXISTS_ACTION parameter. You can
create the expfull.dmp dump file used in this example by running the example
provided for the Export FULL parameter. See "FULL" on page 2-25.

> impdp hr TABLES=employees DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp
TABLE_EXISTS_ACTION=REPLACE

TABLES
Default: There is no default

Purpose
Specifies that you want to perform a table-mode import.

Syntax and Description
TABLES=[schema_name.]table_name[:partition_name]

In a table-mode import, you can filter the data that is imported from the source by
specifying a comma-delimited list of tables and partitions or subpartitions.

If you do not supply a schema_name, then it defaults to that of the current user. To
specify a schema other than your own, you must either have the DATAPUMP_IMP_FULL_
DATABASE role or remap the schema to the current user.

The use of filtering can restrict what is imported using this import mode. See "Filtering
During Import Operations" on page 3-5.

If a partition_name is specified, then it must be the name of a partition or subpartition
in the associated table.

Use of the wildcard character, %, to specify table names and partition names is
supported.

The following restrictions apply to table names:

Note: When Data Pump detects that the source table and target table
do not match (the two tables do not have the same number of columns
or the target table has a column name that is not present in the source
table), it compares column names between the two tables. If the tables
have at least one column in common, then the data for the common
columns is imported into the table (assuming the datatypes are
compatible). The following restrictions apply:

■ This behavior is not supported for network imports.

■ The following types of columns cannot be dropped: object
columns, object attributes, nested table columns, and ref columns
based on a primary key.

Parameters Available in Import's Command-Line Mode

3-44 Oracle Database Utilities

■ By default, table names in a database are stored as uppercase. If you have a table
name in mixed-case or lowercase, and you want to preserve case-sensitivity for the
table name, then you must enclose the name in quotation marks. The name must
exactly match the table name stored in the database.

Some operating systems require that quotation marks on the command line be
preceded by an escape character. The following are examples of how
case-sensitivity can be preserved in the different Import modes.

– In command-line mode:

TABLES='\"Emp\"'

– In parameter file mode:

TABLES='"Emp"'

■ Table names specified on the command line cannot include a pound sign (#),
unless the table name is enclosed in quotation marks. Similarly, in the parameter
file, if a table name includes a pound sign (#), then the Import utility interprets the
rest of the line as a comment, unless the table name is enclosed in quotation marks.

For example, if the parameter file contains the following line, then Import
interprets everything on the line after emp# as a comment and does not import the
tables dept and mydata:

TABLES=(emp#, dept, mydata)

However, if the parameter file contains the following line, then the Import utility
imports all three tables because emp# is enclosed in quotation marks:

TABLES=('"emp#"', dept, mydata)

Restrictions
■ The use of synonyms as values for the TABLES parameter is not supported. For

example, if the regions table in the hr schema had a synonym of regn, then it
would not be valid to use TABLES=regn. An error would be returned.

■ You can only specify partitions from one table if PARTITION_OPTIONS=DEPARTITION
is also specified on the import.

■ If you specify TRANSPORTABLE=ALWAYS, then all partitions specified on the TABLES
parameter must be in the same table.

■ The length of the table name list specified for the TABLES parameter is limited to a
maximum of 4 MB, unless you are using the NETWORK_LINK parameter to an Oracle
Database release 10.2.0.3 or earlier or to a read-only database. In such cases, the
limit is 4 KB.

Note: Some operating systems require single quotation marks
rather than double quotation marks, or the reverse; see your Oracle
operating system-specific documentation. Different operating
systems also have other restrictions on table naming.

For example, the UNIX C shell attaches a special meaning to a
dollar sign ($) or pound sign (#) (or certain other special
characters). You must use escape characters to get such characters
in the name past the shell and into Import.

Parameters Available in Import's Command-Line Mode

Data Pump Import 3-45

Example
The following example shows a simple use of the TABLES parameter to import only the
employees and jobs tables from the expfull.dmp file. You can create the expfull.dmp
dump file used in this example by running the example provided for the Export FULL
parameter. See "FULL" on page 2-25.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp TABLES=employees,jobs

The following example shows the use of the TABLES parameter to import partitions:

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expdat.dmp
TABLES=sh.sales:sales_Q1_2008,sh.sales:sales_Q2_2008

This example imports the partitions sales_Q1_2008 and sales_Q2_2008 for the table
sales in the schema sh.

TABLESPACES
Default: There is no default

Purpose
Specifies that you want to perform a tablespace-mode import.

Syntax and Description
TABLESPACES=tablespace_name [, ...]

Use TABLESPACES to specify a list of tablespace names whose tables and dependent
objects are to be imported from the source (full, schema, tablespace, or table-mode
export dump file set or another database).

During the following import situations, Data Pump automatically creates the
tablespaces into which the data will be imported:

■ The import is being done in FULL or TRANSPORT_TABLESPACES mode

■ The import is being done in table mode with TRANSPORTABLE=ALWAYS

In all other cases, the tablespaces for the selected objects must already exist on the
import database. You could also use the Import REMAP_TABLESPACE parameter to map
the tablespace name to an existing tablespace on the import database.

The use of filtering can restrict what is imported using this import mode. See "Filtering
During Import Operations" on page 3-5.

Restrictions
■ The length of the list of tablespace names specified for the TABLESPACES parameter

is limited to a maximum of 4 MB, unless you are using the NETWORK_LINK
parameter to a 10.2.0.3 or earlier database or to a read-only database. In such cases,
the limit is 4 KB.

Example
The following is an example of using the TABLESPACES parameter. It assumes that the
tablespaces already exist. You can create the expfull.dmp dump file used in this
example by running the example provided for the Export FULL parameter. See "FULL"
on page 2-25.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp TABLESPACES=tbs_1,tbs_2,tbs_
3,tbs_4

Parameters Available in Import's Command-Line Mode

3-46 Oracle Database Utilities

This example imports all tables that have data in tablespaces tbs_1, tbs_2, tbs_3, and
tbs_4.

TARGET_EDITION
Default: the default database edition on the system

Purpose
Specifies the database edition into which objects should be imported.

Syntax and Description
TARGET_EDITION=name

If TARGET_EDITION=name is specified, then Data Pump Import creates all of the objects
found in the dump file. Objects that are not editionable are created in all editions. For
example, tables are not editionable, so if there is a table in the dump file, then it will be
created, and all editions will see it. Objects in the dump file that are editionable, such
as procedures, are created only in the specified target edition.

If this parameter is not specified, then the default edition on the target database is
used, even if an edition was specified in the export job. If the specified edition does not
exist or is not usable, then an error message is returned.

Restrictions
■ This parameter is only useful if there are two or more versions of the same

versionable objects in the database.

■ The job version must be 11.2 or higher. See "VERSION" on page 3-53.

Example
The following is an example of using the TARGET_EDITION parameter:

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=exp_dat.dmp TARGET_EDITION=exp_edition

This example assumes the existence of an edition named exp_edition on the system to
which objects are being imported. Because no import mode is specified, the default of
schema mode will be used.

TRANSFORM
Default: There is no default

Purpose
Enables you to alter object creation DDL for objects being imported.

Syntax and Description
TRANSFORM = transform_name:value[:object_type]

See Also:

■ Oracle Database SQL Language Reference for information about how
editions are created

■ Oracle Database Advanced Application Developer's Guide for more
information about the editions feature

Parameters Available in Import's Command-Line Mode

Data Pump Import 3-47

The transform_name specifies the name of the transform. The possible options are as
follows:

■ SEGMENT_ATTRIBUTES - If the value is specified as y, then segment attributes
(physical attributes, storage attributes, tablespaces, and logging) are included,
with appropriate DDL. The default is y.

■ STORAGE - If the value is specified as y, then the storage clauses are included, with
appropriate DDL. The default is y. This parameter is ignored if SEGMENT_
ATTRIBUTES=n.

■ OID - If the value is specified as n, then the assignment of the exported OID during
the creation of object tables and types is inhibited. Instead, a new OID is assigned.
This can be useful for cloning schemas, but does not affect referenced objects. The
default value is y.

■ PCTSPACE - The value supplied for this transform must be a number greater than
zero. It represents the percentage multiplier used to alter extent allocations and the
size of data files.

Note that you can use the PCTSPACE transform with the Data Pump Export SAMPLE
parameter so that the size of storage allocations matches the sampled data subset.
(See "SAMPLE" on page 2-37.)

■ SEGMENT_CREATION - If set to y (the default), then this transform causes the SQL
SEGMENT CREATION clause to be added to the CREATE TABLE statement. That is, the
CREATE TABLE statement will explicitly say either SEGMENT CREATION DEFERRED or
SEGMENT CREATION IMMEDIATE. If the value is n, then the SEGMENT CREATION clause
is omitted from the CREATE TABLE statement. Set this parameter to n to use the
default segment creation attributes for the table(s) being loaded. (This
functionality is available starting with Oracle Database 11g release 2 (11.2.0.2).)

The type of value specified depends on the transform used. Boolean values (y/n) are
required for the SEGMENT_ATTRIBUTES, STORAGE, and OID transforms. Integer values are
required for the PCTSPACE transform.

The object_type is optional. If supplied, it designates the object type to which the
transform will be applied. If no object type is specified, then the transform applies to
all valid object types. The valid object types for each transform are shown in Table 3–1.

Table 3–1 Valid Object Types For the Data Pump Import TRANSFORM Parameter

SEGMENT_
ATTRIBUTES STORAGE OID PCTSPACE

SEGMENT_
CREATION

CLUSTER X X X

CONSTRAINT X X X

INC_TYPE X

INDEX X X X

ROLLBACK_
SEGMENT

X X X

TABLE X X X X X

TABLESPACE X X

TYPE X

Parameters Available in Import's Command-Line Mode

3-48 Oracle Database Utilities

Example
For the following example, assume that you have exported the employees table in the
hr schema. The SQL CREATE TABLE statement that results when you then import the
table is similar to the following:

CREATE TABLE "HR"."EMPLOYEES"
 ("EMPLOYEE_ID" NUMBER(6,0),
 "FIRST_NAME" VARCHAR2(20),
 "LAST_NAME" VARCHAR2(25) CONSTRAINT "EMP_LAST_NAME_NN" NOT NULL ENABLE,
 "EMAIL" VARCHAR2(25) CONSTRAINT "EMP_EMAIL_NN" NOT NULL ENABLE,
 "PHONE_NUMBER" VARCHAR2(20),
 "HIRE_DATE" DATE CONSTRAINT "EMP_HIRE_DATE_NN" NOT NULL ENABLE,
 "JOB_ID" VARCHAR2(10) CONSTRAINT "EMP_JOB_NN" NOT NULL ENABLE,
 "SALARY" NUMBER(8,2),
 "COMMISSION_PCT" NUMBER(2,2),
 "MANAGER_ID" NUMBER(6,0),
 "DEPARTMENT_ID" NUMBER(4,0)
) PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING
 STORAGE(INITIAL 10240 NEXT 16384 MINEXTENTS 1 MAXEXTENTS 121
 PCTINCREASE 50 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)
 TABLESPACE "SYSTEM" ;

If you do not want to retain the STORAGE clause or TABLESPACE clause, then you can
remove them from the CREATE STATEMENT by using the Import TRANSFORM parameter.
Specify the value of SEGMENT_ATTRIBUTES as n. This results in the exclusion of segment
attributes (both storage and tablespace) from the table.

> impdp hr TABLES=hr.employees DIRECTORY=dpump_dir1 DUMPFILE=hr_emp.dmp
 TRANSFORM=SEGMENT_ATTRIBUTES:n:table

The resulting CREATE TABLE statement for the employees table would then look similar
to the following. It does not contain a STORAGE or TABLESPACE clause; the attributes for
the default tablespace for the HR schema will be used instead.

CREATE TABLE "HR"."EMPLOYEES"
 ("EMPLOYEE_ID" NUMBER(6,0),
 "FIRST_NAME" VARCHAR2(20),
 "LAST_NAME" VARCHAR2(25) CONSTRAINT "EMP_LAST_NAME_NN" NOT NULL ENABLE,
 "EMAIL" VARCHAR2(25) CONSTRAINT "EMP_EMAIL_NN" NOT NULL ENABLE,
 "PHONE_NUMBER" VARCHAR2(20),
 "HIRE_DATE" DATE CONSTRAINT "EMP_HIRE_DATE_NN" NOT NULL ENABLE,
 "JOB_ID" VARCHAR2(10) CONSTRAINT "EMP_JOB_NN" NOT NULL ENABLE,
 "SALARY" NUMBER(8,2),
 "COMMISSION_PCT" NUMBER(2,2),
 "MANAGER_ID" NUMBER(6,0),
 "DEPARTMENT_ID" NUMBER(4,0)
);

As shown in the previous example, the SEGMENT_ATTRIBUTES transform applies to both
storage and tablespace attributes. To omit only the STORAGE clause and retain the
TABLESPACE clause, you can use the STORAGE transform, as follows:

> impdp hr TABLES=hr.employees DIRECTORY=dpump_dir1 DUMPFILE=hr_emp.dmp
 TRANSFORM=STORAGE:n:table

The SEGMENT_ATTRIBUTES and STORAGE transforms can be applied to all applicable table
and index objects by not specifying the object type on the TRANSFORM parameter, as
shown in the following command:

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp SCHEMAS=hr TRANSFORM=SEGMENT_
ATTRIBUTES:n

Parameters Available in Import's Command-Line Mode

Data Pump Import 3-49

TRANSPORT_DATAFILES
Default: There is no default

Purpose
Specifies a list of data files to be imported into the target database by a
transportable-tablespace mode import, or by a table-mode import if
TRANSPORTABLE=ALWAYS was set during the export. The data files must already exist on
the target database system.

Syntax and Description
TRANSPORT_DATAFILES=datafile_name

The datafile_name must include an absolute directory path specification (not a
directory object name) that is valid on the system where the target database resides.

At some point before the import operation, you must copy the data files from the
source system to the target system. You can do this using any copy method supported
by your operating stem. If desired, you can rename the files when you copy them to
the target system (see Example 2).

If you already have a dump file set generated by a transportable-tablespace mode
export, then you can perform a transportable-mode import of that dump file, by
specifying the dump file (which contains the metadata) and the TRANSPORT_DATAFILES
parameter. The presence of the TRANSPORT_DATAFILES parameter tells import that it is a
transportable-mode import and where to get the actual data.

Depending on your operating system, the use of quotation marks when you specify a
value for this parameter may also require that you use escape characters. Oracle
recommends that you place this parameter in a parameter file, which can reduce the
number of escape characters that might otherwise be needed on the command line.

Restrictions
■ The TRANSPORT_DATAFILES parameter cannot be used in conjunction with the

QUERY parameter.

Example 1
The following is an example of using the TRANSPORT_DATAFILES parameter. Assume
you have a parameter file, trans_datafiles.par, with the following content:

DIRECTORY=dpump_dir1
DUMPFILE=tts.dmp
TRANSPORT_DATAFILES='/user01/data/tbs1.dbf'

You can then issue the following command:

> impdp hr PARFILE=trans_datafiles.par

Example 2
This example illustrates the renaming of data files as part of a transportable tablespace
export and import operation. Assume that you have a data file named employees.dat
on your source system.

See Also: "Use of Quotation Marks On the Data Pump Command
Line" on page 3-7

Parameters Available in Import's Command-Line Mode

3-50 Oracle Database Utilities

1. Using a method supported by your operating system, manually copy the data file
named employees.dat from your source system to the system where your target
database resides. As part of the copy operation, rename it to workers.dat.

2. Perform a transportable tablespace export of tablespace tbs_1.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=tts.dmp TRANSPORT_TABLESPACES=tbs_1

The metadata only (no data) for tbs_1 is exported to a dump file named tts.dmp.
The actual data was copied over to the target database in step 1.

3. Perform a transportable tablespace import, specifying an absolute directory path
for the data file named workers.dat:

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=tts.dmp
TRANSPORT_DATAFILES='/user01/data/workers.dat'

The metadata contained in tts.dmp is imported and Data Pump then assigns the
information in the workers.dat file to the correct place in the database.

TRANSPORT_FULL_CHECK
Default: NO

Purpose
Specifies whether to verify that the specified transportable tablespace set is being
referenced by objects in other tablespaces.

Syntax and Description
TRANSPORT_FULL_CHECK=[YES | NO]

If TRANSPORT_FULL_CHECK=YES, then Import verifies that there are no dependencies
between those objects inside the transportable set and those outside the transportable
set. The check addresses two-way dependencies. For example, if a table is inside the
transportable set but its index is not, then a failure is returned and the import
operation is terminated. Similarly, a failure is also returned if an index is in the
transportable set but the table is not.

If TRANSPORT_FULL_CHECK=NO, then Import verifies only that there are no objects
within the transportable set that are dependent on objects outside the transportable
set. This check addresses a one-way dependency. For example, a table is not
dependent on an index, but an index is dependent on a table, because an index
without a table has no meaning. Therefore, if the transportable set contains a table, but
not its index, then this check succeeds. However, if the transportable set contains an
index, but not the table, then the import operation is terminated.

In addition to this check, Import always verifies that all storage segments of all tables
(and their indexes) defined within the tablespace set specified by TRANSPORT_
TABLESPACES are actually contained within the tablespace set.

Restrictions
■ This parameter is valid for transportable mode (or table mode when

TRANSPORTABLE=ALWAYS was specified on the export) only when the NETWORK_LINK
parameter is specified.

Parameters Available in Import's Command-Line Mode

Data Pump Import 3-51

Example
In the following example, source_database_link would be replaced with the name of
a valid database link. The example also assumes that a data file named tbs6.dbf
already exists.

Assume you have a parameter file, full_check.par, with the following content:

DIRECTORY=dpump_dir1
TRANSPORT_TABLESPACES=tbs_6
NETWORK_LINK=source_database_link
TRANSPORT_FULL_CHECK=YES
TRANSPORT_DATAFILES='/wkdir/data/tbs6.dbf'

You can then issue the following command:

> impdp hr PARFILE=full_check.par

TRANSPORT_TABLESPACES
Default: There is no default.

Purpose
Specifies that you want to perform an import in transportable-tablespace mode over a
database link (as specified with the NETWORK_LINK parameter.)

Syntax and Description
TRANSPORT_TABLESPACES=tablespace_name [, ...]

Use the TRANSPORT_TABLESPACES parameter to specify a list of tablespace names for
which object metadata will be imported from the source database into the target
database.

Because this is a transportable-mode import, the tablespaces into which the data is
imported are automatically created by Data Pump.You do not need to pre-create them.
However, the data files should be copied to the target database before starting the
import.

When you specify TRANSPORT_TABLESPACES on the import command line, you must
also use the NETWORK_LINK parameter to specify a database link. A database link is a
connection between two physical database servers that allows a client to access them
as one logical database. Therefore, the NETWORK_LINK parameter is required because the
object metadata is exported from the source (the database being pointed to by
NETWORK_LINK) and then imported directly into the target (database from which the
impdp command is issued), using that database link. There are no dump files involved
in this situation. You would also need to specify the TRANSPORT_DATAFILES parameter
to let the import know where to find the actual data, which had been copied to the
target in a separate operation using some other means.

Note: If you already have a dump file set generated by a
transportable-tablespace mode export, then you can perform a
transportable-mode import of that dump file, but in this case you do
not specify TRANSPORT_TABLESPACES or NETWORK_LINK. Doing so would
result in an error. Rather, you specify the dump file (which contains
the metadata) and the TRANSPORT_DATAFILES parameter. The presence
of the TRANSPORT_DATAFILES parameter tells import that it's a
transportable-mode import and where to get the actual data.

Parameters Available in Import's Command-Line Mode

3-52 Oracle Database Utilities

Depending on your operating system, the use of quotation marks when you specify a
value for this parameter may also require that you use escape characters. Oracle
recommends that you place this parameter in a parameter file, which can reduce the
number of escape characters that might otherwise be needed on the command line.

Restrictions
■ You cannot export transportable tablespaces and then import them into a database

at a lower release level. The target database into which you are importing must be
at the same or higher release level as the source database.

■ The TRANSPORT_TABLESPACES parameter is valid only when the NETWORK_LINK
parameter is also specified.

■ Transportable mode does not support encrypted columns.

Example
In the following example, the source_database_link would be replaced with the
name of a valid database link. The example also assumes that a data file named
tbs6.dbf has already been copied from the source database to the local system.
Suppose you have a parameter file, tablespaces.par, with the following content:

DIRECTORY=dpump_dir1
NETWORK_LINK=source_database_link
TRANSPORT_TABLESPACES=tbs_6
TRANSPORT_FULL_CHECK=NO
TRANSPORT_DATAFILES='user01/data/tbs6.dbf'

You can then issue the following command:

> impdp hr PARFILE=tablespaces.par

TRANSPORTABLE
Default: NEVER

Purpose
Specifies whether the transportable option should be used during a table mode import
(specified with the TABLES parameter) to import only metadata for specific tables,
partitions, and subpartitions.

Syntax and Description
TRANSPORTABLE = [ALWAYS | NEVER]

The definitions of the allowed values are as follows:

ALWAYS - Instructs the import job to use the transportable option. If transportable is not
possible, then the job will fail. The transportable option imports only metadata for the

See Also:

■ Oracle Database Administrator's Guide for more information about
database links

■ "Considerations for Time Zone File Versions in Transportable
Tablespace Mode" on page 3-4

■ "Use of Quotation Marks On the Data Pump Command Line" on
page 3-7

Parameters Available in Import's Command-Line Mode

Data Pump Import 3-53

specified tables, partitions, or subpartitions specified by the TABLES parameter. You
must copy the actual data files to the target database. See "Using Data File Copying to
Move Data" on page 1-2.

NEVER - Instructs the import job to use either the direct path or external table method to
load data rather than the transportable option. This is the default.

If only a subset of a table's partitions are imported and the TRANSPORTABLE=ALWAYS
parameter is used, then each partition becomes a non-partitioned table.

If only a subset of a table's partitions are imported and the TRANSPORTABLE parameter
is not used or is set to NEVER (the default), then:

■ If PARTITION_OPTIONS=DEPARTITION is used, then each partition is created as a
non-partitioned table.

■ If PARTITION_OPTIONS is not used, then the complete table is created. That is, all the
metadata for the complete table is present so that the table definition looks the
same on the target system as it did on the source. But only the data for the
specified partitions is inserted into the table.

Restrictions
■ The Import TRANSPORTABLE parameter is valid only if the NETWORK_LINK parameter

is also specified.

■ The TRANSPORTABLE parameter is only valid in table mode imports (the tables do
not have to be partitioned or subpartitioned).

■ The user performing a transportable import requires the DATAPUMP_EXP_FULL_
DATABASE role on the source database and the DATAPUMP_IMP_FULL_DATABASE role
on the target database.

■ To make full use of the TRANSPORTABLE parameter, the COMPATIBLE initialization
parameter must be set to at least 11.0.0.

Example
The following example shows the use of the TRANSPORTABLE parameter during a
network link import.

> impdp system TABLES=hr.sales TRANSPORTABLE=ALWAYS
 DIRECTORY=dpump_dir1 NETWORK_LINK=dbs1 PARTITION_OPTIONS=DEPARTITION
 TRANSPORT_DATAFILES=datafile_name

VERSION
Default: COMPATIBLE

Purpose
Specifies the version of database objects to be imported (that is, only database objects
and attributes that are compatible with the specified release will be imported). Note
that this does not mean that Data Pump Import can be used with releases of Oracle
Database earlier than 10.1. Data Pump Import only works with Oracle Database 10g
release 1 (10.1) or later. The VERSION parameter simply allows you to identify the
version of the objects being imported.

Syntax and Description
VERSION=[COMPATIBLE | LATEST | version_string]

Commands Available in Import's Interactive-Command Mode

3-54 Oracle Database Utilities

This parameter can be used to load a target system whose Oracle database is at an
earlier compatibility release than that of the source system. Database objects or
attributes on the source system that are incompatible with the specified release will not
be moved to the target. For example, tables containing new datatypes that are not
supported in the specified release will not be imported. Legal values for this parameter
are as follows:

■ COMPATIBLE - This is the default value. The version of the metadata corresponds to
the database compatibility level. Database compatibility must be set to 9.2.0 or
higher.

■ LATEST - The version of the metadata corresponds to the database release.

■ version_string - A specific database release (for example, 11.2.0). In Oracle
Database 11g, this value must be 9.2.0 or higher.

Example
The following is an example of using the VERSION parameter. You can create the
expfull.dmp dump file used in this example by running the example provided for the
Export FULL parameter. See "FULL" on page 2-25.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp TABLES=employees
VERSION=LATEST

Commands Available in Import's Interactive-Command Mode
In interactive-command mode, the current job continues running, but logging to the
terminal is suspended and the Import prompt (Import>) is displayed.

To start interactive-command mode, do one of the following:

■ From an attached client, press Ctrl+C.

■ From a terminal other than the one on which the job is running, use the ATTACH
parameter to attach to the job. This is a useful feature in situations in which you
start a job at one location and need to check on it at a later time from a different
location.

Table 3–2 lists the activities you can perform for the current job from the Data Pump
Import prompt in interactive-command mode.

See Also: "Moving Data Between Different Database Releases" on
page 1-13

Table 3–2 Supported Activities in Data Pump Import's Interactive-Command Mode

Activity Command Used

Exit interactive-command mode. CONTINUE_CLIENT on
page 3-55

Stop the import client session, but leave the current job
running.

EXIT_CLIENT on page 3-55

Display a summary of available commands. HELP on page 3-55

Detach all currently attached client sessions and terminate
the current job.

KILL_JOB on page 3-56

Increase or decrease the number of active worker processes
for the current job. This command is valid only in Oracle
Database Enterprise Edition.

PARALLEL on page 3-56

Restart a stopped job to which you are attached. START_JOB on page 3-57

Commands Available in Import's Interactive-Command Mode

Data Pump Import 3-55

The following are descriptions of the commands available in the interactive-command
mode of Data Pump Import.

CONTINUE_CLIENT

Purpose
Changes the mode from interactive-command mode to logging mode.

Syntax and Description
CONTINUE_CLIENT

In logging mode, the job status is continually output to the terminal. If the job is
currently stopped, then CONTINUE_CLIENT will also cause the client to attempt to start
the job.

Example
Import> CONTINUE_CLIENT

EXIT_CLIENT

Purpose
Stops the import client session, exits Import, and discontinues logging to the terminal,
but leaves the current job running.

Syntax and Description
EXIT_CLIENT

Because EXIT_CLIENT leaves the job running, you can attach to the job at a later time if
it is still executing or in a stopped state. To see the status of the job, you can monitor
the log file for the job or you can query the USER_DATAPUMP_JOBS view or the
V$SESSION_LONGOPS view.

Example
Import> EXIT_CLIENT

HELP

Purpose
Provides information about Data Pump Import commands available in
interactive-command mode.

Syntax and Description
HELP

Display detailed status for the current job. STATUS on page 3-57

Stop the current job. STOP_JOB on page 3-57

Table 3–2 (Cont.) Supported Activities in Data Pump Import's Interactive-Command

Activity Command Used

Commands Available in Import's Interactive-Command Mode

3-56 Oracle Database Utilities

Displays information about the commands available in interactive-command mode.

Example
Import> HELP

KILL_JOB

Purpose
Detaches all currently attached client sessions and then terminates the current job. It
exits Import and returns to the terminal prompt.

Syntax and Description
KILL_JOB

A job that is terminated using KILL_JOB cannot be restarted. All attached clients,
including the one issuing the KILL_JOB command, receive a warning that the job is
being terminated by the current user and are then detached. After all clients are
detached, the job's process structure is immediately run down and the master table
and dump files are deleted. Log files are not deleted.

Example
Import> KILL_JOB

PARALLEL

Purpose
Enables you to increase or decrease the number of active worker processes and/or PQ
slaves for the current job.

Syntax and Description
PARALLEL=integer

PARALLEL is available as both a command-line parameter and an interactive-mode
parameter. You set it to the desired number of parallel processes. An increase takes
effect immediately if there are enough resources and if there is enough work requiring
parallelization. A decrease does not take effect until an existing process finishes its
current task. If the integer value is decreased, then workers are idled but not deleted
until the job exits.

Restrictions
■ This parameter is valid only in the Enterprise Edition of Oracle Database 11g.

Example
Import> PARALLEL=10

See Also: "PARALLEL" on page 3-26 for more information about
parallelism

Commands Available in Import's Interactive-Command Mode

Data Pump Import 3-57

START_JOB

Purpose
Starts the current job to which you are attached.

Syntax and Description
START_JOB[=SKIP_CURRENT=YES]

The START_JOB command restarts the job to which you are currently attached (the job
cannot be currently executing). The job is restarted with no data loss or corruption
after an unexpected failure or after you issue a STOP_JOB command, provided the
dump file set and master table remain undisturbed.

The SKIP_CURRENT option allows you to restart a job that previously failed to restart
because execution of some DDL statement failed. The failing statement is skipped and
the job is restarted from the next work item.

Neither SQLFILE jobs nor imports done in transportable-tablespace mode are
restartable.

Example
Import> START_JOB

STATUS

Purpose
Displays cumulative status of the job, a description of the current operation, and an
estimated completion percentage. It also allows you to reset the display interval for
logging mode status.

Syntax and Description
STATUS[=integer]

You have the option of specifying how frequently, in seconds, this status should be
displayed in logging mode. If no value is entered or if the default value of 0 is used,
then the periodic status display is turned off and status is displayed only once.

This status information is written only to your standard output device, not to the log
file (even if one is in effect).

Example
The following example will display the current job status and change the logging
mode display interval to two minutes (120 seconds).

Import> STATUS=120

STOP_JOB

Purpose
Stops the current job either immediately or after an orderly shutdown, and exits
Import.

Examples of Using Data Pump Import

3-58 Oracle Database Utilities

Syntax and Description
STOP_JOB[=IMMEDIATE]

If the master table and dump file set are not disturbed when or after the STOP_JOB
command is issued, then the job can be attached to and restarted at a later time with
the START_JOB command.

To perform an orderly shutdown, use STOP_JOB (without any associated value). A
warning requiring confirmation will be issued. An orderly shutdown stops the job
after worker processes have finished their current tasks.

To perform an immediate shutdown, specify STOP_JOB=IMMEDIATE. A warning
requiring confirmation will be issued. All attached clients, including the one issuing
the STOP_JOB command, receive a warning that the job is being stopped by the current
user and they will be detached. After all clients are detached, the process structure of
the job is immediately run down. That is, the master process will not wait for the
worker processes to finish their current tasks. There is no risk of corruption or data
loss when you specify STOP_JOB=IMMEDIATE. However, some tasks that were
incomplete at the time of shutdown may have to be redone at restart time.

Example
Import> STOP_JOB=IMMEDIATE

Examples of Using Data Pump Import
This section provides examples of the following ways in which you might use Data
Pump Import:

■ Performing a Data-Only Table-Mode Import

■ Performing a Schema-Mode Import

■ Performing a Network-Mode Import

For information that will help you to successfully use these examples, see "Using the
Import Parameter Examples" on page 3-8.

Performing a Data-Only Table-Mode Import
Example 3–1 shows how to perform a data-only table-mode import of the table named
employees. It uses the dump file created in Example 2–1.

Example 3–1 Performing a Data-Only Table-Mode Import

> impdp hr TABLES=employees CONTENT=DATA_ONLY DUMPFILE=dpump_dir1:table.dmp
NOLOGFILE=YES

The CONTENT=DATA_ONLY parameter filters out any database object definitions
(metadata). Only table row data is loaded.

Performing a Schema-Mode Import
Example 3–2 shows a schema-mode import of the dump file set created in
Example 2–4.

Example 3–2 Performing a Schema-Mode Import

> impdp hr SCHEMAS=hr DIRECTORY=dpump_dir1 DUMPFILE=expschema.dmp
 EXCLUDE=CONSTRAINT,REF_CONSTRAINT,INDEX TABLE_EXISTS_ACTION=REPLACE

Syntax Diagrams for Data Pump Import

Data Pump Import 3-59

The EXCLUDE parameter filters the metadata that is imported. For the given mode of
import, all the objects contained within the source, and all their dependent objects, are
included except those specified in an EXCLUDE statement. If an object is excluded, then
all of its dependent objects are also excluded.

The TABLE_EXISTS_ACTION=REPLACE parameter tells Import to drop the table if it
already exists and to then re-create and load it using the dump file contents.

Performing a Network-Mode Import
Example 3–3 performs a network-mode import where the source is the database
specified by the NETWORK_LINK parameter.

Example 3–3 Network-Mode Import of Schemas

> impdp hr TABLES=employees REMAP_SCHEMA=hr:scott DIRECTORY=dpump_dir1
NETWORK_LINK=dblink

This example imports the employees table from the hr schema into the scott schema.
The dblink references a source database that is different than the target database.

To remap the schema, user hr must have the DATAPUMP_IMP_FULL_DATABASE role on the
local database and the DATAPUMP_EXP_FULL_DATABASE role on the source database.

REMAP_SCHEMA loads all the objects from the source schema into the target schema.

Syntax Diagrams for Data Pump Import
This section provides syntax diagrams for Data Pump Import. These diagrams use
standard SQL syntax notation. For more information about SQL syntax notation, see
Oracle Database SQL Language Reference.

ImpInit

ImpStart

See Also: "NETWORK_LINK" on page 3-24 for more information
about database links

impdp

HELP =
YES

NO

username / password
@ connect_identifier AS SYSDBA

ImpStart

ImpModes ImpOpts ImpFileOpts

ATTACH
=

schema_name .
job_name ENCRYPTION_PASSWORD = password

Syntax Diagrams for Data Pump Import

3-60 Oracle Database Utilities

ImpModes

FULL =
YES

NO

SCHEMAS = schema_name

,

TABLES =
schema_name .

table_name
: partition_name

,

TABLESPACES = tablespace_name

,

Syntax Diagrams for Data Pump Import

Data Pump Import 3-61

ImpOpts

CONTENT =

ALL

DATA_ONLY

METADATA_ONLY

DATA_OPTIONS =
DISABLE_APPEND_HINT

SKIP_CONSTRAINT_ERRORS

ENCRYPTION_PASSWORD = password

ImpFilter

JOB_NAME = jobname_string

PARALLEL = integer

ImpRemap

REUSE_DATAFILES =
YES

NO

PARTITION_OPTIONS =

NONE

DEPARTITION

EXCHANGE

MERGE

ImpRacOpt

SKIP_UNUSABLE_INDEXES =
YES

NO

STATUS = integer

STREAMS_CONFIGURATION =
YES

NO

TABLE_EXISTS_ACTION =

SKIP

APPEND

TRUNCATE

REPLACE

TARGET_EDITION = target_edition_name

TRANSFORM =

SEGMENT_ATTRIBUTES

STORAGE

OID

PARTITION

PCTSPACE

: value
: object_type

VERSION =

COMPATIBLE

LATEST

version_string

ImpDiagnostics

Syntax Diagrams for Data Pump Import

3-62 Oracle Database Utilities

ImpFilter

ImpRacOpt

ImpRemap

EXCLUDE = object_type
: name_clause

INCLUDE = object_type
: name_clause

QUERY =

schema_name .
table_name :

query_clause

CLUSTER =
YES

NO

SERVICE_NAME = service_name

REMAP_DATA =
schema .

table . column :
schema .

pkg . function

REMAP_DATAFILE = source_datafile : target_datafile

REMAP_SCHEMA = source_schema : target_schema

REMAP_TABLE =
schema_name .

old_table_name
: partition

: new_tablename

REMAP_TABLESPACE = source_tablespace : target_tablespace

Syntax Diagrams for Data Pump Import

Data Pump Import 3-63

ImpFileOpts

ImpNetworkOpts

DIRECTORY = directory_object

NETWORK_LINK = database_link ImpNetworkOpts

DUMPFILE =
directory_object :

file_name

,

LOGFILE =
directory_object :

file_name

NOLOGFILE =
YES

NO

PARFILE =
directory_path

file_name

SQLFILE =
directory_object :

file_name

ESTIMATE =
BLOCKS

STATISTICS

FLASHBACK_SCN = SCN_number

FLASHBACK_TIME = timestamp

TRANSPORTABLE =
ALWAYS

NEVER

TRANSPORT_TABLESPACES = tablespace_name

,

TRANSPORT_DATAFILES = datafile_name

,

TRANSPORT_FULL_CHECK =
YES

NO

Syntax Diagrams for Data Pump Import

3-64 Oracle Database Utilities

ImpDynOpts

ImpDiagnostics

CONTINUE_CLIENT

EXIT_CLIENT

HELP

KILL_JOB

PARALLEL = integer

START_JOB

= SKIP_CURRENT =
YES

NO

STATUS
= integer

STOP_JOB
= IMMEDIATE

ABORT_STEP = integer

ACCESS_METHOD =

AUTOMATIC

EXTERNAL_TABLE

DIRECT_PATH

CONVENTIONAL

KEEP_MASTER =
YES

NO

MASTER_ONLY =
YES

NO

METRICS =
YES

NO

4

Data Pump Legacy Mode 4-1

4Data Pump Legacy Mode

If you use original Export (exp) and Import (imp), then you may have scripts you have
been using for many years. To ease the transition to the newer Data Pump Export and
Import utilities, Data Pump provides a legacy mode which allows you to continue to
use your existing scripts with Data Pump.

Data Pump enters legacy mode once it determines a parameter unique to original
Export or Import is present, either on the command line or in a script. As Data Pump
processes the parameter, the analogous Data Pump Export or Data Pump Import
parameter is displayed. Oracle strongly recommends that you view the new syntax
and make script changes as time permits.

This chapter contains the following sections:

■ Parameter Mappings

■ Management of File Locations in Data Pump Legacy Mode

■ Adjusting Existing Scripts for Data Pump Log Files and Errors

Parameter Mappings
This section describes how original Export and Import parameters map to the Data
Pump Export and Import parameters that supply similar functionality.

Using Original Export Parameters with Data Pump
Data Pump Export accepts original Export parameters when they map to a
corresponding Data Pump parameter. Table 4–1 describes how Data Pump Export

Note: Data Pump Export and Import only handle dump files and log
files in the Data Pump format. They never create or read dump files
compatible with original Export or Import. If you have a dump file
created with original Export, then you must use original Import to
import the data into the database.

See Also:

■ Chapter 2, "Data Pump Export"

■ Chapter 3, "Data Pump Import"

■ Chapter 21, "Original Export"

■ Chapter 22, "Original Import"

Parameter Mappings

4-2 Oracle Database Utilities

interprets original Export parameters. Parameters that have the same name and
functionality in both original Export and Data Pump Export are not included in this
table.

Table 4–1 How Data Pump Export Handles Original Export Parameters

Original Export Parameter Action Taken by Data Pump Export Parameter

BUFFER This parameter is ignored.

COMPRESS This parameter is ignored. In original Export, the COMPRESS
parameter affected how the initial extent was managed.
Setting COMPRESS=n caused original Export to use current
storage parameters for the initial and next extent.

The Data Pump Export COMPRESSION parameter is used to
specify how data is compressed in the dump file, and is
not related to the original Export COMPRESS parameter.

CONSISTENT Data Pump Export determines the current time and uses
FLASHBACK_TIME.

CONSTRAINTS If original Export used CONSTRAINTS=n, then Data Pump
Export uses EXCLUDE=CONSTRAINTS.

The default behavior is to include constraints as part of the
export.

DIRECT This parameter is ignored. Data Pump Export
automatically chooses the best export method.

FEEDBACK The Data Pump Export STATUS=30 command is used. Note
that this is not a direct mapping because the STATUS
command returns the status of the export job, as well as
the rows being processed.

In original Export, feedback was given after a certain
number of rows, as specified with the FEEDBACK command.
In Data Pump Export, the status is given every so many
seconds, as specified by STATUS.

FILE Data Pump Export attempts to determine the path that
was specified or defaulted to for the FILE parameter, and
also to determine whether a directory object exists to
which the schema has read and write access.

See "Management of File Locations in Data Pump Legacy
Mode" on page 4-7 for more information about how Data
Pump handles the original Export FILE parameter.

GRANTS If original Export used GRANTS=n, then Data Pump Export
uses EXCLUDE=GRANT.

If original Export used GRANTS=y, then the parameter is
ignored and does not need to be remapped because that is
the Data Pump Export default behavior.

INDEXES If original Export used INDEXES=n, then Data Pump Export
uses the EXCLUDE=INDEX parameter.

If original Export used INDEXES=y, then the parameter is
ignored and does not need to be remapped because that is
the Data Pump Export default behavior.

Parameter Mappings

Data Pump Legacy Mode 4-3

LOG Data Pump Export attempts to determine the path that
was specified or defaulted to for the LOG parameter, and
also to determine whether a directory object exists to
which the schema has read and write access.

See "Management of File Locations in Data Pump Legacy
Mode" on page 4-7 for more information about how Data
Pump handles the original Export LOG parameter.

The contents of the log file will be those of a Data Pump
Export operation. See "Log Files" on page 4-9 for
information about log file location and content.

OBJECT_CONSISTENT This parameter is ignored because Data Pump Export
processing ensures that each object is in a consistent state
when being exported.

OWNER The Data Pump SCHEMAS parameter is used.

RECORDLENGTH This parameter is ignored because Data Pump Export
automatically takes care of buffer sizing.

RESUMABLE This parameter is ignored because Data Pump Export
automatically provides this functionality to users who
have been granted the EXP_FULL_DATABASE role.

RESUMABLE_NAME This parameter is ignored because Data Pump Export
automatically provides this functionality to users who
have been granted the EXP_FULL_DATABASE role.

RESUMABLE_TIMEOUT This parameter is ignored because Data Pump Export
automatically provides this functionality to users who
have been granted the EXP_FULL_DATABASE role.

ROWS If original Export used ROWS=y, then Data Pump Export
uses the CONTENT=ALL parameter.

If original Export used ROWS=n, then Data Pump Export
uses the CONTENT=METADATA_ONLY parameter.

STATISTICS This parameter is ignored because statistics are always
saved for tables as part of a Data Pump export operation.

TABLESPACES If original Export also specified TRANSPORT_TABLESPACE=n,
then Data Pump Export ignores the TABLESPACES
parameter.

If original Export also specified TRANSPORT_TABLESPACE=y,
then Data Pump Export takes the names listed for the
TABLESPACES parameter and uses them on the Data Pump
Export TRANSPORT_TABLESPACES parameter.

TRANSPORT_TABLESPACE If original Export used TRANSPORT_TABLESPACE=n (the
default), then Data Pump Export uses the TABLESPACES
parameter.

If original Export used TRANSPORT_TABLESPACE=y, then
Data Pump Export uses the TRANSPORT_TABLESPACES
parameter and only the metadata is exported.

TRIGGERS If original Export used TRIGGERS=n, then Data Pump
Export uses the EXCLUDE=TRIGGER parameter.

If original Export used TRIGGERS=y, then the parameter is
ignored and does not need to be remapped because that is
the Data Pump Export default behavior.

Table 4–1 (Cont.) How Data Pump Export Handles Original Export Parameters

Original Export Parameter Action Taken by Data Pump Export Parameter

Parameter Mappings

4-4 Oracle Database Utilities

Using Original Import Parameters with Data Pump
Data Pump Import accepts original Import parameters when they map to a
corresponding Data Pump parameter. Table 4–2 describes how Data Pump Import
interprets original Import parameters. Parameters that have the same name and
functionality in both original Import and Data Pump Import are not included in this
table.

TTS_FULL_CHECK If original Export used TTS_FULL_CHECK=y, then Data
Pump Export uses the TRANSPORT_FULL_CHECK parameter.

If original Export used TTS_FULL_CHECK=y, then the
parameter is ignored and does not need to be remapped
because that is the Data Pump Export default behavior.

VOLSIZE When the original Export VOLSIZE parameter is used, it
means the location specified for the dump file is a tape
device. The Data Pump Export dump file format does not
support tape devices. Therefore, this operation terminates
with an error.

Table 4–2 How Data Pump Import Handles Original Import Parameters

Original Import Parameter Action Taken by Data Pump Import Parameter

BUFFER This parameter is ignored.

CHARSET This parameter was desupported several releases ago and
should no longer be used. It will cause the Data Pump
Import operation to abort.

COMMIT This parameter is ignored. Data Pump Import
automatically performs a commit after each table is
processed.

COMPILE This parameter is ignored. Data Pump Import compiles
procedures after they are created. A recompile can be
executed if necessary for dependency reasons.

CONSTRAINTS If original Import used CONSTRAINTS=n, then Data Pump
Import uses the EXCLUDE=CONSTRAINT parameter.

If original Import used CONSTRAINTS=y, then the parameter
is ignored and does not need to be remapped because that
is the Data Pump Import default behavior.

DATAFILES The Data Pump Import TRANSPORT_DATAFILES parameter
is used.

DESTROY If original Import used DESTROY=y, then Data Pump
Import uses the REUSE_DATAFILES=y parameter.

If original Import used DESTROY=n, then the parameter is
ignored and does not need to be remapped because that is
the Data Pump Import default behavior.

FEEDBACK The Data Pump Import STATUS=30 command is used. Note
that this is not a direct mapping because the STATUS
command returns the status of the import job, as well as
the rows being processed.

In original Import, feedback was given after a certain
number of rows, as specified with the FEEDBACK command.
In Data Pump Import, the status is given every so many
seconds, as specified by STATUS.

Table 4–1 (Cont.) How Data Pump Export Handles Original Export Parameters

Original Export Parameter Action Taken by Data Pump Export Parameter

Parameter Mappings

Data Pump Legacy Mode 4-5

FILE Data Pump Import attempts to determine the path that
was specified or defaulted to for the FILE parameter, and
also to determine whether a directory object exists to
which the schema has read and write access.

See "Management of File Locations in Data Pump Legacy
Mode" on page 4-7 for more information about how Data
Pump handles the original Import FILE parameter.

FILESIZE This parameter is ignored because the information is
already contained in the Data Pump dump file set.

FROMUSER The Data Pump Import SCHEMAS parameter is used. If
FROMUSER was used without TOUSER also being used, then
import schemas that have the IMP_FULL_DATABASE role
cause Data Pump Import to attempt to create the schema
and then import that schema's objects. Import schemas
that do not have the IMP_FULL_DATABASE role can only
import their own schema from the dump file set.

GRANTS If original Import used GRANTS=n, then Data Pump Import
uses the EXCLUDE=OBJECT_GRANT parameter.

If original Import used GRANTS=y, then the parameter is
ignored and does not need to be remapped because that is
the Data Pump Import default behavior.

IGNORE If original Import used IGNORE=y, then Data Pump Import
uses the TABLE_EXISTS_ACTION=APPEND parameter. This
causes the processing of table data to continue.

If original Import used IGNORE=n, then the parameter is
ignored and does not need to be remapped because that is
the Data Pump Import default behavior.

INDEXES If original Import used INDEXES=n, then Data Pump
Import uses the EXCLUDE=INDEX parameter.

If original Import used INDEXES=y, then the parameter is
ignored and does not need to be remapped because that is
the Data Pump Import default behavior.

INDEXFILE The Data Pump Import
SQLFILE={directory-object:}filename and
INCLUDE=INDEX parameters are used.

The same method and attempts made when looking for a
directory object described for the FILE parameter also take
place for the INDEXFILE parameter.

If no directory object was specified on the original Import,
then Data Pump Import uses the directory object specified
with the DIRECTORY parameter.

LOG Data Pump Import attempts to determine the path that
was specified or defaulted to for the LOG parameter, and
also to determine whether a directory object exists to
which the schema has read and write access.

See "Management of File Locations in Data Pump Legacy
Mode" on page 4-7 for more information about how Data
Pump handles the original Import LOG parameter.

The contents of the log file will be those of a Data Pump
Import operation. See "Log Files" on page 4-9 for
information about log file location and content.

RECORDLENGTH This parameter is ignored because Data Pump handles
issues about record length internally.

Table 4–2 (Cont.) How Data Pump Import Handles Original Import Parameters

Original Import Parameter Action Taken by Data Pump Import Parameter

Parameter Mappings

4-6 Oracle Database Utilities

RESUMABLE This parameter is ignored because this functionality is
automatically provided for users who have been granted
the IMP_FULL_DATABASE role.

RESUMABLE_NAME This parameter is ignored because this functionality is
automatically provided for users who have been granted
the IMP_FULL_DATABASE role.

RESUMABLE_TIMEOUT This parameter is ignored because this functionality is
automatically provided for users who have been granted
the IMP_FULL_DATABASE role.

ROWS=N If original Import used ROWS=n, then Data Pump Import
uses the CONTENT=METADATA_ONLY parameter.

If original Import used ROWS=y, then Data Pump Import
uses the CONTENT=ALL parameter.

SHOW If SHOW=y is specified, then the Data Pump Import
SQLFILE=[directory_object:]file_name parameter is
used to write the DDL for the import operation to a file.
Only the DDL (not the entire contents of the dump file) is
written to the specified file. (Note that the output is not
shown on the screen as it was in original Import.)

The name of the file will be the file name specified on the
DUMPFILE parameter (or on the original Import FILE
parameter, which is remapped to DUMPFILE). If multiple
dump file names are listed, then the first file name in the
list is used. The file will be located in the directory object
location specified on the DIRECTORY parameter or the
directory object included on the DUMPFILE parameter.
(Directory objects specified on the DUMPFILE parameter
take precedence.)

STATISTICS This parameter is ignored because statistics are always
saved for tables as part of a Data Pump Import operation.

STREAMS_CONFIGURATION This parameter is ignored because Data Pump Import
automatically determines it; it does not need to be
specified.

STREAMS_INSTANTIATION This parameter is ignored because Data Pump Import
automatically determines it; it does not need to be
specified

TABLESPACES If original Import also specified TRANSPORT_TABLESPACE=n
(the default), then Data Pump Import ignores the
TABLESPACES parameter.

If original Import also specified TRANSPORT_TABLESPACE=y,
then Data Pump Import takes the names supplied for this
TABLESPACES parameter and applies them to the Data
Pump Import TRANSPORT_TABLESPACES parameter.

TOID_NOVALIDATE This parameter is ignored. OIDs are no longer used for
type validation.

TOUSER The Data Pump Import REMAP_SCHEMA parameter is used.
There may be more objects imported than with original
Import. Also, Data Pump Import may create the target
schema if it does not already exist.

The FROMUSER parameter must also have been specified in
original Import or the operation will fail.

Table 4–2 (Cont.) How Data Pump Import Handles Original Import Parameters

Original Import Parameter Action Taken by Data Pump Import Parameter

Management of File Locations in Data Pump Legacy Mode

Data Pump Legacy Mode 4-7

Management of File Locations in Data Pump Legacy Mode
Original Export and Import and Data Pump Export and Import differ on where dump
files and log files can be written to and read from because the original version is
client-based and Data Pump is server-based.

Original Export and Import use the FILE and LOG parameters to specify dump file and
log file names, respectively. These file names always refer to files local to the client
system and they may also contain a path specification.

Data Pump Export and Import use the DUMPFILE and LOGFILE parameters to specify
dump file and log file names, respectively. These file names always refer to files local
to the server system and cannot contain any path information. Instead, a directory
object is used to indirectly specify path information. The path value defined by the
directory object must be accessible to the server. The directory object is specified for a
Data Pump job through the DIRECTORY parameter. It is also possible to prepend a
directory object to the file names passed to the DUMPFILE and LOGFILE parameters. For
privileged users, Data Pump supports the use of a default directory object if one is not
specified on the command line. This default directory object, DATA_PUMP_DIR, is set up
at installation time.

If Data Pump legacy mode is enabled and the original Export FILE=filespec
parameter and/or LOG=filespec parameter are present on the command line, then the
following rules of precedence are used to determine a file's location:

TRANSPORT_TABLESPACE The TRANSPORT_TABLESPACE parameter is ignored, but if
you also specified the DATAFILES parameter, then the
import job continues to load the metadata. If the
DATAFILES parameter is not specified, then an
ORA-39002:invalid operation error message is returned.

TTS_OWNERS This parameter is ignored because this information is
automatically stored in the Data Pump dump file set.

VOLSIZE When the original Import VOLSIZE parameter is used, it
means the location specified for the dump file is a tape
device. The Data Pump Import dump file format does not
support tape devices. Therefore, this operation terminates
with an error.

Note: If the FILE parameter and LOG parameter are both present on
the command line, then the rules of precedence are applied separately
to each parameter.

Also, when a mix of original Export/Import and Data Pump
Export/Import parameters are used, separate rules apply to them. For
example, suppose you have the following command:

expdp system FILE=/user/disk/foo.dmp LOGFILE=foo.log
DIRECTORY=dpump_dir

The Data Pump legacy mode file management rules, as explained in
this section, would apply to the FILE parameter. The normal (that is,
non-legacy mode) Data Pump file management rules, as described in
"Default Locations for Dump, Log, and SQL Files" on page 1-10,
would apply to the LOGFILE parameter.

Table 4–2 (Cont.) How Data Pump Import Handles Original Import Parameters

Original Import Parameter Action Taken by Data Pump Import Parameter

Management of File Locations in Data Pump Legacy Mode

4-8 Oracle Database Utilities

1. If a path location is specified as part of the file specification, then Data Pump
attempts to look for a directory object accessible to the schema executing the
export job whose path location matches the path location of the file specification. If
such a directory object cannot be found, then an error is returned. For example,
assume that a server-based directory object named USER_DUMP_FILES has been
defined with a path value of '/disk1/user1/dumpfiles/' and that read and write
access to this directory object has been granted to the hr schema. The following
command causes Data Pump to look for a server-based directory object whose
path value contains '/disk1/user1/dumpfiles/' and to which the hr schema has
been granted read and write access:

expdp hr FILE=/disk1/user1/dumpfiles/hrdata.dmp

In this case, Data Pump uses the directory object USER_DUMP_FILES. The path
value, in this example '/disk1/user1/dumpfiles/', must refer to a path on the
server system that is accessible to the Oracle Database.

If a path location is specified as part of the file specification, then any directory
object provided using the DIRECTORY parameter is ignored. For example, if the
following command is issued, then Data Pump does not use the DPUMP_DIR
directory object for the file parameter, but instead looks for a server-based
directory object whose path value contains '/disk1/user1/dumpfiles/' and to
which the hr schema has been granted read and write access:

expdp hr FILE=/disk1/user1/dumpfiles/hrdata.dmp DIRECTORY=dpump_dir

2. If no path location is specified as part of the file specification, then the directory
object named by the DIRECTORY parameter is used. For example, if the following
command is issued, then Data Pump applies the path location defined for the
DPUMP_DIR directory object to the hrdata.dmp file:

expdp hr FILE=hrdata.dmp DIRECTORY=dpump_dir

3. If no path location is specified as part of the file specification and no directory
object is named by the DIRECTORY parameter, then Data Pump does the following,
in the order shown:

a. Data Pump looks for the existence of a directory object of the form DATA_PUMP_
DIR_schema_name, where schema_name is the schema that is executing the Data
Pump job. For example, the following command would cause Data Pump to
look for the existence of a server-based directory object named DATA_PUMP_
DIR_HR:

expdp hr FILE=hrdata.dmp

The hr schema also must have been granted read and write access to this
directory object. If such a directory object does not exist, then the process
moves to step b.

b. Data Pump looks for the existence of the client-based environment variable
DATA_PUMP_DIR. For instance, assume that a server-based directory object
named DUMP_FILES1 has been defined and the hr schema has been granted
read and write access to it. Then on the client system, the environment
variable DATA_PUMP_DIR can be set to point to DUMP_FILES1 as follows:

setenv DATA_PUMP_DIR DUMP_FILES1
expdp hr FILE=hrdata.dmp

Data Pump then uses the served-based directory object DUMP_FILES1 for the
hrdata.dmp file.

Adjusting Existing Scripts for Data Pump Log Files and Errors

Data Pump Legacy Mode 4-9

If a client-based environment variable DATA_PUMP_DIR does not exist, then the
process moves to step c.

c. If the schema that is executing the Data Pump job has DBA privileges, then the
default Data Pump directory object, DATA_PUMP_DIR, is used. This default
directory object is established at installation time. For example, the following
command causes Data Pump to attempt to use the default DATA_PUMP_DIR
directory object, assuming that system has DBA privileges:

expdp system FILE=hrdata.dmp

Adjusting Existing Scripts for Data Pump Log Files and Errors
Data Pump legacy mode requires that you review and update your existing scripts
written for original Export and Import because of differences in file format and error
reporting.

Log Files
Data Pump Export and Import do not generate log files in the same format as those
created by original Export and Import. Any scripts you have that parse the output of
original Export and Import must be updated to handle the log file format used by Data
Pump Export and Import. For example, the message Successfully Terminated does
not appear in Data Pump log files.

Error Cases
Data Pump Export and Import may not produce the same errors as those generated by
original Export and Import. For example, if a parameter that is ignored by Data Pump
Export would have had an out-of-range value in original Export, then an
informational message is written to the log file stating that the parameter is being
ignored. No value checking is performed, therefore no error message is generated.

Exit Status
Data Pump Export and Import have enhanced exit status values to allow scripts to
better determine the success of failure of export and import jobs. Any scripts that look
at the exit status should be reviewed and updated, if necessary.

See Also: "Default Locations for Dump, Log, and SQL Files" on
page 1-10 for information about Data Pump file management rules of
precedence under normal Data Pump conditions (that is, non-legacy
mode)

Adjusting Existing Scripts for Data Pump Log Files and Errors

4-10 Oracle Database Utilities

5

Data Pump Performance 5-1

5 Data Pump Performance

The Data Pump utilities are designed especially for very large databases. If your site
has very large quantities of data versus metadata, then you should experience a
dramatic increase in performance compared to the original Export and Import utilities.
This chapter briefly discusses why the performance is better and also suggests specific
steps you can take to enhance performance of export and import operations.

This chapter contains the following sections:

■ Data Performance Improvements for Data Pump Export and Import

■ Tuning Performance

■ Initialization Parameters That Affect Data Pump Performance

Performance of metadata extraction and database object creation in Data Pump Export
and Import remains essentially equivalent to that of the original Export and Import
utilities.

Data Performance Improvements for Data Pump Export and Import
The improved performance of the Data Pump Export and Import utilities is
attributable to several factors, including the following:

■ Multiple worker processes can perform intertable and interpartition parallelism to
load and unload tables in multiple, parallel, direct-path streams.

■ For very large tables and partitions, single worker processes can choose
intrapartition parallelism through multiple parallel queries and parallel DML I/O
server processes when the external tables method is used to access data.

■ Data Pump uses parallelism to build indexes and load package bodies.

■ Dump files are read and written directly by the server and, therefore, do not
require any data movement to the client.

■ The dump file storage format is the internal stream format of the direct path API.
This format is very similar to the format stored in Oracle database data files inside
of tablespaces. Therefore, no client-side conversion to INSERT statement bind
variables is performed.

■ The supported data access methods, direct path and external tables, are faster than
conventional SQL. The direct path API provides the fastest single-stream
performance. The external tables feature makes efficient use of the parallel queries
and parallel DML capabilities of the Oracle database.

■ Metadata and data extraction can be overlapped during export.

Tuning Performance

5-2 Oracle Database Utilities

Tuning Performance
Data Pump technology fully uses all available resources to maximize throughput and
minimize elapsed job time. For this to happen, a system must be well balanced across
CPU, memory, and I/O. In addition, standard performance tuning principles apply.
For example, for maximum performance you should ensure that the files that are
members of a dump file set reside on separate disks, because the dump files are
written and read in parallel. Also, the disks should not be the same ones on which the
source or target tablespaces reside.

Any performance tuning activity involves making trade-offs between performance
and resource consumption.

Controlling Resource Consumption
The Data Pump Export and Import utilities enable you to dynamically increase and
decrease resource consumption for each job. This is done using the PARALLEL
parameter to specify a degree of parallelism for the job. (The PARALLEL parameter is the
only tuning parameter that is specific to Data Pump.) For maximum throughput, do
not set PARALLEL to much more than twice the number of CPUs (two workers for each
CPU).

As you increase the degree of parallelism, CPU usage, memory consumption, and I/O
bandwidth usage also increase. You must ensure that adequate amounts of these
resources are available. If necessary, you can distribute files across different disk
devices or channels to get the needed I/O bandwidth.

To maximize parallelism, you must supply at least one file for each degree of
parallelism. The simplest way of doing this is to use substitution variables in your file
names (for example, file%u.dmp). However, depending upon your disk set up (for
example, simple, non-striped disks), you might not want to put all dump files on one
device. In this case, it is best to specify multiple file names using substitution variables,
with each in a separate directory resolving to a separate disk. Even with fast CPUs and
fast disks, the path between the CPU and the disk may be the constraining factor in the
degree of parallelism that can be sustained.

The PARALLEL parameter is valid only in the Enterprise Edition of Oracle Database 11g.

Effects of Compression and Encryption on Performance
The use of Data Pump parameters related to compression and encryption can possibly
have a negative impact upon performance of export and import operations. This is
because additional CPU resources are required to perform transformations on the raw
data.

Initialization Parameters That Affect Data Pump Performance
The settings for certain initialization parameters can affect the performance of Data
Pump Export and Import. In particular, you can try using the following settings to
improve performance, although the effect may not be the same on all platforms.

See Also:

■ "PARALLEL" on page 2-32 for more information about the
Export PARALLEL parameter

■ "PARALLEL" on page 3-26 for more information about the
Import PARALLEL parameter

Initialization Parameters That Affect Data Pump Performance

Data Pump Performance 5-3

■ DISK_ASYNCH_IO=TRUE

■ DB_BLOCK_CHECKING=FALSE

■ DB_BLOCK_CHECKSUM=FALSE

The following initialization parameters must have values set high enough to allow for
maximum parallelism:

■ PROCESSES

■ SESSIONS

■ PARALLEL_MAX_SERVERS

Additionally, the SHARED_POOL_SIZE and UNDO_TABLESPACE initialization parameters
should be generously sized. The exact values depend upon the size of your database.

Setting the Size Of the Buffer Cache In a Streams Environment
Oracle Data Pump uses Streams functionality to communicate between processes. If
the SGA_TARGET initialization parameter is set, then the STREAMS_POOL_SIZE
initialization parameter is automatically set to a reasonable value.

If the SGA_TARGET initialization parameter is not set and the STREAMS_POOL_SIZE
initialization parameter is not defined, then the size of the streams pool automatically
defaults to 10% of the size of the shared pool.

When the streams pool is created, the required SGA memory is taken from memory
allocated to the buffer cache, reducing the size of the cache to less than what was
specified by the DB_CACHE_SIZE initialization parameter. This means that if the buffer
cache was configured with only the minimal required SGA, then Data Pump
operations may not work properly. A minimum size of 10 MB is recommended for
STREAMS_POOL_SIZE to ensure successful Data Pump operations.

See Also: Oracle Streams Concepts and Administration

Initialization Parameters That Affect Data Pump Performance

5-4 Oracle Database Utilities

6

The Data Pump API 6-1

6 The Data Pump API

The Data Pump API, DBMS_DATAPUMP, provides a high-speed mechanism to move all or
part of the data and metadata for a site from one database to another. The Data Pump
Export and Data Pump Import utilities are based on the Data Pump API.

This chapter provides details about how the Data Pump API works. The following
topics are covered:

■ How Does the Client Interface to the Data Pump API Work?

■ What Are the Basic Steps in Using the Data Pump API?

■ Examples of Using the Data Pump API

How Does the Client Interface to the Data Pump API Work?
The main structure used in the client interface is a job handle, which appears to the
caller as an integer. Handles are created using the DBMS_DATAPUMP.OPEN or DBMS_
DATAPUMP.ATTACH function. Other sessions can attach to a job to monitor and control its
progress. This allows a DBA to start up a job before departing from work and then
watch the progress of the job from home. Handles are session specific. The same job
can create different handles in different sessions.

Job States
There is a state associated with each phase of a job, as follows:

■ Undefined - before a handle is created

■ Defining - when the handle is first created

■ Executing - when the DBMS_DATAPUMP.START_JOB procedure is executed

■ Completing - when the job has finished its work and the Data Pump processes are
ending

■ Completed - when the job is completed

■ Stop Pending - when an orderly job shutdown has been requested

See Also:

■ Oracle Database PL/SQL Packages and Types Reference for a
detailed description of the procedures available in the DBMS_
DATAPUMP package

■ Chapter 1, "Overview of Oracle Data Pump" for additional
explanation of Data Pump concepts

How Does the Client Interface to the Data Pump API Work?

6-2 Oracle Database Utilities

■ Stopping - when the job is stopping

■ Idling - the period between the time that a DBMS_DATAPUMP.ATTACH is executed to
attach to a stopped job and the time that a DBMS_DATAPUMP.START_JOB is executed
to restart that job

■ Not Running - when a master table exists for a job that is not running (has no Data
Pump processes associated with it)

Performing DBMS_DATAPUMP.START_JOB on a job in an Idling state will return it to an
Executing state.

If all users execute DBMS_DATAPUMP.DETACH to detach from a job in the Defining state,
then the job will be totally removed from the database.

When a job abnormally terminates or when an instance running the job is shut down,
the job is placed in the Not Running state if it was previously executing or idling. It
can then be restarted by the user.

The master control process is active in the Defining, Idling, Executing, Stopping, Stop
Pending, and Completing states. It is also active briefly in the Stopped and Completed
states. The master table for the job exists in all states except the Undefined state.
Worker processes are only active in the Executing and Stop Pending states, and briefly
in the Defining state for import jobs.

Detaching while a job is in the Executing state will not halt the job, and you can
re-attach to an executing job at any time to resume obtaining status information about
the job.

A Detach can occur explicitly, when the DBMS_DATAPUMP.DETACH procedure is executed,
or it can occur implicitly when a Data Pump API session is run down, when the Data
Pump API is unable to communicate with a Data Pump job, or when the DBMS_
DATAPUMP.STOP_JOB procedure is executed.

The Not Running state indicates that a master table exists outside the context of an
executing job. This will occur if a job has been stopped (probably to be restarted later)
or if a job has abnormally terminated. This state can also be seen momentarily during
job state transitions at the beginning of a job, and at the end of a job before the master
table is dropped. Note that the Not Running state is shown only in the DBA_DATAPUMP_
JOBS view and the USER_DATAPUMP_JOBS view. It is never returned by the GET_STATUS
procedure.

Table 6–1 shows the valid job states in which DBMS_DATAPUMP procedures can be
executed. The states listed are valid for both export and import jobs, unless otherwise
noted.

Table 6–1 Valid Job States in Which DBMS_DATAPUMP Procedures Can Be Executed

Procedure Name Valid States Description

ADD_FILE Defining (valid for both
export and import jobs)

Executing and Idling (valid
only for specifying dump
files for export jobs)

Specifies a file for the dump file set, the
log file, or the SQLFILE output.

ATTACH Defining, Executing, Idling,
Stopped, Completed,
Completing, Not Running

Allows a user session to monitor a job or
to restart a stopped job. The attach will
fail if the dump file set or master table
for the job have been deleted or altered
in any way.

DATA_FILTER Defining Restricts data processed by a job.

What Are the Basic Steps in Using the Data Pump API?

The Data Pump API 6-3

What Are the Basic Steps in Using the Data Pump API?
To use the Data Pump API, you use the procedures provided in the DBMS_DATAPUMP
package. The following steps list the basic activities involved in using the Data Pump
API. The steps are presented in the order in which the activities would generally be
performed:

1. Execute the DBMS_DATAPUMP.OPEN procedure to create a Data Pump job and its
infrastructure.

2. Define any parameters for the job.

3. Start the job.

4. Optionally, monitor the job until it completes.

5. Optionally, detach from the job and reattach at a later time.

6. Optionally, stop the job.

7. Optionally, restart the job, if desired.

These concepts are illustrated in the examples provided in the next section.

DETACH All Disconnects a user session from a job.

GET_DUMPFILE_INFO All Retrieves dump file header information.

GET_STATUS All, except Completed, Not
Running, Stopped, and
Undefined

Obtains the status of a job.

LOG_ENTRY Defining, Executing, Idling,
Stop Pending, Completing

Adds an entry to the log file.

METADATA_FILTER Defining Restricts metadata processed by a job.

METADATA_REMAP Defining Remaps metadata processed by a job.

METADATA_TRANSFORM Defining Alters metadata processed by a job.

OPEN Undefined Creates a new job.

SET_PARALLEL Defining, Executing, Idling Specifies parallelism for a job.

SET_PARAMETER Defining1 Alters default processing by a job.

START_JOB Defining, Idling Begins or resumes execution of a job.

STOP_JOB Defining, Executing, Idling,
Stop Pending

Initiates shutdown of a job.

WAIT_FOR_JOB All, except Completed, Not
Running, Stopped, and
Undefined

Waits for a job to end.

1 The ENCRYPTION_PASSWORD parameter can be entered during the Idling state, as well as during the Defining
state.

See Also: Oracle Database PL/SQL Packages and Types Reference for
a complete description of the DBMS_DATAPUMP package

Table 6–1 (Cont.) Valid Job States in Which DBMS_DATAPUMP Procedures Can Be Executed

Procedure Name Valid States Description

Examples of Using the Data Pump API

6-4 Oracle Database Utilities

Examples of Using the Data Pump API
This section provides the following examples to help you get started using the Data
Pump API:

■ Example 6–1, "Performing a Simple Schema Export"

■ Example 6–2, "Importing a Dump File and Remapping All Schema Objects"

■ Example 6–3, "Using Exception Handling During a Simple Schema Export"

■ Example 6–4, "Displaying Dump File Information"

The examples are in the form of PL/SQL scripts. If you choose to copy these scripts
and run them, then you must first do the following, using SQL*Plus:

■ Create a directory object and grant READ and WRITE access to it. For example, to
create a directory object named dmpdir to which you have access, do the following.
Replace user with your username.

SQL> CREATE DIRECTORY dmpdir AS '/rdbms/work';
SQL> GRANT READ, WRITE ON DIRECTORY dmpdir TO user;

■ Ensure that you have the EXP_FULL_DATABASE and IMP_FULL_DATABASE roles. To see
a list of all roles assigned to you within your security domain, do the following:

SQL> SELECT * FROM SESSION_ROLES;

If you do not have the necessary roles assigned to you, then contact your system
administrator for help.

■ Turn on server output if it is not already on. This is done as follows:

SQL> SET SERVEROUTPUT ON

If you do not do this, then you will not see any output to your screen. You must do
this in the same session in which you invoke the example. If you exit SQL*Plus,
then this setting is lost and must be reset when you begin a new session. (It must
also be reset if you connect to a different user name.)

Example 6–1 Performing a Simple Schema Export

The PL/SQL script in this example shows how to use the Data Pump API to perform a
simple schema export of the HR schema. It shows how to create a job, start it, and
monitor it. Additional information about the example is contained in the comments
within the script. To keep the example simple, exceptions from any of the API calls will
not be trapped. However, in a production environment, Oracle recommends that you
define exception handlers and call GET_STATUS to retrieve more detailed error
information when a failure occurs.

Connect as user SYSTEM to use this script.

DECLARE
 ind NUMBER; -- Loop index
 h1 NUMBER; -- Data Pump job handle
 percent_done NUMBER; -- Percentage of job complete
 job_state VARCHAR2(30); -- To keep track of job state
 le ku$_LogEntry; -- For WIP and error messages
 js ku$_JobStatus; -- The job status from get_status
 jd ku$_JobDesc; -- The job description from get_status
 sts ku$_Status; -- The status object returned by get_status
BEGIN

Examples of Using the Data Pump API

The Data Pump API 6-5

-- Create a (user-named) Data Pump job to do a schema export.

 h1 := DBMS_DATAPUMP.OPEN('EXPORT','SCHEMA',NULL,'EXAMPLE1','LATEST');

-- Specify a single dump file for the job (using the handle just returned)
-- and a directory object, which must already be defined and accessible
-- to the user running this procedure.

 DBMS_DATAPUMP.ADD_FILE(h1,'example1.dmp','DMPDIR');

-- A metadata filter is used to specify the schema that will be exported.

 DBMS_DATAPUMP.METADATA_FILTER(h1,'SCHEMA_EXPR','IN (''HR'')');

-- Start the job. An exception will be generated if something is not set up
-- properly.

 DBMS_DATAPUMP.START_JOB(h1);

-- The export job should now be running. In the following loop, the job
-- is monitored until it completes. In the meantime, progress information is
-- displayed.

 percent_done := 0;
 job_state := 'UNDEFINED';
 while (job_state != 'COMPLETED') and (job_state != 'STOPPED') loop
 dbms_datapump.get_status(h1,
 dbms_datapump.ku$_status_job_error +
 dbms_datapump.ku$_status_job_status +
 dbms_datapump.ku$_status_wip,-1,job_state,sts);
 js := sts.job_status;

-- If the percentage done changed, display the new value.

 if js.percent_done != percent_done
 then
 dbms_output.put_line('*** Job percent done = ' ||
 to_char(js.percent_done));
 percent_done := js.percent_done;
 end if;

-- If any work-in-progress (WIP) or error messages were received for the job,
-- display them.

 if (bitand(sts.mask,dbms_datapump.ku$_status_wip) != 0)
 then
 le := sts.wip;
 else
 if (bitand(sts.mask,dbms_datapump.ku$_status_job_error) != 0)
 then
 le := sts.error;
 else
 le := null;
 end if;
 end if;
 if le is not null
 then
 ind := le.FIRST;
 while ind is not null loop
 dbms_output.put_line(le(ind).LogText);

Examples of Using the Data Pump API

6-6 Oracle Database Utilities

 ind := le.NEXT(ind);
 end loop;
 end if;
 end loop;

-- Indicate that the job finished and detach from it.

 dbms_output.put_line('Job has completed');
 dbms_output.put_line('Final job state = ' || job_state);
 dbms_datapump.detach(h1);
END;
/

Example 6–2 Importing a Dump File and Remapping All Schema Objects

The script in this example imports the dump file created in Example 6–1 (an export of
the hr schema). All schema objects are remapped from the hr schema to the blake
schema. To keep the example simple, exceptions from any of the API calls will not be
trapped. However, in a production environment, Oracle recommends that you define
exception handlers and call GET_STATUS to retrieve more detailed error information
when a failure occurs.

Connect as user SYSTEM to use this script.

DECLARE
 ind NUMBER; -- Loop index
 h1 NUMBER; -- Data Pump job handle
 percent_done NUMBER; -- Percentage of job complete
 job_state VARCHAR2(30); -- To keep track of job state
 le ku$_LogEntry; -- For WIP and error messages
 js ku$_JobStatus; -- The job status from get_status
 jd ku$_JobDesc; -- The job description from get_status
 sts ku$_Status; -- The status object returned by get_status
BEGIN

-- Create a (user-named) Data Pump job to do a "full" import (everything
-- in the dump file without filtering).

 h1 := DBMS_DATAPUMP.OPEN('IMPORT','FULL',NULL,'EXAMPLE2');

-- Specify the single dump file for the job (using the handle just returned)
-- and directory object, which must already be defined and accessible
-- to the user running this procedure. This is the dump file created by
-- the export operation in the first example.

 DBMS_DATAPUMP.ADD_FILE(h1,'example1.dmp','DMPDIR');

-- A metadata remap will map all schema objects from HR to BLAKE.

 DBMS_DATAPUMP.METADATA_REMAP(h1,'REMAP_SCHEMA','HR','BLAKE');

-- If a table already exists in the destination schema, skip it (leave
-- the preexisting table alone). This is the default, but it does not hurt
-- to specify it explicitly.

 DBMS_DATAPUMP.SET_PARAMETER(h1,'TABLE_EXISTS_ACTION','SKIP');

-- Start the job. An exception is returned if something is not set up properly.

 DBMS_DATAPUMP.START_JOB(h1);

Examples of Using the Data Pump API

The Data Pump API 6-7

-- The import job should now be running. In the following loop, the job is
-- monitored until it completes. In the meantime, progress information is
-- displayed. Note: this is identical to the export example.

 percent_done := 0;
 job_state := 'UNDEFINED';
 while (job_state != 'COMPLETED') and (job_state != 'STOPPED') loop
 dbms_datapump.get_status(h1,
 dbms_datapump.ku$_status_job_error +
 dbms_datapump.ku$_status_job_status +
 dbms_datapump.ku$_status_wip,-1,job_state,sts);
 js := sts.job_status;

-- If the percentage done changed, display the new value.

 if js.percent_done != percent_done
 then
 dbms_output.put_line('*** Job percent done = ' ||
 to_char(js.percent_done));
 percent_done := js.percent_done;
 end if;

-- If any work-in-progress (WIP) or Error messages were received for the job,
-- display them.

 if (bitand(sts.mask,dbms_datapump.ku$_status_wip) != 0)
 then
 le := sts.wip;
 else
 if (bitand(sts.mask,dbms_datapump.ku$_status_job_error) != 0)
 then
 le := sts.error;
 else
 le := null;
 end if;
 end if;
 if le is not null
 then
 ind := le.FIRST;
 while ind is not null loop
 dbms_output.put_line(le(ind).LogText);
 ind := le.NEXT(ind);
 end loop;
 end if;
 end loop;

-- Indicate that the job finished and gracefully detach from it.

 dbms_output.put_line('Job has completed');
 dbms_output.put_line('Final job state = ' || job_state);
 dbms_datapump.detach(h1);
END;
/

Example 6–3 Using Exception Handling During a Simple Schema Export

The script in this example shows a simple schema export using the Data Pump API. It
extends Example 6–1 to show how to use exception handling to catch the SUCCESS_
WITH_INFO case, and how to use the GET_STATUS procedure to retrieve additional
information about errors. If you want to get exception information about a DBMS_

Examples of Using the Data Pump API

6-8 Oracle Database Utilities

DATAPUMP.OPEN or DBMS_DATAPUMP.ATTACH failure, then call DBMS_DATAPUMP.GET_
STATUS with a DBMS_DATAPUMP.KU$_STATUS_JOB_ERROR information mask and a NULL
job handle to retrieve the error details.

Connect as user SYSTEM to use this example.

DECLARE
 ind NUMBER; -- Loop index
 spos NUMBER; -- String starting position
 slen NUMBER; -- String length for output
 h1 NUMBER; -- Data Pump job handle
 percent_done NUMBER; -- Percentage of job complete
 job_state VARCHAR2(30); -- To keep track of job state
 le ku$_LogEntry; -- For WIP and error messages
 js ku$_JobStatus; -- The job status from get_status
 jd ku$_JobDesc; -- The job description from get_status
 sts ku$_Status; -- The status object returned by get_status
BEGIN

-- Create a (user-named) Data Pump job to do a schema export.

 h1 := dbms_datapump.open('EXPORT','SCHEMA',NULL,'EXAMPLE3','LATEST');

-- Specify a single dump file for the job (using the handle just returned)
-- and a directory object, which must already be defined and accessible
-- to the user running this procedure.

 dbms_datapump.add_file(h1,'example3.dmp','DMPDIR');

-- A metadata filter is used to specify the schema that will be exported.

 dbms_datapump.metadata_filter(h1,'SCHEMA_EXPR','IN (''HR'')');

-- Start the job. An exception will be returned if something is not set up
-- properly.One possible exception that will be handled differently is the
-- success_with_info exception. success_with_info means the job started
-- successfully, but more information is available through get_status about
-- conditions around the start_job that the user might want to be aware of.

 begin
 dbms_datapump.start_job(h1);
 dbms_output.put_line('Data Pump job started successfully');
 exception
 when others then
 if sqlcode = dbms_datapump.success_with_info_num
 then
 dbms_output.put_line('Data Pump job started with info available:');
 dbms_datapump.get_status(h1,
 dbms_datapump.ku$_status_job_error,0,
 job_state,sts);
 if (bitand(sts.mask,dbms_datapump.ku$_status_job_error) != 0)
 then
 le := sts.error;
 if le is not null
 then
 ind := le.FIRST;
 while ind is not null loop
 dbms_output.put_line(le(ind).LogText);
 ind := le.NEXT(ind);
 end loop;
 end if;

Examples of Using the Data Pump API

The Data Pump API 6-9

 end if;
 else
 raise;
 end if;
 end;

-- The export job should now be running. In the following loop, we will monitor
-- the job until it completes. In the meantime, progress information is
-- displayed.

 percent_done := 0;
 job_state := 'UNDEFINED';
 while (job_state != 'COMPLETED') and (job_state != 'STOPPED') loop
 dbms_datapump.get_status(h1,
 dbms_datapump.ku$_status_job_error +
 dbms_datapump.ku$_status_job_status +
 dbms_datapump.ku$_status_wip,-1,job_state,sts);
 js := sts.job_status;

-- If the percentage done changed, display the new value.

 if js.percent_done != percent_done
 then
 dbms_output.put_line('*** Job percent done = ' ||
 to_char(js.percent_done));
 percent_done := js.percent_done;
 end if;

-- Display any work-in-progress (WIP) or error messages that were received for
-- the job.

 if (bitand(sts.mask,dbms_datapump.ku$_status_wip) != 0)
 then
 le := sts.wip;
 else
 if (bitand(sts.mask,dbms_datapump.ku$_status_job_error) != 0)
 then
 le := sts.error;
 else
 le := null;
 end if;
 end if;
 if le is not null
 then
 ind := le.FIRST;
 while ind is not null loop
 dbms_output.put_line(le(ind).LogText);
 ind := le.NEXT(ind);
 end loop;
 end if;
 end loop;

-- Indicate that the job finished and detach from it.

 dbms_output.put_line('Job has completed');
 dbms_output.put_line('Final job state = ' || job_state);
 dbms_datapump.detach(h1);

-- Any exceptions that propagated to this point will be captured. The
-- details will be retrieved from get_status and displayed.

Examples of Using the Data Pump API

6-10 Oracle Database Utilities

 exception
 when others then
 dbms_output.put_line('Exception in Data Pump job');
 dbms_datapump.get_status(h1,dbms_datapump.ku$_status_job_error,0,
 job_state,sts);
 if (bitand(sts.mask,dbms_datapump.ku$_status_job_error) != 0)
 then
 le := sts.error;
 if le is not null
 then
 ind := le.FIRST;
 while ind is not null loop
 spos := 1;
 slen := length(le(ind).LogText);
 if slen > 255
 then
 slen := 255;
 end if;
 while slen > 0 loop
 dbms_output.put_line(substr(le(ind).LogText,spos,slen));
 spos := spos + 255;
 slen := length(le(ind).LogText) + 1 - spos;
 end loop;
 ind := le.NEXT(ind);
 end loop;
 end if;
 end if;
END;
/

Example 6–4 Displaying Dump File Information

The PL/SQL script in this example shows how to use the Data Pump API procedure
DBMS_DATAPUMP.GET_DUMPFILE_INFO to display information about a Data Pump dump
file outside the context of any Data Pump job. This example displays information
contained in the example1.dmp dump file created by the sample PL/SQL script in
Example 6–1.

This PL/SQL script can also be used to display information for dump files created by
original Export (the exp utility) as well as by the ORACLE_DATAPUMP external tables
access driver.

Connect as user SYSTEM to use this script.

SET VERIFY OFF
SET FEEDBACK OFF

DECLARE
 ind NUMBER;
 fileType NUMBER;
 value VARCHAR2(2048);
 infoTab KU$_DUMPFILE_INFO := KU$_DUMPFILE_INFO();

BEGIN
 --
 -- Get the information about the dump file into the infoTab.
 --
 BEGIN
 DBMS_DATAPUMP.GET_DUMPFILE_INFO('example1.dmp','DMPDIR',infoTab,fileType);
 DBMS_OUTPUT.PUT_LINE('---');

Examples of Using the Data Pump API

The Data Pump API 6-11

 DBMS_OUTPUT.PUT_LINE('Information for file: example1.dmp');

 --
 -- Determine what type of file is being looking at.
 --
 CASE fileType
 WHEN 1 THEN
 DBMS_OUTPUT.PUT_LINE('example1.dmp is a Data Pump dump file');
 WHEN 2 THEN
 DBMS_OUTPUT.PUT_LINE('example1.dmp is an Original Export dump file');
 ELSE
 DBMS_OUTPUT.PUT_LINE('example1.dmp is not a dump file');
 DBMS_OUTPUT.PUT_LINE('---');
 END CASE;

 EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('---');
 DBMS_OUTPUT.PUT_LINE('Error retrieving information for file: ' ||
 'example1.dmp');
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 DBMS_OUTPUT.PUT_LINE('---');
 fileType := 0;
 END;

 --
 -- If a valid file type was returned, then loop through the infoTab and
 -- display each item code and value returned.
 --
 IF fileType > 0
 THEN
 DBMS_OUTPUT.PUT_LINE('The information table has ' ||
 TO_CHAR(infoTab.COUNT) || ' entries');
 DBMS_OUTPUT.PUT_LINE('---');

 ind := infoTab.FIRST;
 WHILE ind IS NOT NULL
 LOOP
 --
 -- The following item codes return boolean values in the form
 -- of a '1' or a '0'. We'll display them as 'Yes' or 'No'.
 --
 value := NVL(infoTab(ind).value, 'NULL');
 IF infoTab(ind).item_code IN
 (DBMS_DATAPUMP.KU$_DFHDR_MASTER_PRESENT,
 DBMS_DATAPUMP.KU$_DFHDR_DIRPATH,
 DBMS_DATAPUMP.KU$_DFHDR_METADATA_COMPRESSED,
 DBMS_DATAPUMP.KU$_DFHDR_DATA_COMPRESSED,
 DBMS_DATAPUMP.KU$_DFHDR_METADATA_ENCRYPTED,
 DBMS_DATAPUMP.KU$_DFHDR_DATA_ENCRYPTED,
 DBMS_DATAPUMP.KU$_DFHDR_COLUMNS_ENCRYPTED)
 THEN
 CASE value
 WHEN '1' THEN value := 'Yes';
 WHEN '0' THEN value := 'No';
 END CASE;
 END IF;

 --
 -- Display each item code with an appropriate name followed by

Examples of Using the Data Pump API

6-12 Oracle Database Utilities

 -- its value.
 --
 CASE infoTab(ind).item_code
 --
 -- The following item codes have been available since Oracle Database 10g
 -- Release 10.2.
 --
 WHEN DBMS_DATAPUMP.KU$_DFHDR_FILE_VERSION THEN
 DBMS_OUTPUT.PUT_LINE('Dump File Version: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_MASTER_PRESENT THEN
 DBMS_OUTPUT.PUT_LINE('Master Table Present: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_GUID THEN
 DBMS_OUTPUT.PUT_LINE('Job Guid: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_FILE_NUMBER THEN
 DBMS_OUTPUT.PUT_LINE('Dump File Number: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_CHARSET_ID THEN
 DBMS_OUTPUT.PUT_LINE('Character Set ID: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_CREATION_DATE THEN
 DBMS_OUTPUT.PUT_LINE('Creation Date: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_FLAGS THEN
 DBMS_OUTPUT.PUT_LINE('Internal Dump Flags: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_JOB_NAME THEN
 DBMS_OUTPUT.PUT_LINE('Job Name: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_PLATFORM THEN
 DBMS_OUTPUT.PUT_LINE('Platform Name: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_INSTANCE THEN
 DBMS_OUTPUT.PUT_LINE('Instance Name: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_LANGUAGE THEN
 DBMS_OUTPUT.PUT_LINE('Language Name: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_BLOCKSIZE THEN
 DBMS_OUTPUT.PUT_LINE('Dump File Block Size: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_DIRPATH THEN
 DBMS_OUTPUT.PUT_LINE('Direct Path Mode: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_METADATA_COMPRESSED THEN
 DBMS_OUTPUT.PUT_LINE('Metadata Compressed: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_DB_VERSION THEN
 DBMS_OUTPUT.PUT_LINE('Database Version: ' || value);

 --
 -- The following item codes were introduced in Oracle Database 11g
 -- Release 11.1
 --
 WHEN DBMS_DATAPUMP.KU$_DFHDR_MASTER_PIECE_COUNT THEN
 DBMS_OUTPUT.PUT_LINE('Master Table Piece Count: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_MASTER_PIECE_NUMBER THEN
 DBMS_OUTPUT.PUT_LINE('Master Table Piece Number: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_DATA_COMPRESSED THEN
 DBMS_OUTPUT.PUT_LINE('Table Data Compressed: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_METADATA_ENCRYPTED THEN
 DBMS_OUTPUT.PUT_LINE('Metadata Encrypted: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_DATA_ENCRYPTED THEN
 DBMS_OUTPUT.PUT_LINE('Table Data Encrypted: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_COLUMNS_ENCRYPTED THEN
 DBMS_OUTPUT.PUT_LINE('TDE Columns Encrypted: ' || value);

 --
 -- For the DBMS_DATAPUMP.KU$_DFHDR_ENCRYPTION_MODE item code a
 -- numeric value is returned. So examine that numeric value
 -- and display an appropriate name value for it.
 --

Examples of Using the Data Pump API

The Data Pump API 6-13

 WHEN DBMS_DATAPUMP.KU$_DFHDR_ENCRYPTION_MODE THEN
 CASE TO_NUMBER(value)
 WHEN DBMS_DATAPUMP.KU$_DFHDR_ENCMODE_NONE THEN
 DBMS_OUTPUT.PUT_LINE('Encryption Mode: None');
 WHEN DBMS_DATAPUMP.KU$_DFHDR_ENCMODE_PASSWORD THEN
 DBMS_OUTPUT.PUT_LINE('Encryption Mode: Password');
 WHEN DBMS_DATAPUMP.KU$_DFHDR_ENCMODE_DUAL THEN
 DBMS_OUTPUT.PUT_LINE('Encryption Mode: Dual');
 WHEN DBMS_DATAPUMP.KU$_DFHDR_ENCMODE_TRANS THEN
 DBMS_OUTPUT.PUT_LINE('Encryption Mode: Transparent');
 END CASE;
 ELSE NULL; -- Ignore other, unrecognized dump file attributes.
 END CASE;
 ind := infoTab.NEXT(ind);
 END LOOP;
 END IF;
END;
/

Examples of Using the Data Pump API

6-14 Oracle Database Utilities

Part II
Part II SQL*Loader

The chapters in this part describe the SQL*Loader utility:

Chapter 7, "SQL*Loader Concepts"

This chapter introduces SQL*Loader and describes its features. It also introduces data
loading concepts (including object support). It discusses input to SQL*Loader,
database preparation, and output from SQL*Loader.

Chapter 8, "SQL*Loader Command-Line Reference"

This chapter describes the command-line syntax used by SQL*Loader. It discusses
command-line arguments, suppressing SQL*Loader messages, sizing the bind array,
and more.

Chapter 9, "SQL*Loader Control File Reference"

This chapter describes the control file syntax you use to configure SQL*Loader and to
describe to SQL*Loader how to map your data to Oracle format. It provides detailed
syntax diagrams and information about specifying data files, tables and columns, the
location of data, the type and format of data to be loaded, and more.

Chapter 10, "SQL*Loader Field List Reference"

This chapter describes the field list section of a SQL*Loader control file. The field list
provides information about fields being loaded, such as position, datatype, conditions,
and delimiters.

Chapter 11, "Loading Objects, LOBs, and Collections"

This chapter describes how to load column objects in various formats. It also discusses
how to load object tables, REF columns, LOBs, and collections.

Chapter 12, "Conventional and Direct Path Loads"

This chapter describes the differences between a conventional path load and a direct
path load. A direct path load is a high-performance option that significantly reduces
the time required to load large quantities of data.

7

SQL*Loader Concepts 7-1

7 SQL*Loader Concepts

This chapter explains the basic concepts of loading data into an Oracle database with
SQL*Loader. This chapter covers the following topics:

■ SQL*Loader Features

■ SQL*Loader Parameters

■ SQL*Loader Control File

■ Input Data and Data Files

■ LOBFILEs and Secondary Data Files (SDFs)

■ Data Conversion and Datatype Specification

■ Discarded and Rejected Records

■ Log File and Logging Information

■ Conventional Path Loads, Direct Path Loads, and External Table Loads

■ Loading Objects, Collections, and LOBs

■ Partitioned Object Support

■ Application Development: Direct Path Load API

■ SQL*Loader Case Studies

SQL*Loader Features
SQL*Loader loads data from external files into tables of an Oracle database. It has a
powerful data parsing engine that puts little limitation on the format of the data in the
data file. You can use SQL*Loader to do the following:

■ Load data across a network if your data files are on a different system than the
database. (See Loading Data Across a Network on page 8-2)

■ Load data from multiple data files during the same load session.

■ Load data into multiple tables during the same load session.

■ Specify the character set of the data.

■ Selectively load data (you can load records based on the records' values).

■ Manipulate the data before loading it, using SQL functions.

■ Generate unique sequential key values in specified columns.

■ Use the operating system's file system to access the data files.

SQL*Loader Parameters

7-2 Oracle Database Utilities

■ Load data from disk, tape, or named pipe.

■ Generate sophisticated error reports, which greatly aid troubleshooting.

■ Load arbitrarily complex object-relational data.

■ Use secondary data files for loading LOBs and collections.

■ Use either conventional or direct path loading. While conventional path loading is
very flexible, direct path loading provides superior loading performance. See
Chapter 12.

A typical SQL*Loader session takes as input a control file, which controls the behavior
of SQL*Loader, and one or more data files. The output of SQL*Loader is an Oracle
database (where the data is loaded), a log file, a bad file, and potentially, a discard file.
An example of the flow of a SQL*Loader session is shown in Figure 7–1.

Figure 7–1 SQL*Loader Overview

SQL*Loader Parameters
SQL*Loader is invoked when you specify the sqlldr command and, optionally,
parameters that establish session characteristics.

In situations where you always use the same parameters for which the values seldom
change, it can be more efficient to specify parameters using the following methods,
rather than on the command line:

■ Parameters can be grouped together in a parameter file. You could then specify the
name of the parameter file on the command line using the PARFILE parameter.

■ Certain parameters can also be specified within the SQL*Loader control file by
using the OPTIONS clause.

Parameters specified on the command line override any parameter values specified in
a parameter file or OPTIONS clause.

Discard
Files

Bad
Files

Database

SQL*Loader

Loader
Control

File

Bad
Files

Log
File

Discard
Files

Bad
FilesInput

Datafiles

TableTableIndexes
TableTableTables

Input Data and Data Files

SQL*Loader Concepts 7-3

SQL*Loader Control File
The control file is a text file written in a language that SQL*Loader understands. The
control file tells SQL*Loader where to find the data, how to parse and interpret the
data, where to insert the data, and more.

Although not precisely defined, a control file can be said to have three sections.

The first section contains session-wide information, for example:

■ Global options such as bindsize, rows, records to skip, and so on

■ INFILE clauses to specify where the input data is located

■ Data to be loaded

The second section consists of one or more INTO TABLE blocks. Each of these blocks
contains information about the table into which the data is to be loaded, such as the
table name and the columns of the table.

The third section is optional and, if present, contains input data.

Some control file syntax considerations to keep in mind are:

■ The syntax is free-format (statements can extend over multiple lines).

■ It is case insensitive; however, strings enclosed in single or double quotation
marks are taken literally, including case.

■ In control file syntax, comments extend from the two hyphens (--) that mark the
beginning of the comment to the end of the line. The optional third section of the
control file is interpreted as data rather than as control file syntax; consequently,
comments in this section are not supported.

■ The keywords CONSTANT and ZONE have special meaning to SQL*Loader and are
therefore reserved. To avoid potential conflicts, Oracle recommends that you do
not use either CONSTANT or ZONE as a name for any tables or columns.

Input Data and Data Files
SQL*Loader reads data from one or more files (or operating system equivalents of
files) specified in the control file. From SQL*Loader's perspective, the data in the data
file is organized as records. A particular data file can be in fixed record format, variable
record format, or stream record format. The record format can be specified in the
control file with the INFILE parameter. If no record format is specified, then the default
is stream record format.

See Also:

■ Chapter 8 for descriptions of the SQL*Loader parameters

■ "PARFILE (parameter file)" on page 8-8

■ "OPTIONS Clause" on page 9-3

See Also: Chapter 9 for details about control file syntax and
semantics

Note: If data is specified inside the control file (that is, INFILE *
was specified in the control file), then the data is interpreted in the
stream record format with the default record terminator.

Input Data and Data Files

7-4 Oracle Database Utilities

Fixed Record Format
A file is in fixed record format when all records in a data file are the same byte length.
Although this format is the least flexible, it results in better performance than variable
or stream format. Fixed format is also simple to specify. For example:

INFILE datafile_name "fix n"

This example specifies that SQL*Loader should interpret the particular data file as
being in fixed record format where every record is n bytes long.

Example 7–1 shows a control file that specifies a data file (example.dat) to be
interpreted in the fixed record format. The data file in the example contains five
physical records; each record has fields that contain the number and name of an
employee. Each of the five records is 11 bytes long, including spaces. For the purposes
of explaining this example, periods are used to represent spaces in the records, but in
the actual records there would be no periods. With that in mind, the first physical
record is 396,...ty,. which is exactly eleven bytes (assuming a single-byte character
set). The second record is 4922,beth, followed by the newline character (\n) which is
the eleventh byte, and so on. (Newline characters are not required with the fixed
record format; it is simply used here to illustrate that if used, it counts as a byte in the
record length.)

Note that the length is always interpreted in bytes, even if character-length semantics
are in effect for the file. This is necessary because the file could contain a mix of fields,
some of which are processed with character-length semantics and others which are
processed with byte-length semantics. See "Character-Length Semantics" on page 9-17.

Example 7–1 Loading Data in Fixed Record Format

load data
infile 'example.dat' "fix 11"
into table example
fields terminated by ',' optionally enclosed by '"'
(col1, col2)

example.dat:

396,...ty,.4922,beth,\n
68773,ben,.
1,.."dave",
5455,mike,.

Variable Record Format
A file is in variable record format when the length of each record in a character field is
included at the beginning of each record in the data file. This format provides some
added flexibility over the fixed record format and a performance advantage over the
stream record format. For example, you can specify a data file that is to be interpreted
as being in variable record format as follows:

INFILE "datafile_name" "var n"

In this example, n specifies the number of bytes in the record length field. If n is not
specified, then SQL*Loader assumes a length of 5 bytes. Specifying n larger than 40
will result in an error.

Example 7–2 shows a control file specification that tells SQL*Loader to look for data in
the data file example.dat and to expect variable record format where the record length
fields are 3 bytes long. The example.dat data file consists of three physical records.

Input Data and Data Files

SQL*Loader Concepts 7-5

The first is specified to be 009 (that is, 9) bytes long, the second is 010 bytes long (that
is, 10, including a 1-byte newline), and the third is 012 bytes long (also including a
1-byte newline). Note that newline characters are not required with the variable record
format. This example also assumes a single-byte character set for the data file.

The lengths are always interpreted in bytes, even if character-length semantics are in
effect for the file. This is necessary because the file could contain a mix of fields, some
processed with character-length semantics and others processed with byte-length
semantics. See "Character-Length Semantics" on page 9-17.

Example 7–2 Loading Data in Variable Record Format

load data
infile 'example.dat' "var 3"
into table example
fields terminated by ',' optionally enclosed by '"'
(col1 char(5),
 col2 char(7))

example.dat:
009hello,cd,010world,im,
012my,name is,

Stream Record Format
A file is in stream record format when the records are not specified by size; instead
SQL*Loader forms records by scanning for the record terminator. Stream record format
is the most flexible format, but there can be a negative effect on performance. The
specification of a data file to be interpreted as being in stream record format looks
similar to the following:

INFILE datafile_name ["str terminator_string"]

The terminator_string is specified as either 'char_string' or X'hex_string' where:

■ 'char_string' is a string of characters enclosed in single or double quotation
marks

■ X'hex_string' is a byte string in hexadecimal format

When the terminator_string contains special (nonprintable) characters, it should be
specified as an X'hex_string'. However, some nonprintable characters can be
specified as ('char_string') by using a backslash. For example:

■ \n indicates a line feed

■ \t indicates a horizontal tab

■ \f indicates a form feed

■ \v indicates a vertical tab

■ \r indicates a carriage return

If the character set specified with the NLS_LANG parameter for your session is different
from the character set of the data file, then character strings are converted to the
character set of the data file. This is done before SQL*Loader checks for the default
record terminator.

Hexadecimal strings are assumed to be in the character set of the data file, so no
conversion is performed.

Input Data and Data Files

7-6 Oracle Database Utilities

On UNIX-based platforms, if no terminator_string is specified, then SQL*Loader
defaults to the line feed character, \n.

On Windows NT, if no terminator_string is specified, then SQL*Loader uses either
\n or \r\n as the record terminator, depending on which one it finds first in the data
file. This means that if you know that one or more records in your data file has \n
embedded in a field, but you want \r\n to be used as the record terminator, then you
must specify it.

Example 7–3 illustrates loading data in stream record format where the terminator
string is specified using a character string, '|\n'. The use of the backslash character
allows the character string to specify the nonprintable line feed character.

Example 7–3 Loading Data in Stream Record Format

load data
infile 'example.dat' "str '|\n'"
into table example
fields terminated by ',' optionally enclosed by '"'
(col1 char(5),
 col2 char(7))

example.dat:
hello,world,|
james,bond,|

Logical Records
SQL*Loader organizes the input data into physical records, according to the specified
record format. By default a physical record is a logical record, but for added flexibility,
SQL*Loader can be instructed to combine several physical records into a logical
record.

SQL*Loader can be instructed to follow one of the following logical record-forming
strategies:

■ Combine a fixed number of physical records to form each logical record.

■ Combine physical records into logical records while a certain condition is true.

Data Fields
Once a logical record is formed, field setting on the logical record is done. Field setting
is a process in which SQL*Loader uses control-file field specifications to determine
which parts of logical record data correspond to which control-file fields. It is possible
for two or more field specifications to claim the same data. Also, it is possible for a
logical record to contain data that is not claimed by any control-file field specification.

Most control-file field specifications claim a particular part of the logical record. This
mapping takes the following forms:

See Also:

■ "Assembling Logical Records from Physical Records" on
page 9-21

■ Case study 4, Loading Combined Physical Records (see
"SQL*Loader Case Studies" on page 7-13 for information on
how to access case studies)

Data Conversion and Datatype Specification

SQL*Loader Concepts 7-7

■ The byte position of the data field's beginning, end, or both, can be specified. This
specification form is not the most flexible, but it provides high field-setting
performance.

■ The strings delimiting (enclosing and/or terminating) a particular data field can
be specified. A delimited data field is assumed to start where the last data field
ended, unless the byte position of the start of the data field is specified.

■ The byte offset and/or the length of the data field can be specified. This way each
field starts a specified number of bytes from where the last one ended and
continues for a specified length.

■ Length-value datatypes can be used. In this case, the first n number of bytes of the
data field contain information about how long the rest of the data field is.

LOBFILEs and Secondary Data Files (SDFs)
LOB data can be lengthy enough that it makes sense to load it from a LOBFILE. In
LOBFILEs, LOB data instances are still considered to be in fields (predetermined size,
delimited, length-value), but these fields are not organized into records (the concept of
a record does not exist within LOBFILEs). Therefore, the processing overhead of
dealing with records is avoided. This type of organization of data is ideal for LOB
loading.

For example, you might use LOBFILEs to load employee names, employee IDs, and
employee resumes. You could read the employee names and IDs from the main data
files and you could read the resumes, which can be quite lengthy, from LOBFILEs.

You might also use LOBFILEs to facilitate the loading of XML data. You can use XML
columns to hold data that models structured and semistructured data. Such data can
be quite lengthy.

Secondary data files (SDFs) are similar in concept to primary data files. Like primary
data files, SDFs are a collection of records, and each record is made up of fields. The
SDFs are specified on a per control-file-field basis. Only a collection_fld_spec can
name an SDF as its data source.

SDFs are specified using the SDF parameter. The SDF parameter can be followed by
either the file specification string, or a FILLER field that is mapped to a data field
containing one or more file specification strings.

Data Conversion and Datatype Specification
During a conventional path load, data fields in the data file are converted into columns
in the database (direct path loads are conceptually similar, but the implementation is
different). There are two conversion steps:

See Also:

■ "Specifying the Position of a Data Field" on page 10-2

■ "Specifying Delimiters" on page 10-19

See Also:

■ "Loading LOB Data from LOBFILEs" on page 11-17

■ "Secondary Data Files (SDFs)" on page 11-24

Discarded and Rejected Records

7-8 Oracle Database Utilities

1. SQL*Loader uses the field specifications in the control file to interpret the format
of the data file, parse the input data, and populate the bind arrays that correspond
to a SQL INSERT statement using that data.

2. The Oracle database accepts the data and executes the INSERT statement to store
the data in the database.

The Oracle database uses the datatype of the column to convert the data into its final,
stored form. Keep in mind the distinction between a field in a data file and a column in
the database. Remember also that the field datatypes defined in a SQL*Loader control
file are not the same as the column datatypes.

Discarded and Rejected Records
Records read from the input file might not be inserted into the database. Such records
are placed in either a bad file or a discard file.

The Bad File
The bad file contains records that were rejected, either by SQL*Loader or by the Oracle
database. If you do not specify a bad file and there are rejected records, then
SQL*Loader automatically creates one. It will have the same name as the data file,
with a.bad extension. Some of the possible reasons for rejection are discussed in the
next sections.

SQL*Loader Rejects
Data file records are rejected by SQL*Loader when the input format is invalid. For
example, if the second enclosure delimiter is missing, or if a delimited field exceeds its
maximum length, then SQL*Loader rejects the record. Rejected records are placed in
the bad file.

Oracle Database Rejects
After a data file record is accepted for processing by SQL*Loader, it is sent to the
Oracle database for insertion into a table as a row. If the Oracle database determines
that the row is valid, then the row is inserted into the table. If the row is determined to
be invalid, then the record is rejected and SQL*Loader puts it in the bad file. The row
may be invalid, for example, because a key is not unique, because a required field is
null, or because the field contains invalid data for the Oracle datatype.

The Discard File
As SQL*Loader executes, it may create a file called the discard file. This file is created
only when it is needed, and only if you have specified that a discard file should be
enabled. The discard file contains records that were filtered out of the load because
they did not match any record-selection criteria specified in the control file.

The discard file therefore contains records that were not inserted into any table in the
database. You can specify the maximum number of such records that the discard file
can accept. Data written to any database table is not written to the discard file.

See Also:

■ "Specifying the Bad File" on page 9-9

■ Case study 4, Loading Combined Physical Records (see
"SQL*Loader Case Studies" on page 7-13 for information on
how to access case studies)

Conventional Path Loads, Direct Path Loads, and External Table Loads

SQL*Loader Concepts 7-9

Log File and Logging Information
When SQL*Loader begins execution, it creates a log file. If it cannot create a log file,
then execution terminates. The log file contains a detailed summary of the load,
including a description of any errors that occurred during the load.

Conventional Path Loads, Direct Path Loads, and External Table Loads
SQL*Loader provides the following methods to load data:

■ Conventional Path Loads

■ Direct Path Loads

■ External Table Loads

Conventional Path Loads
During conventional path loads, the input records are parsed according to the field
specifications, and each data field is copied to its corresponding bind array. When the
bind array is full (or no more data is left to read), an array insert is executed.

SQL*Loader stores LOB fields after a bind array insert is done. Thus, if there are any
errors in processing the LOB field (for example, the LOBFILE could not be found),
then the LOB field is left empty. Note also that because LOB data is loaded after the
array insert has been performed, BEFORE and AFTER row triggers may not work as
expected for LOB columns. This is because the triggers fire before SQL*Loader has a
chance to load the LOB contents into the column. For instance, suppose you are
loading a LOB column, C1, with data and you want a BEFORE row trigger to examine
the contents of this LOB column and derive a value to be loaded for some other
column, C2, based on its examination. This is not possible because the LOB contents
will not have been loaded at the time the trigger fires.

Direct Path Loads
A direct path load parses the input records according to the field specifications,
converts the input field data to the column datatype, and builds a column array. The
column array is passed to a block formatter, which creates data blocks in Oracle
database block format. The newly formatted database blocks are written directly to the
database, bypassing much of the data processing that normally takes place. Direct path
load is much faster than conventional path load, but entails several restrictions.

See Also:

■ Case study 4, Loading Combined Physical Records (see
"SQL*Loader Case Studies" on page 7-13 for information on
how to access case studies)

■ "Specifying the Discard File" on page 9-11

See Also:

■ "Data Loading Methods" on page 12-1

■ "Bind Arrays and Conventional Path Loads" on page 9-34

See Also: "Direct Path Load" on page 12-4

Conventional Path Loads, Direct Path Loads, and External Table Loads

7-10 Oracle Database Utilities

Parallel Direct Path
A parallel direct path load allows multiple direct path load sessions to concurrently
load the same data segments (allows intrasegment parallelism). Parallel direct path is
more restrictive than direct path.

External Table Loads
External tables are defined as tables that do not reside in the database, and can be in
any format for which an access driver is provided. Oracle Database provides two
access drivers: ORACLE_LOADER and ORACLE_DATAPUMP. By providing the database with
metadata describing an external table, the database is able to expose the data in the
external table as if it were data residing in a regular database table.

An external table load creates an external table for data that is contained in a data file.
The load executes INSERT statements to insert the data from the data file into the target
table.

The advantages of using external table loads over conventional path and direct path
loads are as follows:

■ If a data file is big enough, then an external tables load attempts to load that file in
parallel.

■ An external table load allows modification of the data being loaded by using SQL
functions and PL/SQL functions as part of the INSERT statement that is used to
create the external table.

Choosing External Tables Versus SQL*Loader
The record parsing of external tables and SQL*Loader is very similar, so normally
there is not a major performance difference for the same record format. However, due
to the different architecture of external tables and SQL*Loader, there are situations in
which one method may be more appropriate than the other.

Use external tables for the best load performance in the following situations:

■ You want to transform the data as it is being loaded into the database

■ You want to use transparent parallel processing without having to split the
external data first

Use SQL*Loader for the best load performance in the following situations:

■ You want to load data remotely

■ Transformations are not required on the data, and the data does not need to be
loaded in parallel

See Also: "Parallel Data Loading Models" on page 12-22

Note: An external table load is not supported using a named pipe on
Windows NT.

See Also:

■ Chapter 14, "The ORACLE_LOADER Access Driver"

■ Chapter 15, "The ORACLE_DATAPUMP Access Driver"

■ Oracle Database Administrator's Guide for information about
creating and managing external tables

Conventional Path Loads, Direct Path Loads, and External Table Loads

SQL*Loader Concepts 7-11

■ You want to load data, and additional indexing of the staging table is required

Behavior Differences Between SQL*Loader and External Tables
This section describes important differences between loading data with external tables,
using the ORACLE_LOADER access driver, as opposed to loading data with SQL*Loader
conventional and direct path loads. This information does not apply to the ORACLE_
DATAPUMP access driver.

Multiple Primary Input Data Files
If there are multiple primary input data files with SQL*Loader loads, then a bad file
and a discard file are created for each input data file. With external table loads, there is
only one bad file and one discard file for all input data files. If parallel access drivers
are used for the external table load, then each access driver has its own bad file and
discard file.

Syntax and Datatypes
The following are not supported with external table loads:

■ Use of CONTINUEIF or CONCATENATE to combine multiple physical records into a
single logical record.

■ Loading of the following SQL*Loader datatypes: GRAPHIC, GRAPHIC EXTERNAL, and
VARGRAPHIC

■ Use of the following database column types: LONGs, nested tables, VARRAYs, REFs,
primary key REFs, and SIDs

Byte-Order Marks
With SQL*Loader, if a primary data file uses a Unicode character set (UTF8 or UTF16)
and it also contains a byte-order mark (BOM), then the byte-order mark is written at
the beginning of the corresponding bad and discard files. With external table loads, the
byte-order mark is not written at the beginning of the bad and discard files.

Default Character Sets, Date Masks, and Decimal Separator
For fields in a data file, the settings of NLS environment variables on the client
determine the default character set, date mask, and decimal separator. For fields in
external tables, the database settings of the NLS parameters determine the default
character set, date masks, and decimal separator.

Use of the Backslash Escape Character
In SQL*Loader, you can use the backslash (\) escape character to mark a single
quotation mark as a single quotation mark, as follows:

FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '\''

In external tables, the use of the backslash escape character within a string will raise an
error. The workaround is to use double quotation marks to mark the separation string,
as follows:

TERMINATED BY ',' ENCLOSED BY "'"

Loading Objects, Collections, and LOBs

7-12 Oracle Database Utilities

Loading Objects, Collections, and LOBs
You can use SQL*Loader to bulk load objects, collections, and LOBs. It is assumed that
you are familiar with the concept of objects and with Oracle's implementation of object
support as described in Oracle Database Concepts and in the Oracle Database
Administrator's Guide.

Supported Object Types
SQL*Loader supports loading of the following two object types:

column objects
When a column of a table is of some object type, the objects in that column are referred
to as column objects. Conceptually such objects are stored in their entirety in a single
column position in a row. These objects do not have object identifiers and cannot be
referenced.

If the object type of the column object is declared to be nonfinal, then SQL*Loader
allows a derived type (or subtype) to be loaded into the column object.

row objects
These objects are stored in tables, known as object tables, that have columns
corresponding to the attributes of the object. The object tables have an additional
system-generated column, called SYS_NC_OID$, that stores system-generated unique
identifiers (OIDs) for each of the objects in the table. Columns in other tables can refer
to these objects by using the OIDs.

If the object type of the object table is declared to be nonfinal, then SQL*Loader allows
a derived type (or subtype) to be loaded into the row object.

Supported Collection Types
SQL*Loader supports loading of the following two collection types:

Nested Tables
A nested table is a table that appears as a column in another table. All operations that
can be performed on other tables can also be performed on nested tables.

VARRAYs
VARRAYs are variable sized arrays. An array is an ordered set of built-in types or
objects, called elements. Each array element is of the same type and has an index,
which is a number corresponding to the element's position in the VARRAY.

When creating a VARRAY type, you must specify the maximum size. Once you have
declared a VARRAY type, it can be used as the datatype of a column of a relational table,
as an object type attribute, or as a PL/SQL variable.

See Also:

■ "Loading Column Objects" on page 11-1

■ "Loading Object Tables" on page 11-9

See Also: "Loading Collections (Nested Tables and VARRAYs)"
on page 11-22 for details on using SQL*Loader control file data
definition language to load these collection types

SQL*Loader Case Studies

SQL*Loader Concepts 7-13

Supported LOB Types
A LOB is a large object type. This release of SQL*Loader supports loading of four LOB
types:

■ BLOB: a LOB containing unstructured binary data

■ CLOB: a LOB containing character data

■ NCLOB: a LOB containing characters in a database national character set

■ BFILE: a BLOB stored outside of the database tablespaces in a server-side operating
system file

LOBs can be column datatypes, and except for NCLOB, they can be an object's attribute
datatypes. LOBs can have an actual value, they can be null, or they can be "empty."

Partitioned Object Support
SQL*Loader supports loading partitioned objects in the database. A partitioned object
in an Oracle database is a table or index consisting of partitions (pieces) that have been
grouped, typically by common logical attributes. For example, sales data for the year
2000 might be partitioned by month. The data for each month is stored in a separate
partition of the sales table. Each partition is stored in a separate segment of the
database and can have different physical attributes.

SQL*Loader partitioned object support enables SQL*Loader to load the following:

■ A single partition of a partitioned table

■ All partitions of a partitioned table

■ A nonpartitioned table

Application Development: Direct Path Load API
Oracle provides a direct path load API for application developers. See the Oracle Call
Interface Programmer's Guide for more information.

SQL*Loader Case Studies
SQL*Loader features are illustrated in a variety of case studies. The case studies are
based upon the Oracle demonstration database tables, emp and dept, owned by the
user scott. (In some case studies, additional columns have been added.)

The case studies are numbered 1 through 11, starting with the simplest scenario and
progressing in complexity.

The following is a summary of the case studies:

See Also: "Loading LOBs" on page 11-14 for details on using
SQL*Loader control file data definition language to load these LOB
types

Note: Files for use in the case studies are located in the $ORACLE_
HOME/rdbms/demo directory. These files are installed when you install
the Oracle Database 11g Examples (formerly Companion) media. See
Table 7–1 for the names of the files.

SQL*Loader Case Studies

7-14 Oracle Database Utilities

■ Case Study 1: Loading Variable-Length Data - Loads stream format records in
which the fields are terminated by commas and may be enclosed by quotation
marks. The data is found at the end of the control file.

■ Case Study 2: Loading Fixed-Format Fields - Loads data from a separate data file.

■ Case Study 3: Loading a Delimited, Free-Format File - Loads data from stream
format records with delimited fields and sequence numbers. The data is found at
the end of the control file.

■ Case Study 4: Loading Combined Physical Records - Combines multiple physical
records into one logical record corresponding to one database row.

■ Case Study 5: Loading Data into Multiple Tables - Loads data into multiple tables
in one run.

■ Case Study 6: Loading Data Using the Direct Path Load Method - Loads data
using the direct path load method.

■ Case Study 7: Extracting Data from a Formatted Report - Extracts data from a
formatted report.

■ Case Study 8: Loading Partitioned Tables - Loads partitioned tables.

■ Case Study 9: Loading LOBFILEs (CLOBs) - Adds a CLOB column called resume to
the table emp, uses a FILLER field (res_file), and loads multiple LOBFILEs into
the emp table.

■ Case Study 10: REF Fields and VARRAYs - Loads a customer table that has a
primary key as its OID and stores order items in a VARRAY. Loads an order table
that has a reference to the customer table and the order items in a VARRAY.

■ Case Study 11: Loading Data in the Unicode Character Set - Loads data in the
Unicode character set, UTF16, in little-endian byte order. This case study uses
character-length semantics.

Case Study Files
Generally, each case study is comprised of the following types of files:

■ Control files (for example, ulcase5.ctl)

■ Data files (for example, ulcase5.dat)

■ Setup files (for example, ulcase5.sql)

These files are installed when you install the Oracle Database 11g Examples (formerly
Companion) media. They are installed in the $ORACLE_HOME/rdbms/demo directory.

If the sample data for the case study is contained within the control file, then there will
be no .dat file for that case.

Case study 2 does not require any special set up, so there is no .sql script for that case.
Case study 7 requires that you run both a starting (setup) script and an ending
(cleanup) script.

Table 7–1 lists the files associated with each case.

SQL*Loader Case Studies

SQL*Loader Concepts 7-15

Running the Case Studies
In general, you use the following steps to run the case studies (be sure you are in the
$ORACLE_HOME/rdbms/demo directory, which is where the case study files are located):

1. At the system prompt, type sqlplus and press Enter to start SQL*Plus. At the
user-name prompt, enter scott. At the password prompt, enter tiger.

The SQL prompt is displayed.

2. At the SQL prompt, execute the SQL script for the case study. For example, to
execute the SQL script for case study 1, enter the following:

SQL> @ulcase1

This prepares and populates tables for the case study and then returns you to the
system prompt.

3. At the system prompt, invoke SQL*Loader and run the case study, as follows:

sqlldr USERID=scott CONTROL=ulcase1.ctl LOG=ulcase1.log

Substitute the appropriate control file name and log file name for the CONTROL and
LOG parameters and press Enter. When you are prompted for a password, type
tiger and then press Enter.

Be sure to read the control file for each case study before you run it. The beginning of
the control file contains information about what is being demonstrated in the case
study and any other special information you need to know. For example, case study 6
requires that you add DIRECT=TRUE to the SQL*Loader command line.

Case Study Log Files
Log files for the case studies are not provided in the $ORACLE_HOME/rdbms/demo
directory. This is because the log file for each case study is produced when you execute
the case study, provided that you use the LOG parameter. If you do not want to produce
a log file, then omit the LOG parameter from the command line.

Table 7–1 Case Studies and Their Related Files

Case .ctl .dat .sql

1 ulcase1.ctl N/A ulcase1.sql

2 ulcase2.ctl ulcase2.dat N/A

3 ulcase3.ctl N/A ulcase3.sql

4 ulcase4.ctl ulcase4.dat ulcase4.sql

5 ulcase5.ctl ulcase5.dat ulcase5.sql

6 ulcase6.ctl ulcase6.dat ulcase6.sql

7 ulcase7.ctl ulcase7.dat ulcase7s.sql

ulcase7e.sql

8 ulcase8.ctl ulcase8.dat ulcase8.sql

9 ulcase9.ctl ulcase9.dat ulcase9.sql

10 ulcase10.ctl N/A ulcase10.sql

11 ulcase11.ctl ulcase11.dat ulcase11.sql

SQL*Loader Case Studies

7-16 Oracle Database Utilities

Checking the Results of a Case Study
To check the results of running a case study, start SQL*Plus and perform a select
operation from the table that was loaded in the case study. This is done, as follows:

1. At the system prompt, type sqlplus and press Enter to start SQL*Plus. At the
user-name prompt, enter scott. At the password prompt, enter tiger.

The SQL prompt is displayed.

2. At the SQL prompt, use the SELECT statement to select all rows from the table that
the case study loaded. For example, if the table emp was loaded, then enter:

SQL> SELECT * FROM emp;

The contents of each row in the emp table will be displayed.

8

SQL*Loader Command-Line Reference 8-1

8 SQL*Loader Command-Line Reference

This chapter describes the command-line parameters used to invoke SQL*Loader. The
following topics are discussed:

■ Invoking SQL*Loader

■ Command-Line Parameters

■ Exit Codes for Inspection and Display

Invoking SQL*Loader
This section describes how to invoke SQL*Loader and specify parameters. It contains
the following sections:

■ Specifying Parameters on the Command Line

■ Alternative Ways to Specify Parameters

■ Loading Data Across a Network

Specifying Parameters on the Command Line
When you invoke SQL*Loader, you specify parameters to establish session
characteristics. You can separate the parameters by commas, if you want to.

> sqlldr CONTROL=ulcase1.ctl
Username: scott
Password: password

Specifying by position means that you enter a value, but not the parameter name. In
the following example, the username scott is provided and then the name of the
control file, ulcase1.ctl. You are prompted for the password:

> sqlldr scott ulcase1.ctl
Password: password

Once a keyword specification is used, no positional specification is allowed after that.
For example, the following command line would result in an error even though the
position of ulcase1.log is correct:

> sqlldr scott CONTROL=ulcase1.ctl ulcase1.log

If you invoke SQL*Loader without specifying any parameters, then SQL*Loader
displays a help screen that lists the available parameters and their default values.

See Also: "Command-Line Parameters" on page 8-2 for
descriptions of all the command-line parameters

Command-Line Parameters

8-2 Oracle Database Utilities

Alternative Ways to Specify Parameters
If the length of the command line exceeds the size of the maximum command line on
your system, then you can put certain command-line parameters in the control file by
using the OPTIONS clause.

You can also group parameters together in a parameter file. You specify the name of
this file on the command line using the PARFILE parameter when you invoke
SQL*Loader.

These alternative ways of specifying parameters are useful when you often use the
same parameters with the same values.

Parameter values specified on the command line override parameter values specified
in either a parameter file or in the OPTIONS clause.

Loading Data Across a Network
To use SQL*Loader to load data across a network connection, you can specify a
connect identifier in the connect string when you invoke the SQL*Loader utility. This
identifier can specify a database instance that is different from the current instance
identified by the current Oracle System ID (SID). The connect identifier can be an
Oracle Net connect descriptor or a net service name (usually defined in the
tnsnames.ora file) that maps to a connect descriptor. Use of a connect identifier
requires that you have Oracle Net Listener running (to start the default listener, enter
lsnrctl start). The following example invokes SQL*Loader for user scott using the
connect identifier inst1:

> sqlldr CONTROL=ulcase1.ctl
Username: scott@inst1
Password: password

The local SQL*Loader client connects to the database instance defined by the connect
identifier inst1 (a net service name), and loads the data, as specified in the
ulcase1.ctl control file.

Command-Line Parameters
This section describes each SQL*Loader command-line parameter. The defaults and
maximum values listed for these parameters are for UNIX-based systems. They may
be different on your operating system. Refer to your Oracle operating system-specific
documentation for more information.

BAD (bad file)
Default: The name of the data file, with an extension of .bad.

BAD specifies the name of the bad file created by SQL*Loader to store records that
cause errors during insert or that are improperly formatted. If you do not specify a file
name, then the default is used. A bad file is not automatically created if there are no
rejected records.

See Also:

■ "OPTIONS Clause" on page 9-3

■ "PARFILE (parameter file)" on page 8-8

See Also: Oracle Database Net Services Administrator's Guide for more
information about connect identifiers and Oracle Net Listener

Command-Line Parameters

SQL*Loader Command-Line Reference 8-3

A bad file name specified on the command line becomes the bad file associated with
the first INFILE statement in the control file.

Note that the name of the bad file can also be specified in the SQL*Loader control file,
using the BADFILE clause. If the bad file name is specified in the control file as well as
on the command line, then the command line value takes precedence.

BINDSIZE (maximum size)
Default: To see the default value for this parameter, invoke SQL*Loader without any
parameters, as described in "Invoking SQL*Loader" on page 8-1.

BINDSIZE specifies the maximum size (bytes) of the bind array. The size of the bind
array given by BINDSIZE overrides the default size (which is system dependent) and
any size determined by ROWS.

COLUMNARRAYROWS
Default: To see the default value for this parameter, invoke SQL*Loader without any
parameters, as described in "Invoking SQL*Loader" on page 8-1.

Specifies the number of rows to allocate for direct path column arrays. The value for
this parameter is not calculated by SQL*Loader. You must either specify it or accept
the default.

CONTROL (control file)
Default: none

CONTROL specifies the name of the SQL*Loader control file that describes how to load
the data. If a file extension or file type is not specified, then it defaults to .ctl. If the file
name is omitted, then SQL*Loader prompts you for it.

If the name of your SQL*Loader control file contains special characters, then your
operating system may require that they be preceded by an escape character. Also, if
your operating system uses backslashes in its file system paths, then you may need to
use multiple escape characters or to enclose the path in quotation marks. See your
Oracle operating system-specific documentation for more information.

See Also: "Specifying the Bad File" on page 9-9 for information
about the format of bad files

See Also:

■ "Bind Arrays and Conventional Path Loads" on page 9-34

■ "READSIZE (read buffer size)" on page 8-8

See Also:

■ "Using CONCATENATE to Assemble Logical Records" on
page 9-21

■ "Specifying the Number of Column Array Rows and Size of
Stream Buffers" on page 12-15

See Also: Chapter 9 for a detailed description of the SQL*Loader
control file

Command-Line Parameters

8-4 Oracle Database Utilities

DATA (data file)
Default: The name of the control file, with an extension of .dat.

DATA specifies the name of the data file containing the data to be loaded. If you do not
specify a file extension or file type, then the default is .dat.

If you specify a data file on the command line and also specify data files in the control
file with INFILE, then the data specified on the command line is processed first. The
first data file specified in the control file is ignored. All other data files specified in the
control file are processed.

If you specify a file processing option when loading data from the control file, then a
warning message will be issued.

DATE_CACHE
Default: Enabled (for 1000 elements). To completely disable the date cache feature, set
it to 0.

The date cache is used to store the results of conversions from text strings to internal
date format. The cache is useful because the cost of looking up dates is much less than
converting from text format to date format. If the same dates occur repeatedly in the
data file, then using the date cache can improve the speed of a direct path load.

DATE_CACHE specifies the date cache size (in entries). For example,
DATE_CACHE=5000 specifies that each date cache created can contain a maximum of
5000 unique date entries. Every table has its own date cache, if one is needed. A date
cache is created only if at least one date or timestamp value is loaded that requires
datatype conversion in order to be stored in the table.

The date cache feature is only available for direct path loads. It is enabled by default.
The default date cache size is 1000 elements. If the default size is used and the number
of unique input values loaded exceeds 1000, then the date cache feature is
automatically disabled for that table. However, if you override the default and specify
a nonzero date cache size and that size is exceeded, then the cache is not disabled.

You can use the date cache statistics (entries, hits, and misses) contained in the log file
to tune the size of the cache for future similar loads.

DIRECT (data path)
Default: false

DIRECT specifies the data path, that is, the load method to use, either conventional path
or direct path. A value of true specifies a direct path load. A value of false specifies a
conventional path load.

DISCARD (file name)
Default: The name of the data file, with an extension of .dsc.

DISCARD specifies a discard file (optional) to be created by SQL*Loader to store records
that are neither inserted into a table nor rejected.

See Also: "Specifying a Value for the Date Cache" on page 12-16

See Also: Chapter 12, "Conventional and Direct Path Loads"

Command-Line Parameters

SQL*Loader Command-Line Reference 8-5

A discard file specified on the command line becomes the discard file associated with
the first INFILE statement in the control file. If the discard file is also specified in the
control file, then the command-line value overrides it.

DISCARDMAX (integer)
Default: ALL

DISCARDMAX specifies the number of discard records to allow before data loading is
terminated. To stop on the first discarded record, specify one (1).

ERRORS (errors to allow)
Default: To see the default value for this parameter, invoke SQL*Loader without any
parameters, as described in "Invoking SQL*Loader" on page 8-1.

ERRORS specifies the maximum number of insert errors to allow. If the number of errors
exceeds the value specified for ERRORS, then SQL*Loader terminates the load. To
permit no errors at all, set ERRORS=0. To specify that all errors be allowed, use a very
high number.

On a single-table load, SQL*Loader terminates the load when errors exceed this error
limit. Any data inserted up that point, however, is committed.

SQL*Loader maintains the consistency of records across all tables. Therefore,
multitable loads do not terminate immediately if errors exceed the error limit. When
SQL*Loader encounters the maximum number of errors for a multitable load, it
continues to load rows to ensure that valid rows previously loaded into tables are
loaded into all tables and rejected rows are filtered out of all tables.

In all cases, SQL*Loader writes erroneous records to the bad file.

EXTERNAL_TABLE
Default: NOT_USED

EXTERNAL_TABLE instructs SQL*Loader whether to load data using the external tables
option. There are three possible values:

■ NOT_USED - the default value. It means the load is performed using either
conventional or direct path mode.

■ GENERATE_ONLY - places all the SQL statements needed to do the load using
external tables, as described in the control file, in the SQL*Loader log file. These
SQL statements can be edited and customized. The actual load can be done later
without the use of SQL*Loader by executing these statements in SQL*Plus.

■ EXECUTE - attempts to execute the SQL statements that are needed to do the load
using external tables. However, if any of the SQL statements returns an error, then
the attempt to load stops. Statements are placed in the log file as they are executed.
This means that if a SQL statement returns an error, then the remaining SQL
statements required for the load will not be placed in the log file.

If you use EXTERNAL_TABLE=EXECUTE and also use the SEQUENCE parameter in your
SQL*Loader control file, then SQL*Loader creates a database sequence, loads the
table using that sequence, and then deletes the sequence. The results of doing the
load this way will be different than if the load were done with conventional or

See Also: "Discarded and Rejected Records" on page 7-8 for
information about the format of discard files

Command-Line Parameters

8-6 Oracle Database Utilities

direct path. (For more information about creating sequences, see CREATE SEQUENCE
in Oracle Database SQL Language Reference.)

Note that the external table option uses directory objects in the database to indicate
where all data files are stored and to indicate where output files, such as bad files and
discard files, are created. You must have READ access to the directory objects containing
the data files, and you must have WRITE access to the directory objects where the
output files are created. If there are no existing directory objects for the location of a
data file or output file, then SQL*Loader will generate the SQL statement to create one.
Therefore, when the EXECUTE option is specified, you must have the CREATE ANY
DIRECTORY privilege. If you want the directory object to be deleted at the end of the
load, then you must also have the DELETE ANY DIRECTORY privilege.

When using a multitable load, SQL*Loader does the following:

1. Creates a table in the database that describes all fields in the data file that will be
loaded into any table.

2. Creates an INSERT statement to load this table from an external table description of
the data.

3. Executes one INSERT statement for every table in the control file.

To see an example of this, run case study 5, but add the EXTERNAL_TABLE=GENERATE_
ONLY parameter. To guarantee unique names in the external table, SQL*Loader uses
generated names for all fields. This is because the field names may not be unique
across the different tables in the control file.

Note: When the EXTERNAL_TABLE parameter is specified, any
datetime data types (for example, TIMESTAMP) in a SQL*Loader control
file are automatically converted to a CHAR data type and use the
external tables date_format_spec clause. See "date_format_spec" on
page 14-26.

Note: The EXTERNAL_TABLE=EXECUTE qualifier tells SQL*Loader to
create an external table that can be used to load data and then
execute the INSERT statement to load the data. All files in the
external table must be identified as being in a directory object.
SQL*Loader attempts to use directory objects that already exist and
that you have privileges to access. However, if SQL*Loader does
not find the matching directory object, then it attempts to create a
temporary directory object. If you do not have privileges to create
new directory objects, then the operation fails.

To work around this, use EXTERNAL_TABLE=GENERATE_ONLY to create
the SQL statements that SQL*Loader would try to execute. Extract
those SQL statements and change references to directory objects to
be the directory object that you have privileges to access. Then,
execute those SQL statements.

Command-Line Parameters

SQL*Loader Command-Line Reference 8-7

Restrictions When Using EXTERNAL_TABLE
The following restrictions apply when you use the EXTERNAL_TABLE qualifier:

■ Julian dates cannot be used when you insert data into a database table from an
external table through SQL*Loader. To work around this, use TO_DATE and TO_CHAR
to convert the Julian date format, as shown in the following example:

TO_CHAR(TO_DATE(:COL1, 'MM-DD-YYYY'), 'J')

■ Built-in functions and SQL strings cannot be used for object elements when you
insert data into a database table from an external table.

FILE (tablespace file to load into)
Default: none

FILE specifies the database file to allocate extents from. It is used only for direct path
parallel loads. By varying the value of the FILE parameter for different SQL*Loader
processes, data can be loaded onto a system with minimal disk contention.

LOAD (number of records to load)
Default: All records are loaded.

LOAD specifies the maximum number of logical records to load (after skipping the
specified number of records). No error occurs if fewer than the maximum number of
records are found.

LOG (log file)
Default: The name of the control file, with an extension of .log.

LOG specifies the log file that SQL*Loader will create to store logging information
about the loading process.

MULTITHREADING
Default: true on multiple-CPU systems, false on single-CPU systems

This parameter is available only for direct path loads.

By default, the multithreading option is always enabled (set to true) on multiple-CPU
systems. In this case, the definition of a multiple-CPU system is a single system that
has more than one CPU.

On single-CPU systems, multithreading is set to false by default. To use
multithreading between two single-CPU systems, you must enable multithreading; it
will not be on by default. This will allow stream building on the client system to be
done in parallel with stream loading on the server system.

See Also:

■ "SQL*Loader Case Studies" on page 7-13 for information on
how to access case studies

■ Chapter 13, "External Tables Concepts"

■ Chapter 14, "The ORACLE_LOADER Access Driver"

See Also: "Parallel Data Loading Models" on page 12-22

Command-Line Parameters

8-8 Oracle Database Utilities

Multithreading functionality is operating system-dependent. Not all operating
systems support multithreading.

NO_INDEX_ERRORS
Default: none

When NO_INDEX_ERRORS is specified on the command line, indexes will not be set
unusable at any time during the load. If any index errors are detected, then the load is
aborted. That is, no rows are loaded and the indexes are left as is.

The NO_INDEX_ERRORS parameter is valid only for direct path loads. If specified for
conventional path loads, then it is ignored.

PARALLEL (parallel load)
Default: false

PARALLEL specifies whether direct loads can operate in multiple concurrent sessions to
load data into the same table.

PARFILE (parameter file)
Default: none

PARFILE specifies the name of a file that contains commonly used command-line
parameters. For example, a parameter file named daily_report.par might have the
following contents:

USERID=scott
CONTROL=daily_report.ctl
ERRORS=9999
LOG=daily_report.log

For security reasons, you should not include your USERID password in a parameter
file. SQL*Loader will prompt you for the password after you specify the parameter file
at the command line, for example:

sqlldr PARFILE=daily_report.par
Password: password

READSIZE (read buffer size)
Default: To see the default value for this parameter, invoke SQL*Loader without any
parameters, as described in "Invoking SQL*Loader" on page 8-1.

The READSIZE parameter is used only when reading data from data files. When reading
records from a control file, a value of 64 kilobytes (KB) is always used as the READSIZE.

See Also: "Optimizing Direct Path Loads on Multiple-CPU
Systems" on page 12-17

See Also: "Parallel Data Loading Models" on page 12-22

Note: Although it is not usually important, on some systems it
may be necessary to have no spaces around the equal sign (=) in the
parameter specifications.

Command-Line Parameters

SQL*Loader Command-Line Reference 8-9

The READSIZE parameter lets you specify (in bytes) the size of the read buffer, if you
choose not to use the default. The maximum size allowed is platform dependent.

In the conventional path method, the bind array is limited by the size of the read
buffer. Therefore, the advantage of a larger read buffer is that more data can be read
before a commit operation is required.

For example, setting READSIZE to 1000000 enables SQL*Loader to perform reads from
the external data file in chunks of 1,000,000 bytes before a commit is required.

The READSIZE parameter has no effect on LOBs. The size of the LOB read buffer is fixed
at 64 kilobytes (KB).

See "BINDSIZE (maximum size)" on page 8-3.

RESUMABLE
Default: false

The RESUMABLE parameter is used to enable and disable resumable space allocation.
Because this parameter is disabled by default, you must set RESUMABLE=true to use its
associated parameters, RESUMABLE_NAME and RESUMABLE_TIMEOUT.

RESUMABLE_NAME
Default: 'User USERNAME (USERID), Session SESSIONID, Instance INSTANCEID'

The value for this parameter identifies the statement that is resumable. This value is a
user-defined text string that is inserted in either the USER_RESUMABLE or DBA_RESUMABLE
view to help you identify a specific resumable statement that has been suspended.

This parameter is ignored unless the RESUMABLE parameter is set to true to enable
resumable space allocation.

RESUMABLE_TIMEOUT
Default: 7200 seconds (2 hours)

The value of the parameter specifies the time period during which an error must be
fixed. If the error is not fixed within the timeout period, then execution of the
statement is terminated, without finishing.

This parameter is ignored unless the RESUMABLE parameter is set to true to enable
resumable space allocation.

ROWS (rows per commit)
Default: To see the default value for this parameter, invoke SQL*Loader without any
parameters, as described in "Invoking SQL*Loader" on page 8-1.

Note: If the READSIZE value specified is smaller than the BINDSIZE
value, then the READSIZE value will be increased.

See Also:

■ Oracle Database Concepts

■ Oracle Database Administrator's Guide

Command-Line Parameters

8-10 Oracle Database Utilities

Keep in mind that if you specify a low value for ROWS and then attempt to compress
data using table compression, then your compression ratio will probably be degraded.
Oracle recommends that you either specify a high value or accept the default value
when compressing data.

Conventional path loads only: The ROWS parameter specifies the number of rows in
the bind array. The maximum number of rows is 65534. See "Bind Arrays and
Conventional Path Loads" on page 9-34.

Direct path loads only: The ROWS parameter identifies the number of rows you want
to read from the data file before a data save. The default is to read all rows and save
data once at the end of the load. See "Using Data Saves to Protect Against Data Loss"
on page 12-10. The actual number of rows loaded into a table on a save is
approximately the value of ROWS minus the number of discarded and rejected records
since the last save.

SILENT (feedback mode)
When SQL*Loader begins, information about the SQL*Loader version being used
appears on the screen and is placed in the log file. As SQL*Loader executes, you also
see feedback messages on the screen, for example:

Commit point reached - logical record count 20

SQL*Loader may also display data error messages similar to the following:

Record 4: Rejected - Error on table EMP
ORA-00001: unique constraint <name> violated

You can suppress these messages by specifying SILENT with one or more values.

For example, you can suppress the header and feedback messages that normally
appear on the screen with the following command-line argument:

SILENT=(HEADER, FEEDBACK)

Use the appropriate values to suppress one or more of the following:

■ HEADER - Suppresses the SQL*Loader header messages that normally appear on the
screen. Header messages still appear in the log file.

■ FEEDBACK - Suppresses the "commit point reached" feedback messages that
normally appear on the screen.

■ ERRORS - Suppresses the data error messages in the log file that occur when a
record generates an Oracle error that causes it to be written to the bad file. A count
of rejected records still appears.

■ DISCARDS - Suppresses the messages in the log file for each record written to the
discard file.

■ PARTITIONS - Disables writing the per-partition statistics to the log file during a
direct load of a partitioned table.

■ ALL - Implements all of the suppression values: HEADER, FEEDBACK, ERRORS,
DISCARDS, and PARTITIONS.

Note: The ROWS parameter is ignored for direct path loads when
data is loaded into an Index Organized Table (IOT) or into a table
containing VARRAYs, XML columns, or LOBs. This means that the
load will still take place, but no save points will be done.

Command-Line Parameters

SQL*Loader Command-Line Reference 8-11

SKIP (records to skip)
Default: No records are skipped.

SKIP specifies the number of logical records from the beginning of the file that should
not be loaded.

This parameter continues loads that have been interrupted for some reason. It is used
for all conventional loads, for single-table direct loads, and for multiple-table direct
loads when the same number of records was loaded into each table. It is not used for
multiple-table direct loads when a different number of records was loaded into each
table.

If a WHEN clause is also present and the load involves secondary data, then the
secondary data is skipped only if the WHEN clause succeeds for the record in the
primary data file.

SKIP_INDEX_MAINTENANCE
Default: false

The SKIP_INDEX_MAINTENANCE parameter stops index maintenance for direct path
loads but does not apply to conventional path loads. It causes the index partitions that
would have had index keys added to them to be marked Index Unusable instead,
because the index segment is inconsistent with respect to the data it indexes. Index
segments that are not affected by the load retain the Index Unusable state they had
before the load.

The SKIP_INDEX_MAINTENANCE parameter:

■ Applies to both local and global indexes

■ Can be used (with the PARALLEL parameter) to do parallel loads on an object that
has indexes

■ Can be used (with the PARTITION parameter on the INTO TABLE clause) to do a
single partition load to a table that has global indexes

■ Puts a list (in the SQL*Loader log file) of the indexes and index partitions that the
load set into Index Unusable state

SKIP_UNUSABLE_INDEXES
Default: The value of the Oracle database configuration parameter, SKIP_UNUSABLE_
INDEXES, as specified in the initialization parameter file. The default database setting is
TRUE.

Both SQL*Loader and the Oracle database provide a SKIP_UNUSABLE_INDEXES
parameter. The SQL*Loader SKIP_UNUSABLE_INDEXES parameter is specified at the
SQL*Loader command line. The Oracle database SKIP_UNUSABLE_INDEXES parameter is
specified as a configuration parameter in the initialization parameter file. It is
important to understand how they affect each other.

If you specify a value for SKIP_UNUSABLE_INDEXES at the SQL*Loader command line,
then it overrides the value of the SKIP_UNUSABLE_INDEXES configuration parameter in
the initialization parameter file.

If you do not specify a value for SKIP_UNUSABLE_INDEXES at the SQL*Loader command
line, then SQL*Loader uses the database setting for the SKIP_UNUSABLE_INDEXES
configuration parameter, as specified in the initialization parameter file. If the

See Also: "Interrupted Loads" on page 9-18

Exit Codes for Inspection and Display

8-12 Oracle Database Utilities

initialization parameter file does not specify a database setting for SKIP_UNUSABLE_
INDEXES, then the default database setting is TRUE.

A value of TRUE for SKIP_UNUSABLE_INDEXES means that if an index in an Index
Unusable state is encountered, it is skipped and the load operation continues. This
allows SQL*Loader to load a table with indexes that are in an Unusable state prior to
the beginning of the load. Indexes that are not in an Unusable state at load time will be
maintained by SQL*Loader. Indexes that are in an Unusable state at load time will not
be maintained but will remain in an Unusable state at load completion.

The SKIP_UNUSABLE_INDEXES parameter applies to both conventional and direct path
loads.

STREAMSIZE
Default: To see the default value for this parameter, invoke SQL*Loader without any
parameters, as described in "Invoking SQL*Loader" on page 8-1.

Specifies the size, in bytes, for direct path streams.

USERID (username/password)
Default: none

USERID is used to provide your Oracle username and password. If it is omitted, then
you are prompted for it. If only a slash is used, then USERID defaults to your operating
system login.

If you connect as user SYS, then you must also specify AS SYSDBA in the connect string.

Exit Codes for Inspection and Display
Oracle SQL*Loader provides the results of a SQL*Loader run immediately upon
completion. In addition to recording the results in a log file, SQL*Loader may also
report the outcome in a process exit code. This Oracle SQL*Loader functionality allows
for checking the outcome of a SQL*Loader invocation from the command line or a
script. Table 8–1 shows the exit codes for various results.

Note: Indexes that are unique and marked Unusable are not
allowed to skip index maintenance. This rule is enforced by DML
operations, and enforced by the direct path load to be consistent
with DML.

See Also: "Specifying the Number of Column Array Rows and
Size of Stream Buffers" on page 12-15

Note: Because the string, AS SYSDBA, contains a blank, some
operating systems may require that the entire connect string be
placed in quotation marks or marked as a literal by some method.
Some operating systems also require that quotation marks on the
command line be preceded by an escape character, such as
backslashes.

See your Oracle operating system-specific documentation for
information about special and reserved characters on your system.

Exit Codes for Inspection and Display

SQL*Loader Command-Line Reference 8-13

For UNIX, the exit codes are as follows:

EX_SUCC 0
EX_FAIL 1
EX_WARN 2
EX_FTL 3

For Windows NT, the exit codes are as follows:

EX_SUCC 0
EX_FAIL 1
EX_WARN 2
EX_FTL 4

If SQL*Loader returns any exit code other than zero, then you should consult your
system log files and SQL*Loader log files for more detailed diagnostic information.

In UNIX, you can check the exit code from the shell to determine the outcome of a
load.

Table 8–1 Exit Codes for SQL*Loader

Result Exit Code

All rows loaded successfully EX_SUCC

All or some rows rejected EX_WARN

All or some rows discarded EX_WARN

Discontinued load EX_WARN

Command-line or syntax errors EX_FAIL

Oracle errors nonrecoverable for SQL*Loader EX_FAIL

Operating system errors (such as file open/close and malloc) EX_FAIL

Exit Codes for Inspection and Display

8-14 Oracle Database Utilities

9

SQL*Loader Control File Reference 9-1

9 SQL*Loader Control File Reference

This chapter describes the SQL*Loader control file. The following topics are discussed:

■ Control File Contents

■ Specifying Command-Line Parameters in the Control File

■ Specifying File Names and Object Names

■ Identifying XMLType Tables

■ Specifying Data Files

■ Identifying Data in the Control File with BEGINDATA

■ Specifying Data File Format and Buffering

■ Specifying the Bad File

■ Specifying the Discard File

■ Handling Different Character Encoding Schemes

■ Interrupted Loads

■ Assembling Logical Records from Physical Records

■ Loading Logical Records into Tables

■ Index Options

■ Benefits of Using Multiple INTO TABLE Clauses

■ Bind Arrays and Conventional Path Loads

Control File Contents
The SQL*Loader control file is a text file that contains data definition language (DDL)
instructions. DDL is used to control the following aspects of a SQL*Loader session:

■ Where SQL*Loader will find the data to load

■ How SQL*Loader expects that data to be formatted

■ How SQL*Loader will be configured (memory management, rejecting records,
interrupted load handling, and so on) as it loads the data

■ How SQL*Loader will manipulate the data being loaded

See Appendix A for syntax diagrams of the SQL*Loader DDL.

To create the SQL*Loader control file, use a text editor such as vi or xemacs.

In general, the control file has three main sections, in the following order:

Control File Contents

9-2 Oracle Database Utilities

■ Session-wide information

■ Table and field-list information

■ Input data (optional section)

Example 9–1 shows a sample control file.

Example 9–1 Sample Control File

1 -- This is a sample control file
2 LOAD DATA
3 INFILE 'sample.dat'
4 BADFILE 'sample.bad'
5 DISCARDFILE 'sample.dsc'
6 APPEND
7 INTO TABLE emp
8 WHEN (57) = '.'
9 TRAILING NULLCOLS
10 (hiredate SYSDATE,
 deptno POSITION(1:2) INTEGER EXTERNAL(2)
 NULLIF deptno=BLANKS,
 job POSITION(7:14) CHAR TERMINATED BY WHITESPACE
 NULLIF job=BLANKS "UPPER(:job)",
 mgr POSITION(28:31) INTEGER EXTERNAL
 TERMINATED BY WHITESPACE, NULLIF mgr=BLANKS,
 ename POSITION(34:41) CHAR
 TERMINATED BY WHITESPACE "UPPER(:ename)",
 empno POSITION(45) INTEGER EXTERNAL
 TERMINATED BY WHITESPACE,
 sal POSITION(51) CHAR TERMINATED BY WHITESPACE
 "TO_NUMBER(:sal,'$99,999.99')",
 comm INTEGER EXTERNAL ENCLOSED BY '(' AND '%'
 ":comm * 100"
)

In this sample control file, the numbers that appear to the left would not appear in a
real control file. They are keyed in this sample to the explanatory notes in the
following list:

1. This is how comments are entered in a control file. See "Comments in the Control
File" on page 9-3.

2. The LOAD DATA statement tells SQL*Loader that this is the beginning of a new data
load. See Appendix A for syntax information.

3. The INFILE clause specifies the name of a data file containing the data you want to
load. See "Specifying Data Files" on page 9-6.

4. The BADFILE clause specifies the name of a file into which rejected records are
placed. See "Specifying the Bad File" on page 9-9.

5. The DISCARDFILE clause specifies the name of a file into which discarded records
are placed. See "Specifying the Discard File" on page 9-11.

6. The APPEND clause is one of the options you can use when loading data into a table
that is not empty. See "Loading Data into Nonempty Tables" on page 9-25.

To load data into a table that is empty, you would use the INSERT clause. See
"Loading Data into Empty Tables" on page 9-25.

7. The INTO TABLE clause enables you to identify tables, fields, and datatypes. It
defines the relationship between records in the data file and tables in the database.

Specifying Command-Line Parameters in the Control File

SQL*Loader Control File Reference 9-3

See "Specifying Table Names" on page 9-24.

8. The WHEN clause specifies one or more field conditions. SQL*Loader decides
whether to load the data based on these field conditions. See "Loading Records
Based on a Condition" on page 9-27.

9. The TRAILING NULLCOLS clause tells SQL*Loader to treat any relatively positioned
columns that are not present in the record as null columns. See "Handling Short
Records with Missing Data" on page 9-28.

10. The remainder of the control file contains the field list, which provides information
about column formats in the table being loaded. See Chapter 10 for information
about that section of the control file.

Comments in the Control File
Comments can appear anywhere in the command section of the file, but they should
not appear within the data. Precede any comment with two hyphens, for example:

--This is a comment

All text to the right of the double hyphen is ignored, until the end of the line.

Specifying Command-Line Parameters in the Control File
You can specify command-line parameters in the SQL*Loader control file using the
OPTIONS clause. This can be useful when you typically invoke a control file with the
same set of options. The OPTIONS clause precedes the LOAD DATA statement.

OPTIONS Clause
The following command-line parameters can be specified using the OPTIONS clause.
These parameters are described in greater detail in Chapter 8.

BINDSIZE = n
COLUMNARRAYROWS = n
DATE_CACHE = n
DIRECT = {TRUE | FALSE}
ERRORS = n
EXTERNAL_TABLE = {NOT_USED | GENERATE_ONLY | EXECUTE}
FILE
LOAD = n
MULTITHREADING = {TRUE | FALSE}
PARALLEL = {TRUE | FALSE}
READSIZE = n
RESUMABLE = {TRUE | FALSE}
RESUMABLE_NAME = 'text string'
RESUMABLE_TIMEOUT = n
ROWS = n
SILENT = {HEADER | FEEDBACK | ERRORS | DISCARDS | PARTITIONS | ALL}
SKIP = n
SKIP_INDEX_MAINTENANCE = {TRUE | FALSE}
SKIP_UNUSABLE_INDEXES = {TRUE | FALSE}
STREAMSIZE = n

The following is an example use of the OPTIONS clause that you could use in a
SQL*Loader control file:

OPTIONS (BINDSIZE=100000, SILENT=(ERRORS, FEEDBACK))

Specifying File Names and Object Names

9-4 Oracle Database Utilities

Specifying File Names and Object Names
In general, SQL*Loader follows the SQL standard for specifying object names (for
example, table and column names). The information in this section discusses the
following topics:

■ File Names That Conflict with SQL and SQL*Loader Reserved Words

■ Specifying SQL Strings

■ Operating System Considerations

File Names That Conflict with SQL and SQL*Loader Reserved Words
SQL and SQL*Loader reserved words must be specified within double quotation
marks. The only SQL*Loader reserved word is CONSTANT.

You must use double quotation marks if the object name contains special characters
other than those recognized by SQL ($, #, _), or if the name is case sensitive.

Specifying SQL Strings
You must specify SQL strings within double quotation marks. The SQL string applies
SQL operators to data fields.

Operating System Considerations
The following sections discuss situations in which your course of action may depend
on the operating system you are using.

Specifying a Complete Path
If you encounter problems when trying to specify a complete path name, it may be
due to an operating system-specific incompatibility caused by special characters in the
specification. In many cases, specifying the path name within single quotation marks
prevents errors.

Backslash Escape Character
In DDL syntax, you can place a double quotation mark inside a string delimited by
double quotation marks by preceding it with the escape character, "\" (if the escape
character is allowed on your operating system). The same rule applies when single
quotation marks are required in a string delimited by single quotation marks.

For example, homedir\data"norm\mydata contains a double quotation mark.
Preceding the double quotation mark with a backslash indicates that the double
quotation mark is to be taken literally:

INFILE 'homedir\data\"norm\mydata'

You can also put the escape character itself into a string by entering it twice.

Note: Parameter values specified on the command line override
parameter values specified in the control file OPTIONS clause.

See Also: Oracle Database SQL Language Reference

See Also: "Applying SQL Operators to Fields" on page 10-41

Identifying XMLType Tables

SQL*Loader Control File Reference 9-5

For example:

"so'\"far" or 'so\'"far' is parsed as so'"far
"'so\\far'" or '\'so\\far\'' is parsed as 'so\far'
"so\\\\far" or 'so\\\\far' is parsed as so\\far

Nonportable Strings
There are two kinds of character strings in a SQL*Loader control file that are not
portable between operating systems: filename and file processing option strings. When
you convert to a different operating system, you will probably need to modify these
strings. All other strings in a SQL*Loader control file should be portable between
operating systems.

Using the Backslash as an Escape Character
If your operating system uses the backslash character to separate directories in a path
name, and if the release of the Oracle database running on your operating system
implements the backslash escape character for file names and other nonportable
strings, then you must specify double backslashes in your path names and use single
quotation marks.

Escape Character Is Sometimes Disallowed
The release of the Oracle database running on your operating system may not
implement the escape character for nonportable strings. When the escape character is
disallowed, a backslash is treated as a normal character, rather than as an escape
character (although it is still usable in all other strings). Then path names such as the
following can be specified normally:

INFILE 'topdir\mydir\myfile'

Double backslashes are not needed.

Because the backslash is not recognized as an escape character, strings within single
quotation marks cannot be embedded inside another string delimited by single
quotation marks. This rule also holds for double quotation marks. A string within
double quotation marks cannot be embedded inside another string delimited by
double quotation marks.

Identifying XMLType Tables
As of Oracle Database 10g, the XMLTYPE clause is available for use in a SQL*Loader
control file. This clause is of the format XMLTYPE(field name). It is used to identify
XMLType tables so that the correct SQL statement can be constructed. Example 9–2
shows how the XMLTYPE clause can be used in a SQL*Loader control file to load data
into a schema-based XMLType table.

Example 9–2 Identifying XMLType Tables in the SQL*Loader Control File

The XML schema definition is as follows. It registers the XML schema, xdb_user.xsd,
in the Oracle XML DB, and then creates the table, xdb_tab5.

begin dbms_xmlschema.registerSchema('xdb_user.xsd',

Note: A double quotation mark in the initial position cannot be
preceded by an escape character. Therefore, you should avoid
creating strings with an initial quotation mark.

Specifying Data Files

9-6 Oracle Database Utilities

'<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xdb="http://xmlns.oracle.com/xdb">
 <xs:element name = "Employee"
 xdb:defaultTable="EMP31B_TAB">
 <xs:complexType>
 <xs:sequence>
 <xs:element name = "EmployeeId" type = "xs:positiveInteger"/>
 <xs:element name = "Name" type = "xs:string"/>
 <xs:element name = "Salary" type = "xs:positiveInteger"/>
 <xs:element name = "DeptId" type = "xs:positiveInteger"
 xdb:SQLName="DEPTID"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>',
TRUE, TRUE, FALSE); end;
/

The table is defined as follows:

CREATE TABLE xdb_tab5 OF XMLTYPE XMLSCHEMA "xdb_user.xsd" ELEMENT "Employee";

The control file used to load data into the table, xdb_tab5, looks as follows. It loads
XMLType data using the registered XML schema, xdb_user.xsd. The XMLTYPE clause is
used to identify this table as an XMLType table. Either direct path or conventional
mode can be used to load the data into the table.

LOAD DATA
INFILE *
INTO TABLE xdb_tab5 TRUNCATE
xmltype(xmldata)
(
 xmldata char(4000)
)
BEGINDATA
<Employee> <EmployeeId>111</EmployeeId> <Name>Ravi</Name> <Salary>100000</Sal
ary> <DeptId>12</DeptId></Employee>
<Employee> <EmployeeId>112</EmployeeId> <Name>John</Name> <Salary>150000</Sal
ary> <DeptId>12</DeptId></Employee>
<Employee> <EmployeeId>113</EmployeeId> <Name>Michael</Name> <Salary>75000</S
alary> <DeptId>12</DeptId></Employee>
<Employee> <EmployeeId>114</EmployeeId> <Name>Mark</Name> <Salary>125000</Sal
ary> <DeptId>16</DeptId></Employee>
<Employee> <EmployeeId>115</EmployeeId> <Name>Aaron</Name> <Salary>600000</Sa
lary> <DeptId>16</DeptId></Employee>

Specifying Data Files
To specify a data file that contains the data to be loaded, use the INFILE keyword,
followed by the file name and optional file processing options string. You can specify
multiple files by using multiple INFILE keywords.

See Also: Oracle XML DB Developer's Guide for more information
about loading XML data using SQL*Loader

Specifying Data Files

SQL*Loader Control File Reference 9-7

If no file name is specified, then the file name defaults to the control file name with an
extension or file type of .dat.

If the control file itself contains the data to be loaded, then specify an asterisk (*). This
specification is described in "Identifying Data in the Control File with BEGINDATA"
on page 9-8.

The syntax for INFILE is as follows:

Table 9–1 describes the parameters for the INFILE keyword.

Examples of INFILE Syntax
The following list shows different ways you can specify INFILE syntax:

■ Data contained in the control file itself:

INFILE *

Note: You can also specify the data file from the command line,
using the DATA parameter described in "Command-Line
Parameters" on page 8-2. A file name specified on the command
line overrides the first INFILE clause in the control file.

Note: The information in this section applies only to primary data
files. It does not apply to LOBFILEs or SDFs.

For information about LOBFILES, see "Loading LOB Data from
LOBFILEs" on page 11-17.

For information about SDFs, see "Secondary Data Files (SDFs)" on
page 11-24.

Table 9–1 Parameters for the INFILE Keyword

Parameter Description

INFILE Specifies that a data file specification follows.

input_filename Name of the file containing the data.

Any spaces or punctuation marks in the file name must be
enclosed in single quotation marks. See "Specifying File Names
and Object Names" on page 9-4.

* If your data is in the control file itself, then use an asterisk
instead of the file name. If you have data in the control file and
in data files, then you must specify the asterisk first in order for
the data to be read.

os_file_proc_clause This is the file-processing options string. It specifies the data
file format. It also optimizes data file reads. The syntax used
for this string is specific to your operating system. See
"Specifying Data File Format and Buffering" on page 9-9.

INFILE
*

input_filename

os_file_proc_clause

Identifying Data in the Control File with BEGINDATA

9-8 Oracle Database Utilities

■ Data contained in a file named sample with a default extension of .dat:

INFILE sample

■ Data contained in a file named datafile.dat with a full path specified:

INFILE 'c:/topdir/subdir/datafile.dat'

Specifying Multiple Data Files
To load data from multiple data files in one SQL*Loader run, use an INFILE clause for
each data file. Data files need not have the same file processing options, although the
layout of the records must be identical. For example, two files could be specified with
completely different file processing options strings, and a third could consist of data in
the control file.

You can also specify a separate discard file and bad file for each data file. In such a
case, the separate bad files and discard files must be declared immediately after each
data file name. For example, the following excerpt from a control file specifies four
data files with separate bad and discard files:

INFILE mydat1.dat BADFILE mydat1.bad DISCARDFILE mydat1.dis
INFILE mydat2.dat
INFILE mydat3.dat DISCARDFILE mydat3.dis
INFILE mydat4.dat DISCARDMAX 10 0

■ For mydat1.dat, both a bad file and discard file are explicitly specified. Therefore
both files are created, as needed.

■ For mydat2.dat, neither a bad file nor a discard file is specified. Therefore, only
the bad file is created, as needed. If created, the bad file has the default file name
and extension mydat2.bad. The discard file is not created, even if rows are
discarded.

■ For mydat3.dat, the default bad file is created, if needed. A discard file with the
specified name (mydat3.dis) is created, as needed.

■ For mydat4.dat, the default bad file is created, if needed. Because the DISCARDMAX
option is used, SQL*Loader assumes that a discard file is required and creates it
with the default name mydat4.dsc.

Identifying Data in the Control File with BEGINDATA
If the data is included in the control file itself, then the INFILE clause is followed by an
asterisk rather than a file name. The actual data is placed in the control file after the
load configuration specifications.

Specify the BEGINDATA statement before the first data record. The syntax is:

BEGINDATA
data

Keep the following points in mind when using the BEGINDATA statement:

Note: file names that include spaces or punctuation marks must
be enclosed in single quotation marks.

Specifying the Bad File

SQL*Loader Control File Reference 9-9

■ If you omit the BEGINDATA statement but include data in the control file, then
SQL*Loader tries to interpret your data as control information and issues an error
message. If your data is in a separate file, then do not use the BEGINDATA statement.

■ Do not use spaces or other characters on the same line as the BEGINDATA statement,
or the line containing BEGINDATA will be interpreted as the first line of data.

■ Do not put comments after BEGINDATA, or they will also be interpreted as data.

Specifying Data File Format and Buffering
When configuring SQL*Loader, you can specify an operating system-dependent file
processing options string (os_file_proc_clause) in the control file to specify file
format and buffering.

For example, suppose that your operating system has the following option-string
syntax:

In this syntax, RECSIZE is the size of a fixed-length record, and BUFFERS is the number
of buffers to use for asynchronous I/O.

To declare a file named mydata.dat as a file that contains 80-byte records and instruct
SQL*Loader to use 8 I/O buffers, you would use the following control file entry:

INFILE 'mydata.dat' "RECSIZE 80 BUFFERS 8"

Specifying the Bad File
When SQL*Loader executes, it can create a file called a bad file or reject file in which it
places records that were rejected because of formatting errors or because they caused
Oracle errors. If you have specified that a bad file is to be created, then the following
applies:

■ If one or more records are rejected, then the bad file is created and the rejected
records are logged.

■ If no records are rejected, then the bad file is not created.

See Also:

■ "Specifying Data Files" on page 9-6 for an explanation of using
INFILE

■ Case study 1, Loading Variable-Length Data (see "SQL*Loader
Case Studies" on page 7-13 for information on how to access
case studies)

Note: This example uses the recommended convention of single
quotation marks for file names and double quotation marks for
everything else.

See Also: Oracle Database Platform Guide for Microsoft Windows for
information about using the os_file_proc_clause on Windows
systems.

RECSIZE integer BUFFERS integer

Specifying the Bad File

9-10 Oracle Database Utilities

■ If the bad file is created, then it overwrites any existing file with the same name;
ensure that you do not overwrite a file you want to retain.

To specify the name of the bad file, use the BADFILE clause, followed by a file name. If
you do not specify a name for the bad file, then the name defaults to the name of the
data file with an extension or file type of .bad. You can also specify the bad file from
the command line with the BAD parameter described in "Command-Line Parameters"
on page 8-2.

A file name specified on the command line is associated with the first INFILE clause in
the control file, overriding any bad file that may have been specified as part of that
clause.

The bad file is created in the same record and file format as the data file so that you
can reload the data after you correct it. For data files in stream record format, the
record terminator that is found in the data file is also used in the bad file.

The syntax for the bad file is as follows:

The BADFILE clause specifies that a file name for the bad file follows.

The filename parameter specifies a valid file name specification for your platform.
Any spaces or punctuation marks in the file name must be enclosed in single quotation
marks.

Examples of Specifying a Bad File Name
To specify a bad file with file name sample and default file extension or file type of
.bad, enter the following in the control file:

BADFILE sample

To specify a bad file with file name bad0001 and file extension or file type of .rej, enter
either of the following lines:

BADFILE bad0001.rej
BADFILE '/REJECT_DIR/bad0001.rej'

How Bad Files Are Handled with LOBFILEs and SDFs
Data from LOBFILEs and SDFs is not written to a bad file when there are rejected
rows. If there is an error loading a LOB, then the row is not rejected. Rather, the LOB
column is left empty (not null with a length of zero (0) bytes). However, when the
LOBFILE is being used to load an XML column and there is an error loading this LOB
data, then the XML column is left as null.

Criteria for Rejected Records
A record can be rejected for the following reasons:

1. Upon insertion, the record causes an Oracle error (such as invalid data for a given
datatype).

Note: On some systems, a new version of the file may be created if
a file with the same name already exists.

BADFILE filename

Specifying the Discard File

SQL*Loader Control File Reference 9-11

2. The record is formatted incorrectly so that SQL*Loader cannot find field
boundaries.

3. The record violates a constraint or tries to make a unique index non-unique.

If the data can be evaluated according to the WHEN clause criteria (even with
unbalanced delimiters), then it is either inserted or rejected.

Neither a conventional path nor a direct path load will write a row to any table if it is
rejected because of reason number 2 in the previous list.

A conventional path load will not write a row to any tables if reason number 1 or 3 in
the previous list is violated for any one table. The row is rejected for that table and
written to the reject file.

In a conventional path load, if the data file has a record that is being loaded into
multiple tables and that record is rejected from at least one of the tables, then that
record is not loaded into any of the tables.

The log file indicates the Oracle error for each rejected record. Case study 4
demonstrates rejected records. (See "SQL*Loader Case Studies" on page 7-13 for
information on how to access case studies.)

Specifying the Discard File
During execution, SQL*Loader can create a discard file for records that do not meet
any of the loading criteria. The records contained in this file are called discarded
records. Discarded records do not satisfy any of the WHEN clauses specified in the
control file. These records differ from rejected records. Discarded records do not
necessarily have any bad data. No insert is attempted on a discarded record.

A discard file is created according to the following rules:

■ You have specified a discard file name and one or more records fail to satisfy all of
the WHEN clauses specified in the control file. (Be aware that if the discard file is
created, then it overwrites any existing file with the same name.)

■ If no records are discarded, then a discard file is not created.

To create a discard file from within a control file, specify any of the following:
DISCARDFILE filename, DISCARDS, or DISCARDMAX.

To create a discard file from the command line, specify either DISCARD or DISCARDMAX.

You can specify the discard file directly by specifying its name, or indirectly by
specifying the maximum number of discards.

The discard file is created in the same record and file format as the data file. For data
files in stream record format, the same record terminator that is found in the data file is
also used in the discard file.

Specifying the Discard File in the Control File
To specify the name of the file, use the DISCARDFILE clause, followed by the file name.

The DISCARDFILE clause specifies that a discard file name follows.

DISCARDFILE filename

DISCARDS

DISCARDMAX
integer

Specifying the Discard File

9-12 Oracle Database Utilities

The filename parameter specifies a valid file name specification for your platform.
Any spaces or punctuation marks in the file name must be enclosed in single quotation
marks.

The default file name is the name of the data file, and the default file extension or file
type is .dsc. A discard file name specified on the command line overrides one specified
in the control file. If a discard file with that name already exists, then it is either
overwritten or a new version is created, depending on your operating system.

Specifying the Discard File from the Command Line
See "DISCARD (file name)" on page 8-4 for information about how to specify a discard
file from the command line.

A file name specified on the command line overrides any discard file that you may
have specified in the control file.

Examples of Specifying a Discard File Name
The following list shows different ways you can specify a name for the discard file
from within the control file:

■ To specify a discard file with file name circular and default file extension or file
type of .dsc:

DISCARDFILE circular

■ To specify a discard file named notappl with the file extension or file type of .may:

DISCARDFILE notappl.may

■ To specify a full path to the discard file forget.me:

DISCARDFILE '/discard_dir/forget.me'

Criteria for Discarded Records
If there is no INTO TABLE clause specified for a record, then the record is discarded.
This situation occurs when every INTO TABLE clause in the SQL*Loader control file has
a WHEN clause and, either the record fails to match any of them, or all fields are null.

No records are discarded if an INTO TABLE clause is specified without a WHEN clause.
An attempt is made to insert every record into such a table. Therefore, records may be
rejected, but none are discarded.

Case study 7, Extracting Data from a Formatted Report, provides an example of using
a discard file. (See "SQL*Loader Case Studies" on page 7-13 for information on how to
access case studies.)

How Discard Files Are Handled with LOBFILEs and SDFs
Data from LOBFILEs and SDFs is not written to a discard file when there are discarded
rows.

Limiting the Number of Discarded Records
You can limit the number of records to be discarded for each data file by specifying an
integer for either the DISCARDS or DISCARDMAX keyword.

Handling Different Character Encoding Schemes

SQL*Loader Control File Reference 9-13

When the discard limit is reached, processing of the data file terminates and continues
with the next data file, if one exists.

You can specify a different number of discards for each data file. Or, if you specify the
number of discards only once, then the maximum number of discards specified
applies to all files.

If you specify a maximum number of discards, but no discard file name, then
SQL*Loader creates a discard file with the default file name and file extension or file
type.

Handling Different Character Encoding Schemes
SQL*Loader supports different character encoding schemes (called character sets, or
code pages). SQL*Loader uses features of Oracle's globalization support technology to
handle the various single-byte and multibyte character encoding schemes available
today.

The following sections provide a brief introduction to some of the supported character
encoding schemes.

Multibyte (Asian) Character Sets
Multibyte character sets support Asian languages. Data can be loaded in multibyte
format, and database object names (fields, tables, and so on) can be specified with
multibyte characters. In the control file, comments and object names can also use
multibyte characters.

Unicode Character Sets
SQL*Loader supports loading data that is in a Unicode character set.

Unicode is a universal encoded character set that supports storage of information from
most languages in a single character set. Unicode provides a unique code value for
every character, regardless of the platform, program, or language. There are two
different encodings for Unicode, UTF-16 and UTF-8.

The UTF-16 Unicode encoding is a fixed-width multibyte encoding in which the
character codes 0x0000 through 0x007F have the same meaning as the single-byte
ASCII codes 0x00 through 0x7F.

The UTF-8 Unicode encoding is a variable-width multibyte encoding in which the
character codes 0x00 through 0x7F have the same meaning as ASCII. A character in
UTF-8 can be 1 byte, 2 bytes, or 3 bytes long.

See Also: Oracle Database Globalization Support Guide

Note: In this manual, you will see the terms UTF-16 and UTF16
both used. The term UTF-16 is a general reference to UTF-16
encoding for Unicode. The term UTF16 (no hyphen) is the specific
name of the character set and is what you should specify for the
CHARACTERSET parameter when you want to use UTF-16 encoding.
This also applies to UTF-8 and UTF8.

Handling Different Character Encoding Schemes

9-14 Oracle Database Utilities

Database Character Sets
The Oracle database uses the database character set for data stored in SQL CHAR
datatypes (CHAR, VARCHAR2, CLOB, and LONG), for identifiers such as table names, and
for SQL statements and PL/SQL source code. Only single-byte character sets and
varying-width character sets that include either ASCII or EBCDIC characters are
supported as database character sets. Multibyte fixed-width character sets (for
example, AL16UTF16) are not supported as the database character set.

An alternative character set can be used in the database for data stored in SQL NCHAR
datatypes (NCHAR, NVARCHAR2, and NCLOB). This alternative character set is called the
database national character set. Only Unicode character sets are supported as the
database national character set.

Data File Character Sets
By default, the data file is in the character set defined by the NLS_LANG parameter. The
data file character sets supported with NLS_LANG are the same as those supported as
database character sets. SQL*Loader supports all Oracle-supported character sets in
the data file (even those not supported as database character sets).

For example, SQL*Loader supports multibyte fixed-width character sets (such as
AL16UTF16 and JA16EUCFIXED) in the data file. SQL*Loader also supports UTF-16
encoding with little-endian byte ordering. However, the Oracle database supports only
UTF-16 encoding with big-endian byte ordering (AL16UTF16) and only as a database
national character set, not as a database character set.

The character set of the data file can be set up by using the NLS_LANG parameter or by
specifying a SQL*Loader CHARACTERSET parameter.

Input Character Conversion
The default character set for all data files, if the CHARACTERSET parameter is not
specified, is the session character set defined by the NLS_LANG parameter. The character
set used in input data files can be specified with the CHARACTERSET parameter.

SQL*Loader can automatically convert data from the data file character set to the
database character set or the database national character set, when they differ.

When data character set conversion is required, the target character set should be a
superset of the source data file character set. Otherwise, characters that have no
equivalent in the target character set are converted to replacement characters, often a
default character such as a question mark (?). This causes loss of data.

The sizes of the database character types CHAR and VARCHAR2 can be specified in bytes
(byte-length semantics) or in characters (character-length semantics). If they are
specified in bytes, and data character set conversion is required, then the converted
values may take more bytes than the source values if the target character set uses more
bytes than the source character set for any character that is converted. This will result

See Also:

■ Case study 11, Loading Data in the Unicode Character Set (see
"SQL*Loader Case Studies" on page 7-13 for information on
how to access case studies)

■ Oracle Database Globalization Support Guide for more information
about Unicode encoding

Handling Different Character Encoding Schemes

SQL*Loader Control File Reference 9-15

in the following error message being reported if the larger target value exceeds the size
of the database column:

ORA-01401: inserted value too large for column

You can avoid this problem by specifying the database column size in characters and
also by using character sizes in the control file to describe the data. Another way to
avoid this problem is to ensure that the maximum column size is large enough, in
bytes, to hold the converted value.

Considerations When Loading Data into VARRAYs or Primary-Key-Based REFs
If you use SQL*Loader conventional path or the Oracle Call Interface (OCI) to load
data into VARRAYs or into primary-key-based REFs, and the data being loaded is in a
different character set than the database character set, then problems such as the
following might occur:

■ Rows might be rejected because a field is too large for the database column, but in
reality the field is not too large.

■ A load might be abnormally terminated without any rows being loaded, when
only the field that really was too large should have been rejected.

■ Rows might be reported as loaded correctly, but the primary-key-based REF
columns are returned as blank when they are selected with SQL*Plus.

To avoid these problems, set the client character set (using the NLS_LANG environment
variable) to the database character set before you load the data.

CHARACTERSET Parameter
Specifying the CHARACTERSET parameter tells SQL*Loader the character set of the input
data file. The default character set for all data files, if the CHARACTERSET parameter is
not specified, is the session character set defined by the NLS_LANG parameter. Only
character data (fields in the SQL*Loader datatypes CHAR, VARCHAR, VARCHARC, numeric
EXTERNAL, and the datetime and interval datatypes) is affected by the character set of
the data file.

The CHARACTERSET syntax is as follows:

CHARACTERSET char_set_name

The char_set_name variable specifies the character set name. Normally, the specified
name must be the name of an Oracle-supported character set.

For UTF-16 Unicode encoding, use the name UTF16 rather than AL16UTF16.
AL16UTF16, which is the supported Oracle character set name for UTF-16 encoded
data, is only for UTF-16 data that is in big-endian byte order. However, because you
are allowed to set up data using the byte order of the system where you create the data
file, the data in the data file can be either big-endian or little-endian. Therefore, a
different character set name (UTF16) is used. The character set name AL16UTF16 is
also supported. But if you specify AL16UTF16 for a data file that has little-endian byte

See Also:

■ Oracle Database Concepts for more information about
character-length semantics in the database

■ "Character-Length Semantics" on page 9-17

■ Oracle Database Globalization Support Guide

Handling Different Character Encoding Schemes

9-16 Oracle Database Utilities

order, then SQL*Loader issues a warning message and processes the data file as
big-endian.

The CHARACTERSET parameter can be specified for primary data files and also for
LOBFILEs and SDFs. All primary data files are assumed to be in the same character
set. A CHARACTERSET parameter specified before the INFILE parameter applies to the
entire list of primary data files. If the CHARACTERSET parameter is specified for primary
data files, then the specified value will also be used as the default for LOBFILEs and
SDFs. This default setting can be overridden by specifying the CHARACTERSET
parameter with the LOBFILE or SDF specification.

The character set specified with the CHARACTERSET parameter does not apply to data in
the control file (specified with INFILE). To load data in a character set other than the
one specified for your session by the NLS_LANG parameter, you must place the data in a
separate data file.

Control File Character Set
The SQL*Loader control file itself is assumed to be in the character set specified for
your session by the NLS_LANG parameter. If the control file character set is different
from the data file character set, then keep the following issue in mind. Delimiters and
comparison clause values specified in the SQL*Loader control file as character strings
are converted from the control file character set to the data file character set before any
comparisons are made. To ensure that the specifications are correct, you may prefer to
specify hexadecimal strings, rather than character string values.

If hexadecimal strings are used with a data file in the UTF-16 Unicode encoding, then
the byte order is different on a big-endian versus a little-endian system. For example,
"," (comma) in UTF-16 on a big-endian system is X'002c'. On a little-endian system it is
X'2c00'. SQL*Loader requires that you always specify hexadecimal strings in
big-endian format. If necessary, SQL*Loader swaps the bytes before making
comparisons. This allows the same syntax to be used in the control file on both a
big-endian and a little-endian system.

Record terminators for data files that are in stream format in the UTF-16 Unicode
encoding default to "\n" in UTF-16 (that is, 0x000A on a big-endian system and
0x0A00 on a little-endian system). You can override these default settings by using the
"STR 'char_str'" or the "STR x'hex_str'" specification on the INFILE line. For
example, you could use either of the following to specify that 'ab' is to be used as the
record terminator, instead of '\n'.

INFILE myfile.dat "STR 'ab'"

INFILE myfile.dat "STR x'00410042'"

Any data included after the BEGINDATA statement is also assumed to be in the character
set specified for your session by the NLS_LANG parameter.

See Also:

■ "Byte Ordering" on page 10-31

■ Oracle Database Globalization Support Guide for more information
about the names of the supported character sets

■ "Control File Character Set" on page 9-16

■ Case study 11, Loading Data in the Unicode Character Set, for
an example of loading a data file that contains little-endian
UTF-16 encoded data. (See "SQL*Loader Case Studies" on
page 7-13 for information on how to access case studies.)

Handling Different Character Encoding Schemes

SQL*Loader Control File Reference 9-17

For the SQL*Loader datatypes (CHAR, VARCHAR, VARCHARC, DATE, and EXTERNAL
numerics), SQL*Loader supports lengths of character fields that are specified in either
bytes (byte-length semantics) or characters (character-length semantics). For example,
the specification CHAR(10) in the control file can mean 10 bytes or 10 characters. These
are equivalent if the data file uses a single-byte character set. However, they are often
different if the data file uses a multibyte character set.

To avoid insertion errors caused by expansion of character strings during character set
conversion, use character-length semantics in both the data file and the target database
columns.

Character-Length Semantics
Byte-length semantics are the default for all data files except those that use the UTF16
character set (which uses character-length semantics by default). To override the
default you can specify CHAR or CHARACTER, as shown in the following syntax:

The LENGTH parameter is placed after the CHARACTERSET parameter in the SQL*Loader
control file. The LENGTH parameter applies to the syntax specification for primary data
files and also to LOBFILEs and secondary data files (SDFs). A LENGTH specification
before the INFILE parameters applies to the entire list of primary data files. The LENGTH
specification specified for the primary data file is used as the default for LOBFILEs and
SDFs. You can override that default by specifying LENGTH with the LOBFILE or SDF
specification. Unlike the CHARACTERSET parameter, the LENGTH parameter can also
apply to data contained within the control file itself (that is, INFILE * syntax).

You can specify CHARACTER instead of CHAR for the LENGTH parameter.

If character-length semantics are being used for a SQL*Loader data file, then the
following SQL*Loader datatypes will use character-length semantics:

■ CHAR

■ VARCHAR

■ VARCHARC

■ DATE

■ EXTERNAL numerics (INTEGER, FLOAT, DECIMAL, and ZONED)

For the VARCHAR datatype, the length subfield is still a binary SMALLINT length subfield,
but its value indicates the length of the character string in characters.

The following datatypes use byte-length semantics even if character-length semantics
are being used for the data file, because the data is binary, or is in a special
binary-encoded form in the case of ZONED and DECIMAL:

■ INTEGER

■ SMALLINT

■ FLOAT

■ DOUBLE

■ BYTEINT

LENGTH
SEMANTICS

BYTE

CHAR

CHARACTER

Interrupted Loads

9-18 Oracle Database Utilities

■ ZONED

■ DECIMAL

■ RAW

■ VARRAW

■ VARRAWC

■ GRAPHIC

■ GRAPHIC EXTERNAL

■ VARGRAPHIC

The start and end arguments to the POSITION parameter are interpreted in bytes, even
if character-length semantics are in use in a data file. This is necessary to handle data
files that have a mix of data of different datatypes, some of which use character-length
semantics, and some of which use byte-length semantics. It is also needed to handle
position with the VARCHAR datatype, which has a SMALLINT length field and then the
character data. The SMALLINT length field takes up a certain number of bytes
depending on the system (usually 2 bytes), but its value indicates the length of the
character string in characters.

Character-length semantics in the data file can be used independent of whether
character-length semantics are used for the database columns. Therefore, the data file
and the database columns can use either the same or different length semantics.

Shift-sensitive Character Data
In general, loading shift-sensitive character data can be much slower than loading
simple ASCII or EBCDIC data. The fastest way to load shift-sensitive character data is
to use fixed-position fields without delimiters. To improve performance, remember the
following points:

■ The field data must have an equal number of shift-out/shift-in bytes.

■ The field must start and end in single-byte mode.

■ It is acceptable for the first byte to be shift-out and the last byte to be shift-in.

■ The first and last characters cannot be multibyte.

■ If blanks are not preserved and multibyte-blank-checking is required, then a
slower path is used. This can happen when the shift-in byte is the last byte of a
field after single-byte blank stripping is performed.

Interrupted Loads
Loads are interrupted and discontinued for several reasons. A primary reason is space
errors, in which SQL*Loader runs out of space for data rows or index entries. A load
might also be discontinued because the maximum number of errors was exceeded, an
unexpected error was returned to SQL*Loader from the server, a record was too long
in the data file, or a Ctrl+C was executed.

The behavior of SQL*Loader when a load is discontinued varies depending on
whether it is a conventional path load or a direct path load, and on the reason the load
was interrupted. Additionally, when an interrupted load is continued, the use and
value of the SKIP parameter can vary depending on the particular case. The following
sections explain the possible scenarios.

Interrupted Loads

SQL*Loader Control File Reference 9-19

Discontinued Conventional Path Loads
In a conventional path load, data is committed after all data in the bind array is loaded
into all tables. If the load is discontinued, then only the rows that were processed up to
the time of the last commit operation are loaded. There is no partial commit of data.

Discontinued Direct Path Loads
In a direct path load, the behavior of a discontinued load varies depending on the
reason the load was discontinued:

■ Load Discontinued Because of Space Errors

■ Load Discontinued Because Maximum Number of Errors Exceeded

■ Load Discontinued Because of Fatal Errors

■ Load Discontinued Because a Ctrl+C Was Issued

Load Discontinued Because of Space Errors
If a load is discontinued because of space errors, then the behavior of SQL*Loader
depends on whether you are loading data into multiple subpartitions.

■ Space errors when loading data into multiple subpartitions (that is, loading into
a partitioned table, a composite partitioned table, or one partition of a
composite partitioned table):

If space errors occur when loading into multiple subpartitions, then the load is
discontinued and no data is saved unless ROWS has been specified (in which case,
all data that was previously committed will be saved). The reason for this behavior
is that it is possible rows might be loaded out of order. This is because each row is
assigned (not necessarily in order) to a partition and each partition is loaded
separately. If the load discontinues before all rows assigned to partitions are
loaded, then the row for record "n" may have been loaded, but not the row for
record "n-1". Therefore, the load cannot be continued by simply using SKIP=N .

■ Space errors when loading data into an unpartitioned table, one partition of a
partitioned table, or one subpartition of a composite partitioned table:

If there is one INTO TABLE statement in the control file, then SQL*Loader commits
as many rows as were loaded before the error occurred.

If there are multiple INTO TABLE statements in the control file, then SQL*Loader
loads data already read from the data file into other tables and then commits the
data.

In either case, this behavior is independent of whether the ROWS parameter was
specified. When you continue the load, you can use the SKIP parameter to skip
rows that have already been loaded. In the case of multiple INTO TABLE
statements, a different number of rows could have been loaded into each table, so
to continue the load you would need to specify a different value for the SKIP
parameter for every table. SQL*Loader only reports the value for the SKIP
parameter if it is the same for all tables.

Load Discontinued Because Maximum Number of Errors Exceeded
If the maximum number of errors is exceeded, then SQL*Loader stops loading records
into any table and the work done to that point is committed. This means that when

See Also: "SKIP (records to skip)" on page 8-11

Interrupted Loads

9-20 Oracle Database Utilities

you continue the load, the value you specify for the SKIP parameter may be different
for different tables. SQL*Loader reports the value for the SKIP parameter only if it is
the same for all tables.

Load Discontinued Because of Fatal Errors
If a fatal error is encountered, then the load is stopped and no data is saved unless
ROWS was specified at the beginning of the load. In that case, all data that was
previously committed is saved. SQL*Loader reports the value for the SKIP parameter
only if it is the same for all tables.

Load Discontinued Because a Ctrl+C Was Issued
If SQL*Loader is in the middle of saving data when a Ctrl+C is issued, then it
continues to do the save and then stops the load after the save completes. Otherwise,
SQL*Loader stops the load without committing any work that was not committed
already. This means that the value of the SKIP parameter will be the same for all tables.

Status of Tables and Indexes After an Interrupted Load
When a load is discontinued, any data already loaded remains in the tables, and the
tables are left in a valid state. If the conventional path is used, then all indexes are left
in a valid state.

If the direct path load method is used, then any indexes on the table are left in an
unusable state. You can either rebuild or re-create the indexes before continuing, or
after the load is restarted and completes.

Other indexes are valid if no other errors occurred. See "Indexes Left in an Unusable
State" on page 12-9 for other reasons why an index might be left in an unusable state.

Using the Log File to Determine Load Status
The SQL*Loader log file tells you the state of the tables and indexes and the number of
logical records already read from the input data file. Use this information to resume
the load where it left off.

Continuing Single-Table Loads
When SQL*Loader must discontinue a direct path or conventional path load before it
is finished, some rows have probably already been committed or marked with
savepoints. To continue the discontinued load, use the SKIP parameter to specify the
number of logical records that have already been processed by the previous load. At
the time the load is discontinued, the value for SKIP is written to the log file in a
message similar to the following:

Specify SKIP=1001 when continuing the load.

This message specifying the value of the SKIP parameter is preceded by a message
indicating why the load was discontinued.

Note that for multiple-table loads, the value of the SKIP parameter is displayed only if
it is the same for all tables.

See Also: "SKIP (records to skip)" on page 8-11

Assembling Logical Records from Physical Records

SQL*Loader Control File Reference 9-21

Assembling Logical Records from Physical Records
As of Oracle9i, user-defined record sizes larger than 64 KB are supported (see
"READSIZE (read buffer size)" on page 8-8). This reduces the need to break up logical
records into multiple physical records. However, there may still be situations in which
you may want to do so. At some point, when you want to combine those multiple
physical records back into one logical record, you can use one of the following clauses,
depending on your data:

■ CONCATENATE

■ CONTINUEIF

Using CONCATENATE to Assemble Logical Records
Use CONCATENATE when you want SQL*Loader to always combine the same number of
physical records to form one logical record. In the following example, integer
specifies the number of physical records to combine.

CONCATENATE integer

The integer value specified for CONCATENATE determines the number of physical
record structures that SQL*Loader allocates for each row in the column array. In direct
path loads, the default value for COLUMNARRAYROWS is large, so if you also specify a large
value for CONCATENATE, then excessive memory allocation can occur. If this happens,
you can improve performance by reducing the value of the COLUMNARRAYROWS
parameter to lower the number of rows in a column array.

Using CONTINUEIF to Assemble Logical Records
Use CONTINUEIF if the number of physical records to be combined varies. The
CONTINUEIF clause is followed by a condition that is evaluated for each physical
record, as it is read. For example, two records might be combined if a pound sign (#)
were in byte position 80 of the first record. If any other character were there, then the
second record would not be added to the first.

The full syntax for CONTINUEIF adds even more flexibility:

Table 9–2 describes the parameters for the CONTINUEIF clause.

See Also:

■ "COLUMNARRAYROWS" on page 8-3

■ "Specifying the Number of Column Array Rows and Size of
Stream Buffers" on page 12-15

CONTINUEIF

THIS

NEXT PRESERVE (
pos_spec

LAST
PRESERVE (operator

str

X’hex_str’

)

Assembling Logical Records from Physical Records

9-22 Oracle Database Utilities

The positions in the CONTINUEIF clause refer to positions in each physical record. This
is the only time you refer to positions in physical records. All other references are to
logical records.

For CONTINUEIF THIS and CONTINUEIF LAST, if the PRESERVE parameter is not specified,
then the continuation field is removed from all physical records when the logical
record is assembled. That is, data values are allowed to span the records with no extra
characters (continuation characters) in the middle. For example, if CONTINUEIF
THIS(3:5)='***' is specified, then positions 3 through 5 are removed from all records.

Table 9–2 Parameters for the CONTINUEIF Clause

Parameter Description

THIS If the condition is true in the current record, then the next
physical record is read and concatenated to the current
physical record, continuing until the condition is false. If the
condition is false, then the current physical record becomes the
last physical record of the current logical record. THIS is the
default.

NEXT If the condition is true in the next record, then the current
physical record is concatenated to the current logical record,
continuing until the condition is false.

operator The supported operators are equal (=) and not equal (!= or <>).

For the equal operator, the field and comparison string must
match exactly for the condition to be true. For the not equal
operator, they can differ in any character.

LAST This test is similar to THIS, but the test is always against the
last nonblank character. If the last nonblank character in the
current physical record meets the test, then the next physical
record is read and concatenated to the current physical record,
continuing until the condition is false. If the condition is false
in the current record, then the current physical record is the last
physical record of the current logical record.

LAST allows only a single character-continuation field (as
opposed to THIS and NEXT, which allow multiple
character-continuation fields).

pos_spec Specifies the starting and ending column numbers in the
physical record.

Column numbers start with 1. Either a hyphen or a colon is
acceptable (start-end or start:end).

If you omit end, then the length of the continuation field is the
length of the byte string or character string. If you use end, and
the length of the resulting continuation field is not the same as
that of the byte string or the character string, then the shorter
one is padded. Character strings are padded with blanks,
hexadecimal strings with zeros.

str A string of characters to be compared to the continuation field
defined by start and end, according to the operator. The string
must be enclosed in double or single quotation marks. The
comparison is made character by character, blank padding on
the right if necessary.

X'hex-str' A string of bytes in hexadecimal format used in the same way
as str.X'1FB033' would represent the three bytes with values
1F, B0, and 33 (hexadecimal).

PRESERVE Includes 'char_string' or X'hex_string' in the logical record.
The default is to exclude them.

Assembling Logical Records from Physical Records

SQL*Loader Control File Reference 9-23

This means that the continuation characters are removed if they are in positions 3
through 5 of the record. It also means that the characters in positions 3 through 5 are
removed from the record even if the continuation characters are not in positions 3
through 5.

For CONTINUEIF THIS and CONTINUEIF LAST, if the PRESERVE parameter is used, then the
continuation field is kept in all physical records when the logical record is assembled.

CONTINUEIF LAST differs from CONTINUEIF THIS and CONTINUEIF NEXT. For CONTINUEIF
LAST, where the positions of the continuation field vary from record to record, the
continuation field is never removed, even if PRESERVE is not specified.

Example 9–3 through Example 9–6 show the use of CONTINUEIF THIS and CONTINUEIF
NEXT, with and without the PRESERVE parameter.

Example 9–3 CONTINUEIF THIS Without the PRESERVE Parameter

Assume that you have physical records 14 bytes long and that a period represents a
space:

 %%aaaaaaaa....
 %%bbbbbbbb....
 ..cccccccc....
 %%dddddddddd..
 %%eeeeeeeeee..
 ..ffffffffff..

In this example, the CONTINUEIF THIS clause does not use the PRESERVE parameter:

CONTINUEIF THIS (1:2) = '%%'

Therefore, the logical records are assembled as follows:

 aaaaaaaa....bbbbbbbb....cccccccc....
 dddddddddd..eeeeeeeeee..ffffffffff..

Note that columns 1 and 2 (for example, %% in physical record 1) are removed from
the physical records when the logical records are assembled.

Example 9–4 CONTINUEIF THIS with the PRESERVE Parameter

Assume that you have the same physical records as in Example 9–3.

In this example, the CONTINUEIF THIS clause uses the PRESERVE parameter:

CONTINUEIF THIS PRESERVE (1:2) = '%%'

Therefore, the logical records are assembled as follows:

 %%aaaaaaaa....%%bbbbbbbb......cccccccc....
 %%dddddddddd..%%eeeeeeeeee....ffffffffff..

Note that columns 1 and 2 are not removed from the physical records when the logical
records are assembled.

Example 9–5 CONTINUEIF NEXT Without the PRESERVE Parameter

Assume that you have physical records 14 bytes long and that a period represents a
space:

 ..aaaaaaaa....
 %%bbbbbbbb....
 %%cccccccc....

Loading Logical Records into Tables

9-24 Oracle Database Utilities

 ..dddddddddd..
 %%eeeeeeeeee..
 %%ffffffffff..

In this example, the CONTINUEIF NEXT clause does not use the PRESERVE parameter:

CONTINUEIF NEXT (1:2) = '%%'

Therefore, the logical records are assembled as follows (the same results as for
Example 9–3).

 aaaaaaaa....bbbbbbbb....cccccccc....
 dddddddddd..eeeeeeeeee..ffffffffff..

Example 9–6 CONTINUEIF NEXT with the PRESERVE Parameter

Assume that you have the same physical records as in Example 9–5.

In this example, the CONTINUEIF NEXT clause uses the PRESERVE parameter:

CONTINUEIF NEXT PRESERVE (1:2) = '%%'

Therefore, the logical records are assembled as follows:

 ..aaaaaaaa....%%bbbbbbbb....%%cccccccc....
 ..dddddddddd..%%eeeeeeeeee..%%ffffffffff..

Loading Logical Records into Tables
This section describes the way in which you specify:

■ Which tables you want to load

■ Which records you want to load into them

■ Default data delimiters for those records

■ How to handle short records with missing data

Specifying Table Names
The INTO TABLE clause of the LOAD DATA statement enables you to identify tables, fields,
and datatypes. It defines the relationship between records in the data file and tables in
the database. The specification of fields and datatypes is described in later sections.

INTO TABLE Clause
Among its many functions, the INTO TABLE clause enables you to specify the table into
which you load data. To load multiple tables, you include one INTO TABLE clause for
each table you want to load.

To begin an INTO TABLE clause, use the keywords INTO TABLE, followed by the name of
the Oracle table that is to receive the data.

The syntax is as follows:

See Also: Case study 4, Loading Combined Physical Records, for
an example of the CONTINUEIF clause. (See "SQL*Loader Case
Studies" on page 7-13 for information on how to access case
studies.)

Loading Logical Records into Tables

SQL*Loader Control File Reference 9-25

The table must already exist. The table name should be enclosed in double quotation
marks if it is the same as any SQL or SQL*Loader reserved keyword, if it contains any
special characters, or if it is case sensitive.

INTO TABLE scott."CONSTANT"
INTO TABLE scott."Constant"
INTO TABLE scott."-CONSTANT"

The user must have INSERT privileges for the table being loaded. If the table is not in
the user's schema, then the user must either use a synonym to reference the table or
include the schema name as part of the table name (for example, scott.emp refers to
the table emp in the scott schema).

Table-Specific Loading Method
When you are loading a table, you can use the INTO TABLE clause to specify a
table-specific loading method (INSERT, APPEND, REPLACE, or TRUNCATE) that applies only
to that table. That method overrides the global table-loading method. The global
table-loading method is INSERT, by default, unless a different method was specified
before any INTO TABLE clauses. The following sections discuss using these options to
load data into empty and nonempty tables.

Loading Data into Empty Tables
If the tables you are loading into are empty, then use the INSERT option.

INSERT This is SQL*Loader's default method. It requires the table to be empty before
loading. SQL*Loader terminates with an error if the table contains rows. Case study 1,
Loading Variable-Length Data, provides an example. (See "SQL*Loader Case Studies"
on page 7-13 for information on how to access case studies.)

Loading Data into Nonempty Tables
If the tables you are loading into already contain data, then you have three options:

■ APPEND

■ REPLACE

■ TRUNCATE

Note: SQL*Loader considers the default schema to be whatever
schema is current after your connect to the database finishes
executing. This means that the default schema will not necessarily
be the one you specified in the connect string, if there are logon
triggers present that get executed during connection to a database.

If you have a logon trigger that changes your current schema to a
different one when you connect to a certain database, then
SQL*Loader uses that new schema as the default.

INTO TABLE name

(
PARTITION name

SUBPARTITION name
)

INSERT

REPLACE

TRUNCATE

APPEND

Loading Logical Records into Tables

9-26 Oracle Database Utilities

APPEND If data already exists in the table, then SQL*Loader appends the new rows to
it. If data does not already exist, then the new rows are simply loaded. You must have
SELECT privilege to use the APPEND option. Case study 3, Loading a Delimited
Free-Format File, provides an example. (See "SQL*Loader Case Studies" on page 7-13
for information on how to access case studies.)

REPLACE The REPLACE option executes a SQL DELETE FROM TABLE statement. All rows
in the table are deleted and the new data is loaded. The table must be in your schema,
or you must have DELETE privilege on the table. Case study 4, Loading Combined
Physical Records, provides an example. (See "SQL*Loader Case Studies" on page 7-13
for information on how to access case studies.)

The row deletes cause any delete triggers defined on the table to fire. If DELETE
CASCADE has been specified for the table, then the cascaded deletes are carried out. For
more information about cascaded deletes, see the information about data integrity in
Oracle Database Concepts.

Updating Existing Rows The REPLACE method is a table replacement, not a replacement of
individual rows. SQL*Loader does not update existing records, even if they have null
columns. To update existing rows, use the following procedure:

1. Load your data into a work table.

2. Use the SQL UPDATE statement with correlated subqueries.

3. Drop the work table.

TRUNCATE The TRUNCATE option executes a SQL TRUNCATE TABLE table_name REUSE
STORAGE statement, which means that the table's extents will be reused. The TRUNCATE
option quickly and efficiently deletes all rows from a table or cluster, to achieve the
best possible performance. For the TRUNCATE statement to operate, the table's
referential integrity constraints must first be disabled. If they have not been disabled,
then SQL*Loader returns an error.

Once the integrity constraints have been disabled, DELETE CASCADE is no longer
defined for the table. If the DELETE CASCADE functionality is needed, then the contents
of the table must be manually deleted before the load begins.

The table must be in your schema, or you must have the DROP ANY TABLE privilege.

Table-Specific OPTIONS Parameter
The OPTIONS parameter can be specified for individual tables in a parallel load. (It is
valid only for a parallel load.)

The syntax for the OPTIONS parameter is as follows:

Caution: When REPLACE or TRUNCATE is specified, the entire table is
replaced, not just individual rows. After the rows are successfully
deleted, a COMMIT statement is issued. You cannot recover the data
that was in the table before the load, unless it was saved with
Export or a comparable utility.

See Also: Oracle Database SQL Language Reference for more
information about the SQL statements discussed in this section

Loading Logical Records into Tables

SQL*Loader Control File Reference 9-27

Loading Records Based on a Condition
You can choose to load or discard a logical record by using the WHEN clause to test a
condition in the record.

The WHEN clause appears after the table name and is followed by one or more field
conditions. The syntax for field_condition is as follows:

For example, the following clause indicates that any record with the value "q" in the
fifth column position should be loaded:

WHEN (5) = 'q'

A WHEN clause can contain several comparisons, provided each is preceded by AND.
Parentheses are optional, but should be used for clarity with multiple comparisons
joined by AND. For example:

WHEN (deptno = '10') AND (job = 'SALES')

Using the WHEN Clause with LOBFILEs and SDFs
If a record with a LOBFILE or SDF is discarded, then SQL*Loader skips the
corresponding data in that LOBFILE or SDF.

Specifying Default Data Delimiters
If all data fields are terminated similarly in the data file, then you can use the FIELDS
clause to indicate the default delimiters. The syntax for the fields_spec,
termination_spec, and enclosure_spec clauses is as follows:

See Also: "Parameters for Parallel Direct Path Loads" on
page 12-24

See Also:

■ "Using the WHEN, NULLIF, and DEFAULTIF Clauses" on
page 10-27 for information about how SQL*Loader evaluates
WHEN clauses, as opposed to NULLIF and DEFAULTIF clauses

■ Case study 5, Loading Data into Multiple Tables, for an
example of using the WHEN clause (see "SQL*Loader Case
Studies" on page 7-13 for information on how to access case
studies)

OPTIONS (FILE=database_filename)

(full_fieldname

pos_spec
operator

’char_string’

X’hex_string’

BLANKS

)

AND

Loading Logical Records into Tables

9-28 Oracle Database Utilities

fields_spec

termination_spec

enclosure_spec

You can override the delimiter for any given column by specifying it after the column
name. Case study 3, Loading a Delimited Free-Format File, provides an example. (See
"SQL*Loader Case Studies" on page 7-13 for information on how to access case
studies.)

Handling Short Records with Missing Data
When the control file definition specifies more fields for a record than are present in
the record, SQL*Loader must determine whether the remaining (specified) columns
should be considered null or whether an error should be generated.

If the control file definition explicitly states that a field's starting position is beyond the
end of the logical record, then SQL*Loader always defines the field as null. If a field is
defined with a relative position (such as dname and loc in the following example), and
the record ends before the field is found, then SQL*Loader could either treat the field
as null or generate an error. SQL*Loader uses the presence or absence of the TRAILING

Note: Terminator strings can contain one or more characters. Also,
TERMINATED BY EOF applies only to loading LOBs from a LOBFILE.

Note: Enclosure strings can contain one or more characters.

See Also:

■ "Specifying Delimiters" on page 10-19 for a complete
description of the syntax

■ "Loading LOB Data from LOBFILEs" on page 11-17

FIELDS

enclosure_spec

termination_spec

OPTIONALLY
enclosure_spec

TERMINATED
BY

WHITESPACE

X’hexstr’

’string’

EOF

ENCLOSED
BY

’string’

X’hexstr’
AND

’string’

X’hexstr’

Index Options

SQL*Loader Control File Reference 9-29

NULLCOLS clause (shown in the following syntax diagram) to determine the course of
action.

TRAILING NULLCOLS Clause
The TRAILING NULLCOLS clause tells SQL*Loader to treat any relatively positioned
columns that are not present in the record as null columns.

For example, consider the following data:

10 Accounting

Assume that the preceding data is read with the following control file and the record
ends after dname:

INTO TABLE dept
 TRAILING NULLCOLS
(deptno CHAR TERMINATED BY " ",
 dname CHAR TERMINATED BY WHITESPACE,
 loc CHAR TERMINATED BY WHITESPACE
)

In this case, the remaining loc field is set to null. Without the TRAILING NULLCOLS
clause, an error would be generated due to missing data.

Index Options
This section describes the following SQL*Loader options that control how index
entries are created:

■ SORTED INDEXES

■ SINGLEROW

SORTED INDEXES Clause
The SORTED INDEXES clause applies to direct path loads. It tells SQL*Loader that the
incoming data has already been sorted on the specified indexes, allowing SQL*Loader
to optimize performance.

See Also: Case study 7, Extracting Data from a Formatted Report,
for an example of using TRAILING NULLCOLS (see "SQL*Loader Case
Studies" on page 7-13 for information on how to access case
studies)

See Also: "SORTED INDEXES Clause" on page 12-13

OID_spec

SID_spec FIELDS
delim_spec

TRAILING
NULLCOLS

TREAT AS typename

Benefits of Using Multiple INTO TABLE Clauses

9-30 Oracle Database Utilities

SINGLEROW Option
The SINGLEROW option is intended for use during a direct path load with APPEND on
systems with limited memory, or when loading a small number of records into a large
table. This option inserts each index entry directly into the index, one record at a time.

By default, SQL*Loader does not use SINGLEROW to append records to a table. Instead,
index entries are put into a separate, temporary storage area and merged with the
original index at the end of the load. This method achieves better performance and
produces an optimal index, but it requires extra storage space. During the merge
operation, the original index, the new index, and the space for new entries all
simultaneously occupy storage space.

With the SINGLEROW option, storage space is not required for new index entries or for a
new index. The resulting index may not be as optimal as a freshly sorted one, but it
takes less space to produce. It also takes more time because additional UNDO
information is generated for each index insert. This option is suggested for use when
either of the following situations exists:

■ Available storage is limited.

■ The number of records to be loaded is small compared to the size of the table (a
ratio of 1:20 or less is recommended).

Benefits of Using Multiple INTO TABLE Clauses
Multiple INTO TABLE clauses enable you to:

■ Load data into different tables

■ Extract multiple logical records from a single input record

■ Distinguish different input record formats

■ Distinguish different input row object subtypes

In the first case, it is common for the INTO TABLE clauses to refer to the same table. This
section illustrates the different ways to use multiple INTO TABLE clauses and shows
you how to use the POSITION parameter.

Extracting Multiple Logical Records
Some data storage and transfer media have fixed-length physical records. When the
data records are short, more than one can be stored in a single, physical record to use
the storage space efficiently.

In this example, SQL*Loader treats a single physical record in the input file as two
logical records and uses two INTO TABLE clauses to load the data into the emp table. For
example, assume the data is as follows:

1119 Smith 1120 Yvonne
1121 Albert 1130 Thomas

The following control file extracts the logical records:

Note: A key point when using multiple INTO TABLE clauses is that
field scanning continues from where it left off when a new INTO TABLE
clause is processed. The remainder of this section details important
ways to make use of that behavior. It also describes alternative
ways of using fixed field locations or the POSITION parameter.

Benefits of Using Multiple INTO TABLE Clauses

SQL*Loader Control File Reference 9-31

INTO TABLE emp
 (empno POSITION(1:4) INTEGER EXTERNAL,
 ename POSITION(6:15) CHAR)
INTO TABLE emp
 (empno POSITION(17:20) INTEGER EXTERNAL,
 ename POSITION(21:30) CHAR)

Relative Positioning Based on Delimiters
The same record could be loaded with a different specification. The following control
file uses relative positioning instead of fixed positioning. It specifies that each field is
delimited by a single blank (" ") or with an undetermined number of blanks and tabs
(WHITESPACE):

INTO TABLE emp
 (empno INTEGER EXTERNAL TERMINATED BY " ",
 ename CHAR TERMINATED BY WHITESPACE)
INTO TABLE emp
 (empno INTEGER EXTERNAL TERMINATED BY " ",
 ename CHAR) TERMINATED BY WHITESPACE)

The important point in this example is that the second empno field is found
immediately after the first ename, although it is in a separate INTO TABLE clause. Field
scanning does not start over from the beginning of the record for a new INTO TABLE
clause. Instead, scanning continues where it left off.

To force record scanning to start in a specific location, you use the POSITION parameter.
That mechanism is described in "Distinguishing Different Input Record Formats" on
page 9-31 and in "Loading Data into Multiple Tables" on page 9-33.

Distinguishing Different Input Record Formats
A single data file might contain records in a variety of formats. Consider the following
data, in which emp and dept records are intermixed:

1 50 Manufacturing — DEPT record
2 1119 Smith 50 — EMP record
2 1120 Snyder 50
1 60 Shipping
2 1121 Stevens 60

A record ID field distinguishes between the two formats. Department records have a 1
in the first column, while employee records have a 2. The following control file uses
exact positioning to load this data:

INTO TABLE dept
 WHEN recid = 1
 (recid FILLER POSITION(1:1) INTEGER EXTERNAL,
 deptno POSITION(3:4) INTEGER EXTERNAL,
 dname POSITION(8:21) CHAR)
INTO TABLE emp
 WHEN recid <> 1
 (recid FILLER POSITION(1:1) INTEGER EXTERNAL,
 empno POSITION(3:6) INTEGER EXTERNAL,
 ename POSITION(8:17) CHAR,
 deptno POSITION(19:20) INTEGER EXTERNAL)

Benefits of Using Multiple INTO TABLE Clauses

9-32 Oracle Database Utilities

Relative Positioning Based on the POSITION Parameter
The records in the previous example could also be loaded as delimited data. In this
case, however, it is necessary to use the POSITION parameter. The following control file
could be used:

INTO TABLE dept
 WHEN recid = 1
 (recid FILLER INTEGER EXTERNAL TERMINATED BY WHITESPACE,
 deptno INTEGER EXTERNAL TERMINATED BY WHITESPACE,
 dname CHAR TERMINATED BY WHITESPACE)
INTO TABLE emp
 WHEN recid <> 1
 (recid FILLER POSITION(1) INTEGER EXTERNAL TERMINATED BY ' ',
 empno INTEGER EXTERNAL TERMINATED BY ' '
 ename CHAR TERMINATED BY WHITESPACE,
 deptno INTEGER EXTERNAL TERMINATED BY ' ')

The POSITION parameter in the second INTO TABLE clause is necessary to load this data
correctly. It causes field scanning to start over at column 1 when checking for data that
matches the second format. Without it, SQL*Loader would look for the recid field
after dname.

Distinguishing Different Input Row Object Subtypes
A single data file may contain records made up of row objects inherited from the same
base row object type. For example, consider the following simple object type and
object table definitions, in which a nonfinal base object type is defined along with two
object subtypes that inherit their row objects from the base type:

CREATE TYPE person_t AS OBJECT
 (name VARCHAR2(30),
 age NUMBER(3)) not final;

CREATE TYPE employee_t UNDER person_t
 (empid NUMBER(5),
 deptno NUMBER(4),
 dept VARCHAR2(30)) not final;

CREATE TYPE student_t UNDER person_t
 (stdid NUMBER(5),
 major VARCHAR2(20)) not final;

CREATE TABLE persons OF person_t;

The following input data file contains a mixture of these row objects subtypes. A type
ID field distinguishes between the three subtypes. person_t objects have a P in the first
column, employee_t objects have an E, and student_t objects have an S.

P,James,31,
P,Thomas,22,
E,Pat,38,93645,1122,Engineering,
P,Bill,19,
P,Scott,55,
S,Judy,45,27316,English,
S,Karen,34,80356,History,
E,Karen,61,90056,1323,Manufacturing,
S,Pat,29,98625,Spanish,
S,Cody,22,99743,Math,
P,Ted,43,
E,Judy,44,87616,1544,Accounting,

Benefits of Using Multiple INTO TABLE Clauses

SQL*Loader Control File Reference 9-33

E,Bob,50,63421,1314,Shipping,
S,Bob,32,67420,Psychology,
E,Cody,33,25143,1002,Human Resources,

The following control file uses relative positioning based on the POSITION parameter to
load this data. Note the use of the TREAT AS clause with a specific object type name.
This informs SQL*Loader that all input row objects for the object table will conform to
the definition of the named object type.

INTO TABLE persons
REPLACE
WHEN typid = 'P' TREAT AS person_t
FIELDS TERMINATED BY ","
 (typid FILLER POSITION(1) CHAR,
 name CHAR,
 age CHAR)

INTO TABLE persons
REPLACE
WHEN typid = 'E' TREAT AS employee_t
FIELDS TERMINATED BY ","
 (typid FILLER POSITION(1) CHAR,
 name CHAR,
 age CHAR,
 empid CHAR,
 deptno CHAR,
 dept CHAR)

INTO TABLE persons
REPLACE
WHEN typid = 'S' TREAT AS student_t
FIELDS TERMINATED BY ","
 (typid FILLER POSITION(1) CHAR,
 name CHAR,
 age CHAR,
 stdid CHAR,
 major CHAR)

Loading Data into Multiple Tables
By using the POSITION parameter with multiple INTO TABLE clauses, data from a single
record can be loaded into multiple normalized tables. See case study 5, Loading Data
into Multiple Tables, for an example. (See "SQL*Loader Case Studies" on page 7-13 for
information about how to access case studies.).

Summary
Multiple INTO TABLE clauses allow you to extract multiple logical records from a single
input record and recognize different record formats in the same file.

Note: Multiple subtypes cannot be loaded with the same INTO
TABLE statement. Instead, you must use multiple INTO TABLE
statements and have each one load a different subtype.

See Also: "Loading Column Objects" on page 11-1 for more
information about loading object types

Bind Arrays and Conventional Path Loads

9-34 Oracle Database Utilities

For delimited data, proper use of the POSITION parameter is essential for achieving the
expected results.

When the POSITION parameter is not used, multiple INTO TABLE clauses process
different parts of the same (delimited data) input record, allowing multiple tables to be
loaded from one record. When the POSITION parameter is used, multiple INTO TABLE
clauses can process the same record in different ways, allowing multiple formats to be
recognized in one input file.

Bind Arrays and Conventional Path Loads
SQL*Loader uses the SQL array-interface option to transfer data to the database.
Multiple rows are read at one time and stored in the bind array. When SQL*Loader
sends the Oracle database an INSERT command, the entire array is inserted at one time.
After the rows in the bind array are inserted, a COMMIT statement is issued.

The determination of bind array size pertains to SQL*Loader's conventional path
option. It does not apply to the direct path load method because a direct path load
uses the direct path API, rather than Oracle's SQL interface.

Size Requirements for Bind Arrays
The bind array must be large enough to contain a single row. If the maximum row
length exceeds the size of the bind array, as specified by the BINDSIZE parameter, then
SQL*Loader generates an error. Otherwise, the bind array contains as many rows as
can fit within it, up to the limit set by the value of the ROWS parameter. (The maximum
value for ROWS in a conventional path load is 65534.)

Although the entire bind array need not be in contiguous memory, the buffer for each
field in the bind array must occupy contiguous memory. If the operating system
cannot supply enough contiguous memory to store a field, then SQL*Loader generates
an error.

Performance Implications of Bind Arrays
Large bind arrays minimize the number of calls to the Oracle database and maximize
performance. In general, you gain large improvements in performance with each
increase in the bind array size up to 100 rows. Increasing the bind array size to be
greater than 100 rows generally delivers more modest improvements in performance.
The size (in bytes) of 100 rows is typically a good value to use.

In general, any reasonably large size permits SQL*Loader to operate effectively. It is
not usually necessary to perform the detailed calculations described in this section.
Read this section when you need maximum performance or an explanation of memory
usage.

See Also: Oracle Call Interface Programmer's Guide for more
information about the concepts of direct path loading

See Also:

■ "BINDSIZE (maximum size)" on page 8-3

■ "ROWS (rows per commit)" on page 8-9

Bind Arrays and Conventional Path Loads

SQL*Loader Control File Reference 9-35

Specifying Number of Rows Versus Size of Bind Array
When you specify a bind array size using the command-line parameter BINDSIZE or
the OPTIONS clause in the control file, you impose an upper limit on the bind array. The
bind array never exceeds that maximum.

As part of its initialization, SQL*Loader determines the size in bytes required to load a
single row. If that size is too large to fit within the specified maximum, then the load
terminates with an error.

SQL*Loader then multiplies that size by the number of rows for the load, whether that
value was specified with the command-line parameter ROWS or the OPTIONS clause in
the control file.

If that size fits within the bind array maximum, then the load continues—SQL*Loader
does not try to expand the number of rows to reach the maximum bind array size. If
the number of rows and the maximum bind array size are both specified, then SQL*Loader
always uses the smaller value for the bind array.

If the maximum bind array size is too small to accommodate the initial number of
rows, then SQL*Loader uses a smaller number of rows that fits within the maximum.

Calculations to Determine Bind Array Size
The bind array's size is equivalent to the number of rows it contains times the
maximum length of each row. The maximum length of a row equals the sum of the
maximum field lengths, plus overhead, as follows:

bind array size =
 (number of rows) * (SUM(fixed field lengths)
 + SUM(maximum varying field lengths)
 + ((number of varying length fields)
 * (size of length indicator))
)

Many fields do not vary in size. These fixed-length fields are the same for each loaded
row. For these fields, the maximum length of the field is the field size, in bytes, as
described in "SQL*Loader Datatypes" on page 10-6. There is no overhead for these
fields.

The fields that can vary in size from row to row are:

■ CHAR

■ DATE

■ INTERVAL DAY TO SECOND

■ INTERVAL DAY TO YEAR

■ LONG VARRAW

■ numeric EXTERNAL

■ TIME

■ TIMESTAMP

■ TIME WITH TIME ZONE

■ TIMESTAMP WITH TIME ZONE

■ VARCHAR

■ VARCHARC

Bind Arrays and Conventional Path Loads

9-36 Oracle Database Utilities

■ VARGRAPHIC

■ VARRAW

■ VARRAWC

The maximum length of these datatypes is described in "SQL*Loader Datatypes" on
page 10-6. The maximum lengths describe the number of bytes that the fields can
occupy in the input data record. That length also describes the amount of storage that
each field occupies in the bind array, but the bind array includes additional overhead
for fields that can vary in size.

When the character datatypes (CHAR, DATE, and numeric EXTERNAL) are specified with
delimiters, any lengths specified for these fields are maximum lengths. When specified
without delimiters, the size in the record is fixed, but the size of the inserted field may
still vary, due to whitespace trimming. So internally, these datatypes are always
treated as varying-length fields—even when they are fixed-length fields.

A length indicator is included for each of these fields in the bind array. The space
reserved for the field in the bind array is large enough to hold the longest possible
value of the field. The length indicator gives the actual length of the field for each row.

Determining the Size of the Length Indicator
On most systems, the size of the length indicator is 2 bytes. On a few systems, it is 3
bytes. To determine its size, use the following control file:

OPTIONS (ROWS=1)
LOAD DATA
INFILE *
APPEND
INTO TABLE DEPT
(deptno POSITION(1:1) CHAR(1))
BEGINDATA
a

This control file loads a 1-byte CHAR using a 1-row bind array. In this example, no data
is actually loaded because a conversion error occurs when the character a is loaded
into a numeric column (deptno). The bind array size shown in the log file, minus one
(the length of the character field) is the value of the length indicator.

Calculating the Size of Field Buffers
Table 9–3 through Table 9–6 summarize the memory requirements for each datatype.
"L" is the length specified in the control file. "P" is precision. "S" is the size of the length
indicator. For more information about these values, see "SQL*Loader Datatypes" on
page 10-6.

Note: In conventional path loads, LOBFILEs are not included
when allocating the size of a bind array.

Note: A similar technique can determine bind array size without
doing any calculations. Run your control file without any data and
with ROWS=1 to determine the memory requirements for a single
row of data. Multiply by the number of rows you want in the bind
array to determine the bind array size.

Bind Arrays and Conventional Path Loads

SQL*Loader Control File Reference 9-37

Table 9–3 Fixed-Length Fields

Datatype Size in Bytes (Operating System-Dependent)

INTEGER The size of the INT datatype, in C

INTEGER(N) N bytes

SMALLINT The size of SHORT INT datatype, in C

FLOAT The size of the FLOAT datatype, in C

DOUBLE The size of the DOUBLE datatype, in C

BYTEINT The size of UNSIGNED CHAR, in C

VARRAW The size of UNSIGNED SHORT, plus 4096 bytes or whatever is
specified as max_length

LONG VARRAW The size of UNSIGNED INT, plus 4096 bytes or whatever is
specified as max_length

VARCHARC Composed of 2 numbers. The first specifies length, and the
second (which is optional) specifies max_length (default is
4096 bytes).

VARRAWC This datatype is for RAW data. It is composed of 2 numbers. The
first specifies length, and the second (which is optional)
specifies max_length (default is 4096 bytes).

Table 9–4 Nongraphic Fields

Datatype Default Size Specified Size

(packed) DECIMAL None (N+1)/2, rounded up

ZONED None P

RAW None L

CHAR (no delimiters) 1 L + S

datetime and interval (no delimiters) None L + S

numeric EXTERNAL (no delimiters) None L + S

Table 9–5 Graphic Fields

Datatype Default Size
Length Specified
with POSITION

Length Specified
with DATATYPE

GRAPHIC None L 2*L

GRAPHIC
EXTERNAL

None L - 2 2*(L-2)

VARGRAPHIC 4KB*2 L+S (2*L)+S

Table 9–6 Variable-Length Fields

Datatype Default Size
Maximum Length
Specified (L)

VARCHAR 4 KB L+S

CHAR (delimited) 255 L+S

datetime and interval (delimited) 255 L+S

numeric EXTERNAL (delimited) 255 L+S

Bind Arrays and Conventional Path Loads

9-38 Oracle Database Utilities

Minimizing Memory Requirements for Bind Arrays
Pay particular attention to the default sizes allocated for VARCHAR, VARGRAPHIC, and the
delimited forms of CHAR, DATE, and numeric EXTERNAL fields. They can consume
enormous amounts of memory—especially when multiplied by the number of rows in
the bind array. It is best to specify the smallest possible maximum length for these
fields. Consider the following example:

CHAR(10) TERMINATED BY ","

With byte-length semantics, this example uses (10 + 2) * 64 = 768 bytes in the bind
array, assuming that the length indicator is 2 bytes long and that 64 rows are loaded at
a time.

With character-length semantics, the same example uses ((10 * s) + 2) * 64 bytes in the
bind array, where "s" is the maximum size in bytes of a character in the data file
character set.

Now consider the following example:

CHAR TERMINATED BY ","

Regardless of whether byte-length semantics or character-length semantics are used,
this example uses (255 + 2) * 64 = 16,448 bytes, because the default maximum size for a
delimited field is 255 bytes. This can make a considerable difference in the number of
rows that fit into the bind array.

Calculating Bind Array Size for Multiple INTO TABLE Clauses
When calculating a bind array size for a control file that has multiple INTO TABLE
clauses, calculate as if the INTO TABLE clauses were not present. Imagine all of the fields
listed in the control file as one, long data structure—that is, the format of a single row
in the bind array.

If the same field in the data record is mentioned in multiple INTO TABLE clauses, then
additional space in the bind array is required each time it is mentioned. It is especially
important to minimize the buffer allocations for such fields.

Note: Generated data is produced by the SQL*Loader functions
CONSTANT, EXPRESSION, RECNUM, SYSDATE, and SEQUENCE. Such
generated data does not require any space in the bind array.

10

SQL*Loader Field List Reference 10-1

10 SQL*Loader Field List Reference

This chapter describes the field-list portion of the SQL*Loader control file. The
following topics are discussed:

■ Field List Contents

■ Specifying the Position of a Data Field

■ Specifying Columns and Fields

■ SQL*Loader Datatypes

■ Specifying Field Conditions

■ Using the WHEN, NULLIF, and DEFAULTIF Clauses

■ Loading Data Across Different Platforms

■ Byte Ordering

■ Loading All-Blank Fields

■ Trimming Whitespace

■ How the PRESERVE BLANKS Option Affects Whitespace Trimming

■ Applying SQL Operators to Fields

■ Using SQL*Loader to Generate Data for Input

Field List Contents
The field-list portion of a SQL*Loader control file provides information about fields
being loaded, such as position, datatype, conditions, and delimiters.

Example 10–1 shows the field list section of the sample control file that was introduced
in Chapter 9.

Example 10–1 Field List Section of Sample Control File

.

.

.
1 (hiredate SYSDATE,
2 deptno POSITION(1:2) INTEGER EXTERNAL(2)
 NULLIF deptno=BLANKS,
3 job POSITION(7:14) CHAR TERMINATED BY WHITESPACE
 NULLIF job=BLANKS "UPPER(:job)",
 mgr POSITION(28:31) INTEGER EXTERNAL
 TERMINATED BY WHITESPACE, NULLIF mgr=BLANKS,
 ename POSITION(34:41) CHAR

Specifying the Position of a Data Field

10-2 Oracle Database Utilities

 TERMINATED BY WHITESPACE "UPPER(:ename)",
 empno POSITION(45) INTEGER EXTERNAL
 TERMINATED BY WHITESPACE,
 sal POSITION(51) CHAR TERMINATED BY WHITESPACE
 "TO_NUMBER(:sal,'$99,999.99')",
4 comm INTEGER EXTERNAL ENCLOSED BY '(' AND '%'
 ":comm * 100"
)

In this sample control file, the numbers that appear to the left would not appear in a
real control file. They are keyed in this sample to the explanatory notes in the
following list:

1. SYSDATE sets the column to the current system date. See "Setting a Column to the
Current Date" on page 10-47.

2. POSITION specifies the position of a data field. See "Specifying the Position of a
Data Field" on page 10-2.

INTEGER EXTERNAL is the datatype for the field. See "Specifying the Datatype of a
Data Field" on page 10-6 and "Numeric EXTERNAL" on page 10-15.

The NULLIF clause is one of the clauses that can be used to specify field conditions.
See "Using the WHEN, NULLIF, and DEFAULTIF Clauses" on page 10-27.

In this sample, the field is being compared to blanks, using the BLANKS parameter.
See "Comparing Fields to BLANKS" on page 10-26.

3. The TERMINATED BY WHITESPACE clause is one of the delimiters it is possible to
specify for a field. See "Specifying Delimiters" on page 10-19.

4. The ENCLOSED BY clause is another possible field delimiter. See "Specifying
Delimiters" on page 10-19.

Specifying the Position of a Data Field
To load data from the data file, SQL*Loader must know the length and location of the
field. To specify the position of a field in the logical record, use the POSITION clause in
the column specification. The position may either be stated explicitly or relative to the
preceding field. Arguments to POSITION must be enclosed in parentheses. The start,
end, and integer values are always in bytes, even if character-length semantics are
used for a data file.

The syntax for the position specification (pos_spec) clause is as follows:

Table 10–1 describes the parameters for the position specification clause.

Table 10–1 Parameters for the Position Specification Clause

Parameter Description

start The starting column of the data field in the logical record. The
first byte position in a logical record is 1.

(

start

*
+integer

:

–
end

)

Specifying the Position of a Data Field

SQL*Loader Field List Reference 10-3

You may omit POSITION entirely. If you do, then the position specification for the data
field is the same as if POSITION(*) had been used.

Using POSITION with Data Containing Tabs
When you are determining field positions, be alert for tabs in the data file. Suppose
you use the SQL*Loader advanced SQL string capabilities to load data from a
formatted report. You would probably first look at a printed copy of the report,
carefully measure all character positions, and then create your control file. In such a
situation, it is highly likely that when you attempt to load the data, the load will fail
with multiple "invalid number" and "missing field" errors.

These kinds of errors occur when the data contains tabs. When printed, each tab
expands to consume several columns on the paper. In the data file, however, each tab
is still only one character. As a result, when SQL*Loader reads the data file, the
POSITION specifications are wrong.

To fix the problem, inspect the data file for tabs and adjust the POSITION specifications,
or else use delimited fields.

Using POSITION with Multiple Table Loads
In a multiple table load, you specify multiple INTO TABLE clauses. When you specify
POSITION(*) for the first column of the first table, the position is calculated relative to
the beginning of the logical record. When you specify POSITION(*) for the first column
of subsequent tables, the position is calculated relative to the last column of the last
table loaded.

Thus, when a subsequent INTO TABLE clause begins, the position is not set to the
beginning of the logical record automatically. This allows multiple INTO TABLE clauses
to process different parts of the same physical record. For an example, see "Extracting
Multiple Logical Records" on page 9-30.

A logical record might contain data for one of two tables, but not both. In this case,
you would reset POSITION. Instead of omitting the position specification or using
POSITION(*+n) for the first field in the INTO TABLE clause, use POSITION(1) or
POSITION(n).

end The ending position of the data field in the logical record.
Either start-end or start:end is acceptable. If you omit end,
then the length of the field is derived from the datatype in the
data file. Note that CHAR data specified without start or end,
and without a length specification (CHAR(n)), is assumed to
have a length of 1. If it is impossible to derive a length from the
datatype, then an error message is issued.

* Specifies that the data field follows immediately after the
previous field. If you use * for the first data field in the control
file, then that field is assumed to be at the beginning of the
logical record. When you use * to specify position, the length
of the field is derived from the datatype.

+integer You can use an offset, specified as +integer, to offset the
current field from the next position after the end of the
previous field. A number of bytes, as specified by +integer,
are skipped before reading the value for the current field.

See Also: "Specifying Delimiters" on page 10-19

Table 10–1 (Cont.) Parameters for the Position Specification Clause

Parameter Description

Specifying Columns and Fields

10-4 Oracle Database Utilities

Examples of Using POSITION
siteid POSITION (*) SMALLINT
siteloc POSITION (*) INTEGER

If these were the first two column specifications, then siteid would begin in column
1, and siteloc would begin in the column immediately following.

ename POSITION (1:20) CHAR
empno POSITION (22-26) INTEGER EXTERNAL
allow POSITION (*+2) INTEGER EXTERNAL TERMINATED BY "/"

Column ename is character data in positions 1 through 20, followed by column empno,
which is presumably numeric data in columns 22 through 26. Column allow is offset
from the next position (27) after the end of empno by +2, so it starts in column 29 and
continues until a slash is encountered.

Specifying Columns and Fields
You may load any number of a table's columns. Columns defined in the database, but
not specified in the control file, are assigned null values.

A column specification is the name of the column, followed by a specification for the
value to be put in that column. The list of columns is enclosed by parentheses and
separated with commas as follows:

(columnspec,columnspec, ...)

Each column name (unless it is marked FILLER) must correspond to a column of the
table named in the INTO TABLE clause. A column name must be enclosed in quotation
marks if it is a SQL or SQL*Loader reserved word, contains special characters, or is
case sensitive.

If the value is to be generated by SQL*Loader, then the specification includes the
RECNUM, SEQUENCE, or CONSTANT parameter. See "Using SQL*Loader to Generate Data
for Input" on page 10-45.

If the column's value is read from the data file, then the data field that contains the
column's value is specified. In this case, the column specification includes a column
name that identifies a column in the database table, and a field specification that
describes a field in a data record. The field specification includes position, datatype,
null restrictions, and defaults.

It is not necessary to specify all attributes when loading column objects. Any missing
attributes will be set to NULL.

Specifying Filler Fields
A filler field, specified by BOUNDFILLER or FILLER is a data file mapped field that does
not correspond to a database column. Filler fields are assigned values from the data
fields to which they are mapped.

Keep the following in mind regarding filler fields:

■ The syntax for a filler field is same as that for a column-based field, except that a
filler field's name is followed by FILLER.

■ Filler fields have names but they are not loaded into the table.

■ Filler fields can be used as arguments to init_specs (for example, NULLIF and
DEFAULTIF).

Specifying Columns and Fields

SQL*Loader Field List Reference 10-5

■ Filler fields can be used as arguments to directives (for example, SID, OID, REF, and
BFILE).

To avoid ambiguity, if a Filler field is referenced in a directive, such as BFILE, and
that field is declared in the control file inside of a column object, then the field
name must be qualified with the name of the column object. This is illustrated in
the following example:

LOAD DATA
INFILE *
INTO TABLE BFILE1O_TBL REPLACE
FIELDS TERMINATED BY ','
(
 emp_number char,
 emp_info_b column object
 (
 bfile_name FILLER char(12),
 emp_b BFILE(constant "SQLOP_DIR", emp_info_b.bfile_name) NULLIF
 emp_info_b.bfile_name = 'NULL'
)
)
BEGINDATA
00001,bfile1.dat,
00002,bfile2.dat,
00003,bfile3.dat,

■ Filler fields can be used in field condition specifications in NULLIF, DEFAULTIF, and
WHEN clauses. However, they cannot be used in SQL strings.

■ Filler field specifications cannot contain a NULLIF or DEFAULTIF clause.

■ Filler fields are initialized to NULL if TRAILING NULLCOLS is specified and
applicable. If another field references a nullified filler field, then an error is
generated.

■ Filler fields can occur anyplace in the data file, including inside the field list for an
object or inside the definition of a VARRAY.

■ SQL strings cannot be specified as part of a filler field specification, because no
space is allocated for fillers in the bind array.

A sample filler field specification looks as follows:

 field_1_count FILLER char,
 field_1 varray count(field_1_count)
 (
 filler_field1 char(2),
 field_1 column object
 (
 attr1 char(2),
 filler_field2 char(2),
 attr2 char(2),
)
 filler_field3 char(3),
)

Note: The information in this section also applies to specifying
bound fillers by using BOUNDFILLER. The only exception is that with
bound fillers, SQL strings can be specified as part of the field,
because space is allocated for them in the bind array.

SQL*Loader Datatypes

10-6 Oracle Database Utilities

 filler_field4 char(6)

Specifying the Datatype of a Data Field
The datatype specification of a field tells SQL*Loader how to interpret the data in the
field. For example, a datatype of INTEGER specifies binary data, while INTEGER
EXTERNAL specifies character data that represents a number. A CHAR field can contain
any character data.

Only one datatype can be specified for each field; if a datatype is not specified, then
CHAR is assumed.

"SQL*Loader Datatypes" on page 10-6 describes how SQL*Loader datatypes are
converted into Oracle datatypes and gives detailed information about each
SQL*Loader datatype.

Before you specify the datatype, you must specify the position of the field.

SQL*Loader Datatypes
SQL*Loader datatypes can be grouped into portable and nonportable datatypes.
Within each of these two groups, the datatypes are subgrouped into value datatypes
and length-value datatypes.

Portable versus nonportable refers to whether the datatype is platform dependent.
Platform dependency can exist for several reasons, including differences in the byte
ordering schemes of different platforms (big-endian versus little-endian), differences
in the number of bits in a platform (16-bit, 32-bit, 64-bit), differences in signed number
representation schemes (2's complement versus 1's complement), and so on. In some
cases, such as with byte ordering schemes and platform word length, SQL*Loader
provides mechanisms to help overcome platform dependencies. These mechanisms are
discussed in the descriptions of the appropriate datatypes.

Both portable and nonportable datatypes can be values or length-values. Value
datatypes assume that a data field has a single part. Length-value datatypes require
that the data field consist of two subfields where the length subfield specifies how
long the value subfield can be.

Nonportable Datatypes
Nonportable datatypes are grouped into value datatypes and length-value datatypes.
The nonportable value datatypes are as follows:

■ INTEGER(n)

■ SMALLINT

■ FLOAT

■ DOUBLE

■ BYTEINT

■ ZONED

■ (packed) DECIMAL

See Also: Chapter 10, "SQL*Loader Field List Reference" for
information about loading a variety of datatypes including column
objects, object tables, REF columns, and LOBs (BLOBs, CLOBs,
NCLOBs and BFILEs)

SQL*Loader Datatypes

SQL*Loader Field List Reference 10-7

The nonportable length-value datatypes are as follows:

■ VARGRAPHIC

■ VARCHAR

■ VARRAW

■ LONG VARRAW

The syntax for the nonportable datatypes is shown in the syntax diagram for
"datatype_spec" on page A-8.

INTEGER(n)
The data is a full-word binary integer, where n is an optionally supplied length of 1, 2,
4, or 8. If no length specification is given, then the length, in bytes, is based on the size
of a LONG INT in the C programming language on your particular platform.

INTEGERs are not portable because their byte size, their byte order, and the
representation of signed values may be different between systems. However, if the
representation of signed values is the same between systems, then SQL*Loader may be
able to access INTEGER data with correct results. If INTEGER is specified with a length
specification (n), and the appropriate technique is used (if necessary) to indicate the
byte order of the data, then SQL*Loader can access the data with correct results
between systems. If INTEGER is specified without a length specification, then
SQL*Loader can access the data with correct results only if the size of a LONG INT in the
C programming language is the same length in bytes on both systems. In that case, the
appropriate technique must still be used (if necessary) to indicated the byte order of
the data.

Specifying an explicit length for binary integers is useful in situations where the input
data was created on a platform whose word length differs from that on which
SQL*Loader is running. For instance, input data containing binary integers might be
created on a 64-bit platform and loaded into a database using SQL*Loader on a 32-bit
platform. In this case, use INTEGER(8) to instruct SQL*Loader to process the integers as
8-byte quantities, not as 4-byte quantities.

By default, INTEGER is treated as a SIGNED quantity. If you want SQL*Loader to treat it
as an unsigned quantity, then specify UNSIGNED. To return to the default behavior,
specify SIGNED.

SMALLINT
The data is a half-word binary integer. The length of the field is the length of a
half-word integer on your system. By default, it is treated as a SIGNED quantity. If you
want SQL*Loader to treat it as an unsigned quantity, then specify UNSIGNED. To return
to the default behavior, specify SIGNED.

SMALLINT can be loaded with correct results only between systems where a SHORT INT
has the same length in bytes. If the byte order is different between the systems, then
use the appropriate technique to indicate the byte order of the data. See "Byte
Ordering" on page 10-31.

See Also: "Loading Data Across Different Platforms" on
page 10-30

SQL*Loader Datatypes

10-8 Oracle Database Utilities

FLOAT
The data is a single-precision, floating-point, binary number. If you specify end in the
POSITION clause, then end is ignored. The length of the field is the length of a
single-precision, floating-point binary number on your system. (The datatype is FLOAT
in C.) This length cannot be overridden in the control file.

FLOAT can be loaded with correct results only between systems where the
representation of FLOAT is compatible and of the same length. If the byte order is
different between the two systems, then use the appropriate technique to indicate the
byte order of the data. See "Byte Ordering" on page 10-31.

DOUBLE
The data is a double-precision, floating-point binary number. If you specify end in the
POSITION clause, then end is ignored. The length of the field is the length of a
double-precision, floating-point binary number on your system. (The datatype is
DOUBLE or LONG FLOAT in C.) This length cannot be overridden in the control file.

DOUBLE can be loaded with correct results only between systems where the
representation of DOUBLE is compatible and of the same length. If the byte order is
different between the two systems, then use the appropriate technique to indicate the
byte order of the data. See "Byte Ordering" on page 10-31.

BYTEINT
The decimal value of the binary representation of the byte is loaded. For example, the
input character x"1C" is loaded as 28. The length of a BYTEINT field is always 1 byte. If
POSITION(start:end) is specified, then end is ignored. (The datatype is UNSIGNED
CHAR in C.)

An example of the syntax for this datatype is:

(column1 position(1) BYTEINT,
column2 BYTEINT,
...
)

ZONED
ZONED data is in zoned decimal format: a string of decimal digits, one per byte, with the
sign included in the last byte. (In COBOL, this is a SIGN TRAILING field.) The length of
this field equals the precision (number of digits) that you specify.

The syntax for the ZONED datatype is:

In this syntax, precision is the number of digits in the number, and scale (if given) is
the number of digits to the right of the (implied) decimal point. The following example
specifies an 8-digit integer starting at position 32:

Note: This is the SHORT INT datatype in the C programming
language. One way to determine its length is to make a small
control file with no data and look at the resulting log file. This
length cannot be overridden in the control file.

ZONED (precision
, scale

)

SQL*Loader Datatypes

SQL*Loader Field List Reference 10-9

sal POSITION(32) ZONED(8),

The Oracle database uses the VAX/VMS zoned decimal format when the zoned data is
generated on an ASCII-based platform. It is also possible to load zoned decimal data
that is generated on an EBCDIC-based platform. In this case, Oracle uses the IBM
format as specified in the ESA/390 Principles of Operations, version 8.1 manual. The
format that is used depends on the character set encoding of the input data file. See
"CHARACTERSET Parameter" on page 9-15 for more information.

DECIMAL
DECIMAL data is in packed decimal format: two digits per byte, except for the last byte,
which contains a digit and sign. DECIMAL fields allow the specification of an implied
decimal point, so fractional values can be represented.

The syntax for the DECIMAL datatype is:

The precision parameter is the number of digits in a value. The length of the field in
bytes, as computed from digits, is (N+1)/2 rounded up.

The scale parameter is the scaling factor, or number of digits to the right of the
decimal point. The default is zero (indicating an integer). The scaling factor can be
greater than the number of digits but cannot be negative.

An example is:

sal DECIMAL (7,2)

This example would load a number equivalent to +12345.67. In the data record, this
field would take up 4 bytes. (The byte length of a DECIMAL field is equivalent to
(N+1)/2, rounded up, where N is the number of digits in the value, and 1 is added for
the sign.)

VARGRAPHIC
The data is a varying-length, double-byte character set (DBCS). It consists of a length
subfield followed by a string of double-byte characters. The Oracle database does not
support double-byte character sets; however, SQL*Loader reads them as single bytes
and loads them as RAW data. Like RAW data, VARGRAPHIC fields are stored without
modification in whichever column you specify.

VARGRAPHIC data can be loaded with correct results only between systems where a
SHORT INT has the same length in bytes. If the byte order is different between the
systems, then use the appropriate technique to indicate the byte order of the length
subfield. See "Byte Ordering" on page 10-31.

The syntax for the VARGRAPHIC datatype is:

Note: The size of the length subfield is the size of the SQL*Loader
SMALLINT datatype on your system (C type SHORT INT). See
"SMALLINT" on page 10-7 for more information.

DECIMAL (precision
, scale

)

SQL*Loader Datatypes

10-10 Oracle Database Utilities

The length of the current field is given in the first 2 bytes. A maximum length specified
for the VARGRAPHIC datatype does not include the size of the length subfield. The
maximum length specifies the number of graphic (double-byte) characters. It is
multiplied by 2 to determine the maximum length of the field in bytes.

The default maximum field length is 2 KB graphic characters, or 4 KB
(2 * 2KB). To minimize memory requirements, specify a maximum length for such
fields whenever possible.

If a position specification is specified (using pos_spec) before the VARGRAPHIC
statement, then it provides the location of the length subfield, not of the first graphic
character. If you specify pos_spec(start:end), then the end location determines a
maximum length for the field. Both start and end identify single-character (byte)
positions in the file. Start is subtracted from (end + 1) to give the length of the field
in bytes. If a maximum length is specified, then it overrides any maximum length
calculated from the position specification.

If a VARGRAPHIC field is truncated by the end of the logical record before its full length
is read, then a warning is issued. Because the length of a VARGRAPHIC field is embedded
in every occurrence of the input data for that field, it is assumed to be accurate.

VARGRAPHIC data cannot be delimited.

VARCHAR
A VARCHAR field is a length-value datatype. It consists of a binary length subfield
followed by a character string of the specified length. The length is in bytes unless
character-length semantics are used for the data file. In that case, the length is in
characters. See "Character-Length Semantics" on page 9-17.

VARCHAR fields can be loaded with correct results only between systems where a SHORT
data field INT has the same length in bytes. If the byte order is different between the
systems, or if the VARCHAR field contains data in the UTF16 character set, then use the
appropriate technique to indicate the byte order of the length subfield and of the data.
The byte order of the data is only an issue for the UTF16 character set. See "Byte
Ordering" on page 10-31.

The syntax for the VARCHAR datatype is:

A maximum length specified in the control file does not include the size of the length
subfield. If you specify the optional maximum length for a VARCHAR datatype, then a
buffer of that size, in bytes, is allocated for these fields. However, if character-length
semantics are used for the data file, then the buffer size in bytes is the max_length
times the size in bytes of the largest possible character in the character set. See
"Character-Length Semantics" on page 9-17.

Note: The size of the length subfield is the size of the SQL*Loader
SMALLINT datatype on your system (C type SHORT INT). See
"SMALLINT" on page 10-7 for more information.

VARGRAPHIC
(max_length)

VARCHAR
(max_length)

SQL*Loader Datatypes

SQL*Loader Field List Reference 10-11

The default maximum size is 4 KB. Specifying the smallest maximum length that is
needed to load your data can minimize SQL*Loader's memory requirements,
especially if you have many VARCHAR fields.

The POSITION clause, if used, gives the location, in bytes, of the length subfield, not of
the first text character. If you specify POSITION(start:end), then the end location
determines a maximum length for the field. Start is subtracted from (end + 1) to
give the length of the field in bytes. If a maximum length is specified, then it overrides
any length calculated from POSITION.

If a VARCHAR field is truncated by the end of the logical record before its full length is
read, then a warning is issued. Because the length of a VARCHAR field is embedded in
every occurrence of the input data for that field, it is assumed to be accurate.

VARCHAR data cannot be delimited.

VARRAW
VARRAW is made up of a 2-byte binary length subfield followed by a RAW string value
subfield.

VARRAW results in a VARRAW with a 2-byte length subfield and a maximum size of 4 KB
(that is, the default). VARRAW(65000) results in a VARRAW with a length subfield of 2
bytes and a maximum size of 65000 bytes.

VARRAW fields can be loaded between systems with different byte orders if the
appropriate technique is used to indicate the byte order of the length subfield. See
"Byte Ordering" on page 10-31.

LONG VARRAW
LONG VARRAW is a VARRAW with a 4-byte length subfield instead of a 2-byte length
subfield.

LONG VARRAW results in a VARRAW with 4-byte length subfield and a maximum size of 4
KB (that is, the default). LONG VARRAW(300000) results in a VARRAW with a length
subfield of 4 bytes and a maximum size of 300000 bytes.

LONG VARRAW fields can be loaded between systems with different byte orders if the
appropriate technique is used to indicate the byte order of the length subfield. See
"Byte Ordering" on page 10-31.

Portable Datatypes
The portable datatypes are grouped into value datatypes and length-value datatypes.
The portable value datatypes are as follows:

■ CHAR

■ Datetime and Interval

■ GRAPHIC

■ GRAPHIC EXTERNAL

■ Numeric EXTERNAL (INTEGER, FLOAT, DECIMAL, ZONED)

■ RAW

The portable length-value datatypes are as follows:

■ VARCHARC

■ VARRAWC

SQL*Loader Datatypes

10-12 Oracle Database Utilities

The syntax for these datatypes is shown in the diagram for "datatype_spec" on
page A-8.

The character datatypes are CHAR, DATE, and the numeric EXTERNAL datatypes. These
fields can be delimited and can have lengths (or maximum lengths) specified in the
control file.

CHAR
The data field contains character data. The length, which is optional, is a maximum
length. Note the following regarding length:

■ If a length is not specified, then it is derived from the POSITION specification.

■ If a length is specified, then it overrides the length in the POSITION specification.

■ If no length is given and there is no POSITION specification, then CHAR data is
assumed to have a length of 1, unless the field is delimited:

– For a delimited CHAR field, if a length is specified, then that length is used as a
maximum.

– For a delimited CHAR field for which no length is specified, the default is 255
bytes.

– For a delimited CHAR field that is greater than 255 bytes, you must specify a
maximum length. Otherwise you will receive an error stating that the field in
the data file exceeds maximum length.

The syntax for the CHAR datatype is:

Datetime and Interval Datatypes
Both datetimes and intervals are made up of fields. The values of these fields
determine the value of the datatype.

The datetime datatypes are:

■ DATE

■ TIME

■ TIME WITH TIME ZONE

■ TIMESTAMP

■ TIMESTAMP WITH TIME ZONE

■ TIMESTAMP WITH LOCAL TIME ZONE

Values of datetime datatypes are sometimes called datetimes. In the following
descriptions of the datetime datatypes you will see that, except for DATE, you are
allowed to optionally specify a value for fractional_second_precision. The
fractional_second_precision specifies the number of digits stored in the fractional
part of the SECOND datetime field. When you create a column of this datatype, the value
can be a number in the range 0 to 9. The default is 6.

The interval datatypes are:

See Also: "Specifying Delimiters" on page 10-19

CHAR
(length) delim_spec

SQL*Loader Datatypes

SQL*Loader Field List Reference 10-13

■ INTERVAL YEAR TO MONTH

■ INTERVAL DAY TO SECOND

Values of interval datatypes are sometimes called intervals. The INTERVAL YEAR TO
MONTH datatype lets you optionally specify a value for year_precision. The year_
precision value is the number of digits in the YEAR datetime field. The default value is
2.

The INTERVAL DAY TO SECOND datatype lets you optionally specify values for day_
precision and fractional_second_precision. The day_precision is the number of
digits in the DAY datetime field. Accepted values are 0 to 9. The default is 2. The
fractional_second_precision specifies the number of digits stored in the fractional
part of the SECOND datetime field. When you create a column of this datatype, the value
can be a number in the range 0 to 9. The default is 6.

DATE The DATE field contains character data that should be converted to an Oracle date
using the specified date mask. The syntax for the DATE field is:

For example:

LOAD DATA
INTO TABLE dates (col_a POSITION (1:15) DATE "DD-Mon-YYYY")
BEGINDATA
1-Jan-2008
1-Apr-2008 28-Feb-2008

Whitespace is ignored and dates are parsed from left to right unless delimiters are
present. (A DATE field that consists entirely of whitespace is loaded as a NULL field.)

The length specification is optional, unless a varying-length date mask is specified.
The length is in bytes unless character-length semantics are used for the data file. In
that case, the length is in characters. See "Character-Length Semantics" on page 9-17.

In the preceding example, the date mask, "DD-Mon-YYYY" contains 11 bytes, with
byte-length semantics. Therefore, SQL*Loader expects a maximum of 11 bytes in the
field, so the specification works properly. But, suppose a specification such as the
following is given:

DATE "Month dd, YYYY"

In this case, the date mask contains 14 bytes. If a value with a length longer than 14
bytes is specified, such as "September 30, 2008", then a length must be specified.

Similarly, a length is required for any Julian dates (date mask "J"). A field length is
required any time the length of the date string could exceed the length of the mask
(that is, the count of bytes in the mask).

If an explicit length is not specified, then it can be derived from the POSITION clause. It
is a good idea to specify the length whenever you use a mask, unless you are

See Also: Oracle Database SQL Language Reference for more
detailed information about specifying datetime and interval
datatypes, including the use of fractional_second_precision,
year_precision, and day_precision

DATE
(length) mask delim_spec

SQL*Loader Datatypes

10-14 Oracle Database Utilities

absolutely sure that the length of the data is less than, or equal to, the length of the
mask.

An explicit length specification, if present, overrides the length in the POSITION clause.
Either of these overrides the length derived from the mask. The mask may be any
valid Oracle date mask. If you omit the mask, then the default Oracle date mask of
"dd-mon-yy" is used.

The length must be enclosed in parentheses and the mask in quotation marks.

A field of datatype DATE may also be specified with delimiters. For more information,
see "Specifying Delimiters" on page 10-19.

TIME The TIME datatype stores hour, minute, and second values. It is specified as
follows:

TIME [(fractional_second_precision)]

TIME WITH TIME ZONE The TIME WITH TIME ZONE datatype is a variant of TIME that
includes a time zone displacement in its value. The time zone displacement is the
difference (in hours and minutes) between local time and UTC (coordinated universal
time, formerly Greenwich mean time). It is specified as follows:

TIME [(fractional_second_precision)] WITH [LOCAL] TIME ZONE

If the LOCAL option is specified, then data stored in the database is normalized to the
database time zone, and time zone displacement is not stored as part of the column
data. When the data is retrieved, it is returned in the user's local session time zone.

TIMESTAMP The TIMESTAMP datatype is an extension of the DATE datatype. It stores the
year, month, and day of the DATE datatype, plus the hour, minute, and second values of
the TIME datatype. It is specified as follows:

TIMESTAMP [(fractional_second_precision)]

If you specify a date value without a time component, then the default time is 12:00:00
a.m. (midnight).

TIMESTAMP WITH TIME ZONE The TIMESTAMP WITH TIME ZONE datatype is a variant of
TIMESTAMP that includes a time zone displacement in its value. The time zone
displacement is the difference (in hours and minutes) between local time and UTC
(coordinated universal time, formerly Greenwich mean time). It is specified as follows:

TIMESTAMP [(fractional_second_precision)] WITH TIME ZONE

TIMESTAMP WITH LOCAL TIME ZONE The TIMESTAMP WITH LOCAL TIME ZONE datatype is
another variant of TIMESTAMP that includes a time zone offset in its value. Data stored
in the database is normalized to the database time zone, and time zone displacement is
not stored as part of the column data. When the data is retrieved, it is returned in the
user's local session time zone. It is specified as follows:

TIMESTAMP [(fractional_second_precision)] WITH LOCAL TIME ZONE

INTERVAL YEAR TO MONTH The INTERVAL YEAR TO MONTH datatype stores a period of time
using the YEAR and MONTH datetime fields. It is specified as follows:

INTERVAL YEAR [(year_precision)] TO MONTH

SQL*Loader Datatypes

SQL*Loader Field List Reference 10-15

INTERVAL DAY TO SECOND The INTERVAL DAY TO SECOND datatype stores a period of time
using the DAY and SECOND datetime fields. It is specified as follows:

INTERVAL DAY [(day_precision)] TO SECOND [(fractional_second_precision)]

GRAPHIC
The data is in the form of a double-byte character set (DBCS). The Oracle database
does not support double-byte character sets; however, SQL*Loader reads them as
single bytes. Like RAW data, GRAPHIC fields are stored without modification in
whichever column you specify.

The syntax for the GRAPHIC datatype is:

For GRAPHIC and GRAPHIC EXTERNAL, specifying POSITION(start:end) gives the exact
location of the field in the logical record.

If you specify a length for the GRAPHIC (EXTERNAL) datatype, however, then you give
the number of double-byte graphic characters. That value is multiplied by 2 to find the
length of the field in bytes. If the number of graphic characters is specified, then any
length derived from POSITION is ignored. No delimited data field specification is
allowed with GRAPHIC datatype specification.

GRAPHIC EXTERNAL
If the DBCS field is surrounded by shift-in and shift-out characters, then use GRAPHIC
EXTERNAL. This is identical to GRAPHIC, except that the first and last characters (the
shift-in and shift-out) are not loaded.

The syntax for the GRAPHIC EXTERNAL datatype is:

GRAPHIC indicates that the data is double-byte characters. EXTERNAL indicates that the
first and last characters are ignored. The graphic_char_length value specifies the
length in DBCS (see "GRAPHIC" on page 10-15).

For example, let [] represent shift-in and shift-out characters, and let # represent any
double-byte character.

To describe ####, use POSITION(1:4) GRAPHIC or POSITION(1) GRAPHIC(2).

To describe [####], use POSITION(1:6) GRAPHIC EXTERNAL or POSITION(1) GRAPHIC
EXTERNAL(2).

Numeric EXTERNAL
The numeric EXTERNAL datatypes are the numeric datatypes (INTEGER, FLOAT,
DECIMAL, and ZONED) specified as EXTERNAL, with optional length and delimiter
specifications. The length is in bytes unless character-length semantics are used for the
data file. In that case, the length is in characters. See "Character-Length Semantics" on
page 9-17.

These datatypes are the human-readable, character form of numeric data. The same
rules that apply to CHAR data regarding length, position, and delimiters apply to

GRAPHIC
(graphic_char_length)

GRAPHIC_EXTERNAL
(graphic_char_length)

SQL*Loader Datatypes

10-16 Oracle Database Utilities

numeric EXTERNAL data. See "CHAR" on page 10-12 for a complete description of these
rules.

The syntax for the numeric EXTERNAL datatypes is shown as part of "datatype_spec" on
page A-8.

FLOAT EXTERNAL data can be given in either scientific or regular notation. Both "5.33"
and "533E-2" are valid representations of the same value.

RAW
When raw, binary data is loaded "as is" into a RAW database column, it is not converted
by the Oracle database. If it is loaded into a CHAR column, then the Oracle database
converts it to hexadecimal. It cannot be loaded into a DATE or number column.

The syntax for the RAW datatype is as follows:

The length of this field is the number of bytes specified in the control file. This length
is limited only by the length of the target column in the database and by memory
resources. The length is always in bytes, even if character-length semantics are used
for the data file. RAW data fields cannot be delimited.

VARCHARC
The datatype VARCHARC consists of a character length subfield followed by a character
string value-subfield.

The declaration for VARCHARC specifies the length of the length subfield, optionally
followed by the maximum size of any string. If byte-length semantics are in use for the
data file, then the length and the maximum size are both in bytes. If character-length
semantics are in use for the data file, then the length and maximum size are in
characters. If a maximum size is not specified, then 4 KB is the default regardless of
whether byte-length semantics or character-length semantics are in use.

For example:

■ VARCHARC results in an error because you must at least specify a value for the
length subfield.

■ VARCHARC(7) results in a VARCHARC whose length subfield is 7 bytes long and
whose maximum size is 4 KB (the default) if byte-length semantics are used for the
data file. If character-length semantics are used, then it results in a VARCHARC with a
length subfield that is 7 characters long and a maximum size of 4 KB (the default).
Remember that when a maximum size is not specified, the default of 4 KB is
always used, regardless of whether byte-length or character-length semantics are
in use.

Note: The data is a number in character form, not binary
representation. Therefore, these datatypes are identical to CHAR and
are treated identically, except for the use of DEFAULTIF. If you want
the default to be null, then use CHAR; if you want it to be zero, then
use EXTERNAL. See "Using the WHEN, NULLIF, and DEFAULTIF
Clauses" on page 10-27.

RAW
(length)

SQL*Loader Datatypes

SQL*Loader Field List Reference 10-17

■ VARCHARC(3,500) results in a VARCHARC whose length subfield is 3 bytes long and
whose maximum size is 500 bytes if byte-length semantics are used for the data
file. If character-length semantics are used, then it results in a VARCHARC with a
length subfield that is 3 characters long and a maximum size of 500 characters.

See "Character-Length Semantics" on page 9-17.

VARRAWC
The datatype VARRAWC consists of a RAW string value subfield.

For example:

■ VARRAWC results in an error.

■ VARRAWC(7) results in a VARRAWC whose length subfield is 7 bytes long and whose
maximum size is 4 KB (that is, the default).

■ VARRAWC(3,500) results in a VARRAWC whose length subfield is 3 bytes long and
whose maximum size is 500 bytes.

Conflicting Native Datatype Field Lengths
There are several ways to specify a length for a field. If multiple lengths are specified
and they conflict, then one of the lengths takes precedence. A warning is issued when
a conflict exists. The following rules determine which field length is used:

1. The size of SMALLINT, FLOAT, and DOUBLE data is fixed, regardless of the number of
bytes specified in the POSITION clause.

2. If the length (or precision) specified for a DECIMAL, INTEGER, ZONED, GRAPHIC,
GRAPHIC EXTERNAL, or RAW field conflicts with the size calculated from a
POSITION(start:end) specification, then the specified length (or precision) is
used.

3. If the maximum size specified for a character or VARGRAPHIC field conflicts with the
size calculated from a POSITION(start:end) specification, then the specified
maximum is used.

For example, assume that the native datatype INTEGER is 4 bytes long and the
following field specification is given:

column1 POSITION(1:6) INTEGER

In this case, a warning is issued, and the proper length (4) is used. The log file shows
the actual length used under the heading "Len" in the column table:

Column Name Position Len Term Encl Datatype
----------------------- --------- ----- ---- ---- ---------
COLUMN1 1:6 4 INTEGER

Field Lengths for Length-Value Datatypes
A control file can specify a maximum length for the following length-value datatypes:
VARCHAR, VARCHARC, VARGRAPHIC, VARRAW, and VARRAWC. The specified maximum length
is in bytes if byte-length semantics are used for the field, and in characters if
character-length semantics are used for the field. If no length is specified, then the
maximum length defaults to 4096 bytes. If the length of the field exceeds the
maximum length, then the record is rejected with the following error:

Variable length field exceed maximum length

SQL*Loader Datatypes

10-18 Oracle Database Utilities

Datatype Conversions
The datatype specifications in the control file tell SQL*Loader how to interpret the
information in the data file. The server defines the datatypes for the columns in the
database. The link between these two is the column name specified in the control file.

SQL*Loader extracts data from a field in the input file, guided by the datatype
specification in the control file. SQL*Loader then sends the field to the server to be
stored in the appropriate column (as part of an array of row inserts).

SQL*Loader or the server does any necessary data conversion to store the data in the
proper internal format. This includes converting data from the data file character set to
the database character set when they differ.

The datatype of the data in the file does not need to be the same as the datatype of the
column in the Oracle table. The Oracle database automatically performs conversions,
but you need to ensure that the conversion makes sense and does not generate errors.
For instance, when a data file field with datatype CHAR is loaded into a database
column with datatype NUMBER, you must ensure that the contents of the character field
represent a valid number.

Datatype Conversions for Datetime and Interval Datatypes
Table 10–2 shows which conversions between Oracle database datatypes and
SQL*Loader control file datetime and interval datatypes are supported and which are
not.

In the table, the abbreviations for the Oracle Database Datatypes are as follows:

N = NUMBER

C = CHAR or VARCHAR2

D = DATE

T = TIME and TIME WITH TIME ZONE

TS = TIMESTAMP and TIMESTAMP WITH TIME ZONE

YM = INTERVAL YEAR TO MONTH

DS = INTERVAL DAY TO SECOND

Note: When you use SQL*Loader conventional path to load
character data from the data file into a LONG RAW column, the character
data is interpreted has a HEX string. SQL converts the HEX string into
its binary representation. Be aware that any string longer than 4000
bytes exceeds the byte limit for the SQL HEXTORAW conversion operator.
An error will be returned. SQL*Loader will reject that row and
continue loading.

Note: SQL*Loader does not contain datatype specifications for
Oracle internal datatypes such as NUMBER or VARCHAR2. The
SQL*Loader datatypes describe data that can be produced with text
editors (character datatypes) and with standard programming
languages (native datatypes). However, although SQL*Loader does
not recognize datatypes like NUMBER and VARCHAR2, any data that the
Oracle database can convert can be loaded into these or other
database columns.

SQL*Loader Datatypes

SQL*Loader Field List Reference 10-19

For the SQL*Loader datatypes, the definitions for the abbreviations in the table are the
same for D, T, TS, YM, and DS. However, as noted in the previous section, SQL*Loader
does not contain datatype specifications for Oracle internal datatypes such as
NUMBER,CHAR, and VARCHAR2. However, any data that the Oracle database can convert
can be loaded into these or other database columns.

For an example of how to read this table, look at the row for the SQL*Loader datatype
DATE (abbreviated as D). Reading across the row, you can see that datatype conversion
is supported for the Oracle database datatypes of CHAR, VARCHAR2, DATE, TIMESTAMP,
and TIMESTAMP WITH TIME ZONE datatypes. However, conversion is not supported for
the Oracle database datatypes NUMBER, TIME, TIME WITH TIME ZONE, INTERVAL YEAR TO
MONTH, or INTERVAL DAY TO SECOND datatypes.

Specifying Delimiters
The boundaries of CHAR, datetime, interval, or numeric EXTERNAL fields can also be
marked by delimiter characters contained in the input data record. The delimiter
characters are specified using various combinations of the TERMINATED BY, ENCLOSED
BY, and OPTIONALLY ENCLOSED BY clauses (the TERMINATED BY clause, if used, must
come first). The delimiter specification comes after the datatype specification.

For a description of how data is processed when various combinations of delimiter
clauses are used, see "How Delimited Data Is Processed" on page 10-21.

Syntax for Termination and Enclosure Specification
The following diagram shows the syntax for termination_spec and enclosure_spec.

Table 10–2 Datatype Conversions for Datetime and Interval Datatypes

SQL*Loader Datatype Oracle Database Datatype (Conversion Support)

N N (Yes), C (Yes), D (No), T (No), TS (No), YM (No), DS (No)

C N (Yes), C (Yes), D (Yes), T (Yes), TS (Yes), YM (Yes), DS (Yes)

D N (No), C (Yes), D (Yes), T (No), TS (Yes), YM (No), DS (No)

T N (No), C (Yes), D (No), T (Yes), TS (Yes), YM (No), DS (No)

TS N (No), C (Yes), D (Yes), T (Yes), TS (Yes), YM (No), DS (No)

YM N (No), C (Yes), D (No), T (No), TS (No), YM (Yes), DS (No)

DS N (No), C (Yes), D (No), T (No), TS (No), YM (No), DS (Yes)

Note: The RAW datatype can also be marked by delimiters, but only if
it is in an input LOBFILE, and only if the delimiter is TERMINATED BY
EOF (end of file).

TERMINATED
BY

WHITESPACE

X’hexstr’

’string’

EOF

SQL*Loader Datatypes

10-20 Oracle Database Utilities

Table 10–3 describes the syntax for the termination and enclosure specifications used
to specify delimiters.

Here are some examples, with samples of the data they describe:

TERMINATED BY ',' a data string,
ENCLOSED BY '"' "a data string"
TERMINATED BY ',' ENCLOSED BY '"' "a data string",
ENCLOSED BY '(' AND ')' (a data string)

Delimiter Marks in the Data
Sometimes the punctuation mark that is a delimiter must also be included in the data.
To make that possible, two adjacent delimiter characters are interpreted as a single
occurrence of the character, and this character is included in the data. For example, this
data:

(The delimiters are left parentheses, (, and right parentheses,)).)

with this field specification:

ENCLOSED BY "(" AND ")"

Table 10–3 Parameters Used for Specifying Delimiters

Parameter Description

TERMINATED Data is read until the first occurrence of a delimiter.

BY An optional word to increase readability.

WHITESPACE Delimiter is any whitespace character including spaces, tabs,
blanks, line feeds, form feeds, or carriage returns. (Only used
with TERMINATED, not with ENCLOSED.)

OPTIONALLY Data can be enclosed by the specified character. If SQL*Loader
finds a first occurrence of the character, then it reads the data
value until it finds the second occurrence. If the data is not
enclosed, then the data is read as a terminated field. If you
specify an optional enclosure, then you must specify a
TERMINATED BY clause (either locally in the field definition or
globally in the FIELDS clause).

ENCLOSED The data will be found between two delimiters.

string The delimiter is a string.

X'hexstr' The delimiter is a string that has the value specified by
X'hexstr' in the character encoding scheme, such as X'1F'
(equivalent to 31 decimal). "X" can be either lowercase or
uppercase.

AND Specifies a trailing enclosure delimiter that may be different
from the initial enclosure delimiter. If AND is not present, then
the initial and trailing delimiters are assumed to be the same.

EOF Indicates that the entire file has been loaded into the LOB. This
is valid only when data is loaded from a LOB file. Fields
terminated by EOF cannot be enclosed.

ENCLOSED
BY

’string’

X’hexstr’
AND

’string’

X’hexstr’

SQL*Loader Datatypes

SQL*Loader Field List Reference 10-21

puts the following string into the database:

The delimiters are left parentheses, (, and right parentheses,).

For this reason, problems can arise when adjacent fields use the same delimiters. For
example, with the following specification:

field1 TERMINATED BY "/"
field2 ENCLOSED by "/"

the following data will be interpreted properly:

This is the first string/ /This is the second string/

But if field1 and field2 were adjacent, then the results would be incorrect, because

This is the first string//This is the second string/

would be interpreted as a single character string with a "/" in the middle, and that
string would belong to field1.

Maximum Length of Delimited Data
The default maximum length of delimited data is 255 bytes. Therefore, delimited fields
can require significant amounts of storage for the bind array. A good policy is to
specify the smallest possible maximum value if the fields are shorter than 255 bytes. If
the fields are longer than 255 bytes, then you must specify a maximum length for the
field, either with a length specifier or with the POSITION clause.

For example, if you have a string literal that is longer than 255 bytes, then in addition
to using SUBSTR(), use CHAR() to specify the longest string in any record for the field.
An example of how this would look is as follows, assuming that 600 bytes is the
longest string in any record for field1:

field1 CHAR(600) SUBSTR(:field, 1, 240)

Loading Trailing Blanks with Delimiters
Trailing blanks are not loaded with nondelimited datatypes unless you specify
PRESERVE BLANKS. If a data field is 9 characters long and contains the value DANIELbbb,
where bbb is three blanks, then it is loaded into the Oracle database as "DANIEL" if
declared as CHAR(9).

If you want the trailing blanks, then you could declare it as CHAR(9) TERMINATED BY
':', and add a colon to the data file so that the field is DANIELbbb:. This field is loaded
as "DANIEL ", with the trailing blanks. You could also specify PRESERVE BLANKS
without the TERMINATED BY clause and obtain the same results.

How Delimited Data Is Processed
To specify delimiters, field definitions can use various combinations of the TERMINATED
BY, ENCLOSED BY, and OPTIONALLY ENCLOSED BY clauses. The following sections
describe the processing that takes place in each case:

■ Fields Using Only TERMINATED BY

See Also:

■ "Trimming Whitespace" on page 10-35

■ "How the PRESERVE BLANKS Option Affects Whitespace
Trimming" on page 10-40

SQL*Loader Datatypes

10-22 Oracle Database Utilities

■ Fields Using ENCLOSED BY Without TERMINATED BY

■ Fields Using ENCLOSED BY With TERMINATED BY

■ Fields Using OPTIONALLY ENCLOSED BY With TERMINATED BY

Each of these scenarios is described in the following sections.

Fields Using Only TERMINATED BY
If TERMINATED BY is specified for a field without ENCLOSED BY, then the data for the
field is read from the starting position of the field up to, but not including, the first
occurrence of the TERMINATED BY delimiter. If the terminator delimiter is found in the
first column position of a field, then the field is null. If the end of the record is found
before the TERMINATED BY delimiter, then all data up to the end of the record is
considered part of the field.

If TERMINATED BY WHITESPACE is specified, then data is read until the first occurrence
of a whitespace character (spaces, tabs, blanks, line feeds, form feeds, or carriage
returns). Then the current position is advanced until no more adjacent whitespace
characters are found. This allows field values to be delimited by varying amounts of
whitespace. However, unlike non-whitespace terminators, if a whitespace terminator
is found in the first column position of a field, then the field is not treated as null and
can result in record rejection or fields loaded into incorrect columns.

Fields Using ENCLOSED BY Without TERMINATED BY
The following steps take place when a field uses an ENCLOSED BY clause without also
using a TERMINATED BY clause.

1. Any whitespace at the beginning of the field is skipped.

2. The first non-whitespace character found must be the start of a string that matches
the first ENCLOSED BY delimiter. If it is not, then the row is rejected.

3. If the first ENCLOSED BY delimiter is found, then the search for the second ENCLOSED
BY delimiter begins.

4. If two of the second ENCLOSED BY delimiters are found adjacent to each other, then
they are interpreted as a single occurrence of the delimiter and included as part of
the data for the field. The search then continues for another instance of the second
ENCLOSED BY delimiter.

5. If the end of the record is found before the second ENCLOSED BY delimiter is found,
then the row is rejected.

Fields Using ENCLOSED BY With TERMINATED BY
The following steps take place when a field uses an ENCLOSED BY clause and also uses a
TERMINATED BY clause.

1. Any whitespace at the beginning of the field is skipped.

2. The first non-whitespace character found must be the start of a string that matches
the first ENCLOSED BY delimiter. If it is not, then the row is rejected.

3. If the first ENCLOSED BY delimiter is found, then the search for the second ENCLOSED
BY delimiter begins.

4. If two of the second ENCLOSED BY delimiters are found adjacent to each other, then
they are interpreted as a single occurrence of the delimiter and included as part of
the data for the field. The search then continues for the second instance of the
ENCLOSED BY delimiter.

SQL*Loader Datatypes

SQL*Loader Field List Reference 10-23

5. If the end of the record is found before the second ENCLOSED BY delimiter is found,
then the row is rejected.

6. If the second ENCLOSED BY delimiter is found, then the parser looks for the
TERMINATED BY delimiter. If the TERMINATED BY delimiter is anything other than
WHITESPACE, then whitespace found between the end of the second ENCLOSED BY
delimiter and the TERMINATED BY delimiter is skipped over.

7. The row is not rejected if the end of the record is found before the TERMINATED BY
delimiter is found.

Fields Using OPTIONALLY ENCLOSED BY With TERMINATED BY
The following steps take place when a field uses an OPTIONALLY ENCLOSED BY clause
and a TERMINATED BY clause.

1. Any whitespace at the beginning of the field is skipped.

2. The parser checks to see if the first non-whitespace character found is the start of a
string that matches the first OPTIONALLY ENCLOSED BY delimiter. If it is not, and the
OPTIONALLY ENCLOSED BY delimiters are not present in the data, then the data for
the field is read from the current position of the field up to, but not including, the
first occurrence of the TERMINATED BY delimiter. If the TERMINATED BY delimiter is
found in the first column position, then the field is null. If the end of the record is
found before the TERMINATED BY delimiter, then all data up to the end of the record
is considered part of the field.

3. If the first OPTIONALLY ENCLOSED BY delimiter is found, then the search for the
second OPTIONALLY ENCLOSED BY delimiter begins.

4. If two of the second OPTIONALLY ENCLOSED BY delimiters are found adjacent to
each other, then they are interpreted as a single occurrence of the delimiter and
included as part of the data for the field. The search then continues for the second
OPTIONALLY ENCLOSED BY delimiter.

5. If the end of the record is found before the second OPTIONALLY ENCLOSED BY
delimiter is found, then the row is rejected.

6. If the OPTIONALLY ENCLOSED BY delimiter is present in the data, then the parser
looks for the TERMINATED BY delimiter. If the TERMINATED BY delimiter is anything
other than WHITESPACE, then whitespace found between the end of the second
OPTIONALLY ENCLOSED BY delimiter and the TERMINATED BY delimiter is skipped
over.

7. The row is not rejected if the end of record is found before the TERMINATED BY
delimiter is found.

Note: Only WHITESPACE is allowed between the second ENCLOSED BY
delimiter and the TERMINATED BY delimiter. Any other characters will
cause an error.

SQL*Loader Datatypes

10-24 Oracle Database Utilities

Conflicting Field Lengths for Character Datatypes
A control file can specify multiple lengths for the character-data fields CHAR, DATE, and
numeric EXTERNAL. If conflicting lengths are specified, then one of the lengths takes
precedence. A warning is also issued when a conflict exists. This section explains
which length is used.

Predetermined Size Fields
If you specify a starting position and ending position for one of these fields, then the
length of the field is determined by these specifications. If you specify a length as part
of the datatype and do not give an ending position, the field has the given length. If
starting position, ending position, and length are all specified, and the lengths differ,
then the length given as part of the datatype specification is used for the length of the
field, as follows:

POSITION(1:10) CHAR(15)

In this example, the length of the field is 15.

Delimited Fields
If a delimited field is specified with a length, or if a length can be calculated from the
starting and ending positions, then that length is the maximum length of the field. The
specified maximum length is in bytes if byte-length semantics are used for the field,
and in characters if character-length semantics are used for the field. If no length is
specified or can be calculated from the start and end positions, then the maximum
length defaults to 255 bytes. The actual length can vary up to that maximum, based on
the presence of the delimiter.

If delimiters and also starting and ending positions are specified for the field, then
only the position specification has any effect. Any enclosure or termination delimiters
are ignored.

If the expected delimiter is absent, then the end of record terminates the field. If
TRAILING NULLCOLS is specified, then remaining fields are null. If either the delimiter
or the end of record produces a field that is longer than the maximum, then
SQL*Loader rejects the record and returns an error.

Date Field Masks
The length of a date field depends on the mask, if a mask is specified. The mask
provides a format pattern, telling SQL*Loader how to interpret the data in the record.
For example, assume the mask is specified as follows:

"Month dd, yyyy"

Caution: Be careful when you specify whitespace characters as the
TERMINATED BY delimiter and are also using OPTIONALLY ENCLOSED BY.
SQL*Loader strips off leading whitespace when looking for an
OPTIONALLY ENCLOSED BY delimiter. If the data contains two adjacent
TERMINATED BY delimiters in the middle of a record (usually done to
set a field in the record to NULL), then the whitespace for the first
TERMINATED BY delimiter will be used to terminate a field, but the
remaining whitespace will be considered as leading whitespace for the
next field rather than the TERMINATED BY delimiter for the next field. If
you want to load a NULL value, then you must include the ENCLOSED
BY delimiters in the data.

Specifying Field Conditions

SQL*Loader Field List Reference 10-25

Then "May 3, 2008" would occupy 11 bytes in the record (with byte-length semantics),
while "January 31, 2009" would occupy 16.

If starting and ending positions are specified, however, then the length calculated from
the position specification overrides a length derived from the mask. A specified length
such as DATE(12) overrides either of those. If the date field is also specified with
terminating or enclosing delimiters, then the length specified in the control file is
interpreted as a maximum length for the field.

Specifying Field Conditions
A field condition is a statement about a field in a logical record that evaluates as true
or false. It is used in the WHEN, NULLIF, and DEFAULTIF clauses.

A field condition is similar to the condition in the CONTINUEIF clause, with two
important differences. First, positions in the field condition refer to the logical record,
not to the physical record. Second, you can specify either a position in the logical
record or the name of a field in the data file (including filler fields).

The syntax for the field_condition clause is as follows:

The syntax for the pos_spec clause is as follows:

Table 10–4 describes the parameters used for the field condition clause. For a full
description of the position specification parameters, see Table 10–1.

See Also: "Datetime and Interval Datatypes" on page 10-12 for
more information about the DATE field

Note: If a field used in a clause evaluation has a NULL value, then
that clause will always evaluate to FALSE. This feature is illustrated
in Example 10–5.

Note: A field condition cannot be based on fields in a secondary
data file (SDF).

(full_fieldname

pos_spec
operator

’char_string’

X’hex_string’

BLANKS

)

AND

(

start

*
+integer

:

–
end

)

Specifying Field Conditions

10-26 Oracle Database Utilities

Comparing Fields to BLANKS
The BLANKS parameter makes it possible to determine if a field of unknown length is
blank.

For example, use the following clause to load a blank field as null:

full_fieldname ... NULLIF column_name=BLANKS

The BLANKS parameter recognizes only blanks, not tabs. It can be used in place of a
literal string in any field comparison. The condition is true whenever the column is
entirely blank.

The BLANKS parameter also works for fixed-length fields. Using it is the same as
specifying an appropriately sized literal string of blanks. For example, the following
specifications are equivalent:

fixed_field CHAR(2) NULLIF fixed_field=BLANKS
fixed_field CHAR(2) NULLIF fixed_field=" "

Table 10–4 Parameters for the Field Condition Clause

Parameter Description

pos_spec Specifies the starting and ending position of the comparison
field in the logical record. It must be surrounded by
parentheses. Either start-end or start:end is acceptable.

The starting location can be specified as a column number, or
as * (next column), or as *+n (next column plus an offset).

If you omit an ending position, then the length of the field is
determined by the length of the comparison string. If the
lengths are different, then the shorter field is padded.
Character strings are padded with blanks, hexadecimal strings
with zeros.

start Specifies the starting position of the comparison field in the
logical record.

end Specifies the ending position of the comparison field in the
logical record.

full_fieldname full_fieldname is the full name of a field specified using dot
notation. If the field col2 is an attribute of a column object
col1, then when referring to col2 in one of the directives, you
must use the notation col1.col2. The column name and the
field name referencing or naming the same entity can be
different, because the column name never includes the full
name of the entity (no dot notation).

operator A comparison operator for either equal or not equal.

char_string A string of characters enclosed in single or double quotation
marks that is compared to the comparison field. If the
comparison is true, then the current record is inserted into the
table.

X'hex_string' A string of hexadecimal digits, where each pair of digits
corresponds to one byte in the field. It is enclosed in single or
double quotation marks. If the comparison is true, then the
current record is inserted into the table.

BLANKS Enables you to test a field to see if it consists entirely of blanks.
BLANKS is required when you are loading delimited data and
you cannot predict the length of the field, or when you use a
multibyte character set that has multiple blanks.

Using the WHEN, NULLIF, and DEFAULTIF Clauses

SQL*Loader Field List Reference 10-27

There can be more than one blank in a multibyte character set. It is a good idea to use
the BLANKS parameter with these character sets instead of specifying a string of blank
characters.

The character string will match only a specific sequence of blank characters, while the
BLANKS parameter will match combinations of different blank characters. For more
information about multibyte character sets, see "Multibyte (Asian) Character Sets" on
page 9-13.

Comparing Fields to Literals
When a data field is compared to a literal string that is shorter than the data field, the
string is padded. Character strings are padded with blanks, for example:

NULLIF (1:4)=" "

This example compares the data in position 1:4 with 4 blanks. If position 1:4 contains 4
blanks, then the clause evaluates as true.

Hexadecimal strings are padded with hexadecimal zeros, as in the following clause:

NULLIF (1:4)=X'FF'

This clause compares position 1:4 to hexadecimal 'FF000000'.

Using the WHEN, NULLIF, and DEFAULTIF Clauses
The following information applies to scalar fields. For nonscalar fields (column objects,
LOBs, and collections), the WHEN, NULLIF, and DEFAULTIF clauses are processed
differently because nonscalar fields are more complex.

The results of a WHEN, NULLIF, or DEFAULTIF clause can be different depending on
whether the clause specifies a field name or a position.

■ If the WHEN, NULLIF, or DEFAULTIF clause specifies a field name, then SQL*Loader
compares the clause to the evaluated value of the field. The evaluated value takes
trimmed whitespace into consideration. See "Trimming Whitespace" on page 10-35
for information about trimming blanks and tabs.

■ If the WHEN, NULLIF, or DEFAULTIF clause specifies a position, then SQL*Loader
compares the clause to the original logical record in the data file. No whitespace
trimming is done on the logical record in that case.

Different results are more likely if the field has whitespace that is trimmed, or if the
WHEN, NULLIF, or DEFAULTIF clause contains blanks or tabs or uses the BLANKS
parameter. If you require the same results for a field specified by name and for the
same field specified by position, then use the PRESERVE BLANKS option. The PRESERVE
BLANKS option instructs SQL*Loader not to trim whitespace when it evaluates the
values of the fields.

The results of a WHEN, NULLIF, or DEFAULTIF clause are also affected by the order in
which SQL*Loader operates, as described in the following steps. SQL*Loader
performs these steps in order, but it does not always perform all of them. Once a field
is set, any remaining steps in the process are ignored. For example, if the field is set in
Step 5, then SQL*Loader does not move on to Step 6.

1. SQL*Loader evaluates the value of each field for the input record and trims any
whitespace that should be trimmed (according to existing guidelines for trimming
blanks and tabs).

2. For each record, SQL*Loader evaluates any WHEN clauses for the table.

Using the WHEN, NULLIF, and DEFAULTIF Clauses

10-28 Oracle Database Utilities

3. If the record satisfies the WHEN clauses for the table, or no WHEN clauses are
specified, then SQL*Loader checks each field for a NULLIF clause.

4. If a NULLIF clause exists, then SQL*Loader evaluates it.

5. If the NULLIF clause is satisfied, then SQL*Loader sets the field to NULL.

6. If the NULLIF clause is not satisfied, or if there is no NULLIF clause, then
SQL*Loader checks the length of the field from field evaluation. If the field has a
length of 0 from field evaluation (for example, it was a null field, or whitespace
trimming resulted in a null field), then SQL*Loader sets the field to NULL. In this
case, any DEFAULTIF clause specified for the field is not evaluated.

7. If any specified NULLIF clause is false or there is no NULLIF clause, and if the field
does not have a length of 0 from field evaluation, then SQL*Loader checks the
field for a DEFAULTIF clause.

8. If a DEFAULTIF clause exists, then SQL*Loader evaluates it.

9. If the DEFAULTIF clause is satisfied, then the field is set to 0 if the field in the data
file is a numeric field. It is set to NULL if the field is not a numeric field. The
following fields are numeric fields and will be set to 0 if they satisfy the DEFAULTIF
clause:

■ BYTEINT

■ SMALLINT

■ INTEGER

■ FLOAT

■ DOUBLE

■ ZONED

■ (packed) DECIMAL

■ Numeric EXTERNAL (INTEGER, FLOAT, DECIMAL, and ZONED)

10. If the DEFAULTIF clause is not satisfied, or if there is no DEFAULTIF clause, then
SQL*Loader sets the field with the evaluated value from Step 1.

The order in which SQL*Loader operates could cause results that you do not expect.
For example, the DEFAULTIF clause may look like it is setting a numeric field to NULL
rather than to 0.

Note: As demonstrated in these steps, the presence of NULLIF and
DEFAULTIF clauses results in extra processing that SQL*Loader must
perform. This can affect performance. Note that during Step 1,
SQL*Loader will set a field to NULL if its evaluated length is zero.
To improve performance, consider whether it might be possible for
you to change your data to take advantage of this. The detection of
NULLs as part of Step 1 occurs much more quickly than the
processing of a NULLIF or DEFAULTIF clause.

For example, a CHAR(5) will have zero length if it falls off the end of
the logical record or if it contains all blanks and blank trimming is
in effect. A delimited field will have zero length if there are no
characters between the start of the field and the terminator.

Also, for character fields, NULLIF is usually faster to process than
DEFAULTIF (the default for character fields is NULL).

Using the WHEN, NULLIF, and DEFAULTIF Clauses

SQL*Loader Field List Reference 10-29

Examples of Using the WHEN, NULLIF, and DEFAULTIF Clauses
Example 10–2 through Example 10–5 clarify the results for different situations in
which the WHEN, NULLIF, and DEFAULTIF clauses might be used. In the examples, a
blank or space is indicated with a period (.). Assume that col1 and col2 are
VARCHAR2(5) columns in the database.

Example 10–2 DEFAULTIF Clause Is Not Evaluated

The control file specifies:

(col1 POSITION (1:5),
 col2 POSITION (6:8) CHAR INTEGER EXTERNAL DEFAULTIF col1 = 'aname')

The data file contains:

aname...

In Example 10–2, col1 for the row evaluates to aname. col2 evaluates to NULL with a
length of 0 (it is ... but the trailing blanks are trimmed for a positional field).

When SQL*Loader determines the final loaded value for col2, it finds no WHEN clause
and no NULLIF clause. It then checks the length of the field, which is 0 from field
evaluation. Therefore, SQL*Loader sets the final value for col2 to NULL. The DEFAULTIF
clause is not evaluated, and the row is loaded as aname for col1 and NULL for col2.

Example 10–3 DEFAULTIF Clause Is Evaluated

The control file specifies:

.

.

.
PRESERVE BLANKS
.
.
.
(col1 POSITION (1:5),
 col2 POSITION (6:8) INTEGER EXTERNAL DEFAULTIF col1 = 'aname'

The data file contains:

aname...

In Example 10–3, col1 for the row again evaluates to aname. col2 evaluates to '...'
because trailing blanks are not trimmed when PRESERVE BLANKS is specified.

When SQL*Loader determines the final loaded value for col2, it finds no WHEN clause
and no NULLIF clause. It then checks the length of the field from field evaluation,
which is 3, not 0.

Then SQL*Loader evaluates the DEFAULTIF clause, which evaluates to true because
col1 is aname, which is the same as aname.

Because col2 is a numeric field, SQL*Loader sets the final value for col2 to 0. The row
is loaded as aname for col1 and as 0 for col2.

Example 10–4 DEFAULTIF Clause Specifies a Position

The control file specifies:

(col1 POSITION (1:5),
 col2 POSITION (6:8) INTEGER EXTERNAL DEFAULTIF (1:5) = BLANKS)

Loading Data Across Different Platforms

10-30 Oracle Database Utilities

The data file contains:

.....123

In Example 10–4, col1 for the row evaluates to NULL with a length of 0 (it is but
the trailing blanks are trimmed). col2 evaluates to 123.

When SQL*Loader sets the final loaded value for col2, it finds no WHEN clause and no
NULLIF clause. It then checks the length of the field from field evaluation, which is 3,
not 0.

Then SQL*Loader evaluates the DEFAULTIF clause. It compares (1:5) which is
to BLANKS, which evaluates to true. Therefore, because col2 is a numeric field (integer
EXTERNAL is numeric), SQL*Loader sets the final value for col2 to 0. The row is loaded
as NULL for col1 and 0 for col2.

Example 10–5 DEFAULTIF Clause Specifies a Field Name

The control file specifies:

(col1 POSITION (1:5),
 col2 POSITION(6:8) INTEGER EXTERNAL DEFAULTIF col1 = BLANKS)

The data file contains:

.....123

In Example 10–5, col1 for the row evaluates to NULL with a length of 0 (it is but
the trailing blanks are trimmed). col2 evaluates to 123.

When SQL*Loader determines the final value for col2, it finds no WHEN clause and no
NULLIF clause. It then checks the length of the field from field evaluation, which is 3,
not 0.

Then SQL*Loader evaluates the DEFAULTIF clause. As part of the evaluation, it checks
to see that col1 is NULL from field evaluation. It is NULL, so the DEFAULTIF clause
evaluates to false. Therefore, SQL*Loader sets the final value for col2 to 123, its
original value from field evaluation. The row is loaded as NULL for col1 and 123 for
col2.

Loading Data Across Different Platforms
When a data file created on one platform is to be loaded on a different platform, the
data must be written in a form that the target system can read. For example, if the
source system has a native, floating-point representation that uses 16 bytes, and the
target system's floating-point numbers are 12 bytes, then the target system cannot
directly read data generated on the source system.

The best solution is to load data across an Oracle Net database link, taking advantage
of the automatic conversion of datatypes. This is the recommended approach,
whenever feasible, and means that SQL*Loader must be run on the source system.

Problems with interplatform loads typically occur with native datatypes. In some
situations, it is possible to avoid problems by lengthening a field by padding it with
zeros, or to read only part of the field to shorten it (for example, when an 8-byte
integer is to be read on a system that uses 4-byte integers, or the reverse). Note,
however, that incompatible datatype implementation may prevent this.

If you cannot use an Oracle Net database link and the data file must be accessed by
SQL*Loader running on the target system, then it is advisable to use only the portable

Byte Ordering

SQL*Loader Field List Reference 10-31

SQL*Loader datatypes (for example, CHAR, DATE, VARCHARC, and numeric EXTERNAL).
Data files written using these datatypes may be longer than those written with native
datatypes. They may take more time to load, but they transport more readily across
platforms.

If you know in advance that the byte ordering schemes or native integer lengths differ
between the platform on which the input data will be created and the platform on
which SQL*loader will be run, then investigate the possible use of the appropriate
technique to indicate the byte order of the data or the length of the native integer.
Possible techniques for indicating the byte order are to use the BYTEORDER parameter or
to place a byte-order mark (BOM) in the file. Both methods are described in "Byte
Ordering" on page 10-31. It may then be possible to eliminate the incompatibilities and
achieve a successful cross-platform data load. If the byte order is different from the
SQL*Loader default, then you must indicate a byte order.

Byte Ordering

SQL*Loader can load data from a data file that was created on a system whose byte
ordering is different from the byte ordering on the system where SQL*Loader is
running, even if the data file contains certain nonportable datatypes.

By default, SQL*Loader uses the byte order of the system where it is running as the
byte order for all data files. For example, on a Sun Solaris system, SQL*Loader uses
big-endian byte order. On an Intel or an Intel-compatible PC, SQL*Loader uses
little-endian byte order.

Byte order affects the results when data is written and read an even number of bytes at
a time (typically 2 bytes, 4 bytes, or 8 bytes). The following are some examples of this:

■ The 2-byte integer value 1 is written as 0x0001 on a big-endian system and as
0x0100 on a little-endian system.

■ The 4-byte integer 66051 is written as 0x00010203 on a big-endian system and as
0x03020100 on a little-endian system.

Byte order also affects character data in the UTF16 character set if it is written and read
as 2-byte entities. For example, the character 'a' (0x61 in ASCII) is written as 0x0061 in
UTF16 on a big-endian system, but as 0x6100 on a little-endian system.

All Oracle-supported character sets, except UTF16, are written one byte at a time. So,
even for multibyte character sets such as UTF8, the characters are written and read the
same way on all systems, regardless of the byte order of the system. Therefore, data in
the UTF16 character set is nonportable because it is byte-order dependent. Data in all
other Oracle-supported character sets is portable.

Byte order in a data file is only an issue if the data file that contains the
byte-order-dependent data is created on a system that has a different byte order from
the system on which SQL*Loader is running. If SQL*Loader knows the byte order of
the data, then it swaps the bytes as necessary to ensure that the data is loaded correctly
in the target database. Byte swapping means that data in big-endian format is
converted to little-endian format, or the reverse.

Note: The information in this section is only applicable if you are
planning to create input data on a system that has a different
byte-ordering scheme than the system on which SQL*Loader will
be run. Otherwise, you can skip this section.

Byte Ordering

10-32 Oracle Database Utilities

To indicate byte order of the data to SQL*Loader, you can use the BYTEORDER
parameter, or you can place a byte-order mark (BOM) in the file. If you do not use one
of these techniques, then SQL*Loader will not correctly load the data into the data file.

Specifying Byte Order
To specify the byte order of data in the input data files, use the following syntax in the
SQL*Loader control file:

The BYTEORDER parameter has the following characteristics:

■ BYTEORDER is placed after the LENGTH parameter in the SQL*Loader control file.

■ It is possible to specify a different byte order for different data files. However, the
BYTEORDER specification before the INFILE parameters applies to the entire list of
primary data files.

■ The BYTEORDER specification for the primary data files is also used as the default
for LOBFILEs and SDFs. To override this default, specify BYTEORDER with the
LOBFILE or SDF specification.

■ The BYTEORDER parameter is not applicable to data contained within the control file
itself.

■ The BYTEORDER parameter applies to the following:

– Binary INTEGER and SMALLINT data

– Binary lengths in varying-length fields (that is, for the VARCHAR, VARGRAPHIC,
VARRAW, and LONG VARRAW datatypes)

– Character data for data files in the UTF16 character set

– FLOAT and DOUBLE datatypes, if the system where the data was written has a
compatible floating-point representation with that on the system where
SQL*Loader is running

■ The BYTEORDER parameter does not apply to any of the following:

– Raw datatypes (RAW, VARRAW, or VARRAWC)

– Graphic datatypes (GRAPHIC, VARGRAPHIC, or GRAPHIC EXTERNAL)

– Character data for data files in any character set other than UTF16

– ZONED or (packed) DECIMAL datatypes

Using Byte Order Marks (BOMs)
Data files that use a Unicode encoding (UTF-16 or UTF-8) may contain a byte-order
mark (BOM) in the first few bytes of the file. For a data file that uses the character set
UTF16, the values {0xFE,0xFF} in the first two bytes of the file are the BOM indicating

See Also: Case study 11, Loading Data in the Unicode Character
Set, for an example of how SQL*Loader handles byte swapping.
(See "SQL*Loader Case Studies" on page 7-13 for information on
how to access case studies.)

BYTEORDER
BIG

LITTLE

ENDIAN

Byte Ordering

SQL*Loader Field List Reference 10-33

that the file contains big-endian data. The values {0xFF,0xFE} are the BOM indicating
that the file contains little-endian data.

If the first primary data file uses the UTF16 character set and it also begins with a
BOM, then that mark is read and interpreted to determine the byte order for all
primary data files. SQL*Loader reads and interprets the BOM, skips it, and begins
processing data with the byte immediately after the BOM. The BOM setting overrides
any BYTEORDER specification for the first primary data file. BOMs in data files other
than the first primary data file are read and used for checking for byte-order conflicts
only. They do not change the byte-order setting that SQL*Loader uses in processing
the data file.

In summary, the precedence of the byte-order indicators for the first primary data file
is as follows:

■ BOM in the first primary data file, if the data file uses a Unicode character set that
is byte-order dependent (UTF16) and a BOM is present

■ BYTEORDER parameter value, if specified before the INFILE parameters

■ The byte order of the system where SQL*Loader is running

For a data file that uses a UTF8 character set, a BOM of {0xEF,0xBB,0xBF} in the first 3
bytes indicates that the file contains UTF8 data. It does not indicate the byte order of
the data, because data in UTF8 is not byte-order dependent. If SQL*Loader detects a
UTF8 BOM, then it skips it but does not change any byte-order settings for processing
the data files.

SQL*Loader first establishes a byte-order setting for the first primary data file using
the precedence order just defined. This byte-order setting is used for all primary data
files. If another primary data file uses the character set UTF16 and also contains a
BOM, then the BOM value is compared to the byte-order setting established for the
first primary data file. If the BOM value matches the byte-order setting of the first
primary data file, then SQL*Loader skips the BOM, and uses that byte-order setting to
begin processing data with the byte immediately after the BOM. If the BOM value
does not match the byte-order setting established for the first primary data file, then
SQL*Loader issues an error message and stops processing.

If any LOBFILEs or secondary data files are specified in the control file, then
SQL*Loader establishes a byte-order setting for each LOBFILE and secondary data file
(SDF) when it is ready to process the file. The default byte-order setting for LOBFILEs
and SDFs is the byte-order setting established for the first primary data file. This is
overridden if the BYTEORDER parameter is specified with a LOBFILE or SDF. In either
case, if the LOBFILE or SDF uses the UTF16 character set and contains a BOM, the
BOM value is compared to the byte-order setting for the file. If the BOM value matches
the byte-order setting for the file, then SQL*Loader skips the BOM, and uses that
byte-order setting to begin processing data with the byte immediately after the BOM.
If the BOM value does not match, then SQL*Loader issues an error message and stops
processing.

In summary, the precedence of the byte-order indicators for LOBFILEs and SDFs is as
follows:

■ BYTEORDER parameter value specified with the LOBFILE or SDF

■ The byte-order setting established for the first primary data file

Loading All-Blank Fields

10-34 Oracle Database Utilities

Suppressing Checks for BOMs
A data file in a Unicode character set may contain binary data that matches the BOM
in the first bytes of the file. For example the integer(2) value 0xFEFF = 65279 decimal
matches the big-endian BOM in UTF16. In that case, you can tell SQL*Loader to read
the first bytes of the data file as data and not check for a BOM by specifying the
BYTEORDERMARK parameter with the value NOCHECK. The syntax for the BYTEORDERMARK
parameter is:

BYTEORDERMARK NOCHECK indicates that SQL*Loader should not check for a BOM and
should read all the data in the data file as data.

BYTEORDERMARK CHECK tells SQL*Loader to check for a BOM. This is the default
behavior for a data file in a Unicode character set. But this specification may be used in
the control file for clarification. It is an error to specify BYTEORDERMARK CHECK for a data
file that uses a non-Unicode character set.

The BYTEORDERMARK parameter has the following characteristics:

■ It is placed after the optional BYTEORDER parameter in the SQL*Loader control file.

■ It applies to the syntax specification for primary data files, and also to LOBFILEs
and secondary data files (SDFs).

■ It is possible to specify a different BYTEORDERMARK value for different data files;
however, the BYTEORDERMARK specification before the INFILE parameters applies to
the entire list of primary data files.

■ The BYTEORDERMARK specification for the primary data files is also used as the
default for LOBFILEs and SDFs, except that the value CHECK is ignored in this case
if the LOBFILE or SDF uses a non-Unicode character set. This default setting for
LOBFILEs and secondary data files can be overridden by specifying
BYTEORDERMARK with the LOBFILE or SDF specification.

Loading All-Blank Fields
Fields that are totally blank cause the record to be rejected. To load one of these fields
as NULL, use the NULLIF clause with the BLANKS parameter.

If an all-blank CHAR field is surrounded by enclosure delimiters, then the blanks within
the enclosures are loaded. Otherwise, the field is loaded as NULL.

A DATE or numeric field that consists entirely of blanks is loaded as a NULL field.

Note: If the character set of your data file is a unicode character
set and there is a byte-order mark in the first few bytes of the file,
then do not use the SKIP parameter. If you do, then the byte-order
mark will not be read and interpreted as a byte-order mark.

BYTEORDERMARK
CHECK

NOCHECK

Trimming Whitespace

SQL*Loader Field List Reference 10-35

Trimming Whitespace
Blanks, tabs, and other nonprinting characters (such as carriage returns and line feeds)
constitute whitespace. Leading whitespace occurs at the beginning of a field. Trailing
whitespace occurs at the end of a field. Depending on how the field is specified,
whitespace may or may not be included when the field is inserted into the database.
This is illustrated in Figure 10–1, where two CHAR fields are defined for a data record.

The field specifications are contained in the control file. The control file CHAR
specification is not the same as the database CHAR specification. A data field defined as
CHAR in the control file simply tells SQL*Loader how to create the row insert. The data
could then be inserted into a CHAR, VARCHAR2, NCHAR, NVARCHAR2, or even a NUMBER or
DATE column in the database, with the Oracle database handling any necessary
conversions.

By default, SQL*Loader removes trailing spaces from CHAR data before passing it to the
database. So, in Figure 10–1, both Field 1 and Field 2 are passed to the database as
3-byte fields. However, when the data is inserted into the table, there is a difference.

Figure 10–1 Example of Field Conversion

See Also:

■ Case study 6, Loading Data Using the Direct Path Load
Method, for an example of how to load all-blank fields as NULL
with the NULLIF clause. (See "SQL*Loader Case Studies" on
page 7-13 for information on how to access case studies.)

■ "Trimming Whitespace" on page 10-35

■ "How the PRESERVE BLANKS Option Affects Whitespace
Trimming" on page 10-40

DATAFILE

ROW
INSERT

DATABASE

SQL*Loader

SERVER

Field 1

aaa bbb

Column 1 Column 2

Table

CHAR (5) VARCHAR (5)Column Datatypes

CHAR (5) CHAR (5)Control File Specifications

a a a _ _ b b b

a a a b b b

Field 2

Trimming Whitespace

10-36 Oracle Database Utilities

Column 1 is defined in the database as a fixed-length CHAR column of length 5. So the
data (aaa) is left-justified in that column, which remains 5 bytes wide. The extra space
on the right is padded with blanks. Column 2, however, is defined as a varying-length
field with a maximum length of 5 bytes. The data for that column (bbb) is left-justified
as well, but the length remains 3 bytes.

Table 10–5 summarizes when and how whitespace is removed from input data fields
when PRESERVE BLANKS is not specified. See "How the PRESERVE BLANKS Option
Affects Whitespace Trimming" on page 10-40 for details on how to prevent whitespace
trimming.

The rest of this section discusses the following topics with regard to trimming
whitespace:

■ Datatypes for Which Whitespace Can Be Trimmed

■ Specifying Field Length for Datatypes for Which Whitespace Can Be Trimmed

■ Relative Positioning of Fields

■ Leading Whitespace

■ Trimming Trailing Whitespace

■ Trimming Enclosed Fields

Datatypes for Which Whitespace Can Be Trimmed
The information in this section applies only to fields specified with one of the
character-data datatypes:

■ CHAR datatype

■ Datetime and interval datatypes

■ Numeric EXTERNAL datatypes:

Table 10–5 Behavior Summary for Trimming Whitespace

Specification Data Result

Leading
Whitespace
Present1

1 When an all-blank field is trimmed, its value is NULL.

Trailing
Whitespace
Present1

Predetermined size __aa__ __aa Yes No

Terminated __aa__, __aa__ Yes Yes2

2 Except for fields that are terminated by whitespace.

Enclosed "__aa__" __aa__ Yes Yes

Terminated and
enclosed

"__aa__", __aa__ Yes Yes

Optional enclosure
(present)

"__aa__", __aa__ Yes Yes

Optional enclosure
(absent)

__aa__, aa__ No Yes

Previous field
terminated by
whitespace

__aa__ aa3

3 Presence of trailing whitespace depends on the current field's specification, as shown by the other
entries in the table.

No 3

Trimming Whitespace

SQL*Loader Field List Reference 10-37

– INTEGER EXTERNAL

– FLOAT EXTERNAL

– (packed) DECIMAL EXTERNAL

– ZONED (decimal) EXTERNAL

Specifying Field Length for Datatypes for Which Whitespace Can Be Trimmed
There are two ways to specify field length. If a field has a constant length that is
defined in the control file with a position specification or the datatype and length, then
it has a predetermined size. If a field's length is not known in advance, but depends on
indicators in the record, then the field is delimited, using either enclosure or
termination delimiters.

If a position specification with start and end values is defined for a field that also has
enclosure or termination delimiters defined, then only the position specification has
any effect. The enclosure and termination delimiters are ignored.

Predetermined Size Fields
Fields that have a predetermined size are specified with a starting position and ending
position, or with a length, as in the following examples:

loc POSITION(19:31)
loc CHAR(14)

In the second case, even though the exact position of the field is not specified, the
length of the field is predetermined.

Delimited Fields
Delimiters are characters that demarcate field boundaries.

Enclosure delimiters surround a field, like the quotation marks in the following
example, where "__" represents blanks or tabs:

"__aa__"

Termination delimiters signal the end of a field, like the comma in the following
example:

__aa__,

Delimiters are specified with the control clauses TERMINATED BY and ENCLOSED BY, as
shown in the following example:

loc TERMINATED BY "." OPTIONALLY ENCLOSED BY '|'

Relative Positioning of Fields
This section describes how SQL*Loader determines the starting position of a field in
the following situations:

■ No Start Position Specified for a Field

■ Previous Field Terminated by a Delimiter

Note: Although VARCHAR and VARCHARC fields also contain
character data, these fields are never trimmed. These fields include
all whitespace that is part of the field in the data file.

Trimming Whitespace

10-38 Oracle Database Utilities

■ Previous Field Has Both Enclosure and Termination Delimiters

No Start Position Specified for a Field
When a starting position is not specified for a field, it begins immediately after the end
of the previous field. Figure 10–2 illustrates this situation when the previous field
(Field 1) has a predetermined size.

Figure 10–2 Relative Positioning After a Fixed Field

Previous Field Terminated by a Delimiter
If the previous field (Field 1) is terminated by a delimiter, then the next field begins
immediately after the delimiter, as shown in Figure 10–3.

Figure 10–3 Relative Positioning After a Delimited Field

Previous Field Has Both Enclosure and Termination Delimiters
When a field is specified with both enclosure delimiters and a termination delimiter,
then the next field starts after the termination delimiter, as shown in Figure 10–4. If a
nonwhitespace character is found after the enclosure delimiter, but before the
terminator, then SQL*Loader generates an error.

Figure 10–4 Relative Positioning After Enclosure Delimiters

Leading Whitespace
In Figure 10–4, both fields are stored with leading whitespace. Fields do not include
leading whitespace in the following cases:

■ When the previous field is terminated by whitespace, and no starting position is
specified for the current field

■ When optional enclosure delimiters are specified for the field, and the enclosure
delimiters are not present

These cases are illustrated in the following sections.

Field 1 CHAR(9)

a a a a b b b b ,

Field 2 TERMINATED BY ","

a a a a , b b b b ,

Field 2 TERMINATED BY ","Field 1 TERMINATED BY ","

" a a a a " , b b b b ,

Field 2 TERMINATED BY ","
Field 1 TERMINATED BY ","

ENCLOSED BY ' " '

Trimming Whitespace

SQL*Loader Field List Reference 10-39

Previous Field Terminated by Whitespace
If the previous field is TERMINATED BY WHITESPACE, then all whitespace after the field
acts as the delimiter. The next field starts at the next nonwhitespace character.
Figure 10–5 illustrates this case.

Figure 10–5 Fields Terminated by Whitespace

This situation occurs when the previous field is explicitly specified with the
TERMINATED BY WHITESPACE clause, as shown in the example. It also occurs when you
use the global FIELDS TERMINATED BY WHITESPACE clause.

Optional Enclosure Delimiters
Leading whitespace is also removed from a field when optional enclosure delimiters
are specified but not present.

Whenever optional enclosure delimiters are specified, SQL*Loader scans forward,
looking for the first enclosure delimiter. If an enclosure delimiter is not found, then
SQL*Loader skips over whitespace, eliminating it from the field. The first
nonwhitespace character signals the start of the field. This situation is shown in Field 2
in Figure 10–6. (In Field 1 the whitespace is included because SQL*Loader found
enclosure delimiters for the field.)

Figure 10–6 Fields Terminated by Optional Enclosure Delimiters

Unlike the case when the previous field is TERMINATED BY WHITESPACE, this
specification removes leading whitespace even when a starting position is specified for
the current field.

Trimming Trailing Whitespace
Trailing whitespace is always trimmed from character-data fields that have a
predetermined size. These are the only fields for which trailing whitespace is always
trimmed.

Note: If enclosure delimiters are present, then leading whitespace
after the initial enclosure delimiter is kept, but whitespace before
this delimiter is discarded. See the first quotation mark in Field 1,
Figure 10–6.

a a a a b b b b

Field 2 TERMINATED
BY WHITESPACE

Field 1 TERMINATED
BY WHITESPACE

" a a a a " , b b b b ,

Field 2 TERMINATED BY " , "
OPTIONALLY ENCLOSED BY ' " '

Field 1 TERMINATED BY " , "
OPTIONALLY ENCLOSED BY ' " '

How the PRESERVE BLANKS Option Affects Whitespace Trimming

10-40 Oracle Database Utilities

Trimming Enclosed Fields
If a field is enclosed, or terminated and enclosed, like the first field shown in
Figure 10–6, then any whitespace outside the enclosure delimiters is not part of the
field. Any whitespace between the enclosure delimiters belongs to the field, whether it
is leading or trailing whitespace.

How the PRESERVE BLANKS Option Affects Whitespace Trimming
To prevent whitespace trimming in all CHAR, DATE, and numeric EXTERNAL fields, you
specify PRESERVE BLANKS as part of the LOAD statement in the control file. However,
there may be times when you do not want to preserve blanks for all CHAR, DATE, and
numeric EXTERNAL fields. Therefore, SQL*Loader also enables you to specify PRESERVE
BLANKS as part of the datatype specification for individual fields, rather than specifying
it globally as part of the LOAD statement.

In the following example, assume that PRESERVE BLANKS has not been specified as part
of the LOAD statement, but you want the c1 field to default to zero when blanks are
present. You can achieve this by specifying PRESERVE BLANKS on the individual field.
Only that field is affected; blanks will still be removed on other fields.

c1 INTEGER EXTERNAL(10) PRESERVE BLANKS DEFAULTIF c1=BLANKS

In this example, if PRESERVE BLANKS were not specified for the field, then it would
result in the field being improperly loaded as NULL (instead of as 0).

There may be times when you want to specify PRESERVE BLANKS as an option to the
LOAD statement and have it apply to most CHAR, DATE, and numeric EXTERNAL fields.
You can override it for an individual field by specifying NO PRESERVE BLANKS as part of
the datatype specification for that field, as follows:

c1 INTEGER EXTERNAL(10) NO PRESERVE BLANKS

How [NO] PRESERVE BLANKS Works with Delimiter Clauses
The PRESERVE BLANKS option is affected by the presence of the delimiter clauses, as
follows:

■ Leading whitespace is left intact when optional enclosure delimiters are not
present

■ Trailing whitespace is left intact when fields are specified with a predetermined
size

For example, consider the following field, where underscores represent blanks:

__aa__,

Suppose this field is loaded with the following delimiter clause:

TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'

In such a case, if PRESERVE BLANKS is specified, then both the leading whitespace and
the trailing whitespace are retained. If PRESERVE BLANKS is not specified, then the
leading whitespace is trimmed.

Now suppose the field is loaded with the following clause:

TERMINATED BY WHITESPACE

In such a case, if PRESERVE BLANKS is specified, then it does not retain the space at the
beginning of the next field, unless that field is specified with a POSITION clause that

Applying SQL Operators to Fields

SQL*Loader Field List Reference 10-41

includes some of the whitespace. Otherwise, SQL*Loader scans past all whitespace at
the end of the previous field until it finds a nonblank, nontab character.

Applying SQL Operators to Fields
A wide variety of SQL operators can be applied to field data with the SQL string. This
string can contain any combination of SQL expressions that are recognized by the
Oracle database as valid for the VALUES clause of an INSERT statement. In general, any
SQL function that returns a single value that is compatible with the target column's
datatype can be used. SQL strings can be applied to simple scalar column types and
also to user-defined complex types such as column object and collections. See the
information about expressions in the Oracle Database SQL Language Reference.

The column name and the name of the column in a SQL string bind variable must,
with the interpretation of SQL identifier rules, correspond to the same column. But the
two names do not necessarily have to be written exactly the same way, as in the
following example of specifying the control file:

LOAD DATA
INFILE *
APPEND INTO TABLE XXX
("Last" position(1:7) char "UPPER(:\"Last\")"
 first position(8:15) char "UPPER(:first || :FIRST || :\"FIRST\")"
)
BEGINDATA
Phil Grant
Jason Taylor

Note the following about the preceding example:

■ If, during table creation, a column identifier is declared using double quotation
marks because it contains lowercase and/or special-case letters (as in the column
named "Last" above), then the column name in the bind variable must exactly
match the column name used in the CREATE TABLE statement.

■ If a column identifier is declared without double quotation marks during table
creation (as in the column name first above), then because first, FIRST, and
"FIRST" all point to the same column, any of these written formats in a SQL string
bind variable would be acceptable.

The following requirements and restrictions apply when you are using SQL strings:

■ If your control file specifies character input that has an associated SQL string, then
SQL*Loader makes no attempt to modify the data. This is because SQL*Loader
assumes that character input data that is modified using a SQL operator will yield
results that are correct for database insertion.

■ The SQL string appears after any other specifications for a given column.

■ The SQL string must be enclosed in double quotation marks.

■ To enclose a column name in quotation marks within a SQL string, you must use
escape characters.

In the preceding example, Last is enclosed in double quotation marks to preserve
the mixed case, and the double quotation marks necessitate the use of the
backslash (escape) character.

■ If a SQL string contains a column name that references a column object attribute,
then the full object attribute name must be used in the bind variable. Each

See Also: "Trimming Whitespace" on page 10-35

Applying SQL Operators to Fields

10-42 Oracle Database Utilities

attribute name in the full name is an individual identifier. Each identifier is subject
to the SQL identifier quoting rules, independent of the other identifiers in the full
name. For example, suppose you have a column object named CHILD with an
attribute name of "HEIGHT_%TILE". (Note that the attribute name is in double
quotation marks.) To use the full object attribute name in a bind variable, any one
of the following formats would work:

– :CHILD.\"HEIGHT_%TILE\"

– :child.\"HEIGHT_%TILE\"

Enclosing the full name (:\"CHILD.HEIGHT_%TILE\") generates a warning message
that the quoting rule on an object attribute name used in a bind variable has
changed. The warning is only to suggest that the bind variable be written
correctly; it will not cause the load to abort. The quoting rule was changed because
enclosing the full name in quotation marks would have caused SQL to interpret
the name as one identifier rather than a full column object attribute name
consisting of multiple identifiers.

■ The SQL string is evaluated after any NULLIF or DEFAULTIF clauses, but before a
date mask.

■ If the Oracle database does not recognize the string, then the load terminates in
error. If the string is recognized, but causes a database error, then the row that
caused the error is rejected.

■ SQL strings are required when using the EXPRESSION parameter in a field
specification.

■ The SQL string cannot reference fields that are loaded using OID, SID, REF, or
BFILE. Also, it cannot reference filler fields.

■ In direct path mode, a SQL string cannot reference a VARRAY, nested table, or LOB
column. This also includes a VARRAY, nested table, or LOB column that is an
attribute of a column object.

■ The SQL string cannot be used on RECNUM, SEQUENCE, CONSTANT, or SYSDATE fields.

■ The SQL string cannot be used on LOBs, BFILEs, XML columns, or a file that is an
element of a collection.

■ In direct path mode, the final result that is returned after evaluation of the
expression in the SQL string must be a scalar datatype. That is, the expression may
not return an object or collection datatype when performing a direct path load.

Referencing Fields
To refer to fields in the record, precede the field name with a colon (:). Field values
from the current record are substituted. A field name preceded by a colon (:) in a SQL
string is also referred to as a bind variable. Note that bind variables enclosed in single
quotation marks are treated as text literals, not as bind variables.

The following example illustrates how a reference is made to both the current field and
to other fields in the control file. It also illustrates how enclosing bind variables in
single quotation marks causes them to be treated as text literals. Be sure to read the
notes following this example to help you fully understand the concepts it illustrates.

LOAD DATA
INFILE *
APPEND INTO TABLE YYY
(
 field1 POSITION(1:6) CHAR "LOWER(:field1)"

Applying SQL Operators to Fields

SQL*Loader Field List Reference 10-43

 field2 CHAR TERMINATED BY ','
 NULLIF ((1) = 'a') DEFAULTIF ((1)= 'b')
 "RTRIM(:field2)"
 field3 CHAR(7) "TRANSLATE(:field3, ':field1', ':1')",
 field4 COLUMN OBJECT
 (
 attr1 CHAR(3) "UPPER(:field4.attr3)",
 attr2 CHAR(2),
 attr3 CHAR(3) ":field4.attr1 + 1"
),
 field5 EXPRESSION "MYFUNC(:FIELD4, SYSDATE)"
)
BEGINDATA
ABCDEF1234511 ,:field1500YYabc
abcDEF67890 ,:field2600ZZghl

Notes About This Example:

■ In the following line, :field1 is not enclosed in single quotation marks and is
therefore interpreted as a bind variable:

field1 POSITION(1:6) CHAR "LOWER(:field1)"

■ In the following line, ':field1' and ':1' are enclosed in single quotation marks
and are therefore treated as text literals and passed unchanged to the TRANSLATE
function:

field3 CHAR(7) "TRANSLATE(:field3, ':field1', ':1')"

For more information about the use of quotation marks inside quoted strings, see
"Specifying File Names and Object Names" on page 9-4.

■ For each input record read, the value of the field referenced by the bind variable
will be substituted for the bind variable. For example, the value ABCDEF in the first
record is mapped to the first field :field1. This value is then passed as an
argument to the LOWER function.

■ A bind variable in a SQL string need not reference the current field. In the
preceding example, the bind variable in the SQL string for field FIELD4.ATTR1
references field FIELD4.ATTR3. The field FIELD4.ATTR1 is still mapped to the
values 500 and 600 in the input records, but the final values stored in its
corresponding columns are ABC and GHL.

■ field5 is not mapped to any field in the input record. The value that is stored in
the target column is the result of executing the MYFUNC PL/SQL function, which
takes two arguments. The use of the EXPRESSION parameter requires that a SQL
string be used to compute the final value of the column because no input data is
mapped to the field.

Common Uses of SQL Operators in Field Specifications
SQL operators are commonly used for the following tasks:

■ Loading external data with an implied decimal point:

 field1 POSITION(1:9) DECIMAL EXTERNAL(8) ":field1/1000"

■ Truncating fields that could be too long:

 field1 CHAR TERMINATED BY "," "SUBSTR(:field1, 1, 10)"

Applying SQL Operators to Fields

10-44 Oracle Database Utilities

Combinations of SQL Operators
Multiple operators can also be combined, as in the following examples:

field1 POSITION(*+3) INTEGER EXTERNAL
 "TRUNC(RPAD(:field1,6,'0'), -2)"
field1 POSITION(1:8) INTEGER EXTERNAL
 "TRANSLATE(RTRIM(:field1),'N/A', '0')"
field1 CHAR(10)
 "NVL(LTRIM(RTRIM(:field1)), 'unknown')"

Using SQL Strings with a Date Mask
When a SQL string is used with a date mask, the date mask is evaluated after the SQL
string. Consider a field specified as follows:

field1 DATE "dd-mon-yy" "RTRIM(:field1)"

SQL*Loader internally generates and inserts the following:

TO_DATE(RTRIM(<field1_value>), 'dd-mon-yyyy')

Note that when using the DATE field datatype, it is not possible to have a SQL string
without a date mask. This is because SQL*Loader assumes that the first quoted string
it finds after the DATE parameter is a date mask. For instance, the following field
specification would result in an error (ORA-01821: date format not recognized):

field1 DATE "RTRIM(TO_DATE(:field1, 'dd-mon-yyyy'))"

In this case, a simple workaround is to use the CHAR datatype.

Interpreting Formatted Fields
It is possible to use the TO_CHAR operator to store formatted dates and numbers. For
example:

field1 ... "TO_CHAR(:field1, '$09999.99')"

This example could store numeric input data in formatted form, where field1 is a
character column in the database. This field would be stored with the formatting
characters (dollar sign, period, and so on) already in place.

You have even more flexibility, however, if you store such values as numeric quantities
or dates. You can then apply arithmetic functions to the values in the database, and
still select formatted values for your reports.

An example of using the SQL string to load data from a formatted report is shown in
case study 7, Extracting Data from a Formatted Report. (See "SQL*Loader Case
Studies" on page 7-13 for information on how to access case studies.)

Using SQL Strings to Load the ANYDATA Database Type
The ANYDATA database type can contain data of different types. To load the ANYDATA
type using SQL*loader, it must be explicitly constructed by using a function call. The
function is invoked using support for SQL strings as has been described in this section.

For example, suppose you have a table with a column named miscellaneous which is
of type ANYDATA. You could load the column by doing the following, which would
create an ANYDATA type containing a number.

LOAD DATA
INFILE *

Using SQL*Loader to Generate Data for Input

SQL*Loader Field List Reference 10-45

APPEND INTO TABLE ORDERS
(
miscellaneous CHAR "SYS.ANYDATA.CONVERTNUMBER(:miscellaneous)"
)
BEGINDATA
4

There can also be more complex situations in which you create an ANYDATA type that
contains a different type depending upon the values in the record. To do this, you
could write your own PL/SQL function that would determine what type should be in
the ANYDATA type, based on the value in the record, and then call the appropriate
ANYDATA.Convert*() function to create it.

Using SQL*Loader to Generate Data for Input
The parameters described in this section provide the means for SQL*Loader to
generate the data stored in the database record, rather than reading it from a data file.
The following parameters are described:

■ CONSTANT Parameter

■ EXPRESSION Parameter

■ RECNUM Parameter

■ SYSDATE Parameter

■ SEQUENCE Parameter

Loading Data Without Files
It is possible to use SQL*Loader to generate data by specifying only sequences, record
numbers, system dates, constants, and SQL string expressions as field specifications.

SQL*Loader inserts as many records as are specified by the LOAD statement. The SKIP
parameter is not permitted in this situation.

SQL*Loader is optimized for this case. Whenever SQL*Loader detects that only
generated specifications are used, it ignores any specified data file—no read I/O is
performed.

In addition, no memory is required for a bind array. If there are any WHEN clauses in the
control file, then SQL*Loader assumes that data evaluation is necessary, and input
records are read.

Setting a Column to a Constant Value
This is the simplest form of generated data. It does not vary during the load or
between loads.

CONSTANT Parameter
To set a column to a constant value, use CONSTANT followed by a value:

See Also:

■ Oracle Database SQL Language Reference for more information
about the ANYDATA database type

■ Oracle Database PL/SQL Packages and Types Reference for more
information about using ANYDATA with PL/SQL

Using SQL*Loader to Generate Data for Input

10-46 Oracle Database Utilities

CONSTANT value

CONSTANT data is interpreted by SQL*Loader as character input. It is converted, as
necessary, to the database column type.

You may enclose the value within quotation marks, and you must do so if it contains
whitespace or reserved words. Be sure to specify a legal value for the target column. If
the value is bad, then every record is rejected.

Numeric values larger than 2^32 - 1 (4,294,967,295) must be enclosed in quotation
marks.

Setting a Column to an Expression Value
Use the EXPRESSION parameter after a column name to set that column to the value
returned by a SQL operator or specially written PL/SQL function. The operator or
function is indicated in a SQL string that follows the EXPRESSION parameter. Any
arbitrary expression may be used in this context provided that any parameters
required for the operator or function are correctly specified and that the result
returned by the operator or function is compatible with the datatype of the column
being loaded.

EXPRESSION Parameter
The combination of column name, EXPRESSION parameter, and a SQL string is a
complete field specification:

column_name EXPRESSION "SQL string"

In both conventional path mode and direct path mode, the EXPRESSION parameter can
be used to load the default value into column_name:

column_name EXPRESSION "DEFAULT"

Note that if DEFAULT is used and the mode is direct path, then use of a sequence as a
default will not work.

Setting a Column to the Data File Record Number
Use the RECNUM parameter after a column name to set that column to the number of the
logical record from which that record was loaded. Records are counted sequentially
from the beginning of the first data file, starting with record 1. RECNUM is incremented
as each logical record is assembled. Thus it increments for records that are discarded,
skipped, rejected, or loaded. If you use the option SKIP=10, then the first record loaded
has a RECNUM of 11.

RECNUM Parameter
The combination of column name and RECNUM is a complete column specification.

column_name RECNUM

Note: Do not use the CONSTANT parameter to set a column to null.
To set a column to null, do not specify that column at all. Oracle
automatically sets that column to null when loading the record. The
combination of CONSTANT and a value is a complete column
specification.

Using SQL*Loader to Generate Data for Input

SQL*Loader Field List Reference 10-47

Setting a Column to the Current Date
A column specified with SYSDATE gets the current system date, as defined by the SQL
language SYSDATE parameter. See the section on the DATE datatype in Oracle Database
SQL Language Reference.

SYSDATE Parameter
The combination of column name and the SYSDATE parameter is a complete column
specification.

column_name SYSDATE

The database column must be of type CHAR or DATE. If the column is of type CHAR, then
the date is loaded in the form 'dd-mon-yy.' After the load, it can be loaded only in that
form. If the system date is loaded into a DATE column, then it can be loaded in a variety
of forms that include the time and the date.

A new system date/time is used for each array of records inserted in a conventional
path load and for each block of records loaded during a direct path load.

Setting a Column to a Unique Sequence Number
The SEQUENCE parameter ensures a unique value for a particular column. SEQUENCE
increments for each record that is loaded or rejected. It does not increment for records
that are discarded or skipped.

SEQUENCE Parameter
The combination of column name and the SEQUENCE parameter is a complete column
specification.

Table 10–6 describes the parameters used for column specification.

If a record is rejected (that is, it has a format error or causes an Oracle error), then the
generated sequence numbers are not reshuffled to mask this. If four rows are assigned

Table 10–6 Parameters Used for Column Specification

Parameter Description

column_name The name of the column in the database to which to assign the
sequence.

SEQUENCE Use the SEQUENCE parameter to specify the value for a column.

COUNT The sequence starts with the number of records already in the
table plus the increment.

MAX The sequence starts with the current maximum value for the
column plus the increment.

integer Specifies the specific sequence number to begin with.

incr The value that the sequence number is to increment after a
record is loaded or rejected. This is optional. The default is 1.

column_name SEQUENCE (

COUNT

MAX

integer

, incr
)

Using SQL*Loader to Generate Data for Input

10-48 Oracle Database Utilities

sequence numbers 10, 12, 14, and 16 in a particular column, and the row with 12 is
rejected, then the three rows inserted are numbered 10, 14, and 16, not 10, 12, and 14.
This allows the sequence of inserts to be preserved despite data errors. When you
correct the rejected data and reinsert it, you can manually set the columns to agree
with the sequence.

Case study 3, Loading a Delimited Free-Format File, provides an example of using the
SEQUENCE parameter. (See "SQL*Loader Case Studies" on page 7-13 for information on
how to access case studies.)

Generating Sequence Numbers for Multiple Tables
Because a unique sequence number is generated for each logical input record, rather
than for each table insert, the same sequence number can be used when inserting data
into multiple tables. This is frequently useful.

Sometimes, however, you might want to generate different sequence numbers for each
INTO TABLE clause. For example, your data format might define three logical records in
every input record. In that case, you can use three INTO TABLE clauses, each of which
inserts a different part of the record into the same table. When you use SEQUENCE(MAX),
SQL*Loader will use the maximum from each table, which can lead to inconsistencies
in sequence numbers.

To generate sequence numbers for these records, you must generate unique numbers
for each of the three inserts. Use the number of table-inserts per record as the sequence
increment, and start the sequence numbers for each insert with successive numbers.

Example: Generating Different Sequence Numbers for Each Insert
Suppose you want to load the following department names into the dept table. Each
input record contains three department names, and you want to generate the
department numbers automatically.

Accounting Personnel Manufacturing
Shipping Purchasing Maintenance
...

You could use the following control file entries to generate unique department
numbers:

INTO TABLE dept
(deptno SEQUENCE(1, 3),
 dname POSITION(1:14) CHAR)
INTO TABLE dept
(deptno SEQUENCE(2, 3),
 dname POSITION(16:29) CHAR)
INTO TABLE dept
(deptno SEQUENCE(3, 3),
 dname POSITION(31:44) CHAR)

The first INTO TABLE clause generates department number 1, the second number 2, and
the third number 3. They all use 3 as the sequence increment (the number of
department names in each record). This control file loads Accounting as department
number 1, Personnel as 2, and Manufacturing as 3.

The sequence numbers are then incremented for the next record, so Shipping loads as
4, Purchasing as 5, and so on.

11

Loading Objects, LOBs, and Collections 11-1

11 Loading Objects, LOBs, and Collections

This chapter discusses the following topics:

■ Loading Column Objects

■ Loading Object Tables

■ Loading REF Columns

■ Loading LOBs

■ Loading BFILE Columns

■ Loading Collections (Nested Tables and VARRAYs)

■ Dynamic Versus Static SDF Specifications

■ Loading a Parent Table Separately from Its Child Table

Loading Column Objects
Column objects in the control file are described in terms of their attributes. If the object
type on which the column object is based is declared to be nonfinal, then the column
object in the control file may be described in terms of the attributes, both derived and
declared, of any subtype derived from the base object type. In the data file, the data
corresponding to each of the attributes of a column object is in a data field similar to
that corresponding to a simple relational column.

The following sections show examples of loading column objects:

■ Loading Column Objects in Stream Record Format

■ Loading Column Objects in Variable Record Format

Note: With SQL*Loader support for complex datatypes like
column objects, the possibility arises that two identical field names
could exist in the control file, one corresponding to a column, the
other corresponding to a column object's attribute. Certain clauses
can refer to fields (for example, WHEN, NULLIF, DEFAULTIF, SID, OID,
REF, BFILE, and so on), causing a naming conflict if identically
named fields exist in the control file.

Therefore, if you use clauses that refer to fields, then you must
specify the full name. For example, if field fld1 is specified to be a
COLUMN OBJECT and it contains field fld2, then when you specify
fld2 in a clause such as NULLIF, you must use the full field name
fld1.fld2.

Loading Column Objects

11-2 Oracle Database Utilities

■ Loading Nested Column Objects

■ Loading Column Objects with a Derived Subtype

■ Specifying Null Values for Objects

■ Loading Column Objects with User-Defined Constructors

Loading Column Objects in Stream Record Format
Example 11–1 shows a case in which the data is in predetermined size fields. The
newline character marks the end of a physical record. You can also mark the end of a
physical record by using a custom record separator in the operating system
file-processing clause (os_file_proc_clause).

Example 11–1 Loading Column Objects in Stream Record Format

Control File Contents

LOAD DATA
INFILE 'sample.dat'
INTO TABLE departments
 (dept_no POSITION(01:03) CHAR,
 dept_name POSITION(05:15) CHAR,
1 dept_mgr COLUMN OBJECT
 (name POSITION(17:33) CHAR,
 age POSITION(35:37) INTEGER EXTERNAL,
 emp_id POSITION(40:46) INTEGER EXTERNAL))

Data File (sample.dat)

101 Mathematics Johny Quest 30 1024
237 Physics Albert Einstein 65 0000

Notes
1. This type of column object specification can be applied recursively to describe

nested column objects.

Loading Column Objects in Variable Record Format
Example 11–2 shows a case in which the data is in delimited fields.

Example 11–2 Loading Column Objects in Variable Record Format

Control File Contents

LOAD DATA
1 INFILE 'sample.dat' "var 6"
INTO TABLE departments
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
2 (dept_no
 dept_name,
 dept_mgr COLUMN OBJECT
 (name CHAR(30),
 age INTEGER EXTERNAL(5),
 emp_id INTEGER EXTERNAL(5)))

Data File (sample.dat)

3 000034101,Mathematics,Johny Q.,30,1024,
 000039237,Physics,"Albert Einstein",65,0000,

Loading Column Objects

Loading Objects, LOBs, and Collections 11-3

Notes
1. The "var" string includes the number of bytes in the length field at the beginning

of each record (in this example, the number is 6). If no value is specified, then the
default is 5 bytes. The maximum size of a variable record is 2^32-1. Specifying
larger values will result in an error.

2. Although no positional specifications are given, the general syntax remains the
same (the column object's name followed by the list of its attributes enclosed in
parentheses). Also note that an omitted type specification defaults to CHAR of
length 255.

3. The first 6 bytes (italicized) specify the length of the forthcoming record. These
length specifications include the newline characters, which are ignored thanks to
the terminators after the emp_id field.

Loading Nested Column Objects
Example 11–3 shows a control file describing nested column objects (one column object
nested in another column object).

Example 11–3 Loading Nested Column Objects

Control File Contents

LOAD DATA
INFILE `sample.dat'
INTO TABLE departments_v2
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (dept_no CHAR(5),
 dept_name CHAR(30),
 dept_mgr COLUMN OBJECT
 (name CHAR(30),
 age INTEGER EXTERNAL(3),
 emp_id INTEGER EXTERNAL(7),
1 em_contact COLUMN OBJECT
 (name CHAR(30),
 phone_num CHAR(20))))

Data File (sample.dat)

101,Mathematics,Johny Q.,30,1024,"Barbie",650-251-0010,
237,Physics,"Albert Einstein",65,0000,Wife Einstein,654-3210,

Notes
1. This entry specifies a column object nested within a column object.

Loading Column Objects with a Derived Subtype
Example 11–4 shows a case in which a nonfinal base object type has been extended to
create a new derived subtype. Although the column object in the table definition is
declared to be of the base object type, SQL*Loader allows any subtype to be loaded
into the column object, provided that the subtype is derived from the base object type.

Example 11–4 Loading Column Objects with a Subtype

Object Type Definitions

CREATE TYPE person_type AS OBJECT
 (name VARCHAR(30),
 ssn NUMBER(9)) not final;

Loading Column Objects

11-4 Oracle Database Utilities

CREATE TYPE employee_type UNDER person_type
 (empid NUMBER(5));

CREATE TABLE personnel
 (deptno NUMBER(3),
 deptname VARCHAR(30),
 person person_type);

Control File Contents

LOAD DATA
INFILE 'sample.dat'
INTO TABLE personnel
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (deptno INTEGER EXTERNAL(3),
 deptname CHAR,
1 person COLUMN OBJECT TREAT AS employee_type
 (name CHAR,
 ssn INTEGER EXTERNAL(9),
2 empid INTEGER EXTERNAL(5)))

Data File (sample.dat)

101,Mathematics,Johny Q.,301189453,10249,
237,Physics,"Albert Einstein",128606590,10030,

Notes
1. The TREAT AS clause indicates that SQL*Loader should treat the column object

person as if it were declared to be of the derived type employee_type, instead of
its actual declared type, person_type.

2. The empid attribute is allowed here because it is an attribute of the employee_type.
If the TREAT AS clause had not been specified, then this attribute would have
resulted in an error, because it is not an attribute of the column's declared type.

Specifying Null Values for Objects
Specifying null values for nonscalar datatypes is somewhat more complex than for
scalar datatypes. An object can have a subset of its attributes be null, it can have all of
its attributes be null (an attributively null object), or it can be null itself (an atomically
null object).

Specifying Attribute Nulls
In fields corresponding to column objects, you can use the NULLIF clause to specify the
field conditions under which a particular attribute should be initialized to NULL.
Example 11–5 demonstrates this.

Example 11–5 Specifying Attribute Nulls Using the NULLIF Clause

Control File Contents

LOAD DATA
INFILE 'sample.dat'
INTO TABLE departments
 (dept_no POSITION(01:03) CHAR,
 dept_name POSITION(05:15) CHAR NULLIF dept_name=BLANKS,
 dept_mgr COLUMN OBJECT
1 (name POSITION(17:33) CHAR NULLIF dept_mgr.name=BLANKS,

Loading Column Objects

Loading Objects, LOBs, and Collections 11-5

1 age POSITION(35:37) INTEGER EXTERNAL NULLIF dept_mgr.age=BLANKS,
1 emp_id POSITION(40:46) INTEGER EXTERNAL NULLIF dept_mgr.empid=BLANKS))

Data File (sample.dat)

2 101 Johny Quest 1024
 237 Physics Albert Einstein 65 0000

Notes
1. The NULLIF clause corresponding to each attribute states the condition under

which the attribute value should be NULL.

2. The age attribute of the dept_mgr value is null. The dept_name value is also null.

Specifying Atomic Nulls
To specify in the control file the condition under which a particular object should take
a null value (atomic null), you must follow that object's name with a NULLIF clause
based on a logical combination of any of the mapped fields (for example, in
Example 11–5, the named mapped fields would be dept_no, dept_name, name, age,
emp_id, but dept_mgr would not be a named mapped field because it does not
correspond (is not mapped) to any field in the data file).

Although the preceding is workable, it is not ideal when the condition under which an
object should take the value of null is independent of any of the mapped fields. In such
situations, you can use filler fields.

You can map a filler field to the field in the data file (indicating if a particular object is
atomically null or not) and use the filler field in the field condition of the NULLIF clause
of the particular object. This is shown in Example 11–6.

Example 11–6 Loading Data Using Filler Fields

Control File Contents

LOAD DATA
INFILE 'sample.dat'
INTO TABLE departments_v2
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (dept_no CHAR(5),
 dept_name CHAR(30),
1 is_null FILLER CHAR,
2 dept_mgr COLUMN OBJECT NULLIF is_null=BLANKS
 (name CHAR(30) NULLIF dept_mgr.name=BLANKS,
 age INTEGER EXTERNAL(3) NULLIF dept_mgr.age=BLANKS,
 emp_id INTEGER EXTERNAL(7)
 NULLIF dept_mgr.emp_id=BLANKS,
 em_contact COLUMN OBJECT NULLIF is_null2=BLANKS
 (name CHAR(30)
 NULLIF dept_mgr.em_contact.name=BLANKS,
 phone_num CHAR(20)
 NULLIF dept_mgr.em_contact.phone_num=BLANKS)),
1 is_null2 FILLER CHAR)

Data File (sample.dat)

101,Mathematics,n,Johny Q.,,1024,"Barbie",608-251-0010,,
237,Physics,,"Albert Einstein",65,0000,,650-654-3210,n,

Loading Column Objects

11-6 Oracle Database Utilities

Notes
1. The filler field (data file mapped; no corresponding column) is of type CHAR

(because it is a delimited field, the CHAR defaults to CHAR(255)). Note that the
NULLIF clause is not applicable to the filler field itself.

2. Gets the value of null (atomic null) if the is_null field is blank.

Loading Column Objects with User-Defined Constructors
The Oracle database automatically supplies a default constructor for every object type.
This constructor requires that all attributes of the type be specified as arguments in a
call to the constructor. When a new instance of the object is created, its attributes take
on the corresponding values in the argument list. This constructor is known as the
attribute-value constructor. SQL*Loader uses the attribute-value constructor by
default when loading column objects.

It is possible to override the attribute-value constructor by creating one or more
user-defined constructors. When you create a user-defined constructor, you must
supply a type body that performs the user-defined logic whenever a new instance of
the object is created. A user-defined constructor may have the same argument list as
the attribute-value constructor but differ in the logic that its type body implements.

When the argument list of a user-defined constructor function matches the argument
list of the attribute-value constructor, there is a difference in behavior between
conventional and direct path SQL*Loader. Conventional path mode results in a call to
the user-defined constructor. Direct path mode results in a call to the attribute-value
constructor. Example 11–7 illustrates this difference.

Example 11–7 Loading a Column Object with Constructors That Match

Object Type Definitions

CREATE TYPE person_type AS OBJECT
 (name VARCHAR(30),
 ssn NUMBER(9)) not final;

 CREATE TYPE employee_type UNDER person_type
 (empid NUMBER(5),
 -- User-defined constructor that looks like an attribute-value constructor
 CONSTRUCTOR FUNCTION
 employee_type (name VARCHAR2, ssn NUMBER, empid NUMBER)
 RETURN SELF AS RESULT);

 CREATE TYPE BODY employee_type AS
 CONSTRUCTOR FUNCTION
 employee_type (name VARCHAR2, ssn NUMBER, empid NUMBER)
 RETURN SELF AS RESULT AS
 --User-defined constructor makes sure that the name attribute is uppercase.
 BEGIN
 SELF.name := UPPER(name);
 SELF.ssn := ssn;
 SELF.empid := empid;
 RETURN;
 END;

 CREATE TABLE personnel
 (deptno NUMBER(3),
 deptname VARCHAR(30),

See Also: "Specifying Filler Fields" on page 10-4

Loading Column Objects

Loading Objects, LOBs, and Collections 11-7

 employee employee_type);

Control File Contents

LOAD DATA
 INFILE *
 REPLACE
 INTO TABLE personnel
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (deptno INTEGER EXTERNAL(3),
 deptname CHAR,
 employee COLUMN OBJECT
 (name CHAR,
 ssn INTEGER EXTERNAL(9),
 empid INTEGER EXTERNAL(5)))

 BEGINDATA
1 101,Mathematics,Johny Q.,301189453,10249,
 237,Physics,"Albert Einstein",128606590,10030,

Notes
1. When this control file is run in conventional path mode, the name fields, Johny Q.

and Albert Einstein, are both loaded in uppercase. This is because the
user-defined constructor is called in this mode. In contrast, when this control file is
run in direct path mode, the name fields are loaded exactly as they appear in the
input data. This is because the attribute-value constructor is called in this mode.

It is possible to create a user-defined constructor whose argument list does not match
that of the attribute-value constructor. In this case, both conventional and direct path
modes will result in a call to the attribute-value constructor. Consider the definitions in
Example 11–8.

Example 11–8 Loading a Column Object with Constructors That Do Not Match

Object Type Definitions

CREATE SEQUENCE employee_ids
 START WITH 1000
 INCREMENT BY 1;

 CREATE TYPE person_type AS OBJECT
 (name VARCHAR(30),
 ssn NUMBER(9)) not final;

 CREATE TYPE employee_type UNDER person_type
 (empid NUMBER(5),
 -- User-defined constructor that does not look like an attribute-value
 -- constructor
 CONSTRUCTOR FUNCTION
 employee_type (name VARCHAR2, ssn NUMBER)
 RETURN SELF AS RESULT);

 CREATE TYPE BODY employee_type AS
 CONSTRUCTOR FUNCTION
 employee_type (name VARCHAR2, ssn NUMBER)
 RETURN SELF AS RESULT AS
 -- This user-defined constructor makes sure that the name attribute is in
 -- lowercase and assigns the employee identifier based on a sequence.
 nextid NUMBER;
 stmt VARCHAR2(64);

Loading Column Objects

11-8 Oracle Database Utilities

 BEGIN

 stmt := 'SELECT employee_ids.nextval FROM DUAL';
 EXECUTE IMMEDIATE stmt INTO nextid;

 SELF.name := LOWER(name);
 SELF.ssn := ssn;
 SELF.empid := nextid;
 RETURN;
 END;

 CREATE TABLE personnel
 (deptno NUMBER(3),
 deptname VARCHAR(30),
 employee employee_type);

If the control file described in Example 11–7 is used with these definitions, then the
name fields are loaded exactly as they appear in the input data (that is, in mixed case).
This is because the attribute-value constructor is called in both conventional and direct
path modes.

It is still possible to load this table using conventional path mode by explicitly making
reference to the user-defined constructor in a SQL expression. Example 11–9 shows
how this can be done.

Example 11–9 Using SQL to Load Column Objects When Constructors Do Not Match

Control File Contents

LOAD DATA
 INFILE *
 REPLACE
 INTO TABLE personnel
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (deptno INTEGER EXTERNAL(3),
 deptname CHAR,
 name BOUNDFILLER CHAR,
 ssn BOUNDFILLER INTEGER EXTERNAL(9),
1 employee EXPRESSION "employee_type(:NAME, :SSN)")

 BEGINDATA
1 101,Mathematics,Johny Q.,301189453,
 237,Physics,"Albert Einstein",128606590,

Notes
1. The employee column object is now loaded using a SQL expression. This

expression invokes the user-defined constructor with the correct number of
arguments. The name fields, Johny Q. and Albert Einstein, will both be loaded in
lowercase. In addition, the employee identifiers for each row's employee column
object will have taken their values from the employee_ids sequence.

If the control file in Example 11–9 is used in direct path mode, then the following error
is reported:

SQL*Loader-951: Error calling once/load initialization
ORA-26052: Unsupported type 121 for SQL expression on column EMPLOYEE.

Loading Object Tables

Loading Objects, LOBs, and Collections 11-9

Loading Object Tables
The control file syntax required to load an object table is nearly identical to that used
to load a typical relational table. Example 11–10 demonstrates loading an object table
with primary-key-based object identifiers (OIDs).

Example 11–10 Loading an Object Table with Primary Key OIDs

Control File Contents

LOAD DATA
INFILE 'sample.dat'
DISCARDFILE 'sample.dsc'
BADFILE 'sample.bad'
REPLACE
INTO TABLE employees
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (name CHAR(30) NULLIF name=BLANKS,
 age INTEGER EXTERNAL(3) NULLIF age=BLANKS,
 emp_id INTEGER EXTERNAL(5))

Data File (sample.dat)

Johny Quest, 18, 007,
Speed Racer, 16, 000,

By looking only at the preceding control file you might not be able to determine if the
table being loaded was an object table with system-generated OIDs, an object table
with primary-key-based OIDs, or a relational table.

You may want to load data that already contains system-generated OIDs and to
specify that instead of generating new OIDs, the existing OIDs in the data file should
be used. To do this, you would follow the INTO TABLE clause with the OID clause:

OID (fieldname)

In this clause, fieldname is the name of one of the fields (typically a filler field) from
the field specification list that is mapped to a data field that contains the
system-generated OIDs. SQL*Loader assumes that the OIDs provided are in the
correct format and that they preserve OID global uniqueness. Therefore, to ensure
uniqueness, you should use the Oracle OID generator to generate the OIDs to be
loaded.

The OID clause can only be used for system-generated OIDs, not primary-key-based
OIDs.

Example 11–11 demonstrates loading system-generated OIDs with the row objects.

Example 11–11 Loading OIDs

Control File Contents

 LOAD DATA
 INFILE 'sample.dat'
 INTO TABLE employees_v2
1 OID (s_oid)
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (name CHAR(30) NULLIF name=BLANKS,
 age INTEGER EXTERNAL(3) NULLIF age=BLANKS,
 emp_id INTEGER EXTERNAL(5),
2 s_oid FILLER CHAR(32))

Loading Object Tables

11-10 Oracle Database Utilities

Data File (sample.dat)

3 Johny Quest, 18, 007, 21E978406D3E41FCE03400400B403BC3,
 Speed Racer, 16, 000, 21E978406D4441FCE03400400B403BC3,

Notes
1. The OID clause specifies that the s_oid loader field contains the OID. The

parentheses are required.

2. If s_oid does not contain a valid hexadecimal number, then the particular record is
rejected.

3. The OID in the data file is a character string and is interpreted as a 32-digit
hexadecimal number. The 32-digit hexadecimal number is later converted into a
16-byte RAW and stored in the object table.

Loading Object Tables with a Subtype
If an object table's row object is based on a nonfinal type, then SQL*Loader allows for
any derived subtype to be loaded into the object table. As previously mentioned, the
syntax required to load an object table with a derived subtype is almost identical to
that used for a typical relational table. However, in this case, the actual subtype to be
used must be named, so that SQL*Loader can determine if it is a valid subtype for the
object table. This concept is illustrated in Example 11–12.

Example 11–12 Loading an Object Table with a Subtype

Object Type Definitions

CREATE TYPE employees_type AS OBJECT
 (name VARCHAR2(30),
 age NUMBER(3),
 emp_id NUMBER(5)) not final;

CREATE TYPE hourly_emps_type UNDER employees_type
 (hours NUMBER(3));

CREATE TABLE employees_v3 of employees_type;

Control File Contents

 LOAD DATA

 INFILE 'sample.dat'
 INTO TABLE employees_v3
1 TREAT AS hourly_emps_type
 FIELDS TERMINATED BY ','
 (name CHAR(30),
 age INTEGER EXTERNAL(3),
 emp_id INTEGER EXTERNAL(5),
2 hours INTEGER EXTERNAL(2))

Data File (sample.dat)

 Johny Quest, 18, 007, 32,
 Speed Racer, 16, 000, 20,

Loading REF Columns

Loading Objects, LOBs, and Collections 11-11

Notes
1. The TREAT AS clause indicates that SQL*Loader should treat the object table as if it

were declared to be of type hourly_emps_type, instead of its actual declared type,
employee_type.

2. The hours attribute is allowed here because it is an attribute of the hourly_emps_
type. If the TREAT AS clause had not been specified, then this attribute would have
resulted in an error, because it is not an attribute of the object table's declared type.

Loading REF Columns
SQL*Loader can load system-generated OID REF columns, primary-key-based REF
columns, and unscoped REF columns that allow primary keys. For each of these, the
way in which table names are specified is important, as described in the following
section.

Specifying Table Names in a REF Clause

In the SQL*Loader control file, the description of the field corresponding to a REF
column consists of the column name followed by a REF clause. The REF clause takes
as arguments the table name and any attributes applicable to the type of REF column
being loaded. The table names can either be specified dynamically (using filler fields)
or as constants. The table name can also be specified with or without the schema
name.

Whether the table name specified in the REF clause is specified as a constant or by
using a filler field, it is interpreted as case-sensitive. This could result in the following
situations:

■ If user SCOTT creates a table named table2 in lowercase without quotation marks
around the table name, then it can be used in a REF clause in any of the following
ways:

– REF(constant 'TABLE2', ...)

– REF(constant '"TABLE2"', ...)

– REF(constant 'SCOTT.TABLE2', ...)

■ If user SCOTT creates a table named "Table2" using quotation marks around a
mixed-case name, then it can be used in a REF clause in any of the following ways:

– REF(constant 'Table2', ...)

– REF(constant '"Table2"', ...)

– REF(constant 'SCOTT.Table2', ...)

In both of those situations, if constant is replaced with a filler field, then the same
values as shown in the examples will also work if they are placed in the data section.

Note: The information in this section applies only to environments in
which the release of both SQL*Loader and Oracle Database are 11g
release 1 (11.1) or later. It does not apply to environments in which
either SQL*Loader, Oracle Database, or both are at an earlier release.

Loading REF Columns

11-12 Oracle Database Utilities

System-Generated OID REF Columns
SQL*Loader assumes, when loading system-generated REF columns, that the actual
OIDs from which the REF columns are to be constructed are in the data file with the
rest of the data. The description of the field corresponding to a REF column consists of
the column name followed by the REF clause.

The REF clause takes as arguments the table name and an OID. Note that the
arguments can be specified either as constants or dynamically (using filler fields). See
"ref_spec" on page A-6 for the appropriate syntax. Example 11–13 demonstrates
loading system-generated OID REF columns.

Example 11–13 Loading System-Generated REF Columns

Control File Contents

LOAD DATA
INFILE 'sample.dat'
INTO TABLE departments_alt_v2
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (dept_no CHAR(5),
 dept_name CHAR(30),
1 dept_mgr REF(t_name, s_oid),
 s_oid FILLER CHAR(32),
 t_name FILLER CHAR(30))

Data File (sample.dat)

22345, QuestWorld, 21E978406D3E41FCE03400400B403BC3, EMPLOYEES_V2,
23423, Geography, 21E978406D4441FCE03400400B403BC3, EMPLOYEES_V2,

Notes
1. If the specified table does not exist, then the record is rejected. The dept_mgr field

itself does not map to any field in the data file.

Primary Key REF Columns
To load a primary key REF column, the SQL*Loader control-file field description must
provide the column name followed by a REF clause. The REF clause takes for
arguments a comma-delimited list of field names and constant values. The first
argument is the table name, followed by arguments that specify the primary key OID
on which the REF column to be loaded is based. See "ref_spec" on page A-6 for the
appropriate syntax.

SQL*Loader assumes that the ordering of the arguments matches the relative ordering
of the columns making up the primary key OID in the referenced table. Example 11–14
demonstrates loading primary key REF columns.

Example 11–14 Loading Primary Key REF Columns

Control File Contents

LOAD DATA
INFILE 'sample.dat'
INTO TABLE departments_alt
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (dept_no CHAR(5),
 dept_name CHAR(30),
 dept_mgr REF(CONSTANT 'EMPLOYEES', emp_id),
 emp_id FILLER CHAR(32))

Loading REF Columns

Loading Objects, LOBs, and Collections 11-13

Data File (sample.dat)

22345, QuestWorld, 007,
23423, Geography, 000,

Unscoped REF Columns That Allow Primary Keys
An unscoped REF column that allows primary keys can reference both
system-generated and primary key REFs. The syntax for loading into such a REF
column is the same as if you were loading into a system-generated OID REF column or
into a primary-key-based REF column. See Example 11–13, "Loading System-Generated
REF Columns" and Example 11–14, "Loading Primary Key REF Columns".

The following restrictions apply when loading into an unscoped REF column that
allows primary keys:

■ Only one type of REF can be referenced by this column during a single-table load,
either system-generated or primary key, but not both. If you try to reference both
types, then the data row will be rejected with an error message indicating that the
referenced table name is invalid.

■ If you are loading unscoped primary key REFs to this column, then only one object
table can be referenced during a single-table load. That is, to load unscoped
primary key REFs, some pointing to object table X and some pointing to object
table Y, you would have to do one of the following:

– Perform two single-table loads.

– Perform a single load using multiple INTO TABLE clauses for which the WHEN
clause keys off some aspect of the data, such as the object table name for the
unscoped primary key REF. For example:

LOAD DATA
INFILE 'data.dat'

INTO TABLE orders_apk
APPEND
when CUST_TBL = "CUSTOMERS_PK"
fields terminated by ","
(
 order_no position(1) char,
 cust_tbl FILLER char,
 cust_no FILLER char,
 cust REF (cust_tbl, cust_no) NULLIF order_no='0'
)

INTO TABLE orders_apk
APPEND
when CUST_TBL = "CUSTOMERS_PK2"
fields terminated by ","
(
 order_no position(1) char,
 cust_tbl FILLER char,
 cust_no FILLER char,
 cust REF (cust_tbl, cust_no) NULLIF order_no='0'
)

If you do not use either of these methods, then the data row will be rejected with
an error message indicating that the referenced table name is invalid.

■ Unscoped primary key REFs in collections are not supported by SQL*Loader.

Loading LOBs

11-14 Oracle Database Utilities

■ If you are loading system-generated REFs into this REF column, then any
limitations described in "System-Generated OID REF Columns" on page 11-12 also
apply here.

■ If you are loading primary key REFs into this REF column, then any limitations
described in "Primary Key REF Columns" on page 11-12 also apply here.

Loading LOBs
A LOB is a large object type. SQL*Loader supports the following types of LOBs:

■ BLOB: an internal LOB containing unstructured binary data

■ CLOB: an internal LOB containing character data

■ NCLOB: an internal LOB containing characters from a national character set

■ BFILE: a BLOB stored outside of the database tablespaces in a server-side operating
system file

LOBs can be column datatypes, and except for NCLOB, they can be an object's attribute
datatypes. LOBs can have actual values, they can be null, or they can be empty.
SQL*Loader creates an empty LOB when there is a 0-length field to store in the LOB.
(Note that this is different than other datatypes where SQL*Loader sets the column to
NULL for any 0-length string.) This means that the only way to load NULL values into a
LOB column is to use the NULLIF clause.

XML columns are columns declared to be of type SYS.XMLTYPE. SQL*Loader treats XML
columns as if they were CLOBs. All of the methods described in the following sections
for loading LOB data from the primary data file or from LOBFILEs are applicable to
loading XML columns.

Because LOBs can be quite large, SQL*Loader can load LOB data from either a
primary data file (in line with the rest of the data) or from LOBFILEs, as described in
the following sections:

■ Loading LOB Data from a Primary Data File

■ Loading LOB Data from LOBFILEs

Loading LOB Data from a Primary Data File
To load internal LOBs (BLOBs, CLOBs, and NCLOBs) or XML columns from a primary data
file, you can use the following standard SQL*Loader formats:

■ Predetermined size fields

Note: For an unscoped REF column that allows primary keys,
SQL*Loader takes the first valid object table parsed (either from the
REF directive or from the data rows) and uses that object table's OID
type to determine the REF type that can be referenced in that
single-table load.

Note: You cannot specify a SQL string for LOB fields. This is true
even if you specify LOBFILE_spec.

See Also: Oracle Database SQL Language Reference for more
information about large object (LOB) data types

Loading LOBs

Loading Objects, LOBs, and Collections 11-15

■ Delimited fields

■ Length-value pair fields

Each of these formats is described in the following sections.

LOB Data in Predetermined Size Fields
This is a very fast and conceptually simple format in which to load LOBs, as shown in
Example 11–15.

To load LOBs using this format, you should use either CHAR or RAW as the loading
datatype.

Example 11–15 Loading LOB Data in Predetermined Size Fields

Control File Contents

LOAD DATA
INFILE 'sample.dat' "fix 501"
INTO TABLE person_table
 (name POSITION(01:21) CHAR,
1 "RESUME" POSITION(23:500) CHAR DEFAULTIF "RESUME"=BLANKS)

Data File (sample.dat)

Julia Nayer Julia Nayer
 500 Example Parkway
 jnayer@us.example.com ...

Notes
1. Because the DEFAULTIF clause is used, if the data field containing the resume is

empty, then the result is an empty LOB rather than a null LOB. However, if a
NULLIF clause had been used instead of DEFAULTIF, then the empty data field
would be null.

You can use SQL*Loader datatypes other than CHAR to load LOBs. For example,
when loading BLOBs, you would probably want to use the RAW datatype.

LOB Data in Delimited Fields
This format handles LOBs of different sizes within the same column (data file field)
without a problem. However, this added flexibility can affect performance because
SQL*Loader must scan through the data, looking for the delimiter string.

As with single-character delimiters, when you specify string delimiters, you should
consider the character set of the data file. When the character set of the data file is
different than that of the control file, you can specify the delimiters in hexadecimal
notation (that is, X'hexadecimal string'). If the delimiters are specified in
hexadecimal notation, then the specification must consist of characters that are valid in
the character set of the input data file. In contrast, if hexadecimal notation is not used,
then the delimiter specification is considered to be in the client's (that is, the control
file's) character set. In this case, the delimiter is converted into the data file's character
set before SQL*Loader searches for the delimiter in the data file.

Note: Because the LOBs you are loading may not be of equal size,
you can use whitespace to pad the LOB data to make the LOBs all
of equal length within a particular data field.

Loading LOBs

11-16 Oracle Database Utilities

Note the following:

■ Stutter syntax is supported with string delimiters (that is, the closing enclosure
delimiter can be stuttered).

■ Leading whitespaces in the initial multicharacter enclosure delimiter are not
allowed.

■ If a field is terminated by WHITESPACE, then the leading whitespaces are trimmed.

Example 11–16 shows an example of loading LOB data in delimited fields.

Example 11–16 Loading LOB Data in Delimited Fields

Control File Contents

LOAD DATA
INFILE 'sample.dat' "str '|'"
INTO TABLE person_table
FIELDS TERMINATED BY ','
 (name CHAR(25),
1 "RESUME" CHAR(507) ENCLOSED BY '<startlob>' AND '<endlob>')

Data File (sample.dat)

Julia Nayer,<startlob> Julia Nayer
 500 Example Parkway
 jnayer@us.example.com ... <endlob>
2 |Bruce Ernst,

Notes
1. <startlob> and <endlob> are the enclosure strings. With the default byte-length

semantics, the maximum length for a LOB that can be read using CHAR(507) is 507
bytes. If character-length semantics were used, then the maximum would be 507
characters. See "Character-Length Semantics" on page 9-17.

2. If the record separator '|' had been placed right after <endlob> and followed with
the newline character, then the newline would have been interpreted as part of the
next record. An alternative would be to make the newline part of the record
separator (for example, '|\n' or, in hexadecimal notation, X'7C0A').

LOB Data in Length-Value Pair Fields
You can use VARCHAR, VARCHARC, or VARRAW datatypes to load LOB data organized in
length-value pair fields. This method of loading provides better performance than
using delimited fields, but can reduce flexibility (for example, you must know the LOB
length for each LOB before loading). Example 11–17 demonstrates loading LOB data in
length-value pair fields.

Note: SQL*Loader defaults to 255 bytes when moving CLOB data,
but a value of up to 2 gigabytes can be specified. For a delimited
field, if a length is specified, then that length is used as a maximum.
If no maximum is specified, then it defaults to 255 bytes. For a CHAR
field that is delimited and is also greater than 255 bytes, you must
specify a maximum length. See "CHAR" on page 10-12 for more
information about the CHAR datatype.

Loading LOBs

Loading Objects, LOBs, and Collections 11-17

Example 11–17 Loading LOB Data in Length-Value Pair Fields

Control File Contents

 LOAD DATA
1 INFILE 'sample.dat' "str '<endrec>\n'"
 INTO TABLE person_table
 FIELDS TERMINATED BY ','
 (name CHAR(25),
2 "RESUME" VARCHARC(3,500))

Data File (sample.dat)

 Julia Nayer,479 Julia Nayer
 500 Example Parkway
 jnayer@us.example.com
 ... <endrec>
3 Bruce Ernst,000<endrec>

Notes
1. If the backslash escape character is not supported, then the string used as a record

separator in the example could be expressed in hexadecimal notation.

2. "RESUME" is a field that corresponds to a CLOB column. In the control file, it is a
VARCHARC, whose length field is 3 bytes long and whose maximum size is 500 bytes
(with byte-length semantics). If character-length semantics were used, then the
length would be 3 characters and the maximum size would be 500 characters. See
"Character-Length Semantics" on page 9-17.

3. The length subfield of the VARCHARC is 0 (the value subfield is empty).
Consequently, the LOB instance is initialized to empty.

Loading LOB Data from LOBFILEs
LOB data can be lengthy enough so that it makes sense to load it from a LOBFILE
instead of from a primary data file. In LOBFILEs, LOB data instances are still
considered to be in fields (predetermined size, delimited, length-value), but these
fields are not organized into records (the concept of a record does not exist within
LOBFILEs). Therefore, the processing overhead of dealing with records is avoided.
This type of organization of data is ideal for LOB loading.

There is no requirement that a LOB from a LOBFILE fit in memory. SQL*Loader reads
LOBFILEs in 64 KB chunks.

 In LOBFILEs the data can be in any of the following types of fields:

■ A single LOB field into which the entire contents of a file can be read

■ Predetermined size fields (fixed-length fields)

■ Delimited fields (that is, TERMINATED BY or ENCLOSED BY)

The clause PRESERVE BLANKS is not applicable to fields read from a LOBFILE.

■ Length-value pair fields (variable-length fields)

To load data from this type of field, use the VARRAW, VARCHAR, or VARCHARC
SQL*Loader datatypes.

See "Examples of Loading LOB Data from LOBFILEs" on page 11-18 for examples of
using each of these field types. All of the previously mentioned field types can be used
to load XML columns.

See "lobfile_spec" on page A-7 for LOBFILE syntax.

Loading LOBs

11-18 Oracle Database Utilities

Dynamic Versus Static LOBFILE Specifications
You can specify LOBFILEs either statically (the name of the file is specified in the
control file) or dynamically (a FILLER field is used as the source of the file name). In
either case, if the LOBFILE is not terminated by EOF, then when the end of the
LOBFILE is reached, the file is closed and further attempts to read data from that file
produce results equivalent to reading data from an empty field.

However, if you have a LOBFILE that is terminated by EOF, then the entire file is
always returned on each attempt to read data from that file.

You should not specify the same LOBFILE as the source of two different fields. If you
do, then the two fields typically read the data independently.

Examples of Loading LOB Data from LOBFILEs
This section contains examples of loading data from different types of fields in
LOBFILEs.

One LOB per File In Example 11–18, each LOBFILE is the source of a single LOB. To load
LOB data that is organized in this way, the column or field name is followed by the
LOBFILE datatype specifications.

Example 11–18 Loading LOB DATA with One LOB per LOBFILE

Control File Contents

LOAD DATA
INFILE 'sample.dat'
 INTO TABLE person_table
 FIELDS TERMINATED BY ','
 (name CHAR(20),
1 ext_fname FILLER CHAR(40),
2 "RESUME" LOBFILE(ext_fname) TERMINATED BY EOF)

Data File (sample.dat)

Johny Quest,jqresume.txt,
Speed Racer,'/private/sracer/srresume.txt',

Secondary Data File (jqresume.txt)

 Johny Quest
 500 Oracle Parkway
 ...
Secondary Data File (srresume.txt)

 Speed Racer
 400 Oracle Parkway
 ...

Notes
1. The filler field is mapped to the 40-byte data field, which is read using the

SQL*Loader CHAR datatype. This assumes the use of default byte-length semantics.
If character-length semantics were used, then the field would be mapped to a
40-character data field.

2. SQL*Loader gets the LOBFILE name from the ext_fname filler field. It then loads
the data from the LOBFILE (using the CHAR datatype) from the first byte to the EOF
character. If no existing LOBFILE is specified, then the "RESUME" field is initialized
to empty.

Loading LOBs

Loading Objects, LOBs, and Collections 11-19

Predetermined Size LOBs In Example 11–19, you specify the size of the LOBs to be
loaded into a particular column in the control file. During the load, SQL*Loader
assumes that any LOB data loaded into that particular column is of the specified size.
The predetermined size of the fields allows the data-parser to perform optimally.
However, it is often difficult to guarantee that all LOBs are the same size.

Example 11–19 Loading LOB Data Using Predetermined Size LOBs

Control File Contents

LOAD DATA
INFILE 'sample.dat'
INTO TABLE person_table
FIELDS TERMINATED BY ','
 (name CHAR(20),
1 "RESUME" LOBFILE(CONSTANT '/usr/private/jquest/jqresume.txt')
 CHAR(2000))

Data File (sample.dat)

Johny Quest,
Speed Racer,
Secondary Data File (jqresume.txt)

 Johny Quest
 500 Oracle Parkway
 ...
 Speed Racer
 400 Oracle Parkway
 ...

Notes
1. This entry specifies that SQL*Loader load 2000 bytes of data from the

jqresume.txt LOBFILE, using the CHAR datatype, starting with the byte following
the byte loaded last during the current loading session. This assumes the use of the
default byte-length semantics. If character-length semantics were used, then
SQL*Loader would load 2000 characters of data, starting from the first character
after the last-loaded character. See "Character-Length Semantics" on page 9-17.

Delimited LOBs In Example 11–20, the LOB data instances in the LOBFILE are
delimited. In this format, loading different size LOBs into the same column is not a
problem. However, this added flexibility can affect performance, because SQL*Loader
must scan through the data, looking for the delimiter string.

Example 11–20 Loading LOB Data Using Delimited LOBs

Control File Contents

LOAD DATA
INFILE 'sample.dat'
INTO TABLE person_table
FIELDS TERMINATED BY ','
 (name CHAR(20),
1 "RESUME" LOBFILE(CONSTANT 'jqresume') CHAR(2000)
 TERMINATED BY "<endlob>\n")

Data File (sample.dat)

Johny Quest,
Speed Racer,

Loading LOBs

11-20 Oracle Database Utilities

Secondary Data File (jqresume.txt)

 Johny Quest
 500 Oracle Parkway
 ... <endlob>
 Speed Racer
 400 Oracle Parkway
 ... <endlob>

Notes
1. Because a maximum length of 2000 is specified for CHAR, SQL*Loader knows what

to expect as the maximum length of the field, which can result in memory usage
optimization. If you choose to specify a maximum length, then you should be sure not to
underestimate its value. The TERMINATED BY clause specifies the string that
terminates the LOBs. Alternatively, you could use the ENCLOSED BY clause. The
ENCLOSED BY clause allows a bit more flexibility as to the relative positioning of the
LOBs in the LOBFILE (the LOBs in the LOBFILE need not be sequential).

Length-Value Pair Specified LOBs In Example 11–21 each LOB in the LOBFILE is preceded
by its length. You could use VARCHAR, VARCHARC, or VARRAW datatypes to load LOB data
organized in this way.

This method of loading can provide better performance over delimited LOBs, but at
the expense of some flexibility (for example, you must know the LOB length for each
LOB before loading).

Example 11–21 Loading LOB Data Using Length-Value Pair Specified LOBs

Control File Contents

LOAD DATA
INFILE 'sample.dat'
INTO TABLE person_table
FIELDS TERMINATED BY ','
 (name CHAR(20),
1 "RESUME" LOBFILE(CONSTANT 'jqresume') VARCHARC(4,2000))

Data File (sample.dat)

Johny Quest,
Speed Racer,

Secondary Data File (jqresume.txt)

2 0501Johny Quest
 500 Oracle Parkway
 ...
3 0000

Notes
1. The entry VARCHARC(4,2000) tells SQL*Loader that the LOBs in the LOBFILE are

in length-value pair format and that the first 4 bytes should be interpreted as the
length. The value of 2000 tells SQL*Loader that the maximum size of the field is
2000 bytes. This assumes the use of the default byte-length semantics. If
character-length semantics were used, then the first 4 characters would be
interpreted as the length in characters. The maximum size of the field would be
2000 characters. See "Character-Length Semantics" on page 9-17.

Loading BFILE Columns

Loading Objects, LOBs, and Collections 11-21

2. The entry 0501 preceding Johny Quest tells SQL*Loader that the LOB consists of
the next 501 characters.

3. This entry specifies an empty (not null) LOB.

Considerations When Loading LOBs from LOBFILEs
Keep in mind the following when you load data using LOBFILEs:

■ Only LOBs and XML columns can be loaded from LOBFILEs.

■ The failure to load a particular LOB does not result in the rejection of the record
containing that LOB. Instead, you will have a record that contains an empty LOB.
In the case of an XML column, a null value will be inserted if there is a failure
loading the LOB.

■ It is not necessary to specify the maximum length of a field corresponding to a
LOB column. If a maximum length is specified, then SQL*Loader uses it as a hint
to optimize memory usage. Therefore, it is important that the maximum length
specification does not understate the true maximum length.

■ You cannot supply a position specification (pos_spec) when loading data from a
LOBFILE.

■ NULLIF or DEFAULTIF field conditions cannot be based on fields read from
LOBFILEs.

■ If a nonexistent LOBFILE is specified as a data source for a particular field, then
that field is initialized to empty. If the concept of empty does not apply to the
particular field type, then the field is initialized to null.

■ Table-level delimiters are not inherited by fields that are read from a LOBFILE.

■ When loading an XML column or referencing a LOB column in a SQL expression in
conventional path mode, SQL*Loader must process the LOB data as a temporary
LOB. To ensure the best load performance possible in these cases, refer to the
guidelines concerning temporary LOB performance in Oracle Database SecureFiles
and Large Objects Developer's Guide.

Loading BFILE Columns
The BFILE datatype stores unstructured binary data in operating system files outside
the database. A BFILE column or attribute stores a file locator that points to the
external file containing the data. The file to be loaded as a BFILE does not have to exist
at the time of loading; it can be created later. SQL*Loader assumes that the necessary
directory objects have already been created (a logical alias name for a physical
directory on the server's file system). For more information, see the Oracle Database
SecureFiles and Large Objects Developer's Guide.

A control file field corresponding to a BFILE column consists of a column name
followed by the BFILE clause. The BFILE clause takes as arguments a directory object
(the server_directory alias) name followed by a BFILE name. Both arguments can be
provided as string constants, or they can be dynamically loaded through some other
field. See the Oracle Database SQL Language Reference for more information.

In the next two examples of loading BFILEs, Example 11–22 has only the file name
specified dynamically, while Example 11–23 demonstrates specifying both the BFILE
and the directory object dynamically.

Loading Collections (Nested Tables and VARRAYs)

11-22 Oracle Database Utilities

Example 11–22 Loading Data Using BFILEs: Only File Name Specified Dynamically

Control File Contents

LOAD DATA
INFILE sample.dat
INTO TABLE planets
FIELDS TERMINATED BY ','
 (pl_id CHAR(3),
 pl_name CHAR(20),
 fname FILLER CHAR(30),
1 pl_pict BFILE(CONSTANT "scott_dir1", fname))

Data File (sample.dat)

1,Mercury,mercury.jpeg,
2,Venus,venus.jpeg,
3,Earth,earth.jpeg,

Notes
1. The directory name is in quotation marks; therefore, the string is used as is and is

not capitalized.

Example 11–23 Loading Data Using BFILEs: File Name and Directory Specified
Dynamically

Control File Contents

LOAD DATA
INFILE sample.dat
INTO TABLE planets
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (pl_id NUMBER(4),
 pl_name CHAR(20),
 fname FILLER CHAR(30),
1 dname FILLER CHAR(20),
 pl_pict BFILE(dname, fname))

Data File (sample.dat)

1, Mercury, mercury.jpeg, scott_dir1,
2, Venus, venus.jpeg, scott_dir1,
3, Earth, earth.jpeg, scott_dir2,

Notes
1. dname is mapped to the data file field containing the directory name corresponding

to the file being loaded.

Loading Collections (Nested Tables and VARRAYs)
Like LOBs, collections can be loaded either from a primary data file (data inline) or
from secondary data files (data out of line). See "Secondary Data Files (SDFs)" on
page 11-24 for details about SDFs.

When you load collection data, a mechanism must exist by which SQL*Loader can tell
when the data belonging to a particular collection instance has ended. You can achieve
this in two ways:

■ To specify the number of rows or elements that are to be loaded into each nested
table or VARRAY instance, use the DDL COUNT function. The value specified for
COUNT must either be a number or a character string containing a number, and it

Loading Collections (Nested Tables and VARRAYs)

Loading Objects, LOBs, and Collections 11-23

must be previously described in the control file before the COUNT clause itself. This
positional dependency is specific to the COUNT clause. COUNT(0) or COUNT(cnt_
field), where cnt_field is 0 for the current row, results in a empty collection (not
null), unless overridden by a NULLIF clause. See "count_spec" on page A-10.

If the COUNT clause specifies a field in a control file and if that field is set to null for
the current row, then the collection that uses that count will be set to empty for the
current row as well.

■ Use the TERMINATED BY and ENCLOSED BY clauses to specify a unique collection
delimiter. This method cannot be used if an SDF clause is used.

In the control file, collections are described similarly to column objects. See "Loading
Column Objects" on page 11-1. There are some differences:

■ Collection descriptions employ the two mechanisms discussed in the preceding
list.

■ Collection descriptions can include a secondary data file (SDF) specification.

■ A NULLIF or DEFAULTIF clause cannot refer to a field in an SDF unless the clause is
on a field in the same SDF.

■ Clauses that take field names as arguments cannot use a field name that is in a
collection unless the DDL specification is for a field in the same collection.

■ The field list must contain only one nonfiller field and any number of filler fields.
If the VARRAY is a VARRAY of column objects, then the attributes of each column
object will be in a nested field list.

Restrictions in Nested Tables and VARRAYs
The following restrictions exist for nested tables and VARRAYs:

■ A field_list cannot contain a collection_fld_spec.

■ A col_obj_spec nested within a VARRAY cannot contain a collection_fld_spec.

■ The column_name specified as part of the field_list must be the same as the
column_name preceding the VARRAY parameter.

Also, be aware that if you are loading into a table containing nested tables, then
SQL*Loader will not automatically split the load into multiple loads and generate a set
ID.

Example 11–24 demonstrates loading a VARRAY and a nested table.

Example 11–24 Loading a VARRAY and a Nested Table

Control File Contents

 LOAD DATA
 INFILE 'sample.dat' "str '\n' "
 INTO TABLE dept
 REPLACE
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (
 dept_no CHAR(3),
 dname CHAR(25) NULLIF dname=BLANKS,
1 emps VARRAY TERMINATED BY ':'
 (
 emps COLUMN OBJECT
 (
 name CHAR(30),

Loading Collections (Nested Tables and VARRAYs)

11-24 Oracle Database Utilities

 age INTEGER EXTERNAL(3),
2 emp_id CHAR(7) NULLIF emps.emps.emp_id=BLANKS
)
),
3 proj_cnt FILLER CHAR(3),
4 projects NESTED TABLE SDF (CONSTANT "pr.txt" "fix 57") COUNT (proj_cnt)
 (
 projects COLUMN OBJECT
 (
 project_id POSITION (1:5) INTEGER EXTERNAL(5),
 project_name POSITION (7:30) CHAR
 NULLIF projects.projects.project_name = BLANKS
)
)
)

Data File (sample.dat)

 101,MATH,"Napier",28,2828,"Euclid", 123,9999:0
 210,"Topological Transforms",:2

Secondary Data File (SDF) (pr.txt)

21034 Topological Transforms
77777 Impossible Proof

Notes
1. The TERMINATED BY clause specifies the VARRAY instance terminator (note that no

COUNT clause is used).

2. Full name field references (using dot notation) resolve the field name conflict
created by the presence of this filler field.

3. proj_cnt is a filler field used as an argument to the COUNT clause.

4. This entry specifies the following:

– An SDF called pr.txt as the source of data. It also specifies a fixed-record
format within the SDF.

– If COUNT is 0, then the collection is initialized to empty. Another way to
initialize a collection to empty is to use a DEFAULTIF clause. The main field
name corresponding to the nested table field description is the same as the
field name of its nested nonfiller-field, specifically, the name of the column
object field description.

Secondary Data Files (SDFs)
Secondary data files (SDFs) are similar in concept to primary data files. Like primary
data files, SDFs are a collection of records, and each record is made up of fields. The
SDFs are specified on a per control-file-field basis. They are useful when you load
large nested tables and VARRAYs.

SDFs are specified using the SDF parameter. The SDF parameter can be followed by
either the file specification string, or a FILLER field that is mapped to a data field
containing one or more file specification strings.

Note: Only a collection_fld_spec can name an SDF as its data
source.

Loading a Parent Table Separately from Its Child Table

Loading Objects, LOBs, and Collections 11-25

As for a primary data file, the following can be specified for each SDF:

■ The record format (fixed, stream, or variable). Also, if stream record format is
used, then you can specify the record separator.

■ The record size.

■ The character set for an SDF can be specified using the CHARACTERSET clause (see
"Handling Different Character Encoding Schemes" on page 9-13).

■ A default delimiter (using the delimiter specification) for the fields that inherit a
particular SDF specification (all member fields or attributes of the collection that
contain the SDF specification, with exception of the fields containing their own
LOBFILE specification).

Also note the following regarding SDFs:

■ If a nonexistent SDF is specified as a data source for a particular field, then that
field is initialized to empty. If the concept of empty does not apply to the
particular field type, then the field is initialized to null.

■ Table-level delimiters are not inherited by fields that are read from an SDF.

■ To load SDFs larger than 64 KB, you must use the READSIZE parameter to specify a
larger physical record size. You can specify the READSIZE parameter either from the
command line or as part of an OPTIONS clause.

Dynamic Versus Static SDF Specifications
You can specify SDFs either statically (you specify the actual name of the file) or
dynamically (you use a FILLER field as the source of the file name). In either case,
when the EOF of an SDF is reached, the file is closed and further attempts at reading
data from that particular file produce results equivalent to reading data from an empty
field.

In a dynamic secondary file specification, this behavior is slightly different. Whenever
the specification changes to reference a new file, the old file is closed, and the data is
read from the beginning of the newly referenced file.

The dynamic switching of the data source files has a resetting effect. For example,
when SQL*Loader switches from the current file to a previously opened file, the
previously opened file is reopened, and the data is read from the beginning of the file.

You should not specify the same SDF as the source of two different fields. If you do,
then the two fields will typically read the data independently.

Loading a Parent Table Separately from Its Child Table
When you load a table that contains a nested table column, it may be possible to load
the parent table separately from the child table. You can load the parent and child
tables independently if the SIDs (system-generated or user-defined) are already
known at the time of the load (that is, the SIDs are in the data file with the data).

Example 11–25 illustrates how to load a parent table with user-provided SIDs.

See Also:

■ "READSIZE (read buffer size)" on page 8-8

■ "OPTIONS Clause" on page 9-3

■ "sdf_spec" on page A-10

Loading a Parent Table Separately from Its Child Table

11-26 Oracle Database Utilities

Example 11–25 Loading a Parent Table with User-Provided SIDs

Control File Contents

 LOAD DATA
 INFILE 'sample.dat' "str '|\n' "
 INTO TABLE dept
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 TRAILING NULLCOLS
 (dept_no CHAR(3),
 dname CHAR(20) NULLIF dname=BLANKS ,
 mysid FILLER CHAR(32),
1 projects SID(mysid))

Data File (sample.dat)

101,Math,21E978407D4441FCE03400400B403BC3,|
210,"Topology",21E978408D4441FCE03400400B403BC3,|

Notes
1. mysid is a filler field that is mapped to a data file field containing the actual set IDs

and is supplied as an argument to the SID clause.

Example 11–26 illustrates how to load a child table (the nested table storage table) with
user-provided SIDs.

Example 11–26 Loading a Child Table with User-Provided SIDs

Control File Contents

 LOAD DATA
 INFILE 'sample.dat'
 INTO TABLE dept
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 TRAILING NULLCOLS
1 SID(sidsrc)
 (project_id INTEGER EXTERNAL(5),
 project_name CHAR(20) NULLIF project_name=BLANKS,
 sidsrc FILLER CHAR(32))

Data File (sample.dat)

21034, "Topological Transforms", 21E978407D4441FCE03400400B403BC3,
77777, "Impossible Proof", 21E978408D4441FCE03400400B403BC3,

Notes
1. The table-level SID clause tells SQL*Loader that it is loading the storage table for

nested tables. sidsrc is the filler field name that is the source of the real set IDs.

Memory Issues When Loading VARRAY Columns
The following list describes some issues to keep in mind when you load VARRAY
columns:

■ VARRAYs are created in the client's memory before they are loaded into the
database. Each element of a VARRAY requires 4 bytes of client memory before it can
be loaded into the database. Therefore, when you load a VARRAY with a thousand
elements, you will require at least 4000 bytes of client memory for each VARRAY
instance before you can load the VARRAYs into the database. In many cases,
SQL*Loader requires two to three times that amount of memory to successfully
construct and load a VARRAY.

Loading a Parent Table Separately from Its Child Table

Loading Objects, LOBs, and Collections 11-27

■ The BINDSIZE parameter specifies the amount of memory allocated by
SQL*Loader for loading records. Given the value specified for BINDSIZE,
SQL*Loader takes into consideration the size of each field being loaded, and
determines the number of rows it can load in one transaction. The larger the
number of rows, the fewer transactions, resulting in better performance. But if the
amount of memory on your system is limited, then at the expense of performance,
you can specify a lower value for ROWS than SQL*Loader calculated.

■ Loading very large VARRAYs or a large number of smaller VARRAYs could cause you
to run out of memory during the load. If this happens, then specify a smaller value
for BINDSIZE or ROWS and retry the load.

Loading a Parent Table Separately from Its Child Table

11-28 Oracle Database Utilities

12

Conventional and Direct Path Loads 12-1

12 Conventional and Direct Path Loads

This chapter describes SQL*Loader's conventional and direct path load methods. The
following topics are discussed:

■ Data Loading Methods

■ Conventional Path Load

■ Direct Path Load

■ Using Direct Path Load

■ Optimizing Performance of Direct Path Loads

■ Optimizing Direct Path Loads on Multiple-CPU Systems

■ Avoiding Index Maintenance

■ Direct Loads, Integrity Constraints, and Triggers

■ Parallel Data Loading Models

■ General Performance Improvement Hints

For an example of using the direct path load method, see case study 6, Loading Data
Using the Direct Path Load Method. The other cases use the conventional path load
method. (See "SQL*Loader Case Studies" on page 7-13 for information on how to
access case studies.)

Data Loading Methods
SQL*Loader provides two methods for loading data:

■ Conventional Path Load

■ Direct Path Load

A conventional path load executes SQL INSERT statements to populate tables in an
Oracle database. A direct path load eliminates much of the Oracle database overhead
by formatting Oracle data blocks and writing the data blocks directly to the database
files. A direct load does not compete with other users for database resources, so it can
usually load data at near disk speed. Considerations inherent to direct path loads, such
as restrictions, security, and backup implications, are discussed in this chapter.

The tables to be loaded must already exist in the database. SQL*Loader never creates
tables. It loads existing tables that either already contain data or are empty.

The following privileges are required for a load:

■ You must have INSERT privileges on the table to be loaded.

Data Loading Methods

12-2 Oracle Database Utilities

■ You must have DELETE privileges on the table to be loaded, when using the
REPLACE or TRUNCATE option to empty old data from the table before loading the
new data in its place.

Figure 12–1 shows how conventional and direct path loads perform database writes.

Figure 12–1 Database Writes on SQL*Loader Direct Path and Conventional Path

Loading ROWID Columns
In both conventional path and direct path, you can specify a text value for a ROWID
column. (This is the same text you get when you perform a SELECT ROWID FROM table_
name operation.) The character string interpretation of the ROWID is converted into the
ROWID type for a column in a table.

RecordWrite Database
Block

SQL*Loader

Database

Oracle Server

Direct
Path

SQL*Loader

Conventional
Path

User Processes

Generate SQL
Commands

Generate SQL
Commands

SQL Command Processing

Space Management

Get new extents
Adjust high-water mark

Find partial blocks
Fill partial blocks

Buffer Cache Management
- Manage queues
- Resolve contention Buffer cache

Read Database
Blocks

Write Database
Blocks

Conventional Path Load

Conventional and Direct Path Loads 12-3

Conventional Path Load
Conventional path load (the default) uses the SQL INSERT statement and a bind array
buffer to load data into database tables. This method is used by all Oracle tools and
applications.

When SQL*Loader performs a conventional path load, it competes equally with all
other processes for buffer resources. This can slow the load significantly. Extra
overhead is added as SQL statements are generated, passed to Oracle, and executed.

The Oracle database looks for partially filled blocks and attempts to fill them on each
insert. Although appropriate during normal use, this can slow bulk loads dramatically.

Conventional Path Load of a Single Partition
By definition, a conventional path load uses SQL INSERT statements. During a
conventional path load of a single partition, SQL*Loader uses the partition-extended
syntax of the INSERT statement, which has the following form:

INSERT INTO TABLE T PARTITION (P) VALUES ...

The SQL layer of the Oracle kernel determines if the row being inserted maps to the
specified partition. If the row does not map to the partition, then the row is rejected,
and the SQL*Loader log file records an appropriate error message.

When to Use a Conventional Path Load
If load speed is most important to you, then you should use direct path load because it
is faster than conventional path load. However, certain restrictions on direct path loads
may require you to use a conventional path load. You should use a conventional path
load in the following situations:

■ When accessing an indexed table concurrently with the load, or when applying
inserts or updates to a nonindexed table concurrently with the load

To use a direct path load (except for parallel loads), SQL*Loader must have
exclusive write access to the table and exclusive read/write access to any indexes.

■ When loading data into a clustered table

A direct path load does not support loading of clustered tables.

■ When loading a relatively small number of rows into a large indexed table

During a direct path load, the existing index is copied when it is merged with the
new index keys. If the existing index is very large and the number of new keys is
very small, then the index copy time can offset the time saved by a direct path
load.

■ When loading a relatively small number of rows into a large table with referential
and column-check integrity constraints

Because these constraints cannot be applied to rows loaded on the direct path,
they are disabled for the duration of the load. Then they are applied to the whole
table when the load completes. The costs could outweigh the savings for a very
large table and a small number of new rows.

■ When loading records and you want to ensure that a record is rejected under any
of the following circumstances:

– If the record, upon insertion, causes an Oracle error

See Also: "Discontinued Conventional Path Loads" on page 9-19

Direct Path Load

12-4 Oracle Database Utilities

– If the record is formatted incorrectly, so that SQL*Loader cannot find field
boundaries

– If the record violates a constraint or tries to make a unique index non-unique

Direct Path Load
Instead of filling a bind array buffer and passing it to the Oracle database with a SQL
INSERT statement, a direct path load uses the direct path API to pass the data to be
loaded to the load engine in the server. The load engine builds a column array
structure from the data passed to it.

The direct path load engine uses the column array structure to format Oracle data
blocks and build index keys. The newly formatted database blocks are written directly
to the database (multiple blocks per I/O request using asynchronous writes if the host
platform supports asynchronous I/O).

Internally, multiple buffers are used for the formatted blocks. While one buffer is being
filled, one or more buffers are being written if asynchronous I/O is available on the
host platform. Overlapping computation with I/O increases load performance.

Data Conversion During Direct Path Loads
During a direct path load, data conversion occurs on the client side rather than on the
server side. This means that NLS parameters in the initialization parameter file
(server-side language handle) will not be used. To override this behavior, you can
specify a format mask in the SQL*Loader control file that is equivalent to the setting of
the NLS parameter in the initialization parameter file, or set the appropriate
environment variable. For example, to specify a date format for a field, you can either
set the date format in the SQL*Loader control file as shown in Example 12–1 or set an
NLS_DATE_FORMAT environment variable as shown in Example 12–2.

Example 12–1 Setting the Date Format in the SQL*Loader Control File

LOAD DATA
INFILE 'data.dat'
INSERT INTO TABLE emp
FIELDS TERMINATED BY "|"
(
EMPNO NUMBER(4) NOT NULL,
ENAME CHAR(10),
JOB CHAR(9),
MGR NUMBER(4),
HIREDATE DATE 'YYYYMMDD',
SAL NUMBER(7,2),
COMM NUMBER(7,2),
DEPTNO NUMBER(2)
)

Example 12–2 Setting an NLS_DATE_FORMAT Environment Variable

On UNIX Bourne or Korn shell:

% NLS_DATE_FORMAT='YYYYMMDD'
% export NLS_DATE_FORMAT

On UNIX csh:

See Also: "Discontinued Direct Path Loads" on page 9-19

Direct Path Load

Conventional and Direct Path Loads 12-5

%setenv NLS_DATE_FORMAT='YYYYMMDD'

Direct Path Load of a Partitioned or Subpartitioned Table
When loading a partitioned or subpartitioned table, SQL*Loader partitions the rows
and maintains indexes (which can also be partitioned). Note that a direct path load of a
partitioned or subpartitioned table can be quite resource-intensive for tables with
many partitions or subpartitions.

Direct Path Load of a Single Partition or Subpartition
When loading a single partition of a partitioned or subpartitioned table, SQL*Loader
partitions the rows and rejects any rows that do not map to the partition or
subpartition specified in the SQL*Loader control file. Local index partitions that
correspond to the data partition or subpartition being loaded are maintained by
SQL*Loader. Global indexes are not maintained on single partition or subpartition
direct path loads. During a direct path load of a single partition, SQL*Loader uses the
partition-extended syntax of the LOAD statement, which has either of the following
forms:

LOAD INTO TABLE T PARTITION (P) VALUES ...

LOAD INTO TABLE T SUBPARTITION (P) VALUES ...

While you are loading a partition of a partitioned or subpartitioned table, you are also
allowed to perform DML operations on, and direct path loads of, other partitions in
the table.

Although a direct path load minimizes database processing, several calls to the Oracle
database are required at the beginning and end of the load to initialize and finish the
load, respectively. Also, certain DML locks are required during load initialization and
are released when the load completes. The following operations occur during the load:
index keys are built and put into a sort, and space management routines are used to
get new extents when needed and to adjust the upper boundary (high-water mark) for
a data savepoint. See "Using Data Saves to Protect Against Data Loss" on page 12-10
for information about adjusting the upper boundary.

Advantages of a Direct Path Load
A direct path load is faster than the conventional path for the following reasons:

■ Partial blocks are not used, so no reads are needed to find them, and fewer writes
are performed.

■ SQL*Loader need not execute any SQL INSERT statements; therefore, the
processing load on the Oracle database is reduced.

Note: If you are performing a direct path load into multiple
partitions and a space error occurs, then the load is rolled back to
the last commit point. If there was no commit point, then the entire
load is rolled back. This ensures that no data encountered after the
space error is written out to a different partition.

You can use the ROWS parameter to specify the frequency of the
commit points. If the ROWS parameter is not specified, then the
entire load is rolled back.

Direct Path Load

12-6 Oracle Database Utilities

■ A direct path load calls on Oracle to lock tables and indexes at the start of the load
and releases them when the load is finished. A conventional path load calls Oracle
once for each array of rows to process a SQL INSERT statement.

■ A direct path load uses multiblock asynchronous I/O for writes to the database
files.

■ During a direct path load, processes perform their own write I/O, instead of using
Oracle's buffer cache. This minimizes contention with other Oracle users.

■ The sorted indexes option available during direct path loads enables you to
presort data using high-performance sort routines that are native to your system
or installation.

■ When a table to be loaded is empty, the presorting option eliminates the sort and
merge phases of index-building. The index is filled in as data arrives.

■ Protection against instance failure does not require redo log file entries during
direct path loads. Therefore, no time is required to log the load when:

– The Oracle database has the SQL NOARCHIVELOG parameter enabled

– The SQL*Loader UNRECOVERABLE clause is enabled

– The object being loaded has the SQL NOLOGGING parameter set

See "Instance Recovery and Direct Path Loads" on page 12-11.

Restrictions on Using Direct Path Loads
The following conditions must be satisfied for you to use the direct path load method:

■ Tables to be loaded cannot be clustered.

■ Tables to be loaded cannot have Oracle Virtual Private Database (VPD) policies
active on INSERT.

■ Segments to be loaded cannot have any active transactions pending.

To check for this condition, use the Oracle Enterprise Manager command MONITOR
TABLE to find the object ID for the tables you want to load. Then use the command
MONITOR LOCK to see if there are any locks on the tables.

■ For releases of the database earlier than Oracle9i, you can perform a SQL*Loader
direct path load only when the client and server are the same release. This also
means that you cannot perform a direct path load of Oracle9i data into a database
of an earlier release. For example, you cannot use direct path load to load data
from a release 9.0.1 database into a release 8.1.7 database.

Beginning with Oracle9i, you can perform a SQL*Loader direct path load when
the client and server are different releases. However, both releases must be at least
release 9.0.1 and the client release must be the same as or lower than the server
release. For example, you can perform a direct path load from a release 9.0.1
database into a release 9.2 database. However, you cannot use direct path load to
load data from a release 10.0.0 database into a release 9.2 database.

The following features are not available with direct path load:

■ Loading a parent table together with a child table

■ Loading BFILE columns

■ Use of CREATE SEQUENCE during the load. This is because in direct path loads there
is no SQL being generated to fetch the next value since direct path does not
generate INSERT statements.

Direct Path Load

Conventional and Direct Path Loads 12-7

Restrictions on a Direct Path Load of a Single Partition
In addition to the previously listed restrictions, loading a single partition has the
following restrictions:

■ The table that the partition is a member of cannot have any global indexes defined
on it.

■ Enabled referential and check constraints on the table that the partition is a
member of are not allowed.

■ Enabled triggers are not allowed.

When to Use a Direct Path Load
If none of the previous restrictions apply, then you should use a direct path load when:

■ You have a large amount of data to load quickly. A direct path load can quickly
load and index large amounts of data. It can also load data into either an empty or
nonempty table.

■ You want to load data in parallel for maximum performance. See "Parallel Data
Loading Models" on page 12-22.

Integrity Constraints
All integrity constraints are enforced during direct path loads, although not
necessarily at the same time. NOT NULL constraints are enforced during the load.
Records that fail these constraints are rejected.

UNIQUE constraints are enforced both during and after the load. A record that violates a
UNIQUE constraint is not rejected (the record is not available in memory when the
constraint violation is detected).

Integrity constraints that depend on other rows or tables, such as referential
constraints, are disabled before the direct path load and must be reenabled afterwards.
If REENABLE is specified, then SQL*Loader can reenable them automatically at the end
of the load. When the constraints are reenabled, the entire table is checked. Any rows
that fail this check are reported in the specified error log. See "Direct Loads, Integrity
Constraints, and Triggers" on page 12-18.

Field Defaults on the Direct Path
Default column specifications defined in the database are not available when you use
direct path loading. Fields for which default values are desired must be specified with
the DEFAULTIF clause. If a DEFAULTIF clause is not specified and the field is NULL, then a
null value is inserted into the database.

Loading into Synonyms
You can load data into a synonym for a table during a direct path load, but the
synonym must point directly to either a table or a view on a simple table. Note the
following restrictions:

■ Direct path mode cannot be used if the view is on a table that has user-defined
types or XML data.

■ In direct path mode, a view cannot be loaded using a SQL*Loader control file that
contains SQL expressions.

Using Direct Path Load

12-8 Oracle Database Utilities

Using Direct Path Load
This section explains how to use the SQL*Loader direct path load method.

Setting Up for Direct Path Loads
To prepare the database for direct path loads, you must run the setup script,
catldr.sql, to create the necessary views. You need only run this script once for each
database you plan to do direct loads to. You can run this script during database
installation if you know then that you will be doing direct loads.

Specifying a Direct Path Load
To start SQL*Loader in direct path load mode, set the DIRECT parameter to true on the
command line or in the parameter file, if used, in the format:

DIRECT=true

Building Indexes
You can improve performance of direct path loads by using temporary storage. After
each block is formatted, the new index keys are put in a sort (temporary) segment. The
old index and the new keys are merged at load finish time to create the new index. The
old index, sort (temporary) segment, and new index segment all require storage until
the merge is complete. Then the old index and temporary segment are removed.

During a conventional path load, every time a row is inserted the index is updated.
This method does not require temporary storage space, but it does add processing
time.

Improving Performance
To improve performance on systems with limited memory, use the SINGLEROW
parameter. For more information, see "SINGLEROW Option" on page 9-30.

When multiple indexes are built, the temporary segments corresponding to each index
exist simultaneously, in addition to the old indexes. The new keys are then merged
with the old indexes, one index at a time. As each new index is created, the old index
and the corresponding temporary segment are removed.

See Also:

■ "Optimizing Performance of Direct Path Loads" on page 12-12
for information about parameters you can use to optimize
performance of direct path loads

■ "Optimizing Direct Path Loads on Multiple-CPU Systems" on
page 12-17 if you are doing a direct path load on a
multiple-CPU system or across systems

Note: If, during a direct load, you have specified that the data is to
be presorted and the existing index is empty, then a temporary
segment is not required, and no merge occurs—the keys are put
directly into the index. See "Optimizing Performance of Direct Path
Loads" on page 12-12 for more information.

Using Direct Path Load

Conventional and Direct Path Loads 12-9

Temporary Segment Storage Requirements
To estimate the amount of temporary segment space needed for storing the new index
keys (in bytes), use the following formula:

1.3 * key_storage

In this formula, key storage is defined as follows:

key_storage = (number_of_rows) *
 (10 + sum_of_column_sizes + number_of_columns)

The columns included in this formula are the columns in the index. There is one length
byte per column, and 10 bytes per row are used for a ROWID and additional overhead.

The constant 1.3 reflects the average amount of extra space needed for sorting. This
value is appropriate for most randomly ordered data. If the data arrives in exactly
opposite order, then twice the key-storage space is required for sorting, and the value
of this constant would be 2.0. That is the worst case.

If the data is fully sorted, then only enough space to store the index entries is required,
and the value of this constant would be 1.0. See "Presorting Data for Faster Indexing"
on page 12-13 for more information.

Indexes Left in an Unusable State
SQL*Loader leaves indexes in an Index Unusable state when the data segment being
loaded becomes more up-to-date than the index segments that index it.

Any SQL statement that tries to use an index that is in an Index Unusable state returns
an error. The following conditions cause a direct path load to leave an index or a
partition of a partitioned index in an Index Unusable state:

■ SQL*Loader runs out of space for the index and cannot update the index.

■ The data is not in the order specified by the SORTED INDEXES clause.

■ There is an instance failure, or the Oracle shadow process fails while building the
index.

■ There are duplicate keys in a unique index.

■ Data savepoints are being used, and the load fails or is terminated by a keyboard
interrupt after a data savepoint occurred.

To determine if an index is in an Index Unusable state, you can execute a simple query:

SELECT INDEX_NAME, STATUS
 FROM USER_INDEXES
 WHERE TABLE_NAME = 'tablename';

If you are not the owner of the table, then search ALL_INDEXES or DBA_INDEXES instead
of USER_INDEXES.

To determine if an index partition is in an unusable state, you can execute the
following query:

SELECT INDEX_NAME,
 PARTITION_NAME,
 STATUS FROM USER_IND_PARTITIONS
 WHERE STATUS != 'VALID';

See Also: Oracle Database Administrator's Guide for information
about how to estimate index size and set storage parameters

Using Direct Path Load

12-10 Oracle Database Utilities

If you are not the owner of the table, then search ALL_IND_PARTITIONS and DBA_IND_
PARTITIONS instead of USER_IND_PARTITIONS.

Using Data Saves to Protect Against Data Loss
You can use data saves to protect against loss of data due to instance failure. All data
loaded up to the last savepoint is protected against instance failure. To continue the
load after an instance failure, determine how many rows from the input file were
processed before the failure, then use the SKIP parameter to skip those processed rows.

If there are any indexes on the table, drop them before continuing the load, and then
re-create them after the load. See "Data Recovery During Direct Path Loads" on
page 12-10 for more information about media and instance recovery.

Using the ROWS Parameter
The ROWS parameter determines when data saves occur during a direct path load. The
value you specify for ROWS is the number of rows you want SQL*Loader to read from
the input file before saving inserts in the database.

A data save is an expensive operation. The value for ROWS should be set high enough
so that a data save occurs once every 15 minutes or longer. The intent is to provide an
upper boundary (high-water mark) on the amount of work that is lost when an
instance failure occurs during a long-running direct path load. Setting the value of
ROWS to a small number adversely affects performance and data block space utilization.

Data Save Versus Commit
In a conventional load, ROWS is the number of rows to read before a commit operation.
A direct load data save is similar to a conventional load commit, but it is not identical.

The similarities are as follows:

■ A data save will make the rows visible to other users.

■ Rows cannot be rolled back after a data save.

The major difference is that in a direct path load data save, the indexes will be
unusable (in Index Unusable state) until the load completes.

Data Recovery During Direct Path Loads
SQL*Loader provides full support for data recovery when using the direct path load
method. There are two main types of recovery:

■ Media - recovery from the loss of a database file. You must be operating in
ARCHIVELOG mode to recover after you lose a database file.

■ Instance - recovery from a system failure in which in-memory data was changed
but lost due to the failure before it was written to disk. The Oracle database can
always recover from instance failures, even when redo logs are not archived.

Note: Indexes are not protected by a data save, because
SQL*Loader does not build indexes until after data loading
completes. (The only time indexes are built during the load is when
presorted data is loaded into an empty table, but these indexes are
also unprotected.)

Using Direct Path Load

Conventional and Direct Path Loads 12-11

Media Recovery and Direct Path Loads
If redo log file archiving is enabled (you are operating in ARCHIVELOG mode), then
SQL*Loader logs loaded data when using the direct path, making media recovery
possible. If redo log archiving is not enabled (you are operating in NOARCHIVELOG
mode), then media recovery is not possible.

To recover a database file that was lost while it was being loaded, use the same
method that you use to recover data loaded with the conventional path:

1. Restore the most recent backup of the affected database file.

2. Recover the tablespace using the RECOVER command.

Instance Recovery and Direct Path Loads
Because SQL*Loader writes directly to the database files, all rows inserted up to the
last data save will automatically be present in the database files if the instance is
restarted. Changes do not need to be recorded in the redo log file to make instance
recovery possible.

If an instance failure occurs, then the indexes being built may be left in an Index
Unusable state. Indexes that are Unusable must be rebuilt before you can use the table
or partition. See "Indexes Left in an Unusable State" on page 12-9 for information
about how to determine if an index has been left in Index Unusable state.

Loading Long Data Fields
Data that is longer than SQL*Loader's maximum buffer size can be loaded on the
direct path by using LOBs. You can improve performance when doing this by using a
large STREAMSIZE value.

You could also load data that is longer than the maximum buffer size by using the
PIECED parameter, as described in the next section, but Oracle highly recommends that
you use LOBs instead.

Loading Data As PIECED
The PIECED parameter can be used to load data in sections, if the data is in the last
column of the logical record.

Declaring a column as PIECED informs the direct path loader that a LONG field might be
split across multiple physical records (pieces). In such cases, SQL*Loader processes
each piece of the LONG field as it is found in the physical record. All the pieces are read
before the record is processed. SQL*Loader makes no attempt to materialize the LONG
field before storing it; however, all the pieces are read before the record is processed.

The following restrictions apply when you declare a column as PIECED:

See Also: Oracle Database Administrator's Guide for more
information about recovery

See Also: Oracle Database Backup and Recovery User's Guide for
more information about the RMAN RECOVER command

See Also:

■ "Loading LOBs" on page 11-14

■ "Specifying the Number of Column Array Rows and Size of
Stream Buffers" on page 12-15

Optimizing Performance of Direct Path Loads

12-12 Oracle Database Utilities

■ This option is only valid on the direct path.

■ Only one field per table may be PIECED.

■ The PIECED field must be the last field in the logical record.

■ The PIECED field may not be used in any WHEN, NULLIF, or DEFAULTIF clauses.

■ The PIECED field's region in the logical record must not overlap with any other
field's region.

■ The PIECED corresponding database column may not be part of the index.

■ It may not be possible to load a rejected record from the bad file if it contains a
PIECED field.

For example, a PIECED field could span three records. SQL*Loader loads the piece
from the first record and then reuses the buffer for the second buffer. After loading
the second piece, the buffer is reused for the third record. If an error is discovered,
then only the third record is placed in the bad file because the first two records no
longer exist in the buffer. As a result, the record in the bad file would not be valid.

Optimizing Performance of Direct Path Loads
You can control the time and temporary storage used during direct path loads.

To minimize time:

■ Preallocate storage space

■ Presort the data

■ Perform infrequent data saves

■ Minimize use of the redo log

■ Specify the number of column array rows and the size of the stream buffer

■ Specify a date cache value

■ Set DB_UNRECOVERABLE_SCN_TRACKING=FALSE. Unrecoverable (nologging) direct
writes are tracked in the control file by periodically storing the SCN and Time of
the last direct write. If these updates to the control file are adversely affecting
performance, then setting the DB_UNRECOVERABLE_SCN_TRACKING parameter to
FALSE may improve performance.

To minimize space:

■ When sorting data before the load, sort data on the index that requires the most
temporary storage space

■ Avoid index maintenance during the load

Preallocating Storage for Faster Loading
SQL*Loader automatically adds extents to the table if necessary, but this process takes
time. For faster loads into a new table, allocate the required extents when the table is
created.

To calculate the space required by a table, see the information about managing
database files in the Oracle Database Administrator's Guide. Then use the INITIAL or
MINEXTENTS clause in the SQL CREATE TABLE statement to allocate the required space.

Another approach is to size extents large enough so that extent allocation is infrequent.

Optimizing Performance of Direct Path Loads

Conventional and Direct Path Loads 12-13

Presorting Data for Faster Indexing
You can improve the performance of direct path loads by presorting your data on
indexed columns. Presorting minimizes temporary storage requirements during the
load. Presorting also enables you to take advantage of high-performance sorting
routines that are optimized for your operating system or application.

If the data is presorted and the existing index is not empty, then presorting minimizes
the amount of temporary segment space needed for the new keys. The sort routine
appends each new key to the key list.

Instead of requiring extra space for sorting, only space for the keys is needed. To
calculate the amount of storage needed, use a sort factor of 1.0 instead of 1.3. For more
information about estimating storage requirements, see "Temporary Segment Storage
Requirements" on page 12-9.

If presorting is specified and the existing index is empty, then maximum efficiency is
achieved. The new keys are simply inserted into the index. Instead of having a
temporary segment and new index existing simultaneously with the empty, old index,
only the new index exists. So, temporary storage is not required, and time is saved.

SORTED INDEXES Clause
The SORTED INDEXES clause identifies the indexes on which the data is presorted. This
clause is allowed only for direct path loads. See case study 6, Loading Data Using the
Direct Path Load Method, for an example. (See "SQL*Loader Case Studies" on
page 7-13 for information on how to access case studies.)

Generally, you specify only one index in the SORTED INDEXES clause, because data that
is sorted for one index is not usually in the right order for another index. When the
data is in the same order for multiple indexes, however, all indexes can be specified at
once.

All indexes listed in the SORTED INDEXES clause must be created before you start the
direct path load.

Unsorted Data
If you specify an index in the SORTED INDEXES clause, and the data is not sorted for that
index, then the index is left in an Index Unusable state at the end of the load. The data
is present, but any attempt to use the index results in an error. Any index that is left in
an Index Unusable state must be rebuilt after the load.

Multiple-Column Indexes
If you specify a multiple-column index in the SORTED INDEXES clause, then the data
should be sorted so that it is ordered first on the first column in the index, next on the
second column in the index, and so on.

For example, if the first column of the index is city, and the second column is last
name; then the data should be ordered by name within each city, as in the following
list:

Albuquerque Adams
Albuquerque Hartstein
Albuquerque Klein
... ...
Boston Andrews
Boston Bobrowski
Boston Heigham
... ...

Optimizing Performance of Direct Path Loads

12-14 Oracle Database Utilities

Choosing the Best Sort Order
For the best overall performance of direct path loads, you should presort the data
based on the index that requires the most temporary segment space. For example, if
the primary key is one numeric column, and the secondary key consists of three text
columns, then you can minimize both sort time and storage requirements by
presorting on the secondary key.

To determine the index that requires the most storage space, use the following
procedure:

1. For each index, add up the widths of all columns in that index.

2. For a single-table load, pick the index with the largest overall width.

3. For each table in a multiple-table load, identify the index with the largest overall
width. If the same number of rows are to be loaded into each table, then again pick
the index with the largest overall width. Usually, the same number of rows are
loaded into each table.

4. If a different number of rows are to be loaded into the indexed tables in a
multiple-table load, then multiply the width of each index identified in Step 3 by
the number of rows that are to be loaded into that index, and pick the index with
the largest result.

Infrequent Data Saves
Frequent data saves resulting from a small ROWS value adversely affect the
performance of a direct path load. A small ROWS value can also result in wasted data
block space because the last data block is not written to after a save, even if the data
block is not full.

Because direct path loads can be many times faster than conventional loads, the value
of ROWS should be considerably higher for a direct load than it would be for a
conventional load.

During a data save, loading stops until all of SQL*Loader's buffers are successfully
written. You should select the largest value for ROWS that is consistent with safety. It is a
good idea to determine the average time to load a row by loading a few thousand
rows. Then you can use that value to select a good value for ROWS.

For example, if you can load 20,000 rows per minute, and you do not want to repeat
more than 10 minutes of work after an interruption, then set ROWS to be 200,000 (20,000
rows/minute * 10 minutes).

Minimizing Use of the Redo Log
One way to speed a direct load dramatically is to minimize use of the redo log. There
are three ways to do this. You can disable archiving, you can specify that the load is
unrecoverable, or you can set the SQL NOLOGGING parameter for the objects being
loaded. This section discusses all methods.

Disabling Archiving
If archiving is disabled, then direct path loads do not generate full image redo. Use the
SQL ARCHIVELOG and NOARCHIVELOG parameters to set the archiving mode. See the
Oracle Database Administrator's Guide for more information about archiving.

Optimizing Performance of Direct Path Loads

Conventional and Direct Path Loads 12-15

Specifying the SQL*Loader UNRECOVERABLE Clause
To save time and space in the redo log file, use the SQL*Loader UNRECOVERABLE clause
in the control file when you load data. An unrecoverable load does not record loaded
data in the redo log file; instead, it generates invalidation redo.

The UNRECOVERABLE clause applies to all objects loaded during the load session (both
data and index segments). Therefore, media recovery is disabled for the loaded table,
although database changes by other users may continue to be logged.

If media recovery becomes necessary on data that was loaded with the UNRECOVERABLE
clause, then the data blocks that were loaded are marked as logically corrupted.

To recover the data, drop and re-create the data. It is a good idea to do backups
immediately after the load to preserve the otherwise unrecoverable data.

By default, a direct path load is RECOVERABLE.

The following is an example of specifying the UNRECOVERABLE clause in the control file:

UNRECOVERABLE
LOAD DATA
INFILE 'sample.dat'
INTO TABLE emp
(ename VARCHAR2(10), empno NUMBER(4));

Setting the SQL NOLOGGING Parameter
If a data or index segment has the SQL NOLOGGING parameter set, then full image redo
logging is disabled for that segment (invalidation redo is generated). Use of the
NOLOGGING parameter allows a finer degree of control over the objects that are not
logged.

Specifying the Number of Column Array Rows and Size of Stream Buffers
The number of column array rows determines the number of rows loaded before the
stream buffer is built. The STREAMSIZE parameter specifies the size (in bytes) of the
data stream sent from the client to the server.

Use the COLUMNARRAYROWS parameter to specify a value for the number of column array
rows. Note that when VARRAYs are loaded using direct path, the COLUMNARRAYROWS
parameter defaults to 100 to avoid client object cache thrashing.

Use the STREAMSIZE parameter to specify the size for direct path stream buffers.

The optimal values for these parameters vary, depending on the system, input
datatypes, and Oracle column datatypes used. When you are using optimal values for
your particular configuration, the elapsed time in the SQL*Loader log file should go
down.

To see a list of default values for these and other parameters, invoke SQL*Loader
without any parameters, as described in "Invoking SQL*Loader" on page 8-1.

Note: Because the data load is not logged, you may want to make
a backup of the data after loading.

Optimizing Performance of Direct Path Loads

12-16 Oracle Database Utilities

It can be particularly useful to specify the number of column array rows and size of
the steam buffer when you perform direct path loads on multiple-CPU systems. See
"Optimizing Direct Path Loads on Multiple-CPU Systems" on page 12-17 for more
information.

Specifying a Value for the Date Cache
If you are performing a direct path load in which the same date or timestamp values
are loaded many times, then a large percentage of total load time can end up being
used for converting date and timestamp data. This is especially true if multiple date
columns are being loaded. In such a case, it may be possible to improve performance
by using the SQL*Loader date cache.

The date cache reduces the number of date conversions done when many duplicate
values are present in the input data. It enables you to specify the number of unique
dates anticipated during the load.

The date cache is enabled by default. To completely disable the date cache, set it to 0.

The default date cache size is 1000 elements. If the default is used and the number of
unique input values loaded exceeds 1000, then the date cache is automatically disabled
for that table. This prevents excessive and unnecessary lookup times that could affect
performance. However, if instead of using the default, you specify a nonzero value for
the date cache and it is exceeded, then the date cache is not disabled. Instead, any
input data that exceeded the maximum is explicitly converted using the appropriate
conversion routines.

The date cache can be associated with only one table. No date cache sharing can take
place across tables. A date cache is created for a table only if all of the following
conditions are true:

■ The DATE_CACHE parameter is not set to 0

■ One or more date values, timestamp values, or both are being loaded that require
datatype conversion in order to be stored in the table

■ The load is a direct path load

Date cache statistics are written to the log file. You can use those statistics to improve
direct path load performance as follows:

■ If the number of cache entries is less than the cache size and there are no cache
misses, then the cache size could safely be set to a smaller value.

■ If the number of cache hits (entries for which there are duplicate values) is small
and the number of cache misses is large, then the cache size should be increased.
Be aware that if the cache size is increased too much, then it may cause other
problems, such as excessive paging or too much memory usage.

■ If most of the input date values are unique, then the date cache will not enhance
performance and therefore should not be used.

Note: You should monitor process paging activity, because if
paging becomes excessive, then performance can be significantly
degraded. You may need to lower the values for READSIZE,
STREAMSIZE, and COLUMNARRAYROWS to avoid excessive paging.

Optimizing Direct Path Loads on Multiple-CPU Systems

Conventional and Direct Path Loads 12-17

If increasing the cache size does not improve performance, then revert to the default
behavior or set the cache size to 0. The overall performance improvement also depends
on the datatypes of the other columns being loaded. Improvement will be greater for
cases in which the total number of date columns loaded is large compared to other
types of data loaded.

Optimizing Direct Path Loads on Multiple-CPU Systems
If you are performing direct path loads on a multiple-CPU system, then SQL*Loader
uses multithreading by default. A multiple-CPU system in this case is defined as a
single system that has two or more CPUs.

Multithreaded loading means that, when possible, conversion of the column arrays to
stream buffers and stream buffer loading are performed in parallel. This optimization
works best when:

■ Column arrays are large enough to generate multiple direct path stream buffers
for loads

■ Data conversions are required from input field datatypes to Oracle column
datatypes

The conversions are performed in parallel with stream buffer loading.

The status of this process is recorded in the SQL*Loader log file, as shown in the
following sample portion of a log:

Total stream buffers loaded by SQL*Loader main thread: 47
Total stream buffers loaded by SQL*Loader load thread: 180
Column array rows: 1000
Stream buffer bytes: 256000

In this example, the SQL*Loader load thread has offloaded the SQL*Loader main
thread, allowing the main thread to build the next stream buffer while the load thread
loads the current stream on the server.

The goal is to have the load thread perform as many stream buffer loads as possible.
This can be accomplished by increasing the number of column array rows, decreasing
the stream buffer size, or both. You can monitor the elapsed time in the SQL*Loader
log file to determine whether your changes are having the desired effect. See
"Specifying the Number of Column Array Rows and Size of Stream Buffers" on
page 12-15 for more information.

On single-CPU systems, optimization is turned off by default. When the server is on
another system, performance may improve if you manually turn on multithreading.

To turn the multithreading option on or off, use the MULTITHREADING parameter at the
SQL*Loader command line or specify it in your SQL*Loader control file.

Note: Date cache statistics are not written to the SQL*Loader log
file if the cache was active by default and disabled because the
maximum was exceeded.

See Also: "DATE_CACHE" on page 8-4

See Also: Oracle Call Interface Programmer's Guide for more
information about the concepts of direct path loading

Avoiding Index Maintenance

12-18 Oracle Database Utilities

Avoiding Index Maintenance
For both the conventional path and the direct path, SQL*Loader maintains all existing
indexes for a table.

To avoid index maintenance, use one of the following methods:

■ Drop the indexes before beginning of the load.

■ Mark selected indexes or index partitions as Index Unusable before beginning the
load and use the SKIP_UNUSABLE_INDEXES parameter.

■ Use the SKIP_INDEX_MAINTENANCE parameter (direct path only, use with caution).

By avoiding index maintenance, you minimize the amount of space required during a
direct path load, in the following ways:

■ You can build indexes one at a time, reducing the amount of sort (temporary)
segment space that would otherwise be needed for each index.

■ Only one index segment exists when an index is built, instead of the three
segments that temporarily exist when the new keys are merged into the old index
to make the new index.

Avoiding index maintenance is quite reasonable when the number of rows to be
loaded is large compared to the size of the table. But if relatively few rows are added
to a large table, then the time required to resort the indexes may be excessive. In such
cases, it is usually better to use the conventional path load method, or to use the
SINGLEROW parameter of SQL*Loader. For more information, see "SINGLEROW
Option" on page 9-30.

Direct Loads, Integrity Constraints, and Triggers
With the conventional path load method, arrays of rows are inserted with standard
SQL INSERT statements—integrity constraints and insert triggers are automatically
applied. But when you load data with the direct path, SQL*Loader disables some
integrity constraints and all database triggers. This section discusses the implications
of using direct path loads with respect to these features.

Integrity Constraints
During a direct path load, some integrity constraints are automatically disabled.
Others are not. For a description of the constraints, see the information about
maintaining data integrity in the Oracle Database Advanced Application Developer's
Guide.

Enabled Constraints
During a direct path load, the constraints that remain enabled are as follows:

■ NOT NULL

■ UNIQUE

■ PRIMARY KEY (unique-constraints on not-null columns)

NOT NULL constraints are checked at column array build time. Any row that violates the
NOT NULL constraint is rejected.

Even though UNIQUE constraints remain enabled during direct path loads, any rows
that violate those constraints are loaded anyway (this is different than in conventional
path in which such rows would be rejected). When indexes are rebuilt at the end of the

Direct Loads, Integrity Constraints, and Triggers

Conventional and Direct Path Loads 12-19

direct path load, UNIQUE constraints are verified and if a violation is detected, then the
index will be left in an Index Unusable state. See "Indexes Left in an Unusable State"
on page 12-9.

Disabled Constraints
During a direct path load, the following constraints are automatically disabled by
default:

■ CHECK constraints

■ Referential constraints (FOREIGN KEY)

You can override the automatic disabling of CHECK constraints by specifying the
EVALUATE CHECK_CONSTRAINTS clause. SQL*Loader will then evaluate CHECK
constraints during a direct path load. Any row that violates the CHECK constraint is
rejected. The following example shows the use of the EVALUATE CHECK_CONSTRAINTS
clause in a SQL*Loader control file:

LOAD DATA
INFILE *
APPEND
INTO TABLE emp
EVALUATE CHECK_CONSTRAINTS
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
(c1 CHAR(10) ,c2)
BEGINDATA
Jones,10
Smith,20
Brown,30
Taylor,40

Reenable Constraints
When the load completes, the integrity constraints will be reenabled automatically if
the REENABLE clause is specified. The syntax for the REENABLE clause is as follows:

The optional parameter DISABLED_CONSTRAINTS is provided for readability. If the
EXCEPTIONS clause is included, then the table must already exist and you must be able
to insert into it. This table contains the ROWIDs of all rows that violated one of the
integrity constraints. It also contains the name of the constraint that was violated. See
Oracle Database SQL Language Reference for instructions on how to create an exceptions
table.

The SQL*Loader log file describes the constraints that were disabled, the ones that
were reenabled, and what error, if any, prevented reenabling or validating of each
constraint. It also contains the name of the exceptions table specified for each loaded
table.

If the REENABLE clause is not used, then the constraints must be reenabled manually, at
which time all rows in the table are verified. If the Oracle database finds any errors in
the new data, then error messages are produced. The names of violated constraints
and the ROWIDs of the bad data are placed in an exceptions table, if one is specified.

EVALUATE CHECK_CONSTRAINTS REENABLE DISABLED_CONSTRAINTS

EXCEPTIONS table WHEN field_condition

Direct Loads, Integrity Constraints, and Triggers

12-20 Oracle Database Utilities

If the REENABLE clause is used, then SQL*Loader automatically reenables the constraint
and verifies all new rows. If no errors are found in the new data, then SQL*Loader
automatically marks the constraint as validated. If any errors are found in the new
data, then error messages are written to the log file and SQL*Loader marks the status
of the constraint as ENABLE NOVALIDATE. The names of violated constraints and the
ROWIDs of the bad data are placed in an exceptions table, if one is specified.

Database Insert Triggers
Table insert triggers are also disabled when a direct path load begins. After the rows
are loaded and indexes rebuilt, any triggers that were disabled are automatically
reenabled. The log file lists all triggers that were disabled for the load. There should
not be any errors reenabling triggers.

Unlike integrity constraints, insert triggers are not reapplied to the whole table when
they are enabled. As a result, insert triggers do not fire for any rows loaded on the
direct path. When using the direct path, the application must ensure that any behavior
associated with insert triggers is carried out for the new rows.

Replacing Insert Triggers with Integrity Constraints
Applications commonly use insert triggers to implement integrity constraints. Most of
the triggers that these application insert are simple enough that they can be replaced
with Oracle's automatic integrity constraints.

When Automatic Constraints Cannot Be Used
Sometimes an insert trigger cannot be replaced with Oracle's automatic integrity
constraints. For example, if an integrity check is implemented with a table lookup in
an insert trigger, then automatic check constraints cannot be used, because the
automatic constraints can only reference constants and columns in the current row.
This section describes two methods for duplicating the effects of such a trigger.

Preparation
Before either method can be used, the table must be prepared. Use the following
general guidelines to prepare the table:

Note: Normally, when a table constraint is left in an ENABLE
NOVALIDATE state, new data can be inserted into the table but no
new invalid data may be inserted. However, SQL*Loader direct
path load does not enforce this rule. Thus, if subsequent direct path
loads are performed with invalid data, then the invalid data will be
inserted but the same error reporting and exception table
processing as described previously will take place. In this scenario
the exception table may contain duplicate entries if it is not cleared
out before each load. Duplicate entries can easily be filtered out by
performing a query such as the following:

SELECT UNIQUE * FROM exceptions_table;

Note: Because referential integrity must be reverified for the entire
table, performance may be improved by using the conventional
path, instead of the direct path, when a small number of rows are to
be loaded into a very large table.

Direct Loads, Integrity Constraints, and Triggers

Conventional and Direct Path Loads 12-21

1. Before the load, add a 1-byte or 1-character column to the table that marks rows as
"old data" or "new data."

2. Let the value of null for this column signify "old data" because null columns do
not take up space.

3. When loading, flag all loaded rows as "new data" with SQL*Loader's CONSTANT
parameter.

After following this procedure, all newly loaded rows are identified, making it
possible to operate on the new data without affecting the old rows.

Using an Update Trigger
Generally, you can use a database update trigger to duplicate the effects of an insert
trigger. This method is the simplest. It can be used whenever the insert trigger does
not raise any exceptions.

1. Create an update trigger that duplicates the effects of the insert trigger.

Copy the trigger. Change all occurrences of "new.column_name" to "old.column_
name".

2. Replace the current update trigger, if it exists, with the new one.

3. Update the table, changing the "new data" flag to null, thereby firing the update
trigger.

4. Restore the original update trigger, if there was one.

Depending on the behavior of the trigger, it may be necessary to have exclusive update
access to the table during this operation, so that other users do not inadvertently apply
the trigger to rows they modify.

Duplicating the Effects of Exception Conditions
If the insert trigger can raise an exception, then more work is required to duplicate its
effects. Raising an exception would prevent the row from being inserted into the table.
To duplicate that effect with an update trigger, it is necessary to mark the loaded row
for deletion.

The "new data" column cannot be used as a delete flag, because an update trigger
cannot modify the columns that caused it to fire. So another column must be added to
the table. This column marks the row for deletion. A null value means the row is valid.
Whenever the insert trigger would raise an exception, the update trigger can mark the
row as invalid by setting a flag in the additional column.

In summary, when an insert trigger can raise an exception condition, its effects can be
duplicated by an update trigger, provided:

■ Two columns (which are usually null) are added to the table

■ The table can be updated exclusively (if necessary)

Using a Stored Procedure
The following procedure always works, but it is more complex to implement. It can be
used when the insert trigger raises exceptions. It does not require a second additional
column; and, because it does not replace the update trigger, it can be used without
exclusive access to the table.

1. Do the following to create a stored procedure that duplicates the effects of the
insert trigger:

Parallel Data Loading Models

12-22 Oracle Database Utilities

a. Declare a cursor for the table, selecting all new rows.

b. Open the cursor and fetch rows, one at a time, in a processing loop.

c. Perform the operations contained in the insert trigger.

d. If the operations succeed, then change the "new data" flag to null.

e. If the operations fail, then change the "new data" flag to "bad data."

2. Execute the stored procedure using an administration tool such as SQL*Plus.

3. After running the procedure, check the table for any rows marked "bad data."

4. Update or remove the bad rows.

5. Reenable the insert trigger.

Permanently Disabled Triggers and Constraints
SQL*Loader needs to acquire several locks on the table to be loaded to disable triggers
and constraints. If a competing process is enabling triggers or constraints at the same
time that SQL*Loader is trying to disable them for that table, then SQL*Loader may
not be able to acquire exclusive access to the table.

SQL*Loader attempts to handle this situation as gracefully as possible. It attempts to
reenable disabled triggers and constraints before exiting. However, the same
table-locking problem that made it impossible for SQL*Loader to continue may also
have made it impossible for SQL*Loader to finish enabling triggers and constraints. In
such cases, triggers and constraints will remain disabled until they are manually
enabled.

Although such a situation is unlikely, it is possible. The best way to prevent it is to
ensure that no applications are running that could enable triggers or constraints for the
table while the direct load is in progress.

If a direct load is terminated due to failure to acquire the proper locks, then carefully
check the log. It will show every trigger and constraint that was disabled, and each
attempt to reenable them. Any triggers or constraints that were not reenabled by
SQL*Loader should be manually enabled with the ENABLE clause of the ALTER TABLE
statement described in Oracle Database SQL Language Reference.

Increasing Performance with Concurrent Conventional Path Loads
If triggers or integrity constraints pose a problem, but you want faster loading, then
you should consider using concurrent conventional path loads. That is, use multiple
load sessions executing concurrently on a multiple-CPU system. Split the input data
files into separate files on logical record boundaries, and then load each such input
data file with a conventional path load session. The resulting load has the following
attributes:

■ It is faster than a single conventional load on a multiple-CPU system, but probably
not as fast as a direct load.

■ Triggers fire, integrity constraints are applied to the loaded rows, and indexes are
maintained using the standard DML execution logic.

Parallel Data Loading Models
This section discusses three basic models of concurrency that you can use to minimize
the elapsed time required for data loading:

Parallel Data Loading Models

Conventional and Direct Path Loads 12-23

■ Concurrent conventional path loads

■ Intersegment concurrency with the direct path load method

■ Intrasegment concurrency with the direct path load method

Concurrent Conventional Path Loads
Using multiple conventional path load sessions executing concurrently is discussed in
"Increasing Performance with Concurrent Conventional Path Loads" on page 12-22.
You can use this technique to load the same or different objects concurrently with no
restrictions.

Intersegment Concurrency with Direct Path
Intersegment concurrency can be used for concurrent loading of different objects. You
can apply this technique to concurrent direct path loading of different tables, or to
concurrent direct path loading of different partitions of the same table.

When you direct path load a single partition, consider the following items:

■ Local indexes can be maintained by the load.

■ Global indexes cannot be maintained by the load.

■ Referential integrity and CHECK constraints must be disabled.

■ Triggers must be disabled.

■ The input data should be partitioned (otherwise many records will be rejected,
which adversely affects performance).

Intrasegment Concurrency with Direct Path
SQL*Loader permits multiple, concurrent sessions to perform a direct path load into
the same table, or into the same partition of a partitioned table. Multiple SQL*Loader
sessions improve the performance of a direct path load given the available resources
on your system.

This method of data loading is enabled by setting both the DIRECT and the PARALLEL
parameters to true, and is often referred to as a parallel direct path load.

It is important to realize that parallelism is user managed. Setting the PARALLEL
parameter to true only allows multiple concurrent direct path load sessions.

Restrictions on Parallel Direct Path Loads
The following restrictions are enforced on parallel direct path loads:

■ Neither local nor global indexes can be maintained by the load.

■ Rows can only be appended. REPLACE, TRUNCATE, and INSERT cannot be used (this
is due to the individual loads not being coordinated). If you must truncate a table
before a parallel load, then you must do it manually.

Additionally, the following objects must be disabled on parallel direct path loads. You
do not have to take any action to disable them. SQL*Loader disables them before the
load begins and re-enables them after the load completes:

■ Referential integrity constraints

■ Triggers

Parallel Data Loading Models

12-24 Oracle Database Utilities

■ CHECK constraints, unless the ENABLE_CHECK_CONSTRAINTS control file option is
used

If a parallel direct path load is being applied to a single partition, then you should
partition the data first (otherwise, the overhead of record rejection due to a partition
mismatch slows down the load).

Initiating Multiple SQL*Loader Sessions
Each SQL*Loader session takes a different data file as input. In all sessions executing a
direct load on the same table, you must set PARALLEL to true. The syntax is:

PARALLEL can be specified on the command line or in a parameter file. It can also be
specified in the control file with the OPTIONS clause.

For example, to invoke three SQL*Loader direct path load sessions on the same table,
you would execute each of the following commands at the operating system prompt.
After entering each command, you will be prompted for a password.

sqlldr USERID=scott CONTROL=load1.ctl DIRECT=TRUE PARALLEL=true
sqlldr USERID=scott CONTROL=load2.ctl DIRECT=TRUE PARALLEL=true
sqlldr USERID=scott CONTROL=load3.ctl DIRECT=TRUE PARALLEL=true

The previous commands must be executed in separate sessions, or if permitted on
your operating system, as separate background jobs. Note the use of multiple control
files. This enables you to be flexible in specifying the files to use for the direct path
load.

When you perform a parallel load, SQL*Loader creates temporary segments for each
concurrent session and then merges the segments upon completion. The segment
created from the merge is then added to the existing segment in the database above the
segment's high-water mark. The last extent used of each segment for each loader
session is trimmed of any free space before being combined with the other extents of
the SQL*Loader session.

Parameters for Parallel Direct Path Loads
When you perform parallel direct path loads, there are options available for specifying
attributes of the temporary segment to be allocated by the loader. These options are
specified with the FILE and STORAGE parameters. These parameters are valid only for
parallel loads.

Using the FILE Parameter to Specify Temporary Segments
To allow for maximum I/O throughput, Oracle recommends that each concurrent
direct path load session use files located on different disks. In the SQL*Loader control

Note: Indexes are not maintained during a parallel load. Any
indexes must be created or re-created manually after the load
completes. You can use the parallel index creation or parallel index
rebuild feature to speed the building of large indexes after a
parallel load.

PARALLEL =
TRUE

FALSE

Parallel Data Loading Models

Conventional and Direct Path Loads 12-25

file, use the FILE parameter of the OPTIONS clause to specify the file name of any valid
data file in the tablespace of the object (table or partition) being loaded.

For example:

LOAD DATA
INFILE 'load1.dat'
INSERT INTO TABLE emp
OPTIONS(FILE='/dat/data1.dat')
(empno POSITION(01:04) INTEGER EXTERNAL NULLIF empno=BLANKS
...

You could also specify the FILE parameter on the command line of each concurrent
SQL*Loader session, but then it would apply globally to all objects being loaded with
that session.

Using the FILE Parameter The FILE parameter in the Oracle database has the following
restrictions for parallel direct path loads:

■ For nonpartitioned tables: The specified file must be in the tablespace of the table
being loaded.

■ For partitioned tables, single-partition load: The specified file must be in the
tablespace of the partition being loaded.

■ For partitioned tables, full-table load: The specified file must be in the tablespace
of all partitions being loaded; that is, all partitions must be in the same tablespace.

Using the STORAGE Parameter You can use the STORAGE parameter to specify the storage
attributes of the temporary segments allocated for a parallel direct path load. If the
STORAGE parameter is not used, then the storage attributes of the segment containing
the object (table, partition) being loaded are used. Also, when the STORAGE parameter is
not specified, SQL*Loader uses a default of 2 KB for EXTENTS.

For example, the following OPTIONS clause could be used to specify STORAGE
parameters:

OPTIONS (STORAGE=(INITIAL 100M NEXT 100M PCTINCREASE 0))

You can use the STORAGE parameter only in the SQL*Loader control file, and not on the
command line. Use of the STORAGE parameter to specify anything other than
PCTINCREASE of 0, and INITIAL or NEXT values is strongly discouraged and may be
silently ignored.

Enabling Constraints After a Parallel Direct Path Load
Constraints and triggers must be enabled manually after all data loading is complete.

Because each SQL*Loader session can attempt to reenable constraints on a table after a
direct path load, there is a danger that one session may attempt to reenable a
constraint before another session is finished loading data. In this case, the first session
to complete the load will be unable to enable the constraint because the remaining
sessions possess share locks on the table.

Because there is a danger that some constraints might not be reenabled after a direct
path load, you should check the status of the constraint after completing the load to
ensure that it was enabled properly.

General Performance Improvement Hints

12-26 Oracle Database Utilities

PRIMARY KEY and UNIQUE KEY Constraints
PRIMARY KEY and UNIQUE KEY constraints create indexes on a table when they are
enabled, and subsequently can take a significantly long time to enable after a direct
path loading session if the table is very large. You should consider enabling these
constraints manually after a load (and not specifying the automatic enable feature).
This enables you to manually create the required indexes in parallel to save time
before enabling the constraint.

General Performance Improvement Hints
If you have control over the format of the data to be loaded, then you can use the
following hints to improve load performance:

■ Make logical record processing efficient.

– Use one-to-one mapping of physical records to logical records (avoid using
CONTINUEIF and CONCATENATE).

– Make it easy for the software to identify physical record boundaries. Use the
file processing option string "FIX nnn" or "VAR". If you use the default (stream
mode), then on most platforms (for example, UNIX and NT) the loader must
scan each physical record for the record terminator (newline character).

■ Make field setting efficient. Field setting is the process of mapping fields in the
data file to their corresponding columns in the table being loaded. The mapping
function is controlled by the description of the fields in the control file. Field
setting (along with data conversion) is the biggest consumer of CPU cycles for
most loads.

– Avoid delimited fields; use positional fields. If you use delimited fields, then
the loader must scan the input data to find the delimiters. If you use positional
fields, then field setting becomes simple pointer arithmetic (very fast).

– Do not trim whitespace if you do not need to (use PRESERVE BLANKS).

■ Make conversions efficient. SQL*Loader performs character set conversion and
datatype conversion for you. Of course, the quickest conversion is no conversion.

– Use single-byte character sets if you can.

– Avoid character set conversions if you can. SQL*Loader supports four
character sets:

* Client character set (NLS_LANG of the client sqlldr process)

* Data file character set (usually the same as the client character set)

* Database character set

* Database national character set

Performance is optimized if all character sets are the same. For direct path
loads, it is best if the data file character set and the database character set are
the same. If the character sets are the same, then character set conversion
buffers are not allocated.

■ Use direct path loads.

■ Use the SORTED INDEXES clause.

See Also: Oracle Database Performance Tuning Guide

General Performance Improvement Hints

Conventional and Direct Path Loads 12-27

■ Avoid unnecessary NULLIF and DEFAULTIF clauses. Each clause must be evaluated
on each column that has a clause associated with it for every row loaded.

■ Use parallel direct path loads and parallel index creation when you can.

■ Be aware of the effect on performance when you have large values for both the
CONCATENATE clause and the COLUMNARRAYROWS clause. See "Using CONCATENATE
to Assemble Logical Records" on page 9-21.

General Performance Improvement Hints

12-28 Oracle Database Utilities

Part III
Part III External Tables

The chapters in this part describe the use of external tables.

Chapter 13, "External Tables Concepts"

This chapter describes basic concepts about external tables.

Chapter 14, "The ORACLE_LOADER Access Driver"

This chapter describes the ORACLE_LOADER access driver.

Chapter 15, "The ORACLE_DATAPUMP Access Driver"

This chapter describes the ORACLE_DATAPUMP access driver, including its parameters,
and information about loading and unloading supported data types.

13

External Tables Concepts 13-1

13 External Tables Concepts

The external tables feature is a complement to existing SQL*Loader functionality. It
enables you to access data in external sources as if it were in a table in the database.

Note that SQL*Loader may be the better choice in data loading situations that require
additional indexing of the staging table. See "Behavior Differences Between
SQL*Loader and External Tables" on page 7-11 for more information about how load
behavior differs between SQL*Loader and external tables.

This chapter discusses the following topics:

■ How Are External Tables Created?

■ Datatype Conversion During External Table Use

■ External Table Restrictions

How Are External Tables Created?
External tables are created using the SQL CREATE TABLE...ORGANIZATION EXTERNAL
statement. When you create an external table, you specify the following attributes:

■ TYPE - specifies the type of external table. The two available types are the ORACLE_
LOADER type and the ORACLE_DATAPUMP type. Each type of external table is
supported by its own access driver.

■ The ORACLE_LOADER access driver is the default. It loads data from external
tables to internal tables. The data must come from text data files. (The ORACLE_
LOADER access driver cannot perform unloads; that is, it cannot move data from
an internal table to an external table.)

■ The ORACLE_DATAPUMP access driver can perform both loads and unloads. The
data must come from binary dump files. Loads to internal tables from external
tables are done by fetching from the binary dump files. Unloads from internal
tables to external tables are done by populating the binary dump files of the
external table. The ORACLE_DATAPUMP access driver can write dump files only
as part of creating an external table with the SQL CREATE TABLE AS SELECT
statement. Once the dump file is created, it can be read any number of times,
but it cannot be modified (that is, no DML operations can be performed).

■ DEFAULT DIRECTORY - specifies the default directory to use for all input and output
files that do not explicitly name a directory object. The location is specified with a
directory object, not a directory path. You must create the directory object before
you create the external table; otherwise, an error is generated. See "Location of

See Also: Oracle Database Administrator's Guide for additional
information about creating and managing external tables

How Are External Tables Created?

13-2 Oracle Database Utilities

Data Files and Output Files" on page 13-2 for more information.

■ ACCESS PARAMETERS - describe the external data source and implements the type of
external table that was specified. Each type of external table has its own access
driver that provides access parameters unique to that type of external table. Access
parameters are optional. See "Access Parameters" on page 13-3.

■ LOCATION - specifies the data files for the external table. The files are named in the
form directory:file. The directory portion is optional. If it is missing, then the
default directory is used as the directory for the file.

The following example shows the use of each of these attributes (it assumes that the
default directory def_dir1 already exists):

SQL> CREATE TABLE emp_load
 2 (employee_number CHAR(5),
 3 employee_dob CHAR(20),
 4 employee_last_name CHAR(20),
 5 employee_first_name CHAR(15),
 6 employee_middle_name CHAR(15),
 7 employee_hire_date DATE)
 8 ORGANIZATION EXTERNAL
 9 (TYPE ORACLE_LOADER
 10 DEFAULT DIRECTORY def_dir1
 11 ACCESS PARAMETERS
 12 (RECORDS DELIMITED BY NEWLINE
 13 FIELDS (employee_number CHAR(2),
 14 employee_dob CHAR(20),
 15 employee_last_name CHAR(18),
 16 employee_first_name CHAR(11),
 17 employee_middle_name CHAR(11),
 18 employee_hire_date CHAR(10) date_format DATE mask "mm/dd/yyyy"
 19)
 20)
 21 LOCATION ('info.dat')
 22);

Table created.

The information you provide through the access driver ensures that data from the data
source is processed so that it matches the definition of the external table. The fields
listed after CREATE TABLE emp_load are actually defining the metadata for the data in
the info.dat source file.

Location of Data Files and Output Files
The access driver runs inside the database server. This is different from SQL*Loader,
which is a client program that sends the data to be loaded over to the server. This
difference has the following implications:

■ The server must have access to any files to be loaded by the access driver.

■ The server must create and write the output files created by the access driver: the
log file, bad file, discard file, and also any dump files created by the ORACLE_
DATAPUMP access driver.

The access driver requires that a directory object be used to specify the location from
which to read and write files. A directory object maps a name to a directory name on

See Also: "Example: Creating and Loading an External Table Using
ORACLE_LOADER" on page 14-32

Datatype Conversion During External Table Use

External Tables Concepts 13-3

the file system. For example, the following statement creates a directory object named
ext_tab_dir that is mapped to a directory located at /usr/apps/datafiles.

CREATE DIRECTORY ext_tab_dir AS '/usr/apps/datafiles';

Directory objects can be created by DBAs or by any user with the CREATE ANY
DIRECTORY privilege.

After a directory is created, the user creating the directory object needs to grant READ
and WRITE privileges on the directory to other users. These privileges must be
explicitly granted, rather than assigned through the use of roles. For example, to allow
the server to read files on behalf of user scott in the directory named by ext_tab_dir,
the user who created the directory object must execute the following command:

GRANT READ ON DIRECTORY ext_tab_dir TO scott;

The SYS user is the only user that can own directory objects, but the SYS user can grant
other users the privilege to create directory objects. Note that READ or WRITE permission
to a directory object means only that the Oracle database will read or write that file on
your behalf. You are not given direct access to those files outside of the Oracle
database unless you have the appropriate operating system privileges. Similarly, the
Oracle database requires permission from the operating system to read and write files
in the directories.

Access Parameters
When you create an external table of a particular type, you can specify access
parameters to modify the default behavior of the access driver. Each access driver has
its own syntax for access parameters. Oracle provides two access drivers for use with
external tables: ORACLE_LOADER and ORACLE_DATAPUMP.

Datatype Conversion During External Table Use
When data is moved into or out of an external table, it is possible that the same column
will have a different datatype in each of the following three places:

■ The database: This is the source when data is unloaded into an external table and it
is the destination when data is loaded from an external table.

Note: To use external tables in an Oracle Real Applications Cluster
(Oracle RAC) configuration, you must ensure that the directory object
path is on a cluster-wide file system.

Note: These access parameters are collectively referred to as the
opaque_format_spec in the SQL CREATE TABLE...ORGANIZATION
EXTERNAL statement.

See Also:

■ Chapter 14, "The ORACLE_LOADER Access Driver"

■ Chapter 15, "The ORACLE_DATAPUMP Access Driver"

■ Oracle Database SQL Language Reference for information about
specifying opaque_format_spec when using the SQL CREATE
TABLE statement

External Table Restrictions

13-4 Oracle Database Utilities

■ The external table: When data is unloaded into an external table, the data from the
database is converted, if necessary, to match the datatype of the column in the
external table. Also, you can apply SQL operators to the source data to change its
datatype before the data gets moved to the external table. Similarly, when loading
from the external table into a database, the data from the external table is
automatically converted to match the datatype of the column in the database.
Again, you can perform other conversions by using SQL operators in the SQL
statement that is selecting from the external table. For better performance, the
datatypes in the external table should match those in the database.

■ The data file: When you unload data into an external table, the datatypes for fields
in the data file exactly match the datatypes of fields in the external table. However,
when you load data from the external table, the datatypes in the data file may not
match the datatypes in the external table. In this case, the data from the data file is
converted to match the datatypes of the external table. If there is an error
converting a column, then the record containing that column is not loaded. For
better performance, the datatypes in the data file should match the datatypes in
the external table.

Any conversion errors that occur between the data file and the external table cause the
row with the error to be ignored. Any errors between the external table and the
column in the database (including conversion errors and constraint violations) cause
the entire operation to terminate unsuccessfully.

When data is unloaded into an external table, data conversion occurs if the datatype of
a column in the source table does not match the datatype of the column in the external
table. If a conversion error occurs, then the data file may not contain all the rows that
were processed up to that point and the data file will not be readable. To avoid
problems with conversion errors causing the operation to fail, the datatype of the
column in the external table should match the datatype of the column in the database.
This is not always possible, because external tables do not support all datatypes. In
these cases, the unsupported datatypes in the source table must be converted into a
datatype that the external table can support. For example, if a source table named
LONG_TAB has a LONG column, then the corresponding column in the external table
being created, LONG_TAB_XT, must be a CLOB and the SELECT subquery that is used to
populate the external table must use the TO_LOB operator to load the column:

CREATE TABLE LONG_TAB_XT (LONG_COL CLOB) ORGANIZATION EXTERNAL...SELECT TO_
LOB(LONG_COL) FROM LONG_TAB;

External Table Restrictions
This section lists what the external tables feature does not do and also describes some
processing restrictions.

■ Exporting and importing of external tables with encrypted columns is not
supported.

■ An external table does not describe any data that is stored in the database.

■ An external table does not describe how data is stored in the external source. This
is the function of the access parameters.

■ Column processing: By default, the external tables feature fetches all columns
defined for an external table. This guarantees a consistent result set for all queries.
However, for performance reasons you can decide to process only the referenced
columns of an external table, thus minimizing the amount of data conversion and
data handling required to execute a query. In this case, a row that is rejected
because a column in the row causes a datatype conversion error will not get

External Table Restrictions

External Tables Concepts 13-5

rejected in a different query if the query does not reference that column. You can
change this column-processing behavior with the ALTER TABLE command.

■ An external table cannot load data into a LONG column.

■ SQL strings cannot be specified in access parameters for the ORACLE_LOADER access
driver. As a workaround, you can use the DECODE clause in the SELECT clause of the
statement that is reading the external table. Alternatively, you can create a view of
the external table that uses the DECODE clause and select from that view rather than
the external table.

■ When identifiers (for example, column or table names) are specified in the external
table access parameters, certain values are considered to be reserved words by the
access parameter parser. If a reserved word is used as an identifier, then it must be
enclosed in double quotation marks.

See Also:

■ "Restrictions When Using the ORACLE_LOADER Access
Driver" on page 14-35

■ "Restrictions When Using the ORACLE_DATAPUMP Access
Driver" on page 15-16

External Table Restrictions

13-6 Oracle Database Utilities

14

The ORACLE_LOADER Access Driver 14-1

14 The ORACLE_LOADER Access Driver

This chapter describes the ORACLE_LOADER access driver which provides a set of access
parameters unique to external tables of the type ORACLE_LOADER. You can use the access
parameters to modify the default behavior of the access driver. The information you
provide through the access driver ensures that data from the data source is processed
so that it matches the definition of the external table.

The following topics are discussed in this chapter:

■ access_parameters Clause

■ record_format_info Clause

■ field_definitions Clause

■ column_transforms Clause

■ Example: Creating and Loading an External Table Using ORACLE_LOADER

■ Parallel Loading Considerations for the ORACLE_LOADER Access Driver

■ Performance Hints When Using the ORACLE_LOADER Access Driver

■ Restrictions When Using the ORACLE_LOADER Access Driver

■ Reserved Words for the ORACLE_LOADER Access Driver

To use the information in this chapter, you must have some knowledge of the file
format and record format (including character sets and field datatypes) of the data files
on your platform. You must also know enough about SQL to be able to create an
external table and perform queries against it.

You may find it helpful to use the EXTERNAL_TABLE=GENERATE_ONLY parameter in
SQL*Loader to get the proper access parameters for a given SQL*Loader control file.
When you specify GENERATE_ONLY, all the SQL statements needed to do the load using
external tables, as described in the control file, are placed in the SQL*Loader log file.
These SQL statements can be edited and customized. The actual load can be done later
without the use of SQL*Loader by executing these statements in SQL*Plus.

See Also: "EXTERNAL_TABLE" on page 8-5

access_parameters Clause

14-2 Oracle Database Utilities

access_parameters Clause
The access parameters clause contains comments, record formatting, and field
formatting information.

The description of the data in the data source is separate from the definition of the
external table. This means that:

■ The source file can contain more or fewer fields than there are columns in the
external table

■ The datatypes for fields in the data source can be different from the columns in the
external table

The access driver ensures that data from the data source is processed so that it matches
the definition of the external table.

The syntax for the access_parameters clause is as follows:

comments
Comments are lines that begin with two hyphens followed by text. Comments must be
placed before any access parameters, for example:

Notes:

■ It is sometimes difficult to describe syntax without using other
syntax that is not documented until later in the chapter. If it is
not clear what some syntax is supposed to do, then you might
want to skip ahead and read about that particular element.

■ Many examples in this chapter show a CREATE
TABLE...ORGANIZATION EXTERNAL statement followed by a
sample of contents of the data file for the external table. These
contents are not part of the CREATE TABLE statement, but are
shown to help complete the example.

■ When identifiers (for example, column or table names) are
specified in the external table access parameters, certain values
are considered to be reserved words by the access parameter
parser. If a reserved word is used as an identifier, then it must
be enclosed in double quotation marks. See "Reserved Words
for the ORACLE_LOADER Access Driver" on page 14-36.

Note: These access parameters are collectively referred to as the
opaque_format_spec in the SQL CREATE TABLE...ORGANIZATION
EXTERNAL statement.

See Also:

■ Oracle Database SQL Language Reference for information about
specifying opaque_format_spec when using the SQL CREATE
TABLE...ORGANIZATION EXTERNAL statement

comments record_format_info field_definitions column_transforms

record_format_info Clause

The ORACLE_LOADER Access Driver 14-3

--This is a comment.
--This is another comment.
RECORDS DELIMITED BY NEWLINE

All text to the right of the double hyphen is ignored, until the end of the line.

record_format_info
The record_format_info clause is an optional clause that contains information about
the record, such as its format, the character set of the data, and what rules are used to
exclude records from being loaded. For a full description of the syntax, see "record_
format_info Clause" on page 14-3.

field_definitions
The field_definitions clause is used to describe the fields in the data file. If a data
file field has the same name as a column in the external table, then the data from the
field is used for that column. For a full description of the syntax, see "field_definitions
Clause" on page 14-15.

column_transforms
The column_transforms clause is an optional clause used to describe how to load
columns in the external table that do not map directly to columns in the data file. This
is done using the following transforms: NULL, CONSTANT, CONCAT, and LOBFILE. For a
full description of the syntax, see "column_transforms Clause" on page 14-30.

record_format_info Clause
The record_format_info clause contains information about the record, such as its
format, the character set of the data, and what rules are used to exclude records from
being loaded. Additionally, the PREPROCESSOR subclause allows you to optionally
specify the name of a user-supplied program that will run and modify the contents of
a data file so that the ORACLE_LOADER access driver can parse it.

The record_format_info clause is optional. If the clause is not specified, then the
default value is RECORDS DELIMITED BY NEWLINE. The syntax for the record_format_
info clause is as follows:

The et_record_spec_options clause allows you to optionally specify additional
formatting information. You can specify as many of the formatting options as you
wish, in any order. The syntax of the options is as follows:

RECORDS

FIXED

VARIABLE
integer

DELIMITED BY
NEWLINE

string

et_record_spec_options

record_format_info Clause

14-4 Oracle Database Utilities

FIXED length
The FIXED clause is used to identify the records as all having a fixed size of length
bytes. The size specified for FIXED records must include any record termination
characters, such as newlines. Compared to other record types, fixed-length fields in
fixed-length records are the easiest field and record formats for the access driver to
process.

The following is an example of using FIXED records. It assumes there is a 1-byte
newline character at the end of each record in the data file. It is followed by a sample
of the data file that can be used to load it.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20), year_of_birth CHAR(4))
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (RECORDS FIXED 20 FIELDS (first_name CHAR(7),

CHARACTERSET string

PREPROCESSOR
directory_spec :

file_spec

LANGUAGE

TERRITORY
string

DATA IS
LITTLE

BIG
ENDIAN

BYTEORDERMARK
CHECK

NOCHECK

STRING SIZES ARE IN
BYTES

CHARACTERS

LOAD WHEN condition_spec

NOBADFILE

BADFILE
directory object name :

filename

NODISCARDFILE

DISCARDFILE
directory object name :

filename

NOLOGFILE

LOGFILE
directory object name :

filename

READSIZE integer

DISABLE_DIRECTORY_LINK_CHECK

DATE_CACHE

SKIP
integer

IO_OPTIONS (
DIRECTIO

NODIRECTIO
)

record_format_info Clause

The ORACLE_LOADER Access Driver 14-5

 last_name CHAR(8),
 year_of_birth CHAR(4)))
 LOCATION ('info.dat'));

Alvin Tolliver1976
KennethBaer 1963
Mary Dube 1973

VARIABLE size
The VARIABLE clause is used to indicate that the records have a variable length and that
each record is preceded by a character string containing a number with the count of
bytes for the record. The length of the character string containing the count field is the
size argument that follows the VARIABLE parameter. Note that size indicates a count of
bytes, not characters. The count at the beginning of the record must include any record
termination characters, but it does not include the size of the count field itself. The
number of bytes in the record termination characters can vary depending on how the
file is created and on what platform it is created.

The following is an example of using VARIABLE records. It assumes there is a 1-byte
newline character at the end of each record in the data file. It is followed by a sample
of the data file that can be used to load it.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20), year_of_birth CHAR(4))
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (RECORDS VARIABLE 2 FIELDS TERMINATED BY ','
 (first_name CHAR(7),
 last_name CHAR(8),
 year_of_birth CHAR(4)))
 LOCATION ('info.dat'));

21Alvin,Tolliver,1976,
19Kenneth,Baer,1963,
16Mary,Dube,1973,

DELIMITED BY
The DELIMITED BY clause is used to indicate the characters that identify the end of a
record.

If DELIMITED BY NEWLINE is specified, then the actual value used is platform-specific.
On UNIX platforms, NEWLINE is assumed to be "\n". On Windows NT, NEWLINE is
assumed to be "\r\n".

If DELIMITED BY string is specified, then string can be either text or a series of
hexadecimal digits enclosed within quotation marks and prefixed by OX or X. If it is
text, then the text is converted to the character set of the data file and the result is used
for identifying record boundaries. See "string" on page 14-13.

If the following conditions are true, then you must use hexadecimal digits to identify
the delimiter:

■ The character set of the access parameters is different from the character set of the
data file.

■ Some characters in the delimiter string cannot be translated into the character set
of the data file.

The hexadecimal digits are converted into bytes, and there is no character set
translation performed on the hexadecimal string.

record_format_info Clause

14-6 Oracle Database Utilities

If the end of the file is found before the record terminator, then the access driver
proceeds as if a terminator was found, and all unprocessed data up to the end of the
file is considered part of the record.

The following is an example of using DELIMITED BY records.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20), year_of_birth CHAR(4))
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (RECORDS DELIMITED BY '|' FIELDS TERMINATED BY ','
 (first_name CHAR(7),
 last_name CHAR(8),
 year_of_birth CHAR(4)))
 LOCATION ('info.dat'));

Alvin,Tolliver,1976|Kenneth,Baer,1963|Mary,Dube,1973

CHARACTERSET
The CHARACTERSET string clause identifies the character set of the data file. If a
character set is not specified, then the data is assumed to be in the default character set
for the database. See "string" on page 14-13.

PREPROCESSOR

If the file you want to load contains data records that are not in a format supported by
the ORACLE_LOADER access driver, then use the PREPROCESSOR clause to specify a
user-supplied preprocessor program that will execute for every data file. Note that the
program specification must be enclosed in a shell script if it uses arguments (see the
description of "file_spec" on page 14-7).

The preprocessor program converts the data to a record format supported by the
access driver and then writes the converted record data to standard output (stdout),
which the access driver reads as input. The syntax of the PREPROCESSOR clause is as
follows:

Caution: Do not include any binary data, including binary counts
for VARCHAR and VARRAW, in a record that has delimiters. Doing so
could cause errors or corruption, because the binary data will be
interpreted as characters during the search for the delimiter.

Note: The settings of NLS environment variables on the client
have no effect on the character set used for the database.

See Also: Oracle Database Globalization Support Guide for a listing
of Oracle-supported character sets

Caution: There are security implications to consider when using the
PREPROCESSOR clause. See Oracle Database Security Guide for more
information.

PREPROCESSOR
directory_spec :

file_spec

record_format_info Clause

The ORACLE_LOADER Access Driver 14-7

directory_spec
Specifies the directory object containing the name of the preprocessor program to
execute for every data file. The user accessing the external table must have the EXECUTE
privilege for the directory object that is used. If directory_spec is omitted, then the
default directory specified for the external table is used.

The preprocessor program must reside in a directory object, so that access to it can be
controlled for security reasons. The OS system manager must create a directory
corresponding to the directory object and must verify that OS-user ORACLE has
access to that directory. DBAs must ensure that only approved users are allowed
access to the directory object associated with the directory path. Although multiple
database users can have access to a directory object, only those with the EXECUTE
privilege can run a preprocessor in that directory. No existing database user with
read-write privileges to a directory object will be able to use the preprocessing feature.
DBAs can prevent preprocessors from ever being used by never granting the EXECUTE
privilege to anyone for a directory object.

file_spec
The name of the preprocessor program. It is appended to the path name associated
with the directory object that is being used (either the directory_spec or the default
directory for the external table). The file_spec cannot contain an absolute or relative
directory path.

If the preprocessor program requires any arguments (for example, gunzip -c), then
you must specify the program name and its arguments in an executable shell script (or
on Windows systems, in a batch (.bat) file). The shell script must reside in directory_
spec. Keep the following in mind when you create a shell script for use with the
PREPROCESSOR clause:

■ The full path name must be specified for system commands such as gunzip.

■ The preprocessor shell script must have EXECUTE permissions

■ The data file listed in the external table LOCATION clause should be referred to by
$1. (On Windows systems, the LOCATION clause should be referred to by %1.)

■ On Windows systems, the first line in the .bat file must be the following:

@echo off

Otherwise, by default, Windows will echo the contents of the batch file (which will
be treated as input by the external table access driver).

See Example 14–2 for an example of using a shell script.

It is important to verify that the correct version of the preprocessor program is in the
operating system directory.

Caution: For security reasons, Oracle strongly recommends that a
separate directory, not the default directory, be used to store
preprocessor programs. Do not store any other files in the directory in
which preprocessor programs are stored.

See Also: Oracle Database SQL Language Reference for information
about granting the EXECUTE privilege

record_format_info Clause

14-8 Oracle Database Utilities

Example 14–1 shows a sample use of the PREPROCESSOR clause when creating an
external table. Note that the preprocessor file is in a separate directory from the data
files and log files.

Example 14–1 Specifying the PREPROCESSOR Clause

SQL> CREATE TABLE xtab (recno varchar2(2000))
 2 ORGANIZATION EXTERNAL (
 3 TYPE ORACLE_LOADER
 4 DEFAULT DIRECTORY data_dir
 5 ACCESS PARAMETERS (
 6 RECORDS DELIMITED BY NEWLINE
 7 PREPROCESSOR execdir:'zcat'
 8 FIELDS (recno char(2000)))
 9 LOCATION ('foo.dat.gz'))
 10 REJECT LIMIT UNLIMITED;
Table created.

Example 14–2 shows how to specify a shell script on the PREPROCESSOR clause when
creating an external table.

Example 14–2 Using the PREPROCESSOR Clause with a Shell Script

SQL> CREATE TABLE xtab (recno varchar2(2000))
 2 ORGANIZATION EXTERNAL (
 3 TYPE ORACLE_LOADER
 4 DEFAULT DIRECTORY data_dir
 5 ACCESS PARAMETERS (
 6 RECORDS DELIMITED BY NEWLINE
 7 PREPROCESSOR execdir:'uncompress.sh'
 8 FIELDS (recno char(2000)))
 9 LOCATION ('foo.dat.gz'))
 10 REJECT LIMIT UNLIMITED;
Table created.

Using Parallel Processing with the PREPROCESSOR Clause
External tables treats each data file specified on the LOCATION clause as a single
granule. To make the best use of parallel processing with the PREPROCESSOR clause, the
data to be loaded should be split into multiple files (granules). This is because external
tables limits the degree of parallelism to the number of data files present. For example,
if you specify a degree of parallelism of 16, but have only 10 data files, then in effect
the degree of parallelism is 10 because 10 slave processes will be busy and 6 will be
idle. It is best to not have any idle slave processes. So if you do specify a degree of
parallelism, then ideally it should be no larger than the number of data files so that all
slave processes are kept busy.

Restriction When Using the PREPROCESSOR Clause
■ The PREPROCESSOR clause is not available on databases that use the Database Vault

feature.

See Also:

■ Oracle Database VLDB and Partitioning Guide for more information
about granules of parallelism

record_format_info Clause

The ORACLE_LOADER Access Driver 14-9

LANGUAGE
The LANGUAGE clause allows you to specify a language name (for example, FRENCH),
from which locale-sensitive information about the data can be derived. The following
are some examples of the type of information that can be derived from the language
name:

■ Day and month names and their abbreviations

■ Symbols for equivalent expressions for A.M., P.M., A.D., and B.C.

■ Default sorting sequence for character data when the ORDER BY SQL clause is
specified

■ Writing direction (right to left or left to right)

■ Affirmative and negative response strings (for example, YES and NO)

TERRITORY
The TERRITORY clause allows you to specify a territory name to further determine
input data characteristics. For example, in some countries a decimal point is used in
numbers rather than a comma (for example, 531.298 instead of 531,298).

DATA IS...ENDIAN
The DATA IS...ENDIAN clause indicates the endianness of data whose byte order may
vary depending on the platform that generated the data file. Fields of the following
types are affected by this clause:

■ INTEGER

■ UNSIGNED INTEGER

■ FLOAT

■ BINARY_FLOAT

■ DOUBLE

■ BINARY_DOUBLE

■ VARCHAR (numeric count only)

■ VARRAW (numeric count only)

■ Any character datatype in the UTF16 character set

■ Any string specified by RECORDS DELIMITED BY string and in the UTF16 character
set

A common platform that generates little-endian data is Windows NT. Big-endian
platforms include Sun Solaris and IBM MVS. If the DATA IS...ENDIAN clause is not
specified, then the data is assumed to have the same endianness as the platform where
the access driver is running. UTF-16 data files may have a mark at the beginning of the
file indicating the endianness of the data. This mark will override the DATA
IS...ENDIAN clause.

See Also: Oracle Database Globalization Support Guide for a listing
of Oracle-supported languages

See Also: Oracle Database Globalization Support Guide for a listing
of Oracle-supported territories

record_format_info Clause

14-10 Oracle Database Utilities

BYTEORDERMARK (CHECK | NOCHECK)
The BYTEORDERMARK clause is used to specify whether the data file should be checked
for the presence of a byte-order mark (BOM). This clause is meaningful only when the
character set is Unicode.

BYTEORDERMARK NOCHECK indicates that the data file should not be checked for a BOM
and that all the data in the data file should be read as data.

BYTEORDERMARK CHECK indicates that the data file should be checked for a BOM. This is
the default behavior for a data file in a Unicode character set.

The following are examples of some possible scenarios:

■ If the data is specified as being little or big-endian and CHECK is specified and it is
determined that the specified endianness does not match the data file, then an
error is returned. For example, suppose you specify the following:

DATA IS LITTLE ENDIAN
BYTEORDERMARK CHECK

If the BOM is checked in the Unicode data file and the data is actually big-endian,
then an error is returned because you specified little-endian.

■ If a BOM is not found and no endianness is specified with the DATA IS...ENDIAN
parameter, then the endianness of the platform is used.

■ If BYTEORDERMARK NOCHECK is specified and the DATA IS...ENDIAN parameter
specified an endianness, then that value is used. Otherwise, the endianness of the
platform is used.

STRING SIZES ARE IN
The STRING SIZES ARE IN clause is used to indicate whether the lengths specified for
character strings are in bytes or characters. If this clause is not specified, then the
access driver uses the mode that the database uses. Character types with embedded
lengths (such as VARCHAR) are also affected by this clause. If this clause is specified,
then the embedded lengths are a character count, not a byte count. Specifying STRING
SIZES ARE IN CHARACTERS is needed only when loading multibyte character sets, such
as UTF16.

LOAD WHEN
The LOAD WHEN condition_spec clause is used to identify the records that should be
passed to the database. The evaluation method varies:

■ If the condition_spec references a field in the record, then the clause is evaluated
only after all fields have been parsed from the record, but before any NULLIF or
DEFAULTIF clauses have been evaluated.

■ If the condition specification references only ranges (and no field names), then the
clause is evaluated before the fields are parsed. This is useful for cases where the
records in the file that are not to be loaded cannot be parsed into the current record
definition without errors.

See "condition_spec" on page 14-13.

The following are some examples of using LOAD WHEN:

LOAD WHEN (empid != BLANKS)

See Also: "Byte Ordering" on page 10-31

record_format_info Clause

The ORACLE_LOADER Access Driver 14-11

LOAD WHEN ((dept_id = "SPORTING GOODS" OR dept_id = "SHOES") AND total_sales != 0)

BADFILE | NOBADFILE
The BADFILE clause names the file to which records are written when they cannot be
loaded because of errors. For example, a record was written to the bad file because a
field in the data file could not be converted to the datatype of a column in the external
table. Records that fail the LOAD WHEN clause are not written to the bad file but are
written to the discard file instead. Also, any errors in using a record from an external
table (such as a constraint violation when using INSERT INTO...AS SELECT... from an
external table) will not cause the record to be written to the bad file.

The purpose of the bad file is to have one file where all rejected data can be examined
and fixed so that it can be loaded. If you do not intend to fix the data, then you can use
the NOBADFILE option to prevent creation of a bad file, even if there are bad records.

If you specify BADFILE, then you must specify a file name or you will receive an error.

If neither BADFILE nor NOBADFILE is specified, then the default is to create a bad file if
at least one record is rejected. The name of the file will be the table name followed by _
%p, and it will have an extension of .bad.

See "[directory object name:] filename" on page 14-13.

DISCARDFILE | NODISCARDFILE
The DISCARDFILE clause names the file to which records are written that fail the
condition in the LOAD WHEN clause. The discard file is created when the first record to be
discarded is encountered. If the same external table is accessed multiple times, then
the discard file is rewritten each time. If there is no need to save the discarded records
in a separate file, then use NODISCARDFILE.

If you specify DISCARDFILE, then you must specify a file name or you will receive an
error.

If neither DISCARDFILE nor NODISCARDFILE is specified, then the default is to create a
discard file if at least one record fails the LOAD WHEN clause. The name of the file will be
the table name followed by _%p and it will have an extension of .dsc.

See "[directory object name:] filename" on page 14-13.

LOG FILE | NOLOGFILE
The LOGFILE clause names the file that contains messages generated by the external
tables utility while it was accessing data in the data file. If a log file already exists by
the same name, then the access driver reopens that log file and appends new log
information to the end. This is different from bad files and discard files, which
overwrite any existing file. NOLOGFILE is used to prevent creation of a log file.

If you specify LOGFILE, then you must specify a file name or you will receive an error.

If neither LOGFILE nor NOLOGFILE is specified, then the default is to create a log file. The
name of the file will be the table name followed by _%p and it will have an extension of
.log.

See "[directory object name:] filename" on page 14-13.

record_format_info Clause

14-12 Oracle Database Utilities

SKIP
Skips the specified number of records in the data file before loading. SKIP can be
specified only when nonparallel access is being made to the data.

READSIZE
The READSIZE parameter specifies the size of the read buffer used to process records.
The size of the read buffer must be at least as big as the largest input record the access
driver will encounter. The size is specified with an integer indicating the number of
bytes. The default value is 512 KB (524288 bytes). You must specify a larger value if
any of the records in the data file are larger than 512 KB. There is no limit on how large
READSIZE can be, but practically, it is limited by the largest amount of memory that can
be allocated by the access driver.

The amount of memory available for allocation is another limit because additional
buffers might be allocated. The additional buffer is used to correctly complete the
processing of any records that may have been split (either in the data; at the delimiter;
or if multi character/byte delimiters are used, in the delimiter itself).

DISABLE_DIRECTORY_LINK_CHECK
By default, the ORACLE_LOADER access driver checks before opening data and log files to
ensure that the directory being used is not a symbolic link. The DISABLE_DIRECTORY_
LINK_CHECK parameter (which takes no arguments) directs the access driver to bypass
this check, allowing you to use files for which the parent directory may be a symbolic
link.

DATE_CACHE
By default, the date cache feature is enabled (for 1000 elements). To completely disable
the date cache feature, set it to 0.

DATE_CACHE specifies the date cache size (in entries). For example, DATE_CACHE=5000
specifies that each date cache created can contain a maximum of 5000 unique date
entries. Every table has its own date cache, if one is needed. A date cache is created
only if at least one date or timestamp value is loaded that requires datatype conversion
in order to be stored in the table.

The date cache feature is enabled by default. The default date cache size is 1000
elements. If the default size is used and the number of unique input values loaded
exceeds 1000, then the date cache feature is automatically disabled for that table.
However, if you override the default and specify a nonzero date cache size and that
size is exceeded, then the cache is not disabled.

You can use the date cache statistics (entries, hits, and misses) contained in the log file
to tune the size of the cache for future similar loads.

Caution: Use of this parameter involves security risks because
symbolic links can potentially be used to redirect the input/output of
the external table load operation.

See Also: "Specifying a Value for the Date Cache" on page 12-16

record_format_info Clause

The ORACLE_LOADER Access Driver 14-13

string
A string is a quoted series of characters or hexadecimal digits. If it is a series of
characters, then those characters will be converted into the character set of the data
file. If it is a series of hexadecimal digits, then there must be an even number of
hexadecimal digits. The hexadecimal digits are converted into their binary translation,
and the translation is treated as a character string in the character set of the data file.
This means that once the hexadecimal digits have been converted into their binary
translation, there is no other character set translation that occurs. The syntax for a
string is as follows:

condition_spec
The condition_spec is an expression that evaluates to either true or false. It specifies
one or more conditions that are joined by Boolean operators. The conditions and
Boolean operators are evaluated from left to right. (Boolean operators are applied after
the conditions are evaluated.) Parentheses can be used to override the default order of
evaluation of Boolean operators. The evaluation of condition_spec clauses slows
record processing, so these clauses should be used sparingly. The syntax for
condition_spec is as follows:

Note that if the condition specification contains any conditions that reference field
names, then the condition specifications are evaluated only after all fields have been
found in the record and after blank trimming has been done. It is not useful to
compare a field to BLANKS if blanks have been trimmed from the field.

The following are some examples of using condition_spec:

empid = BLANKS OR last_name = BLANKS
(dept_id = SPORTING GOODS OR dept_id = SHOES) AND total_sales != 0

[directory object name:] filename
This clause is used to specify the name of an output file (BADFILE, DISCARDFILE, or
LOGFILE). The directory object name is the name of a directory object where the user

See Also: "condition" on page 14-14

" text "

’ text ’

X

0X

" hex digit hex digit "

’ hex digit hex digit ’

condition

condition_spec
AND

OR
condition_spec

(

condition

condition_spec
AND

OR
condition_spec

)

record_format_info Clause

14-14 Oracle Database Utilities

accessing the external table has privileges to write. If the directory object name is
omitted, then the value specified for the DEFAULT DIRECTORY clause in the CREATE
TABLE...ORGANIZATION EXTERNAL statement is used.

The filename parameter is the name of the file to create in the directory object. The
access driver does some symbol substitution to help make file names unique in
parallel loads. The symbol substitutions supported for UNIX and Windows NT are as
follows (other platforms may have different symbols):

■ %p is replaced by the process ID of the current process. For example, if the process
ID of the access driver is 12345, then exttab_%p.log becomes exttab_12345.log.

■ %a is replaced by the agent number of the current process. The agent number is the
unique number assigned to each parallel process accessing the external table. This
number is padded to the left with zeros to fill three characters. For example, if the
third parallel agent is creating a file and bad_data_%a.bad was specified as the file
name, then the agent would create a file named bad_data_003.bad.

■ %% is replaced by %. If there is a need to have a percent sign in the file name, then
this symbol substitution is used.

If the % character is encountered followed by anything other than one of the preceding
characters, then an error is returned.

If %p or %a is not used to create unique file names for output files and an external table
is being accessed in parallel, then output files may be corrupted or agents may be
unable to write to the files.

If you specify BADFILE (or DISCARDFILE or LOGFILE), then you must specify a file name
for it or you will receive an error. However, if you do not specify BADFILE (or
DISCARDFILE or LOGFILE), then the access driver uses the name of the table followed by
_%p as the name of the file. If no extension is supplied for the file, then a default
extension will be used. For bad files, the default extension is .bad; for discard files, the
default is .dsc; and for log files, the default is .log.

condition
A condition compares a range of bytes or a field from the record against a constant
string. The source of the comparison can be either a field in the record or a byte range
in the record. The comparison is done on a byte-by-byte basis. If a string is specified as
the target of the comparison, then it will be translated into the character set of the data
file. If the field has a noncharacter datatype, then no datatype conversion is performed
on either the field value or the string. The syntax for a condition is as follows:

range start : range end
This clause describes a range of bytes or characters in the record to use for a condition.
The value used for the STRING SIZES ARE clause determines whether range refers to
bytes or characters. The range start and range end are byte or character offsets into
the record. The range start must be less than or equal to the range end. Finding
ranges of characters is faster for data in fixed-width character sets than it is for data in
varying-width character sets. If the range refers to parts of the record that do not exist,

(FIELDNAME

(range start : range end)
operator

’string’

’hexstring’

BLANKS

)

AND

field_definitions Clause

The ORACLE_LOADER Access Driver 14-15

then the record is rejected when an attempt is made to reference the range. The range
start:range end must be enclosed in parentheses. For example, (10:13).

The following are some examples of using condition:

LOAD WHEN empid != BLANKS
LOAD WHEN (10:13) = 0x'00000830'
LOAD WHEN PRODUCT_COUNT = "MISSING"

IO_OPTIONS clause
The IO_OPTIONS clause allows you to specify I/O options used by the operating
system for reading the data files. The only options available for specification are
DIRECTIO and NODIRECTIO (the default).

If the DIRECTIO option is specified, then an attempt is made to open the data file and
read it using direct I/O. If successful, then the operating system and NFS server (if the
file is on an NFS server) do not cache the data read from the file. This can improve the
read performance for the data file, especially if the file is large. If the DIRECTIO option
is not supported for the data file being read, then the file is opened and read but the
DIRECTIO option is ignored.

If the NODIRECTIO option is specified or if the IO_OPTIONS clause is not specified at all,
then direct I/O is not used to read the data files.

field_definitions Clause
In the field_definitions clause you use the FIELDS parameter to name the fields in
the data file and specify how to find them in records.

If the field_definitions clause is omitted, then the following is assumed:

■ The fields are delimited by ','

■ The fields are of datatype CHAR

■ The maximum length of the field is 255

■ The order of the fields in the data file is the order in which the fields were defined
in the external table

■ No blanks are trimmed from the field

The following is an example of an external table created without any access
parameters. It is followed by a sample data file, info.dat, that can be used to load it.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20), year_of_birth CHAR(4))
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir LOCATION ('info.dat'));

Alvin,Tolliver,1976
Kenneth,Baer,1963

The syntax for the field_definitions clause is as follows:

Note: The data file should not mix binary data (including
datatypes with binary counts, such as VARCHAR) and character data
that is in a varying-width character set or more than one byte wide.
In these cases, the access driver may not find the correct start for
the field, because it treats the binary data as character data when
trying to find the start.

field_definitions Clause

14-16 Oracle Database Utilities

IGNORE_CHARS_AFTER_EOR
This optional parameter specifies that if extraneous characters are found after the
end-of-record that do not satisfy the record definition, then they will be ignored.

Error messages are written to the external tables log file if all four of the following
conditions apply:

■ The IGNORE_CHARS_AFTER_EOR parameter is set or the field allows free formatting
(that is, the field is specified by a delimiter or enclosure character(s) and/or the
field is variable length)

■ Characters remain after the end-of-record

■ The access parameter MISSING FIELD VALUES ARE NULL is not set

■ The field does not have absolute positioning

The error messages that get written to the external tables log file are as follows:

KUP-04021: field formatting error for field Col1
KUP-04023: field start is after end of record
KUP-04101: record 2 rejected in file /home/oracle/datafiles/example.dat

delim_spec Clause
The delim_spec clause is used to identify how all fields are terminated in the record.
The delim_spec specified for all fields can be overridden for a particular field as part
of the field_list clause. For a full description of the syntax, see "delim_spec" on
page 14-17.

trim_spec Clause
The trim_spec clause specifies the type of whitespace trimming to be performed by
default on all character fields. The trim_spec clause specified for all fields can be
overridden for individual fields by specifying a trim_spec clause for those fields. For a
full description of the syntax, see "trim_spec" on page 14-19.

MISSING FIELD VALUES ARE NULL
MISSING FIELD VALUES ARE NULL indicates that if there is not enough data in a record
for all fields, then those fields with missing data values are set to NULL. For a full
description of the syntax, see "MISSING FIELD VALUES ARE NULL" on page 14-20.

REJECT ROWS WITH ALL NULL FIELDS
REJECT ROWS WITH ALL NULL FIELDS indicates that a row will not be loaded into the
external table if all referenced fields in the row are null. If this parameter is not
specified, then the default value is to accept rows with all null fields. The setting of
this parameter is written to the log file either as "reject rows with all null fields" or as
"rows with all null fields are accepted."

FIELDS
IGNORE_CHARS_AFTER_EOR delim_spec trim_spec

MISSING FIELD VALUES ARE NULL

REJECT ROWS WITH ALL NULL FIELDS field_list

field_definitions Clause

The ORACLE_LOADER Access Driver 14-17

field_list Clause
The field_list clause identifies the fields in the data file and their datatypes. For a
full description of the syntax, see "field_list" on page 14-20.

delim_spec
The delim_spec clause is used to find the end (and if ENCLOSED BY is specified, the
start) of a field. Its syntax is as follows:

If ENCLOSED BY is specified, then the access driver starts at the current position in the
record and skips over all whitespace looking for the first delimiter. All whitespace
between the current position and the first delimiter is ignored. Next, the access driver
looks for the second enclosure delimiter (or looks for the first one again if a second one
is not specified). Everything between those two delimiters is considered part of the
field.

If TERMINATED BY string is specified with the ENCLOSED BY clause, then the terminator
string must immediately follow the second enclosure delimiter. Any whitespace
between the second enclosure delimiter and the terminating delimiter is skipped. If
anything other than whitespace is found between the two delimiters, then the row is
rejected for being incorrectly formatted.

If TERMINATED BY is specified without the ENCLOSED BY clause, then everything between
the current position in the record and the next occurrence of the termination string is
considered part of the field.

If OPTIONALLY is specified, then TERMINATED BY must also be specified. The OPTIONALLY
parameter means the ENCLOSED BY delimiters can either both be present or both be
absent. The terminating delimiter must be present regardless of whether the ENCLOSED
BY delimiters are present. If OPTIONALLY is specified, then the access driver skips over
all whitespace, looking for the first nonblank character. Once the first nonblank
character is found, the access driver checks to see if the current position contains the
first enclosure delimiter. If it does, then the access driver finds the second enclosure
string and everything between the first and second enclosure delimiters is considered
part of the field. The terminating delimiter must immediately follow the second
enclosure delimiter (with optional whitespace allowed between the second enclosure
delimiter and the terminating delimiter). If the first enclosure string is not found at the
first nonblank character, then the access driver looks for the terminating delimiter. In
this case, leading blanks are trimmed.

After the delimiters have been found, the current position in the record is set to the
spot after the last delimiter for the field. If TERMINATED BY WHITESPACE was specified,
then the current position in the record is set to after all whitespace following the field.

See Also: Table 10–5 for a description of the access driver's
default trimming behavior. You can override this behavior with
LTRIM and RTRIM.

ENCLOSED BY string
AND string

TERMINATED BY
string

WHITESPACE

OPTIONALLY
ENCLOSED BY string

AND string

field_definitions Clause

14-18 Oracle Database Utilities

A missing terminator for the last field in the record is not an error. The access driver
proceeds as if the terminator was found. It is an error if the second enclosure delimiter
is missing.

The string used for the second enclosure can be included in the data field by including
the second enclosure twice. For example, if a field is enclosed by single quotation
marks, then it could contain a single quotation mark by specifying two single
quotation marks in a row, as shown in the word don't in the following example:

'I don''t like green eggs and ham'

There is no way to quote a terminator string in the field data without using enclosing
delimiters. Because the field parser does not look for the terminating delimiter until
after it has found the enclosing delimiters, the field can contain the terminating
delimiter.

In general, specifying single characters for the strings is faster than multiple
characters. Also, searching data in fixed-width character sets is usually faster than
searching data in varying-width character sets.

Example: External Table with Terminating Delimiters
The following is an example of an external table that uses terminating delimiters. It is
followed by a sample of the data file that can be used to load it.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20), year_of_birth CHAR(4))
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (FIELDS TERMINATED BY WHITESPACE)
 LOCATION ('info.dat'));

Alvin Tolliver 1976
Kenneth Baer 1963
Mary Dube 1973

Example: External Table with Enclosure and Terminator Delimiters
The following is an example of an external table that uses both enclosure and
terminator delimiters. Remember that all whitespace between a terminating string and
the first enclosure string is ignored, as is all whitespace between a second enclosing
delimiter and the terminator. The example is followed by a sample of the data file that
can be used to load it.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20), year_of_birth CHAR(4))
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (FIELDS TERMINATED BY "," ENCLOSED BY "(" AND ")")
 LOCATION ('info.dat'));

(Alvin) , (Tolliver),(1976)
(Kenneth), (Baer) ,(1963)
(Mary),(Dube) , (1973)

Example: External Table with Optional Enclosure Delimiters
The following is an example of an external table that uses optional enclosure
delimiters. Note that LRTRIM is used to trim leading and trailing blanks from fields.
The example is followed by a sample of the data file that can be used to load it.

Note: The use of the backslash character (\) within strings is not
supported in external tables.

field_definitions Clause

The ORACLE_LOADER Access Driver 14-19

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20), year_of_birth CHAR(4))
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (FIELDS TERMINATED BY ','
 OPTIONALLY ENCLOSED BY '(' and ')'
 LRTRIM)
 LOCATION ('info.dat'));

Alvin , Tolliver , 1976
(Kenneth), (Baer), (1963)
(Mary), Dube , (1973)

trim_spec
The trim_spec clause is used to specify that spaces should be trimmed from the
beginning of a text field, the end of a text field, or both. Spaces include blanks and
other nonprinting characters such as tabs, line feeds, and carriage returns. The syntax
for the trim_spec clause is as follows:

NOTRIM indicates that no characters will be trimmed from the field.

LRTRIM, LTRIM, and RTRIM are used to indicate that characters should be trimmed from
the field. LRTRIM means that both leading and trailing spaces are trimmed. LTRIM
means that leading spaces will be trimmed. RTRIM means trailing spaces are trimmed.

LDRTRIM is used to provide compatibility with SQL*Loader trim features. It is the same
as NOTRIM except in the following cases:

■ If the field is not a delimited field, then spaces will be trimmed from the right.

■ If the field is a delimited field with OPTIONALLY ENCLOSED BY specified, and the
optional enclosures are missing for a particular instance, then spaces will be
trimmed from the left.

The default is LDRTRIM. Specifying NOTRIM yields the fastest performance.

The trim_spec clause can be specified before the field list to set the default trimming
for all fields. If trim_spec is omitted before the field list, then LDRTRIM is the default
trim setting. The default trimming can be overridden for an individual field as part of
the datatype_spec.

If trimming is specified for a field that is all spaces, then the field will be set to NULL.

In the following example, all data is fixed-length; however, the character data will not
be loaded with leading spaces. The example is followed by a sample of the data file
that can be used to load it.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20),
year_of_birth CHAR(4))
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (FIELDS LTRIM)
 LOCATION ('info.dat'));

LRTRIM

NOTRIM

LTRIM

RTRIM

LDRTRIM

field_definitions Clause

14-20 Oracle Database Utilities

Alvin, Tolliver,1976
Kenneth, Baer, 1963
Mary, Dube, 1973

MISSING FIELD VALUES ARE NULL
MISSING FIELD VALUES ARE NULL indicates that if there is not enough data in a record
for all fields, then those fields with missing data values are set to NULL. If MISSING
FIELD VALUES ARE NULL is not specified, and there is not enough data in the record for
all fields, then the row is rejected.

In the following example, the second record is stored with a NULL set for the year_of_
birth column, even though the data for the year of birth is missing from the data file.
If the MISSING FIELD VALUES ARE NULL clause was omitted from the access
parameters, then the second row would be rejected because it did not have a value for
the year_of_birth column. The example is followed by a sample of the data file that
can be used to load it.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20), year_of_birth INT)
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (FIELDS TERMINATED BY ","
 MISSING FIELD VALUES ARE NULL)
 LOCATION ('info.dat'));

Alvin,Tolliver,1976
Baer,Kenneth
Mary,Dube,1973

field_list
The field_list clause identifies the fields in the data file and their datatypes.
Evaluation criteria for the field_list clause are as follows:

■ If no datatype is specified for a field, then it is assumed to be CHAR(1) for a
nondelimited field, and CHAR(255)for a delimited field.

■ If no field list is specified, then the fields in the data file are assumed to be in the
same order as the fields in the external table. The datatype for all fields is
CHAR(255) unless the column in the database is CHAR or VARCHAR. If the column in
the database is CHAR or VARCHAR, then the datatype for the field is still CHAR but the
length is either 255 or the length of the column, whichever is greater.

■ If no field list is specified and no delim_spec clause is specified, then the fields in
the data file are assumed to be in the same order as fields in the external table. All
fields are assumed to be CHAR(255) and terminated by a comma.

This example shows the definition for an external table with no field_list and a
delim_spec. It is followed by a sample of the data file that can be used to load it.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20), year_of_birth INT)
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (FIELDS TERMINATED BY "|")
 LOCATION ('info.dat'));

Alvin|Tolliver|1976
Kenneth|Baer|1963
Mary|Dube|1973

The syntax for the field_list clause is as follows:

field_definitions Clause

The ORACLE_LOADER Access Driver 14-21

field_name
The field_name is a string identifying the name of a field in the data file. If the string is
not within quotation marks, then the name is uppercased when matching field names
with column names in the external table.

If field_name matches the name of a column in the external table that is referenced in
the query, then the field value is used for the value of that external table column. If the
name does not match any referenced name in the external table, then the field is not
loaded but can be used for clause evaluation (for example WHEN or NULLIF).

pos_spec
The pos_spec clause indicates the position of the column within the record. For a full
description of the syntax, see "pos_spec Clause" on page 14-21.

datatype_spec
The datatype_spec clause indicates the datatype of the field. If datatype_spec is
omitted, then the access driver assumes the datatype is CHAR(255). For a full
description of the syntax, see "datatype_spec Clause" on page 14-22.

init_spec
The init_spec clause indicates when a field is NULL or has a default value. For a full
description of the syntax, see "init_spec Clause" on page 14-30.

pos_spec Clause
The pos_spec clause indicates the position of the column within the record. The setting
of the STRING SIZES ARE IN clause determines whether pos_spec refers to byte
positions or character positions. Using character positions with varying-width
character sets takes significantly longer than using character positions with
fixed-width character sets. Binary and multibyte character data should not be present
in the same data file when pos_spec is used for character positions. If they are, then
the results are unpredictable. The syntax for the pos_spec clause is as follows:

start
The start parameter is the number of bytes or characters from the beginning of the
record to where the field begins. It positions the start of the field at an absolute spot in
the record rather than relative to the position of the previous field.

(field_name
pos_spec datatype_spec init_spec

,

)

POSITION
(

start

*

+

–
increment

:

–

end

length
)

field_definitions Clause

14-22 Oracle Database Utilities

*
The * parameter indicates that the field begins at the first byte or character after the
end of the previous field. This is useful if you have a varying-length field followed by
a fixed-length field. This option cannot be used for the first field in the record.

increment
The increment parameter positions the start of the field at a fixed number of bytes or
characters from the end of the previous field. Use *-increment to indicate that the
start of the field starts before the current position in the record (this is a costly
operation for multibyte character sets). Use *+increment to move the start after the
current position.

end
The end parameter indicates the absolute byte or character offset into the record for the
last byte of the field. If start is specified along with end, then end cannot be less than
start. If * or increment is specified along with end, and the start evaluates to an
offset larger than the end for a particular record, then that record will be rejected.

length
The length parameter indicates that the end of the field is a fixed number of bytes or
characters from the start. It is useful for fixed-length fields when the start is specified
with *.

The following example shows various ways of using pos_spec. It is followed by a
sample of the data file that can be used to load it.

CREATE TABLE emp_load (first_name CHAR(15),
 last_name CHAR(20),
 year_of_birth INT,
 phone CHAR(12),
 area_code CHAR(3),
 exchange CHAR(3),
 extension CHAR(4))
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_LOADER
 DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS
 (FIELDS RTRIM
 (first_name (1:15) CHAR(15),
 last_name (*:+20),
 year_of_birth (36:39),
 phone (40:52),
 area_code (*-12: +3),
 exchange (*+1: +3),
 extension (*+1: +4)))
 LOCATION ('info.dat'));

Alvin Tolliver 1976415-922-1982
Kenneth Baer 1963212-341-7912
Mary Dube 1973309-672-2341

datatype_spec Clause
The datatype_spec clause is used to describe the datatype of a field in the data file if
the datatype is different than the default. The datatype of the field can be different
than the datatype of a corresponding column in the external table. The access driver

field_definitions Clause

The ORACLE_LOADER Access Driver 14-23

handles the necessary conversions. The syntax for the datatype_spec clause is as
follows:

If the number of bytes or characters in any field is 0, then the field is assumed to be
NULL. The optional DEFAULTIF clause specifies when the field is set to its default value.
Also, the optional NULLIF clause specifies other conditions for when the column
associated with the field is set to NULL. If the DEFAULTIF or NULLIF clause is true, then
the actions of those clauses override whatever values are read from the data file.

[UNSIGNED] INTEGER [EXTERNAL] [(len)]
This clause defines a field as an integer. If EXTERNAL is specified, then the number is a
character string. If EXTERNAL is not specified, then the number is a binary field. The
valid values for len in binary integer fields are 1, 2, 4, and 8. If len is omitted for
binary integers, then the default value is whatever the value of sizeof(int) is on the

See Also:

■ "init_spec Clause" on page 14-30 for more information about
NULLIF and DEFAULTIF

■ Oracle Database SQL Language Reference for more information
about datatypes

UNSIGNED
INTEGER

EXTERNAL (len) delim_spec

DECIMAL

ZONED

EXTERNAL
(len) delim_spec

(precision
, scale

)

ORACLE_DATE

ORACLE_NUMBER
COUNTED

FLOAT
EXTERNAL (len) delim_spec

DOUBLE

BINARY_FLOAT
EXTERNAL (len) delim_spec

BINARY_DOUBLE

RAW
(len)

CHAR
(len) delim_spec trim_spec date_format_spec

VARCHAR

VARRAW

VARCHARC

VARRAWC

(
length_of_length ,

max_len)

field_definitions Clause

14-24 Oracle Database Utilities

platform where the access driver is running. Use of the DATA IS {BIG | LITTLE} ENDIAN
clause may cause the data to be byte-swapped before it is stored.

If EXTERNAL is specified, then the value of len is the number of bytes or characters in
the number (depending on the setting of the STRING SIZES ARE IN BYTES or CHARACTERS
clause). If no length is specified, then the default value is 255.

The default value of the [UNSIGNED] INTEGER [EXTERNAL] [(len)] datatype is
determined as follows:

■ If no length specified, then the default length is 1.

■ If no length is specified and the field is delimited with a DELIMITED BY NEWLINE
clause, then the default length is 1.

■ If no length is specified and the field is delimited with a DELIMITED BY clause, then
the default length is 255 (unless the delimiter is NEWLINE, as stated above).

DECIMAL [EXTERNAL] and ZONED [EXTERNAL]
The DECIMAL clause is used to indicate that the field is a packed decimal number. The
ZONED clause is used to indicate that the field is a zoned decimal number. The
precision field indicates the number of digits in the number. The scale field is used
to specify the location of the decimal point in the number. It is the number of digits to
the right of the decimal point. If scale is omitted, then a value of 0 is assumed.

Note that there are different encoding formats of zoned decimal numbers depending
on whether the character set being used is EBCDIC-based or ASCII-based. If the
language of the source data is EBCDIC, then the zoned decimal numbers in that file
must match the EBCDIC encoding. If the language is ASCII-based, then the numbers
must match the ASCII encoding.

If the EXTERNAL parameter is specified, then the data field is a character string whose
length matches the precision of the field.

ORACLE_DATE
ORACLE_DATE is a field containing a date in the Oracle binary date format. This is the
format used by the DTYDAT datatype in Oracle Call Interface (OCI) programs. The field
is a fixed length of 7.

ORACLE_NUMBER
ORACLE_NUMBER is a field containing a number in the Oracle number format. The field is
a fixed length (the maximum size of an Oracle number field) unless COUNTED is
specified, in which case the first byte of the field contains the number of bytes in the
rest of the field.

ORACLE_NUMBER is a fixed-length 22-byte field. The length of an ORACLE_NUMBER COUNTED
field is one for the count byte, plus the number of bytes specified in the count byte.

Floating-Point Numbers
The following four datatypes, DOUBLE, FLOAT, BINARY_DOUBLE, and BINARY_FLOAT are
floating-point numbers.

DOUBLE and FLOAT are the floating-point formats used natively on the platform in use.
They are the same datatypes used by default for the DOUBLE and FLOAT datatypes in a C
program on that platform. BINARY_FLOAT and BINARY_DOUBLE are floating-point
numbers that conform substantially with the Institute for Electrical and Electronics
Engineers (IEEE) Standard for Binary Floating-Point Arithmetic, IEEE Standard
754-1985. Because most platforms use the IEEE standard as their native floating-point

field_definitions Clause

The ORACLE_LOADER Access Driver 14-25

format, FLOAT and BINARY_FLOAT are the same on those platforms and DOUBLE and
BINARY_DOUBLE are also the same.

DOUBLE
The DOUBLE clause indicates that the field is the same format as the C language DOUBLE
datatype on the platform where the access driver is executing. Use of the DATA IS {BIG
| LITTLE} ENDIAN clause may cause the data to be byte-swapped before it is stored.
This datatype may not be portable between certain platforms.

FLOAT [EXTERNAL]
The FLOAT clause indicates that the field is the same format as the C language FLOAT
datatype on the platform where the access driver is executing. Use of the DATA IS {BIG
| LITTLE} ENDIAN clause may cause the data to be byte-swapped before it is stored.
This datatype may not be portable between certain platforms.

If the EXTERNAL parameter is specified, then the field is a character string whose
maximum length is 255. See

BINARY_DOUBLE
BINARY_DOUBLE is a 64-bit, double-precision, floating-point number datatype. Each
BINARY_DOUBLE value requires 9 bytes, including a length byte. See the information in
the note provided for the FLOAT datatype for more details about floating-point
numbers.

BINARY_FLOAT
BINARY_FLOAT is a 32-bit, single-precision, floating-point number datatype. Each
BINARY_FLOAT value requires 5 bytes, including a length byte. See the information in
the note provided for the FLOAT datatype for more details about floating-point
numbers.

RAW
The RAW clause is used to indicate that the source data is binary data. The len for RAW
fields is always in number of bytes. When a RAW field is loaded in a character column,
the data that is written into the column is the hexadecimal representation of the bytes
in the RAW field.

CHAR
The CHAR clause is used to indicate that a field is a character datatype. The length (len)
for CHAR fields specifies the largest number of bytes or characters in the field. The len
is in bytes or characters, depending on the setting of the STRING SIZES ARE IN clause.

If no length is specified for a field of datatype CHAR, then the size of the field is
assumed to be 1, unless the field is delimited:

■ For a delimited CHAR field, if a length is specified, then that length is used as a
maximum.

■ For a delimited CHAR field for which no length is specified, the default is 255 bytes.

Note: See Oracle Database SQL Language Reference for more
information about floating-point numbers

field_definitions Clause

14-26 Oracle Database Utilities

■ For a delimited CHAR field that is greater than 255 bytes, you must specify a
maximum length. Otherwise you will receive an error stating that the field in the
data file exceeds maximum length.

The date_format_spec clause is used to indicate that the field contains a date or time
in the specified format.

The following example shows the use of the CHAR clause.

SQL> CREATE TABLE emp_load
 2 (employee_number CHAR(5),
 3 employee_dob CHAR(20),
 4 employee_last_name CHAR(20),
 5 employee_first_name CHAR(15),
 6 employee_middle_name CHAR(15),
 7 employee_hire_date DATE)
 8 ORGANIZATION EXTERNAL
 9 (TYPE ORACLE_LOADER
 10 DEFAULT DIRECTORY def_dir1
 11 ACCESS PARAMETERS
 12 (RECORDS DELIMITED BY NEWLINE
 13 FIELDS (employee_number CHAR(2),
 14 employee_dob CHAR(20),
 15 employee_last_name CHAR(18),
 16 employee_first_name CHAR(11),
 17 employee_middle_name CHAR(11),
 18 employee_hire_date CHAR(10) date_format DATE mask "mm/dd/yyyy"
 19)
 20)
 21 LOCATION ('info.dat')
 22);

Table created.

date_format_spec
The date_format_spec clause is used to indicate that a character string field contains
date data, time data, or both, in a specific format. This information is used only when a
character field is converted to a date or time datatype and only when a character string
field is mapped into a date column.

For detailed information about the correct way to specify date and time formats, see
Oracle Database SQL Language Reference.

The syntax for the date_format_spec clause is as follows:

DATE The DATE clause indicates that the string contains a date.

MASK The MASK clause is used to override the default globalization format mask for
the datatype. If a date mask is not specified, then the settings of NLS parameters for

DATE_FORMAT

DATE

TIMESTAMP
WITH

LOCAL
TIME ZONE

MASK " date/time mask "

INTERVAL
YEAR_TO_MONTH

DAY_TO_SECOND

field_definitions Clause

The ORACLE_LOADER Access Driver 14-27

the database (not the session settings) for the appropriate globalization parameter for
the datatype are used. The NLS_DATABASE_PARAMETERS view shows these settings.

■ NLS_DATE_FORMAT for DATE datatypes

■ NLS_TIMESTAMP_FORMAT for TIMESTAMP datatypes

■ NLS_TIMESTAMP_TZ_FORMAT for TIMESTAMP WITH TIME ZONE datatypes

Please note the following:

■ The database setting for the NLS_NUMERIC_CHARACTERS initialization parameter
(that is, from the NLS_DATABASE_PARAMETERS view) governs the decimal separator
for implicit conversion from character to numeric datatypes.

■ A group separator is not allowed in the default format.

TIMESTAMP The TIMESTAMP clause indicates that a field contains a formatted
timestamp.

INTERVAL The INTERVAL clause indicates that a field contains a formatted interval. The
type of interval can be either YEAR TO MONTH or DAY TO SECOND.

The following example shows a sample use of a complex DATE character string and a
TIMESTAMP character string. It is followed by a sample of the data file that can be used
to load it.

SQL> CREATE TABLE emp_load
 2 (employee_number CHAR(5),
 3 employee_dob CHAR(20),
 4 employee_last_name CHAR(20),
 5 employee_first_name CHAR(15),
 6 employee_middle_name CHAR(15),
 7 employee_hire_date DATE,
 8 rec_creation_date TIMESTAMP WITH TIME ZONE)
 9 ORGANIZATION EXTERNAL
 10 (TYPE ORACLE_LOADER
 11 DEFAULT DIRECTORY def_dir1
 12 ACCESS PARAMETERS
 13 (RECORDS DELIMITED BY NEWLINE
 14 FIELDS (employee_number CHAR(2),
 15 employee_dob CHAR(20),
 16 employee_last_name CHAR(18),
 17 employee_first_name CHAR(11),
 18 employee_middle_name CHAR(11),
 19 employee_hire_date CHAR(22) date_format DATE mask "mm/dd/yyyy hh:mi:ss AM",
 20 rec_creation_date CHAR(35) date_format TIMESTAMP WITH TIME ZONE mask
"DD-MON-RR HH.MI.SSXFF AM TZH:TZM"
 21)
 22)
 23 LOCATION ('infoc.dat')
 24);

Table created.

SQL> SELECT * FROM emp_load;

EMPLO EMPLOYEE_DOB EMPLOYEE_LAST_NAME EMPLOYEE_FIRST_ EMPLOYEE_MIDDLE
----- -------------------- -------------------- --------------- ---------------
EMPLOYEE_

REC_CREATION_DATE

field_definitions Clause

14-28 Oracle Database Utilities

56 november, 15, 1980 baker mary alice
01-SEP-04
01-DEC-04 11.22.03.034567 AM -08:00

87 december, 20, 1970 roper lisa marie
01-JAN-02
01-DEC-02 02.03.00.678573 AM -08:00

2 rows selected.

The info.dat file looks like the following. Note that this is 2 long records. There is one
space between the data fields (09/01/2004, 01/01/2002) and the time field that
follows.

56november, 15, 1980 baker mary alice 09/01/2004 08:23:01 AM01-DEC-04
11.22.03.034567 AM -08:00
87december, 20, 1970 roper lisa marie 01/01/2002 02:44:55 PM01-DEC-02
02.03.00.678573 AM -08:00

VARCHAR and VARRAW
The VARCHAR datatype has a binary count field followed by character data. The value in
the binary count field is either the number of bytes in the field or the number of
characters. See "STRING SIZES ARE IN" on page 14-10 for information about how to
specify whether the count is interpreted as a count of characters or count of bytes.

The VARRAW datatype has a binary count field followed by binary data. The value in the
binary count field is the number of bytes of binary data. The data in the VARRAW field is
not affected by the DATA IS…ENDIAN clause.

The VARIABLE 2 clause in the ACCESS PARAMETERS clause specifies the size of the binary
field that contains the length.

The optional length_of_length field in the specification is the number of bytes in the
count field. Valid values for length_of_length for VARCHAR are 1, 2, 4, and 8. If
length_of_length is not specified, then a value of 2 is used. The count field has the
same endianness as specified by the DATA IS…ENDIAN clause.

The max_len field is used to indicate the largest size of any instance of the field in the
data file. For VARRAW fields, max_len is number of bytes. For VARCHAR fields, max_len is
either number of characters or number of bytes depending on the STRING SIZES ARE IN
clause.

The following example shows various uses of VARCHAR and VARRAW. The content of the
data file, info.dat, is shown following the example.

CREATE TABLE emp_load
 (first_name CHAR(15),
 last_name CHAR(20),
 resume CHAR(2000),
 picture RAW(2000))
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_LOADER
 DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS
 (RECORDS
 VARIABLE 2
 DATA IS BIG ENDIAN
 CHARACTERSET US7ASCII
 FIELDS (first_name VARCHAR(2,12),
 last_name VARCHAR(2,20),

field_definitions Clause

The ORACLE_LOADER Access Driver 14-29

 resume VARCHAR(4,10000),
 picture VARRAW(4,100000)))
 LOCATION ('info.dat'));

Contents of info.dat Data File
The contents of the data file used in the example are as follows:.

0005Alvin0008Tolliver0000001DAlvin Tolliver's Resume etc. 0000001013f4690a30bc29d7e40023ab4599ffff

It is important to understand that, for the purposes of readable documentation, the
binary values for the count bytes and the values for the raw data are shown in the data
file in italics, with 2 characters per binary byte. The values in an actual data file would
be in binary format, not ASCII. Therefore, if you attempt to use this example by
cutting and pasting, then you will receive an error.

VARCHARC and VARRAWC
The VARCHARC datatype has a character count field followed by character data. The
value in the count field is either the number of bytes in the field or the number of
characters. See "STRING SIZES ARE IN" on page 14-10 for information about how to
specify whether the count is interpreted as a count of characters or count of bytes. The
optional length_of_length is either the number of bytes or the number of characters
in the count field for VARCHARC, depending on whether lengths are being interpreted as
characters or bytes.

The maximum value for length_of_lengths for VARCHARC is 10 if string sizes are in
characters, and 20 if string sizes are in bytes. The default value for length_of_length
is 5.

The VARRAWC datatype has a character count field followed by binary data. The value in
the count field is the number of bytes of binary data. The length_of_length is the
number of bytes in the count field.

The max_len field is used to indicate the largest size of any instance of the field in the
data file. For VARRAWC fields, max_len is number of bytes. For VARCHARC fields, max_len
is either number of characters or number of bytes depending on the STRING SIZES ARE
IN clause.

The following example shows various uses of VARCHARC and VARRAWC. The length of the
picture field is 0, which means the field is set to NULL.

CREATE TABLE emp_load
 (first_name CHAR(15),
 last_name CHAR(20),
 resume CHAR(2000),
 picture RAW (2000))
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_LOADER
 DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS
 (FIELDS (first_name VARCHARC(5,12),
 last_name VARCHARC(2,20),
 resume VARCHARC(4,10000),
 picture VARRAWC(4,100000)))
 LOCATION ('info.dat'));

00007William05Ricca0035Resume for William Ricca is missing0000

column_transforms Clause

14-30 Oracle Database Utilities

init_spec Clause
The init_spec clause is used to specify when a field should be set to NULL or when it
should be set to a default value. The syntax for the init_spec clause is as follows:

Only one NULLIF clause and only one DEFAULTIF clause can be specified for any field.
These clauses behave as follows:

■ If NULLIF condition_spec is specified and it evaluates to true, then the field is set
to NULL.

■ If DEFAULTIF condition_spec is specified and it evaluates to true, then the value
of the field is set to a default value. The default value depends on the datatype of
the field, as follows:

– For a character datatype, the default value is an empty string.

– For a numeric datatype, the default value is a 0.

– For a date datatype, the default value is NULL.

■ If a NULLIF clause and a DEFAULTIF clause are both specified for a field, then the
NULLIF clause is evaluated first and the DEFAULTIF clause is evaluated only if the
NULLIF clause evaluates to false.

column_transforms Clause
The optional column_transforms clause provides transforms that you can use to
describe how to load columns in the external table that do not map directly to columns
in the data file. The syntax for the column_transforms clause is as follows:

transform
Each transform specified in the transform clause identifies a column in the external
table and then a specifies how to calculate the value of the column. The syntax is as
follows:

DEFAULTIF

NULLIF
condition_spec

COLUMN TRANSFORMS (transform

,

)

column_transforms Clause

The ORACLE_LOADER Access Driver 14-31

The NULL transform is used to set the external table column to NULL in every row. The
CONSTANT transform is used to set the external table column to the same value in every
row. The CONCAT transform is used to set the external table column to the concatenation
of constant strings and/or fields in the current record from the data file. The LOBFILE
transform is used to load data into a field for a record from another data file. Each of
these transforms is explained further in the following sections.

column_name
The column_name uniquely identifies a column in the external table to be loaded. Note
that if the name of a column is mentioned in the transform clause, then that name
cannot be specified in the FIELDS clause as a field in the data file.

NULL
When the NULL transform is specified, every value of the field is set to NULL for every
record.

CONSTANT
The CONSTANT transform uses the value of the string specified as the value of the
column in the record. If the column in the external table is not a character string type,
then the constant string will be converted to the datatype of the column. This
conversion will be done for every row.

The character set of the string used for datatype conversions is the character set of the
database.

CONCAT
The CONCAT transform concatenates constant strings and fields in the data file together
to form one string. Only fields that are character datatypes and that are listed in the
fields clause can be used as part of the concatenation. Other column transforms
cannot be specified as part of the concatenation.

LOBFILE
The LOBFILE transform is used to identify a file whose contents are to be used as the
value for a column in the external table. All LOBFILEs are identified by an optional
directory object and a file name in the form directory object:filename. The
following rules apply to use of the LOBFILE transform:

■ Both the directory object and the file name can be either a constant string or the
name of a field in the field clause.

column_name FROM

NULL

CONSTANT string

CONCAT (
field_name

CONSTANT string

,

)

LOBFILE (
fieldname

CONSTANT string :

,

)
lobfile_attr_list

Example: Creating and Loading an External Table Using ORACLE_LOADER

14-32 Oracle Database Utilities

■ If a constant string is specified, then that string is used to find the LOBFILE for
every row in the table.

■ If a field name is specified, then the value of that field in the data file is used to
find the LOBFILE.

■ If a field name is specified for either the directory object or the file name and if the
value of that field is NULL, then the column being loaded by the LOBFILE is also set
to NULL.

■ If the directory object is not specified, then the default directory specified for the
external table is used.

■ If a field name is specified for the directory object, then the FROM clause also needs
to be specified.

Note that the entire file is used as the value of the LOB column. If the same file is
referenced in multiple rows, then that file is reopened and reread in order to populate
each column.

lobfile_attr_list
The lobfile_attr_list lists additional attributes of the LOBFILE. The syntax is as
follows:

The FROM clause lists the names of all directory objects that will be used for LOBFILEs.
It is used only when a field name is specified for the directory object of the name of the
LOBFILE. The purpose of the FROM clause is to determine the type of access allowed to
the named directory objects during initialization. If directory object in the value of
field is not a directory object in this list, then the row will be rejected.

The CLOB attribute indicates that the data in the LOBFILE is character data (as opposed
to RAW data). Character data may need to be translated into the character set used to
store the LOB in the database.

The CHARACTERSET attribute contains the name of the character set for the data in the
LOBFILEs.

The BLOB attribute indicates that the data in the LOBFILE is raw data.

If neither CLOB nor BLOB is specified, then CLOB is assumed. If no character set is
specified for character LOBFILEs, then the character set of the data file is assumed.

Example: Creating and Loading an External Table Using ORACLE_
LOADER

The steps in this section show an example of using the ORACLE_LOADER access driver to
create and load an external table. A traditional table named emp is defined along with
an external table named emp_load. The external data is then loaded into an internal
table.

FROM (directory object name

,

)

CLOB

BLOB

CHARACTERSET = character set name

Example: Creating and Loading an External Table Using ORACLE_LOADER

The ORACLE_LOADER Access Driver 14-33

1. Assume your .dat file looks as follows:

56november, 15, 1980 baker mary alice 09/01/2004
87december, 20, 1970 roper lisa marie 01/01/2002

2. Execute the following SQL statements to set up a default directory (which contains
the data source) and to grant access to it:

CREATE DIRECTORY def_dir1 AS '/usr/apps/datafiles';
GRANT READ ON DIRECTORY ext_tab_dir TO SCOTT;

3. Create a traditional table named emp:

CREATE TABLE emp (emp_no CHAR(6), last_name CHAR(25), first_name CHAR(20),
middle_initial CHAR(1), hire_date DATE, dob DATE);

4. Create an external table named emp_load:

SQL> CREATE TABLE emp_load
 2 (employee_number CHAR(5),
 3 employee_dob CHAR(20),
 4 employee_last_name CHAR(20),
 5 employee_first_name CHAR(15),
 6 employee_middle_name CHAR(15),
 7 employee_hire_date DATE)
 8 ORGANIZATION EXTERNAL
 9 (TYPE ORACLE_LOADER
 10 DEFAULT DIRECTORY def_dir1
 11 ACCESS PARAMETERS
 12 (RECORDS DELIMITED BY NEWLINE
 13 FIELDS (employee_number CHAR(2),
 14 employee_dob CHAR(20),
 15 employee_last_name CHAR(18),
 16 employee_first_name CHAR(11),
 17 employee_middle_name CHAR(11),
 18 employee_hire_date CHAR(10) date_format DATE mask
"mm/dd/yyyy"
 19)
 20)
 21 LOCATION ('info.dat')
 22);

Table created.

5. Load the data from the external table emp_load into the table emp:

SQL> INSERT INTO emp (emp_no,
 2 first_name,
 3 middle_initial,
 4 last_name,
 5 hire_date,
 6 dob)
 7 (SELECT employee_number,
 8 employee_first_name,
 9 substr(employee_middle_name, 1, 1),
 10 employee_last_name,
 11 employee_hire_date,
 12 to_date(employee_dob,'month, dd, yyyy')
 13 FROM emp_load);

2 rows created.

Parallel Loading Considerations for the ORACLE_LOADER Access Driver

14-34 Oracle Database Utilities

6. Perform the following select operation to verify that the information in the .dat
file was loaded into the emp table:

SQL> SELECT * FROM emp;

EMP_NO LAST_NAME FIRST_NAME M HIRE_DATE DOB
------ ------------------------- -------------------- - --------- ---------
56 baker mary a 01-SEP-04 15-NOV-80
87 roper lisa m 01-JAN-02 20-DEC-70

2 rows selected.

 Notes about this example:

■ The employee_number field in the data file is converted to a character string for the
employee_number field in the external table.

■ The data file contains an employee_dob field that is not loaded into any field in the
table.

■ The substr function is used on the employee_middle_name column in the external
table to generate the value for middle_initial in table emp.

■ The character string for employee_hire_date in info.dat is automatically
converted into a DATE datatype at external table access time, using the format mask
specified in the external table definiition.

■ Unlike employee_hire_date, the DATE datatype conversion for employee_dob is
done at SELECT time and is not part of the external table definition.

Parallel Loading Considerations for the ORACLE_LOADER Access Driver
The ORACLE_LOADER access driver attempts to divide large data files into chunks that
can be processed separately.

The following file, record, and data characteristics make it impossible for a file to be
processed in parallel:

■ Sequential data sources (such as a tape drive or pipe)

■ Data in any multibyte character set whose character boundaries cannot be
determined starting at an arbitrary byte in the middle of a string

This restriction does not apply to any data file with a fixed number of bytes per
record.

■ Records with the VAR format

Specifying a PARALLEL clause is of value only when large amounts of data are
involved.

Performance Hints When Using the ORACLE_LOADER Access Driver
When you monitor performance, the most important measurement is the elapsed time
for a load. Other important measurements are CPU usage, memory usage, and I/O
rates.

You can alter performance by increasing or decreasing the degree of parallelism. The
degree of parallelism indicates the number of access drivers that can be started to

See Also: Oracle Database SQL Language Reference for detailed
information about the correct way to specify date and time formats

Restrictions When Using the ORACLE_LOADER Access Driver

The ORACLE_LOADER Access Driver 14-35

process the data files. The degree of parallelism enables you to choose on a scale
between slower load with little resource usage and faster load with all resources
utilized. The access driver cannot automatically tune itself, because it cannot
determine how many resources you want to dedicate to the access driver.

An additional consideration is that the access drivers use large I/O buffers for better
performance (you can use the READSIZE clause in the access parameters to specify the
size of the buffers). On databases with shared servers, all memory used by the access
drivers comes out of the system global area (SGA). For this reason, you should be
careful when using external tables on shared servers.

Performance can also sometimes be increased with use of date cache functionality. By
using the date cache to specify the number of unique dates anticipated during the
load, you can reduce the number of date conversions done when many duplicate date
or timestamp values are present in the input data. The date cache functionality
provided by external tables is identical to the date cache functionality provided by
SQL*Loader. See "DATE_CACHE" on page 14-12 for a detailed description.

In addition to changing the degree of parallelism and using the date cache to improve
performance, consider the following information:

■ Fixed-length records are processed faster than records terminated by a string.

■ Fixed-length fields are processed faster than delimited fields.

■ Single-byte character sets are the fastest to process.

■ Fixed-width character sets are faster to process than varying-width character sets.

■ Byte-length semantics for varying-width character sets are faster to process than
character-length semantics.

■ Single-character delimiters for record terminators and field delimiters are faster to
process than multicharacter delimiters.

■ Having the character set in the data file match the character set of the database is
faster than a character set conversion.

■ Having datatypes in the data file match the datatypes in the database is faster than
datatype conversion.

■ Not writing rejected rows to a reject file is faster because of the reduced overhead.

■ Condition clauses (including WHEN, NULLIF, and DEFAULTIF) slow down processing.

■ The access driver takes advantage of multithreading to streamline the work as
much as possible.

Restrictions When Using the ORACLE_LOADER Access Driver
This section lists restrictions to be aware of then you use the ORACLE_LOADER access
driver.

■ SQL strings cannot be specified in access parameters for the ORACLE_LOADER access
driver. As a workaround, you can use the DECODE clause in the SELECT clause of
the statement that is reading the external table. Alternatively, you can create a
view of the external table that uses the DECODE clause and select from that view
rather than the external table.

■ The use of the backslash character (\) within strings is not supported in external
tables. See "Use of the Backslash Escape Character" on page 7-11.

Reserved Words for the ORACLE_LOADER Access Driver

14-36 Oracle Database Utilities

■ When identifiers (for example, column or table names) are specified in the external
table access parameters, certain values are considered to be reserved words by the
access parameter parser. If a reserved word is used as an identifier, then it must be
enclosed in double quotation marks.

Reserved Words for the ORACLE_LOADER Access Driver
When identifiers (for example, column or table names) are specified in the external
table access parameters, certain values are considered to be reserved words by the
access parameter parser. If a reserved word is used as an identifier, then it must be
enclosed in double quotation marks. The following are the reserved words for the
ORACLE_LOADER access driver:

■ ALL

■ AND

■ ARE

■ ASTERISK

■ AT

■ ATSIGN

■ BADFILE

■ BADFILENAME

■ BACKSLASH

■ BENDIAN

■ BIG

■ BLANKS

■ BY

■ BYTES

■ BYTESTR

■ CHAR

■ CHARACTERS

■ CHARACTERSET

■ CHARSET

■ CHARSTR

■ CHECK

■ CLOB

■ COLLENGTH

■ COLON

■ COLUMN

■ COMMA

■ CONCAT

■ CONSTANT

Reserved Words for the ORACLE_LOADER Access Driver

The ORACLE_LOADER Access Driver 14-37

■ COUNTED

■ DATA

■ DATE

■ DATE_CACHE

■ DATE_FORMAT

■ DATEMASK

■ DAY

■ DEBUG

■ DECIMAL

■ DEFAULTIF

■ DELIMITBY

■ DELIMITED

■ DISCARDFILE

■ DOT

■ DOUBLE

■ DOUBLETYPE

■ DQSTRING

■ DQUOTE

■ DSCFILENAME

■ ENCLOSED

■ ENDIAN

■ ENDPOS

■ EOF

■ EQUAL

■ EXIT

■ EXTENDED_IO_PARAMETERS

■ EXTERNAL

■ EXTERNALKW

■ EXTPARM

■ FIELD

■ FIELDS

■ FILE

■ FILEDIR

■ FILENAME

■ FIXED

■ FLOAT

■ FLOATTYPE

Reserved Words for the ORACLE_LOADER Access Driver

14-38 Oracle Database Utilities

■ FOR

■ FROM

■ HASH

■ HEXPREFIX

■ IN

■ INTEGER

■ INTERVAL

■ LANGUAGE

■ IS

■ LEFTCB

■ LEFTTXTDELIM

■ LEFTP

■ LENDIAN

■ LDRTRIM

■ LITTLE

■ LOAD

■ LOBFILE

■ LOBPC

■ LOBPCCONST

■ LOCAL

■ LOCALTZONE

■ LOGFILE

■ LOGFILENAME

■ LRTRIM

■ LTRIM

■ MAKE_REF

■ MASK

■ MINUSSIGN

■ MISSING

■ MISSINGFLD

■ MONTH

■ NEWLINE

■ NO

■ NOCHECK

■ NOT

■ NOBADFILE

■ NODISCARDFILE

Reserved Words for the ORACLE_LOADER Access Driver

The ORACLE_LOADER Access Driver 14-39

■ NOLOGFILE

■ NOTEQUAL

■ NOTERMBY

■ NOTRIM

■ NULL

■ NULLIF

■ OID

■ OPTENCLOSE

■ OPTIONALLY

■ OPTIONS

■ OR

■ ORACLE_DATE

■ ORACLE_NUMBER

■ PLUSSIGN

■ POSITION

■ PROCESSING

■ QUOTE

■ RAW

■ READSIZE

■ RECNUM

■ RECORDS

■ REJECT

■ RIGHTCB

■ RIGHTTXTDELIM

■ RIGHTP

■ ROW

■ ROWS

■ RTRIM

■ SCALE

■ SECOND

■ SEMI

■ SETID

■ SIGN

■ SIZES

■ SKIP

■ STRING

■ TERMBY

Reserved Words for the ORACLE_LOADER Access Driver

14-40 Oracle Database Utilities

■ TERMEOF

■ TERMINATED

■ TERMWS

■ TERRITORY

■ TIME

■ TIMESTAMP

■ TIMEZONE

■ TO

■ TRANSFORMS

■ UNDERSCORE

■ UINTEGER

■ UNSIGNED

■ VALUES

■ VARCHAR

■ VARCHARC

■ VARIABLE

■ VARRAW

■ VARRAWC

■ VLENELN

■ VMAXLEN

■ WHEN

■ WHITESPACE

■ WITH

■ YEAR

■ ZONED

15

The ORACLE_DATAPUMP Access Driver 15-1

15 The ORACLE_DATAPUMP Access Driver

This chapter describes the ORACLE_DATAPUMP access driver which provides a set of
access parameters unique to external tables of the type ORACLE_DATAPUMP. You can use
the access parameters to modify the default behavior of the access driver. The
information you provide through the access driver ensures that data from the data
source is processed so that it matches the definition of the external table.

The following topics are discussed in this chapter:

■ access_parameters Clause

■ Unloading and Loading Data with the ORACLE_DATAPUMP Access Driver

■ Supported Datatypes

■ Unsupported Datatypes

■ Performance Hints When Using the ORACLE_DATAPUMP Access Driver

■ Restrictions When Using the ORACLE_DATAPUMP Access Driver

■ Reserved Words for the ORACLE_DATAPUMP Access Driver

To use the information in this chapter, you must have some knowledge of the file
format and record format (including character sets and field datatypes) of the data files
on your platform. You must also know enough about SQL to be able to create an
external table and perform queries against it.

access_parameters Clause
When you create the external table, you can specify certain parameters in an access_
parameters clause. This clause is optional, as are its individual parameters. For

Notes:

■ It is sometimes difficult to describe syntax without using other
syntax that is not documented until later in the chapter. If it is
not clear what some syntax is supposed to do, then you might
want to skip ahead and read about that particular element.

■ When identifiers (for example, column or table names) are
specified in the external table access parameters, certain values
are considered to be reserved words by the access parameter
parser. If a reserved word is used as an identifier, then it must
be enclosed in double quotation marks. See "Reserved Words
for the ORACLE_DATAPUMP Access Driver" on page 15-16.

access_parameters Clause

15-2 Oracle Database Utilities

example, you could specify LOGFILE, but not VERSION, or vice versa. The syntax for the
access_parameters clause is as follows.

comments
Comments are lines that begin with two hyphens followed by text. Comments must be
placed before any access parameters, for example:

--This is a comment.
--This is another comment.
NOLOG

All text to the right of the double hyphen is ignored, until the end of the line.

COMPRESSION
Default: DISABLED

Purpose
Specifies whether to compress data before it is written to the dump file set.

Syntax and Description
COMPRESSION [ENABLED | DISABLED]

If ENABLED is specified, then all data is compressed for the entire upload operation.

If DISABLED is specified, then no data is compressed for the upload operation.

Note: These access parameters are collectively referred to as the
opaque_format_spec in the SQL CREATE TABLE...ORGANIZATION
EXTERNAL statement.

See Also:

■ Oracle Database SQL Language Reference for information about
specifying opaque_format_spec when using the SQL CREATE
TABLE...ORGANIZATION EXTERNAL statement

comments

ENCRYPTION
ENABLED

DISABLED

NOLOGFILE

LOGFILE
directory object name :

file name

COMPRESSION
ENABLED

DISABLED

VERSION

COMPATIBLE

LATEST

version number

access_parameters Clause

The ORACLE_DATAPUMP Access Driver 15-3

Example
In the following example, the COMPRESSION parameter is set to ENABLED. Therefore, all
data written to the dept.dmp dump file will be in compressed format.

CREATE TABLE deptXTec3
 ORGANIZATION EXTERNAL (TYPE ORACLE_DATAPUMP DEFAULT DIRECTORY def_dir1
 ACCESS PARAMETERS (COMPRESSION ENABLED) LOCATION ('dept.dmp'));

ENCRYPTION
Default: DISABLED

Purpose
Specifies whether to encrypt data before it is written to the dump file set.

Syntax and Description
ENCRYPTION [ENABLED | DISABLED]

If ENABLED is specified, then all data is written to the dump file set in encrypted format.

If DISABLED is specified, then no data is written to the dump file set in encrypted
format.

Restrictions
This parameter is used only for export operations.

Example
In the following example, the ENCRYPTION parameter is set to ENABLED. Therefore, all
data written to the dept.dmp file will be in encrypted format.

CREATE TABLE deptXTec3
 ORGANIZATION EXTERNAL (TYPE ORACLE_DATAPUMP DEFAULT DIRECTORY def_dir1
 ACCESS PARAMETERS (ENCRYPTION ENABLED) LOCATION ('dept.dmp'));

LOGFILE | NOLOGFILE
Default: If LOGFILE is not specified, then a log file is created in the default directory
and the name of the log file is generated from the table name and the process ID with
an extension of .log. If a log file already exists by the same name, then the access
driver reopens that log file and appends the new log information to the end.

Purpose
LOGFILE specifies the name of the log file that contains any messages generated while
the dump file was being accessed. NOLOGFILE prevents the creation of a log file.

Syntax and Description
NOLOGFILE

or

LOGFILE [directory_object:]logfile_name

If a directory object is not specified as part of the log file name, then the directory
object specified by the DEFAULT DIRECTORY attribute is used. If a directory object is not
specified and no default directory was specified, then an error is returned. See "File
Names for LOGFILE" on page 15-4 for information about using substitution variables

access_parameters Clause

15-4 Oracle Database Utilities

to create unique file names during parallel loads or unloads.

Example
In the following example, the dump file, dept_dmp, is in the directory identified by the
directory object, load_dir, but the log file, deptxt.log, is in the directory identified by
the directory object, log_dir.

CREATE TABLE dept_xt (dept_no INT, dept_name CHAR(20), location CHAR(20))
ORGANIZATION EXTERNAL (TYPE ORACLE_DATAPUMP DEFAULT DIRECTORY load_dir
ACCESS PARAMETERS (LOGFILE log_dir:deptxt) LOCATION ('dept_dmp'));

File Names for LOGFILE
The access driver does some symbol substitution to help make file names unique in
the case of parallel loads. The symbol substitutions supported are as follows:

■ %p is replaced by the process ID of the current process. For example, if the process
ID of the access driver is 12345, then exttab_%p.log becomes exttab_12345.log.

■ %a is replaced by the agent number of the current process. The agent number is the
unique number assigned to each parallel process accessing the external table. This
number is padded to the left with zeros to fill three characters. For example, if the
third parallel agent is creating a file and exttab_%a.log was specified as the file
name, then the agent would create a file named exttab_003.log.

■ %% is replaced by %. If there is a need to have a percent sign in the file name, then
this symbol substitution must be used.

If the % character is followed by anything other than one of the characters in the
preceding list, then an error is returned.

If %p or %a is not used to create unique file names for output files and an external table
is being accessed in parallel, then output files may be corrupted or agents may be
unable to write to the files.

If no extension is supplied for the file, then a default extension of .log is used. If the
name generated is not a valid file name, then an error is returned and no data is
loaded or unloaded.

VERSION Clause
The VERSION clause is used to specify the minimum release of Oracle Database that
will be reading the dump file. If you specify 11.1, then both Oracle Database 11g
release 11.1 and 11.2 databases can read the dump file. If you specify 11.2, then only
Oracle Database 11g release 2 (11.2) databases can read the dump file.

The default value is COMPATIBLE.

Effects of Using the SQL ENCRYPT Clause
If you specify the SQL ENCRYPT clause when you create an external table, then keep the
following in mind:

■ The columns for which you specify the ENCRYPT clause will be encrypted before
being written into the dump file.

■ If you move the dump file to another database, then the same encryption
password must be used for both the encrypted columns in the dump file and for
the external table used to read the dump file.

Unloading and Loading Data with the ORACLE_DATAPUMP Access Driver

The ORACLE_DATAPUMP Access Driver 15-5

■ If you do not specify a password for the correct encrypted columns in the external
table on the second database, then an error is returned. If you do not specify the
correct password, then garbage data is written to the dump file.

■ The dump file that is produced must be at release 10.2 or higher. Otherwise, an
error is returned.

Unloading and Loading Data with the ORACLE_DATAPUMP Access Driver
As part of creating an external table with a SQL CREATE TABLE AS SELECT statement,
the ORACLE_DATAPUMP access driver can write data to a dump file. The data in the file is
written in a binary format that can only be read by the ORACLE_DATAPUMP access driver.
Once the dump file is created, it cannot be modified (that is, no data manipulation
language (DML) operations can be performed on it). However, the file can be read any
number of times and used as the dump file for another external table in the same
database or in a different database.

The following steps use the sample schema, oe, to show an extended example of how
you can use the ORACLE_DATAPUMP access driver to unload and load data. (The example
assumes that the directory object def_dir1 already exists, and that user oe has read
and write access to it.)

1. An external table will populate a file with data only as part of creating the external
table with the AS SELECT clause. The following example creates an external table
named inventories_xt and populates the dump file for the external table with the
data from table inventories in the oe schema.

SQL> CREATE TABLE inventories_xt
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('inv_xt.dmp')
 7)
 8 AS SELECT * FROM inventories;

Table created.

2. Describe both inventories and the new external table, as follows. They should
both match.

SQL> DESCRIBE inventories
 Name Null? Type
 -- --------- ----------------
 PRODUCT_ID NOT NULL NUMBER(6)
 WAREHOUSE_ID NOT NULL NUMBER(3)
 QUANTITY_ON_HAND NOT NULL NUMBER(8)

SQL> DESCRIBE inventories_xt
 Name Null? Type
 --- -------- -----------------
 PRODUCT_ID NOT NULL NUMBER(6)
 WAREHOUSE_ID NOT NULL NUMBER(3)
 QUANTITY_ON_HAND NOT NULL NUMBER(8)

See Also: Oracle Database SQL Language Reference for more
information about using the ENCRYPT clause on a CREATE TABLE
statement

Unloading and Loading Data with the ORACLE_DATAPUMP Access Driver

15-6 Oracle Database Utilities

3. Now that the external table is created, it can be queried just like any other table.
For example, select the count of records in the external table, as follows:

SQL> SELECT COUNT(*) FROM inventories_xt;

 COUNT(*)

 1112

4. Compare the data in the external table against the data in inventories. There
should be no differences.

SQL> SELECT * FROM inventories MINUS SELECT * FROM inventories_xt;

no rows selected

5. After an external table has been created and the dump file populated by the
CREATE TABLE AS SELECT statement, no rows may be added, updated, or deleted
from the external table. Any attempt to modify the data in the external table will
fail with an error.

The following example shows an attempt to use data manipulation language
(DML) on an existing external table. This will return an error, as shown.

SQL> DELETE FROM inventories_xt WHERE warehouse_id = 5;
DELETE FROM inventories_xt WHERE warehouse_id = 5
 *
ERROR at line 1:
ORA-30657: operation not supported on external organized table

6. The dump file created for the external table can now be moved and used as the
dump file for another external table in the same database or different database.
Note that when you create an external table that uses an existing file, there is no AS
SELECT clause for the CREATE TABLE statement.

SQL> CREATE TABLE inventories_xt2
 2 (
 3 product_id NUMBER(6),
 4 warehouse_id NUMBER(3),
 5 quantity_on_hand NUMBER(8)
 6)
 7 ORGANIZATION EXTERNAL
 8 (
 9 TYPE ORACLE_DATAPUMP
 10 DEFAULT DIRECTORY def_dir1
 11 LOCATION ('inv_xt.dmp')
 12);

Table created.

7. Compare the data for the new external table against the data in the inventories
table. The product_id field will be converted to a compatible datatype before the
comparison is done. There should be no differences.

SQL> SELECT * FROM inventories MINUS SELECT * FROM inventories_xt2;

no rows selected

8. Create an external table with three dump files and with a degree of parallelism of
three.

SQL> CREATE TABLE inventories_xt3

Unloading and Loading Data with the ORACLE_DATAPUMP Access Driver

The ORACLE_DATAPUMP Access Driver 15-7

 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('inv_xt1.dmp', 'inv_xt2.dmp', 'inv_xt3.dmp')
 7)
 8 PARALLEL 3
 9 AS SELECT * FROM inventories;

Table created.

9. Compare the data unload against inventories. There should be no differences.

SQL> SELECT * FROM inventories MINUS SELECT * FROM inventories_xt3;

no rows selected

10. Create an external table containing some rows from table inventories.

SQL> CREATE TABLE inv_part_xt
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('inv_p1_xt.dmp')
 7)
 8 AS SELECT * FROM inventories WHERE warehouse_id < 5;

Table created.

11. Create another external table containing the rest of the rows from inventories.

SQL> drop table inv_part_xt;

Table dropped.

SQL>
SQL> CREATE TABLE inv_part_xt
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('inv_p2_xt.dmp')
 7)
 8 AS SELECT * FROM inventories WHERE warehouse_id >= 5;

Table created.

12. Create an external table that uses the two dump files created in Steps 10 and 11.

SQL> CREATE TABLE inv_part_all_xt
 2 (
 3 product_id NUMBER(6),
 4 warehouse_id NUMBER(3),
 5 quantity_on_hand NUMBER(8)
 6)
 7 ORGANIZATION EXTERNAL
 8 (
 9 TYPE ORACLE_DATAPUMP
 10 DEFAULT DIRECTORY def_dir1
 11 LOCATION ('inv_p1_xt.dmp','inv_p2_xt.dmp')
 12);

Unloading and Loading Data with the ORACLE_DATAPUMP Access Driver

15-8 Oracle Database Utilities

Table created.

13. Compare the new external table to the inventories table. There should be no
differences. This is because the two dump files used to create the external table
have the same metadata (for example, the same table name inv_part_xt and the
same column information).

SQL> SELECT * FROM inventories MINUS SELECT * FROM inv_part_all_xt;

no rows selected

Parallel Loading and Unloading
The dump file must be on a disk big enough to hold all the data being written. If there
is insufficient space for all of the data, then an error is returned for the CREATE TABLE AS
SELECT statement. One way to alleviate the problem is to create multiple files in
multiple directory objects (assuming those directories are on different disks) when
executing the CREATE TABLE AS SELECT statement. Multiple files can be created by
specifying multiple locations in the form directory:file in the LOCATION clause and
by specifying the PARALLEL clause. Each parallel I/O server process that is created to
populate the external table writes to its own file. The number of files in the LOCATION
clause should match the degree of parallelization because each I/O server process
requires its own files. Any extra files that are specified will be ignored. If there are not
enough files for the degree of parallelization specified, then the degree of
parallelization is lowered to match the number of files in the LOCATION clause.

Here is an example of unloading the inventories table into three files.

SQL> CREATE TABLE inventories_XT_3
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('inv_xt1.dmp', 'inv_xt2.dmp', 'inv_xt3.dmp')
 7)
 8 PARALLEL 3
 9 AS SELECT * FROM oe.inventories;

Table created.

When the ORACLE_DATAPUMP access driver is used to load data, parallel processes can
read multiple dump files or even chunks of the same dump file concurrently. Thus,
data can be loaded in parallel even if there is only one dump file, as long as that file is
large enough to contain multiple file offsets. The degree of parallelization is not tied to
the number of files in the LOCATION clause when reading from ORACLE_DATAPUMP
external tables.

Combining Dump Files
Dump files populated by different external tables can all be specified in the LOCATION
clause of another external table. For example, data from different production databases
can be unloaded into separate files, and then those files can all be included in an
external table defined in a data warehouse. This provides an easy way of aggregating
data from multiple sources. The only restriction is that the metadata for all of the
external tables be exactly the same. This means that the character set, time zone,
schema name, table name, and column names must all match. Also, the columns must
be defined in the same order, and their datatypes must be exactly alike. This means

Supported Datatypes

The ORACLE_DATAPUMP Access Driver 15-9

that after you create the first external table you must drop it so that you can use the
same table name for the second external table. This ensures that the metadata listed in
the two dump files is the same and they can be used together to create the same
external table.

SQL> CREATE TABLE inv_part_1_xt
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('inv_p1_xt.dmp')
 7)
 8 AS SELECT * FROM oe.inventories WHERE warehouse_id < 5;

Table created.

SQL> DROP TABLE inv_part_1_xt;

SQL> CREATE TABLE inv_part_1_xt
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT directory def_dir1
 6 LOCATION ('inv_p2_xt.dmp')
 7)
 8 AS SELECT * FROM oe.inventories WHERE warehouse_id >= 5;

Table created.

SQL> CREATE TABLE inv_part_all_xt
 2 (
 3 PRODUCT_ID NUMBER(6),
 4 WAREHOUSE_ID NUMBER(3),
 5 QUANTITY_ON_HAND NUMBER(8)
 6)
 7 ORGANIZATION EXTERNAL
 8 (
 9 TYPE ORACLE_DATAPUMP
 10 DEFAULT DIRECTORY def_dir1
 11 LOCATION ('inv_p1_xt.dmp','inv_p2_xt.dmp')
 12);

Table created.

SQL> SELECT * FROM inv_part_all_xt MINUS SELECT * FROM oe.inventories;

no rows selected

Supported Datatypes
You may encounter the following situations when you use external tables to move
data between databases:

■ The database character set and the database national character set may be different
between the two platforms.

■ The endianness of the platforms for the two databases may be different.

The ORACLE_DATAPUMP access driver automatically resolves some of these situations.

The following datatypes are automatically converted during loads and unloads:

Unsupported Datatypes

15-10 Oracle Database Utilities

■ Character (CHAR, NCHAR, VARCHAR2, NVARCHAR2)

■ RAW

■ NUMBER

■ Date/Time

■ BLOB

■ CLOB and NCLOB

■ ROWID and UROWID

If you attempt to use a datatype that is not supported for external tables, then you
receive an error. This is demonstrated in the following example, in which the
unsupported datatype, LONG, is used:

SQL> CREATE TABLE bad_datatype_xt
 2 (
 3 product_id NUMBER(6),
 4 language_id VARCHAR2(3),
 5 translated_name NVARCHAR2(50),
 6 translated_description LONG
 7)
 8 ORGANIZATION EXTERNAL
 9 (
 10 TYPE ORACLE_DATAPUMP
 11 DEFAULT DIRECTORY def_dir1
 12 LOCATION ('proddesc.dmp')
 13);
 translated_description LONG
 *
ERROR at line 6:
ORA-30656: column type not supported on external organized table

Unsupported Datatypes
An external table supports a subset of all possible datatypes for columns. In particular,
it supports character datatypes (except LONG), the RAW datatype, all numeric datatypes,
and all date, timestamp, and interval datatypes.

This section describes how you can use the ORACLE_DATAPUMP access driver to unload
and reload data for some of the unsupported datatypes, specifically:

■ BFILE

■ LONG and LONG RAW

■ Final object types

■ Tables of final object types

Unloading and Loading BFILE Datatypes
The BFILE datatype has two pieces of information stored in it: the directory object for
the file and the name of the file within that directory object.

You can unload BFILE columns using the ORACLE_DATAPUMP access driver by storing the
directory object name and the file name in two columns in the external table. The
procedure DBMS_LOB.FILEGETNAME will return both parts of the name. However,
because this is a procedure, it cannot be used in a SELECT statement. Instead, two

See Also: "Unsupported Datatypes" on page 15-10

Unsupported Datatypes

The ORACLE_DATAPUMP Access Driver 15-11

functions are needed. The first will return the name of the directory object, and the
second will return the name of the file.

The steps in the following extended example demonstrate the unloading and loading
of BFILE datatypes.

1. Create a function to extract the directory object for a BFILE column. Note that if
the column is NULL, then NULL is returned.

SQL> CREATE FUNCTION get_dir_name (bf BFILE) RETURN VARCHAR2 IS
 2 DIR_ALIAS VARCHAR2(255);
 3 FILE_NAME VARCHAR2(255);
 4 BEGIN
 5 IF bf is NULL
 6 THEN
 7 RETURN NULL;
 8 ELSE
 9 DBMS_LOB.FILEGETNAME (bf, dir_alias, file_name);
 10 RETURN dir_alias;
 11 END IF;
 12 END;
 13 /

Function created.

2. Create a function to extract the file name for a BFILE column.

SQL> CREATE FUNCTION get_file_name (bf BFILE) RETURN VARCHAR2 is
 2 dir_alias VARCHAR2(255);
 3 file_name VARCHAR2(255);
 4 BEGIN
 5 IF bf is NULL
 6 THEN
 7 RETURN NULL;
 8 ELSE
 9 DBMS_LOB.FILEGETNAME (bf, dir_alias, file_name);
 10 RETURN file_name;
 11 END IF;
 12 END;
 13 /

Function created.

3. You can then add a row with a NULL value for the BFILE column, as follows:

SQL> INSERT INTO PRINT_MEDIA (product_id, ad_id, ad_graphic)
 2 VALUES (3515, 12001, NULL);

1 row created.

You can use the newly created functions to populate an external table. Note that
the functions should set columns ad_graphic_dir and ad_graphic_file to NULL if
the BFILE column is NULL.

4. Create an external table to contain the data from the print_media table. Use the
get_dir_name and get_file_name functions to get the components of the BFILE
column.

SQL> CREATE TABLE print_media_xt
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE oracle_datapump

Unsupported Datatypes

15-12 Oracle Database Utilities

 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('pm_xt.dmp')
 7) AS
 8 SELECT product_id, ad_id,
 9 get_dir_name (ad_graphic) ad_graphic_dir,
 10 get_file_name(ad_graphic) ad_graphic_file
 11 FROM print_media;

Table created.

5. Create a function to load a BFILE column from the data that is in the external table.
This function will return NULL if the ad_graphic_dir column in the external table
is NULL.

SQL> CREATE FUNCTION get_bfile (dir VARCHAR2, file VARCHAR2) RETURN
BFILE is
 2 bf BFILE;
 3 BEGIN
 4 IF dir IS NULL
 5 THEN
 6 RETURN NULL;
 7 ELSE
 8 RETURN BFILENAME(dir,file);
 9 END IF;
 10 END;
 11 /

Function created.

6. The get_bfile function can be used to populate a new table containing a BFILE
column.

SQL> CREATE TABLE print_media_int AS
 2 SELECT product_id, ad_id,
 3 get_bfile (ad_graphic_dir, ad_graphic_file) ad_graphic
 4 FROM print_media_xt;

Table created.

7. The data in the columns of the newly loaded table should match the data in the
columns of the print_media table.

SQL> SELECT product_id, ad_id,
 2 get_dir_name(ad_graphic),
 3 get_file_name(ad_graphic)
 4 FROM print_media_int
 5 MINUS
 6 SELECT product_id, ad_id,
 7 get_dir_name(ad_graphic),
 8 get_file_name(ad_graphic)
 9 FROM print_media;

no rows selected

Unloading LONG and LONG RAW Datatypes
The ORACLE_DATAPUMP access driver can be used to unload LONG and LONG RAW columns,
but that data can only be loaded back into LOB fields. The steps in the following
extended example demonstrate the unloading of LONG and LONG RAW datatypes.

Unsupported Datatypes

The ORACLE_DATAPUMP Access Driver 15-13

1. If a table to be unloaded contains a LONG or LONG RAW column, then define the
corresponding columns in the external table as CLOB for LONG columns or BLOB for
LONG RAW columns.

SQL> CREATE TABLE long_tab
 2 (
 3 key SMALLINT,
 4 description LONG
 5);

Table created.

SQL> INSERT INTO long_tab VALUES (1, 'Description Text');

1 row created.

2. Now, an external table can be created that contains a CLOB column to contain the
data from the LONG column. Note that when loading the external table, the TO_LOB
operator is used to convert the LONG column into a CLOB.

SQL> CREATE TABLE long_tab_xt
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('long_tab_xt.dmp')
 7)
 8 AS SELECT key, TO_LOB(description) description FROM long_tab;

Table created.

3. The data in the external table can be used to create another table exactly like the
one that was unloaded except the new table will contain a LOB column instead of
a LONG column.

SQL> CREATE TABLE lob_tab
 2 AS SELECT * from long_tab_xt;

Table created.

4. Verify that the table was created correctly.

SQL> SELECT * FROM lob_tab;

 KEY DESCRIPTION
--
 1 Description Text

Unloading and Loading Columns Containing Final Object Types
Final column objects are populated into an external table by moving each attribute in
the object type into a column in the external table. In addition, the external table needs
a new column to track whether the column object is atomically NULL. The following
steps demonstrate the unloading and loading of columns containing final object types.

1. In the following example, the warehouse column in the external table is used to
track whether the warehouse column in the source table is atomically NULL.

SQL> CREATE TABLE inventories_obj_xt
 2 ORGANIZATION EXTERNAL
 3 (

Unsupported Datatypes

15-14 Oracle Database Utilities

 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('inv_obj_xt.dmp')
 7)
 8 AS
 9 SELECT oi.product_id,
 10 DECODE (oi.warehouse, NULL, 0, 1) warehouse,
 11 oi.warehouse.location_id location_id,
 12 oi.warehouse.warehouse_id warehouse_id,
 13 oi.warehouse.warehouse_name warehouse_name,
 14 oi.quantity_on_hand
 15 FROM oc_inventories oi;

Table created.

The columns in the external table containing the attributes of the object type can
now be used as arguments to the type constructor function when loading a
column of that type. Note that the warehouse column in the external table is used
to determine whether to call the constructor function for the object or set the
column to NULL.

2. Load a new internal table that looks exactly like the oc_inventories view. (The
use of the WHERE 1=0 clause creates a new table that looks exactly like the old table
but does not copy any data from the old table into the new table.)

SQL> CREATE TABLE oc_inventories_2 AS SELECT * FROM oc_inventories
WHERE 1 = 0;

Table created.

SQL> INSERT INTO oc_inventories_2
 2 SELECT product_id,
 3 DECODE (warehouse, 0, NULL,
 4 warehouse_typ(warehouse_id, warehouse_name,
 5 location_id)), quantity_on_hand
 6 FROM inventories_obj_xt;

1112 rows created.

Tables of Final Object Types
Object tables have an object identifier that uniquely identifies every row in the table.
The following situations can occur:

■ If there is no need to unload and reload the object identifier, then the external table
only needs to contain fields for the attributes of the type for the object table.

■ If the object identifier (OID) needs to be unloaded and reloaded and the OID for
the table is one or more fields in the table, (also known as primary-key-based
OIDs), then the external table has one column for every attribute of the type for
the table.

■ If the OID needs to be unloaded and the OID for the table is system-generated,
then the procedure is more complicated. In addition to the attributes of the type,
another column needs to be created to hold the system-generated OID.

The steps in the following example demonstrate this last situation.

1. Create a table of a type with system-generated OIDs:

SQL> CREATE TYPE person AS OBJECT (name varchar2(20)) NOT FINAL
 2 /

Performance Hints When Using the ORACLE_DATAPUMP Access Driver

The ORACLE_DATAPUMP Access Driver 15-15

Type created.

SQL> CREATE TABLE people OF person;

Table created.

SQL> INSERT INTO people VALUES ('Euclid');

1 row created.

2. Create an external table in which the column OID is used to hold the column
containing the system-generated OID.

SQL> CREATE TABLE people_xt
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('people.dmp')
 7)
 8 AS SELECT SYS_NC_OID$ oid, name FROM people;

Table created.

3. Create another table of the same type with system-generated OIDs. Then, execute
an INSERT statement to load the new table with data unloaded from the old table.

SQL> CREATE TABLE people2 OF person;

Table created.

SQL>
SQL> INSERT INTO people2 (SYS_NC_OID$, SYS_NC_ROWINFO$)
 2 SELECT oid, person(name) FROM people_xt;

1 row created.

SQL>
SQL> SELECT SYS_NC_OID$, name FROM people
 2 MINUS
 3 SELECT SYS_NC_OID$, name FROM people2;

no rows selected

Performance Hints When Using the ORACLE_DATAPUMP Access Driver
When you monitor performance, the most important measurement is the elapsed time
for a load. Other important measurements are CPU usage, memory usage, and I/O
rates.

You can alter performance by increasing or decreasing the degree of parallelism. The
degree of parallelism indicates the number of access drivers that can be started to
process the data files. The degree of parallelism enables you to choose on a scale
between slower load with little resource usage and faster load with all resources
utilized. The access driver cannot automatically tune itself, because it cannot
determine how many resources you want to dedicate to the access driver.

An additional consideration is that the access drivers use large I/O buffers for better
performance. On databases with shared servers, all memory used by the access drivers

Restrictions When Using the ORACLE_DATAPUMP Access Driver

15-16 Oracle Database Utilities

comes out of the system global area (SGA). For this reason, you should be careful
when using external tables on shared servers.

Restrictions When Using the ORACLE_DATAPUMP Access Driver
The ORACLE_DATAPUMP access driver has the following restrictions:

■ Handling of byte-order marks during a load: In an external table load for which
the data file character set is UTF8 or UTF16, it is not possible to suppress checking
for byte-order marks. Suppression of byte-order mark checking is necessary only if
the beginning of the data file contains binary data that matches the byte-order
mark encoding. (It is possible to suppress byte-order mark checking with
SQL*Loader loads.) Note that checking for a byte-order mark does not mean that a
byte-order mark must be present in the data file. If no byte-order mark is present,
then the byte order of the server platform is used.

■ The external tables feature does not support the use of the backslash (\) escape
character within strings. See "Use of the Backslash Escape Character" on page 7-11.

■ When identifiers (for example, column or table names) are specified in the external
table access parameters, certain values are considered to be reserved words by the
access parameter parser. If a reserved word is used as an identifier, then it must be
enclosed in double quotation marks.

Reserved Words for the ORACLE_DATAPUMP Access Driver
When identifiers (for example, column or table names) are specified in the external
table access parameters, certain values are considered to be reserved words by the
access parameter parser. If a reserved word is used as an identifier, then it must be
enclosed in double quotation marks. The following are the reserved words for the
ORACLE_DATAPUMP access driver:

■ BADFILE

■ COMPATIBLE

■ COMPRESSION

■ DATAPUMP

■ DEBUG

■ ENCRYPTION

■ INTERNAL

■ JOB

■ LATEST

■ LOGFILE

■ NOBADFILE

■ NOLOGFILE

■ PARALLEL

■ TABLE

■ VERSION

■ WORKERID

Part IV
Part IV Other Utilities

This part contains the following chapters:

Chapter 16, "ADRCI: ADR Command Interpreter"

This chapter describes the Automatic Diagnostic Repository Command Interpreter
(ADRCI), a command-line tool used to manage Oracle Database diagnostic data.

Chapter 17, "DBVERIFY: Offline Database Verification Utility"

This chapter describes how to use the offline database verification utility, DBVERIFY.

Chapter 18, "DBNEWID Utility"

This chapter describes how to use the DBNEWID utility to change the name or ID, or
both, for a database.

Chapter 19, "Using LogMiner to Analyze Redo Log Files"

This chapter describes the Oracle LogMiner utility, which enables you to query redo
logs through a SQL interface.

Chapter 20, "Using the Metadata APIs"

This chapter describes the Metadata API, which you can use to extract and manipulate
complete representations of the metadata for database objects.

Chapter 21, "Original Export"

This chapter describes how to use the original Export utility to write data from an
Oracle database into dump files for use by the original Import utility.

Chapter 22, "Original Import"

This chapter describes how to use the original Import utility to import dump files
created by the original Export utility.

16

ADRCI: ADR Command Interpreter 16-1

16 ADRCI: ADR Command Interpreter

The Automatic Diagnostic Repository Command Interpreter (ADRCI) utility is a
command-line tool that you use to manage Oracle Database diagnostic data.

This chapter contains the following sections:

■ About the ADR Command Interpreter (ADRCI) Utility

■ Definitions

■ Starting ADRCI and Getting Help

■ Setting the ADRCI Homepath Before Using ADRCI Commands

■ Viewing the Alert Log

■ Finding Trace Files

■ Viewing Incidents

■ Packaging Incidents

■ ADRCI Command Reference

■ Troubleshooting ADRCI

About the ADR Command Interpreter (ADRCI) Utility
ADRCI is a command-line tool that is part of the fault diagnosability infrastructure
introduced in Oracle Database 11g. ADRCI enables you to:

■ View diagnostic data within the Automatic Diagnostic Repository (ADR).

■ View Health Monitor reports.

■ Package incident and problem information into a zip file for transmission to
Oracle Support.

Diagnostic data includes incident and problem descriptions, trace files, dumps, health
monitor reports, alert log entries, and more.

ADR data is secured by operating system permissions on the ADR directories, hence
there is no need to log in to ADRCI.

ADRCI has a rich command set, and can be used in interactive mode or within scripts.

See Also: Oracle Database Administrator's Guide for more information
about managing diagnostic data.

Definitions

16-2 Oracle Database Utilities

Definitions
The following are definitions of terms used for ADRCI and the Oracle Database fault
diagnosability infrastructure:

Automatic Diagnostic Repository (ADR)
The Automatic Diagnostic Repository (ADR) is a file-based repository for database
diagnostic data such as traces, dumps, the alert log, health monitor reports, and more.
It has a unified directory structure across multiple instances and multiple products.
Beginning with release 11g, the database, Oracle Automatic Storage Management
(Oracle ASM), and other Oracle products or components store all diagnostic data in
the ADR. Each instance of each product stores diagnostic data underneath its own
ADR home directory (see "ADR Home" on page 16-3). For example, in an Oracle Real
Application Clusters (Oracle RAC) environment with shared storage and Oracle ASM,
each database instance and each Oracle ASM instance has a home directory within the
ADR. The ADR's unified directory structure enables customers and Oracle Support to
correlate and analyze diagnostic data across multiple instances and multiple products.

Problem
A problem is a critical error in the database. Critical errors include internal errors such
as ORA-00600 and other severe errors such as ORA-07445 (operating system exception)
or ORA-04031 (out of memory in the shared pool). Problems are tracked in the ADR.
Each problem has a problem key and a unique problem ID. (See "Problem Key" on
page 16-3.)

Incident
An incident is a single occurrence of a problem. When a problem occurs multiple
times, an incident is created for each occurrence. Incidents are tracked in the ADR.
Each incident is identified by a numeric incident ID, which is unique within the ADR.
When an incident occurs, the database makes an entry in the alert log, sends an
incident alert to Oracle Enterprise Manager, gathers diagnostic data about the incident
in the form of dump files (incident dumps), tags the incident dumps with the incident
ID, and stores the incident dumps in an ADR subdirectory created for that incident.

Diagnosis and resolution of a critical error usually starts with an incident alert. You
can obtain a list of all incidents in the ADR with an ADRCI command. Each incident is
mapped to a single problem only.

Incidents are flood-controlled so that a single problem does not generate too many
incidents and incident dumps. See Oracle Database Administrator's Guide for more
information about incident flood control.

Note: The easier and recommended way to manage diagnostic data
is with the Oracle Enterprise Manager Support Workbench (Support
Workbench). ADRCI provides a command-line alternative to most of
the functionality of the Support Workbench, and adds capabilities
such as listing and querying trace files.

See Oracle Database Administrator's Guide for complete information
about the Support Workbench.

Definitions

ADRCI: ADR Command Interpreter 16-3

Problem Key
Every problem has a problem key, which is a text string that includes an error code
(such as ORA 600) and in some cases, one or more error parameters. Two incidents are
considered to have the same root cause if their problem keys match.

Incident Package
An incident package (package) is a collection of data about incidents for one or more
problems. Before sending incident data to Oracle Support it must be collected into a
package using the Incident Packaging Service (IPS). After a package is created, you can
add external files to the package, remove selected files from the package, or scrub (edit)
selected files in the package to remove sensitive data.

A package is a logical construct only, until you create a physical file from the package
contents. That is, an incident package starts out as a collection of metadata in the ADR.
As you add and remove package contents, only the metadata is modified. When you
are ready to upload the data to Oracle Support, you create a physical package using
ADRCI, which saves the data into a zip file. You can then upload the zip file to Oracle
Support.

Finalizing
Before ADRCI can generate a physical package from a logical package, the package
must be finalized. This means that other components are called to add any correlated
diagnostic data files to the incidents already in this package. Finalizing also adds
recent trace files, alert log entries, Health Monitor reports, SQL test cases, and
configuration information. This step is run automatically when a physical package is
generated, and can also be run manually using the ADRCI utility. After manually
finalizing a package, you can review the files that were added and then remove or edit
any that contain sensitive information.

ADR Home
An ADR home is the root directory for all diagnostic data—traces, dumps, alert log,
and so on—for a particular instance of a particular Oracle product or component. For
example, in an Oracle RAC environment with Oracle ASM, each database instance and
each Oracle ASM instance has an ADR home. All ADR homes share the same
hierarchical directory structure. Some of the standard subdirectories in each ADR
home include alert (for the alert log), trace (for trace files), and incident (for incident
information). All ADR homes are located within the ADR base directory. (See "ADR
Base" on page 16-3.)

Some ADRCI commands can work with multiple ADR homes simultaneously. The
current ADRCI homepath determines the ADR homes that are searched for diagnostic
data when an ADRCI command is issued. See "Homepath" on page 16-4 for more
information.

ADR Base
To permit correlation of diagnostic data across multiple ADR homes, ADR homes are
grouped together under the same root directory called the ADR base. For example, in
an Oracle RAC environment, the ADR base could be on a shared disk, and the ADR
home for each Oracle RAC instance could be located under this ADR base.

See Also: Oracle Database Administrator's Guide for more information
about correlated diagnostic data

Starting ADRCI and Getting Help

16-4 Oracle Database Utilities

The location of the ADR base for a database instance is set by the DIAGNOSTIC_DEST
initialization parameter. If this parameter is omitted or is null, the database sets it to a
default value. See Oracle Database Administrator's Guide for details.

When multiple database instances share an Oracle home, whether they are multiple
single instances or the instances of an Oracle RAC database, and when one or more of
these instances set ADR base in different locations, the last instance to start up
determines the default ADR base for ADRCI.

Homepath
All ADRCI commands operate on diagnostic data in the current ADR homes. More
than one ADR home can be current at any one time. Some ADRCI commands (such as
SHOW INCIDENT) search for and display diagnostic data from all current ADR homes,
while other commands require that only one ADR home be current, and display an
error message if more than one are current.

The ADRCI homepath determines the ADR homes that are current. It does so by
pointing to a directory within the ADR base hierarchy. If it points to a single ADR
home directory, then that ADR home is the only current ADR home. If the homepath
points to a directory that is above the ADR home directory level in the hierarchy, then
all ADR homes that are below this directory become current.

The homepath is null by default when ADRCI starts. This means that all ADR homes
under ADR base are current.

The SHOW HOME and SHOW HOMEPATH commands display a list of the ADR homes that are
current, and the SET HOMEPATH command sets the homepath.

Starting ADRCI and Getting Help
You can use ADRCI in interactive mode or batch mode. Details are provided in the
following sections:

■ Using ADRCI in Interactive Mode

■ Getting Help

■ Using ADRCI in Batch Mode

Using ADRCI in Interactive Mode
Interactive mode prompts you to enter individual commands one at a time.

To use ADRCI in interactive mode:

1. Ensure that the ORACLE_HOME and PATH environment variables are set properly.

On the Windows platform, these environment variables are set in the Windows
registry automatically upon installation. On other platforms, you must set and
check environment variables with operating system commands.

See Also:

■ Oracle Database Administrator's Guide for more information about
the structure and location of the ADR and its directories

■ "Setting the ADRCI Homepath Before Using ADRCI Commands"
on page 16-6

■ "SET HOMEPATH" on page 16-45

■ "SHOW HOMES" on page 16-51

Starting ADRCI and Getting Help

ADRCI: ADR Command Interpreter 16-5

The PATH environment variable must include ORACLE_HOME/bin.

2. Enter the following command at the operating system command prompt:

ADRCI

The utility starts and displays the following prompt:

adrci>

3. Enter ADRCI commands, following each with the Enter key.

4. Enter one of the following commands to exit ADRCI:

EXIT
QUIT

Getting Help
With the ADRCI help system, you can:

■ View a list of ADR commands.

■ View help for an individual command.

■ View a list of ADRCI command line options.

To view a list of ADRCI commands:

1. Start ADRCI in interactive mode.

See "Using ADRCI in Interactive Mode" on page 16-4 for instructions.

2. At the ADRCI prompt, enter the following command:

HELP

To get help for a specific ADRCI command:

1. Start ADRCI in interactive mode.

See "Using ADRCI in Interactive Mode" on page 16-4 for instructions.

2. At the ADRCI prompt, enter the following command:

HELP command

For example, to get help on the SHOW TRACEFILE command, enter the following:

HELP SHOW TRACEFILE

To view a list of command line options:

■ Enter the following command at the operating system command prompt:

ADRCI -HELP

The utility displays output similar to the following:

Syntax:
 adrci [-help] [script=script_filename] [exec="command [;command;...]"]

Options Description (Default)

script script file name (None)
help help on the command options (None)
exec exec a set of commands (None)

Setting the ADRCI Homepath Before Using ADRCI Commands

16-6 Oracle Database Utilities

Using ADRCI in Batch Mode
Batch mode enables you to run a series of ADRCI commands at once, without being
prompted for input. To use batch mode, you add a command line parameter to the
ADRCI command when you start ADRCI. Batch mode enables you to include ADRCI
commands in shell scripts or Windows batch files. Like interactive mode, the ORACLE_
HOME and PATH environment variables must be set before starting ADRCI.

The following command line parameters are available for batch operation:

To submit ADRCI commands on the command line:

■ Enter the following command at the operating system command prompt:

ADRCI EXEC="COMMAND[; COMMAND]..."

For example, to run the SHOW HOMES command in batch mode, enter the following
command at the operating system command prompt:

ADRCI EXEC="SHOW HOMES"

To run the SHOW HOMES command followed by the SHOW INCIDENT command, enter
the following:

ADRCI EXEC="SHOW HOMES; SHOW INCIDENT"

To run ADRCI scripts:

■ Enter the following command at the operating system command prompt:

ADRCI SCRIPT=SCRIPT_FILE_NAME

For example, to run a script file named adrci_script.txt, enter the following
command at the operating system command prompt:

ADRCI SCRIPT=adrci_script.txt

A script file contains a series of commands separated by semicolons (;) or line
breaks, such as:

SET HOMEPATH diag/rdbms/orcl/orcl; SHOW ALERT -term

Setting the ADRCI Homepath Before Using ADRCI Commands
When diagnosing a problem, you may want to work with diagnostic data from
multiple database instances or components, or you may want to focus on diagnostic
data from one instance or component. To work with diagnostic data from multiple
instances or components, you must ensure that the ADR homes for all of these
instances or components are current. To work with diagnostic data from only one
instance or component, you must ensure that only the ADR home for that instance or
component is current. You control the ADR homes that are current by setting the
ADRCI homepath.

Table 16–1 ADRCI Command Line Parameters for Batch Operation

Parameter Description

EXEC Enables you to submit one or more ADRCI commands on the operating
system command line that starts ADRCI. Commands are separated by
semicolons (;).

SCRIPT Enables you to run a script containing ADRCI commands.

Setting the ADRCI Homepath Before Using ADRCI Commands

ADRCI: ADR Command Interpreter 16-7

If multiple homes are current, this means that the homepath points to a directory in
the ADR directory structure that contains multiple ADR home directories underneath
it. To focus on a single ADR home, you must set the homepath to point lower in the
directory hierarchy, to a single ADR home directory.

For example, if the Oracle RAC database with database name orclbi has two
instances, where the instances have SIDs orclbi1 and orclbi2, and Oracle RAC is
using a shared Oracle home, the following two ADR homes exist:

/diag/rdbms/orclbi/orclbi1/
/diag/rdbms/orclbi/orclbi2/

In all ADRCI commands and output, ADR home directory paths (ADR homes) are
always expressed relative to ADR base. So if ADR base is currently /u01/app/oracle,
the absolute paths of these two ADR homes are the following:

/u01/app/oracle/diag/rdbms/orclbi/orclbi1/
/u01/app/oracle/diag/rdbms/orclbi/orclbi2/

You use the SET HOMEPATH command to set one or more ADR homes to be current. If
ADR base is /u01/app/oracle and you want to set the homepath to
/u01/app/oracle/diag/rdbms/orclbi/orclbi2/, you use this command:

adrci> set homepath diag/rdbms/orclbi/orclbi2

When ADRCI starts, the homepath is null by default, which means that all ADR
homes under ADR base are current. In the previously cited example, therefore, the
ADR homes for both Oracle RAC instances would be current.

adrci> show homes
ADR Homes:
diag/rdbms/orclbi/orclbi1
diag/rdbms/orclbi/orclbi2

In this case, any ADRCI command that you run, assuming that the command supports
more than one current ADR home, works with diagnostic data from both ADR homes.
If you were to set the homepath to /diag/rdbms/orclbi/orclbi2, only the ADR home
for the instance with SID orclbi2 would be current.

adrci> set homepath diag/rdbms/orclbi/orclbi2
adrci> show homes
ADR Homes:
diag/rdbms/orclbi/orclbi2

In this case, any ADRCI command that you run would work with diagnostic data from
this single ADR home only.

See Also:

■ Oracle Database Administrator's Guide for more information about
the structure of ADR homes

■ "ADR Base" on page 16-3

■ "ADR Home" on page 16-3

■ "Homepath" on page 16-4

■ "SET HOMEPATH" on page 16-45

■ "SHOW HOMES" on page 16-51

Viewing the Alert Log

16-8 Oracle Database Utilities

Viewing the Alert Log
Beginning with Oracle Database 11g, the alert log is written as both an XML-formatted
file and as a text file. You can view either format of the file with any text editor, or you
can run an ADRCI command to view the XML-formatted alert log with the XML tags
omitted. By default, ADRCI displays the alert log in your default editor. You can use
the SET EDITOR command to change your default editor.

To view the alert log with ADRCI:

1. Start ADRCI in interactive mode.

See "Starting ADRCI and Getting Help" on page 16-4 for instructions.

2. (Optional) Use the SET HOMEPATH command to select (make current) a single ADR
home.

You can use the SHOW HOMES command first to see a list of current ADR homes. See
"Homepath" on page 16-4 and "Setting the ADRCI Homepath Before Using ADRCI
Commands" on page 16-6 for more information.

3. At the ADRCI prompt, enter the following command:

SHOW ALERT

If more than one ADR home is current, you are prompted to select a single ADR
home from a list. The alert log is displayed, with XML tags omitted, in your
default editor.

4. Exit the editor to return to the ADRCI command prompt.

The following are variations on the SHOW ALERT command:

SHOW ALERT -TAIL

This displays the last portion of the alert log (the last 10 entries) in your terminal
session.

SHOW ALERT -TAIL 50

This displays the last 50 entries in the alert log in your terminal session.

SHOW ALERT -TAIL -F

This displays the last 10 entries in the alert log, and then waits for more messages to
arrive in the alert log. As each message arrives, it is appended to the display. This
command enables you to perform live monitoring of the alert log. Press CTRL+C to stop
waiting and return to the ADRCI prompt.

SPOOL /home/steve/MYALERT.LOG
SHOW ALERT -TERM
SPOOL OFF

This outputs the alert log, without XML tags, to the file /home/steve/MYALERT.LOG.

SHOW ALERT -P "MESSAGE_TEXT LIKE '%ORA-600%'"

This displays only alert log messages that contain the string 'ORA-600'. The output
looks something like this:

ADR Home = /u01/app/oracle/product/11.1.0/db_1/log/diag/rdbms/orclbi/orclbi:
**
01-SEP-06 09.17.44.849000000 PM -07:00
AlertMsg1: ORA-600 dbgris01, addr=0xa9876541

Finding Trace Files

ADRCI: ADR Command Interpreter 16-9

Finding Trace Files
ADRCI enables you to view the names of trace files that are currently in the automatic
diagnostic repository (ADR). You can view the names of all trace files in the ADR, or
you can apply filters to view a subset of names. For example, ADRCI has commands
that enable you to:

■ Obtain a list of trace files whose file name matches a search string.

■ Obtain a list of trace files in a particular directory.

■ Obtain a list of trace files that pertain to a particular incident.

You can combine filtering functions by using the proper command line parameters.

The SHOW TRACEFILE command displays a list of the trace files that are present in the
trace directory and in all incident directories under the current ADR home. When
multiple ADR homes are current, the traces file lists from all ADR homes are output
one after another.

The following statement lists the names of all trace files in the current ADR homes,
without any filtering:

SHOW TRACEFILE

The following statement lists the name of every trace file that has the string mmon in its
file name. The percent sign (%) is used as a wildcard character, and the search string is
case sensitive.

SHOW TRACEFILE %mmon%

This statement lists the name of every trace file that is located in the
/home/steve/temp directory and that has the string mmon in its file name:

SHOW TRACEFILE %mmon% -PATH /home/steve/temp

This statement lists the names of trace files in reverse order of last modified time. That
is, the most recently modified trace files are listed first.

SHOW TRACEFILE -RT

This statement lists the names of all trace files related to incident number 1681:

SHOW TRACEFILE -I 1681

See Also:

■ "SHOW ALERT" on page 16-46

■ "SET EDITOR" on page 16-45

■ Oracle Database Administrator's Guide for instructions for viewing
the alert log with Oracle Enterprise Manager or with a text editor

See Also:

■ "SHOW TRACEFILE" on page 16-57

■ Oracle Database Administrator's Guide for information about the
directory structure of the ADR

Viewing Incidents

16-10 Oracle Database Utilities

Viewing Incidents
The ADRCI SHOW INCIDENT command displays information about open incidents. For
each incident, the incident ID, problem key, and incident creation time are shown. If
the ADRCI homepath is set so that there are multiple current ADR homes, the report
includes incidents from all of them.

To view a report of all open incidents:

1. Start ADRCI in interactive mode, and ensure that the homepath points to the
correct directory within the ADR base directory hierarchy.

See "Starting ADRCI and Getting Help" on page 16-4 and "Homepath" on
page 16-4 for details.

2. At the ADRCI prompt, enter the following command:

SHOW INCIDENT

ADRCI generates output similar to the following:

ADR Home = /u01/app/oracle/product/11.1.0/db_1/log/diag/rdbms/orclbi/orclbi:

INCIDENT_ID PROBLEM_KEY CREATE_TIME
----------------- ------------------------- ---------------------------------
3808 ORA 603 2010-06-18 21:35:49.322161 -07:00
3807 ORA 600 [4137] 2010-06-18 21:35:47.862114 -07:00
3805 ORA 600 [4136] 2010-06-18 21:35:25.012579 -07:00
3804 ORA 1578 2010-06-18 21:35:08.483156 -07:00
4 rows fetched

The following are variations on the SHOW INCIDENT command:

SHOW INCIDENT -MODE BRIEF
SHOW INCIDENT -MODE DETAIL

These commands produce more detailed versions of the incident report.

SHOW INCIDENT -MODE DETAIL -P "INCIDENT_ID=1681"

This shows a detailed incident report for incident 1681 only.

Packaging Incidents
You can use ADRCI commands to package one or more incidents for transmission to
Oracle Support for analysis. Background information and instructions are presented in
the following topics:

■ About Packaging Incidents

■ Creating Incident Packages

About Packaging Incidents
Packaging incidents is a three-step process:

Step 1: Create a logical incident package.
The incident package (package) is denoted as logical because it exists only as metadata
in the automatic diagnostic repository (ADR). It has no content until you generate a

See Also: "ADRCI Command Reference" on page 16-14

Packaging Incidents

ADRCI: ADR Command Interpreter 16-11

physical package from the logical package. The logical package is assigned a package
number, and you refer to it by that number in subsequent commands.

You can create the logical package as an empty package, or as a package based on an
incident number, a problem number, a problem key, or a time interval. If you create the
package as an empty package, you can add diagnostic information to it in step 2.

Creating a package based on an incident means including diagnostic data—dumps,
health monitor reports, and so on—for that incident. Creating a package based on a
problem number or problem key means including in the package diagnostic data for
incidents that reference that problem number or problem key. Creating a package
based on a time interval means including diagnostic data on incidents that occurred in
the time interval.

Step 2: Add diagnostic information to the incident package
If you created a logical package based on an incident number, a problem number, a
problem key, or a time interval, this step is optional. You can add additional incidents
to the package or you can add any file within the ADR to the package. If you created
an empty package, you must use ADRCI commands to add incidents or files to the
package.

Step 3: Generate the physical incident package
When you submit the command to generate the physical package, ADRCI gathers all
required diagnostic files and adds them to a zip file in a designated directory. You can
generate a complete zip file or an incremental zip file. An incremental file contains all
the diagnostic files that were added or changed since the last zip file was created for
the same logical package. You can create incremental files only after you create a
complete file, and you can create as many incremental files as you want. Each zip file
is assigned a sequence number so that the files can be analyzed in the correct order.

Zip files are named according to the following scheme:

packageName_mode_sequence.zip

where:

■ packageName consists of a portion of the problem key followed by a timestamp

■ mode is either COM or INC, for complete or incremental

■ sequence is an integer

For example, if you generate a complete zip file for a logical package that was created
on September 6, 2006 at 4:53 p.m., and then generate an incremental zip file for the
same logical package, you would create files with names similar to the following:

ORA603_20060906165316_COM_1.zip
ORA603_20060906165316_INC_2.zip

Creating Incident Packages
The following sections present the ADRCI commands that you use to create a logical
incident package (package) and generate a physical package:

■ Creating a Logical Incident Package

■ Adding Diagnostic Information to a Logical Incident Package

■ Generating a Physical Incident Package

See Also: "About Packaging Incidents" on page 16-10

Packaging Incidents

16-12 Oracle Database Utilities

Creating a Logical Incident Package
You use variants of the IPS CREATE PACKAGE command to create a logical package
(package).

To create a package based on an incident:

1. Start ADRCI in interactive mode, and ensure that the homepath points to the
correct directory within the ADR base directory hierarchy.

See "Starting ADRCI and Getting Help" on page 16-4 and "Homepath" on
page 16-4 for details.

2. At the ADRCI prompt, enter the following command:

IPS CREATE PACKAGE INCIDENT incident_number

For example, the following command creates a package based on incident 3:

IPS CREATE PACKAGE INCIDENT 3

ADRCI generates output similar to the following:

Created package 10 based on incident id 3, correlation level typical

The package number assigned to this logical package is 10.

The following are variations on the IPS CREATE PACKAGE command:

IPS CREATE PACKAGE

This creates an empty package. You must use the IPS ADD INCIDENT or IPS ADD FILE
commands to add diagnostic data to the package before generating it.

IPS CREATE PACKAGE PROBLEM problem_ID

This creates a package and includes diagnostic information for incidents that reference
the specified problem ID. (Problem IDs are integers.) You can obtain the problem ID
for an incident from the report displayed by the SHOW INCIDENT -MODE BRIEF command.
Because there can be many incidents with the same problem ID, ADRCI adds to the
package the diagnostic information for the first three incidents (early incidents) that
occurred and last three incidents (late incidents) that occurred with this problem ID,
excluding any incidents that are older than 90 days.

ADRCI may also add other incidents that correlate closely in time or in other criteria
with the already added incidents.

IPS CREATE PACKAGE PROBLEMKEY "problem_key"

This creates a package and includes diagnostic information for incidents that reference
the specified problem key. You can obtain problem keys from the report displayed by
the SHOW INCIDENT command. Because there can be many incidents with the same
problem key, ADRCI adds to the package only the diagnostic information for the first
three early incidents and last three late incidents with this problem key, excluding
incidents that are older than 90 days.

Note: The number of early and late incidents, and the 90-day age
limit are defaults that can be changed. See "IPS SET
CONFIGURATION" on page 16-29.

Packaging Incidents

ADRCI: ADR Command Interpreter 16-13

ADRCI may also add other incidents that correlate closely in time or in other criteria
with the already added incidents.

The problem key must be enclosed in single quotation marks (') or double quotation
marks (") if it contains spaces or quotation marks.

IPS CREATE PACKAGE SECONDS sec

This creates a package and includes diagnostic information for all incidents that
occurred from sec seconds ago until now. sec must be an integer.

IPS CREATE PACKAGE TIME 'start_time' TO 'end_time'

This creates a package and includes diagnostic information for all incidents that
occurred within the specified time range. start_time and end_time must be in the
format 'YYYY-MM-DD HH24:MI:SS.FF TZR'. This is a valid format string for the NLS_
TIMESTAMP_TZ_FORMAT initialization parameter. The fraction (FF) portion of the time is
optional, and the HH24:MI:SS delimiters can be colons or periods.

For example, the following command creates a package with incidents that occurred
between July 24th and July 30th of 2010:

IPS CREATE PACKAGE TIME '2010-07-24 00:00:00 -07:00' to '2010-07-30 23.59.59
-07:00'

Adding Diagnostic Information to a Logical Incident Package
You can add the following diagnostic information to an existing logical package
(package):

■ All diagnostic information for a particular incident

■ A named file within the ADR

To add an incident to an existing package:

1. Start ADRCI in interactive mode, and ensure that the homepath points to the
correct directory within the ADR base directory hierarchy.

See "Starting ADRCI and Getting Help" on page 16-4 and "Homepath" on
page 16-4 for details.

2. At the ADRCI prompt, enter the following command:

IPS ADD INCIDENT incident_number PACKAGE package_number

To add a file in the ADR to an existing package:

■ At the ADRCI prompt, enter the following command:

IPS ADD FILE filespec PACKAGE package_number

filespec must be a fully qualified file name (with path). Only files that are within
the ADR base directory hierarchy may be added.

Note: The number of early and late incidents, and the 90-day age
limit are defaults that can be changed. See "IPS SET
CONFIGURATION" on page 16-29.

See Also: "IPS CREATE PACKAGE" on page 16-22

ADRCI Command Reference

16-14 Oracle Database Utilities

Generating a Physical Incident Package
When you generate a package, you create a physical package (a zip file) for an existing
logical package.

To generate a physical incident package:

1. Start ADRCI in interactive mode, and ensure that the homepath points to the
correct directory within the ADR base directory hierarchy.

See "Starting ADRCI and Getting Help" on page 16-4 and "Homepath" on
page 16-4 for details.

2. At the ADRCI prompt, enter the following command:

IPS GENERATE PACKAGE package_number IN path

This generates a complete physical package (zip file) in the designated path. For
example, the following command creates a complete physical package in the
directory /home/steve/diagnostics from logical package number 2:

IPS GENERATE PACKAGE 2 IN /home/steve/diagnostics

You can also generate an incremental package containing only the incidents that have
occurred since the last package generation.

To generate an incremental physical incident package:

■ At the ADRCI prompt, enter the following command:

IPS GENERATE PACKAGE package_number IN path INCREMENTAL

ADRCI Command Reference
There are four command types in ADRCI:

■ Commands that work with one or more current ADR homes

■ Commands that work with only one current ADR home, and that issue an error
message if there is more than one current ADR home

■ Commands that prompt you to select an ADR home when there are multiple
current ADR homes

■ Commands that do not need a current ADR home

All ADRCI commands support the case where there is a single current ADR home.

Table 16–2 lists the set of ADRCI commands.

See Also: "ADRCI Command Reference" on page 16-14

See Also:

■ "ADRCI Command Reference" on page 16-14

■ "About Packaging Incidents" on page 16-10

Table 16–2 List of ADRCI commands

Command Description

CREATE REPORT Creates a report for the specified report type and ID.

ECHO Echoes the input string.

EXIT Exits the current ADRCI session.

ADRCI Command Reference

ADRCI: ADR Command Interpreter 16-15

CREATE REPORT

Purpose
Creates a report for the specified report type and run ID and stores the report in the
ADR. Currently, only the hm_run (Health Monitor) report type is supported.

HOST Executes operating system commands from ADRCI.

IPS Invokes the IPS utility. See Table 16–3 for the IPS commands
available within ADRCI.

PURGE Purges diagnostic data in the current ADR home, according to
current purging policies.

QUIT Exits the current ADRCI session.

RUN Runs an ADRCI script.

SELECT Retrieves qualified records from the specified incident or problem.

SET BASE Sets the ADR base for the current ADRCI session.

SET BROWSER Reserved for future use.

SET CONTROL Set purging policies for ADR contents.

SET ECHO Toggles command output.

SET EDITOR Sets the default editor for displaying trace and alert log contents.

SET HOMEPATH Makes current one or more ADR homes.

SET TERMOUT Toggles terminal output.

SHOW ALERT Shows alert log messages.

SHOW BASE Shows the current ADR base.

SHOW CONTROL Shows ADR information, including the current purging policy.

SHOW HM_RUN Shows Health Monitor run information.

SHOW HOMEPATH Shows the current homepath.

SHOW HOMES Lists the current ADR homes.

SHOW INCDIR Lists the trace files created for the specified incidents.

SHOW INCIDENT Outputs a list of incidents.

SHOW PROBLEM Outputs a list of problems.

SHOW REPORT Shows a report for the specified report type and ID.

SHOW TRACEFILE Lists qualified trace file names.

SPOOL Directs output to a file.

Note: Unless otherwise specified, all commands work with multiple
current ADR homes.

Table 16–2 (Cont.) List of ADRCI commands

Command Description

ADRCI Command Reference

16-16 Oracle Database Utilities

Syntax and Description
create report report_type run_name

report_type must be hm_run. run_name is a Health Monitor run name. Obtain run
names with the SHOW HM_RUN command.

If the report already exists it is overwritten. Use the SHOW REPORT command to
view the report.

This command does not support multiple ADR homes.

Example
This example creates a report for the Health Monitor run with run name hm_run_1421:

create report hm_run hm_run_1421

ECHO

Purpose
Prints the input string. You can use this command to print custom text from ADRCI
scripts.

Syntax and Description
echo quoted_string

The string must be enclosed in single or double quotation marks.

This command does not require an ADR home to be set before you can use it.

Example
These examples print the string "Hello, world!":

echo "Hello, world!"

echo 'Hello, world!'

EXIT

Purpose
Exits the ADRCI utility.

Syntax and Description
exit

EXIT is a synonym for the QUIT command.

Note: Results of Health Monitor runs are stored in the ADR in an
internal format. To view these results, you must create a Health
Monitor report from them and then view the report. You need create
the report only once. You can then view it multiple times.

Note: CREATE REPORT does not work when multiple ADR homes are
set. For information about setting a single ADR home, see "Setting the
ADRCI Homepath Before Using ADRCI Commands" on page 16-6.

ADRCI Command Reference

ADRCI: ADR Command Interpreter 16-17

This command does not require an ADR home to be set before you can use it.

HOST

Purpose
Execute operating system commands without leaving ADRCI.

Syntax and Description
host ["host_command_string"]

Use host by itself to enter an operating system shell, which allows you to enter
multiple operating system commands. Enter EXIT to leave the shell and return to
ADRCI.

You can also specify the command on the same line (host_command_string) enclosed
in double quotation marks.

This command does not require an ADR home to be set before you can use it.

Examples
host

host "ls -l *.pl"

IPS

Purpose
Invokes the Incident Packaging Service (IPS). The IPS command provides options for
creating logical incident packages (packages), adding diagnostic data to packages, and
generating physical packages for transmission to Oracle Support.

The IPS command set contains the following commands:

See Also: "Packaging Incidents" on page 16-10 for more information
about packaging

Table 16–3 IPS Command Set

Command Description

IPS ADD Adds an incident, problem, or problem key to a package.

IPS ADD FILE Adds a file to a package.

IPS ADD NEW INCIDENTS Finds and adds new incidents for the problems in the specified
package.

IPS COPY IN FILE Copies files into the ADR from the external file system.

IPS COPY OUT FILE Copies files out of the ADR to the external file system.

IPS CREATE PACKAGE Creates a new (logical) package.

IPS DELETE PACKAGE Deletes a package and its contents from the ADR.

IPS FINALIZE Finalizes a package before uploading.

IPS GENERATE PACKAGE Generates a zip file of the specified package contents in the
target directory.

IPS GET MANIFEST Retrieves and displays the manifest from a package zip file.

ADRCI Command Reference

16-18 Oracle Database Utilities

Using the <ADR_HOME> and <ADR_BASE> Variables in IPS Commands
The IPS command set provides shortcuts for referencing the current ADR home and
ADR base directories. To access the current ADR home directory, use the <ADR_HOME>
variable as follows:

ips add file <ADR_HOME>/trace/orcl_ora_13579.trc package 12

Use the <ADR_BASE> variable to access the ADR base directory as follows:

ips add file <ADR_BASE>/diag/rdbms/orcl/orcl/trace/orcl_ora_13579.trc package 12

IPS ADD

Purpose
Adds incidents to a package.

Syntax and Description
ips add {incident first [n] | incident inc_id | incident last [n] |
 problem first [n] | problem prob_id | problem last [n] |
 problemkey pr_key | seconds secs | time start_time to end_time}
 package package_id

Table 16–4 describes the arguments of IPS ADD.

IPS GET METADATA Extracts metadata from a package zip file and displays it.

IPS PACK Creates a physical package (zip file) directly from incidents,
problems, or problem keys.

IPS REMOVE Removes incidents from an existing package.

IPS REMOVE FILE Remove a file from an existing package.

IPS SET CONFIGURATION Changes the value of an IPS configuration parameter.

IPS SHOW
CONFIGURATION

Displays the values of IPS configuration parameters.

IPS SHOW FILES Lists the files in a package.

IPS SHOW INCIDENTS Lists the incidents in a package.

IPS SHOW PACKAGE Displays information about the specified package.

IPS UNPACK FILE Unpackages a package zip file into a specified path.

Note: IPS commands do not work when multiple ADR homes are
set. For information about setting a single ADR home, see "Setting the
ADRCI Homepath Before Using ADRCI Commands" on page 16-6.

Note: Type the angle brackets (< >) as shown.

Table 16–3 (Cont.) IPS Command Set

Command Description

ADRCI Command Reference

ADRCI: ADR Command Interpreter 16-19

Example
This example adds incident 22 to package 12:

ips add incident 22 package 12

This example adds the first three early incidents and the last three late incidents with
problem ID 6 to package 2, exuding any incidents older than 90 days:

ips add problem 6 package 2

This example adds all incidents taking place during the last minute to package 5:

ips add seconds 60 package 5

Table 16–4 Arguments of IPS ADD command

Argument Description

incident first [n] Adds the first n incidents to the package, where n is a positive
integer. For example, if n is set to 5, then the first five incidents are
added. If n is omitted, then the default is 1, and the first incident is
added.

incident inc_id Adds an incident with ID inc_id to the package.

incident last [n] Adds the last n incidents to the package, where n is a positive
integer. For example, if n is set to 5, then the last five incidents are
added. If n is omitted, then the default is 1, and the last incident is
added.

problem first [n] Adds the incidents for the first n problems to the package, where n is
a positive integer. For example, if n is set to 5, then the incidents for
the first five problems are added. If n is omitted, then the default is
1, and the incidents for the first problem is added.

Adds only the first three early incidents and last three late incidents
for each problem, excluding any older than 90 days. (Note: These
limits are defaults and can be changed. See "IPS SET
CONFIGURATION" on page 16-29.)

problem prob_id Adds all incidents with problem ID prob_id to the package. Adds
only the first three early incidents and last three late incidents for
the problem, excluding any older than 90 days. (Note: These limits
are defaults and can be changed. See "IPS SET CONFIGURATION"
on page 16-29.)

problem last [n] Adds the incidents for the last n problems to the package, where n is
a positive integer. For example, if n is set to 5, then the incidents for
the last five problems are added. If n is omitted, then the default is 1,
and the incidents for the last problem is added.

Adds only the first three early incidents and last three late incidents
for each problem, excluding any older than 90 days. (Note: These
limits are defaults and can be changed. See "IPS SET
CONFIGURATION" on page 16-29.)

problemkey pr_key Adds incidents with problem key pr_key to the package. Adds only
the first three early incidents and last three late incidents for the
problem key, excluding any older than 90 days. (Note: These limits
are defaults and can be changed.)

seconds secs Adds all incidents that have occurred within secs seconds of the
present time.

time start_time to end_time Adds all incidents between start_time and end_time to the
package. Time format is 'YYYY-MM-YY HH24:MI:SS.FF TZR'.
Fractional part (FF) is optional.

package package_id Specifies the package to which to add incidents.

ADRCI Command Reference

16-20 Oracle Database Utilities

This example adds all incidents taking place between 10:00 a.m. and 11:00 p.m. on May
1, 2010:

ips add time '2010-05-01 10:00:00.00 -07:00' to '2010-05-01 23:00:00.00 -07:00'

IPS ADD FILE

Purpose
Adds a file to an existing package.

Syntax and Description
ips add file file_name package package_id

file_name is the full path name of the file. You can use the <ADR_HOME> and <ADR_
BASE> variables if desired. The file must be under the same ADR base as the package.

package_id is the package ID.

Example
This example adds a trace file to package 12:

ips add file <ADR_HOME>/trace/orcl_ora_13579.trc package 12

IPS ADD NEW INCIDENTS

Purpose
Find and add new incidents for all of the problems in the specified package.

Syntax and Description
ips add new incidents package package_id

package_id is the ID of the package to update. Only new incidents of the problems in
the package are added.

Example
This example adds up to three of the new late incidents for the problems in package
12:

ips add new incidents package 12

IPS COPY IN FILE

Purpose
Copies a file into the ADR from the external file system.

See Also: See "Using the <ADR_HOME> and <ADR_BASE>
Variables in IPS Commands" on page 16-18 for information about the
<ADR_HOME> directory syntax

Note: The number of late incidents added is a default that can be
changed. See "IPS SET CONFIGURATION" on page 16-29.

ADRCI Command Reference

ADRCI: ADR Command Interpreter 16-21

To edit a file in a package, you must copy the file out to a designated directory, edit the
file, and copy it back into the package. You may want to do this to delete sensitive data
in the file before sending the package to Oracle Support.

Syntax and Description
ips copy in file filename [to new_name][overwrite] package package_id
 [incident incid]

Copies an external file, filename (specified with full path name) into the ADR,
associating it with an existing package, package_id, and optionally an incident, incid.
Use the to new_name option to give the copied file a new file name within the ADR.
Use the overwrite option to overwrite a file that exists already.

Example
This example copies a trace file from the file system into the ADR, associating it with
package 2 and incident 4:

ips copy in file /home/nick/trace/orcl_ora_13579.trc to <ADR_HOME>/trace/orcl_ora_
13579.trc package 2 incident 4

IPS COPY OUT FILE

Purpose
Copies a file from the ADR to the external file system.

To edit a file in a package, you must copy the file out to a designated directory, edit the
file, and copy it back into the package. You may want to do this to delete sensitive data
in the file before sending the package to Oracle Support.

Syntax and Description
ips copy out file source to target [overwrite]

Copies a file, source, to a location outside the ADR, target (specified with full path
name). Use the overwrite option to overwrite the file that exists already.

Example
This example copies the file orcl_ora_13579.trc, in the trace subdirectory of the current
ADR home, to a local folder.

ips copy out file <ADR_HOME>/trace/orcl_ora_13579.trc to /home/nick/trace/orcl_
ora_13579.trc

See Also:

■ "Using the <ADR_HOME> and <ADR_BASE> Variables in IPS
Commands" on page 16-18 for information about the <ADR_HOME>
variable

■ "IPS SHOW FILES" on page 16-32 for information about listing
files in a package

ADRCI Command Reference

16-22 Oracle Database Utilities

IPS CREATE PACKAGE

Purpose
Creates a new package. ADRCI automatically assigns the package number for the new
package.

Syntax and Description
ips create package {incident first [n] | incident inc_id |
 incident last [n] | problem first [n] | problem prob_id |
 problem last [n] | problemkey prob_key | seconds secs |
 time start_time to end_time} [correlate {basic |typical | all}]

Optionally, you can add incidents to the new package using the provided options.

Table 16–5 describes the arguments for IPS CREATE PACKAGE.

See Also:

■ "Using the <ADR_HOME> and <ADR_BASE> Variables in IPS
Commands" on page 16-18 for information about the <ADR_HOME>
directory syntax

■ "IPS SHOW FILES" on page 16-32 for information about listing
files in a package

Table 16–5 Arguments of IPS CREATE PACKAGE command

Argument Description

incident first [n] Adds the first n incidents to the package, where n is a positive
integer. For example, if n is set to 5, then the first five incidents are
added. If n is omitted, then the default is 1, and the first incident is
added.

incident inc_id Adds an incident with ID inc_id to the package.

incident last [n] Adds the last n incidents to the package, where n is a positive
integer. For example, if n is set to 5, then the last five incidents are
added. If n is omitted, then the default is 1, and the last incident is
added.

problem first [n] Adds the incidents for the first n problems to the package, where n is
a positive integer. For example, if n is set to 5, then the incidents for
the first five problems are added. If n is omitted, then the default is
1, and the incidents for the first problem is added.

Adds only the first three early incidents and last three late incidents
for each problem, excluding any older than 90 days. (Note: These
limits are defaults and can be changed. See "IPS SET
CONFIGURATION" on page 16-29.)

problem prob_id Adds all incidents with problem ID prob_id to the package. Adds
only the first three early incidents and last three late incidents for
the problem, excluding any older than 90 days. (Note: These limits
are defaults and can be changed. See "IPS SET CONFIGURATION"
on page 16-29.)

ADRCI Command Reference

ADRCI: ADR Command Interpreter 16-23

Examples
This example creates a package with no incidents:

ips create package

Output:

Created package 5 without any contents, correlation level typical

This example creates a package containing all incidents between 10 AM and 11 PM on
the given day:

ips create package time '2010-05-01 10:00:00.00 -07:00' to '2010-05-01 23:00:00.00
-07:00'
Output:

Created package 6 based on time range 2010-05-01 10:00:00.00 -07:00 to 2010-05-01
23:00:00.00 -07:00, correlation level typical

This example creates a package and adds the first three early incidents and the last
three late incidents with problem ID 3, excluding incidents that are older than 90 days:

ips create package problem 3

Output:

problem last [n] Adds the incidents for the last n problems to the package, where n is
a positive integer. For example, if n is set to 5, then the incidents for
the last five problems are added. If n is omitted, then the default is 1,
and the incidents for the last problem is added.

Adds only the first three early incidents and last three late incidents
for each problem, excluding any older than 90 days. (Note: These
limits are defaults and can be changed. See "IPS SET
CONFIGURATION" on page 16-29.)

problemkey pr_key Adds all incidents with problem key pr_key to the package. Adds
only the first three early incidents and last three late incidents for
the problem key, excluding any older than 90 days. (Note: These
limits are defaults and can be changed.)

seconds secs Adds all incidents that have occurred within secs seconds of the
present time.

time start_time to end_time Adds all incidents taking place between start_time and end_time
to the package. Time format is 'YYYY-MM-YY HH24:MI:SS.FF TZR'.
Fractional part (FF) is optional.

correlate {basic |typical | all} Selects a method of including correlated incidents in the package.
There are three options for this argument:

■ correlate basic includes incident dumps and incident process
trace files.

■ correlate typical includes incident dumps and any trace files
that were modified within five minutes of each incident. You
can alter the time interval by modifying the INCIDENT_TIME_
WINDOW configuration parameter.

■ correlate all includes the incident dumps, and all trace files
that were modified between the time of the first selected
incident and the last selected incident.

The default value is correlate typical.

Table 16–5 (Cont.) Arguments of IPS CREATE PACKAGE command

Argument Description

ADRCI Command Reference

16-24 Oracle Database Utilities

Created package 7 based on problem id 3, correlation level typical

IPS DELETE PACKAGE

Purpose
Drops a package and its contents from the ADR.

Syntax and Description
ips delete package package_id

package_id is the package to delete.

Example
ips delete package 12

IPS FINALIZE

Purpose
Finalizes a package before uploading.

Syntax and Description
ips finalize package package_id

package_id is the package ID to finalize.

Example
ips finalize package 12

IPS GENERATE PACKAGE

Purpose
Creates a physical package (a zip file) in target directory.

Syntax and Description
ips generate package package_id [in path] [complete | incremental]

package_id is the ID of the package to generate. Optionally, you can save the file in the
directory path. Otherwise, the package is generated in the current working directory.

The complete option means the package forces ADRCI to include all package files.
This is the default behavior.

Note: The number of early and late incidents added, and the 90-day
age limit are defaults that can be changed. See "IPS SET
CONFIGURATION" on page 16-29.

See Also: "Creating Incident Packages"

See Also: Oracle Database Administrator's Guide for more information
about finalizing packages

ADRCI Command Reference

ADRCI: ADR Command Interpreter 16-25

The incremental option includes only files that have been added or changed since the
last time that this package was generated. With the incremental option, the command
finishes more quickly.

Example
This example generates a physical package file in path /home/steve:

ips generate package 12 in /home/steve

This example generates a physical package from files added or changed since the last
generation:

ips generate package 14 incremental

IPS GET MANIFEST

Purpose
Extracts the manifest from a package zip file and displays it.

Syntax and Description
ips get manifest from file filename

filename is a package zip file. The manifest is an XML-formatted set of metadata for
the package file, including information about ADR configuration, correlated files,
incidents, and how the package was generated.

This command does not require an ADR home to be set before you can use it.

Example
ips get manifest from file /home/steve/ORA603_20060906165316_COM_1.zip

IPS GET METADATA

Purpose
Extracts ADR-related metadata from a package file and displays it.

Syntax and Description
ips get metadata {from file filename | from adr}

filename is a package zip file. The metadata in a package file (stored in the file
metadata.xml) contains information about the ADR home, ADR base, and product.

Use the from adr option to get the metadata from a package zip file that has been
unpacked into an ADR home using IPS UNPACK.

The from adr option requires an ADR home to be set.

Example
This example displays metadata from a package file:

ips get metadata from file /home/steve/ORA603_20060906165316_COM_1.zip

This next example displays metadata from a package file that was unpacked into the
directory /scratch/oracle/package1:

See Also: "Generating a Physical Incident Package" on page 16-14

ADRCI Command Reference

16-26 Oracle Database Utilities

set base /scratch/oracle/package1
ips get metadata from adr

In this previous example, upon receiving the SET BASE command, ADRCI
automatically adds to the homepath the ADR home that was created in
/scratch/oracle/package1 by the IPS UNPACK FILE command.

IPS PACK

Purpose
Creates a package and generates the physical package immediately.

Syntax and Description
ips pack [incident first [n] | incident inc_id | incident last [n] |
 problem first [n] | problem prob_id | problem last [n] |
 problemkey prob_key | seconds secs | time start_time to end_time]
 [correlate {basic |typical | all}] [in path]

ADRCI automatically generates the package number for the new package. IPS PACK
creates an empty package if no package contents are specified.

Table 16–6 describes the arguments for IPS PACK.

See Also: "IPS UNPACK FILE" for more information about
unpacking package files

Table 16–6 Arguments of IPS PACK command

Argument Description

incident first [n] Adds the first n incidents to the package, where n is a positive
integer. For example, if n is set to 5, then the first five incidents are
added. If n is omitted, then the default is 1, and the first incident is
added.

incident inc_id Adds an incident with ID inc_id to the package.

incident last [n] Adds the last n incidents to the package, where n is a positive
integer. For example, if n is set to 5, then the last five incidents are
added. If n is omitted, then the default is 1, and the last incident is
added.

problem first [n] Adds the incidents for the first n problems to the package, where n is
a positive integer. For example, if n is set to 5, then the incidents for
the first five problems are added. If n is omitted, then the default is
1, and the incidents for the first problem is added.

Adds only the first three early incidents and last three late incidents
for each problem, excluding any older than 90 days. (Note: These
limits are defaults and can be changed. See "IPS SET
CONFIGURATION" on page 16-29.)

problem prob_id Adds all incidents with problem ID prob_id to the package. Adds
only the first three early incidents and last three late incidents for
the problem, excluding any older than 90 days. (Note: These limits
are defaults and can be changed. See "IPS SET CONFIGURATION"
on page 16-29.)

ADRCI Command Reference

ADRCI: ADR Command Interpreter 16-27

Example
This example creates an empty package:

ips pack

This example creates a physical package containing all information for incident 861:

ips pack incident 861

This example creates a physical package for all incidents in the last minute, fully
correlated:

ips pack seconds 60 correlate all

IPS REMOVE

Purpose
Removes incidents from an existing package.

problem last [n] Adds the incidents for the last n problems to the package, where n is
a positive integer. For example, if n is set to 5, then the incidents for
the last five problems are added. If n is omitted, then the default is 1,
and the incidents for the last problem is added.

Adds only the first three early incidents and last three late incidents
for each problem, excluding any older than 90 days. (Note: These
limits are defaults and can be changed. See "IPS SET
CONFIGURATION" on page 16-29.)

problemkey pr_key Adds incidents with problem key pr_key to the package. Adds only
the first three early incidents and last three late incidents for the
problem key, excluding any older than 90 days. (Note: These limits
are defaults and can be changed.)

seconds secs Adds all incidents that have occurred within secs seconds of the
present time.

time start_time to end_time Adds all incidents taking place between start_time and end_time
to the package. Time format is 'YYYY-MM-YY HH24:MI:SS.FF TZR'.
Fractional part (FF) is optional.

correlate {basic |typical | all} Selects a method of including correlated incidents in the package.
There are three options for this argument:

■ correlate basic includes incident dumps and incident process
trace files.

■ correlate typical includes incident dumps and any trace files
that were modified within five minutes of each incident. You
can alter the time interval by modifying the INCIDENT_TIME_
WINDOW configuration parameter.

■ correlate all includes the incident dumps, and all trace files
that were modified between the time of the first selected
incident and the last selected incident.

The default value is correlate typical.

in path Saves the physical package to directory path.

See Also: "IPS SET CONFIGURATION" for more information about
setting configuration parameters.

Table 16–6 (Cont.) Arguments of IPS PACK command

Argument Description

ADRCI Command Reference

16-28 Oracle Database Utilities

Syntax and Description
ips remove {incident inc_id | problem prob_id | problemkey prob_key}
 package package_id

After removing incidents from a package, the incidents continue to be tracked within
the package metadata to prevent ADRCI from automatically including them later
(such as with ADD NEW INCIDENTS).

Table 16–7 describes the arguments of IPS REMOVE.

Example
This example removes incident 22 from package 12:

ips remove incident 22 package 12

IPS REMOVE FILE

Purpose
Removes a file from an existing package.

Syntax and Description
ips remove file file_name package package_id

file_name is the file to remove from package package_id. The complete path of the file
must be specified. (You can use the <ADR_HOME> and <ADR_BASE> variables if desired.)

After removal, the file continues to be tracked within the package metadata to prevent
ADRCI from automatically including it later (such as with ADD NEW INCIDENTS).
Removing a file, therefore, only sets the EXCLUDE flag for the file to Explicitly
excluded.

Example
This example removes a trace file from package 12:

ips remove file <ADR_HOME>/trace/orcl_ora_13579.trc package 12
Removed file <ADR_HOME>/trace/orcl_ora_13579.trc from package 12
ips show files package 12

.

.

.
FILE_ID 4
FILE_LOCATION <ADR_HOME>/trace
FILE_NAME orcl_ora_13579.trc
LAST_SEQUENCE 0

Table 16–7 Arguments of IPS REMOVE command

Argument Description

incident inc_id Removes the incident with ID inc_id from the package

problem prob_id Removes all incidents with problem ID prob_id from the package

problemkey pr_key Removes all incidents with problem key pr_key from the package

package package_id Removes incidents from the package with ID package_id.

See Also: "IPS GET MANIFEST" on page 16-25 for information
about package metadata

ADRCI Command Reference

ADRCI: ADR Command Interpreter 16-29

EXCLUDE Explicitly excluded
.
.
.

IPS SET CONFIGURATION

Purpose
Changes the value of an IPS configuration parameter.

Syntax and Description
ips set configuration {parameter_id | parameter_name} value

parameter_id is the ID of the parameter to change, and parameter_name is the name of
the parameter to change. value is the new value. For a list of the configuration
parameters and their IDs, use "IPS SHOW CONFIGURATION".

Example
ips set configuration 3 10

IPS SHOW CONFIGURATION

Purpose
Displays a list of IPS configuration parameters and their values. These parameters
control various thresholds for IPS data, such as timeouts and incident inclusion
intervals.

Syntax and Description
ips show configuration {parameter_id | parameter_name}]

IPS SHOW CONFIGURATION lists the following information for each configuration
parameter:

■ Parameter ID

■ Name

■ Description

■ Unit used by parameter (such as days or hours)

■ Value

■ Default value

■ Minimum Value

■ Maximum Value

See Also:

■ "IPS GET MANIFEST" on page 16-25 for information about
package metadata

■ "Using the <ADR_HOME> and <ADR_BASE> Variables in IPS
Commands" on page 16-18 for information about the <ADR_BASE>
directory syntax

■ "IPS SHOW FILES" on page 16-32

ADRCI Command Reference

16-30 Oracle Database Utilities

■ Flags

Optionally, you can get information about a specific parameter by supplying a
parameter_id or a parameter_name.

Example
This command describes all IPS configuration parameters:

ips show configuration

Output:

PARAMETER INFORMATION:
 PARAMETER_ID 1
 NAME CUTOFF_TIME
 DESCRIPTION Maximum age for an incident to be considered for
 inclusion
 UNIT Days
 VALUE 90
 DEFAULT_VALUE 90
 MINIMUM 1
 MAXIMUM 4294967295
 FLAGS 0

PARAMETER INFORMATION:
 PARAMETER_ID 2
 NAME NUM_EARLY_INCIDENTS
 DESCRIPTION How many incidents to get in the early part of the range
 UNIT Number
 VALUE 3
 DEFAULT_VALUE 3
 MINIMUM 1
 MAXIMUM 4294967295
 FLAGS 0

PARAMETER INFORMATION:
 PARAMETER_ID 3
 NAME NUM_LATE_INCIDENTS
 DESCRIPTION How many incidents to get in the late part of the range
 UNIT Number
 VALUE 3
 DEFAULT_VALUE 3
 MINIMUM 1
 MAXIMUM 4294967295
 FLAGS 0

PARAMETER INFORMATION:
 PARAMETER_ID 4
 NAME INCIDENT_TIME_WINDOW
 DESCRIPTION Incidents this close to each other are considered
 correlated
 UNIT Minutes
 VALUE 5
 DEFAULT_VALUE 5
 MINIMUM 1
 MAXIMUM 4294967295
 FLAGS 0

PARAMETER INFORMATION:
 PARAMETER_ID 5
 NAME PACKAGE_TIME_WINDOW

ADRCI Command Reference

ADRCI: ADR Command Interpreter 16-31

 DESCRIPTION Time window for content inclusion is from x hours
 before first included incident to x hours after last
 incident
 UNIT Hours
 VALUE 24
 DEFAULT_VALUE 24
 MINIMUM 1
 MAXIMUM 4294967295
 FLAGS 0

PARAMETER INFORMATION:
 PARAMETER_ID 6
 NAME DEFAULT_CORRELATION_LEVEL
 DESCRIPTION Default correlation level for packages
 UNIT Number
 VALUE 2
 DEFAULT_VALUE 2
 MINIMUM 1
 MAXIMUM 4
 FLAGS 0

Examples
This command describes configuration parameter NUM_EARLY_INCIDENTS:

ips show configuration num_early_incidents

This command describes configuration parameter 3:

ips show configuration 3

Configuration Parameter Descriptions
Table 16–8 describes the IPS configuration parameters in detail.

Table 16–8 IPS Configuration Parameters

Parameter ID Description

CUTOFF_TIME 1 Maximum age, in days, for an incident to be considered for
inclusion.

NUM_EARLY_INCIDENTS 2 Number of incidents to include in the early part of the range
when creating a package based on a problem. By default, ADRCI
adds the three earliest incidents and three most recent incidents
to the package.

NUM_LATE_INCIDENTS 3 Number of incidents to include in the late part of the range
when creating a package based on a problem. By default, ADRCI
adds the three earliest incidents and three most recent incidents
to the package.

ADRCI Command Reference

16-32 Oracle Database Utilities

IPS SHOW FILES

Purpose
Lists files included in the specified package.

Syntax and Description
ips show files package package_id

package_id is the package ID to display.

Example
This example shows all files associated with package 1:

ips show files package 1

Output:

 FILE_ID 1
 FILE_LOCATION <ADR_HOME>/alert
 FILE_NAME log.xml
 LAST_SEQUENCE 1
 EXCLUDE Included

 FILE_ID 2
 FILE_LOCATION <ADR_HOME>/trace
 FILE_NAME alert_adcdb.log
 LAST_SEQUENCE 1
 EXCLUDE Included

 FILE_ID 27
 FILE_LOCATION <ADR_HOME>/incident/incdir_4937
 FILE_NAME adcdb_ora_692_i4937.trm
 LAST_SEQUENCE 1

INCIDENT_TIME_WINDOW 4 Number of minutes between two incidents in order for them to
be considered correlated.

PACKAGE_TIME_WINDOW 5 Number of hours to use as a time window for including
incidents in a package. For example, a value of 5 includes
incidents five hours before the earliest incident in the package,
and five hours after the most recent incident in the package.

DEFAULT_CORRELATION_LEVEL 6 The default correlation level to use for correlating incidents in a
package. The correlation levels are:

■ 1 (basic): includes incident dumps and incident process
trace files.

■ 2 (typical): includes incident dumps and any trace files that
were modified within the time window specified by
INCIDENT_TIME_WINDOW (see above).

■ 4 (all): includes the incident dumps, and all trace files that
were modified between the first selected incident and the
last selected incident. Additional incidents can be included
automatically if they occurred in the same time range.

See Also: "IPS SET CONFIGURATION" on page 16-29

Table 16–8 (Cont.) IPS Configuration Parameters

Parameter ID Description

ADRCI Command Reference

ADRCI: ADR Command Interpreter 16-33

 EXCLUDE Included

 FILE_ID 28
 FILE_LOCATION <ADR_HOME>/incident/incdir_4937
 FILE_NAME adcdb_ora_692_i4937.trc
 LAST_SEQUENCE 1
 EXCLUDE Included

 FILE_ID 29
 FILE_LOCATION <ADR_HOME>/trace
 FILE_NAME adcdb_ora_692.trc
 LAST_SEQUENCE 1
 EXCLUDE Included

 FILE_ID 30
 FILE_LOCATION <ADR_HOME>/trace
 FILE_NAME adcdb_ora_692.trm
 LAST_SEQUENCE 1
 EXCLUDE Included
.
.
.

IPS SHOW INCIDENTS

Purpose
Lists incidents included in the specified package.

Syntax and Description
ips show incidents package package_id

package_id is the package ID to display.

Example
This example lists the incidents in package 1:

ips show incidents package 1

Output:

MAIN INCIDENTS FOR PACKAGE 1:
 INCIDENT_ID 4985
 PROBLEM_ID 1
 EXCLUDE Included

CORRELATED INCIDENTS FOR PACKAGE 1:

IPS SHOW PACKAGE

Purpose
Displays information about the specified package.

Syntax and Description
ips show package package_id {basic | brief | detail}

package_id is the ID of the package to display.

ADRCI Command Reference

16-34 Oracle Database Utilities

Use the basic option to display a minimal amount of information. It is the default
when no package_id is specified.

Use the brief option to display more information about the package than the basic
option. It is the default when a package_id is specified.

Use the detail option to show the information displayed by the brief option, as well
as some package history and information about the included incidents and files.

Example
ips show package 12
ips show package 12 brief

IPS UNPACK FILE

Purpose
Unpackages a physical package file into the specified path.

Syntax and Description
ips unpack file file_name [into path]

file_name is the full path name of the physical package (zip file) to unpack.
Optionally, you can unpack the file into directory path, which must exist and be
writable. If you omit the path, the current working directory is used. The destination
directory is treated as an ADR base, and the entire ADR base directory hierarchy is
created, including a valid ADR home.

This command does not require an ADR home to be set before you can use it.

Example
ips unpack file /tmp/ORA603_20060906165316_COM_1.zip into /tmp/newadr

PURGE

Purpose
Purges diagnostic data in the current ADR home, according to current purging
policies. Only ADR contents that are due to be purged are purged.

Diagnostic data in the ADR has a default lifecycle. For example, information about
incidents and problems is subject to purging after one year, whereas the associated
dump files (dumps) are subject to purging after only 30 days.

Some Oracle products, such as Oracle Database, automatically purge diagnostic data
at the end of its life cycle. Other products and components require you to purge
diagnostic data manually with this command. You can also use this command to purge
data that is due to be automatically purged.

The SHOW CONTROL command displays the default purging policies for short-lived
ADR contents and long-lived ADR contents.

Syntax and Description
purge [-i {id | start_id end_id} |
 -age mins [-type {ALERT|INCIDENT|TRACE|CDUMP|HM}]]

Table 16–9 describes the flags for PURGE.

ADRCI Command Reference

ADRCI: ADR Command Interpreter 16-35

Examples
This example purges all diagnostic data in the current ADR home based on the default
purging policies:

purge

This example purges all diagnostic data for all incidents between 123 and 456:

purge -i 123 456

This example purges all incident data from the last hour:

purge -age 60 -type incident

QUIT
See "EXIT".

RUN

Purpose
Runs an ADRCI script.

Syntax and Description
run script_name

@ script_name

@@ script_name

script_name is the file containing the ADRCI commands to execute. ADRCI looks for
the script in the current directory unless a full path name is supplied. If the file name is
given without a file extension, ADRCI uses the default extension .adi.

The run and @ commands are synonyms. The @@ command is similar to run and @
except that when used inside a script, @@ uses the path of the calling script to locate
script_name, rather than the current directory.

This command does not require an ADR home to be set before you can use it.

Table 16–9 Flags for the PURGE command

Flag Description

-i {id1 | start_id end_id} Purges either a specific incident ID (id) or a
range of incident IDs (start_id and end_
id)

-age mins Purges only data older than mins minutes.

-type {ALERT|INCIDENT|TRACE|CDUMP|HM} Specifies the type of diagnostic data to
purge (alert log messages, incident data,
trace files (including dumps), core files, or
Health Monitor run data and reports). Used
with the -age clause.

Note: PURGE does not work when multiple ADR homes are set. For
information about setting a single ADR home, see "Setting the ADRCI
Homepath Before Using ADRCI Commands" on page 16-6.

ADRCI Command Reference

16-36 Oracle Database Utilities

Example
run my_script

@my_script

SELECT

Purpose
Retrieves qualified records for the specified incident or problem.

Syntax and Description
select {*|[field1, [field2, ...]} FROM {incident|problem}
 [WHERE predicate_string]
 [ORDER BY field1 [, field2, ...] [ASC|DSC|DESC]]
 [GROUP BY field1 [, field2, ...]]
 [HAVING having_predicate_string]

Examples
The following example retrieves the incident_id and create_time for incidents with
an incident_id greater than 1:

select incident_id, create_time from incident where incident_id > 1

Table 16–10 Flags for the SELECT command

Flag Description

field1, field2, ... Lists the fields to retrieve. If * is specified, then all fields are
retrieved.

incident|problem Indicates whether to query incidents or problems.

WHERE "predicate_string" Uses a SQL-like predicate string to show only the incident or
problem for which the predicate is true. The predicate string
must be enclosed in double quotation marks.

Table 16–16 on page 16-53 lists the fields that can be used in the
predicate string for incidents.

Table 16–18 on page 16-56 lists the fields that can be used in the
predicate string for problems.

ORDER BY field1, field2,
... [ASC|DSC|DESC]

Show results sorted by field in the given order, as well as in
ascending (ASC) and descending order (DSC or DESC). When the
ORDER BY clause is specified, results are shown in ascending
order by default.

GROUP BY field1, field2,
...

Show results grouped by the specified fields.

The GROUP BY flag groups rows but does not guarantee the order
of the result set. To order the groupings, use the ORDER BY flag.

HAVING "having_predicate_
string"

Restrict the groups of returned rows to those groups for which
the having predicate is true. The HAVING flag must be used in
combination with the GROUP BY flag.

Note: The WHERE, ORDER BY, GROUP BY, and HAVING flags are similar to
the clauses with the same names in a SELECT SQL statement. See
Oracle Database SQL Language Reference for more information about the
clauses in a SELECT SQL statement.

ADRCI Command Reference

ADRCI: ADR Command Interpreter 16-37

The following is sample output for this query:

INCIDENT_ID CREATE_TIME
-------------------- --
4801 2011-05-27 10:10:26.541656 -07:00
4802 2011-05-27 10:11:02.456066 -07:00
4803 2011-05-27 10:11:04.759654 -07:00

The following example retrieves the problem_id and first_incident for each
problem with a problem_key that includes 600:

select problem_id, first_incident from problem where problem_key like '%600%'

The following is sample output for this query:

PROBLEM_ID FIRST_INCIDENT
-------------------- --------------------
1 4801
2 4802
3 4803

Functions
This section describes functions that you can use with the SELECT command.

The purpose and syntax of these functions are similar to the corresponding SQL
functions, but there are some differences. This section notes the differences between
the functions used with the ADRCI utility and the SQL functions.

The following restrictions apply to all of the functions:

■ The expressions must be simple expressions. See Oracle Database SQL Language
Reference for information about simple expressions.

■ You cannot combine function calls. For example, the following combination of
function calls is not supported:

sum(length(column_name))

■ No functions are overloaded.

■ All function arguments are mandatory.

■ The functions cannot be used with other ADRCI Utility commands.

Table 16–11 ADRCI Utility Functions for the SELECT Command

Function Description

AVG on page 16-38 Returns the average value of an expression.

CONCAT on page 16-38 Returns the concatenation of two character strings.

COUNT on page 16-38 Returns the number of rows returned by the query.

DECODE on page 16-39 Compares an expression to each search value one by one.

LENGTH on page 16-39 Returns the length of a character string as defined by the input
character set.

MAX on page 16-40 Returns the maximum value of an expression.

MIN on page 16-40 Returns the minimum value of an expression.

ADRCI Command Reference

16-38 Oracle Database Utilities

AVG
Returns the average value of an expression.

Syntax
See Oracle Database SQL Language Reference.

Restrictions
The following restrictions apply when you use the AVG function in the SELECT
command:

■ The expression must be a numeric column or a positive numeric constant.

■ The function does not support the DISTINCT or ALL keywords.

■ The function does not support the OVER clause.

CONCAT
Returns a concatenation of two character strings. The character data can be of the data
types CHAR and VARCHAR2. The return value is the same data type as the character data.

Syntax
See Oracle Database SQL Language Reference.

Restrictions
The following restrictions apply when you use the CONCAT function in the SELECT
command:

■ The function does not support LOB data types, including BLOB, CLOB, NCLOB, and
BFILE data types.

■ The function does not support national character set data types, including NCHAR,
NVARCHAR2, and NCLOB data types.

COUNT
Returns the number of rows returned by the query.

Syntax
See Oracle Database SQL Language Reference.

NVL on page 16-41 Replaces null (returned as a blank) with character data in the
results of a query.

REGEXP_LIKE on
page 16-41

Returns rows that match a specified pattern in a specified
regular expression.

SUBSTR on page 16-41 Returns a portion of character data.

SUM on page 16-42 Returns the sum of values of an expression.

TIMESTAMP_TO_CHAR on
page 16-42

Converts a value of TIMESTAMP data type to a value of VARCHAR2
data type in a specified format.

TOLOWER on page 16-43 Returns character data, with all letters lowercase.

TOUPPER on page 16-43 Returns character data, with all letters uppercase.

Table 16–11 (Cont.) ADRCI Utility Functions for the SELECT Command

Function Description

ADRCI Command Reference

ADRCI: ADR Command Interpreter 16-39

Restrictions
The following restrictions apply when you use the COUNT function in the SELECT
command:

■ The expression must be a column, a numeric constant, or a string constant.

■ The function does not support the DISTINCT or ALL keywords.

■ The function does not support the OVER clause.

■ The function always counts all rows for the query, including duplicates and nulls.

Examples
This example returns the number of incidents for which flood_controlled is 0 (zero):

select count(*) from incident where flood_controlled = 0

This example returns the number of problems for which problem_key includes
ORA-600:

select count(*) from problem where problem_key like '%ORA-600%'

DECODE
Compares an expression to each search value one by one. If the expression is equal to a
search, then Oracle Database returns the corresponding result. If no match is found,
then Oracle Database returns the specified default value.

Syntax
See Oracle Database SQL Language Reference.

Restrictions
The following restrictions apply when you use the DECODE function in the SELECT
command:

■ The search arguments must be character data.

■ A default value must be specified.

Example
This example shows each incident_id and whether or not the incident is
flood-controlled. The example uses the DECODE function to display text instead of
numbers for the flood_controlled field.

select incident_id, decode(flood_controlled, 0, \
 "Not flood-controlled", "Flood-controlled") from incident

LENGTH
Returns the length of a character string as defined by the input character set.

The character string can be any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2,
CLOB, or NCLOB. The return value is of data type NUMBER. If the character sting has data
type CHAR, then the length includes all trailing blanks. If the character string is null,
then this function returns 0 (zero).

Note: The SQL function returns null if the character string is null.

ADRCI Command Reference

16-40 Oracle Database Utilities

Syntax
See Oracle Database SQL Language Reference.

Restrictions
The SELECT command does not support the following functions: LENGTHB, LENGTHC,
LENGTH2, and LENGTH4.

Example
This example shows the problem_id and the length of the problem_key for each
problem.

select problem_id, length(problem_key) from problem

MAX
Returns the maximum value of an expression.

Syntax
See Oracle Database SQL Language Reference.

Restrictions
The following restrictions apply when you use the MAX function in the SELECT
command:

■ The function does not support the DISTINCT or ALL keywords.

■ The function does not support the OVER clause.

Example
This example shows the maximum last_incident value for all of the recorded
problems.

select max(last_incident) from problem

MIN
Returns the minimum value of an expression.

Syntax
See Oracle Database SQL Language Reference.

Restrictions
The following restrictions apply when you use the MIN function in the SELECT
command:

■ The function does not support the DISTINCT or ALL keywords.

■ The function does not support the OVER clause.

Example
This example shows the minimum first_incident value for all of the recorded
problems.

select min(first_incident) from problem

ADRCI Command Reference

ADRCI: ADR Command Interpreter 16-41

NVL
Replaces null (returned as a blank) with character data in the results of a query. If the
first expression specified is null, then NVL returns the second expression specified. If
the first expression specified is not null, then NVL returns the value of the first
expression.

Syntax
See Oracle Database SQL Language Reference.

Restrictions
The following restrictions apply when you use the NVL function in the SELECT
command:

■ The replacement value (second expression) must be specified as character data.

■ The function does not support data conversions.

Example
This example replaces NULL in the output for singalling_component with the text "No
component."

select nvl(signalling_component, 'No component') from incident

REGEXP_LIKE
Returns rows that match a specified pattern in a specified regular expression.

Syntax
See Oracle Database SQL Language Reference.

Restrictions
The following restrictions apply when you use the REGEXP_LIKE function in the SELECT
command:

■ The pattern match is always case-sensitive.

■ The function does not support the match_param argument.

Example
This example shows the problem_id and problem_key for all problems where the
problem_key ends with a number.

select problem_id, problem_key from problem \
 where regexp_like(problem_key, '[0-9]$') = true

SUBSTR
Returns a portion of character data. The portion of data returned begins at the
specified position and is the specified substring length of characters long. SUBSTR
calculates lengths using characters as defined by the input character set.

Note: In SQL, REGEXP_LIKE is a condition instead of a function.

ADRCI Command Reference

16-42 Oracle Database Utilities

Syntax
See Oracle Database SQL Language Reference.

Restrictions
The following restrictions apply when you use the SUBSTR function in the SELECT
command:

■ The function supports only positive integers. It does not support negative values
or floating-point numbers.

■ The SELECT command does not support the following functions: SUBSTRB, SUBSTRC,
SUBSTR2, and SUBSTR4.

Example
This example shows each problem_key starting with the fifth character in the key.

select substr(problem_key, 5) from problem

SUM
Returns the sum of values of an expression.

Syntax
See Oracle Database SQL Language Reference.

Restrictions
The following restrictions apply when you use the SUM function in the SELECT
command:

■ The expression must be a numeric column or a numeric constant.

■ The function does not support the DISTINCT or ALL keywords.

■ The function does not support the OVER clause.

TIMESTAMP_TO_CHAR
Converts a value of TIMESTAMP data type to a value of VARCHAR2 data type in a
specified format. If you do not specify a format, then the function converts values to
the default timestamp format.

Syntax
See the syntax of the TO_CHAR function in Oracle Database SQL Language Reference.

Restrictions
The following restrictions apply when you use the TIMESTAMP_TO_CHAR function in the
SELECT command:

■ The function converts only TIMESTAMP data type. TIMESTAMP WITH TIME ZONE,
TIMESTAMP WITH LOCAL TIME ZONE, and other data types are not supported.

■ The function does not support the nlsparm argument. The function uses the
default language for your session.

Example
This example converts the create_time for each incident from a TIMESTAMP data type
to a VARCHAR2 data type in the DD-MON-YYYY format.

ADRCI Command Reference

ADRCI: ADR Command Interpreter 16-43

select timestamp_to_char(create_time, 'DD-MON-YYYY') from incident

TOLOWER
Returns character data, with all letters lowercase. The character data can be of the data
types CHAR and VARCHAR2. The return value is the same data type as the character data.
The database sets the case of the characters based on the binary mapping defined for
the underlying character set.

Syntax
See the syntax of the LOWER function in Oracle Database SQL Language Reference.

Restrictions
The following restrictions apply when you use the TOLOWER function in the SELECT
command:

■ The function does not support LOB data types, including BLOB, CLOB, NCLOB, and
BFILE data types.

■ The function does not support national character set data types, including NCHAR,
NVARCHAR2, and NCLOB data types.

Example
This example shows each problem_key in all lowercase letters.

select tolower(problem_key) from problem

TOUPPER
Returns character data, with all letters uppercase. The character data can be of the data
types CHAR and VARCHAR2. The return value is the same data type as the character data.
The database sets the case of the characters based on the binary mapping defined for
the underlying character set.

Syntax
See the syntax of the UPPER function in Oracle Database SQL Language Reference.

Restrictions
The following restrictions apply when you use the TOUPPER function in the SELECT
command:

■ The function does not support LOB data types, including BLOB, CLOB, NCLOB, and
BFILE data types.

■ The function does not support national character set data types, including NCHAR,
NVARCHAR2, and NCLOB data types.

Example
This example shows each problem_key in all uppercase letters.

select toupper(problem_key) from problem

ADRCI Command Reference

16-44 Oracle Database Utilities

SET BASE

Purpose
Sets the ADR base to use in the current ADRCI session.

Syntax and Description
set base base_str

base_str is a full path to a directory. The format for base_str depends on the
operating system. If there are valid ADR homes under the base directory, these homes
are added to the homepath of the current ADRCI session.

This command does not require an ADR home to be set before you can use it.

Example
set base /u01/app/oracle

SET BROWSER

Purpose
Sets the default browser for displaying reports.

Syntax and Description
set browser browser_program

browser_program is the browser program name (it is assumed the browser can be
started from the current ADR working directory). If no browser is set, ADRCI will
display reports to the terminal or spool file.

This command does not require an ADR home to be set before you can use it.

Example
set browser mozilla

SET CONTROL

Purpose
Sets purging policies for ADR contents.

Syntax and Description
set control (purge_policy = value, ...)

See Also: "ADR Base" on page 16-3

Note: This command is reserved for future use. At this time ADRCI
does not support HTML-formatted reports in a browser.

See Also:

■ "SHOW REPORT" on page 16-57 for more information about
showing reports

■ "SPOOL" on page 16-58 for more information about spooling

ADRCI Command Reference

ADRCI: ADR Command Interpreter 16-45

purge_policy is either SHORTP_POLICY or LONGP_POLICY. See "SHOW CONTROL" on
page 16-49 for more information.

value is the number of hours after which the ADR contents become eligible for
purging.

The SHORTP_POLICY and LONGP_POLICY are not mutually exclusive. Each policy controls
different types of content.

This command works with a single ADR home only.

Example
set control (SHORTP_POLICY = 360)

SET ECHO

Purpose
Turns command output on or off. This command only affects output being displayed
in a script or using the spool mode.

Syntax and Description
set echo on|off

This command does not require an ADR home to be set before you can use it.

Example
set echo off

SET EDITOR

Purpose
Sets the editor for displaying the alert log and the contents of trace files.

Syntax and Description
set editor editor_program

editor_program is the editor program name. If no editor is set, ADRCI uses the editor
specified by the operating system environment variable EDITOR. If EDITOR is not set,
ADRCI uses vi as the default editor.

This command does not require an ADR home to be set before you can use it.

Example
set editor xemacs

SET HOMEPATH

Purpose
Makes one or more ADR homes current. Many ADR commands work with the current
ADR homes only.

See Also: "SPOOL" on page 16-58 for more information about
spooling

ADRCI Command Reference

16-46 Oracle Database Utilities

Syntax and Description
set homepath homepath_str1 homepath_str2 ...

The homepath_strn strings are the paths of the ADR homes relative to the current ADR
base. The diag directory name can be omitted from the path. If the specified path
contains multiple ADR homes, all of the homes are added to the homepath.

If a desired new ADR home is not within the current ADR base, use SET BASE to set a
new ADR base and then use SET HOMEPATH.

This command does not require an ADR home to be set before you can use it.

Example
set homepath diag/rdbms/orcldw/orcldw1 diag/rdbms/orcldw/orcldw2

The following command sets the same homepath as the previous example:

set homepath rdbms/orcldw/orcldw1 rdbms/orcldw/orcldw2

SET TERMOUT

Purpose
Turns output to the terminal on or off.

Syntax and Description
set termout on|off

This setting is independent of spooling. That is, the output can be directed to both
terminal and a file at the same time.

This command does not require an ADR home to be set before you can use it.

Example
set termout on

SHOW ALERT

Purpose
Shows the contents of the alert log in the default editor.

Syntax and Description
show alert [-p "predicate_string"] [-tail [num] [-f]] [-term]
 [-file alert_file_name]

Except when using the -term flag, this command works with only a single current
ADR home. If more than one ADR home is set, ADRCI prompts you to choose the
ADR home to use.

See Also: "Homepath" on page 16-4

See Also: "SPOOL" for more information about spooling

ADRCI Command Reference

ADRCI: ADR Command Interpreter 16-47

Table 16–12 Flags for the SHOW ALERT command

Flag Description

-p "predicate_string" Uses a SQL-like predicate string to show only the alert log
entries for which the predicate is true. The predicate string must
be enclosed in double quotation marks.

Table 16–13 lists the fields that can be used in the predicate
string.

-tail [num] [-f] Displays the most recent entries in the alert log.

Use the num option to display the last num entries in the alert log.
If num is omitted, the last 10 entries are displayed.

If the -f option is given, after displaying the requested
messages, the command does not return. Instead, it remains
active and continuously displays new alert log entries to the
terminal as they arrive in the alert log. You can use this
command to perform live monitoring of the alert log. To
terminate the command, press CTRL+C.

-term Directs results to the terminal. Outputs the entire alert logs from
all current ADR homes, one after another. If this option is not
given, the results are displayed in the default editor.

-file alert_file_name Enables you to specify an alert file outside the ADR. alert_
file_name must be specified with a full path name. Note that
this option cannot be used with the -tail option.

Table 16–13 Alert Fields for SHOW ALERT

Field Type

ORIGINATING_TIMESTAMP timestamp

NORMALIZED_TIMESTAMP timestamp

ORGANIZATION_ID text(65)

COMPONENT_ID text(65)

HOST_ID text(65)

HOST_ADDRESS text(17)

MESSAGE_TYPE number

MESSAGE_LEVEL number

MESSAGE_ID text(65)

MESSAGE_GROUP text(65)

CLIENT_ID text(65)

MODULE_ID text(65)

PROCESS_ID text(33)

THREAD_ID text(65)

USER_ID text(65)

INSTANCE_ID text(65)

DETAILED_LOCATION text(161)

UPSTREAM_COMP_ID text(101)

DOWNSTREAM_COMP_ID text(101)

EXECUTION_CONTEXT_ID text(101)

ADRCI Command Reference

16-48 Oracle Database Utilities

Example
This example shows all alert messages for the current ADR home in the default editor:

show alert

This example shows all alert messages for the current ADR home and directs the
output to the terminal instead of the default editor:

show alert -term

This example shows all alert messages for the current ADR home with message text
describing an incident:

show alert -p "message_text like '%incident%'"

This example shows the last twenty alert messages, and then keeps the alert log open,
displaying new alert log entries as they arrive:

show alert -tail 20 -f

This example shows all alert messages for a single ADR home in the default editor
when multiple ADR homes have been set:

show alert

Choose the alert log from the following homes to view:

1: diag/tnslsnr/dbhost1/listener
2: diag/asm/+asm/+ASM
3: diag/rdbms/orcl/orcl
4: diag/clients/user_oracle/host_9999999999_11
Q: to quit

Please select option:
3

SHOW BASE

Purpose
Shows the current ADR base.

EXECUTION_CONTEXT_SEQUENCE number

ERROR_INSTANCE_ID number

ERROR_INSTANCE_SEQUENCE number

MESSAGE_TEXT text(2049)

MESSAGE_ARGUMENTS text(129)

SUPPLEMENTAL_ATTRIBUTES text(129)

SUPPLEMENTAL_DETAILS text(129)

PROBLEM_KEY text(65)

See Also: "SET EDITOR" on page 16-45

Table 16–13 (Cont.) Alert Fields for SHOW ALERT

Field Type

ADRCI Command Reference

ADRCI: ADR Command Interpreter 16-49

Syntax and Description
show base [-product product_name]

Optionally, you can show the product's ADR base location for a specific product. The
products currently supported are CLIENT and ADRCI.

This command does not require an ADR home to be set before you can use it.

Example
This example shows the current ADR base:

show base

Output:

ADR base is "/u01/app/oracle"

This example shows the current ADR base for Oracle Database clients:

show base -product client

SHOW CONTROL

Purpose
Displays information about the ADR, including the purging policy.

Syntax and Description
show control

Displays various attributes of the ADR, including the following purging policy
attributes:

Attribute Name Description

SHORTP_POLICY Number of hours after which to purge ADR contents that have
a short life. Default is 720 (30 days).

A setting of 0 (zero) means that all contents that have a short
life can be purged. The maximum setting is 35791394. If a
value greater than 35791394 is specified, then this attribute is
set to 0 (zero).

The ADR contents that have a short life include the following:

■ Trace files

■ Core dump files

■ Packaging information

LONGP_POLICY Number of hours after which to purge ADR contents that have
a long life. Default is 8760 (365 days).

A setting of 0 (zero) means that all contents that have a long
life can be purged. The maximum setting is 35791394. If a
value greater than 35791394 is specified, then this attribute is
set to 0 (zero).

The ADR contents that have a long life include the following:

■ Incident information

■ Incident dumps

■ Alert logs

ADRCI Command Reference

16-50 Oracle Database Utilities

SHOW HM_RUN

Purpose
Shows all information for Health Monitor runs.

Syntax and Description
show hm_run [-p "predicate_string"]

predicate_string is a SQL-like predicate specifying the field names to select.
Table 16–14 displays the list of field names you can use.

Example
This example displays data for all Health Monitor runs:

show hm_run

This example displays data for the Health Monitor run with ID 123:

show hm_run -p "run_id=123"

Note: The SHORTP_POLICY and LONGP_POLICY attributes are not
mutually exclusive. Each policy controls different types of content.

Table 16–14 Fields for Health Monitor Runs

Field Type

RUN_ID number

RUN_NAME text(31)

CHECK_NAME text(31)

NAME_ID number

MODE number

START_TIME timestamp

RESUME_TIME timestamp

END_TIME timestamp

MODIFIED_TIME timestamp

TIMEOUT number

FLAGS number

STATUS number

SRC_INCIDENT_ID number

NUM_INCIDENTS number

ERR_NUMBER number

REPORT_FILE bfile

See Also: Oracle Database Administrator's Guide for more information
about Health Monitor

ADRCI Command Reference

ADRCI: ADR Command Interpreter 16-51

SHOW HOMEPATH

Purpose
Identical to the SHOW HOMES command.

Syntax and Description
show homepath | show homes | show home

This command does not require an ADR home to be set before you can use it.

Example
show homepath

Output:

ADR Homes:
diag/tnslsnr/dbhost1/listener
diag/asm/+asm/+ASM
diag/rdbms/orcl/orcl
diag/clients/user_oracle/host_9999999999_11

SHOW HOMES

Purpose
Show the ADR homes in the current ADRCI session.

Syntax and Description
show homes | show home | show homepath

This command does not require an ADR home to be set before you can use it.

Example
show homes

Output:

ADR Homes:
diag/tnslsnr/dbhost1/listener
diag/asm/+asm/+ASM
diag/rdbms/orcl/orcl
diag/clients/user_oracle/host_9999999999_11

SHOW INCDIR

Purpose
Shows trace files for the specified incident.

Syntax and Description
show incdir [id | id_low id_high]

You can provide a single incident ID (id) or a range of incidents (id_low to id_high). If
no incident ID is given, trace files for all incidents are listed.

See Also: "SET HOMEPATH" for information about how to set the
homepath

ADRCI Command Reference

16-52 Oracle Database Utilities

Example
This example shows all trace files for all incidents:

show incdir

Output:

ADR Home = /u01/app/oracle/log/diag/rdbms/emdb/emdb:

diag/rdbms/emdb/emdb/incident/incdir_3801/emdb_ora_23604_i3801.trc
diag/rdbms/emdb/emdb/incident/incdir_3801/emdb_m000_23649_i3801_a.trc
diag/rdbms/emdb/emdb/incident/incdir_3802/emdb_ora_23604_i3802.trc
diag/rdbms/emdb/emdb/incident/incdir_3803/emdb_ora_23604_i3803.trc
diag/rdbms/emdb/emdb/incident/incdir_3804/emdb_ora_23604_i3804.trc
diag/rdbms/emdb/emdb/incident/incdir_3805/emdb_ora_23716_i3805.trc
diag/rdbms/emdb/emdb/incident/incdir_3805/emdb_m000_23767_i3805_a.trc
diag/rdbms/emdb/emdb/incident/incdir_3806/emdb_ora_23716_i3806.trc
diag/rdbms/emdb/emdb/incident/incdir_3633/emdb_pmon_28970_i3633.trc
diag/rdbms/emdb/emdb/incident/incdir_3633/emdb_m000_23778_i3633_a.trc
diag/rdbms/emdb/emdb/incident/incdir_3713/emdb_smon_28994_i3713.trc
diag/rdbms/emdb/emdb/incident/incdir_3713/emdb_m000_23797_i3713_a.trc
diag/rdbms/emdb/emdb/incident/incdir_3807/emdb_ora_23783_i3807.trc
diag/rdbms/emdb/emdb/incident/incdir_3807/emdb_m000_23803_i3807_a.trc
diag/rdbms/emdb/emdb/incident/incdir_3808/emdb_ora_23783_i3808.trc

This example shows all trace files for incident 3713:

show incdir 3713

Output:

ADR Home = /u01/app/oracle/log/diag/rdbms/emdb/emdb:

diag/rdbms/emdb/emdb/incident/incdir_3713/emdb_smon_28994_i3713.trc
diag/rdbms/emdb/emdb/incident/incdir_3713/emdb_m000_23797_i3713_a.trc

This example shows all tracefiles for incidents between 3801 and 3804:

show incdir 3801 3804

Output:

ADR Home = /u01/app/oracle/log/diag/rdbms/emdb/emdb:

diag/rdbms/emdb/emdb/incident/incdir_3801/emdb_ora_23604_i3801.trc
diag/rdbms/emdb/emdb/incident/incdir_3801/emdb_m000_23649_i3801_a.trc
diag/rdbms/emdb/emdb/incident/incdir_3802/emdb_ora_23604_i3802.trc
diag/rdbms/emdb/emdb/incident/incdir_3803/emdb_ora_23604_i3803.trc
diag/rdbms/emdb/emdb/incident/incdir_3804/emdb_ora_23604_i3804.trc

SHOW INCIDENT

Purpose
Lists all of the incidents associated with the current ADR home. Includes both open
and closed incidents.

Syntax and Description
show incident [-p "predicate_string"] [-mode {BASIC|BRIEF|DETAIL}]
 [-orderby field1, field2, ... [ASC|DSC]]

ADRCI Command Reference

ADRCI: ADR Command Interpreter 16-53

Table 16–15 describes the flags for SHOW INCIDENT.

Table 16–15 Flags for SHOW INCIDENT command

Flag Description

-p "predicate_string" Use a predicate string to show only the incidents for
which the predicate is true. The predicate string
must be enclosed in double quotation marks.

Table 16–16 lists the fields that can be used in the
predicate string.

-mode {BASIC|BRIEF|DETAIL} Choose an output mode for incidents. BASIC is the
default.

■ BASIC displays only basic incident information
(the INCIDENT_ID, PROBLEM_ID, and CREATE_
TIME fields). It does not display flood-controlled
incidents.

■ BRIEF displays all information related to the
incidents, as given by the fields in Table 16–16.
It includes flood-controlled incidents.

■ DETAIL displays all information for the incidents
(as with BRIEF mode) as well as information
about incident dumps. It includes
flood-controlled incidents.

-orderby field1, field2, ...
[ASC|DSC]

Show results sorted by field in the given order, as
well as in ascending (ASC) and descending order
(DSC). By default, results are shown in ascending
order.

Table 16–16 Incident Fields for SHOW INCIDENT

Field Type Description

INCIDENT_ID number ID of the incident

PROBLEM_ID number ID of the problem to which the
incident belongs

CREATE_TIME timestamp Time when the incident was created

CLOSE_TIME timestamp Time when the incident was closed

STATUS number Status of this incident

FLAGS number Flags for internal use

FLOOD_CONTROLLED number (decoded to a
text status by ADRCI)

Encodes the flood control status for
the incident

ERROR_FACILITY text(10) Error facility for the error that caused
the incident

ERROR_NUMBER number Error number for the error that
caused the incident

ERROR_ARG1 text(64) First argument for the error that
caused the incident

Error arguments provide additional
information about the error, such as
the code location that issued the
error.

ERROR_ARG2 text(64) Second argument for the error that
caused the incident

ADRCI Command Reference

16-54 Oracle Database Utilities

Examples
This example shows all incidents for this ADR home:

show incident

Output:

ADR Home = /u01/app/oracle/log/diag/rdbms/emdb/emdb:

INCIDENT_ID PROBLEM_KEY CREATE_TIME
-------------------- -- ----------------------------
3808 ORA 603 2010-06-18 21:35:49.322161 -07:00
3807 ORA 600 [4137] 2010-06-18 21:35:47.862114 -07:00
3806 ORA 603 2010-06-18 21:35:26.666485 -07:00
3805 ORA 600 [4136] 2010-06-18 21:35:25.012579 -07:00
3804 ORA 1578 2010-06-18 21:35:08.483156 -07:00
3713 ORA 600 [4136] 2010-06-18 21:35:44.754442 -07:00

ERROR_ARG3 text(64) Third argument for the error that
caused the incident

ERROR_ARG4 text(64) Fourth argument for the error that
caused the incident

ERROR_ARG5 text(64) Fifth argument for the error that
caused the incident

ERROR_ARG6 text(64) Sixth argument for the error that
caused the incident

ERROR_ARG7 text(64) Seventh argument for the error that
caused the incident

ERROR_ARG8 text(64) Eighth argument for the error that
caused the incident

SIGNALLING_COMPONENT text(64) Component that signaled the error
that caused the incident

SIGNALLING_SUBCOMPONENT text(64) Subcomponent that signaled the
error that caused the incident

SUSPECT_COMPONENT text(64) Component that has been
automatically identified as possibly
causing the incident

SUSPECT_SUBCOMPONENT text(64) Subcomponent that has been
automatically identified as possibly
causing the incident

ECID text(64) Execution Context ID

IMPACT number Encodes the impact of the incident

ERROR_ARG9 text(64) Ninth argument for the error that
caused the incident

ERROR_ARG10 text(64) Tenth argument for the error that
caused the incident

ERROR_ARG11 text(64) Eleventh argument for the error that
caused the incident

ERROR_ARG12 text(64) Twelfth argument for the error that
caused the incident

Table 16–16 (Cont.) Incident Fields for SHOW INCIDENT

Field Type Description

ADRCI Command Reference

ADRCI: ADR Command Interpreter 16-55

3633 ORA 600 [4136] 2010-06-18 21:35:35.776151 -07:00
7 rows fetched

This example shows the detail view for incident 3805:

adrci> show incident -mode DETAIL -p "incident_id=3805"

Output:

ADR Home = /u01/app/oracle/log/diag/rdbms/emdb/emdb:

**
INCIDENT INFO RECORD 1
**
 INCIDENT_ID 3805
 STATUS closed
 CREATE_TIME 2010-06-18 21:35:25.012579 -07:00
 PROBLEM_ID 2
 CLOSE_TIME 2010-06-18 22:26:54.143537 -07:00
 FLOOD_CONTROLLED none
 ERROR_FACILITY ORA
 ERROR_NUMBER 600
 ERROR_ARG1 4136
 ERROR_ARG2 2
 ERROR_ARG3 18.0.628
 ERROR_ARG4 <NULL>
 ERROR_ARG5 <NULL>
 ERROR_ARG6 <NULL>
 ERROR_ARG7 <NULL>
 ERROR_ARG8 <NULL>
 SIGNALLING_COMPONENT <NULL>
 SIGNALLING_SUBCOMPONENT <NULL>
 SUSPECT_COMPONENT <NULL>
 SUSPECT_SUBCOMPONENT <NULL>
 ECID <NULL>
 IMPACTS 0
 PROBLEM_KEY ORA 600 [4136]
 FIRST_INCIDENT 3805
 FIRSTINC_TIME 2010-06-18 21:35:25.012579 -07:00
 LAST_INCIDENT 3713
 LASTINC_TIME 2010-06-18 21:35:44.754442 -07:00
 IMPACT1 0
 IMPACT2 0
 IMPACT3 0
 IMPACT4 0
 KEY_NAME Client ProcId
 KEY_VALUE oracle@dbhost1 (TNS V1-V3).23716_3083142848
 KEY_NAME SID
 KEY_VALUE 127.52237
 KEY_NAME ProcId
 KEY_VALUE 23.90
 KEY_NAME PQ
 KEY_VALUE (0, 1182227717)
 OWNER_ID 1
 INCIDENT_FILE /.../emdb/emdb/incident/incdir_3805/emdb_ora_23716_i3805.trc
 OWNER_ID 1
 INCIDENT_FILE /.../emdb/emdb/trace/emdb_ora_23716.trc
 OWNER_ID 1
 INCIDENT_FILE /.../emdb/emdb/incident/incdir_3805/emdb_m000_23767_i3805_a.trc
1 rows fetched

ADRCI Command Reference

16-56 Oracle Database Utilities

SHOW PROBLEM

Purpose
Show problem information for the current ADR home.

Syntax and Description
show problem [-p "predicate_string"] [-last num | -all]
 [-orderby field1, field2, ... [ASC|DSC]]

Table 16–17 describes the flags for SHOW PROBLEM.

Example
This example lists all the problems in the current ADR home:

show problem -all

Table 16–17 Flags for SHOW PROBLEM command

Flag Description

-p "predicate_string" Use a SQL-like predicate string to show only the incidents for
which the predicate is true. The predicate string must be
enclosed in double quotation marks.

Table 16–18 lists the fields that can be used in the predicate
string.

-last num | -all Shows the last num problems, or lists all the problems. By default,
SHOW PROBLEM lists the most recent 50 problems.

-orderby field1, field2,
... [ASC|DSC]

Show results sorted by field in the given order (field1, field2,
...), as well as in ascending (ASC) and descending order (DSC). By
default, results are shown in ascending order.

Table 16–18 Problem Fields for SHOW PROBLEM

Field Type Description

PROBLEM_ID number ID of the problem

PROBLEM_KEY text(550) Problem key for the problem

FIRST_INCIDENT number Incident ID of the first incident for the
problem

FIRSTINC_TIME timestamp Creation time of the first incident for the
problem

LAST_INCIDENT number Incident ID of the last incident for the problem

LASTINC_TIME timestamp Creation time of the last incident for the
problem

IMPACT1 number Encodes an impact of this problem

IMPACT2 number Encodes an impact of this problem

IMPACT3 number Encodes an impact of this problem

IMPACT4 number Encodes an impact of this problem

SERVICE_REQUEST text(64) Service request for the problem (entered
through Support Workbench)

BUG_NUMBER text(64) Bug number for the problem (entered through
Support Workbench)

ADRCI Command Reference

ADRCI: ADR Command Interpreter 16-57

This example shows the problem with ID 4:

show problem -p "problem_id=4"

SHOW REPORT

Purpose
Show a report for the specified report type and run name. Currently, only the hm_run
(Health Monitor) report type is supported, and only in XML formatting. To view
HTML-formatted Health Monitor reports, use Oracle Enterprise Manager or the DBMS_
HM PL/SQL package. See Oracle Database Administrator's Guide for more information.

Syntax and Description
SHOW REPORT report_type run_name

report_type must be hm_run. run_name is the Health Monitor run name from which
you created the report. You must first create the report using the CREATE REPORT
command.

This command does not require an ADR home to be set before you can use it.

Example
show report hm_run hm_run_1421

SHOW TRACEFILE

Purpose
List trace files.

Syntax and Description
show tracefile [file1 file2 ...] [-rt | -t]
 [-i inc1 inc2 ...] [-path path1 path2 ...]

This command searches for one or more files under the trace directory and all incident
directories of the current ADR homes, unless the -i or -path flags are given.

This command does not require an ADR home to be set unless using the -i option.

Table 16–19 describes the arguments of SHOW TRACEFILE.

See Also:

■ "CREATE REPORT" on page 16-15

■ "SHOW HM_RUN" on page 16-50

Table 16–19 Arguments for SHOW TRACEFILE Command

Argument Description

file1 file2 ... Filter results by file name. The % symbol is a wildcard character.

Troubleshooting ADRCI

16-58 Oracle Database Utilities

Example
This example shows all the trace files under the current ADR home:

show tracefile

This example shows all the mmon trace files, sorted by timestamp in reverse order:

show tracefile %mmon% -rt

This example shows all trace files for incidents 1 and 4, under the path
/home/steve/temp:

show tracefile -i 1 4 -path /home/steve/temp

SPOOL

Purpose
Directs ADRCI output to a file.

Syntax and Description
SPOOL filename [[APPEND] | [OFF]]

filename is the file name where the output is to be directed. If a full path name is not
given, the file is created in the current ADRCI working directory. If no file extension is
given, the default extension .ado is used. APPEND causes the output to be appended to
the end of the file. Otherwise, the file is overwritten. Use OFF to turn off spooling.

This command does not require an ADR home to be set before you can use it.

Example
spool myfile

spool myfile.ado append

spool off

spool

Troubleshooting ADRCI
The following are some common ADRCI error messages, with their possible causes
and remedies:

Table 16–20 Flags for SHOW TRACEFILE Command

Flag Description

-rt | -t Order the trace file names by timestamp. -t sorts the file names
in ascending order by timestamp, and -rt sorts them in reverse
order. Note that file names are only ordered relative to their
directory. Listing multiple directories of trace files applies a
separate ordering to each directory.

Timestamps are listed next to each file name when using this
option.

-i inc1 inc2 ... Select only the trace files produced for the given incident IDs.

-path path1 path2 ... Query only the trace files under the given path names.

Troubleshooting ADRCI

ADRCI: ADR Command Interpreter 16-59

No ADR base is set
Cause: You may have started ADRCI with a null or invalid value for the ORACLE_HOME
environment variable.

Action: Exit ADRCI, set the ORACLE_HOME environment variable, and restart ADRCI. See
"ADR Base" on page 16-3 for more information.

DIA-48323: Specified pathname string must be inside current ADR home
Cause: A file outside of the ADR home is not allowed as an incident file for this
command.

Action: Retry using an incident file inside the ADR home.

DIA-48400: ADRCI initialization failed
Cause: The ADR Base directory does not exist.

Action: Check the value of the DIAGNOSTIC_DEST initialization parameter, and ensure
that it points to an ADR base directory that contains at least one ADR home. If
DIAGNOSTIC_DEST is missing or null, check for a valid ADR base directory hierarchy in
ORACLE_HOME/log.

DIA-48431: Must specify at least one ADR home path
Cause: The command requires at least one ADR home to be current.

Action: Use the SET HOMEPATH command to make one or more ADR homes current.

DIA-48432: The ADR home path string is not valid
Cause: The supplied ADR home is not valid, possibly because the path does not exist.

Action: Check if the supplied ADR home path exists.

DIA-48447: The input path [path] does not contain any ADR homes
Cause: When using SET HOMEPATH to set an ADR home, you must supply a path
relative to the current ADR base.

Action: If the new desired ADR home is not within the current ADR base, first set
ADR base with SET BASE, and then use SHOW HOMES to check the ADR homes under the
new ADR base. Next, use SET HOMEPATH to set a new ADR home if necessary.

DIA-48448: This command does not support multiple ADR homes
Cause: There are multiple current ADR homes in the current ADRCI session.

Action: Use the SET HOMEPATH command to make a single ADR home current.

Troubleshooting ADRCI

16-60 Oracle Database Utilities

17

DBVERIFY: Offline Database Verification Utility 17-1

17 DBVERIFY: Offline Database Verification Utility

DBVERIFY is an external command-line utility that performs a physical data structure
integrity check.

DBVERIFY can be used on offline or online databases, as well on backup files. You use
DBVERIFY primarily when you need to ensure that a backup database (or data file) is
valid before it is restored, or as a diagnostic aid when you have encountered data
corruption problems. Because DBVERIFY can be run against an offline database,
integrity checks are significantly faster.

DBVERIFY checks are limited to cache-managed blocks (that is, data blocks). Because
DBVERIFY is only for use with data files, it does not work against control files or redo
logs.

There are two command-line interfaces to DBVERIFY. With the first interface, you
specify disk blocks of a single data file for checking. With the second interface, you
specify a segment for checking. Both interfaces are started with the dbv command. The
following sections provide descriptions of these interfaces:

■ Using DBVERIFY to Validate Disk Blocks of a Single Data File

■ Using DBVERIFY to Validate a Segment

Using DBVERIFY to Validate Disk Blocks of a Single Data File
In this mode, DBVERIFY scans one or more disk blocks of a single data file and
performs page checks.

Syntax
The syntax for DBVERIFY when you want to validate disk blocks of a single data file is
as follows:

Note: If the file you are verifying is an Oracle Automatic Storage
Management (Oracle ASM) file, then you must supply a USERID.
This is because DBVERIFY needs to connect to an Oracle instance to
access Oracle ASM files.

Using DBVERIFY to Validate Disk Blocks of a Single Data File

17-2 Oracle Database Utilities

Parameters
Descriptions of the parameters are as follows:

Parameter Description

USERID Specifies your username and password. This parameter is only
necessary when the files being verified are Oracle ASM files.

FILE The name of the database file to verify.

START The starting block address to verify. Specify block addresses in
Oracle blocks (as opposed to operating system blocks). If you do
not specify START, then DBVERIFY defaults to the first block in
the file.

END The ending block address to verify. If you do not specify END,
then DBVERIFY defaults to the last block in the file.

BLOCKSIZE BLOCKSIZE is required only if the file to be verified does not have
a block size of 2 KB. If the file does not have block size of 2 KB
and you do not specify BLOCKSIZE, then you will receive the
error DBV-00103.

HIGH_SCN When a value is specified for HIGH_SCN, DBVERIFY writes
diagnostic messages for each block whose block-level SCN
exceeds the value specified.

This parameter is optional. There is no default.

LOGFILE Specifies the file to which logging information should be
written. The default sends output to the terminal display.

FEEDBACK Causes DBVERIFY to send a progress display to the terminal in
the form of a single period (.) for n number of pages verified
during the DBVERIFY run. If n = 0, then there is no progress
display.

HELP Provides online help.

PARFILE Specifies the name of the parameter file to use. You can store
various values for DBVERIFY parameters in flat files. This
enables you to customize parameter files to handle different
types of data files and to perform specific types of integrity
checks on data files.

dbv

USERID = username/password

FILE = filename

START

END
= block_address

BLOCKSIZE = integer

LOGFILE = filename

FEEDBACK = integer

HELP =
Y

N

PARFILE = filename

HIGH_SCN = integer

Using DBVERIFY to Validate a Segment

DBVERIFY: Offline Database Verification Utility 17-3

Sample DBVERIFY Output For a Single Data File
The following is a sample verification of the file t_db1.dbf.The feedback parameter
has been given the value 100 to display one period (.) for every 100 pages processed. A
portion of the resulting output is also shown.

% dbv FILE=t_db1.dbf FEEDBACK=100
.
.
.
DBVERIFY - Verification starting : FILE = t_db1.dbf

..

DBVERIFY - Verification complete

Total Pages Examined : 9216
Total Pages Processed (Data) : 2044
Total Pages Failing (Data) : 0
Total Pages Processed (Index): 733
Total Pages Failing (Index): 0
Total Pages Empty : 5686
Total Pages Marked Corrupt : 0

Total Pages Influx : 0

Notes:

■ Pages = Blocks

■ Total Pages Examined = number of blocks in the file

■ Total Pages Processed = number of blocks that were verified (formatted blocks)

■ Total Pages Failing (Data) = number of blocks that failed the data block checking
routine

■ Total Pages Failing (Index) = number of blocks that failed the index block checking
routine

■ Total Pages Marked Corrupt = number of blocks for which the cache header is
invalid, thereby making it impossible for DBVERIFY to identify the block type

■ Total Pages Influx = number of blocks that are being read and written to at the
same time. If the database is open when DBVERIFY is run, then DBVERIFY reads
blocks multiple times to get a consistent image. But because the database is open,
there may be blocks that are being read and written to at the same time (INFLUX).
DBVERIFY cannot get a consistent image of pages that are in flux.

Using DBVERIFY to Validate a Segment
In this mode, DBVERIFY enables you to specify a table segment or index segment for
verification. It checks to ensure that a row chain pointer is within the segment being
verified.

This mode requires that you specify a segment (data or index) to be validated. It also
requires that you log on to the database with SYSDBA privileges, because information
about the segment must be retrieved from the database.

Using DBVERIFY to Validate a Segment

17-4 Oracle Database Utilities

During this mode, the segment is locked. If the specified segment is an index, then the
parent table is locked. Note that some indexes, such as IOTs, do not have parent tables.

Syntax
The syntax for DBVERIFY when you want to validate a segment is as follows:

Parameters
Descriptions of the parameters are as follows:

Sample DBVERIFY Output For a Validated Segment
The following is a sample of the output that would be shown for a DBVERIFY
operation to validate SEGMENT_ID 1.2.67.

Parameter Description

USERID Specifies your username and password.

SEGMENT_ID Specifies the segment to verify. It is composed of the tablespace
ID number (tsn), segment header file number (segfile), and
segment header block number (segblock). You can get this
information from SYS_USER_SEGS. The relevant columns are
TABLESPACE_ID, HEADER_FILE, and HEADER_BLOCK. You must have
SYSDBA privileges to query SYS_USER_SEGS.

HIGH_SCN When a value is specified for HIGH_SCN, DBVERIFY writes
diagnostic messages for each block whose block-level SCN
exceeds the value specified.

This parameter is optional. There is no default.

LOGFILE Specifies the file to which logging information should be
written. The default sends output to the terminal display.

FEEDBACK Causes DBVERIFY to send a progress display to the terminal in
the form of a single period (.) for n number of pages verified
during the DBVERIFY run. If n = 0, then there is no progress
display.

HELP Provides online help.

PARFILE Specifies the name of the parameter file to use. You can store
various values for DBVERIFY parameters in flat files. This
enables you to customize parameter files to handle different
types of data files and to perform specific types of integrity
checks on data files.

dbv

USERID = username/password

SEGMENT_ID = tsn.segfile.segblock

LOGFILE = filename

FEEDBACK = integer

HELP =
Y

N

PARFILE = filename

HIGH_SCN = integer

Using DBVERIFY to Validate a Segment

DBVERIFY: Offline Database Verification Utility 17-5

DBVERIFY - Verification starting : SEGMENT_ID = 1.2.67

DBVERIFY - Verification complete

Total Pages Examined : 8
Total Pages Processed (Data) : 0
Total Pages Failing (Data) : 0
Total Pages Processed (Index): 1
Total Pages Failing (Index): 0
Total Pages Processed (Other): 2
Total Pages Processed (Seg) : 1
Total Pages Failing (Seg) : 0
Total Pages Empty : 4
Total Pages Marked Corrupt : 0
Total Pages Influx : 0
Highest block SCN : 7358 (0.7358)

Using DBVERIFY to Validate a Segment

17-6 Oracle Database Utilities

18

DBNEWID Utility 18-1

18 DBNEWID Utility

DBNEWID is a database utility that can change the internal database identifier (DBID)
and the database name (DBNAME) for an operational database.

This chapter contains the following sections:

■ What Is the DBNEWID Utility?

■ Ramifications of Changing the DBID and DBNAME

■ Changing the DBID and DBNAME of a Database

■ DBNEWID Syntax

What Is the DBNEWID Utility?
Before the introduction of the DBNEWID utility, you could manually create a copy of a
database and give it a new database name (DBNAME) by re-creating the control file.
However, you could not give the database a new identifier (DBID). The DBID is an
internal, unique identifier for a database. Because Recovery Manager (RMAN)
distinguishes databases by DBID, you could not register a seed database and a
manually copied database together in the same RMAN repository. The DBNEWID
utility solves this problem by allowing you to change any of the following:

■ Only the DBID of a database

■ Only the DBNAME of a database

■ Both the DBNAME and DBID of a database

Ramifications of Changing the DBID and DBNAME
Changing the DBID of a database is a serious procedure. When the DBID of a database
is changed, all previous backups and archived logs of the database become unusable.
This is similar to creating a database except that the data is already in the data files.
After you change the DBID, backups and archive logs that were created before the
change can no longer be used because they still have the original DBID, which does
not match the current DBID. You must open the database with the RESETLOGS option,
which re-creates the online redo logs and resets their sequence to 1 (see Oracle Database
Administrator's Guide). Consequently, you should make a backup of the whole
database immediately after changing the DBID.

Changing the DBNAME without changing the DBID does not require you to open
with the RESETLOGS option, so database backups and archived logs are not invalidated.
However, changing the DBNAME does have consequences. You must change the DB_
NAME initialization parameter after a database name change to reflect the new name.

Changing the DBID and DBNAME of a Database

18-2 Oracle Database Utilities

Also, you may have to re-create the Oracle password file. If you restore an old backup
of the control file (before the name change), then you should use the initialization
parameter file and password file from before the database name change.

Considerations for Global Database Names
If you are dealing with a database in a distributed database system, then each database
should have a unique global database name. The DBNEWID utility does not change
global database names. This can only be done with the SQL ALTER DATABASE statement,
for which the syntax is as follows:

ALTER DATABASE RENAME GLOBAL_NAME TO newname.domain;

The global database name is made up of a database name and a domain, which are
determined by the DB_NAME and DB_DOMAIN initialization parameters when the
database is first created.

The following example changes the database name to sales in the domain
us.example.com:

ALTER DATABASE RENAME GLOBAL_NAME TO sales.us.example.com

You would do this after you finished using DBNEWID to change the database name.

Changing the DBID and DBNAME of a Database
This section contains these topics:

■ Changing the DBID and Database Name

■ Changing Only the Database ID

■ Changing Only the Database Name

■ Troubleshooting DBNEWID

Changing the DBID and Database Name
The following steps describe how to change the DBID of a database. Optionally, you
can change the database name as well.

1. Ensure that you have a recoverable whole database backup.

2. Ensure that the target database is mounted but not open, and that it was shut
down consistently before mounting. For example:

SHUTDOWN IMMEDIATE
STARTUP MOUNT

3. Invoke the DBNEWID utility on the command line, specifying a valid user
(TARGET) that has the SYSDBA privilege (you will be prompted for a password):

% nid TARGET=SYS

Note: Do not change the DBID or DBNAME of a database if you
are using a capture process to capture changes to the database. See
Oracle Streams Concepts and Administration for more information
about capture processes.

See Also: Oracle Database Administrator's Guide for more
information about global database names

Changing the DBID and DBNAME of a Database

DBNEWID Utility 18-3

To change the database name in addition to the DBID, also specify the DBNAME
parameter on the command line (you will be prompted for a password). The
following example changes the database name to test_db:

% nid TARGET=SYS DBNAME=test_db

The DBNEWID utility performs validations in the headers of the data files and
control files before attempting I/O to the files. If validation is successful, then
DBNEWID prompts you to confirm the operation (unless you specify a log file, in
which case it does not prompt), changes the DBID (and the DBNAME, if specified,
as in this example) for each data file, including offline normal and read-only data
files, shuts down the database, and then exits. The following is an example of what
the output for this would look like:

.

.

.
Connected to database PROD (DBID=86997811)
.
.
.
Control Files in database:
 /oracle/TEST_DB/data/cf1.dbf
 /oracle/TEST_DB/data/cf2.dbf

The following datafiles are offline clean:
 /oracle/TEST_DB/data/tbs_61.dbf (23)
 /oracle/TEST_DB/data/tbs_62.dbf (24)
 /oracle/TEST_DB/data/temp3.dbf (3)
These files must be writable by this utility.

The following datafiles are read-only:
 /oracle/TEST_DB/data/tbs_51.dbf (15)
 /oracle/TEST_DB/data/tbs_52.dbf (16)
 /oracle/TEST_DB/data/tbs_53.dbf (22)
These files must be writable by this utility.

Changing database ID from 86997811 to 1250654267
Changing database name from PROD to TEST_DB
 Control File /oracle/TEST_DB/data/cf1.dbf - modified
 Control File /oracle/TEST_DB/data/cf2.dbf - modified
 Datafile /oracle/TEST_DB/data/tbs_01.dbf - dbid changed, wrote new name
 Datafile /oracle/TEST_DB/data/tbs_ax1.dbf - dbid changed, wrote new name
 Datafile /oracle/TEST_DB/data/tbs_02.dbf - dbid changed, wrote new name
 Datafile /oracle/TEST_DB/data/tbs_11.dbf - dbid changed, wrote new name
 Datafile /oracle/TEST_DB/data/tbs_12.dbf - dbid changed, wrote new name
 Datafile /oracle/TEST_DB/data/temp1.dbf - dbid changed, wrote new name
 Control File /oracle/TEST_DB/data/cf1.dbf - dbid changed, wrote new name
 Control File /oracle/TEST_DB/data/cf2.dbf - dbid changed, wrote new name
 Instance shut down

Database name changed to TEST_DB.
Modify parameter file and generate a new password file before restarting.
Database ID for database TEST_DB changed to 1250654267.
All previous backups and archived redo logs for this database are unusable.
Database has been shutdown, open database with RESETLOGS option.
Successfully changed database name and ID.
DBNEWID - Completed successfully.

Changing the DBID and DBNAME of a Database

18-4 Oracle Database Utilities

If validation is not successful, then DBNEWID terminates and leaves the target
database intact, as shown in the following sample output. You can open the
database, fix the error, and then either resume the DBNEWID operation or
continue using the database without changing its DBID.

.

.

.
Connected to database PROD (DBID=86997811)
.
.
.
Control Files in database:
 /oracle/TEST_DB/data/cf1.dbf
 /oracle/TEST_DB/data/cf2.dbf

The following datafiles are offline clean:
 /oracle/TEST_DB/data/tbs_61.dbf (23)
 /oracle/TEST_DB/data/tbs_62.dbf (24)
 /oracle/TEST_DB/data/temp3.dbf (3)
These files must be writable by this utility.

The following datafiles are read-only:
 /oracle/TEST_DB/data/tbs_51.dbf (15)
 /oracle/TEST_DB/data/tbs_52.dbf (16)
 /oracle/TEST_DB/data/tbs_53.dbf (22)
These files must be writable by this utility.

The following datafiles are offline immediate:
 /oracle/TEST_DB/data/tbs_71.dbf (25)
 /oracle/TEST_DB/data/tbs_72.dbf (26)

NID-00122: Database should have no offline immediate datafiles

Change of database name failed during validation - database is intact.
DBNEWID - Completed with validation errors.

4. Mount the database. For example:

STARTUP MOUNT

5. Open the database in RESETLOGS mode and resume normal use. For example:

ALTER DATABASE OPEN RESETLOGS;

Make a new database backup. Because you reset the online redo logs, the old
backups and archived logs are no longer usable in the current incarnation of the
database.

Changing Only the Database ID
To change the database ID without changing the database name, follow the steps in
"Changing the DBID and Database Name" on page 18-2, but in Step 3 do not specify
the optional database name (DBNAME). The following is an example of the type of
output that is generated when only the database ID is changed.

.

.

.
Connected to database PROD (DBID=86997811)
.

Changing the DBID and DBNAME of a Database

DBNEWID Utility 18-5

.

.
Control Files in database:
 /oracle/TEST_DB/data/cf1.dbf
 /oracle/TEST_DB/data/cf2.dbf

The following datafiles are offline clean:
 /oracle/TEST_DB/data/tbs_61.dbf (23)
 /oracle/TEST_DB/data/tbs_62.dbf (24)
 /oracle/TEST_DB/data/temp3.dbf (3)
These files must be writable by this utility.

The following datafiles are read-only:
 /oracle/TEST_DB/data/tbs_51.dbf (15)
 /oracle/TEST_DB/data/tbs_52.dbf (16)
 /oracle/TEST_DB/data/tbs_53.dbf (22)
These files must be writable by this utility.

Changing database ID from 86997811 to 4004383693
 Control File /oracle/TEST_DB/data/cf1.dbf - modified
 Control File /oracle/TEST_DB/data/cf2.dbf - modified
 Datafile /oracle/TEST_DB/data/tbs_01.dbf - dbid changed
 Datafile /oracle/TEST_DB/data/tbs_ax1.dbf - dbid changed
 Datafile /oracle/TEST_DB/data/tbs_02.dbf - dbid changed
 Datafile /oracle/TEST_DB/data/tbs_11.dbf - dbid changed
 Datafile /oracle/TEST_DB/data/tbs_12.dbf - dbid changed
 Datafile /oracle/TEST_DB/data/temp1.dbf - dbid changed
 Control File /oracle/TEST_DB/data/cf1.dbf - dbid changed
 Control File /oracle/TEST_DB/data/cf2.dbf - dbid changed
 Instance shut down

Database ID for database TEST_DB changed to 4004383693.
All previous backups and archived redo logs for this database are unusable.
Database has been shutdown, open database with RESETLOGS option.
Succesfully changed database ID.
DBNEWID - Completed succesfully.

Changing Only the Database Name
The following steps describe how to change the database name without changing the
DBID.

1. Ensure that you have a recoverable whole database backup.

2. Ensure that the target database is mounted but not open, and that it was shut
down consistently before mounting. For example:

SHUTDOWN IMMEDIATE
STARTUP MOUNT

3. Invoke the utility on the command line, specifying a valid user with the SYSDBA
privilege (you will be prompted for a password). You must specify both the
DBNAME and SETNAME parameters. This example changes the name to test_db:

% nid TARGET=SYS DBNAME=test_db SETNAME=YES

DBNEWID performs validations in the headers of the control files (not the data
files) before attempting I/O to the files. If validation is successful, then DBNEWID
prompts for confirmation, changes the database name in the control files, shuts
down the database and exits. The following is an example of what the output for
this would look like:

Changing the DBID and DBNAME of a Database

18-6 Oracle Database Utilities

.

.

.
Control Files in database:
 /oracle/TEST_DB/data/cf1.dbf
 /oracle/TEST_DB/data/cf2.dbf

The following datafiles are offline clean:
 /oracle/TEST_DB/data/tbs_61.dbf (23)
 /oracle/TEST_DB/data/tbs_62.dbf (24)
 /oracle/TEST_DB/data/temp3.dbf (3)
These files must be writable by this utility.

The following datafiles are read-only:
 /oracle/TEST_DB/data/tbs_51.dbf (15)
 /oracle/TEST_DB/data/tbs_52.dbf (16)
 /oracle/TEST_DB/data/tbs_53.dbf (22)
These files must be writable by this utility.

Changing database name from PROD to TEST_DB
 Control File /oracle/TEST_DB/data/cf1.dbf - modified
 Control File /oracle/TEST_DB/data/cf2.dbf - modified
 Datafile /oracle/TEST_DB/data/tbs_01.dbf - wrote new name
 Datafile /oracle/TEST_DB/data/tbs_ax1.dbf - wrote new name
 Datafile /oracle/TEST_DB/data/tbs_02.dbf - wrote new name
 Datafile /oracle/TEST_DB/data/tbs_11.dbf - wrote new name
 Datafile /oracle/TEST_DB/data/tbs_12.dbf - wrote new name
 Datafile /oracle/TEST_DB/data/temp1.dbf - wrote new name
 Control File /oracle/TEST_DB/data/cf1.dbf - wrote new name
 Control File /oracle/TEST_DB/data/cf2.dbf - wrote new name
 Instance shut down

Database name changed to TEST_DB.
Modify parameter file and generate a new password file before restarting.
Successfully changed database name.
DBNEWID - Completed successfully.

If validation is not successful, then DBNEWID terminates and leaves the target
database intact. You can open the database, fix the error, and then either resume
the DBNEWID operation or continue using the database without changing the
database name. (For an example of what the output looks like for an unsuccessful
validation, see Step 3 in "Changing the DBID and Database Name" on page 18-2.)

4. Set the DB_NAME initialization parameter in the initialization parameter file (PFILE)
to the new database name.

5. Create a new password file.

6. Start up the database and resume normal use. For example:

STARTUP

Note: The DBNEWID utility does not change the server parameter
file (SPFILE). Therefore, if you use SPFILE to start your Oracle
database, then you must re-create the initialization parameter file
from the server parameter file, remove the server parameter file,
change the DB_NAME in the initialization parameter file, and then
re-create the server parameter file.

Changing the DBID and DBNAME of a Database

DBNEWID Utility 18-7

Because you have changed only the database name, and not the database ID, it is
not necessary to use the RESETLOGS option when you open the database. This
means that all previous backups are still usable.

Troubleshooting DBNEWID
If the DBNEWID utility succeeds in its validation stage but detects an error while
performing the requested change, then the utility stops and leaves the database in the
middle of the change. In this case, you cannot open the database until the DBNEWID
operation is either completed or reverted. DBNEWID displays messages indicating the
status of the operation.

Before continuing or reverting, fix the underlying cause of the error. Sometimes the
only solution is to restore the whole database from a recent backup and perform
recovery to the point in time before DBNEWID was started. This underscores the
importance of having a recent backup available before running DBNEWID.

If you choose to continue with the change, then re-execute your original command.
The DBNEWID utility resumes and attempts to continue the change until all data files
and control files have the new value or values. At this point, the database is shut
down. You should mount it before opening it with the RESETLOGS option.

If you choose to revert a DBNEWID operation, and if the reversion succeeds, then
DBNEWID reverts all performed changes and leaves the database in a mounted state.

If DBNEWID is run against a release 10.1 or later Oracle database, then a summary of
the operation is written to the alert file. For example, for a change of database name
and database ID, you might see something similar to the following:

*** DBNEWID utility started ***
DBID will be changed from 86997811 to new DBID of 1250452230 for
database PROD
DBNAME will be changed from PROD to new DBNAME of TEST_DB
Starting datafile conversion
Setting recovery target incarnation to 1
Datafile conversion complete
Database name changed to TEST_DB.
Modify parameter file and generate a new password file before restarting.
Database ID for database TEST_DB changed to 1250452230.
All previous backups and archived redo logs for this database are unusable.
Database has been shutdown, open with RESETLOGS option.
Successfully changed database name and ID.
*** DBNEWID utility finished successfully ***

For a change of just the database name, the alert file might show something similar to
the following:

*** DBNEWID utility started ***
DBNAME will be changed from PROD to new DBNAME of TEST_DB
Starting datafile conversion
Datafile conversion complete
Database name changed to TEST_DB.
Modify parameter file and generate a new password file before restarting.
Successfully changed database name.
*** DBNEWID utility finished successfully ***

In case of failure during DBNEWID the alert will also log the failure:
*** DBNEWID utility started ***
DBID will be changed from 86997811 to new DBID of 86966847 for database
AV3
Change of database ID failed.

DBNEWID Syntax

18-8 Oracle Database Utilities

Must finish change or REVERT changes before attempting any database
operation.
*** DBNEWID utility finished with errors ***

DBNEWID Syntax
The following diagrams show the syntax for the DBNEWID utility.

Parameters
Table 18–1 describes the parameters in the DBNEWID syntax.

Table 18–1 Parameters for the DBNEWID Utility

Parameter Description

TARGET Specifies the username and password used to connect to the database. The user
must have the SYSDBA privilege. If you are using operating system authentication,
then you can connect with the slash (/). If the $ORACLE_HOME and $ORACLE_SID
variables are not set correctly in the environment, then you can specify a secure
(IPC or BEQ) service to connect to the target database. A target database must be
specified in all invocations of the DBNEWID utility.

REVERT Specify YES to indicate that a failed change of DBID should be reverted (default is
NO). The utility signals an error if no change DBID operation is in progress on the
target database. A successfully completed change of DBID cannot be reverted.
REVERT=YES is valid only when a DBID change failed.

DBNAME=new_db_name Changes the database name of the database. You can change the DBID and the
DBNAME of a database at the same time. To change only the DBNAME, also
specify the SETNAME parameter.

SETNAME Specify YES to indicate that DBNEWID should change the database name of the
database but should not change the DBID (default is NO). When you specify
SETNAME=YES, the utility writes only to the target database control files.

LOGFILE=logfile Specifies that DBNEWID should write its messages to the specified file. By default
the utility overwrites the previous log. If you specify a log file, then DBNEWID
does not prompt for confirmation.

APPEND Specify YES to append log output to the existing log file (default is NO).

HELP Specify YES to print a list of the DBNEWID syntax options (default is NO).

nid TARGET =
username

/
password @ service_name

REVERT =
YES

NO

DBNAME = new_db_name

SETNAME =
YES

NO

LOGFILE = logfile

APPEND =
YES

NO HELP =
YES

NO

DBNEWID Syntax

DBNEWID Utility 18-9

Restrictions and Usage Notes
The DBNEWID utility has the following restrictions:

■ To change the DBID of a database, the database must be mounted and must have
been shut down consistently before mounting. In the case of an Oracle Real
Application Clusters database, the database must be mounted in NOPARALLEL
mode.

■ You must open the database with the RESETLOGS option after changing the DBID.
However, you do not have to open with the RESETLOGS option after changing only
the database name.

■ No other process should be running against the database when DBNEWID is
executing. If another session shuts down and starts the database, then DBNEWID
terminates unsuccessfully.

■ All online data files should be consistent without needing recovery.

■ Normal offline data files should be accessible and writable. If this is not the case,
then you must drop these files before invoking the DBNEWID utility.

■ All read-only tablespaces must be accessible and made writable at the operating
system level before invoking DBNEWID. If these tablespaces cannot be made
writable (for example, they are on a CD-ROM), then you must unplug the
tablespaces using the transportable tablespace feature and then plug them back in
the database before invoking the DBNEWID utility (see the Oracle Database
Administrator's Guide).

■ The DBNEWID utility does not change global database names. See
"Considerations for Global Database Names" on page 18-2.

Additional Restrictions for Releases Earlier Than Oracle Database 10g
The following additional restrictions apply if the DBNEWID utility is run against an
Oracle Database release earlier than 10.1:

■ The nid executable file should be owned and run by the Oracle owner because it
needs direct access to the data files and control files. If another user runs the
utility, then set the user ID to the owner of the data files and control files.

■ The DBNEWID utility must access the data files of the database directly through a
local connection. Although DBNEWID can accept a net service name, it cannot
change the DBID of a nonlocal database.

DBNEWID Syntax

18-10 Oracle Database Utilities

19

Using LogMiner to Analyze Redo Log Files 19-1

19 Using LogMiner to Analyze Redo Log Files

Oracle LogMiner, which is part of Oracle Database, enables you to query online and
archived redo log files through a SQL interface. Redo log files contain information
about the history of activity on a database.

This chapter contains the following sections:

■ LogMiner Benefits

■ Introduction to LogMiner

■ LogMiner Dictionary Files and Redo Log Files

■ Starting LogMiner

■ Querying V$LOGMNR_CONTENTS for Redo Data of Interest

■ Filtering and Formatting Data Returned to V$LOGMNR_CONTENTS

■ Reapplying DDL Statements Returned to V$LOGMNR_CONTENTS

■ Calling DBMS_LOGMNR.START_LOGMNR Multiple Times

■ Supplemental Logging

■ Accessing LogMiner Operational Information in Views

■ Steps in a Typical LogMiner Session

■ Examples Using LogMiner

■ Supported Datatypes, Storage Attributes, and Database and Redo Log File
Versions

This chapter describes LogMiner as it is used from the command line. You can also
access LogMiner through the Oracle LogMiner Viewer graphical user interface. Oracle
LogMiner Viewer is a part of Oracle Enterprise Manager. See the Oracle Enterprise
Manager online Help for more information about Oracle LogMiner Viewer.

LogMiner Benefits
All changes made to user data or to the database dictionary are recorded in the Oracle
redo log files so that database recovery operations can be performed.

Because LogMiner provides a well-defined, easy-to-use, and comprehensive relational
interface to redo log files, it can be used as a powerful data auditing tool, and also as a
sophisticated data analysis tool. The following list describes some key capabilities of
LogMiner:

■ Pinpointing when a logical corruption to a database, such as errors made at the
application level, may have begun. These might include errors such as those

Introduction to LogMiner

19-2 Oracle Database Utilities

where the wrong rows were deleted because of incorrect values in a WHERE clause,
rows were updated with incorrect values, the wrong index was dropped, and so
forth. For example, a user application could mistakenly update a database to give
all employees 100 percent salary increases rather than 10 percent increases, or a
database administrator (DBA) could accidently delete a critical system table. It is
important to know exactly when an error was made so that you know when to
initiate time-based or change-based recovery. This enables you to restore the
database to the state it was in just before corruption. See "Querying V$LOGMNR_
CONTENTS Based on Column Values" on page 19-13 for details about how you
can use LogMiner to accomplish this.

■ Determining what actions you would have to take to perform fine-grained
recovery at the transaction level. If you fully understand and take into account
existing dependencies, then it may be possible to perform a table-specific undo
operation to return the table to its original state. This is achieved by applying
table-specific reconstructed SQL statements that LogMiner provides in the reverse
order from which they were originally issued. See "Scenario 1: Using LogMiner to
Track Changes Made by a Specific User" on page 19-65 for an example.

Normally you would have to restore the table to its previous state, and then apply
an archived redo log file to roll it forward.

■ Performance tuning and capacity planning through trend analysis. You can
determine which tables get the most updates and inserts. That information
provides a historical perspective on disk access statistics, which can be used for
tuning purposes. See "Scenario 2: Using LogMiner to Calculate Table Access
Statistics" on page 19-66 for an example.

■ Performing postauditing. LogMiner can be used to track any data manipulation
language (DML) and data definition language (DDL) statements executed on the
database, the order in which they were executed, and who executed them.
(However, to use LogMiner for such a purpose, you need to have an idea when the
event occurred so that you can specify the appropriate logs for analysis; otherwise
you might have to mine a large number of redo log files, which can take a long
time. Consider using LogMiner as a complementary activity to auditing database
use. See the Oracle Database Administrator's Guide for information about database
auditing.)

Introduction to LogMiner
The following sections provide a brief introduction to LogMiner, including the
following topics:

■ LogMiner Configuration

■ Directing LogMiner Operations and Retrieving Data of Interest

The remaining sections in this chapter describe these concepts and related topics in
more detail.

LogMiner Configuration
There are four basic objects in a LogMiner configuration that you should be familiar
with: the source database, the mining database, the LogMiner dictionary, and the redo
log files containing the data of interest:

■ The source database is the database that produces all the redo log files that you
want LogMiner to analyze.

Introduction to LogMiner

Using LogMiner to Analyze Redo Log Files 19-3

■ The mining database is the database that LogMiner uses when it performs the
analysis.

■ The LogMiner dictionary allows LogMiner to provide table and column names,
instead of internal object IDs, when it presents the redo log data that you request.

LogMiner uses the dictionary to translate internal object identifiers and datatypes
to object names and external data formats. Without a dictionary, LogMiner returns
internal object IDs and presents data as binary data.

For example, consider the following SQL statement:

 INSERT INTO HR.JOBS(JOB_ID, JOB_TITLE, MIN_SALARY, MAX_SALARY)
 VALUES('IT_WT','Technical Writer', 4000, 11000);

Without the dictionary, LogMiner will display:

insert into "UNKNOWN"."OBJ# 45522"("COL 1","COL 2","COL 3","COL 4") values
(HEXTORAW('45465f4748'),HEXTORAW('546563686e6963616c20577269746572'),
HEXTORAW('c229'),HEXTORAW('c3020b'));

■ The redo log files contain the changes made to the database or database
dictionary.

Sample Configuration
Figure 19–1 shows a sample LogMiner configuration. In this figure, the source
database in Boston generates redo log files that are archived and shipped to a database
in San Francisco. A LogMiner dictionary has been extracted to these redo log files. The
mining database, where LogMiner will actually analyze the redo log files, is in San
Francisco. The Boston database is running Oracle9i, and the San Francisco database is
running Oracle Database 10g.

Figure 19–1 Sample LogMiner Database Configuration

Figure 19–1 shows just one valid LogMiner configuration. Other valid configurations
are those that use the same database for both the source and mining database, or use
another method for providing the data dictionary. These other data dictionary options
are described in "LogMiner Dictionary Options" on page 19-5.

Requirements
The following are requirements for the source and mining database, the data
dictionary, and the redo log files that LogMiner will mine:

■ Source and mining database

– Both the source database and the mining database must be running on the
same hardware platform.

– The mining database can be the same as, or completely separate from, the
source database.

Source
Database

Mining
Database

Boston San Francisco
Archived Redo Log Files

containing LogMiner dictionary

Introduction to LogMiner

19-4 Oracle Database Utilities

– The mining database must run the same release or a later release of the Oracle
Database software as the source database.

– The mining database must use the same character set (or a superset of the
character set) used by the source database.

■ LogMiner dictionary

– The dictionary must be produced by the same source database that generates
the redo log files that LogMiner will analyze.

■ All redo log files:

– Must be produced by the same source database.

– Must be associated with the same database RESETLOGS SCN.

– Must be from a release 8.0 or later Oracle Database. However, several of the
LogMiner features introduced as of release 9.0.1 work only with redo log files
produced on an Oracle9i or later database. See "Supported Databases and
Redo Log File Versions" on page 19-69.

LogMiner does not allow you to mix redo log files from different databases or to use a
dictionary from a different database than the one that generated the redo log files to be
analyzed.

Directing LogMiner Operations and Retrieving Data of Interest
You direct LogMiner operations using the DBMS_LOGMNR and DBMS_LOGMNR_D PL/SQL
packages, and retrieve data of interest using the V$LOGMNR_CONTENTS view, as follows:

1. Specify a LogMiner dictionary.

Use the DBMS_LOGMNR_D.BUILD procedure or specify the dictionary when you start
LogMiner (in Step 3), or both, depending on the type of dictionary you plan to use.

2. Specify a list of redo log files for analysis.

Use the DBMS_LOGMNR.ADD_LOGFILE procedure, or direct LogMiner to create a list of
log files for analysis automatically when you start LogMiner (in Step 3).

3. Start LogMiner.

Note: You must enable supplemental logging before generating
log files that will be analyzed by LogMiner.

When you enable supplemental logging, additional information is
recorded in the redo stream that is needed to make the information
in the redo log files useful to you. Therefore, at the very least, you
must enable minimal supplemental logging, as the following SQL
statement shows:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

To determine whether supplemental logging is enabled, query the
V$DATABASE view, as the following SQL statement shows:

SELECT SUPPLEMENTAL_LOG_DATA_MIN FROM V$DATABASE;

If the query returns a value of YES or IMPLICIT, then minimal
supplemental logging is enabled. See "Supplemental Logging" on
page 19-26 for complete information about supplemental logging.

LogMiner Dictionary Files and Redo Log Files

Using LogMiner to Analyze Redo Log Files 19-5

Use the DBMS_LOGMNR.START_LOGMNR procedure.

4. Request the redo data of interest.

Query the V$LOGMNR_CONTENTS view. (You must have the SELECT ANY
TRANSACTION privilege to query this view.)

5. End the LogMiner session.

Use the DBMS_LOGMNR.END_LOGMNR procedure.

You must have been granted the EXECUTE_CATALOG_ROLE role to use the LogMiner
PL/SQL packages and to query the V$LOGMNR_CONTENTS view.

LogMiner Dictionary Files and Redo Log Files
Before you begin using LogMiner, it is important to understand how LogMiner works
with the LogMiner dictionary file (or files) and redo log files. This will help you to get
accurate results and to plan the use of your system resources.

The following concepts are discussed in this section:

■ LogMiner Dictionary Options

■ Redo Log File Options

LogMiner Dictionary Options
LogMiner requires a dictionary to translate object IDs into object names when it
returns redo data to you. LogMiner gives you three options for supplying the
dictionary:

■ Using the Online Catalog

Oracle recommends that you use this option when you will have access to the
source database from which the redo log files were created and when no changes
to the column definitions in the tables of interest are anticipated. This is the most
efficient and easy-to-use option.

■ Extracting a LogMiner Dictionary to the Redo Log Files

Oracle recommends that you use this option when you do not expect to have
access to the source database from which the redo log files were created, or if you
anticipate that changes will be made to the column definitions in the tables of
interest.

Note: When mining a specified time or SCN range of interest within
archived logs generated by an Oracle RAC database, you must ensure
that you have specified all archived logs from all redo threads that
were active during that time or SCN range. If you fail to do this, then
any queries of V$LOGMNR_CONTENTS return only partial results (based
on the archived logs specified to LogMiner through the DBMS_
LOGMNR.ADD_LOGFILE procedure). This restriction is also in effect when
you are mining the archived logs at the source database using the
CONTINUOUS_MINE option. You should only use CONTINUOUS_MINE on an
Oracle RAC database if no thread is being enabled or disabled.

See Also: "Steps in a Typical LogMiner Session" on page 19-37 for
an example of using LogMiner

LogMiner Dictionary Files and Redo Log Files

19-6 Oracle Database Utilities

■ Extracting the LogMiner Dictionary to a Flat File

This option is maintained for backward compatibility with previous releases. This
option does not guarantee transactional consistency. Oracle recommends that you
use either the online catalog or extract the dictionary from redo log files instead.

Figure 19–2 shows a decision tree to help you select a LogMiner dictionary, depending
on your situation.

Figure 19–2 Decision Tree for Choosing a LogMiner Dictionary

The following sections provide instructions on how to specify each of the available
dictionary options.

Using the Online Catalog
To direct LogMiner to use the dictionary currently in use for the database, specify the
online catalog as your dictionary source when you start LogMiner, as follows:

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 OPTIONS => DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG);

In addition to using the online catalog to analyze online redo log files, you can use it to
analyze archived redo log files, if you are on the same system that generated the
archived redo log files.

The online catalog contains the latest information about the database and may be the
fastest way to start your analysis. Because DDL operations that change important
tables are somewhat rare, the online catalog generally contains the information you
need for your analysis.

Yes

Yes

No

No

Will

have access to
the source
database?

LogMiner

Use the dictionary
in the online catalog.

Will

definitions be
unchanged?

column

Will
the database

be open?No

Will
the database
be open for

write
access?

Yes

No

Yes

Use the dictionary
in the redo log files.

Use the dictionary
extracted to a flat file.

No

Might

definitions
change?

column

Yes

Will
the instance
be started?

Yes

LogMiner Dictionary Files and Redo Log Files

Using LogMiner to Analyze Redo Log Files 19-7

Remember, however, that the online catalog can only reconstruct SQL statements that
are executed on the latest version of a table. As soon as a table is altered, the online
catalog no longer reflects the previous version of the table. This means that LogMiner
will not be able to reconstruct any SQL statements that were executed on the previous
version of the table. Instead, LogMiner generates nonexecutable SQL (including
hexadecimal-to-raw formatting of binary values) in the SQL_REDO column of the
V$LOGMNR_CONTENTS view similar to the following example:

insert into HR.EMPLOYEES(col#1, col#2) values (hextoraw('4a6f686e20446f65'),
hextoraw('c306'));"

The online catalog option requires that the database be open.

The online catalog option is not valid with the DDL_DICT_TRACKING option of DBMS_
LOGMNR.START_LOGMNR.

Extracting a LogMiner Dictionary to the Redo Log Files
To extract a LogMiner dictionary to the redo log files, the database must be open and
in ARCHIVELOG mode and archiving must be enabled. While the dictionary is being
extracted to the redo log stream, no DDL statements can be executed. Therefore, the
dictionary extracted to the redo log files is guaranteed to be consistent (whereas the
dictionary extracted to a flat file is not).

To extract dictionary information to the redo log files, execute the PL/SQL DBMS_
LOGMNR_D.BUILD procedure with the STORE_IN_REDO_LOGS option. Do not specify a file
name or location.

EXECUTE DBMS_LOGMNR_D.BUILD(-
 OPTIONS=> DBMS_LOGMNR_D.STORE_IN_REDO_LOGS);

The process of extracting the dictionary to the redo log files does consume database
resources, but if you limit the extraction to off-peak hours, then this should not be a
problem, and it is faster than extracting to a flat file. Depending on the size of the
dictionary, it may be contained in multiple redo log files. If the relevant redo log files
have been archived, then you can find out which redo log files contain the start and
end of an extracted dictionary. To do so, query the V$ARCHIVED_LOG view, as follows:

SELECT NAME FROM V$ARCHIVED_LOG WHERE DICTIONARY_BEGIN='YES';
SELECT NAME FROM V$ARCHIVED_LOG WHERE DICTIONARY_END='YES';

Specify the names of the start and end redo log files, and possibly other logs in
between them, with the ADD_LOGFILE procedure when you are preparing to begin a
LogMiner session.

Oracle recommends that you periodically back up the redo log files so that the
information is saved and available at a later date. Ideally, this will not involve any
extra steps because if your database is being properly managed, then there should
already be a process in place for backing up and restoring archived redo log files.
Again, because of the time required, it is good practice to do this during off-peak
hours.

See Also:

■ Oracle Database Backup and Recovery User's Guide for more
information about ARCHIVELOG mode

■ Oracle Database PL/SQL Packages and Types Reference for a
complete description of DBMS_LOGMNR_D.BUILD

LogMiner Dictionary Files and Redo Log Files

19-8 Oracle Database Utilities

Extracting the LogMiner Dictionary to a Flat File
When the LogMiner dictionary is in a flat file, fewer system resources are used than
when it is contained in the redo log files. Oracle recommends that you regularly back
up the dictionary extract to ensure correct analysis of older redo log files.

To extract database dictionary information to a flat file, use the DBMS_LOGMNR_D.BUILD
procedure with the STORE_IN_FLAT_FILE option.

Be sure that no DDL operations occur while the dictionary is being built.

The following steps describe how to extract a dictionary to a flat file. Steps 1 and 2 are
preparation steps. You only need to do them once, and then you can extract a
dictionary to a flat file as many times as you want to.

1. The DBMS_LOGMNR_D.BUILD procedure requires access to a directory where it can
place the dictionary file. Because PL/SQL procedures do not normally access user
directories, you must specify a directory for use by the DBMS_LOGMNR_D.BUILD
procedure or the procedure will fail. To specify a directory, set the initialization
parameter, UTL_FILE_DIR, in the initialization parameter file.

For example, to set UTL_FILE_DIR to use /oracle/database as the directory where
the dictionary file is placed, place the following in the initialization parameter file:

UTL_FILE_DIR = /oracle/database

Remember that for the changes to the initialization parameter file to take effect,
you must stop and restart the database.

2. If the database is closed, then use SQL*Plus to mount and open the database
whose redo log files you want to analyze. For example, entering the SQL STARTUP
command mounts and opens the database:

STARTUP

3. Execute the PL/SQL procedure DBMS_LOGMNR_D.BUILD. Specify a file name for the
dictionary and a directory path name for the file. This procedure creates the
dictionary file. For example, enter the following to create the file dictionary.ora
in /oracle/database:

EXECUTE DBMS_LOGMNR_D.BUILD('dictionary.ora', -
 '/oracle/database/', -
 DBMS_LOGMNR_D.STORE_IN_FLAT_FILE);

You could also specify a file name and location without specifying the STORE_IN_
FLAT_FILE option. The result would be the same.

Redo Log File Options
To mine data in the redo log files, LogMiner needs information about which redo log
files to mine. Changes made to the database that are found in these redo log files are
delivered to you through the V$LOGMNR_CONTENTS view.

You can direct LogMiner to automatically and dynamically create a list of redo log files
to analyze, or you can explicitly specify a list of redo log files for LogMiner to analyze,
as follows:

■ Automatically

If LogMiner is being used on the source database, then you can direct LogMiner to
find and create a list of redo log files for analysis automatically. Use the
CONTINUOUS_MINE option when you start LogMiner with the DBMS_LOGMNR.START_
LOGMNR procedure, and specify a time or SCN range. Although this example

Starting LogMiner

Using LogMiner to Analyze Redo Log Files 19-9

specifies the dictionary from the online catalog, any LogMiner dictionary can be
used.

LogMiner will use the database control file to find and add redo log files that
satisfy your specified time or SCN range to the LogMiner redo log file list. For
example:

ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY HH24:MI:SS';
EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 STARTTIME => '01-Jan-2003 08:30:00', -
 ENDTIME => '01-Jan-2003 08:45:00', -
 OPTIONS => DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG + -
 DBMS_LOGMNR.CONTINUOUS_MINE);

 (To avoid the need to specify the date format in the PL/SQL call to the DBMS_
LOGMNR.START_LOGMNR procedure, this example uses the SQL ALTER SESSION SET
NLS_DATE_FORMAT statement first.)

You can also direct LogMiner to automatically build a list of redo log files to
analyze by specifying just one redo log file using DBMS_LOGMNR.ADD_LOGFILE, and
then specifying the CONTINUOUS_MINE option when you start LogMiner. The
previously described method is more typical, however.

■ Manually

Use the DBMS_LOGMNR.ADD_LOGFILE procedure to manually create a list of redo log
files before you start LogMiner. After the first redo log file has been added to the
list, each subsequently added redo log file must be from the same database and
associated with the same database RESETLOGS SCN. When using this method,
LogMiner need not be connected to the source database.

For example, to start a new list of redo log files, specify the NEW option of the DBMS_
LOGMNR.ADD_LOGFILE PL/SQL procedure to signal that this is the beginning of a
new list. For example, enter the following to specify /oracle/logs/log1.f:

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/oracle/logs/log1.f', -
 OPTIONS => DBMS_LOGMNR.NEW);

If desired, add more redo log files by specifying the ADDFILE option of the PL/SQL
DBMS_LOGMNR.ADD_LOGFILE procedure. For example, enter the following to add
/oracle/logs/log2.f:

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/oracle/logs/log2.f', -
 OPTIONS => DBMS_LOGMNR.ADDFILE);

To determine which redo log files are being analyzed in the current LogMiner
session, you can query the V$LOGMNR_LOGS view, which contains one row for each
redo log file.

Starting LogMiner
You call the DBMS_LOGMNR.START_LOGMNR procedure to start LogMiner. Because the
options available with the DBMS_LOGMNR.START_LOGMNR procedure allow you to control

Note: The CONTINUOUS_MINE option requires that the database be
mounted and that archiving be enabled.

Querying V$LOGMNR_CONTENTS for Redo Data of Interest

19-10 Oracle Database Utilities

output to the V$LOGMNR_CONTENTS view, you must call DBMS_LOGMNR.START_LOGMNR
before querying the V$LOGMNR_CONTENTS view.

When you start LogMiner, you can:

■ Specify how LogMiner should filter data it returns (for example, by starting and
ending time or SCN value)

■ Specify options for formatting the data returned by LogMiner

■ Specify the LogMiner dictionary to use

The following list is a summary of LogMiner settings that you can specify with the
OPTIONS parameter to DBMS_LOGMNR.START_LOGMNR and where to find more information
about them.

■ DICT_FROM_ONLINE_CATALOG — See "Using the Online Catalog" on page 19-6

■ DICT_FROM_REDO_LOGS — See "Start LogMiner" on page 19-39

■ CONTINUOUS_MINE — See "Redo Log File Options" on page 19-8

■ COMMITTED_DATA_ONLY — See "Showing Only Committed Transactions" on
page 19-20

■ SKIP_CORRUPTION — See "Skipping Redo Corruptions" on page 19-22

■ NO_SQL_DELIMITER — See "Formatting Reconstructed SQL Statements for
Re-execution" on page 19-23

■ PRINT_PRETTY_SQL — See "Formatting the Appearance of Returned Data for
Readability" on page 19-24

■ NO_ROWID_IN_STMT — See "Formatting Reconstructed SQL Statements for
Re-execution" on page 19-23

■ DDL_DICT_TRACKING — See "Tracking DDL Statements in the LogMiner Dictionary"
on page 19-31

When you execute the DBMS_LOGMNR.START_LOGMNR procedure, LogMiner checks to
ensure that the combination of options and parameters that you have specified is valid
and that the dictionary and redo log files that you have specified are available.
However, the V$LOGMNR_CONTENTS view is not populated until you query the view, as
described in "How the V$LOGMNR_CONTENTS View Is Populated" on page 19-12.

Note that parameters and options are not persistent across calls to DBMS_
LOGMNR.START_LOGMNR. You must specify all desired parameters and options (including
SCN and time ranges) each time you call DBMS_LOGMNR.START_LOGMNR.

Querying V$LOGMNR_CONTENTS for Redo Data of Interest
You access the redo data of interest by querying the V$LOGMNR_CONTENTS view. (Note
that you must have the SELECT ANY TRANSACTION privilege to query V$LOGMNR_
CONTENTS.) This view provides historical information about changes made to the
database, including (but not limited to) the following:

■ The type of change made to the database: INSERT, UPDATE, DELETE, or DDL
(OPERATION column).

■ The SCN at which a change was made (SCN column).

■ The SCN at which a change was committed (COMMIT_SCN column).

■ The transaction to which a change belongs (XIDUSN, XIDSLT, and XIDSQN columns).

Querying V$LOGMNR_CONTENTS for Redo Data of Interest

Using LogMiner to Analyze Redo Log Files 19-11

■ The table and schema name of the modified object (SEG_NAME and SEG_OWNER
columns).

■ The name of the user who issued the DDL or DML statement to make the change
(USERNAME column).

■ If the change was due to a SQL DML statement, the reconstructed SQL statements
showing SQL DML that is equivalent (but not necessarily identical) to the SQL
DML used to generate the redo records (SQL_REDO column).

■ If a password is part of the statement in a SQL_REDO column, then the password is
encrypted. SQL_REDO column values that correspond to DDL statements are always
identical to the SQL DDL used to generate the redo records.

■ If the change was due to a SQL DML change, the reconstructed SQL statements
showing the SQL DML statements needed to undo the change (SQL_UNDO column).

SQL_UNDO columns that correspond to DDL statements are always NULL. The SQL_
UNDO column may be NULL also for some datatypes and for rolled back operations.

Example of Querying V$LOGMNR_CONTENTS
Suppose you wanted to find out about any delete operations that a user named Ron
had performed on the oe.orders table. You could issue a SQL query similar to the
following:

SELECT OPERATION, SQL_REDO, SQL_UNDO
 FROM V$LOGMNR_CONTENTS
 WHERE SEG_OWNER = 'OE' AND SEG_NAME = 'ORDERS' AND
 OPERATION = 'DELETE' AND USERNAME = 'RON';

The following output would be produced. The formatting may be different on your
display than that shown here.

OPERATION SQL_REDO SQL_UNDO

DELETE delete from "OE"."ORDERS" insert into "OE"."ORDERS"
 where "ORDER_ID" = '2413' ("ORDER_ID","ORDER_MODE",
 and "ORDER_MODE" = 'direct' "CUSTOMER_ID","ORDER_STATUS",
 and "CUSTOMER_ID" = '101' "ORDER_TOTAL","SALES_REP_ID",
 and "ORDER_STATUS" = '5' "PROMOTION_ID")
 and "ORDER_TOTAL" = '48552' values ('2413','direct','101',
 and "SALES_REP_ID" = '161' '5','48552','161',NULL);
 and "PROMOTION_ID" IS NULL
 and ROWID = 'AAAHTCAABAAAZAPAAN';

DELETE delete from "OE"."ORDERS" insert into "OE"."ORDERS"
 where "ORDER_ID" = '2430' ("ORDER_ID","ORDER_MODE",

Note: LogMiner supports Oracle Advanced Security transparent
data encryption (TDE) in that V$LOGMNR_CONTENTS shows DML
operations performed on tables with encrypted columns (including
the encrypted columns being updated), provided the LogMiner data
dictionary contains the metadata for the object in question and
provided the appropriate master key is in the Oracle wallet. The
wallet must be open or V$LOGMNR_CONTENTS cannot interpret the
associated redo records. TDE support is not available if the database is
not open (either read-only or read-write). See Oracle Database Advanced
Security Administrator's Guide for more information about transparent
data encryption.

Querying V$LOGMNR_CONTENTS for Redo Data of Interest

19-12 Oracle Database Utilities

 and "ORDER_MODE" = 'direct' "CUSTOMER_ID","ORDER_STATUS",
 and "CUSTOMER_ID" = '101' "ORDER_TOTAL","SALES_REP_ID",
 and "ORDER_STATUS" = '8' "PROMOTION_ID")
 and "ORDER_TOTAL" = '29669.9' values('2430','direct','101',
 and "SALES_REP_ID" = '159' '8','29669.9','159',NULL);
 and "PROMOTION_ID" IS NULL
 and ROWID = 'AAAHTCAABAAAZAPAAe';

This output shows that user Ron deleted two rows from the oe.orders table. The
reconstructed SQL statements are equivalent, but not necessarily identical, to the
actual statement that Ron issued. The reason for this is that the original WHERE clause is
not logged in the redo log files, so LogMiner can only show deleted (or updated or
inserted) rows individually.

Therefore, even though a single DELETE statement may have been responsible for the
deletion of both rows, the output in V$LOGMNR_CONTENTS does not reflect that. Thus, the
actual DELETE statement may have been DELETE FROM OE.ORDERS WHERE CUSTOMER_ID
='101' or it might have been DELETE FROM OE.ORDERS WHERE PROMOTION_ID = NULL.

How the V$LOGMNR_CONTENTS View Is Populated
The V$LOGMNR_CONTENTS fixed view is unlike other views in that it is not a selective
presentation of data stored in a table. Instead, it is a relational presentation of the data
that you request from the redo log files. LogMiner populates the view only in response
to a query against it. You must successfully start LogMiner before you can query
V$LOGMNR_CONTENTS.

When a SQL select operation is executed against the V$LOGMNR_CONTENTS view, the
redo log files are read sequentially. Translated information from the redo log files is
returned as rows in the V$LOGMNR_CONTENTS view. This continues until either the filter
criteria specified at startup are met or the end of the redo log file is reached.

In some cases, certain columns in V$LOGMNR_CONTENTS may not be populated. For
example:

■ The TABLE_SPACE column is not populated for rows where the value of the
OPERATION column is DDL. This is because a DDL may operate on more than one
tablespace. For example, a table can be created with multiple partitions spanning
multiple table spaces; hence it would not be accurate to populate the column.

■ LogMiner does not generate SQL redo or SQL undo for temporary tables. The
SQL_REDO column will contain the string "/* No SQL_REDO for temporary tables
/" and the SQL_UNDO column will contain the string "/ No SQL_UNDO for
temporary tables */".

LogMiner returns all the rows in SCN order unless you have used the COMMITTED_
DATA_ONLY option to specify that only committed transactions should be retrieved.
SCN order is the order normally applied in media recovery.

See Also: "Showing Only Committed Transactions" on page 19-20
for more information about the COMMITTED_DATA_ONLY option to
DBMS_LOGMNR.START_LOGMNR

Querying V$LOGMNR_CONTENTS for Redo Data of Interest

Using LogMiner to Analyze Redo Log Files 19-13

For the reasons stated in the previous note, Oracle recommends that you create a table
to temporarily hold the results from a query of V$LOGMNR_CONTENTS if you need to
maintain the data for further analysis, particularly if the amount of data returned by a
query is small in comparison to the amount of redo data that LogMiner must analyze
to provide that data.

Querying V$LOGMNR_CONTENTS Based on Column Values
LogMiner lets you make queries based on column values. For instance, you can
perform a query to show all updates to the hr.employees table that increase salary
more than a certain amount. Data such as this can be used to analyze system behavior
and to perform auditing tasks.

LogMiner data extraction from redo log files is performed using two mine functions:
DBMS_LOGMNR.MINE_VALUE and DBMS_LOGMNR.COLUMN_PRESENT. Support for these mine
functions is provided by the REDO_VALUE and UNDO_VALUE columns in the V$LOGMNR_
CONTENTS view.

The following is an example of how you could use the MINE_VALUE function to select
all updates to hr.employees that increased the salary column to more than twice its
original value:

SELECT SQL_REDO FROM V$LOGMNR_CONTENTS
 WHERE
 SEG_NAME = 'EMPLOYEES' AND
 SEG_OWNER = 'HR' AND
 OPERATION = 'UPDATE' AND
 DBMS_LOGMNR.MINE_VALUE(REDO_VALUE, 'HR.EMPLOYEES.SALARY') >
 2*DBMS_LOGMNR.MINE_VALUE(UNDO_VALUE, 'HR.EMPLOYEES.SALARY');

As shown in this example, the MINE_VALUE function takes two arguments:

■ The first one specifies whether to mine the redo (REDO_VALUE) or undo (UNDO_
VALUE) portion of the data. The redo portion of the data is the data that is in the
column after an insert, update, or delete operation; the undo portion of the data is
the data that was in the column before an insert, update, or delete operation. It
may help to think of the REDO_VALUE as the new value and the UNDO_VALUE as the
old value.

■ The second argument is a string that specifies the fully qualified name of the
column to be mined (in this case, hr.employees.salary). The MINE_VALUE function
always returns a string that can be converted back to the original datatype.

Note: Because LogMiner populates the V$LOGMNR_CONTENTS view
only in response to a query and does not store the requested data in
the database, the following is true:

■ Every time you query V$LOGMNR_CONTENTS, LogMiner analyzes
the redo log files for the data you request.

■ The amount of memory consumed by the query is not
dependent on the number of rows that must be returned to
satisfy a query.

■ The time it takes to return the requested data is dependent on
the amount and type of redo log data that must be mined to
find that data.

Querying V$LOGMNR_CONTENTS for Redo Data of Interest

19-14 Oracle Database Utilities

The Meaning of NULL Values Returned by the MINE_VALUE Function
If the MINE_VALUE function returns a NULL value, then it can mean either:

■ The specified column is not present in the redo or undo portion of the data.

■ The specified column is present and has a null value.

To distinguish between these two cases, use the DBMS_LOGMNR.COLUMN_PRESENT function
which returns a 1 if the column is present in the redo or undo portion of the data.
Otherwise, it returns a 0. For example, suppose you wanted to find out the increment
by which the values in the salary column were modified and the corresponding
transaction identifier. You could issue the following SQL query:

SELECT
 (XIDUSN || '.' || XIDSLT || '.' || XIDSQN) AS XID,
 (DBMS_LOGMNR.MINE_VALUE(REDO_VALUE, 'HR.EMPLOYEES.SALARY') -
 DBMS_LOGMNR.MINE_VALUE(UNDO_VALUE, 'HR.EMPLOYEES.SALARY')) AS INCR_SAL
 FROM V$LOGMNR_CONTENTS
 WHERE
 OPERATION = 'UPDATE' AND
 DBMS_LOGMNR.COLUMN_PRESENT(REDO_VALUE, 'HR.EMPLOYEES.SALARY') = 1 AND
 DBMS_LOGMNR.COLUMN_PRESENT(UNDO_VALUE, 'HR.EMPLOYEES.SALARY') = 1;

Usage Rules for the MINE_VALUE and COLUMN_PRESENT Functions
The following usage rules apply to the MINE_VALUE and COLUMN_PRESENT functions:

■ They can only be used within a LogMiner session.

■ They must be invoked in the context of a select operation from the V$LOGMNR_
CONTENTS view.

■ They do not support LONG, LONG RAW, CLOB, BLOB, NCLOB, ADT, or COLLECTION
datatypes.

Querying V$LOGMNR_CONTENTS Based on XMLType Columns and Tables
LogMiner supports redo generated for XMLType columns. XMLType data stored as CLOB
is supported when redo is generated at a compatibility setting of 11.0.0.0 or higher.
XMLType data stored as object-relational and binary XML is supported for redo
generated at a compatibility setting of 11.2.0.3 and higher.

LogMiner presents the SQL_REDO in V$LOGMNR_CONTENTS in different ways depending
on the XMLType storage. In all cases, the contents of the SQL_REDO column, in
combination with the STATUS column, require careful scrutiny, and usually require
reassembly before a SQL or PL/SQL statement can be generated to redo the change.
There may be cases when it is not possible to use the SQL_REDO data to construct such a
change. The examples in the following subsections are based on XMLType stored as
CLOB which is generally the simplest to use for reconstruction of the complete row
change.

Querying V$LOGMNR_CONTENTS For Changes to Tables With XMLType
Columns
The example in this section is for a table named XML_CLOB_COL_TAB that has the
following columns:

■ f1 NUMBER

■ f2 VARCHAR2(100)

■ f3 XMLTYPE

Querying V$LOGMNR_CONTENTS for Redo Data of Interest

Using LogMiner to Analyze Redo Log Files 19-15

■ f4 XMLTYPE

■ f5 VARCHAR2(10)

Assume that a LogMiner session has been started with the logs and with the
COMMITED_DATA_ONLY option. The following query is executed against V$LOGMNR_
CONTENTS for changes to the XML_CLOB_COL_TAB table.

SELECT OPERATION, STATUS, SQL_REDO FROM V$LOGMNR_CONTENTS
 WHERE SEG_OWNER = 'SCOTT' AND TABLE_NAME = 'XML_CLOB_COL_TAB';

The query output looks similar to the following:

OPERATION STATUS SQL_REDO

INSERT 0 insert into "SCOTT"."XML_CLOB_COL_TAB"("F1","F2","F5") values
 ('5010','Aho40431','PETER')

XML DOC BEGIN 5 update "SCOTT"."XML_CLOB_COL_TAB" a set a."F3" = XMLType(:1)
 where a."F1" = '5010' and a."F2" = 'Aho40431' and a."F5" = 'PETER'

XML DOC WRITE 5 XML Data

XML DOC WRITE 5 XML Data

XML DOC WRITE 5 XML Data

XML DOC END 5

In the SQL_REDO columns for the XML DOC WRITE operations there will be actual data for
the XML document. It will not be the string 'XML Data'.

This output shows that the general model for an insert into a table with an XMLType
column is the following:

1. An initial insert with all of the scalar columns.

2. An XML DOC BEGIN operation with an update statement that sets the value for one
XMLType column using a bind variable.

3. One or more XML DOC WRITE operations with the data for the XML document.

4. An XML DOC END operation to indicate that all of the data for that XML document
has been seen.

5. If there is more than one XMLType column in the table, then steps 2 through 4 will
be repeated for each XMLType column that is modified by the original DML.

If the XML document is not stored as an out-of-line column, then there will be no XML
DOC BEGIN, XML DOC WRITE, or XML DOC END operations for that column. The document
will be included in an update statement similar to the following:

OPERATION STATUS SQL_REDO

UPDATE 0 update "SCOTT"."XML_CLOB_COL_TAB" a
 set a."F3" = XMLType('<?xml version="1.0"?>
 <PO pono="1">
 <PNAME>Po_99</PNAME>
 <CUSTNAME>Dave Davids</CUSTNAME>
 </PO>')
 where a."F1" = '5006' and a."F2" = 'Janosik' and a."F5" = 'MMM'

Querying V$LOGMNR_CONTENTS for Redo Data of Interest

19-16 Oracle Database Utilities

Queries V$LOGMNR_CONTENTS For Changes to XMLType Tables
DMLs to XMLType tables are slightly different from DMLs to XMLType columns. The
XML document represents the value for the row in the XMLType table. Unlike the
XMLType column case, an initial insert cannot be done which is then followed by an
update containing the XML document. Rather, the whole document must be
assembled before anything can be inserted into the table.

Another difference for XMLType tables is the presence of the OBJECT_ID column. An
object identifier is used to uniquely identify every object in an object table. For XMLType
tables stored as CLOBs, this value is generated by Oracle Database when the row is
inserted into the table. The OBJECT_ID value cannot be directly inserted into the table
using SQL. Therefore, LogMiner cannot generate SQL_REDO which is executable that
includes this value.

The V$LOGMNR_CONTENTS view has a new OBJECT_ID column which is populated for
changes to XMLType tables. This value is the object identifier from the original table.
However, even if this same XML document is inserted into the same XMLType table, a
new object identifier will be generated. The SQL_REDO for subsequent DMLs, such as
updates and deletes, on the XMLType table will include the object identifier in the WHERE
clause to uniquely identify the row from the original table.

The following shows an example of mining changes to an XMLType table stored as
CLOB:

select operation, status, object_id, sql_redo from v$logmnr_contents
where seg_owner = 'SCOTT' and table_name = 'XML_TYPE_CLOB_TAB';

OPERATION STATUS OBJECT_ID SQL_REDO

INSERT 2 300A9394B0F7B2D0E040578CF5025CC3 insert into "SCOTT"."XML_TYPE_CLOB_TAB"
 values(EMPTY_CLOB())

XML DOC BEGIN 5 300A9394B0F7B2D0E040578CF5025CC3 insert into "SCOTT"."XML_TYPE_CLOB_TAB"
 values (XMLType(:1)

XML DOC WRITE 5 300A9394B0F7B2D0E040578CF5025CC3 XML Data

XML DOC WRITE 5 300A9394B0F7B2D0E040578CF5025CC3 XML Data

XML DOC WRITE 5 300A9394B0F7B2D0E040578CF5025CC3 XML Data

XML DOC END 5

The general pattern is very similar to XMLType columns. However, there are a few key
differences. The first is that now the OBJECT_ID column is populated. The second
difference is that there is an initial insert, but its status is 2 for INVALID_SQL. This
indicates that this record occurs in the redo as a placeholder for the change to come,
but that the SQL generated for this change should not be applied. The SQL_REDO from
the XML DOC BEGIN operation reflects the changes that were made to the row when
used with the assembled XML document.

If the XML document is not stored as an out-of-line column, then there will be no XML
DOC BEGIN, XML DOC WRITE, or XML DOC END operations for that document. The
document will be included in an INSERT statement similar to the following:

OPERATION STATUS OBJECT_ID SQL_REDO

INSERT 2 300AD8CECBA75ACAE040578CF502640C insert into "SCOTT"."XML_TYPE_CLOB_TAB"
 values (EMPTY_CLOB())

Querying V$LOGMNR_CONTENTS for Redo Data of Interest

Using LogMiner to Analyze Redo Log Files 19-17

INSERT 0 300AD8CECBA75ACAE040578CF502640C insert into "SCOTT"."XML_TYPE_CLOB_TAB"
 values (XMLType(
 '<?xml version="1.0"?>
 <PO pono="1">
 <PNAME>Po_99</PNAME>
 <CUSTNAME>
 Dave Davids
 </CUSTNAME>
 </PO>'))

Restrictions When Using LogMiner With XMLType Data
Mining XMLType data should only be done when using the DBMS_LOGMNR.COMMITTED_
DATA_ONLY option. Otherwise, incomplete changes could be displayed or changes
which should be displayed as XML might be displayed as CLOB changes due to
missing parts of the row change. This can lead to incomplete and invalid SQL_REDO for
these SQL DML statements.

The SQL_UNDO column is not populated for changes to XMLType data.

Example of a PL/SQL Procedure for Assembling XMLType Data
The example presented in this section shows a procedure that can be used to mine and
assemble XML redo for tables that contain out of line XML data. This shows how to
assemble the XML data using a temporary LOB. Once the XML document is
assembled, it can be used in a meaningful way. This example queries the assembled
document for the EmployeeName element and then stores the returned name, the XML
document and the SQL_REDO for the original DML in the EMPLOYEE_XML_DOCS table.

Before calling this procedure, all of the relevant logs must be added to a LogMiner
session and DBMS_LOGMNR.START_LOGMNR() must be called with the COMMITTED_DATA_
ONLY option. The MINE_AND_ASSEMBLE() procedure can then be called with the schema
and table name of the table that has XML data to be mined.

-- table to store assembled XML documents
create table employee_xml_docs (
 employee_name varchar2(100),
 sql_stmt varchar2(4000),
 xml_doc SYS.XMLType);

-- procedure to assemble the XML documents
create or replace procedure mine_and_assemble(
 schemaname in varchar2,
 tablename in varchar2)
AS
 loc_c CLOB;
 row_op VARCHAR2(100);
 row_status NUMBER;
 stmt VARCHAR2(4000);
 row_redo VARCHAR2(4000);
 xml_data VARCHAR2(32767 CHAR);
 data_len NUMBER;
 xml_lob clob;
 xml_doc XMLType;

Note: This procedure is an example only and is simplified. It is only
intended to illustrate that DMLs to tables with XMLType data can be
mined and assembled using LogMiner.

Querying V$LOGMNR_CONTENTS for Redo Data of Interest

19-18 Oracle Database Utilities

BEGIN

-- Look for the rows in V$LOGMNR_CONTENTS that are for the appropriate schema
-- and table name but limit it to those that are valid sql or that need assembly
-- because they are XML documents.

 For item in (SELECT operation, status, sql_redo FROM v$logmnr_contents
 where seg_owner = schemaname and table_name = tablename
 and status IN (DBMS_LOGMNR.VALID_SQL, DBMS_LOGMNR.ASSEMBLY_REQUIRED_SQL))
 LOOP
 row_op := item.operation;
 row_status := item.status;
 row_redo := item.sql_redo;

 CASE row_op

 WHEN 'XML DOC BEGIN' THEN
 BEGIN
 -- save statement and begin assembling XML data
 stmt := row_redo;
 xml_data := '';
 data_len := 0;
 DBMS_LOB.CreateTemporary(xml_lob, TRUE);
 END;

 WHEN 'XML DOC WRITE' THEN
 BEGIN
 -- Continue to assemble XML data
 xml_data := xml_data || row_redo;
 data_len := data_len + length(row_redo);
 DBMS_LOB.WriteAppend(xml_lob, length(row_redo), row_redo);
 END;

 WHEN 'XML DOC END' THEN
 BEGIN
 -- Now that assembly is complete, we can use the XML document
 xml_doc := XMLType.createXML(xml_lob);
 insert into employee_xml_docs values
 (extractvalue(xml_doc, '/EMPLOYEE/NAME'), stmt, xml_doc);
 commit;

 -- reset
 xml_data := '';
 data_len := 0;
 xml_lob := NULL;
 END;

 WHEN 'INSERT' THEN
 BEGIN
 stmt := row_redo;
 END;

 WHEN 'UPDATE' THEN
 BEGIN
 stmt := row_redo;
 END;

 WHEN 'INTERNAL' THEN
 DBMS_OUTPUT.PUT_LINE('Skip rows marked INTERNAL');

Filtering and Formatting Data Returned to V$LOGMNR_CONTENTS

Using LogMiner to Analyze Redo Log Files 19-19

 ELSE
 BEGIN
 stmt := row_redo;
 DBMS_OUTPUT.PUT_LINE('Other - ' || stmt);
 IF row_status != DBMS_LOGMNR.VALID_SQL then
 DBMS_OUTPUT.PUT_LINE('Skip rows marked non-executable');
 ELSE
 dbms_output.put_line('Status : ' || row_status);
 END IF;
 END;

 END CASE;

 End LOOP;

End;
/

show errors;

This procedure can then be called to mine the changes to the SCOTT.XML_DATA_TAB and
apply the DMLs.

EXECUTE MINE_AND_ASSEMBLE ('SCOTT', 'XML_DATA_TAB');

As a result of this procedure, the EMPLOYEE_XML_DOCS table will have a row for each
out-of-line XML column that was changed. The EMPLOYEE_NAME column will have the
value extracted from the XML document and the SQL_STMT column and the XML_DOC
column reflect the original row change.

The following is an example query to the resulting table that displays only the
employee name and SQL statement:

SELECT EMPLOYEE_NAME, SQL_STMT FROM EMPLOYEE_XML_DOCS;

EMPLOYEE_NAME SQL_STMT

Scott Davis update "SCOTT"."XML_DATA_TAB" a set a."F3" = XMLType(:1)
 where a."F1" = '5000' and a."F2" = 'Chen' and a."F5" = 'JJJ'

Richard Harry update "SCOTT"."XML_DATA_TAB" a set a."F4" = XMLType(:1)
 where a."F1" = '5000' and a."F2" = 'Chen' and a."F5" = 'JJJ'

Margaret Sally update "SCOTT"."XML_DATA_TAB" a set a."F4" = XMLType(:1)
 where a."F1" = '5006' and a."F2" = 'Janosik' and a."F5" = 'MMM'

Filtering and Formatting Data Returned to V$LOGMNR_CONTENTS
LogMiner can potentially deal with large amounts of information. You can limit the
information that is returned to the V$LOGMNR_CONTENTS view, and the speed at which it
is returned. The following sections demonstrate how to specify these limits and their
impact on the data returned when you query V$LOGMNR_CONTENTS.

■ Showing Only Committed Transactions

■ Skipping Redo Corruptions

■ Filtering Data by Time

■ Filtering Data by SCN

Filtering and Formatting Data Returned to V$LOGMNR_CONTENTS

19-20 Oracle Database Utilities

In addition, LogMiner offers features for formatting the data that is returned to
V$LOGMNR_CONTENTS, as described in the following sections:

■ Formatting Reconstructed SQL Statements for Re-execution

■ Formatting the Appearance of Returned Data for Readability

You request each of these filtering and formatting features using parameters or options
to the DBMS_LOGMNR.START_LOGMNR procedure.

Showing Only Committed Transactions
When you use the COMMITTED_DATA_ONLY option to DBMS_LOGMNR.START_LOGMNR, only
rows belonging to committed transactions are shown in the V$LOGMNR_CONTENTS view.
This enables you to filter out rolled back transactions, transactions that are in progress,
and internal operations.

To enable this option, specify it when you start LogMiner, as follows:

EXECUTE DBMS_LOGMNR.START_LOGMNR(OPTIONS => -
 DBMS_LOGMNR.COMMITTED_DATA_ONLY);

When you specify the COMMITTED_DATA_ONLY option, LogMiner groups together all
DML operations that belong to the same transaction. Transactions are returned in the
order in which they were committed.

The default is for LogMiner to show rows corresponding to all transactions and to
return them in the order in which they are encountered in the redo log files.

For example, suppose you start LogMiner without specifying the COMMITTED_DATA_
ONLY option and you execute the following query:

SELECT (XIDUSN || '.' || XIDSLT || '.' || XIDSQN) AS XID,
 USERNAME, SQL_REDO FROM V$LOGMNR_CONTENTS WHERE USERNAME != 'SYS'
 AND SEG_OWNER IS NULL OR SEG_OWNER NOT IN ('SYS', 'SYSTEM');

The output is as follows. Both committed and uncommitted transactions are returned
and rows from different transactions are interwoven.

XID USERNAME SQL_REDO

1.15.3045 RON set transaction read write;
1.15.3045 RON insert into "HR"."JOBS"("JOB_ID","JOB_TITLE",
 "MIN_SALARY","MAX_SALARY") values ('9782',
 'HR_ENTRY',NULL,NULL);
1.18.3046 JANE set transaction read write;
1.18.3046 JANE insert into "OE"."CUSTOMERS"("CUSTOMER_ID",
 "CUST_FIRST_NAME","CUST_LAST_NAME",
 "CUST_ADDRESS","PHONE_NUMBERS","NLS_LANGUAGE",
 "NLS_TERRITORY","CREDIT_LIMIT","CUST_EMAIL",
 "ACCOUNT_MGR_ID") values ('9839','Edgar',
 'Cummings',NULL,NULL,NULL,NULL,

Note: If the COMMITTED_DATA_ONLY option is specified and you
issue a query, then LogMiner stages all redo records within a single
transaction in memory until LogMiner finds the commit record for
that transaction. Therefore, it is possible to exhaust memory, in
which case an "Out of Memory" error will be returned. If this
occurs, then you must restart LogMiner without the COMMITTED_
DATA_ONLY option specified and reissue the query.

Filtering and Formatting Data Returned to V$LOGMNR_CONTENTS

Using LogMiner to Analyze Redo Log Files 19-21

 NULL,NULL,NULL);
1.9.3041 RAJIV set transaction read write;
1.9.3041 RAJIV insert into "OE"."CUSTOMERS"("CUSTOMER_ID",
 "CUST_FIRST_NAME","CUST_LAST_NAME","CUST_ADDRESS",
 "PHONE_NUMBERS","NLS_LANGUAGE","NLS_TERRITORY",
 "CREDIT_LIMIT","CUST_EMAIL","ACCOUNT_MGR_ID")
 values ('9499','Rodney','Emerson',NULL,NULL,NULL,NULL,
 NULL,NULL,NULL);
1.15.3045 RON commit;
1.8.3054 RON set transaction read write;
1.8.3054 RON insert into "HR"."JOBS"("JOB_ID","JOB_TITLE",
 "MIN_SALARY","MAX_SALARY") values ('9566',
 'FI_ENTRY',NULL,NULL);
1.18.3046 JANE commit;
1.11.3047 JANE set transaction read write;
1.11.3047 JANE insert into "OE"."CUSTOMERS"("CUSTOMER_ID",
 "CUST_FIRST_NAME","CUST_LAST_NAME",
 "CUST_ADDRESS","PHONE_NUMBERS","NLS_LANGUAGE",
 "NLS_TERRITORY","CREDIT_LIMIT","CUST_EMAIL",
 "ACCOUNT_MGR_ID") values ('8933','Ronald',
 'Frost',NULL,NULL,NULL,NULL,NULL,NULL,NULL);
1.11.3047 JANE commit;
1.8.3054 RON commit;

Now suppose you start LogMiner, but this time you specify the COMMITTED_DATA_ONLY
option. If you execute the previous query again, then the output is as follows:

1.15.3045 RON set transaction read write;
1.15.3045 RON insert into "HR"."JOBS"("JOB_ID","JOB_TITLE",
 "MIN_SALARY","MAX_SALARY") values ('9782',
 'HR_ENTRY',NULL,NULL);
1.15.3045 RON commit;
1.18.3046 JANE set transaction read write;
1.18.3046 JANE insert into "OE"."CUSTOMERS"("CUSTOMER_ID",
 "CUST_FIRST_NAME","CUST_LAST_NAME",
 "CUST_ADDRESS","PHONE_NUMBERS","NLS_LANGUAGE",
 "NLS_TERRITORY","CREDIT_LIMIT","CUST_EMAIL",
 "ACCOUNT_MGR_ID") values ('9839','Edgar',
 'Cummings',NULL,NULL,NULL,NULL,
 NULL,NULL,NULL);
1.18.3046 JANE commit;
1.11.3047 JANE set transaction read write;
1.11.3047 JANE insert into "OE"."CUSTOMERS"("CUSTOMER_ID",
 "CUST_FIRST_NAME","CUST_LAST_NAME",
 "CUST_ADDRESS","PHONE_NUMBERS","NLS_LANGUAGE",
 "NLS_TERRITORY","CREDIT_LIMIT","CUST_EMAIL",
 "ACCOUNT_MGR_ID") values ('8933','Ronald',
 'Frost',NULL,NULL,NULL,NULL,NULL,NULL,NULL);
1.11.3047 JANE commit;
1.8.3054 RON set transaction read write;
1.8.3054 RON insert into "HR"."JOBS"("JOB_ID","JOB_TITLE",
 "MIN_SALARY","MAX_SALARY") values ('9566',
 'FI_ENTRY',NULL,NULL);
1.8.3054 RON commit;

Because the COMMIT statement for the 1.15.3045 transaction was issued before the
COMMIT statement for the 1.18.3046 transaction, the entire 1.15.3045 transaction is
returned first. This is true even though the 1.18.3046 transaction started before the
1.15.3045 transaction. None of the 1.9.3041 transaction is returned because a COMMIT
statement was never issued for it.

Filtering and Formatting Data Returned to V$LOGMNR_CONTENTS

19-22 Oracle Database Utilities

Skipping Redo Corruptions
When you use the SKIP_CORRUPTION option to DBMS_LOGMNR.START_LOGMNR, any
corruptions in the redo log files are skipped during select operations from the
V$LOGMNR_CONTENTS view. For every corrupt redo record encountered, a row is
returned that contains the value CORRUPTED_BLOCKS in the OPERATION column, 1343 in
the STATUS column, and the number of blocks skipped in the INFO column.

Be aware that the skipped records may include changes to ongoing transactions in the
corrupted blocks; such changes will not be reflected in the data returned from the
V$LOGMNR_CONTENTS view.

The default is for the select operation to terminate at the first corruption it encounters
in the redo log file.

The following SQL example shows how this option works:

-- Add redo log files of interest.
--
EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 logfilename => '/usr/oracle/data/db1arch_1_16_482701534.log' -
 options => DBMS_LOGMNR.NEW);

-- Start LogMiner
--
EXECUTE DBMS_LOGMNR.START_LOGMNR();

-- Select from the V$LOGMNR_CONTENTS view. This example shows corruptions are --
in the redo log files.
--
SELECT rbasqn, rbablk, rbabyte, operation, status, info
 FROM V$LOGMNR_CONTENTS;

ERROR at line 3:
ORA-00368: checksum error in redo log block
ORA-00353: log corruption near block 6 change 73528 time 11/06/2002 11:30:23
ORA-00334: archived log: /usr/oracle/data/dbarch1_16_482701534.log

-- Restart LogMiner. This time, specify the SKIP_CORRUPTION option.
--
EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 options => DBMS_LOGMNR.SKIP_CORRUPTION);

-- Select from the V$LOGMNR_CONTENTS view again. The output indicates that
-- corrupted blocks were skipped: CORRUPTED_BLOCKS is in the OPERATION
-- column, 1343 is in the STATUS column, and the number of corrupt blocks
-- skipped is in the INFO column.
--
SELECT rbasqn, rbablk, rbabyte, operation, status, info
 FROM V$LOGMNR_CONTENTS;

RBASQN RBABLK RBABYTE OPERATION STATUS INFO
13 2 76 START 0
13 2 76 DELETE 0
13 3 100 INTERNAL 0
13 3 380 DELETE 0
13 0 0 CORRUPTED_BLOCKS 1343 corrupt blocks 4 to 19 skipped
13 20 116 UPDATE 0

See Also: See "Examples Using LogMiner" on page 19-40 for a
complete example that uses the COMMITTED_DATA_ONLY option

Filtering and Formatting Data Returned to V$LOGMNR_CONTENTS

Using LogMiner to Analyze Redo Log Files 19-23

Filtering Data by Time
To filter data by time, set the STARTTIME and ENDTIME parameters in the DBMS_
LOGMNR.START_LOGMNR procedure.

To avoid the need to specify the date format in the call to the PL/SQL DBMS_
LOGMNR.START_LOGMNR procedure, you can use the SQL ALTER SESSION SET NLS_DATE_
FORMAT statement first, as shown in the following example.

ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY HH24:MI:SS';
EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 DICTFILENAME => '/oracle/database/dictionary.ora', -
 STARTTIME => '01-Jan-2008 08:30:00', -
 ENDTIME => '01-Jan-2008 08:45:00'-
 OPTIONS => DBMS_LOGMNR.CONTINUOUS_MINE);

The timestamps should not be used to infer ordering of redo records. You can infer the
order of redo records by using the SCN.

Filtering Data by SCN
To filter data by SCN (system change number), use the STARTSCN and ENDSCN
parameters to the PL/SQL DBMS_LOGMNR.START_LOGMNR procedure, as shown in this
example:

 EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 STARTSCN => 621047, -
 ENDSCN => 625695, -
 OPTIONS => DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG + -
 DBMS_LOGMNR.CONTINUOUS_MINE);

The STARTSCN and ENDSCN parameters override the STARTTIME and ENDTIME parameters
in situations where all are specified.

Formatting Reconstructed SQL Statements for Re-execution
By default, a ROWID clause is included in the reconstructed SQL_REDO and SQL_UNDO
statements and the statements are ended with a semicolon.

See Also:

■ "Examples Using LogMiner" on page 19-40 for a complete
example of filtering data by time

■ Oracle Database PL/SQL Packages and Types Reference for
information about what happens if you specify starting and
ending times and they are not found in the LogMiner redo log
file list, and for information about how these parameters
interact with the CONTINUOUS_MINE option

See Also:

■ "Examples Using LogMiner" on page 19-40 for a complete
example of filtering data by SCN

■ Oracle Database PL/SQL Packages and Types Reference for
information about what happens if you specify starting and
ending SCN values and they are not found in the LogMiner
redo log file list and for information about how these
parameters interact with the CONTINUOUS_MINE option

Filtering and Formatting Data Returned to V$LOGMNR_CONTENTS

19-24 Oracle Database Utilities

However, you can override the default settings, as follows:

■ Specify the NO_ROWID_IN_STMT option when you start LogMiner.

This excludes the ROWID clause from the reconstructed statements. Because row IDs
are not consistent between databases, if you intend to re-execute the SQL_REDO or
SQL_UNDO statements against a different database than the one against which they
were originally executed, then specify the NO_ROWID_IN_STMT option when you
start LogMiner.

■ Specify the NO_SQL_DELIMITER option when you start LogMiner.

This suppresses the semicolon from the reconstructed statements. This is helpful
for applications that open a cursor and then execute the reconstructed statements.

Note that if the STATUS field of the V$LOGMNR_CONTENTS view contains the value 2
(invalid sql), then the associated SQL statement cannot be executed.

Formatting the Appearance of Returned Data for Readability
Sometimes a query can result in a large number of columns containing reconstructed
SQL statements, which can be visually busy and hard to read. LogMiner provides the
PRINT_PRETTY_SQL option to address this problem. The PRINT_PRETTY_SQL option to
the DBMS_LOGMNR.START_LOGMNR procedure formats the reconstructed SQL statements
as follows, which makes them easier to read:

insert into "HR"."JOBS"
 values
 "JOB_ID" = '9782',
 "JOB_TITLE" = 'HR_ENTRY',
 "MIN_SALARY" IS NULL,
 "MAX_SALARY" IS NULL;
 update "HR"."JOBS"
 set
 "JOB_TITLE" = 'FI_ENTRY'
 where
 "JOB_TITLE" = 'HR_ENTRY' and
 ROWID = 'AAAHSeAABAAAY+CAAX';

update "HR"."JOBS"
 set
 "JOB_TITLE" = 'FI_ENTRY'
 where
 "JOB_TITLE" = 'HR_ENTRY' and
 ROWID = 'AAAHSeAABAAAY+CAAX';

delete from "HR"."JOBS"
 where
 "JOB_ID" = '9782' and
 "JOB_TITLE" = 'FI_ENTRY' and
 "MIN_SALARY" IS NULL and
 "MAX_SALARY" IS NULL and
 ROWID = 'AAAHSeAABAAAY+CAAX';

SQL statements that are reconstructed when the PRINT_PRETTY_SQL option is enabled
are not executable, because they do not use standard SQL syntax.

See Also: "Examples Using LogMiner" on page 19-40 for a
complete example of using the PRINT_PRETTY_SQL option

Calling DBMS_LOGMNR.START_LOGMNR Multiple Times

Using LogMiner to Analyze Redo Log Files 19-25

Reapplying DDL Statements Returned to V$LOGMNR_CONTENTS
Be aware that some DDL statements issued by a user cause Oracle to internally
execute one or more other DDL statements. If you want to reapply SQL DDL from the
SQL_REDO or SQL_UNDO columns of the V$LOGMNR_CONTENTS view as it was originally
applied to the database, then you should not execute statements that were executed
internally by Oracle.

To differentiate between DDL statements that were issued by a user from those that
were issued internally by Oracle, query the INFO column of V$LOGMNR_CONTENTS. The
value of the INFO column indicates whether the DDL was executed by a user or by
Oracle.

If you want to reapply SQL DDL as it was originally applied, then you should only
re-execute the DDL SQL contained in the SQL_REDO or SQL_UNDO column of V$LOGMNR_
CONTENTS if the INFO column contains the value USER_DDL.

Calling DBMS_LOGMNR.START_LOGMNR Multiple Times
Even after you have successfully called DBMS_LOGMNR.START_LOGMNR and selected from
the V$LOGMNR_CONTENTS view, you can call DBMS_LOGMNR.START_LOGMNR again without
ending the current LogMiner session and specify different options and time or SCN
ranges. The following list presents reasons why you might want to do this:

■ You want to limit the amount of redo data that LogMiner has to analyze.

■ You want to specify different options. For example, you might decide to specify
the PRINT_PRETTY_SQL option or that you only want to see committed transactions
(so you specify the COMMITTED_DATA_ONLY option).

■ You want to change the time or SCN range to be analyzed.

The following examples illustrate situations where it might be useful to call DBMS_
LOGMNR.START_LOGMNR multiple times.

Example 1 Mining Only a Subset of the Data in the Redo Log Files
Suppose the list of redo log files that LogMiner has to mine include those generated
for an entire week. However, you want to analyze only what happened from 12:00 to
1:00 each day. You could do this most efficiently by:

1. Calling DBMS_LOGMNR.START_LOGMNR with this time range for Monday.

2. Selecting changes from the V$LOGMNR_CONTENTS view.

3. Repeating Steps 1 and 2 for each day of the week.

If the total amount of redo data is large for the week, then this method would make
the whole analysis much faster, because only a small subset of each redo log file in the
list would be read by LogMiner.

Example 1 Adjusting the Time Range or SCN Range
Suppose you specify a redo log file list and specify a time (or SCN) range when you
start LogMiner. When you query the V$LOGMNR_CONTENTS view, you find that only part

Note: If you execute DML statements that were executed
internally by Oracle, then you may corrupt your database. See Step
5 of "Example 4: Using the LogMiner Dictionary in the Redo Log
Files" on page 19-48 for an example.

Supplemental Logging

19-26 Oracle Database Utilities

of the data of interest is included in the time range you specified. You can call DBMS_
LOGMNR.START_LOGMNR again to expand the time range by an hour (or adjust the SCN
range).

Example 2 Analyzing Redo Log Files As They Arrive at a Remote Database
Suppose you have written an application to analyze changes or to replicate changes
from one database to another database. The source database sends its redo log files to
the mining database and drops them into an operating system directory. Your
application:

1. Adds all redo log files currently in the directory to the redo log file list

2. Calls DBMS_LOGMNR.START_LOGMNR with appropriate settings and selects from the
V$LOGMNR_CONTENTS view

3. Adds additional redo log files that have newly arrived in the directory

4. Repeats Steps 2 and 3, indefinitely

Supplemental Logging
Redo log files are generally used for instance recovery and media recovery. The data
needed for such operations is automatically recorded in the redo log files. However, a
redo-based application may require that additional columns be logged in the redo log
files. The process of logging these additional columns is called supplemental logging.

By default, Oracle Database does not provide any supplemental logging, which means
that by default LogMiner is not usable. Therefore, you must enable at least minimal
supplemental logging before generating log files which will be analyzed by LogMiner.

The following are examples of situations in which additional columns may be needed:

■ An application that applies reconstructed SQL statements to a different database
must identify the update statement by a set of columns that uniquely identify the
row (for example, a primary key), not by the ROWID shown in the reconstructed
SQL returned by the V$LOGMNR_CONTENTS view, because the ROWID of one database
will be different and therefore meaningless in another database.

■ An application may require that the before-image of the whole row be logged, not
just the modified columns, so that tracking of row changes is more efficient.

A supplemental log group is the set of additional columns to be logged when
supplemental logging is enabled. There are two types of supplemental log groups that
determine when columns in the log group are logged:

■ Unconditional supplemental log groups: The before-images of specified columns
are logged any time a row is updated, regardless of whether the update affected
any of the specified columns. This is sometimes referred to as an ALWAYS log
group.

■ Conditional supplemental log groups: The before-images of all specified columns
are logged only if at least one of the columns in the log group is updated.

Supplemental log groups can be system-generated or user-defined.

In addition to the two types of supplemental logging, there are two levels of
supplemental logging, as described in the following sections:

■ Database-Level Supplemental Logging

■ Table-Level Supplemental Logging

Supplemental Logging

Using LogMiner to Analyze Redo Log Files 19-27

Database-Level Supplemental Logging
There are two types of database-level supplemental logging: minimal supplemental
logging and identification key logging, as described in the following sections. Minimal
supplemental logging does not impose significant overhead on the database
generating the redo log files. However, enabling database-wide identification key
logging can impose overhead on the database generating the redo log files. Oracle
recommends that you at least enable minimal supplemental logging for LogMiner.

Minimal Supplemental Logging
Minimal supplemental logging logs the minimal amount of information needed for
LogMiner to identify, group, and merge the redo operations associated with DML
changes. It ensures that LogMiner (and any product building on LogMiner
technology) has sufficient information to support chained rows and various storage
arrangements, such as cluster tables and index-organized tables. To enable minimal
supplemental logging, execute the following SQL statement:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

Database-Level Identification Key Logging
Identification key logging is necessary when redo log files will not be mined at the
source database instance, for example, when the redo log files will be mined at a
logical standby database.

Using database identification key logging, you can enable database-wide before-image
logging for all updates by specifying one or more of the following options to the SQL
ALTER DATABASE ADD SUPPLEMENTAL LOG statement:

■ ALL system-generated unconditional supplemental log group

This option specifies that when a row is updated, all columns of that row (except
for LOBs, LONGS, and ADTs) are placed in the redo log file.

To enable all column logging at the database level, execute the following
statement:

SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (ALL) COLUMNS;

■ PRIMARY KEY system-generated unconditional supplemental log group

This option causes the database to place all columns of a row's primary key in the
redo log file whenever a row containing a primary key is updated (even if no
value in the primary key has changed).

If a table does not have a primary key, but has one or more non-null unique index
key constraints or index keys, then one of the unique index keys is chosen for
logging as a means of uniquely identifying the row being updated.

If the table has neither a primary key nor a non-null unique index key, then all
columns except LONG and LOB are supplementally logged; this is equivalent to

See Also: "Querying Views for Supplemental Logging Settings"
on page 19-35

Note: In Oracle Database release 9.0.1, minimal supplemental
logging was the default behavior in LogMiner. In release 9.2 and
later, the default is no supplemental logging. Supplemental logging
must be specifically enabled.

Supplemental Logging

19-28 Oracle Database Utilities

specifying ALL supplemental logging for that row. Therefore, Oracle recommends
that when you use database-level primary key supplemental logging, all or most
tables be defined to have primary or unique index keys.

To enable primary key logging at the database level, execute the following
statement:

SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;

■ UNIQUE system-generated conditional supplemental log group

This option causes the database to place all columns of a row's composite unique
key or bitmap index in the redo log file if any column belonging to the composite
unique key or bitmap index is modified. The unique key can be due to either a
unique constraint or a unique index.

To enable unique index key and bitmap index logging at the database level,
execute the following statement:

SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (UNIQUE) COLUMNS;

■ FOREIGN KEY system-generated conditional supplemental log group

This option causes the database to place all columns of a row's foreign key in the
redo log file if any column belonging to the foreign key is modified.

To enable foreign key logging at the database level, execute the following SQL
statement:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (FOREIGN KEY) COLUMNS;

Keep the following in mind when you use identification key logging:

■ If the database is open when you enable identification key logging, then all DML
cursors in the cursor cache are invalidated. This can affect performance until the
cursor cache is repopulated.

■ When you enable identification key logging at the database level, minimal
supplemental logging is enabled implicitly.

■ Supplemental logging statements are cumulative. If you issue the following SQL
statements, then both primary key and unique key supplemental logging is
enabled:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;
ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (UNIQUE) COLUMNS;

Disabling Database-Level Supplemental Logging
You disable database-level supplemental logging using the SQL ALTER DATABASE
statement with the DROP SUPPLEMENTAL LOGGING clause. You can drop supplemental
logging attributes incrementally. For example, suppose you issued the following SQL
statements, in the following order:

Note: Regardless of whether identification key logging is enabled,
the SQL statements returned by LogMiner always contain the
ROWID clause. You can filter out the ROWID clause by using the NO_
ROWID_IN_STMT option to the DBMS_LOGMNR.START_LOGMNR procedure
call. See "Formatting Reconstructed SQL Statements for
Re-execution" on page 19-23 for details.

Supplemental Logging

Using LogMiner to Analyze Redo Log Files 19-29

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;
ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (UNIQUE) COLUMNS;
ALTER DATABASE DROP SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;
ALTER DATABASE DROP SUPPLEMENTAL LOG DATA;

The statements would have the following effects:

■ After the first statement, primary key supplemental logging is enabled.

■ After the second statement, primary key and unique key supplemental logging are
enabled.

■ After the third statement, only unique key supplemental logging is enabled.

■ After the fourth statement, all supplemental logging is not disabled. The following
error is returned: ORA-32589: unable to drop minimal supplemental logging.

To disable all database supplemental logging, you must first disable any identification
key logging that has been enabled, then disable minimal supplemental logging. The
following example shows the correct order:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;
ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (UNIQUE) COLUMNS;
ALTER DATABASE DROP SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;
ALTER DATABASE DROP SUPPLEMENTAL LOG DATA (UNIQUE) COLUMNS;
ALTER DATABASE DROP SUPPLEMENTAL LOG DATA;

Dropping minimal supplemental log data is allowed only if no other variant of
database-level supplemental logging is enabled.

Table-Level Supplemental Logging
Table-level supplemental logging specifies, at the table level, which columns are to be
supplementally logged. You can use identification key logging or user-defined
conditional and unconditional supplemental log groups to log supplemental
information, as described in the following sections.

Table-Level Identification Key Logging
Identification key logging at the table level offers the same options as those provided
at the database level: all, primary key, foreign key, and unique key. However, when
you specify identification key logging at the table level, only the specified table is
affected. For example, if you enter the following SQL statement (specifying
database-level supplemental logging), then whenever a column in any database table
is changed, the entire row containing that column (except columns for LOBs, LONGs,
and ADTs) will be placed in the redo log file:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (ALL) COLUMNS;

However, if you enter the following SQL statement (specifying table-level
supplemental logging) instead, then only when a column in the employees table is
changed will the entire row (except for LOB, LONGs, and ADTs) of the table be placed in
the redo log file. If a column changes in the departments table, then only the changed
column will be placed in the redo log file.

ALTER TABLE HR.EMPLOYEES ADD SUPPLEMENTAL LOG DATA (ALL) COLUMNS;

Keep the following in mind when you use table-level identification key logging:

Supplemental Logging

19-30 Oracle Database Utilities

■ If the database is open when you enable identification key logging on a table, then
all DML cursors for that table in the cursor cache are invalidated. This can affect
performance until the cursor cache is repopulated.

■ Supplemental logging statements are cumulative. If you issue the following SQL
statements, then both primary key and unique index key table-level supplemental
logging is enabled:

ALTER TABLE HR.EMPLOYEES
 ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;
ALTER TABLE HR.EMPLOYEES
 ADD SUPPLEMENTAL LOG DATA (UNIQUE) COLUMNS;

See "Database-Level Identification Key Logging" on page 19-27 for a description of
each of the identification key logging options.

Table-Level User-Defined Supplemental Log Groups
In addition to table-level identification key logging, Oracle supports user-defined
supplemental log groups. With user-defined supplemental log groups, you can specify
which columns are supplementally logged. You can specify conditional or
unconditional log groups, as follows:

■ User-defined unconditional log groups

To enable supplemental logging that uses user-defined unconditional log groups,
use the ALWAYS clause as shown in the following example:

ALTER TABLE HR.EMPLOYEES
 ADD SUPPLEMENTAL LOG GROUP emp_parttime (EMPLOYEE_ID, LAST_NAME,
 DEPARTMENT_ID) ALWAYS;

This creates a log group named emp_parttime on the hr.employees table that
consists of the columns employee_id, last_name, and department_id. These
columns will be logged every time an UPDATE statement is executed on the
hr.employees table, regardless of whether the update affected these columns. (If
you want to have the entire row image logged any time an update was made, then
use table-level ALL identification key logging, as described previously).

■ User-defined conditional supplemental log groups

To enable supplemental logging that uses user-defined conditional log groups,
omit the ALWAYS clause from the SQL ALTER TABLE statement, as shown in the
following example:

ALTER TABLE HR.EMPLOYEES
 ADD SUPPLEMENTAL LOG GROUP emp_fulltime (EMPLOYEE_ID, LAST_NAME,
 DEPARTMENT_ID);

This creates a log group named emp_fulltime on table hr.employees. Just like the
previous example, it consists of the columns employee_id, last_name, and
department_id. But because the ALWAYS clause was omitted, before-images of the
columns will be logged only if at least one of the columns is updated.

For both unconditional and conditional user-defined supplemental log groups, you
can explicitly specify that a column in the log group be excluded from supplemental

Note: LOB, LONG, and ADT columns cannot be supplementally
logged.

Supplemental Logging

Using LogMiner to Analyze Redo Log Files 19-31

logging by specifying the NO LOG option. When you specify a log group and use the NO
LOG option, you must specify at least one column in the log group without the NO LOG
option, as shown in the following example:

ALTER TABLE HR.EMPLOYEES
 ADD SUPPLEMENTAL LOG GROUP emp_parttime(
 DEPARTMENT_ID NO LOG, EMPLOYEE_ID);

This enables you to associate this column with other columns in the named
supplemental log group such that any modification to the NO LOG column causes the
other columns in the supplemental log group to be placed in the redo log file. This
might be useful, for example, if you want to log certain columns in a group if a LONG
column changes. You cannot supplementally log the LONG column itself; however, you
can use changes to that column to trigger supplemental logging of other columns in
the same row.

Usage Notes for User-Defined Supplemental Log Groups
Keep the following in mind when you specify user-defined supplemental log groups:

■ A column can belong to more than one supplemental log group. However, the
before-image of the columns gets logged only once.

■ If you specify the same columns to be logged both conditionally and
unconditionally, then the columns are logged unconditionally.

Tracking DDL Statements in the LogMiner Dictionary
LogMiner automatically builds its own internal dictionary from the LogMiner
dictionary that you specify when you start LogMiner (either an online catalog, a
dictionary in the redo log files, or a flat file). This dictionary provides a snapshot of the
database objects and their definitions.

If your LogMiner dictionary is in the redo log files or is a flat file, then you can use the
DDL_DICT_TRACKING option to the PL/SQL DBMS_LOGMNR.START_LOGMNR procedure to
direct LogMiner to track data definition language (DDL) statements. DDL tracking
enables LogMiner to successfully track structural changes made to a database object,
such as adding or dropping columns from a table. For example:

EXECUTE DBMS_LOGMNR.START_LOGMNR(OPTIONS => -
 DBMS_LOGMNR.DDL_DICT_TRACKING + DBMS_LOGMNR.DICT_FROM_REDO_LOGS);

See "Example 5: Tracking DDL Statements in the Internal Dictionary" on page 19-56 for
a complete example.

With this option set, LogMiner applies any DDL statements seen in the redo log files to
its internal dictionary.

When you enable DDL_DICT_TRACKING, data manipulation language (DML) operations
performed on tables created after the LogMiner dictionary was extracted can be shown
correctly.

Note: In general, it is a good idea to keep supplemental logging
and the DDL tracking feature enabled, because if they are not
enabled and a DDL event occurs, then LogMiner returns some of
the redo data as binary data. Also, a metadata version mismatch
could occur.

Supplemental Logging

19-32 Oracle Database Utilities

For example, if a table employees is updated through two successive DDL operations
such that column gender is added in one operation, and column commission_pct is
dropped in the next, then LogMiner will keep versioned information for employees for
each of these changes. This means that LogMiner can successfully mine redo log files
that are from before and after these DDL changes, and no binary data will be
presented for the SQL_REDO or SQL_UNDO columns.

Because LogMiner automatically assigns versions to the database metadata, it will
detect and notify you of any mismatch between its internal dictionary and the
dictionary in the redo log files. If LogMiner detects a mismatch, then it generates
binary data in the SQL_REDO column of the V$LOGMNR_CONTENTS view, the INFO column
contains the string "Dictionary Version Mismatch", and the STATUS column will contain
the value 2.

The following list describes the requirements for specifying the DDL_DICT_TRACKING
option with the DBMS_LOGMNR.START_LOGMNR procedure.

■ The DDL_DICT_TRACKING option is not valid with the DICT_FROM_ONLINE_CATALOG
option.

■ The DDL_DICT_TRACKING option requires that the database be open.

■ Supplemental logging must be enabled database-wide, or log groups must have
been created for the tables of interest.

DDL_DICT_TRACKING and Supplemental Logging Settings
Note the following interactions that occur when various settings of dictionary tracking
and supplemental logging are combined:

■ If DDL_DICT_TRACKING is enabled, but supplemental logging is not enabled and:

– A DDL transaction is encountered in the redo log file, then a query of
V$LOGMNR_CONTENTS will terminate with the ORA-01347 error.

– A DML transaction is encountered in the redo log file, then LogMiner will not
assume that the current version of the table (underlying the DML) in its
dictionary is correct, and columns in V$LOGMNR_CONTENTS will be set as follows:

* The SQL_REDO column will contain binary data.

* The STATUS column will contain a value of 2 (which indicates that the SQL
is not valid).

* The INFO column will contain the string 'Dictionary Mismatch'.

■ If DDL_DICT_TRACKING is not enabled and supplemental logging is not enabled, and
the columns referenced in a DML operation match the columns in the LogMiner
dictionary, then LogMiner assumes that the latest version in its dictionary is
correct, and columns in V$LOGMNR_CONTENTS will be set as follows:

– LogMiner will use the definition of the object in its dictionary to generate
values for the SQL_REDO and SQL_UNDO columns.

Note: It is important to understand that the LogMiner internal
dictionary is not the same as the LogMiner dictionary contained in
a flat file, in redo log files, or in the online catalog. LogMiner does
update its internal dictionary, but it does not update the dictionary
that is contained in a flat file, in redo log files, or in the online
catalog.

Supplemental Logging

Using LogMiner to Analyze Redo Log Files 19-33

– The status column will contain a value of 3 (which indicates that the SQL is
not guaranteed to be accurate).

– The INFO column will contain the string 'no supplemental log data found'.

■ If DDL_DICT_TRACKING is not enabled and supplemental logging is not enabled and
there are more modified columns in the redo log file for a table than the LogMiner
dictionary definition for the table defines, then:

– The SQL_REDO and SQL_UNDO columns will contain the string 'Dictionary
Version Mismatch'.

– The STATUS column will contain a value of 2 (which indicates that the SQL is
not valid).

– The INFO column will contain the string 'Dictionary Mismatch'.

Also be aware that it is possible to get unpredictable behavior if the dictionary
definition of a column indicates one type but the column is really another type.

DDL_DICT_TRACKING and Specified Time or SCN Ranges
Because LogMiner must not miss a DDL statement if it is to ensure the consistency of
its dictionary, LogMiner may start reading redo log files before your requested starting
time or SCN (as specified with DBMS_LOGMNR.START_LOGMNR) when the DDL_DICT_
TRACKING option is enabled. The actual time or SCN at which LogMiner starts reading
redo log files is referred to as the required starting time or the required starting SCN.

No missing redo log files (based on sequence numbers) are allowed from the required
starting time or the required starting SCN.

LogMiner determines where it will start reading redo log data as follows:

■ After the dictionary is loaded, the first time that you call DBMS_LOGMNR.START_
LOGMNR, LogMiner begins reading as determined by one of the following,
whichever causes it to begin earlier:

– Your requested starting time or SCN value

– The commit SCN of the dictionary dump

■ On subsequent calls to DBMS_LOGMNR.START_LOGMNR, LogMiner begins reading as
determined for one of the following, whichever causes it to begin earliest:

– Your requested starting time or SCN value

– The start of the earliest DDL transaction where the COMMIT statement has not
yet been read by LogMiner

– The highest SCN read by LogMiner

The following scenario helps illustrate this:

Suppose you create a redo log file list containing five redo log files. Assume that a
dictionary is contained in the first redo file, and the changes that you have indicated
you want to see (using DBMS_LOGMNR.START_LOGMNR) are recorded in the third redo log
file. You then do the following:

1. Call DBMS_LOGMNR.START_LOGMNR. LogMiner will read:

a. The first log file to load the dictionary

b. The second redo log file to pick up any possible DDLs contained within it

c. The third log file to retrieve the data of interest

Accessing LogMiner Operational Information in Views

19-34 Oracle Database Utilities

2. Call DBMS_LOGMNR.START_LOGMNR again with the same requested range.

LogMiner will begin with redo log file 3; it no longer needs to read redo log file 2,
because it has already processed any DDL statements contained within it.

3. Call DBMS_LOGMNR.START_LOGMNR again, this time specifying parameters that
require data to be read from redo log file 5.

LogMiner will start reading from redo log file 4 to pick up any DDL statements
that may be contained within it.

Query the REQUIRED_START_DATE or the REQUIRED_START_SCN columns of the
V$LOGMNR_PARAMETERS view to see where LogMiner will actually start reading.
Regardless of where LogMiner starts reading, only rows in your requested range will
be returned from the V$LOGMNR_CONTENTS view.

Accessing LogMiner Operational Information in Views
LogMiner operational information (as opposed to redo data) is contained in the
following views. You can use SQL to query them as you would any other view.

■ V$LOGMNR_DICTIONARY

Shows information about a LogMiner dictionary file that was created using the
STORE_IN_FLAT_FILE option to DBMS_LOGMNR.START_LOGMNR. The information
shown includes information about the database from which the LogMiner
dictionary was created.

■ V$LOGMNR_LOGS

Shows information about specified redo log files, as described in "Querying
V$LOGMNR_LOGS" on page 19-34.

■ V$LOGMNR_PARAMETERS

Shows information about optional LogMiner parameters, including starting and
ending system change numbers (SCNs) and starting and ending times.

■ V$DATABASE, DBA_LOG_GROUPS, ALL_LOG_GROUPS, USER_LOG_GROUPS, DBA_LOG_GROUP_
COLUMNS, ALL_LOG_GROUP_COLUMNS, USER_LOG_GROUP_COLUMNS

Shows information about the current settings for supplemental logging, as
described in "Querying Views for Supplemental Logging Settings" on page 19-35.

Querying V$LOGMNR_LOGS
You can query the V$LOGMNR_LOGS view to determine which redo log files have been
manually or automatically added to the list of redo log files for LogMiner to analyze.
This view contains one row for each redo log file. It provides valuable information
about each of the redo log files including file name, sequence #, SCN and time ranges,
and whether it contains all or part of the LogMiner dictionary.

After a successful call to DBMS_LOGMNR.START_LOGMNR, the STATUS column of the
V$LOGMNR_LOGS view contains one of the following values:

■ 0

Indicates that the redo log file will be processed during a query of the V$LOGMNR_
CONTENTS view.

■ 1

Accessing LogMiner Operational Information in Views

Using LogMiner to Analyze Redo Log Files 19-35

Indicates that this will be the first redo log file to be processed by LogMiner
during a select operation against the V$LOGMNR_CONTENTS view.

■ 2

Indicates that the redo log file has been pruned and therefore will not be processed
by LogMiner during a query of the V$LOGMNR_CONTENTS view. It has been pruned
because it is not needed to satisfy your requested time or SCN range.

■ 4

Indicates that a redo log file (based on sequence number) is missing from the
LogMiner redo log file list.

The V$LOGMNR_LOGS view contains a row for each redo log file that is missing from the
list, as follows:

■ The FILENAME column will contain the consecutive range of sequence numbers and
total SCN range gap.

For example: 'Missing log file(s) for thread number 1, sequence number(s) 100 to
102'.

■ The INFO column will contain the string 'MISSING_LOGFILE'.

Information about files missing from the redo log file list can be useful for the
following reasons:

■ The DDL_DICT_TRACKING and CONTINUOUS_MINE options that can be specified when
you call DBMS_LOGMNR.START_LOGMNR will not allow redo log files to be missing
from the LogMiner redo log file list for the requested time or SCN range. If a call
to DBMS_LOGMNR.START_LOGMNR fails, then you can query the STATUS column in the
V$LOGMNR_LOGS view to determine which redo log files are missing from the list.
You can then find and manually add these redo log files and attempt to call DBMS_
LOGMNR.START_LOGMNR again.

■ Although all other options that can be specified when you call DBMS_
LOGMNR.START_LOGMNR allow files to be missing from the LogMiner redo log file
list, you may not want to have missing files. You can query the V$LOGMNR_LOGS
view before querying the V$LOGMNR_CONTENTS view to ensure that all required files
are in the list. If the list is left with missing files and you query the V$LOGMNR_
CONTENTS view, then a row is returned in V$LOGMNR_CONTENTS with the following
column values:

– In the OPERATION column, a value of 'MISSING_SCN'

– In the STATUS column, a value of 1291

– In the INFO column, a string indicating the missing SCN range (for example,
'Missing SCN 100 - 200')

Querying Views for Supplemental Logging Settings
You can query several views to determine the current settings for supplemental
logging, as described in the following list:

■ V$DATABASE view

– SUPPLEMENTAL_LOG_DATA_FK column

This column contains one of the following values:

* NO - if database-level identification key logging with the FOREIGN KEY
option is not enabled

Accessing LogMiner Operational Information in Views

19-36 Oracle Database Utilities

* YES - if database-level identification key logging with the FOREIGN KEY
option is enabled

– SUPPLEMENTAL_LOG_DATA_ALL column

This column contains one of the following values:

* NO - if database-level identification key logging with the ALL option is not
enabled

* YES - if database-level identification key logging with the ALL option is
enabled

– SUPPLEMENTAL_LOG_DATA_UI column

* NO - if database-level identification key logging with the UNIQUE option is
not enabled

* YES - if database-level identification key logging with the UNIQUE option is
enabled

– SUPPLEMENTAL_LOG_DATA_MIN column

This column contains one of the following values:

* NO - if no database-level supplemental logging is enabled

* IMPLICIT - if minimal supplemental logging is enabled because
database-level identification key logging options is enabled

* YES - if minimal supplemental logging is enabled because the SQL ALTER
DATABASE ADD SUPPLEMENTAL LOG DATA statement was issued

■ DBA_LOG_GROUPS, ALL_LOG_GROUPS, and USER_LOG_GROUPS views

– ALWAYS column

This column contains one of the following values:

* ALWAYS - indicates that the columns in this log group will be
supplementally logged if any column in the associated row is updated

* CONDITIONAL - indicates that the columns in this group will be
supplementally logged only if a column in the log group is updated

– GENERATED column

This column contains one of the following values:

* GENERATED NAME - if the LOG_GROUP name was system-generated

* USER NAME - if the LOG_GROUP name was user-defined

– LOG_GROUP_TYPES column

This column contains one of the following values to indicate the type of
logging defined for this log group. USER LOG GROUP indicates that the log
group was user-defined (as opposed to system-generated).

* ALL COLUMN LOGGING

* FOREIGN KEY LOGGING

* PRIMARY KEY LOGGING

* UNIQUE KEY LOGGING

* USER LOG GROUP

Steps in a Typical LogMiner Session

Using LogMiner to Analyze Redo Log Files 19-37

■ DBA_LOG_GROUP_COLUMNS, ALL_LOG_GROUP_COLUMNS, and USER_LOG_GROUP_COLUMNS
views

– The LOGGING_PROPERTY column

This column contains one of the following values:

* LOG - indicates that this column in the log group will be supplementally
logged

* NO LOG - indicates that this column in the log group will not be
supplementally logged

Steps in a Typical LogMiner Session
This section describes the steps in a typical LogMiner session. Each step is described in
its own subsection.

1. Enable Supplemental Logging

2. Extract a LogMiner Dictionary (unless you plan to use the online catalog)

3. Specify Redo Log Files for Analysis

4. Start LogMiner

5. Query V$LOGMNR_CONTENTS

6. End the LogMiner Session

To run LogMiner, you use the DBMS_LOGMNR PL/SQL package. Additionally, you might
also use the DBMS_LOGMNR_D package if you choose to extract a LogMiner dictionary
rather than use the online catalog.

The DBMS_LOGMNR package contains the procedures used to initialize and run
LogMiner, including interfaces to specify names of redo log files, filter criteria, and
session characteristics. The DBMS_LOGMNR_D package queries the database dictionary
tables of the current database to create a LogMiner dictionary file.

The LogMiner PL/SQL packages are owned by the SYS schema. Therefore, if you are
not connected as user SYS, then:

■ You must include SYS in your call. For example:

EXECUTE SYS.DBMS_LOGMNR.END_LOGMNR;

■ You must have been granted the EXECUTE_CATALOG_ROLE role.

Enable Supplemental Logging
Enable the type of supplemental logging you want to use. At the very least, you must
enable minimal supplemental logging, as follows:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

See "Supplemental Logging" on page 19-26 for more information.

See Also:

■ Oracle Database PL/SQL Packages and Types Reference for details
about syntax and parameters for these LogMiner packages

■ Oracle Database Advanced Application Developer's Guide for
information about executing PL/SQL procedures

Steps in a Typical LogMiner Session

19-38 Oracle Database Utilities

Extract a LogMiner Dictionary
To use LogMiner, you must supply it with a dictionary by doing one of the following:

■ Specify use of the online catalog by using the DICT_FROM_ONLINE_CATALOG option
when you start LogMiner. See "Using the Online Catalog" on page 19-6.

■ Extract database dictionary information to the redo log files. See "Extracting a
LogMiner Dictionary to the Redo Log Files" on page 19-7.

■ Extract database dictionary information to a flat file. See "Extracting the LogMiner
Dictionary to a Flat File" on page 19-8.

Specify Redo Log Files for Analysis
Before you can start LogMiner, you must specify the redo log files that you want to
analyze. To do so, execute the DBMS_LOGMNR.ADD_LOGFILE procedure, as demonstrated
in the following steps. You can add and remove redo log files in any order.

1. Use SQL*Plus to start an Oracle instance, with the database either mounted or
unmounted. For example, enter the STARTUP statement at the SQL prompt:

STARTUP

2. Create a list of redo log files. Specify the NEW option of the DBMS_LOGMNR.ADD_
LOGFILE PL/SQL procedure to signal that this is the beginning of a new list. For
example, enter the following to specify the /oracle/logs/log1.f redo log file:

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/oracle/logs/log1.f', -
 OPTIONS => DBMS_LOGMNR.NEW);

3. If desired, add more redo log files by specifying the ADDFILE option of the DBMS_
LOGMNR.ADD_LOGFILE PL/SQL procedure. For example, enter the following to add
the /oracle/logs/log2.f redo log file:

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/oracle/logs/log2.f', -
 OPTIONS => DBMS_LOGMNR.ADDFILE);

The OPTIONS parameter is optional when you are adding additional redo log files.
For example, you could simply enter the following:

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME=>'/oracle/logs/log2.f');

4. If desired, remove redo log files by using the DBMS_LOGMNR.REMOVE_LOGFILE
PL/SQL procedure. For example, enter the following to remove the
/oracle/logs/log2.f redo log file:

Note: If you will be mining in the database instance that is
generating the redo log files, then you only need to specify the
CONTINUOUS_MINE option and one of the following when you start
LogMiner:

■ The STARTSCN parameter

■ The STARTTIME parameter

For more information, see "Redo Log File Options" on page 19-8.

Steps in a Typical LogMiner Session

Using LogMiner to Analyze Redo Log Files 19-39

EXECUTE DBMS_LOGMNR.REMOVE_LOGFILE(-
 LOGFILENAME => '/oracle/logs/log2.f');

Start LogMiner
After you have created a LogMiner dictionary file and specified which redo log files to
analyze, you must start LogMiner. Take the following steps:

1. Execute the DBMS_LOGMNR.START_LOGMNR procedure to start LogMiner.

Oracle recommends that you specify a LogMiner dictionary option. If you do not,
then LogMiner cannot translate internal object identifiers and datatypes to object
names and external data formats. Therefore, it would return internal object IDs
and present data as binary data. Additionally, the MINE_VALUE and COLUMN_
PRESENT functions cannot be used without a dictionary.

If you are specifying the name of a flat file LogMiner dictionary, then you must
supply a fully qualified file name for the dictionary file. For example, to start
LogMiner using /oracle/database/dictionary.ora, issue the following
statement:

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 DICTFILENAME =>'/oracle/database/dictionary.ora');

If you are not specifying a flat file dictionary name, then use the OPTIONS
parameter to specify either the DICT_FROM_REDO_LOGS or DICT_FROM_ONLINE_
CATALOG option.

If you specify DICT_FROM_REDO_LOGS, then LogMiner expects to find a dictionary in
the redo log files that you specified with the DBMS_LOGMNR.ADD_LOGFILE procedure.
To determine which redo log files contain a dictionary, look at the V$ARCHIVED_LOG
view. See "Extracting a LogMiner Dictionary to the Redo Log Files" on page 19-7
for an example.

For more information about the DICT_FROM_ONLINE_CATALOG option, see "Using the
Online Catalog" on page 19-6.

2. Optionally, you can filter your query by time or by SCN. See "Filtering Data by
Time" on page 19-23 or "Filtering Data by SCN" on page 19-23.

3. You can also use the OPTIONS parameter to specify additional characteristics of
your LogMiner session. For example, you might decide to use the online catalog as
your LogMiner dictionary and to have only committed transactions shown in the
V$LOGMNR_CONTENTS view, as follows:

EXECUTE DBMS_LOGMNR.START_LOGMNR(OPTIONS => -
 DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG + -
 DBMS_LOGMNR.COMMITTED_DATA_ONLY);

For more information about DBMS_LOGMNR.START_LOGMNR options, see Oracle
Database PL/SQL Packages and Types Reference.

Note: If you add additional redo log files after LogMiner has been
started, you must restart LogMiner. LogMiner will not retain
options that were included in the previous call to DBMS_
LOGMNR.START_LOGMNR; you must respecify the options you want to
use. However, LogMiner will retain the dictionary specification
from the previous call if you do not specify a dictionary in the
current call to DBMS_LOGMNR.START_LOGMNR.

Examples Using LogMiner

19-40 Oracle Database Utilities

You can execute the DBMS_LOGMNR.START_LOGMNR procedure multiple times,
specifying different options each time. This can be useful, for example, if you did
not get the desired results from a query of V$LOGMNR_CONTENTS, and want to restart
LogMiner with different options. Unless you need to respecify the LogMiner
dictionary, you do not need to add redo log files if they were already added with a
previous call to DBMS_LOGMNR.START_LOGMNR.

Query V$LOGMNR_CONTENTS
At this point, LogMiner is started and you can perform queries against the V$LOGMNR_
CONTENTS view. See "Filtering and Formatting Data Returned to V$LOGMNR_
CONTENTS" on page 19-19 for examples of this.

End the LogMiner Session
To properly end a LogMiner session, use the DBMS_LOGMNR.END_LOGMNR PL/SQL
procedure, as follows:

EXECUTE DBMS_LOGMNR.END_LOGMNR;

This procedure closes all the redo log files and allows all the database and system
resources allocated by LogMiner to be released.

If this procedure is not executed, then LogMiner retains all its allocated resources until
the end of the Oracle session in which it was invoked. It is particularly important to
use this procedure to end the LogMiner session if either the DDL_DICT_TRACKING option
or the DICT_FROM_REDO_LOGS option was used.

Examples Using LogMiner
This section provides several examples of using LogMiner in each of the following
general categories:

■ Examples of Mining by Explicitly Specifying the Redo Log Files of Interest

■ Examples of Mining Without Specifying the List of Redo Log Files Explicitly

■ Example Scenarios

Note: All examples in this section assume that minimal
supplemental logging has been enabled:

SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

See "Supplemental Logging" on page 19-26 for more information.

All examples, except "Example 2: Mining the Redo Log Files in a
Given SCN Range" on page 19-63 and the "Example Scenarios" on
page 19-65, assume that the NLS_DATE_FORMAT parameter has been
set as follows:

SQL> ALTER SESSION SET NLS_DATE_FORMAT = 'dd-mon-yyyy hh24:mi:ss';

Because LogMiner displays date data using the setting for the NLS_
DATE_FORMAT parameter that is active for the user session, this step
is optional. However, setting the parameter explicitly lets you
predict the date format.

Examples Using LogMiner

Using LogMiner to Analyze Redo Log Files 19-41

Examples of Mining by Explicitly Specifying the Redo Log Files of Interest
The following examples demonstrate how to use LogMiner when you know which
redo log files contain the data of interest. This section contains the following list of
examples; these examples are best read sequentially, because each example builds on
the example or examples that precede it:

■ Example 1: Finding All Modifications in the Last Archived Redo Log File

■ Example 2: Grouping DML Statements into Committed Transactions

■ Example 3: Formatting the Reconstructed SQL

■ Example 4: Using the LogMiner Dictionary in the Redo Log Files

■ Example 5: Tracking DDL Statements in the Internal Dictionary

■ Example 6: Filtering Output by Time Range

The SQL output formatting may be different on your display than that shown in these
examples.

Example 1: Finding All Modifications in the Last Archived Redo Log File
The easiest way to examine the modification history of a database is to mine at the
source database and use the online catalog to translate the redo log files. This example
shows how to do the simplest analysis using LogMiner.

This example finds all modifications that are contained in the last archived redo log
generated by the database (assuming that the database is not an Oracle Real
Application Clusters (Oracle RAC) database).

Step 1 Determine which redo log file was most recently archived.
This example assumes that you know you want to mine the redo log file that was most
recently archived.

SELECT NAME FROM V$ARCHIVED_LOG
 WHERE FIRST_TIME = (SELECT MAX(FIRST_TIME) FROM V$ARCHIVED_LOG);

NAME

/usr/oracle/data/db1arch_1_16_482701534.dbf

Step 2 Specify the list of redo log files to be analyzed.
Specify the redo log file that was returned by the query in Step 1. The list will consist
of one redo log file.

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_16_482701534.dbf', -
 OPTIONS => DBMS_LOGMNR.NEW);

Step 3 Start LogMiner.
Start LogMiner and specify the dictionary to use.

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 OPTIONS => DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG);

Examples Using LogMiner

19-42 Oracle Database Utilities

Step 4 Query the V$LOGMNR_CONTENTS view.
Note that there are four transactions (two of them were committed within the redo log
file being analyzed, and two were not). The output shows the DML statements in the
order in which they were executed; thus transactions interleave among themselves.

SELECT username AS USR, (XIDUSN || '.' || XIDSLT || '.' || XIDSQN) AS XID,
 SQL_REDO, SQL_UNDO FROM V$LOGMNR_CONTENTS WHERE username IN ('HR', 'OE');

USR XID SQL_REDO SQL_UNDO
---- --------- --
HR 1.11.1476 set transaction read write;

HR 1.11.1476 insert into "HR"."EMPLOYEES"(delete from "HR"."EMPLOYEES"
 "EMPLOYEE_ID","FIRST_NAME", where "EMPLOYEE_ID" = '306'
 "LAST_NAME","EMAIL", and "FIRST_NAME" = 'Nandini'
 "PHONE_NUMBER","HIRE_DATE", and "LAST_NAME" = 'Shastry'
 "JOB_ID","SALARY", and "EMAIL" = 'NSHASTRY'
 "COMMISSION_PCT","MANAGER_ID", and "PHONE_NUMBER" = '1234567890'
 "DEPARTMENT_ID") values and "HIRE_DATE" = TO_DATE('10-JAN-2003
 ('306','Nandini','Shastry', 13:34:43', 'dd-mon-yyyy hh24:mi:ss')
 'NSHASTRY', '1234567890', and "JOB_ID" = 'HR_REP' and
 TO_DATE('10-jan-2003 13:34:43', "SALARY" = '120000' and
 'dd-mon-yyyy hh24:mi:ss'), "COMMISSION_PCT" = '.05' and
 'HR_REP','120000', '.05', "DEPARTMENT_ID" = '10' and
 '105','10'); ROWID = 'AAAHSkAABAAAY6rAAO';

OE 1.1.1484 set transaction read write;

OE 1.1.1484 update "OE"."PRODUCT_INFORMATION" update "OE"."PRODUCT_INFORMATION"
 set "WARRANTY_PERIOD" = set "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+05-00') where TO_YMINTERVAL('+01-00') where
 "PRODUCT_ID" = '1799' and "PRODUCT_ID" = '1799' and
 "WARRANTY_PERIOD" = "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+01-00') and TO_YMINTERVAL('+05-00') and
 ROWID = 'AAAHTKAABAAAY9mAAB'; ROWID = 'AAAHTKAABAAAY9mAAB';

OE 1.1.1484 update "OE"."PRODUCT_INFORMATION" update "OE"."PRODUCT_INFORMATION"
 set "WARRANTY_PERIOD" = set "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+05-00') where TO_YMINTERVAL('+01-00') where
 "PRODUCT_ID" = '1801' and "PRODUCT_ID" = '1801' and
 "WARRANTY_PERIOD" = "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+01-00') and TO_YMINTERVAL('+05-00') and
 ROWID = 'AAAHTKAABAAAY9mAAC'; ROWID ='AAAHTKAABAAAY9mAAC';

HR 1.11.1476 insert into "HR"."EMPLOYEES"(delete from "HR"."EMPLOYEES"
 "EMPLOYEE_ID","FIRST_NAME", "EMPLOYEE_ID" = '307' and
 "LAST_NAME","EMAIL", "FIRST_NAME" = 'John' and
 "PHONE_NUMBER","HIRE_DATE", "LAST_NAME" = 'Silver' and
 "JOB_ID","SALARY", "EMAIL" = 'JSILVER' and
 "COMMISSION_PCT","MANAGER_ID", "PHONE_NUMBER" = '5551112222'
 "DEPARTMENT_ID") values and "HIRE_DATE" = TO_DATE('10-jan-2003
 ('307','John','Silver', 13:41:03', 'dd-mon-yyyy hh24:mi:ss')
 'JSILVER', '5551112222', and "JOB_ID" ='105' and "DEPARTMENT_ID"
 TO_DATE('10-jan-2003 13:41:03', = '50' and ROWID = 'AAAHSkAABAAAY6rAAP';
 'dd-mon-yyyy hh24:mi:ss'),
 'SH_CLERK','110000', '.05',
 '105','50');

OE 1.1.1484 commit;

Examples Using LogMiner

Using LogMiner to Analyze Redo Log Files 19-43

HR 1.15.1481 set transaction read write;

HR 1.15.1481 delete from "HR"."EMPLOYEES" insert into "HR"."EMPLOYEES"(
 where "EMPLOYEE_ID" = '205' and "EMPLOYEE_ID","FIRST_NAME",
 "FIRST_NAME" = 'Shelley' and "LAST_NAME","EMAIL","PHONE_NUMBER",
 "LAST_NAME" = 'Higgins' and "HIRE_DATE", "JOB_ID","SALARY",
 "EMAIL" = 'SHIGGINS' and "COMMISSION_PCT","MANAGER_ID",
 "PHONE_NUMBER" = '515.123.8080' "DEPARTMENT_ID") values
 and "HIRE_DATE" = TO_DATE(('205','Shelley','Higgins',
 '07-jun-1994 10:05:01', and 'SHIGGINS','515.123.8080',
 'dd-mon-yyyy hh24:mi:ss') TO_DATE('07-jun-1994 10:05:01',
 and "JOB_ID" = 'AC_MGR' 'dd-mon-yyyy hh24:mi:ss'),
 and "SALARY"= '12000' 'AC_MGR','12000',NULL,'101','110');
 and "COMMISSION_PCT" IS NULL
 and "MANAGER_ID"
 = '101' and "DEPARTMENT_ID" =
 '110' and ROWID =
 'AAAHSkAABAAAY6rAAM';

OE 1.8.1484 set transaction read write;

OE 1.8.1484 update "OE"."PRODUCT_INFORMATION" update "OE"."PRODUCT_INFORMATION"
 set "WARRANTY_PERIOD" = set "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+12-06') where TO_YMINTERVAL('+20-00') where
 "PRODUCT_ID" = '2350' and "PRODUCT_ID" = '2350' and
 "WARRANTY_PERIOD" = "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+20-00') and TO_YMINTERVAL('+20-00') and
 ROWID = 'AAAHTKAABAAAY9tAAD'; ROWID ='AAAHTKAABAAAY9tAAD';

HR 1.11.1476 commit;

Step 5 End the LogMiner session.
SQL> EXECUTE DBMS_LOGMNR.END_LOGMNR();

Example 2: Grouping DML Statements into Committed Transactions
As shown in the first example, "Example 1: Finding All Modifications in the Last
Archived Redo Log File" on page 19-41, LogMiner displays all modifications it finds in
the redo log files that it analyzes by default, regardless of whether the transaction has
been committed or not. In addition, LogMiner shows modifications in the same order
in which they were executed. Because DML statements that belong to the same
transaction are not grouped together, visual inspection of the output can be difficult.
Although you can use SQL to group transactions, LogMiner provides an easier way. In
this example, the latest archived redo log file will again be analyzed, but it will return
only committed transactions.

Step 1 Determine which redo log file was most recently archived by the
database.
This example assumes that you know you want to mine the redo log file that was most
recently archived.

SELECT NAME FROM V$ARCHIVED_LOG
 WHERE FIRST_TIME = (SELECT MAX(FIRST_TIME) FROM V$ARCHIVED_LOG);

NAME

/usr/oracle/data/db1arch_1_16_482701534.dbf

Examples Using LogMiner

19-44 Oracle Database Utilities

Step 2 Specify the list of redo log files to be analyzed.
Specify the redo log file that was returned by the query in Step 1. The list will consist
of one redo log file.

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_16_482701534.dbf', -
 OPTIONS => DBMS_LOGMNR.NEW);

Step 3 Start LogMiner.
Start LogMiner by specifying the dictionary to use and the COMMITTED_DATA_ONLY
option.

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 OPTIONS => DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG + -
 DBMS_LOGMNR.COMMITTED_DATA_ONLY);

Step 4 Query the V$LOGMNR_CONTENTS view.
Although transaction 1.11.1476 was started before transaction 1.1.1484 (as revealed in
"Example 1: Finding All Modifications in the Last Archived Redo Log File" on
page 19-41), it committed after transaction 1.1.1484 committed. In this example,
therefore, transaction 1.1.1484 is shown in its entirety before transaction 1.11.1476. The
two transactions that did not commit within the redo log file being analyzed are not
returned.

SELECT username AS USR, (XIDUSN || '.' || XIDSLT || '.' || XIDSQN) AS XID, SQL_REDO,
 SQL_UNDO FROM V$LOGMNR_CONTENTS WHERE username IN ('HR', 'OE');
;
USR XID SQL_REDO SQL_UNDO
---- --------- ------------------------------- ---------------------------------

OE 1.1.1484 set transaction read write;

OE 1.1.1484 update "OE"."PRODUCT_INFORMATION" update "OE"."PRODUCT_INFORMATION"
 set "WARRANTY_PERIOD" = set "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+05-00') where TO_YMINTERVAL('+01-00') where
 "PRODUCT_ID" = '1799' and "PRODUCT_ID" = '1799' and
 "WARRANTY_PERIOD" = "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+01-00') and TO_YMINTERVAL('+05-00') and
 ROWID = 'AAAHTKAABAAAY9mAAB'; ROWID = 'AAAHTKAABAAAY9mAAB';

OE 1.1.1484 update "OE"."PRODUCT_INFORMATION" update "OE"."PRODUCT_INFORMATION"
 set "WARRANTY_PERIOD" = set "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+05-00') where TO_YMINTERVAL('+01-00') where
 "PRODUCT_ID" = '1801' and "PRODUCT_ID" = '1801' and
 "WARRANTY_PERIOD" = "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+01-00') and TO_YMINTERVAL('+05-00') and
 ROWID = 'AAAHTKAABAAAY9mAAC'; ROWID ='AAAHTKAABAAAY9mAAC';

OE 1.1.1484 commit;

HR 1.11.1476 set transaction read write;

HR 1.11.1476 insert into "HR"."EMPLOYEES"(delete from "HR"."EMPLOYEES"
 "EMPLOYEE_ID","FIRST_NAME", where "EMPLOYEE_ID" = '306'
 "LAST_NAME","EMAIL", and "FIRST_NAME" = 'Nandini'
 "PHONE_NUMBER","HIRE_DATE", and "LAST_NAME" = 'Shastry'
 "JOB_ID","SALARY", and "EMAIL" = 'NSHASTRY'

Examples Using LogMiner

Using LogMiner to Analyze Redo Log Files 19-45

 "COMMISSION_PCT","MANAGER_ID", and "PHONE_NUMBER" = '1234567890'
 "DEPARTMENT_ID") values and "HIRE_DATE" = TO_DATE('10-JAN-2003
 ('306','Nandini','Shastry', 13:34:43', 'dd-mon-yyyy hh24:mi:ss')
 'NSHASTRY', '1234567890', and "JOB_ID" = 'HR_REP' and
 TO_DATE('10-jan-2003 13:34:43', "SALARY" = '120000' and
 'dd-mon-yyy hh24:mi:ss'), "COMMISSION_PCT" = '.05' and
 'HR_REP','120000', '.05', "DEPARTMENT_ID" = '10' and
 '105','10'); ROWID = 'AAAHSkAABAAAY6rAAO';

HR 1.11.1476 insert into "HR"."EMPLOYEES"(delete from "HR"."EMPLOYEES"
 "EMPLOYEE_ID","FIRST_NAME", "EMPLOYEE_ID" = '307' and
 "LAST_NAME","EMAIL", "FIRST_NAME" = 'John' and
 "PHONE_NUMBER","HIRE_DATE", "LAST_NAME" = 'Silver' and
 "JOB_ID","SALARY", "EMAIL" = 'JSILVER' and
 "COMMISSION_PCT","MANAGER_ID", "PHONE_NUMBER" = '5551112222'
 "DEPARTMENT_ID") values and "HIRE_DATE" = TO_DATE('10-jan-2003
 ('307','John','Silver', 13:41:03', 'dd-mon-yyyy hh24:mi:ss')
 'JSILVER', '5551112222', and "JOB_ID" ='105' and "DEPARTMENT_ID"
 TO_DATE('10-jan-2003 13:41:03', = '50' and ROWID = 'AAAHSkAABAAAY6rAAP';
 'dd-mon-yyyy hh24:mi:ss'),
 'SH_CLERK','110000', '.05',
 '105','50');

HR 1.11.1476 commit;

Step 5 End the LogMiner session.
EXECUTE DBMS_LOGMNR.END_LOGMNR();

Example 3: Formatting the Reconstructed SQL
As shown in "Example 2: Grouping DML Statements into Committed Transactions" on
page 19-43, using the COMMITTED_DATA_ONLY option with the dictionary in the online
redo log file is an easy way to focus on committed transactions. However, one aspect
remains that makes visual inspection difficult: the association between the column
names and their respective values in an INSERT statement are not apparent. This can be
addressed by specifying the PRINT_PRETTY_SQL option. Note that specifying this
option will make some of the reconstructed SQL statements nonexecutable.

Step 1 Determine which redo log file was most recently archived.
This example assumes that you know you want to mine the redo log file that was most
recently archived.

SELECT NAME FROM V$ARCHIVED_LOG
 WHERE FIRST_TIME = (SELECT MAX(FIRST_TIME) FROM V$ARCHIVED_LOG);

NAME

/usr/oracle/data/db1arch_1_16_482701534.dbf

Step 2 Specify the list of redo log files to be analyzed.
Specify the redo log file that was returned by the query in Step 1. The list will consist
of one redo log file.

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_16_482701534.dbf', -
 OPTIONS => DBMS_LOGMNR.NEW);

Examples Using LogMiner

19-46 Oracle Database Utilities

Step 3 Start LogMiner.
Start LogMiner by specifying the dictionary to use and the COMMITTED_DATA_ONLY and
PRINT_PRETTY_SQL options.

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 OPTIONS => DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG + -
 DBMS_LOGMNR.COMMITTED_DATA_ONLY + -
 DBMS_LOGMNR.PRINT_PRETTY_SQL);

The DBMS_LOGMNR.PRINT_PRETTY_SQL option changes only the format of the
reconstructed SQL, and therefore is useful for generating reports for visual inspection.

Step 4 Query the V$LOGMNR_CONTENTS view for SQL_REDO statements.
SELECT username AS USR, (XIDUSN || '.' || XIDSLT || '.' || XIDSQN) AS XID, SQL_REDO
 FROM V$LOGMNR_CONTENTS;

USR XID SQL_REDO
---- --------- ---

OE 1.1.1484 set transaction read write;

OE 1.1.1484 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00')
 where
 "PRODUCT_ID" = '1799' and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+01-00') and
 ROWID = 'AAAHTKAABAAAY9mAAB';

OE 1.1.1484 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00')
 where
 "PRODUCT_ID" = '1801' and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+01-00') and
 ROWID = 'AAAHTKAABAAAY9mAAC';

OE 1.1.1484 commit;

HR 1.11.1476 set transaction read write;

HR 1.11.1476 insert into "HR"."EMPLOYEES"
 values
 "EMPLOYEE_ID" = 306,
 "FIRST_NAME" = 'Nandini',
 "LAST_NAME" = 'Shastry',
 "EMAIL" = 'NSHASTRY',
 "PHONE_NUMBER" = '1234567890',
 "HIRE_DATE" = TO_DATE('10-jan-2003 13:34:43',
 'dd-mon-yyyy hh24:mi:ss',
 "JOB_ID" = 'HR_REP',
 "SALARY" = 120000,
 "COMMISSION_PCT" = .05,
 "MANAGER_ID" = 105,
 "DEPARTMENT_ID" = 10;

HR 1.11.1476 insert into "HR"."EMPLOYEES"
 values
 "EMPLOYEE_ID" = 307,
 "FIRST_NAME" = 'John',

Examples Using LogMiner

Using LogMiner to Analyze Redo Log Files 19-47

 "LAST_NAME" = 'Silver',
 "EMAIL" = 'JSILVER',
 "PHONE_NUMBER" = '5551112222',
 "HIRE_DATE" = TO_DATE('10-jan-2003 13:41:03',
 'dd-mon-yyyy hh24:mi:ss'),
 "JOB_ID" = 'SH_CLERK',
 "SALARY" = 110000,
 "COMMISSION_PCT" = .05,
 "MANAGER_ID" = 105,
 "DEPARTMENT_ID" = 50;
HR 1.11.1476 commit;

Step 5 Query the V$LOGMNR_CONTENTS view for reconstructed SQL_UNDO
statements.

SELECT username AS USR, (XIDUSN || '.' || XIDSLT || '.' || XIDSQN) AS XID, SQL_UNDO
 FROM V$LOGMNR_CONTENTS;

USR XID SQL_UNDO
---- --------- ---

OE 1.1.1484 set transaction read write;

OE 1.1.1484 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+01-00')
 where
 "PRODUCT_ID" = '1799' and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00') and
 ROWID = 'AAAHTKAABAAAY9mAAB';

OE 1.1.1484 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+01-00')
 where
 "PRODUCT_ID" = '1801' and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00') and
 ROWID = 'AAAHTKAABAAAY9mAAC';

OE 1.1.1484 commit;

HR 1.11.1476 set transaction read write;

HR 1.11.1476 delete from "HR"."EMPLOYEES"
 where
 "EMPLOYEE_ID" = 306 and
 "FIRST_NAME" = 'Nandini' and
 "LAST_NAME" = 'Shastry' and
 "EMAIL" = 'NSHASTRY' and
 "PHONE_NUMBER" = '1234567890' and
 "HIRE_DATE" = TO_DATE('10-jan-2003 13:34:43',
 'dd-mon-yyyy hh24:mi:ss') and
 "JOB_ID" = 'HR_REP' and
 "SALARY" = 120000 and
 "COMMISSION_PCT" = .05 and
 "MANAGER_ID" = 105 and
 "DEPARTMENT_ID" = 10 and
 ROWID = 'AAAHSkAABAAAY6rAAO';

Examples Using LogMiner

19-48 Oracle Database Utilities

HR 1.11.1476 delete from "HR"."EMPLOYEES"
 where
 "EMPLOYEE_ID" = 307 and
 "FIRST_NAME" = 'John' and
 "LAST_NAME" = 'Silver' and
 "EMAIL" = 'JSILVER' and
 "PHONE_NUMBER" = '555122122' and
 "HIRE_DATE" = TO_DATE('10-jan-2003 13:41:03',
 'dd-mon-yyyy hh24:mi:ss') and
 "JOB_ID" = 'SH_CLERK' and
 "SALARY" = 110000 and
 "COMMISSION_PCT" = .05 and
 "MANAGER_ID" = 105 and
 "DEPARTMENT_ID" = 50 and
 ROWID = 'AAAHSkAABAAAY6rAAP';
HR 1.11.1476 commit;

Step 6 End the LogMiner session.
EXECUTE DBMS_LOGMNR.END_LOGMNR();

Example 4: Using the LogMiner Dictionary in the Redo Log Files
This example shows how to use the dictionary that has been extracted to the redo log
files. When you use the dictionary in the online catalog, you must mine the redo log
files in the same database that generated them. Using the dictionary contained in the
redo log files enables you to mine redo log files in a different database.

Step 1 Determine which redo log file was most recently archived by the
database.
This example assumes that you know you want to mine the redo log file that was most
recently archived.

SELECT NAME, SEQUENCE# FROM V$ARCHIVED_LOG
 WHERE FIRST_TIME = (SELECT MAX(FIRST_TIME) FROM V$ARCHIVED_LOG);

NAME SEQUENCE#
-- --------------
/usr/oracle/data/db1arch_1_210_482701534.dbf 210

Step 2 Find the redo log files containing the dictionary.
The dictionary may be contained in more than one redo log file. Therefore, you need to
determine which redo log files contain the start and end of the dictionary. Query the
V$ARCHIVED_LOG view, as follows:

1. Find a redo log file that contains the end of the dictionary extract. This redo log file
must have been created before the redo log file that you want to analyze, but
should be as recent as possible.

SELECT NAME, SEQUENCE#, DICTIONARY_BEGIN d_beg, DICTIONARY_END d_end
 FROM V$ARCHIVED_LOG
 WHERE SEQUENCE# = (SELECT MAX (SEQUENCE#) FROM V$ARCHIVED_LOG
 WHERE DICTIONARY_END = 'YES' and SEQUENCE# <= 210);

NAME SEQUENCE# D_BEG D_END
-- ---------- ----- ------
/usr/oracle/data/db1arch_1_208_482701534.dbf 208 NO YES

2. Find the redo log file that contains the start of the data dictionary extract that
matches the end of the dictionary found in the previous step:

Examples Using LogMiner

Using LogMiner to Analyze Redo Log Files 19-49

SELECT NAME, SEQUENCE#, DICTIONARY_BEGIN d_beg, DICTIONARY_END d_end
 FROM V$ARCHIVED_LOG
 WHERE SEQUENCE# = (SELECT MAX (SEQUENCE#) FROM V$ARCHIVED_LOG
 WHERE DICTIONARY_BEGIN = 'YES' and SEQUENCE# <= 208);

NAME SEQUENCE# D_BEG D_END
-- ---------- ----- ------
/usr/oracle/data/db1arch_1_207_482701534.dbf 207 YES NO

3. Specify the list of the redo log files of interest. Add the redo log files that contain
the start and end of the dictionary and the redo log file that you want to analyze.
You can add the redo log files in any order.

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_210_482701534.dbf', -
 OPTIONS => DBMS_LOGMNR.NEW);
EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_208_482701534.dbf');
EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_207_482701534.dbf');

4. Query the V$LOGMNR_LOGS view to display the list of redo log files to be analyzed,
including their timestamps.

In the output, LogMiner flags a missing redo log file. LogMiner lets you proceed
with mining, provided that you do not specify an option that requires the missing
redo log file for proper functioning.

SQL> SELECT FILENAME AS name, LOW_TIME, HIGH_TIME FROM V$LOGMNR_LOGS;
 NAME LOW_TIME HIGH_TIME
------------------------------------- -------------------- --------------------
/usr/data/db1arch_1_207_482701534.dbf 10-jan-2003 12:01:34 10-jan-2003 13:32:46

/usr/data/db1arch_1_208_482701534.dbf 10-jan-2003 13:32:46 10-jan-2003 15:57:03

Missing logfile(s) for thread number 1, 10-jan-2003 15:57:03 10-jan-2003 15:59:53
sequence number(s) 209 to 209

/usr/data/db1arch_1_210_482701534.dbf 10-jan-2003 15:59:53 10-jan-2003 16:07:41

Step 3 Start LogMiner.
Start LogMiner by specifying the dictionary to use and the COMMITTED_DATA_ONLY and
PRINT_PRETTY_SQL options.

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 OPTIONS => DBMS_LOGMNR.DICT_FROM_REDO_LOGS + -
 DBMS_LOGMNR.COMMITTED_DATA_ONLY + -
 DBMS_LOGMNR.PRINT_PRETTY_SQL);

Step 4 Query the V$LOGMNR_CONTENTS view.
To reduce the number of rows returned by the query, exclude from the query all DML
statements done in the SYS or SYSTEM schemas. (This query specifies a timestamp to
exclude transactions that were involved in the dictionary extraction.)

The output shows three transactions: two DDL transactions and one DML transaction.
The DDL transactions, 1.2.1594 and 1.18.1602, create the table oe.product_tracking
and create a trigger on table oe.product_information, respectively. In both
transactions, the DML statements done to the system tables (tables owned by SYS) are
filtered out because of the query predicate.

Examples Using LogMiner

19-50 Oracle Database Utilities

The DML transaction, 1.9.1598, updates the oe.product_information table. The
update operation in this transaction is fully translated. However, the query output also
contains some untranslated reconstructed SQL statements. Most likely, these
statements were done on the oe.product_tracking table that was created after the
data dictionary was extracted to the redo log files.

(The next example shows how to run LogMiner with the DDL_DICT_TRACKING option so
that all SQL statements are fully translated; no binary data is returned.)

SELECT USERNAME AS usr, SQL_REDO FROM V$LOGMNR_CONTENTS
 WHERE SEG_OWNER IS NULL OR SEG_OWNER NOT IN ('SYS', 'SYSTEM') AND
 TIMESTAMP > '10-jan-2003 15:59:53';

USR XID SQL_REDO
--- -------- -----------------------------------
SYS 1.2.1594 set transaction read write;
SYS 1.2.1594 create table oe.product_tracking (product_id number not null,
 modified_time date,
 old_list_price number(8,2),
 old_warranty_period interval year(2) to month);
SYS 1.2.1594 commit;

SYS 1.18.1602 set transaction read write;
SYS 1.18.1602 create or replace trigger oe.product_tracking_trigger
 before update on oe.product_information
 for each row
 when (new.list_price <> old.list_price or
 new.warranty_period <> old.warranty_period)
 declare
 begin
 insert into oe.product_tracking values
 (:old.product_id, sysdate,
 :old.list_price, :old.warranty_period);
 end;
SYS 1.18.1602 commit;

OE 1.9.1598 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+08-00'),
 "LIST_PRICE" = 100
 where
 "PRODUCT_ID" = 1729 and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00') and
 "LIST_PRICE" = 80 and
 ROWID = 'AAAHTKAABAAAY9yAAA';

OE 1.9.1598 insert into "UNKNOWN"."OBJ# 33415"
 values
 "COL 1" = HEXTORAW('c2121e'),
 "COL 2" = HEXTORAW('7867010d110804'),
 "COL 3" = HEXTORAW('c151'),
 "COL 4" = HEXTORAW('800000053c');

OE 1.9.1598 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+08-00'),
 "LIST_PRICE" = 92
 where
 "PRODUCT_ID" = 2340 and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00') and
 "LIST_PRICE" = 72 and

Examples Using LogMiner

Using LogMiner to Analyze Redo Log Files 19-51

 ROWID = 'AAAHTKAABAAAY9zAAA';

OE 1.9.1598 insert into "UNKNOWN"."OBJ# 33415"
 values
 "COL 1" = HEXTORAW('c21829'),
 "COL 2" = HEXTORAW('7867010d110808'),
 "COL 3" = HEXTORAW('c149'),
 "COL 4" = HEXTORAW('800000053c');

OE 1.9.1598 commit;

Step 5 Issue additional queries, if desired.
Display all the DML statements that were executed as part of the CREATE TABLE DDL
statement. This includes statements executed by users and internally by Oracle.

SELECT SQL_REDO FROM V$LOGMNR_CONTENTS
 WHERE XIDUSN = 1 and XIDSLT = 2 and XIDSQN = 1594;

SQL_REDO
--
set transaction read write;

insert into "SYS"."OBJ$"
 values
 "OBJ#" = 33415,
 "DATAOBJ#" = 33415,
 "OWNER#" = 37,
 "NAME" = 'PRODUCT_TRACKING',
 "NAMESPACE" = 1,
 "SUBNAME" IS NULL,
 "TYPE#" = 2,
 "CTIME" = TO_DATE('13-jan-2003 14:01:03', 'dd-mon-yyyy hh24:mi:ss'),
 "MTIME" = TO_DATE('13-jan-2003 14:01:03', 'dd-mon-yyyy hh24:mi:ss'),
 "STIME" = TO_DATE('13-jan-2003 14:01:03', 'dd-mon-yyyy hh24:mi:ss'),
 "STATUS" = 1,
 "REMOTEOWNER" IS NULL,
 "LINKNAME" IS NULL,
 "FLAGS" = 0,
 "OID$" IS NULL,
 "SPARE1" = 6,
 "SPARE2" = 1,
 "SPARE3" IS NULL,
 "SPARE4" IS NULL,
 "SPARE5" IS NULL,
 "SPARE6" IS NULL;

insert into "SYS"."TAB$"
 values
 "OBJ#" = 33415,
 "DATAOBJ#" = 33415,

Note: If you choose to reapply statements displayed by a query
such as the one shown here, then reapply DDL statements only. Do
not reapply DML statements that were executed internally by
Oracle, or you risk corrupting your database. In the following
output, the only statement that you should use in a reapply
operation is the CREATE TABLE OE.PRODUCT_TRACKING statement.

Examples Using LogMiner

19-52 Oracle Database Utilities

 "TS#" = 0,
 "FILE#" = 1,
 "BLOCK#" = 121034,
 "BOBJ#" IS NULL,
 "TAB#" IS NULL,
 "COLS" = 5,
 "CLUCOLS" IS NULL,
 "PCTFREE$" = 10,
 "PCTUSED$" = 40,
 "INITRANS" = 1,
 "MAXTRANS" = 255,
 "FLAGS" = 1,
 "AUDIT$" = '--------------------------------------',
 "ROWCNT" IS NULL,
 "BLKCNT" IS NULL,
 "EMPCNT" IS NULL,
 "AVGSPC" IS NULL,
 "CHNCNT" IS NULL,
 "AVGRLN" IS NULL,
 "AVGSPC_FLB" IS NULL,
 "FLBCNT" IS NULL,
 "ANALYZETIME" IS NULL,
 "SAMPLESIZE" IS NULL,
 "DEGREE" IS NULL,
 "INSTANCES" IS NULL,
 "INTCOLS" = 5,
 "KERNELCOLS" = 5,
 "PROPERTY" = 536870912,
 "TRIGFLAG" = 0,
 "SPARE1" = 178,
 "SPARE2" IS NULL,
 "SPARE3" IS NULL,
 "SPARE4" IS NULL,
 "SPARE5" IS NULL,
 "SPARE6" = TO_DATE('13-jan-2003 14:01:05', 'dd-mon-yyyy hh24:mi:ss'),

insert into "SYS"."COL$"
 values
 "OBJ#" = 33415,
 "COL#" = 1,
 "SEGCOL#" = 1,
 "SEGCOLLENGTH" = 22,
 "OFFSET" = 0,
 "NAME" = 'PRODUCT_ID',
 "TYPE#" = 2,
 "LENGTH" = 22,
 "FIXEDSTORAGE" = 0,
 "PRECISION#" IS NULL,
 "SCALE" IS NULL,
 "NULL$" = 1,
 "DEFLENGTH" IS NULL,
 "SPARE6" IS NULL,
 "INTCOL#" = 1,
 "PROPERTY" = 0,
 "CHARSETID" = 0,
 "CHARSETFORM" = 0,
 "SPARE1" = 0,
 "SPARE2" = 0,
 "SPARE3" = 0,
 "SPARE4" IS NULL,

Examples Using LogMiner

Using LogMiner to Analyze Redo Log Files 19-53

 "SPARE5" IS NULL,
 "DEFAULT$" IS NULL;

insert into "SYS"."COL$"
 values
 "OBJ#" = 33415,
 "COL#" = 2,
 "SEGCOL#" = 2,
 "SEGCOLLENGTH" = 7,
 "OFFSET" = 0,
 "NAME" = 'MODIFIED_TIME',
 "TYPE#" = 12,
 "LENGTH" = 7,
 "FIXEDSTORAGE" = 0,
 "PRECISION#" IS NULL,
 "SCALE" IS NULL,
 "NULL$" = 0,
 "DEFLENGTH" IS NULL,
 "SPARE6" IS NULL,
 "INTCOL#" = 2,
 "PROPERTY" = 0,
 "CHARSETID" = 0,
 "CHARSETFORM" = 0,
 "SPARE1" = 0,
 "SPARE2" = 0,
 "SPARE3" = 0,
 "SPARE4" IS NULL,
 "SPARE5" IS NULL,
 "DEFAULT$" IS NULL;

insert into "SYS"."COL$"
 values
 "OBJ#" = 33415,
 "COL#" = 3,
 "SEGCOL#" = 3,
 "SEGCOLLENGTH" = 22,
 "OFFSET" = 0,
 "NAME" = 'OLD_LIST_PRICE',
 "TYPE#" = 2,
 "LENGTH" = 22,
 "FIXEDSTORAGE" = 0,
 "PRECISION#" = 8,
 "SCALE" = 2,
 "NULL$" = 0,
 "DEFLENGTH" IS NULL,
 "SPARE6" IS NULL,
 "INTCOL#" = 3,
 "PROPERTY" = 0,
 "CHARSETID" = 0,
 "CHARSETFORM" = 0,
 "SPARE1" = 0,
 "SPARE2" = 0,
 "SPARE3" = 0,
 "SPARE4" IS NULL,
 "SPARE5" IS NULL,
 "DEFAULT$" IS NULL;

insert into "SYS"."COL$"
 values
 "OBJ#" = 33415,

Examples Using LogMiner

19-54 Oracle Database Utilities

 "COL#" = 4,
 "SEGCOL#" = 4,
 "SEGCOLLENGTH" = 5,
 "OFFSET" = 0,
 "NAME" = 'OLD_WARRANTY_PERIOD',
 "TYPE#" = 182,
 "LENGTH" = 5,
 "FIXEDSTORAGE" = 0,
 "PRECISION#" = 2,
 "SCALE" = 0,
 "NULL$" = 0,
 "DEFLENGTH" IS NULL,
 "SPARE6" IS NULL,
 "INTCOL#" = 4,
 "PROPERTY" = 0,
 "CHARSETID" = 0,
 "CHARSETFORM" = 0,
 "SPARE1" = 0,
 "SPARE2" = 2,
 "SPARE3" = 0,
 "SPARE4" IS NULL,
 "SPARE5" IS NULL,
 "DEFAULT$" IS NULL;

insert into "SYS"."CCOL$"
 values
 "OBJ#" = 33415,
 "CON#" = 2090,
 "COL#" = 1,
 "POS#" IS NULL,
 "INTCOL#" = 1,
 "SPARE1" = 0,
 "SPARE2" IS NULL,
 "SPARE3" IS NULL,
 "SPARE4" IS NULL,
 "SPARE5" IS NULL,
 "SPARE6" IS NULL;

insert into "SYS"."CDEF$"
 values
 "OBJ#" = 33415,
 "CON#" = 2090,
 "COLS" = 1,
 "TYPE#" = 7,
 "ROBJ#" IS NULL,
 "RCON#" IS NULL,
 "RRULES" IS NULL,
 "MATCH#" IS NULL,
 "REFACT" IS NULL,
 "ENABLED" = 1,
 "CONDLENGTH" = 24,
 "SPARE6" IS NULL,
 "INTCOLS" = 1,
 "MTIME" = TO_DATE('13-jan-2003 14:01:08', 'dd-mon-yyyy hh24:mi:ss'),
 "DEFER" = 12,
 "SPARE1" = 6,
 "SPARE2" IS NULL,
 "SPARE3" IS NULL,
 "SPARE4" IS NULL,
 "SPARE5" IS NULL,

Examples Using LogMiner

Using LogMiner to Analyze Redo Log Files 19-55

 "CONDITION" = '"PRODUCT_ID" IS NOT NULL';

create table oe.product_tracking (product_id number not null,
 modified_time date,
 old_product_description varchar2(2000),
 old_list_price number(8,2),
 old_warranty_period interval year(2) to month);

update "SYS"."SEG$"
 set
 "TYPE#" = 5,
 "BLOCKS" = 5,
 "EXTENTS" = 1,
 "INIEXTS" = 5,
 "MINEXTS" = 1,
 "MAXEXTS" = 121,
 "EXTSIZE" = 5,
 "EXTPCT" = 50,
 "USER#" = 37,
 "LISTS" = 0,
 "GROUPS" = 0,
 "CACHEHINT" = 0,
 "HWMINCR" = 33415,
 "SPARE1" = 1024
 where
 "TS#" = 0 and
 "FILE#" = 1 and
 "BLOCK#" = 121034 and
 "TYPE#" = 3 and
 "BLOCKS" = 5 and
 "EXTENTS" = 1 and
 "INIEXTS" = 5 and
 "MINEXTS" = 1 and
 "MAXEXTS" = 121 and
 "EXTSIZE" = 5 and
 "EXTPCT" = 50 and
 "USER#" = 37 and
 "LISTS" = 0 and
 "GROUPS" = 0 and
 "BITMAPRANGES" = 0 and
 "CACHEHINT" = 0 and
 "SCANHINT" = 0 and
 "HWMINCR" = 33415 and
 "SPARE1" = 1024 and
 "SPARE2" IS NULL and
 ROWID = 'AAAAAIAABAAAdMOAAB';

insert into "SYS"."CON$"
 values
 "OWNER#" = 37,
 "NAME" = 'SYS_C002090',
 "CON#" = 2090,
 "SPARE1" IS NULL,
 "SPARE2" IS NULL,
 "SPARE3" IS NULL,
 "SPARE4" IS NULL,
 "SPARE5" IS NULL,
 "SPARE6" IS NULL;

commit;

Examples Using LogMiner

19-56 Oracle Database Utilities

Step 6 End the LogMiner session.
EXECUTE DBMS_LOGMNR.END_LOGMNR();

Example 5: Tracking DDL Statements in the Internal Dictionary
By using the DBMS_LOGMNR.DDL_DICT_TRACKING option, this example ensures that the
LogMiner internal dictionary is updated with the DDL statements encountered in the
redo log files.

Step 1 Determine which redo log file was most recently archived by the
database.
This example assumes that you know you want to mine the redo log file that was most
recently archived.

SELECT NAME, SEQUENCE# FROM V$ARCHIVED_LOG
 WHERE FIRST_TIME = (SELECT MAX(FIRST_TIME) FROM V$ARCHIVED_LOG);

NAME SEQUENCE#
-- --------------
/usr/oracle/data/db1arch_1_210_482701534.dbf 210

Step 2 Find the dictionary in the redo log files.
Because the dictionary may be contained in more than one redo log file, you need to
determine which redo log files contain the start and end of the data dictionary. Query
the V$ARCHIVED_LOG view, as follows:

1. Find a redo log that contains the end of the data dictionary extract. This redo log
file must have been created before the redo log files that you want to analyze, but
should be as recent as possible.

SELECT NAME, SEQUENCE#, DICTIONARY_BEGIN d_beg, DICTIONARY_END d_end
 FROM V$ARCHIVED_LOG
 WHERE SEQUENCE# = (SELECT MAX (SEQUENCE#) FROM V$ARCHIVED_LOG
 WHERE DICTIONARY_END = 'YES' and SEQUENCE# < 210);

NAME SEQUENCE# D_BEG D_END
-- ---------- ----- ------
/usr/oracle/data/db1arch_1_208_482701534.dbf 208 NO YES

2. Find the redo log file that contains the start of the data dictionary extract that
matches the end of the dictionary found by the previous SQL statement:

SELECT NAME, SEQUENCE#, DICTIONARY_BEGIN d_beg, DICTIONARY_END d_end
 FROM V$ARCHIVED_LOG
 WHERE SEQUENCE# = (SELECT MAX (SEQUENCE#) FROM V$ARCHIVED_LOG
 WHERE DICTIONARY_BEGIN = 'YES' and SEQUENCE# <= 208);

NAME SEQUENCE# D_BEG D_END
-- ---------- ----- ------
/usr/oracle/data/db1arch_1_208_482701534.dbf 207 YES NO

Step 3 Ensure that you have a complete list of redo log files.
To successfully apply DDL statements encountered in the redo log files, ensure that all
files are included in the list of redo log files to mine. The missing log file
corresponding to sequence# 209 must be included in the list. Determine the names of
the redo log files that you need to add to the list by issuing the following query:

Examples Using LogMiner

Using LogMiner to Analyze Redo Log Files 19-57

SELECT NAME FROM V$ARCHIVED_LOG
 WHERE SEQUENCE# >= 207 AND SEQUENCE# <= 210
 ORDER BY SEQUENCE# ASC;

NAME
--
/usr/oracle/data/db1arch_1_207_482701534.dbf
/usr/oracle/data/db1arch_1_208_482701534.dbf
/usr/oracle/data/db1arch_1_209_482701534.dbf
/usr/oracle/data/db1arch_1_210_482701534.dbf

Step 4 Specify the list of the redo log files of interest.
Include the redo log files that contain the beginning and end of the dictionary, the redo
log file that you want to mine, and any redo log files required to create a list without
gaps. You can add the redo log files in any order.

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_210_482701534.dbf', -
 OPTIONS => DBMS_LOGMNR.NEW);
EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_209_482701534.dbf');
EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_208_482701534.dbf');
EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_207_482701534.dbf');

Step 5 Start LogMiner.
Start LogMiner by specifying the dictionary to use and the DDL_DICT_TRACKING,
COMMITTED_DATA_ONLY, and PRINT_PRETTY_SQL options.

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 OPTIONS => DBMS_LOGMNR.DICT_FROM_REDO_LOGS + -
 DBMS_LOGMNR.DDL_DICT_TRACKING + -
 DBMS_LOGMNR.COMMITTED_DATA_ONLY + -
 DBMS_LOGMNR.PRINT_PRETTY_SQL);

Step 6 Query the V$LOGMNR_CONTENTS view.
To reduce the number of rows returned, exclude from the query all DML statements
done in the SYS or SYSTEM schemas. (This query specifies a timestamp to exclude
transactions that were involved in the dictionary extraction.)

The query returns all the reconstructed SQL statements correctly translated and the
insert operations on the oe.product_tracking table that occurred because of the
trigger execution.

SELECT USERNAME AS usr,(XIDUSN || '.' || XIDSLT || '.' || XIDSQN) as XID, SQL_REDO FROM
 V$LOGMNR_CONTENTS
 WHERE SEG_OWNER IS NULL OR SEG_OWNER NOT IN ('SYS', 'SYSTEM') AND
 TIMESTAMP > '10-jan-2003 15:59:53';

USR XID SQL_REDO
----------- -------- -----------------------------------
SYS 1.2.1594 set transaction read write;
SYS 1.2.1594 create table oe.product_tracking (product_id number not null,
 modified_time date,
 old_list_price number(8,2),
 old_warranty_period interval year(2) to month);
SYS 1.2.1594 commit;

Examples Using LogMiner

19-58 Oracle Database Utilities

SYS 1.18.1602 set transaction read write;
SYS 1.18.1602 create or replace trigger oe.product_tracking_trigger
 before update on oe.product_information
 for each row
 when (new.list_price <> old.list_price or
 new.warranty_period <> old.warranty_period)
 declare
 begin
 insert into oe.product_tracking values
 (:old.product_id, sysdate,
 :old.list_price, :old.warranty_period);
 end;
SYS 1.18.1602 commit;

OE 1.9.1598 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+08-00'),
 "LIST_PRICE" = 100
 where
 "PRODUCT_ID" = 1729 and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00') and
 "LIST_PRICE" = 80 and
 ROWID = 'AAAHTKAABAAAY9yAAA';
OE 1.9.1598 insert into "OE"."PRODUCT_TRACKING"
 values
 "PRODUCT_ID" = 1729,
 "MODIFIED_TIME" = TO_DATE('13-jan-2003 16:07:03',
 'dd-mon-yyyy hh24:mi:ss'),
 "OLD_LIST_PRICE" = 80,
 "OLD_WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00');

OE 1.9.1598 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+08-00'),
 "LIST_PRICE" = 92
 where
 "PRODUCT_ID" = 2340 and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00') and
 "LIST_PRICE" = 72 and
 ROWID = 'AAAHTKAABAAAY9zAAA';

OE 1.9.1598 insert into "OE"."PRODUCT_TRACKING"
 values
 "PRODUCT_ID" = 2340,
 "MODIFIED_TIME" = TO_DATE('13-jan-2003 16:07:07',
 'dd-mon-yyyy hh24:mi:ss'),
 "OLD_LIST_PRICE" = 72,
 "OLD_WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00');

OE 1.9.1598 commit;

Step 7 End the LogMiner session.
EXECUTE DBMS_LOGMNR.END_LOGMNR();

Example 6: Filtering Output by Time Range
In the previous two examples, rows were filtered by specifying a timestamp-based
predicate (timestamp > '10-jan-2003 15:59:53') in the query. However, a more efficient
way to filter out redo records based on timestamp values is by specifying the time
range in the DBMS_LOGMNR.START_LOGMNR procedure call, as shown in this example.

Examples Using LogMiner

Using LogMiner to Analyze Redo Log Files 19-59

Step 1 Create a list of redo log files to mine.
Suppose you want to mine redo log files generated since a given time. The following
procedure creates a list of redo log files based on a specified time. The subsequent SQL
EXECUTE statement calls the procedure and specifies the starting time as 2 p.m. on
Jan-13-2003.

--
-- my_add_logfiles
-- Add all archived logs generated after a specified start_time.
--
CREATE OR REPLACE PROCEDURE my_add_logfiles (in_start_time IN DATE) AS
 CURSOR c_log IS
 SELECT NAME FROM V$ARCHIVED_LOG
 WHERE FIRST_TIME >= in_start_time;

count pls_integer := 0;
my_option pls_integer := DBMS_LOGMNR.NEW;

BEGIN
 FOR c_log_rec IN c_log
 LOOP
 DBMS_LOGMNR.ADD_LOGFILE(LOGFILENAME => c_log_rec.name,
 OPTIONS => my_option);
 my_option := DBMS_LOGMNR.ADDFILE;
 DBMS_OUTPUT.PUT_LINE('Added logfile ' || c_log_rec.name);
 END LOOP;
END;
/

EXECUTE my_add_logfiles(in_start_time => '13-jan-2003 14:00:00');

Step 2 Query the V$LOGMNR_LOGS to see the list of redo log files.
This example includes the size of the redo log files in the output.

SELECT FILENAME name, LOW_TIME start_time, FILESIZE bytes
 FROM V$LOGMNR_LOGS;

NAME START_TIME BYTES
----------------------------------- -------------------- ----------------
/usr/orcl/arch1_310_482932022.dbf 13-jan-2003 14:02:35 23683584
/usr/orcl/arch1_311_482932022.dbf 13-jan-2003 14:56:35 2564096
/usr/orcl/arch1_312_482932022.dbf 13-jan-2003 15:10:43 23683584
/usr/orcl/arch1_313_482932022.dbf 13-jan-2003 15:17:52 23683584
/usr/orcl/arch1_314_482932022.dbf 13-jan-2003 15:23:10 23683584
/usr/orcl/arch1_315_482932022.dbf 13-jan-2003 15:43:22 23683584
/usr/orcl/arch1_316_482932022.dbf 13-jan-2003 16:03:10 23683584
/usr/orcl/arch1_317_482932022.dbf 13-jan-2003 16:33:43 23683584
/usr/orcl/arch1_318_482932022.dbf 13-jan-2003 17:23:10 23683584

Step 3 Adjust the list of redo log files.
Suppose you realize that you want to mine just the redo log files generated between 3
p.m. and 4 p.m.

You could use the query predicate (timestamp > '13-jan-2003 15:00:00' and
timestamp < '13-jan-2003 16:00:00') to accomplish this. However, the query
predicate is evaluated on each row returned by LogMiner, and the internal mining
engine does not filter rows based on the query predicate. Thus, although you only
wanted to get rows out of redo log files arch1_311_482932022.dbf to arch1_315_

Examples Using LogMiner

19-60 Oracle Database Utilities

482932022.dbf, your query would result in mining all redo log files registered to the
LogMiner session.

Furthermore, although you could use the query predicate and manually remove the
redo log files that do not fall inside the time range of interest, the simplest solution is
to specify the time range of interest in the DBMS_LOGMNR.START_LOGMNR procedure call.

Although this does not change the list of redo log files, LogMiner will mine only those
redo log files that fall in the time range specified.

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 STARTTIME => '13-jan-2003 15:00:00', -
 ENDTIME => '13-jan-2003 16:00:00', -
 OPTIONS => DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG + -
 DBMS_LOGMNR.COMMITTED_DATA_ONLY + -
 DBMS_LOGMNR.PRINT_PRETTY_SQL);

Step 4 Query the V$LOGMNR_CONTENTS view.
SELECT TIMESTAMP, (XIDUSN || '.' || XIDSLT || '.' || XIDSQN) AS XID,
 SQL_REDO FROM V$LOGMNR_CONTENTS WHERE SEG_OWNER = 'OE';

TIMESTAMP XID SQL_REDO
--------------------- ----------- --------------------------------
13-jan-2003 15:29:31 1.17.2376 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00')
 where
 "PRODUCT_ID" = 3399 and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+02-00') and
 ROWID = 'AAAHTKAABAAAY9TAAE';
13-jan-2003 15:29:34 1.17.2376 insert into "OE"."PRODUCT_TRACKING"
 values
 "PRODUCT_ID" = 3399,
 "MODIFIED_TIME" = TO_DATE('13-jan-2003 15:29:34',
 'dd-mon-yyyy hh24:mi:ss'),
 "OLD_LIST_PRICE" = 815,
 "OLD_WARRANTY_PERIOD" = TO_YMINTERVAL('+02-00');

13-jan-2003 15:52:43 1.15.1756 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00')
 where
 "PRODUCT_ID" = 1768 and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+02-00') and
 ROWID = 'AAAHTKAABAAAY9UAAB';

13-jan-2003 15:52:43 1.15.1756 insert into "OE"."PRODUCT_TRACKING"
 values
 "PRODUCT_ID" = 1768,
 "MODIFIED_TIME" = TO_DATE('13-jan-2003 16:52:43',
 'dd-mon-yyyy hh24:mi:ss'),
 "OLD_LIST_PRICE" = 715,
 "OLD_WARRANTY_PERIOD" = TO_YMINTERVAL('+02-00');

Step 5 End the LogMiner session.
EXECUTE DBMS_LOGMNR.END_LOGMNR();

Examples of Mining Without Specifying the List of Redo Log Files Explicitly
The previous set of examples explicitly specified the redo log file or files to be mined.
However, if you are mining in the same database that generated the redo log files, then
you can mine the appropriate list of redo log files by just specifying the time (or SCN)

Examples Using LogMiner

Using LogMiner to Analyze Redo Log Files 19-61

range of interest. To mine a set of redo log files without explicitly specifying them, use
the DBMS_LOGMNR.CONTINUOUS_MINE option to the DBMS_LOGMNR.START_LOGMNR
procedure, and specify either a time range or an SCN range of interest.

This section contains the following list of examples; these examples are best read in
sequential order, because each example builds on the example or examples that
precede it:

■ Example 1: Mining Redo Log Files in a Given Time Range

■ Example 2: Mining the Redo Log Files in a Given SCN Range

■ Example 3: Using Continuous Mining to Include Future Values in a Query

The SQL output formatting may be different on your display than that shown in these
examples.

Example 1: Mining Redo Log Files in a Given Time Range
This example is similar to "Example 4: Using the LogMiner Dictionary in the Redo Log
Files" on page 19-48, except the list of redo log files are not specified explicitly. This
example assumes that you want to use the data dictionary extracted to the redo log
files.

Step 1 Determine the timestamp of the redo log file that contains the start of the
data dictionary.
SELECT NAME, FIRST_TIME FROM V$ARCHIVED_LOG
 WHERE SEQUENCE# = (SELECT MAX(SEQUENCE#) FROM V$ARCHIVED_LOG
 WHERE DICTIONARY_BEGIN = 'YES');

NAME FIRST_TIME
-- --------------------
/usr/oracle/data/db1arch_1_207_482701534.dbf 10-jan-2003 12:01:34

Step 2 Display all the redo log files that have been generated so far.
This step is not required, but is included to demonstrate that the CONTINUOUS_MINE
option works as expected, as will be shown in Step 4.

SELECT FILENAME name FROM V$LOGMNR_LOGS
 WHERE LOW_TIME > '10-jan-2003 12:01:34';

NAME
--
/usr/oracle/data/db1arch_1_207_482701534.dbf
/usr/oracle/data/db1arch_1_208_482701534.dbf
/usr/oracle/data/db1arch_1_209_482701534.dbf
/usr/oracle/data/db1arch_1_210_482701534.dbf

Step 3 Start LogMiner.
Start LogMiner by specifying the dictionary to use and the COMMITTED_DATA_ONLY,
PRINT_PRETTY_SQL, and CONTINUOUS_MINE options.

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 STARTTIME => '10-jan-2003 12:01:34', -
 ENDTIME => SYSDATE, -
 OPTIONS => DBMS_LOGMNR.DICT_FROM_REDO_LOGS + -
 DBMS_LOGMNR.COMMITTED_DATA_ONLY + -
 DBMS_LOGMNR.PRINT_PRETTY_SQL + -
 DBMS_LOGMNR.CONTINUOUS_MINE);

Examples Using LogMiner

19-62 Oracle Database Utilities

Step 4 Query the V$LOGMNR_LOGS view.
This step shows that the DBMS_LOGMNR.START_LOGMNR procedure with the CONTINUOUS_
MINE option includes all of the redo log files that have been generated so far, as
expected. (Compare the output in this step to the output in Step 2.)

SELECT FILENAME name FROM V$LOGMNR_LOGS;

NAME
--
/usr/oracle/data/db1arch_1_207_482701534.dbf
/usr/oracle/data/db1arch_1_208_482701534.dbf
/usr/oracle/data/db1arch_1_209_482701534.dbf
/usr/oracle/data/db1arch_1_210_482701534.dbf

Step 5 Query the V$LOGMNR_CONTENTS view.
To reduce the number of rows returned by the query, exclude all DML statements done
in the SYS or SYSTEM schema. (This query specifies a timestamp to exclude transactions
that were involved in the dictionary extraction.)

Note that all reconstructed SQL statements returned by the query are correctly
translated.

SELECT USERNAME AS usr,(XIDUSN || '.' || XIDSLT || '.' || XIDSQN) as XID,
 SQL_REDO FROM V$LOGMNR_CONTENTS
 WHERE SEG_OWNER IS NULL OR SEG_OWNER NOT IN ('SYS', 'SYSTEM') AND
 TIMESTAMP > '10-jan-2003 15:59:53';

USR XID SQL_REDO
----------- -------- -----------------------------------
SYS 1.2.1594 set transaction read write;
SYS 1.2.1594 create table oe.product_tracking (product_id number not null,
 modified_time date,
 old_list_price number(8,2),
 old_warranty_period interval year(2) to month);
SYS 1.2.1594 commit;

SYS 1.18.1602 set transaction read write;
SYS 1.18.1602 create or replace trigger oe.product_tracking_trigger
 before update on oe.product_information
 for each row
 when (new.list_price <> old.list_price or
 new.warranty_period <> old.warranty_period)
 declare
 begin
 insert into oe.product_tracking values
 (:old.product_id, sysdate,
 :old.list_price, :old.warranty_period);
 end;
SYS 1.18.1602 commit;

OE 1.9.1598 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+08-00'),
 "LIST_PRICE" = 100
 where
 "PRODUCT_ID" = 1729 and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00') and
 "LIST_PRICE" = 80 and
 ROWID = 'AAAHTKAABAAAY9yAAA';
OE 1.9.1598 insert into "OE"."PRODUCT_TRACKING"
 values
 "PRODUCT_ID" = 1729,
 "MODIFIED_TIME" = TO_DATE('13-jan-2003 16:07:03',
 'dd-mon-yyyy hh24:mi:ss'),

Examples Using LogMiner

Using LogMiner to Analyze Redo Log Files 19-63

 "OLD_LIST_PRICE" = 80,
 "OLD_WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00');

OE 1.9.1598 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+08-00'),
 "LIST_PRICE" = 92
 where
 "PRODUCT_ID" = 2340 and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00') and
 "LIST_PRICE" = 72 and
 ROWID = 'AAAHTKAABAAAY9zAAA';

OE 1.9.1598 insert into "OE"."PRODUCT_TRACKING"
 values
 "PRODUCT_ID" = 2340,
 "MODIFIED_TIME" = TO_DATE('13-jan-2003 16:07:07',
 'dd-mon-yyyy hh24:mi:ss'),
 "OLD_LIST_PRICE" = 72,
 "OLD_WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00');

OE 1.9.1598 commit;

Step 6 End the LogMiner session.
EXECUTE DBMS_LOGMNR.END_LOGMNR();

Example 2: Mining the Redo Log Files in a Given SCN Range
This example shows how to specify an SCN range of interest and mine the redo log
files that satisfy that range. You can use LogMiner to see all committed DML
statements whose effects have not yet been made permanent in the data files.

Note that in this example (unlike the other examples) it is not assumed that you have
set the NLS_DATE_FORMAT parameter.

Step 1 Determine the SCN of the last checkpoint taken.
SELECT CHECKPOINT_CHANGE#, CURRENT_SCN FROM V$DATABASE;

CHECKPOINT_CHANGE# CURRENT_SCN
------------------ ---------------
 56453576 56454208

Step 2 Start LogMiner and specify the CONTINUOUS_MINE option.
EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 STARTSCN => 56453576, -
 ENDSCN => 56454208, -
 OPTIONS => DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG + -
 DBMS_LOGMNR.COMMITTED_DATA_ONLY + -
 DBMS_LOGMNR.PRINT_PRETTY_SQL + -
 DBMS_LOGMNR.CONTINUOUS_MINE);

Step 3 Display the list of archived redo log files added by LogMiner.
SELECT FILENAME name, LOW_SCN, NEXT_SCN FROM V$LOGMNR_LOGS;

NAME LOW_SCN NEXT_SCN
-- -------- --------
/usr/oracle/data/db1arch_1_215_482701534.dbf 56316771 56453579

Examples Using LogMiner

19-64 Oracle Database Utilities

Note that the redo log file that LogMiner added does not contain the whole SCN
range. When you specify the CONTINUOUS_MINE option, LogMiner adds only archived
redo log files when you call the DBMS_LOGMNR.START_LOGMNR procedure. LogMiner will
add the rest of the SCN range contained in the online redo log files automatically, as
needed during the query execution. Use the following query to determine whether the
redo log file added is the latest archived redo log file produced.

SELECT NAME FROM V$ARCHIVED_LOG
 WHERE SEQUENCE# = (SELECT MAX(SEQUENCE#) FROM V$ARCHIVED_LOG);

NAME
--
/usr/oracle/data/db1arch_1_215_482701534.dbf

Step 4 Query the V$LOGMNR_CONTENTS view for changes made to the user
tables.
The following query does not return the SET TRANSACTION READ WRITE and COMMIT
statements associated with transaction 1.6.1911 because these statements do not have a
segment owner (SEG_OWNER) associated with them.

Note that the default NLS_DATE_FORMAT, 'DD-MON-RR', is used to display the column
MODIFIED_TIME of type DATE.

SELECT SCN, (XIDUSN || '.' || XIDSLT || '.' || XIDSQN) as XID, SQL_REDO
 FROM V$LOGMNR_CONTENTS
 WHERE SEG_OWNER NOT IN ('SYS', 'SYSTEM');

SCN XID SQL_REDO
---------- ---------- -------------
56454198 1.6.1911 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00')
 where
 "PRODUCT_ID" = 2430 and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+02-00') and
 ROWID = 'AAAHTKAABAAAY9AAAC';

56454199 1.6.1911 insert into "OE"."PRODUCT_TRACKING"
 values
 "PRODUCT_ID" = 2430,
 "MODIFIED_TIME" = TO_DATE('17-JAN-03', 'DD-MON-RR'),
 "OLD_LIST_PRICE" = 175,
 "OLD_WARRANTY_PERIOD" = TO_YMINTERVAL('+02-00');

56454204 1.6.1911 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00')
 where
 "PRODUCT_ID" = 2302 and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+02-00') and
 ROWID = 'AAAHTKAABAAAY9QAAA';
56454206 1.6.1911 insert into "OE"."PRODUCT_TRACKING"
 values
 "PRODUCT_ID" = 2302,
 "MODIFIED_TIME" = TO_DATE('17-JAN-03', 'DD-MON-RR'),
 "OLD_LIST_PRICE" = 150,
 "OLD_WARRANTY_PERIOD" = TO_YMINTERVAL('+02-00');

Step 5 End the LogMiner session.
EXECUTE DBMS_LOGMNR.END_LOGMNR();

Examples Using LogMiner

Using LogMiner to Analyze Redo Log Files 19-65

Example 3: Using Continuous Mining to Include Future Values in a Query
To specify that a query not finish until some future time occurs or SCN is reached, use
the CONTINUOUS_MINE option and set either the ENDTIME or ENDSCN option in your call to
the DBMS_LOGMNR.START_LOGMNR procedure to a time in the future or to an SCN value
that has not yet been reached.

This examples assumes that you want to monitor all changes made to the table
hr.employees from now until 5 hours from now, and that you are using the dictionary
in the online catalog.

Step 1 Start LogMiner.
EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 STARTTIME => SYSDATE, -
 ENDTIME => SYSDATE + 5/24, -
 OPTIONS => DBMS_LOGMNR.CONTINUOUS_MINE + -
 DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG);

Step 2 Query the V$LOGMNR_CONTENTS view.
This select operation will not complete until it encounters the first redo log file record
that is generated after the time range of interest (5 hours from now). You can end the
select operation prematurely by entering Ctrl+C.

This example specifies the SET ARRAYSIZE statement so that rows are displayed as they
are entered in the redo log file. If you do not specify the SET ARRAYSIZE statement,
then rows are not returned until the SQL internal buffer is full.

SET ARRAYSIZE 1;
SELECT USERNAME AS usr, SQL_REDO FROM V$LOGMNR_CONTENTS
 WHERE SEG_OWNER = 'HR' AND TABLE_NAME = 'EMPLOYEES';

Step 3 End the LogMiner session.
EXECUTE DBMS_LOGMNR.END_LOGMNR();

Example Scenarios
The examples in this section demonstrate how to use LogMiner for typical scenarios.
This section includes the following examples:

■ Scenario 1: Using LogMiner to Track Changes Made by a Specific User

■ Scenario 2: Using LogMiner to Calculate Table Access Statistics

Scenario 1: Using LogMiner to Track Changes Made by a Specific User
This example shows how to see all changes made to the database in a specific time
range by a single user: joedevo. Connect to the database and then take the following
steps:

1. Create the LogMiner dictionary file.

To use LogMiner to analyze joedevo's data, you must either create a LogMiner
dictionary file before any table definition changes are made to tables that joedevo
uses or use the online catalog at LogMiner startup. See "Extract a LogMiner
Dictionary" on page 19-38 for examples of creating LogMiner dictionaries. This
example uses a LogMiner dictionary that has been extracted to the redo log files.

2. Add redo log files.

Examples Using LogMiner

19-66 Oracle Database Utilities

Assume that joedevo has made some changes to the database. You can now
specify the names of the redo log files that you want to analyze, as follows:

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => 'log1orc1.ora', -
 OPTIONS => DBMS_LOGMNR.NEW);

If desired, add additional redo log files, as follows:

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => 'log2orc1.ora', -
 OPTIONS => DBMS_LOGMNR.ADDFILE);

3. Start LogMiner and limit the search to the specified time range:

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 DICTFILENAME => 'orcldict.ora', -
 STARTTIME => TO_DATE('01-Jan-1998 08:30:00','DD-MON-YYYY HH:MI:SS'), -
 ENDTIME => TO_DATE('01-Jan-1998 08:45:00', 'DD-MON-YYYY HH:MI:SS'));

4. Query the V$LOGMNR_CONTENTS view.

At this point, the V$LOGMNR_CONTENTS view is available for queries. You decide to
find all of the changes made by user joedevo to the salary table. Execute the
following SELECT statement:

SELECT SQL_REDO, SQL_UNDO FROM V$LOGMNR_CONTENTS
 WHERE USERNAME = 'joedevo' AND SEG_NAME = 'salary';

For both the SQL_REDO and SQL_UNDO columns, two rows are returned (the format
of the data display will be different on your screen). You discover that joedevo
requested two operations: he deleted his old salary and then inserted a new,
higher salary. You now have the data necessary to undo this operation.

SQL_REDO SQL_UNDO
-------- --------
delete from SALARY insert into SALARY(NAME, EMPNO, SAL)
where EMPNO = 12345 values ('JOEDEVO', 12345, 500)
and NAME='JOEDEVO'
and SAL=500;

insert into SALARY(NAME, EMPNO, SAL) delete from SALARY
values('JOEDEVO',12345, 2500) where EMPNO = 12345
 and NAME = 'JOEDEVO'
2 rows selected and SAL = 2500;

5. End the LogMiner session.

Use the DBMS_LOGMNR.END_LOGMNR procedure to finish the LogMiner session
properly:

DBMS_LOGMNR.END_LOGMNR();

Scenario 2: Using LogMiner to Calculate Table Access Statistics
In this example, assume you manage a direct marketing database and want to
determine how productive the customer contacts have been in generating revenue for
a 2-week period in January. Assume that you have already created the LogMiner
dictionary and added the redo log files that you want to search (as demonstrated in
the previous example). Take the following steps:

1. Start LogMiner and specify a range of times:

Supported Datatypes, Storage Attributes, and Database and Redo Log File Versions

Using LogMiner to Analyze Redo Log Files 19-67

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 STARTTIME => TO_DATE('07-Jan-2003 08:30:00','DD-MON-YYYY HH:MI:SS'), -
 ENDTIME => TO_DATE('21-Jan-2003 08:45:00','DD-MON-YYYY HH:MI:SS'), -
 DICTFILENAME => '/usr/local/dict.ora');

2. Query the V$LOGMNR_CONTENTS view to determine which tables were modified in
the time range you specified, as shown in the following example. (This query
filters out system tables that traditionally have a $ in their name.)

SELECT SEG_OWNER, SEG_NAME, COUNT(*) AS Hits FROM
 V$LOGMNR_CONTENTS WHERE SEG_NAME NOT LIKE '%$' GROUP BY
 SEG_OWNER, SEG_NAME ORDER BY Hits DESC;

3. The following data is displayed. (The format of your display may be different.)

SEG_OWNER SEG_NAME Hits
--------- -------- ----
CUST ACCOUNT 384
UNIV EXECDONOR 325
UNIV DONOR 234
UNIV MEGADONOR 32
HR EMPLOYEES 12
SYS DONOR 12

The values in the Hits column show the number of times that the named table had
an insert, delete, or update operation performed on it during the 2-week period
specified in the query. In this example, the cust.account table was modified the
most during the specified 2-week period, and the hr.employees and sys.donor
tables were modified the least during the same time period.

4. End the LogMiner session.

Use the DBMS_LOGMNR.END_LOGMNR procedure to finish the LogMiner session
properly:

DBMS_LOGMNR.END_LOGMNR();

Supported Datatypes, Storage Attributes, and Database and Redo Log
File Versions

The following sections provide information about datatype and storage attribute
support and the releases of the database and redo log files supported:

■ Supported Datatypes and Table Storage Attributes

■ Unsupported Datatypes and Table Storage Attributes

■ Supported Databases and Redo Log File Versions

Supported Datatypes and Table Storage Attributes
LogMiner supports the following datatypes and table storage attributes. As described
in information following this list, some datatypes are supported only in certain
releases.

■ CHAR

■ NCHAR

■ VARCHAR2 and VARCHAR

■ NVARCHAR2

Supported Datatypes, Storage Attributes, and Database and Redo Log File Versions

19-68 Oracle Database Utilities

■ NUMBER

■ DATE

■ TIMESTAMP

■ TIMESTAMP WITH TIME ZONE

■ TIMESTAMP WITH LOCAL TIME ZONE

■ INTERVAL YEAR TO MONTH

■ INTERVAL DAY TO SECOND

■ RAW

■ CLOB

■ NCLOB

■ BLOB

■ LONG

■ LONG RAW

■ BINARY_FLOAT

■ BINARY_DOUBLE

■ Index-organized tables (IOTs), including those with overflows or LOB columns

■ Function-based indexes

■ Tables using basic table compression and OLTP table compression

■ XMLType data stored in CLOB format

■ XMLType data stored in object-relational format. The contents of the SQL_REDO
column for the XML data-related operations is never valid SQL or PL/SQL.

■ XMLType data stored as binary XML. The contents of the SQL_REDO column for the
XML data-related operations is never valid SQL or PL/SQL.

■ Hybrid Columnar Compression (Support depends on the underlying storage
system. See Oracle Database Concepts for more information about Hybrid Columnar
Compression. Compatibility must be set to 11.2.)

Support for multibyte CLOBs is available only for redo logs generated by a database
with compatibility set to a value of 10.1 or higher.

Support for LOB and LONG datatypes is available only for redo logs generated by a
database with compatibility set to a value of 9.2.0.0 or higher.

Support for index-organized tables without overflow segment or with no LOB
columns in them is available only for redo logs generated by a database with
compatibility set to 10.0.0.0 or higher. Support for index-organized tables with
overflow segment or with LOB columns is available only for redo logs generated by a
database with compatibility set to 10.2.0.0 or higher.

Support for XMLType data stored as binary XML is available only on Oracle Database
11g Release 2 (11.2.0.3) or higher with a redo compatibility setting of 11.2.0.3 or higher.

Support for XMLType data stored in object-relational format is available only on Oracle
Database 11g Release 2 (11.2.0.3) or higher with a redo compatibility setting of 11.2.0.3
or higher.

Supported Datatypes, Storage Attributes, and Database and Redo Log File Versions

Using LogMiner to Analyze Redo Log Files 19-69

Unsupported Datatypes and Table Storage Attributes
LogMiner does not support the following data types and table storage attributes. If a
table contains columns having any of these unsupported data types, then the entire
table is ignored by LogMiner.

■ BFILE datatype

■ Simple and nested abstract datatypes (ADTs)

■ Collections (nested tables and VARRAYs)

■ Object refs

■ SecureFiles (unless database compatibility is set to 11.2 or higher)

Supported Databases and Redo Log File Versions
LogMiner runs only on databases of release 8.1 or later, but you can use it to analyze
redo log files from release 8.0 databases. However, the information that LogMiner is
able to retrieve from a redo log file depends on the version of the log, not the release of
the database in use. For example, redo log files for Oracle9i can be augmented to
capture additional information when supplemental logging is enabled. This allows
LogMiner functionality to be used to its fullest advantage. Redo log files created with
older releases of Oracle will not have that additional data and may therefore have
limitations on the operations and datatypes supported by LogMiner.

SecureFiles LOB Considerations
SecureFiles LOBs are supported when database compatibility is set to 11.2 or higher.
Only SQL_REDO columns can be filled in for SecureFiles LOB columns; SQL_UNDO
columns are not filled in.

Transparent data encryption and data compression can be enabled on SecureFiles LOB
columns at the primary database.

De-duplication of SecureFiles LOB columns, fragment-based operations on SecureFiles
LOB columns, and SecureFiles Database File System (DBFS) operations are not
supported. Specifically, the following operations contained within the DBMS_LOB
PL/SQL package are not supported on SecureFiles LOB columns:

FRAGMENT_DELETE, FRAGMENT_INSERT, FRAGMENT_MOVE, FRAGMENT_REPLACE, COPY_FROM_
DBFS_LINK, MOVE_TO_DBFS_LINK, SET_DBFS_LINK, COPY_DBFS_LINK, and
SETCONTENTTYPE.

If LogMiner encounters redo generated by any of these operations, then it generates
rows with the OPERATION column set to UNSUPPORTED. No SQL_REDO or SQL_UNDO will be
generated for these redo records.

See Also: "SecureFiles LOB Considerations" on page 19-69

See Also: "Steps in a Typical LogMiner Session" on page 19-37
and "Supplemental Logging" on page 19-26

Supported Datatypes, Storage Attributes, and Database and Redo Log File Versions

19-70 Oracle Database Utilities

20

Using the Metadata APIs 20-1

20 Using the Metadata APIs

This chapter describes use of the Metadata APIs, DBMS_METADATA and DBMS_METADATA_
DIFF.

The DBMS_METADATA API enables you to do the following:

■ Retrieve an object's metadata as XML

■ Transform the XML in a variety of ways, including transforming it into SQL DDL

■ Submit the XML to re-create the object extracted by the retrieval

The DBMS_METADATA_DIFF API lets you compare objects between databases to identify
metadata changes over time in objects of the same type.

The following topics are discussed in this chapter:

■ Why Use the DBMS_METADATA API?

■ Overview of the DBMS_METADATA API

■ Using the DBMS_METADATA API to Retrieve an Object's Metadata

■ Using the DBMS_METADATA API to Re-Create a Retrieved Object

■ Using the DBMS_METADATA API to Retrieve Collections of Different Object
Types

■ Using the DBMS_METADATA_DIFF API to Compare Object Metadata

■ Performance Tips for the Programmatic Interface of the DBMS_METADATA API

■ Example Usage of the DBMS_METADATA API

■ Summary of DBMS_METADATA Procedures

■ Summary of DBMS_METADATA_DIFF Procedures

Why Use the DBMS_METADATA API?
Over time, as you have used the Oracle database, you may have developed your own
code for extracting metadata from the dictionary, manipulating the metadata (adding
columns, changing column datatypes, and so on) and then converting the metadata to
DDL so that you could re-create the object on the same or another database. Keeping
that code updated to support new dictionary features has probably proven to be
challenging.

The DBMS_METADATA API eliminates the need for you to write and maintain your own
code for metadata extraction. It provides a centralized facility for the extraction,
manipulation, and re-creation of dictionary metadata. And it supports all dictionary
objects at their most current level.

Overview of the DBMS_METADATA API

20-2 Oracle Database Utilities

Although the DBMS_METADATA API can dramatically decrease the amount of custom
code you are writing and maintaining, it does not involve any changes to your normal
database procedures. The DBMS_METADATA API is installed in the same way as data
dictionary views, by running catproc.sql to invoke a SQL script at database
installation time. Once it is installed, it is available whenever the instance is
operational, even in restricted mode.

The DBMS_METADATA API does not require you to make any source code changes when
you change database releases because it is upwardly compatible across different
Oracle releases. XML documents retrieved by one release can be processed by the
submit interface on the same or later release. For example, XML documents retrieved
by an Oracle9i database can be submitted to Oracle Database 10g.

Overview of the DBMS_METADATA API
For the purposes of the DBMS_METADATA API, every entity in the database is modeled as
an object that belongs to an object type. For example, the table scott.emp is an object
and its object type is TABLE. When you fetch an object's metadata you must specify the
object type.

To fetch a particular object or set of objects within an object type, you specify a filter.
Different filters are defined for each object type. For example, two of the filters defined
for the TABLE object type are SCHEMA and NAME. They allow you to say, for example, that
you want the table whose schema is scott and whose name is emp.

The DBMS_METADATA API makes use of XML (Extensible Markup Language) and XSLT
(Extensible Stylesheet Language Transformation). The DBMS_METADATA API represents
object metadata as XML because it is a universal format that can be easily parsed and
transformed. The DBMS_METADATA API uses XSLT to transform XML documents into
either other XML documents or into SQL DDL.

You can use the DBMS_METADATA API to specify one or more transforms (XSLT scripts)
to be applied to the XML when the metadata is fetched (or when it is resubmitted). The
API provides some predefined transforms, including one named DDL that transforms
the XML document into SQL creation DDL.

You can then specify conditions on the transform by using transform parameters. You
can also specify optional parse items to access specific attributes of an object's
metadata. For more details about all of these options and examples of their
implementation, see the following sections:

■ Using the DBMS_METADATA API to Retrieve an Object's Metadata

■ Using the DBMS_METADATA API to Re-Create a Retrieved Object

■ Using the DBMS_METADATA API to Retrieve Collections of Different Object
Types

Using the DBMS_METADATA API to Retrieve an Object's Metadata
The retrieval interface of the DBMS_METADATA API lets you specify the kind of object to
be retrieved. This can be either a particular object type (such as a table, index, or
procedure) or a heterogeneous collection of object types that form a logical unit (such
as a database export or schema export). By default, metadata that you fetch is returned
in an XML document.

Using the DBMS_METADATA API to Retrieve an Object's Metadata

Using the Metadata APIs 20-3

You can use the programmatic interface for casual browsing, or you can use it to
develop applications. You would use the browsing interface if you simply wanted to
make ad hoc queries of the system metadata. You would use the programmatic
interface when you want to extract dictionary metadata as part of an application. In
such cases, the procedures provided by the DBMS_METADATA API can be used in place of
SQL scripts and customized code that you may be currently using to do the same
thing.

Typical Steps Used for Basic Metadata Retrieval
When you retrieve metadata, you use the DBMS_METADATA PL/SQL API. The following
examples illustrate the programmatic and browsing interfaces.

Example 20–1 provides a basic demonstration of how you might use the DBMS_
METADATA programmatic interface to retrieve metadata for one table. It creates a DBMS_
METADATA program that creates a function named get_table_md. This function returns
metadata for one table.

Example 20–1 Using the DBMS_METADATA Programmatic Interface to Retrieve Data

1. Create a DBMS_METADATA program that creates a function named get_table_md,
which will return the metadata for one table, timecards, in the hr schema. The
content of such a program looks as follows. (For this example, name the program
metadata_program.sql.)

CREATE OR REPLACE FUNCTION get_table_md RETURN CLOB IS
-- Define local variables.
h NUMBER; --handle returned by OPEN
th NUMBER; -- handle returned by ADD_TRANSFORM
doc CLOB;
BEGIN

-- Specify the object type.
h := DBMS_METADATA.OPEN('TABLE');

-- Use filters to specify the particular object desired.
DBMS_METADATA.SET_FILTER(h,'SCHEMA','HR');
DBMS_METADATA.SET_FILTER(h,'NAME','TIMECARDS');

Note: To access objects that are not in your own schema you must
have the SELECT_CATALOG_ROLE role. However, roles are disabled
within many PL/SQL objects (stored procedures, functions,
definer's rights APIs). Therefore, if you are writing a PL/SQL
program that will access objects in another schema (or, in general,
any objects for which you need the SELECT_CATALOG_ROLE role),
then you must put the code in an invoker's rights API.

See Also:

■ Table 20–1 for descriptions of DBMS_METADATA procedures used
in the programmatic interface

■ Table 20–2 for descriptions of DBMS_METADATA procedures used
in the browsing interface

■ Oracle Database PL/SQL Packages and Types Reference for a
complete description of the DBMS_METADATA API.

Using the DBMS_METADATA API to Retrieve an Object's Metadata

20-4 Oracle Database Utilities

 -- Request that the metadata be transformed into creation DDL.
th := DBMS_METADATA.ADD_TRANSFORM(h,'DDL');

 -- Fetch the object.
doc := DBMS_METADATA.FETCH_CLOB(h);

 -- Release resources.
DBMS_METADATA.CLOSE(h);
RETURN doc;
END;
/

2. Connect as user hr.

3. Run the program to create the get_table_md function:

SQL> @metadata_program

4. Use the newly created get_table_md function in a select operation. To generate
complete, uninterrupted output, set the PAGESIZE to 0 and set LONG to some large
number, as shown, before executing your query:

SQL> SET PAGESIZE 0
SQL> SET LONG 1000000
SQL> SELECT get_table_md FROM dual;

5. The output, which shows the metadata for the timecards table in the hr schema,
looks similar to the following:

 CREATE TABLE "HR"."TIMECARDS"
 ("EMPLOYEE_ID" NUMBER(6,0),
 "WEEK" NUMBER(2,0),
 "JOB_ID" VARCHAR2(10),
 "HOURS_WORKED" NUMBER(4,2),
 FOREIGN KEY ("EMPLOYEE_ID")
 REFERENCES "HR"."EMPLOYEES" ("EMPLOYEE_ID") ENABLE
) PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING
 STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)
 TABLESPACE "EXAMPLE"

You can use the browsing interface and get the same results, as shown in
Example 20–2.

Example 20–2 Using the DBMS_METADATA Browsing Interface to Retrieve Data

SQL> SET PAGESIZE 0
SQL> SET LONG 1000000
SQL> SELECT DBMS_METADATA.GET_DDL('TABLE','TIMECARDS','HR') FROM dual;

The results will be the same as shown in step 5 for Example 20–1.

Retrieving Multiple Objects
In Example 20–1, the FETCH_CLOB procedure was called only once, because it was
known that there was only one object. However, you can also retrieve multiple objects,
for example, all the tables in schema scott. To do this, you need to use the following
construct:

 LOOP
 doc := DBMS_METADATA.FETCH_CLOB(h);

Using the DBMS_METADATA API to Retrieve an Object's Metadata

Using the Metadata APIs 20-5

 --
 -- When there are no more objects to be retrieved, FETCH_CLOB returns NULL.
 --
 EXIT WHEN doc IS NULL;
 END LOOP;

Example 20–3 demonstrates use of this construct and retrieving multiple objects.
Connect as user scott for this example. The password is tiger.

Example 20–3 Retrieving Multiple Objects

1. Create a table named my_metadata and a procedure named get_tables_md, as
follows. Because not all objects can be returned, they are stored in a table and
queried at the end.

DROP TABLE my_metadata;
CREATE TABLE my_metadata (md clob);
CREATE OR REPLACE PROCEDURE get_tables_md IS
-- Define local variables
h NUMBER; -- handle returned by 'OPEN'
th NUMBER; -- handle returned by 'ADD_TRANSFORM'
doc CLOB; -- metadata is returned in a CLOB
BEGIN

 -- Specify the object type.
 h := DBMS_METADATA.OPEN('TABLE');

 -- Use filters to specify the schema.
 DBMS_METADATA.SET_FILTER(h,'SCHEMA','SCOTT');

 -- Request that the metadata be transformed into creation DDL.
 th := DBMS_METADATA.ADD_TRANSFORM(h,'DDL');

 -- Fetch the objects.
 LOOP
 doc := DBMS_METADATA.FETCH_CLOB(h);

 -- When there are no more objects to be retrieved, FETCH_CLOB returns NULL.
 EXIT WHEN doc IS NULL;

 -- Store the metadata in a table.
 INSERT INTO my_metadata(md) VALUES (doc);
 COMMIT;
 END LOOP;

 -- Release resources.
 DBMS_METADATA.CLOSE(h);
END;
/

2. Execute the procedure:

EXECUTE get_tables_md;

3. Query the my_metadata table to see what was retrieved:

SET LONG 9000000
SET PAGES 0
SELECT * FROM my_metadata;

Using the DBMS_METADATA API to Retrieve an Object's Metadata

20-6 Oracle Database Utilities

Placing Conditions on Transforms
You can use transform parameters to specify conditions on the transforms you add. To
do this, you use the SET_TRANSFORM_PARAM procedure. For example, if you have added
the DDL transform for a TABLE object, then you can specify the SEGMENT_ATTRIBUTES
transform parameter to indicate that you do not want segment attributes (physical,
storage, logging, and so on) to appear in the DDL. The default is that segment
attributes do appear in the DDL.

Example 20–4 shows use of the SET_TRANSFORM_PARAM procedure.

Example 20–4 Placing Conditions on Transforms

1. Create a function named get_table_md, as follows:

CREATE OR REPLACE FUNCTION get_table_md RETURN CLOB IS
 -- Define local variables.
 h NUMBER; -- handle returned by 'OPEN'
 th NUMBER; -- handle returned by 'ADD_TRANSFORM'
 doc CLOB;
BEGIN

 -- Specify the object type.
 h := DBMS_METADATA.OPEN('TABLE');

 -- Use filters to specify the particular object desired.
 DBMS_METADATA.SET_FILTER(h,'SCHEMA','HR');
 DBMS_METADATA.SET_FILTER(h,'NAME','TIMECARDS');

 -- Request that the metadata be transformed into creation DDL.
 th := dbms_metadata.add_transform(h,'DDL');

 -- Specify that segment attributes are not to be returned.
 -- Note that this call uses the TRANSFORM handle, not the OPEN handle.
DBMS_METADATA.SET_TRANSFORM_PARAM(th,'SEGMENT_ATTRIBUTES',false);

 -- Fetch the object.
 doc := DBMS_METADATA.FETCH_CLOB(h);

 -- Release resources.
 DBMS_METADATA.CLOSE(h);

 RETURN doc;
END;
/

2. Perform the following query:

SQL> SELECT get_table_md FROM dual;

The output looks similar to the following:

 CREATE TABLE "HR"."TIMECARDS"
 ("EMPLOYEE_ID" NUMBER(6,0),
 "WEEK" NUMBER(2,0),
 "JOB_ID" VARCHAR2(10),
 "HOURS_WORKED" NUMBER(4,2),
 FOREIGN KEY ("EMPLOYEE_ID")
 REFERENCES "HR"."EMPLOYEES" ("EMPLOYEE_ID") ENABLE
)

Using the DBMS_METADATA API to Retrieve an Object's Metadata

Using the Metadata APIs 20-7

The examples shown up to this point have used a single transform, the DDL transform.
The DBMS_METADATA API also enables you to specify multiple transforms, with the
output of the first being the input to the next and so on.

Oracle supplies a transform called MODIFY that modifies an XML document. You can
do things like change schema names or tablespace names. To do this, you use remap
parameters and the SET_REMAP_PARAM procedure.

Example 20–5 shows a sample use of the SET_REMAP_PARAM procedure. It first adds the
MODIFY transform and specifies remap parameters to change the schema name from hr
to scott. It then adds the DDL transform. The output of the MODIFY transform is an
XML document that becomes the input to the DDL transform. The end result is the
creation DDL for the timecards table with all instances of schema hr changed to
scott.

Example 20–5 Modifying an XML Document

1. Create a function named remap_schema:

CREATE OR REPLACE FUNCTION remap_schema RETURN CLOB IS
-- Define local variables.
h NUMBER; --handle returned by OPEN
th NUMBER; -- handle returned by ADD_TRANSFORM
doc CLOB;
BEGIN

-- Specify the object type.
h := DBMS_METADATA.OPEN('TABLE');

-- Use filters to specify the particular object desired.
DBMS_METADATA.SET_FILTER(h,'SCHEMA','HR');
DBMS_METADATA.SET_FILTER(h,'NAME','TIMECARDS');

-- Request that the schema name be modified.
th := DBMS_METADATA.ADD_TRANSFORM(h,'MODIFY');
DBMS_METADATA.SET_REMAP_PARAM(th,'REMAP_SCHEMA','HR','SCOTT');

-- Request that the metadata be transformed into creation DDL.
th := DBMS_METADATA.ADD_TRANSFORM(h,'DDL');

-- Specify that segment attributes are not to be returned.
DBMS_METADATA.SET_TRANSFORM_PARAM(th,'SEGMENT_ATTRIBUTES',false);

-- Fetch the object.
doc := DBMS_METADATA.FETCH_CLOB(h);

-- Release resources.
DBMS_METADATA.CLOSE(h);
RETURN doc;
END;
/

2. Perform the following query:

SELECT remap_schema FROM dual;

The output looks similar to the following:

 CREATE TABLE "SCOTT"."TIMECARDS"
 ("EMPLOYEE_ID" NUMBER(6,0),
 "WEEK" NUMBER(2,0),

Using the DBMS_METADATA API to Retrieve an Object's Metadata

20-8 Oracle Database Utilities

 "JOB_ID" VARCHAR2(10),
 "HOURS_WORKED" NUMBER(4,2),
 FOREIGN KEY ("EMPLOYEE_ID")
 REFERENCES "SCOTT"."EMPLOYEES" ("EMPLOYEE_ID") ENABLE
)

If you are familiar with XSLT, then you can add your own user-written transforms
to process the XML.

Accessing Specific Metadata Attributes
It is often desirable to access specific attributes of an object's metadata, for example, its
name or schema. You could get this information by parsing the returned metadata, but
the DBMS_METADATA API provides another mechanism; you can specify parse items,
specific attributes that will be parsed out of the metadata and returned in a separate
data structure. To do this, you use the SET_PARSE_ITEM procedure.

Example 20–6 fetches all tables in a schema. For each table, a parse item is used to get
its name. The name is then used to get all indexes on the table. The example illustrates
the use of the FETCH_DDL function, which returns metadata in a sys.ku$_ddls object.

This example assumes you are connected to a schema that contains some tables and
indexes. It also creates a table named my_metadata.

Example 20–6 Using Parse Items to Access Specific Metadata Attributes

1. Create a table named my_metadata and a procedure named get_tables_and_
indexes, as follows:

DROP TABLE my_metadata;
CREATE TABLE my_metadata (
 object_type VARCHAR2(30),
 name VARCHAR2(30),
 md CLOB);
CREATE OR REPLACE PROCEDURE get_tables_and_indexes IS
-- Define local variables.
h1 NUMBER; -- handle returned by OPEN for tables
h2 NUMBER; -- handle returned by OPEN for indexes
th1 NUMBER; -- handle returned by ADD_TRANSFORM for tables
th2 NUMBER; -- handle returned by ADD_TRANSFORM for indexes
doc sys.ku$_ddls; -- metadata is returned in sys.ku$_ddls,
 -- a nested table of sys.ku$_ddl objects
ddl CLOB; -- creation DDL for an object
pi sys.ku$_parsed_items; -- parse items are returned in this object
 -- which is contained in sys.ku$_ddl
objname VARCHAR2(30); -- the parsed object name
idxddls sys.ku$_ddls; -- metadata is returned in sys.ku$_ddls,
 -- a nested table of sys.ku$_ddl objects
idxname VARCHAR2(30); -- the parsed index name
BEGIN
 -- This procedure has an outer loop that fetches tables,
 -- and an inner loop that fetches indexes.

 -- Specify the object type: TABLE.
 h1 := DBMS_METADATA.OPEN('TABLE');

 -- Request that the table name be returned as a parse item.
 DBMS_METADATA.SET_PARSE_ITEM(h1,'NAME');

 -- Request that the metadata be transformed into creation DDL.

Using the DBMS_METADATA API to Retrieve an Object's Metadata

Using the Metadata APIs 20-9

 th1 := DBMS_METADATA.ADD_TRANSFORM(h1,'DDL');

 -- Specify that segment attributes are not to be returned.
 DBMS_METADATA.SET_TRANSFORM_PARAM(th1,'SEGMENT_ATTRIBUTES',false);

 -- Set up the outer loop: fetch the TABLE objects.
 LOOP
 doc := dbms_metadata.fetch_ddl(h1);

-- When there are no more objects to be retrieved, FETCH_DDL returns NULL.
 EXIT WHEN doc IS NULL;

-- Loop through the rows of the ku$_ddls nested table.
 FOR i IN doc.FIRST..doc.LAST LOOP
 ddl := doc(i).ddlText;
 pi := doc(i).parsedItems;
 -- Loop through the returned parse items.
 IF pi IS NOT NULL AND pi.COUNT > 0 THEN
 FOR j IN pi.FIRST..pi.LAST LOOP
 IF pi(j).item='NAME' THEN
 objname := pi(j).value;
 END IF;
 END LOOP;
 END IF;
 -- Insert information about this object into our table.
 INSERT INTO my_metadata(object_type, name, md)
 VALUES ('TABLE',objname,ddl);
 COMMIT;
 END LOOP;

 -- Now fetch indexes using the parsed table name as
 -- a BASE_OBJECT_NAME filter.

 -- Specify the object type.
 h2 := DBMS_METADATA.OPEN('INDEX');

 -- The base object is the table retrieved in the outer loop.
 DBMS_METADATA.SET_FILTER(h2,'BASE_OBJECT_NAME',objname);

 -- Exclude system-generated indexes.
 DBMS_METADATA.SET_FILTER(h2,'SYSTEM_GENERATED',false);

 -- Request that the index name be returned as a parse item.
 DBMS_METADATA.SET_PARSE_ITEM(h2,'NAME');

 -- Request that the metadata be transformed into creation DDL.
 th2 := DBMS_METADATA.ADD_TRANSFORM(h2,'DDL');

 -- Specify that segment attributes are not to be returned.
 DBMS_METADATA.SET_TRANSFORM_PARAM(th2,'SEGMENT_ATTRIBUTES',false);

 LOOP
 idxddls := dbms_metadata.fetch_ddl(h2);

 -- When there are no more objects to be retrieved, FETCH_DDL returns NULL.
 EXIT WHEN idxddls IS NULL;

 FOR i in idxddls.FIRST..idxddls.LAST LOOP
 ddl := idxddls(i).ddlText;

Using the DBMS_METADATA API to Re-Create a Retrieved Object

20-10 Oracle Database Utilities

 pi := idxddls(i).parsedItems;
 -- Loop through the returned parse items.
 IF pi IS NOT NULL AND pi.COUNT > 0 THEN
 FOR j IN pi.FIRST..pi.LAST LOOP
 IF pi(j).item='NAME' THEN
 idxname := pi(j).value;
 END IF;
 END LOOP;
 END IF;

 -- Store the metadata in our table.
 INSERT INTO my_metadata(object_type, name, md)
 VALUES ('INDEX',idxname,ddl);
 COMMIT;
 END LOOP; -- for loop
 END LOOP;
 DBMS_METADATA.CLOSE(h2);
 END LOOP;
 DBMS_METADATA.CLOSE(h1);
END;
/

2. Execute the procedure:

EXECUTE get_tables_and_indexes;

3. Perform the following query to see what was retrieved:

SET LONG 9000000
SET PAGES 0
SELECT * FROM my_metadata;

Using the DBMS_METADATA API to Re-Create a Retrieved Object
When you fetch metadata for an object, you may want to use it to re-create the object
in a different database or schema.

You may not be ready to make remapping decisions when you fetch the metadata. You
may want to defer these decisions until later. To accomplish this, you fetch the
metadata as XML and store it in a file or table. Later you can use the submit interface
to re-create the object.

The submit interface is similar in form to the retrieval interface. It has an OPENW
procedure in which you specify the object type of the object to be created. You can
specify transforms, transform parameters, and parse items. You can call the CONVERT
function to convert the XML to DDL, or you can call the PUT function to both convert
XML to DDL and submit the DDL to create the object.

Example 20–7 fetches the XML for a table in one schema, and then uses the submit
interface to re-create the table in another schema.

Example 20–7 Using the Submit Interface to Re-Create a Retrieved Object

1. Connect as a privileged user:

CONNECT system
Enter password: password

See Also: Table 20–3 on page 20-29 for descriptions of DBMS_
METADATA procedures and functions used in the submit interface

Using the DBMS_METADATA API to Re-Create a Retrieved Object

Using the Metadata APIs 20-11

2. Create an invoker's rights package to hold the procedure because access to objects
in another schema requires the SELECT_CATALOG_ROLE role. In a definer's rights
PL/SQL object (such as a procedure or function), roles are disabled.

CREATE OR REPLACE PACKAGE example_pkg AUTHID current_user IS
 PROCEDURE move_table(
 table_name in VARCHAR2,
 from_schema in VARCHAR2,
 to_schema in VARCHAR2);
END example_pkg;
/
CREATE OR REPLACE PACKAGE BODY example_pkg IS
PROCEDURE move_table(
 table_name in VARCHAR2,
 from_schema in VARCHAR2,
 to_schema in VARCHAR2) IS

-- Define local variables.
h1 NUMBER; -- handle returned by OPEN
h2 NUMBER; -- handle returned by OPENW
th1 NUMBER; -- handle returned by ADD_TRANSFORM for MODIFY
th2 NUMBER; -- handle returned by ADD_TRANSFORM for DDL
xml CLOB; -- XML document
errs sys.ku$_SubmitResults := sys.ku$_SubmitResults();
err sys.ku$_SubmitResult;
result BOOLEAN;
BEGIN

-- Specify the object type.
h1 := DBMS_METADATA.OPEN('TABLE');

-- Use filters to specify the name and schema of the table.
DBMS_METADATA.SET_FILTER(h1,'NAME',table_name);
DBMS_METADATA.SET_FILTER(h1,'SCHEMA',from_schema);

-- Fetch the XML.
xml := DBMS_METADATA.FETCH_CLOB(h1);
IF xml IS NULL THEN
 DBMS_OUTPUT.PUT_LINE('Table ' || from_schema || '.' || table_name
|| ' not found');
 RETURN;
 END IF;

-- Release resources.
DBMS_METADATA.CLOSE(h1);

-- Use the submit interface to re-create the object in another schema.

-- Specify the object type using OPENW (instead of OPEN).
h2 := DBMS_METADATA.OPENW('TABLE');

-- First, add the MODIFY transform.
th1 := DBMS_METADATA.ADD_TRANSFORM(h2,'MODIFY');

-- Specify the desired modification: remap the schema name.
DBMS_METADATA.SET_REMAP_PARAM(th1,'REMAP_SCHEMA',from_schema,to_schema);

-- Now add the DDL transform so that the modified XML can be
-- transformed into creation DDL.

Using the DBMS_METADATA API to Retrieve Collections of Different Object Types

20-12 Oracle Database Utilities

th2 := DBMS_METADATA.ADD_TRANSFORM(h2,'DDL');

-- Call PUT to re-create the object.
result := DBMS_METADATA.PUT(h2,xml,0,errs);

DBMS_METADATA.CLOSE(h2);
 IF NOT result THEN
 -- Process the error information.
 FOR i IN errs.FIRST..errs.LAST LOOP
 err := errs(i);
 FOR j IN err.errorLines.FIRST..err.errorLines.LAST LOOP
 dbms_output.put_line(err.errorLines(j).errorText);
 END LOOP;
 END LOOP;
 END IF;
END;
END example_pkg;
/

3. Now create a table named my_example in the schema SCOTT:

CONNECT scott
Enter password:
-- The password is tiger.

DROP TABLE my_example;
CREATE TABLE my_example (a NUMBER, b VARCHAR2(30));

CONNECT system
Enter password: password

SET LONG 9000000
SET PAGESIZE 0
SET SERVEROUTPUT ON SIZE 100000

4. Copy the my_example table to the SYSTEM schema:

DROP TABLE my_example;
EXECUTE example_pkg.move_table('MY_EXAMPLE','SCOTT','SYSTEM');

5. Perform the following query to verify that it worked:

SELECT DBMS_METADATA.GET_DDL('TABLE','MY_EXAMPLE') FROM dual;

Using the DBMS_METADATA API to Retrieve Collections of Different
Object Types

There may be times when you need to retrieve collections of objects in which the
objects are of different types, but comprise a logical unit. For example, you might need
to retrieve all the objects in a database or a schema, or a table and all its dependent
indexes, constraints, grants, audits, and so on. To make such a retrieval possible, the
DBMS_METADATA API provides several heterogeneous object types. A heterogeneous
object type is an ordered set of object types.

Oracle supplies the following heterogeneous object types:

■ TABLE_EXPORT - a table and its dependent objects

■ SCHEMA_EXPORT - a schema and its contents

■ DATABASE_EXPORT - the objects in the database

Using the DBMS_METADATA API to Retrieve Collections of Different Object Types

Using the Metadata APIs 20-13

These object types were developed for use by the Data Pump Export utility, but you
can use them in your own applications.

You can use only the programmatic retrieval interface (OPEN, FETCH, CLOSE) with these
types, not the browsing interface or the submit interface.

You can specify filters for heterogeneous object types, just as you do for the
homogeneous types. For example, you can specify the SCHEMA and NAME filters for
TABLE_EXPORT, or the SCHEMA filter for SCHEMA_EXPORT.

Example 20–8 shows how to retrieve the object types in the scott schema. Connect as
user scott. The password is tiger.

Example 20–8 Retrieving Heterogeneous Object Types

1. Create a table to store the retrieved objects:

DROP TABLE my_metadata;
CREATE TABLE my_metadata (md CLOB);
CREATE OR REPLACE PROCEDURE get_schema_md IS

-- Define local variables.
h NUMBER; -- handle returned by OPEN
th NUMBER; -- handle returned by ADD_TRANSFORM
doc CLOB; -- metadata is returned in a CLOB
BEGIN

-- Specify the object type.
 h := DBMS_METADATA.OPEN('SCHEMA_EXPORT');

 -- Use filters to specify the schema.
 DBMS_METADATA.SET_FILTER(h,'SCHEMA','SCOTT');

 -- Request that the metadata be transformed into creation DDL.
 th := DBMS_METADATA.ADD_TRANSFORM(h,'DDL');

 -- Fetch the objects.
 LOOP
 doc := DBMS_METADATA.FETCH_CLOB(h);

 -- When there are no more objects to be retrieved, FETCH_CLOB returns NULL.
 EXIT WHEN doc IS NULL;

 -- Store the metadata in the table.
 INSERT INTO my_metadata(md) VALUES (doc);
 COMMIT;
 END LOOP;

 -- Release resources.
 DBMS_METADATA.CLOSE(h);
END;
/

2. Execute the procedure:

EXECUTE get_schema_md;

3. Perform the following query to see what was retrieved:

SET LONG 9000000
SET PAGESIZE 0
SELECT * FROM my_metadata;

Using the DBMS_METADATA API to Retrieve Collections of Different Object Types

20-14 Oracle Database Utilities

In this example, objects are returned ordered by object type; for example, all tables are
returned, then all grants on tables, then all indexes on tables, and so on. The order is,
generally speaking, a valid creation order. Thus, if you take the objects in the order in
which they were returned and use the submit interface to re-create them in the same
order in another schema or database, then there will usually be no errors. (The
exceptions usually involve circular references; for example, if package A contains a call
to package B, and package B contains a call to package A, then one of the packages
will need to be recompiled a second time.)

Filtering the Return of Heterogeneous Object Types
If you want finer control of the objects returned, then you can use the SET_FILTER
procedure and specify that the filter apply only to a specific member type. You do this
by specifying the path name of the member type as the fourth parameter to SET_
FILTER. In addition, you can use the EXCLUDE_PATH_EXPR filter to exclude all objects of
an object type. For a list of valid path names, see the TABLE_EXPORT_OBJECTS catalog
view.

Example 20–9 shows how you can use SET_FILTER to specify finer control on the
objects returned. Connect as user scott. The password is tiger.

Example 20–9 Filtering the Return of Heterogeneous Object Types

1. Create a table, my_metadata, to store the retrieved objects. And create a procedure,
get_schema_md2.

DROP TABLE my_metadata;
CREATE TABLE my_metadata (md CLOB);
CREATE OR REPLACE PROCEDURE get_schema_md2 IS

-- Define local variables.
h NUMBER; -- handle returned by 'OPEN'
th NUMBER; -- handle returned by 'ADD_TRANSFORM'
doc CLOB; -- metadata is returned in a CLOB
BEGIN

 -- Specify the object type.
 h := DBMS_METADATA.OPEN('SCHEMA_EXPORT');

 -- Use filters to specify the schema.
 DBMS_METADATA.SET_FILTER(h,'SCHEMA','SCOTT');

 -- Use the fourth parameter to SET_FILTER to specify a filter
 -- that applies to a specific member object type.
 DBMS_METADATA.SET_FILTER(h,'NAME_EXPR','!=''MY_METADATA''','TABLE');

 -- Use the EXCLUDE_PATH_EXPR filter to exclude procedures.
 DBMS_METADATA.SET_FILTER(h,'EXCLUDE_PATH_EXPR','=''PROCEDURE''');

 -- Request that the metadata be transformed into creation DDL.
 th := DBMS_METADATA.ADD_TRANSFORM(h,'DDL');

 -- Use the fourth parameter to SET_TRANSFORM_PARAM to specify a parameter
 -- that applies to a specific member object type.
DBMS_METADATA.SET_TRANSFORM_PARAM(th,'SEGMENT_ATTRIBUTES',false,'TABLE');

 -- Fetch the objects.
 LOOP

Using the DBMS_METADATA_DIFF API to Compare Object Metadata

Using the Metadata APIs 20-15

 doc := dbms_metadata.fetch_clob(h);

 -- When there are no more objects to be retrieved, FETCH_CLOB returns NULL.
 EXIT WHEN doc IS NULL;

 -- Store the metadata in the table.
 INSERT INTO my_metadata(md) VALUES (doc);
 COMMIT;
 END LOOP;

 -- Release resources.
 DBMS_METADATA.CLOSE(h);
END;
/

2. Execute the procedure:

EXECUTE get_schema_md2;

3. Perform the following query to see what was retrieved:

SET LONG 9000000
SET PAGESIZE 0
SELECT * FROM my_metadata;

Using the DBMS_METADATA_DIFF API to Compare Object Metadata
This section provides an example that uses the retrieval, comparison, and submit
interfaces of DBMS_METADATA and DBMS_METADATA_DIFF to fetch metadata for two tables,
compare the metadata, and generate ALTER statements which make one table like the
other. For simplicity, function variants are used throughout the example.

Example 20–10 Comparing Object Metadata

1. Create two tables, TAB1 and TAB2:

SQL> CREATE TABLE TAB1
 2 ("EMPNO" NUMBER(4,0),
 3 "ENAME" VARCHAR2(10),
 4 "JOB" VARCHAR2(9),
 5 "DEPTNO" NUMBER(2,0)
 6) ;

Table created.

SQL> CREATE TABLE TAB2
 2 ("EMPNO" NUMBER(4,0) PRIMARY KEY ENABLE,
 3 "ENAME" VARCHAR2(20),
 4 "MGR" NUMBER(4,0),
 5 "DEPTNO" NUMBER(2,0)
 6) ;

Table created.

Note the differences between TAB1 and TAB2:

■ The table names are different

■ TAB2 has a primary key constraint; TAB1 does not

■ The length of the ENAME column is different in each table

Using the DBMS_METADATA_DIFF API to Compare Object Metadata

20-16 Oracle Database Utilities

■ TAB1 has a JOB column; TAB2 does not

■ TAB2 has a MGR column; TAB1 does not

2. Create a function to return the table metadata in SXML format. The following are
some key points to keep in mind about SXML when you are using the DBMS_
METADATA_DIFF API:

■ SXML is an XML representation of object metadata.

■ The SXML returned is not the same as the XML returned by DBMS_
METADATA.GET_XML, which is complex and opaque and contains binary values,
instance-specific values, and so on.

■ SXML looks like a direct translation of SQL creation DDL into XML. The tag
names and structure correspond to names in the Oracle Database SQL Language
Reference.

■ SXML is designed to support editing and comparison.

To keep this example simple, a transform parameter is used to suppress physical
properties:

SQL> CREATE OR REPLACE FUNCTION get_table_sxml(name IN VARCHAR2) RETURN CLOB IS
 2 open_handle NUMBER;
 3 transform_handle NUMBER;
 4 doc CLOB;
 5 BEGIN
 6 open_handle := DBMS_METADATA.OPEN('TABLE');
 7 DBMS_METADATA.SET_FILTER(open_handle,'NAME',name);
 8 --
 9 -- Use the 'SXML' transform to convert XML to SXML
 10 --
 11 transform_handle := DBMS_METADATA.ADD_TRANSFORM(open_handle,'SXML');
 12 --
 13 -- Use this transform parameter to suppress physical properties
 14 --
 15 DBMS_METADATA.SET_TRANSFORM_PARAM(transform_handle,'PHYSICAL_PROPERTIES',
 16 FALSE);
 17 doc := DBMS_METADATA.FETCH_CLOB(open_handle);
 18 DBMS_METADATA.CLOSE(open_handle);
 19 RETURN doc;
 20 END;
 21 /

Function created.

3. Use the get_table_sxml function to fetch the table SXML for the two tables:

SQL> SELECT get_table_sxml('TAB1') FROM dual;

 <TABLE xmlns="http://xmlns.oracle.com/ku" version="1.0">
 <SCHEMA>SCOTT</SCHEMA>
 <NAME>TAB1</NAME>
 <RELATIONAL_TABLE>
 <COL_LIST>
 <COL_LIST_ITEM>
 <NAME>EMPNO</NAME>
 <DATATYPE>NUMBER</DATATYPE>
 <PRECISION>4</PRECISION>
 <SCALE>0</SCALE>
 </COL_LIST_ITEM>
 <COL_LIST_ITEM>

Using the DBMS_METADATA_DIFF API to Compare Object Metadata

Using the Metadata APIs 20-17

 <NAME>ENAME</NAME>
 <DATATYPE>VARCHAR2</DATATYPE>
 <LENGTH>10</LENGTH>
 </COL_LIST_ITEM>
 <COL_LIST_ITEM>
 <NAME>JOB</NAME>
 <DATATYPE>VARCHAR2</DATATYPE>
 <LENGTH>9</LENGTH>
 </COL_LIST_ITEM>
 <COL_LIST_ITEM>
 <NAME>DEPTNO</NAME>
 <DATATYPE>NUMBER</DATATYPE>
 <PRECISION>2</PRECISION>
 <SCALE>0</SCALE>
 </COL_LIST_ITEM>
 </COL_LIST>
 </RELATIONAL_TABLE>
</TABLE>

1 row selected.

SQL> SELECT get_table_sxml('TAB2') FROM dual;

 <TABLE xmlns="http://xmlns.oracle.com/ku" version="1.0">
 <SCHEMA>SCOTT</SCHEMA>
 <NAME>TAB2</NAME>
 <RELATIONAL_TABLE>
 <COL_LIST>
 <COL_LIST_ITEM>
 <NAME>EMPNO</NAME>
 <DATATYPE>NUMBER</DATATYPE>
 <PRECISION>4</PRECISION>
 <SCALE>0</SCALE>
 </COL_LIST_ITEM>
 <COL_LIST_ITEM>
 <NAME>ENAME</NAME>
 <DATATYPE>VARCHAR2</DATATYPE>
 <LENGTH>20</LENGTH>
 </COL_LIST_ITEM>
 <COL_LIST_ITEM>
 <NAME>MGR</NAME>
 <DATATYPE>NUMBER</DATATYPE>
 <PRECISION>4</PRECISION>
 <SCALE>0</SCALE>
 </COL_LIST_ITEM>
 <COL_LIST_ITEM>
 <NAME>DEPTNO</NAME>
 <DATATYPE>NUMBER</DATATYPE>
 <PRECISION>2</PRECISION>
 <SCALE>0</SCALE>
 </COL_LIST_ITEM>
 </COL_LIST>
 <PRIMARY_KEY_CONSTRAINT_LIST>
 <PRIMARY_KEY_CONSTRAINT_LIST_ITEM>
 <COL_LIST>
 <COL_LIST_ITEM>
 <NAME>EMPNO</NAME>
 </COL_LIST_ITEM>
 </COL_LIST>
 </PRIMARY_KEY_CONSTRAINT_LIST_ITEM>

Using the DBMS_METADATA_DIFF API to Compare Object Metadata

20-18 Oracle Database Utilities

 </PRIMARY_KEY_CONSTRAINT_LIST>
 </RELATIONAL_TABLE>
</TABLE>

1 row selected.

4. Compare the results using the DBMS_METADATA browsing APIs:

SQL> SELECT dbms_metadata.get_sxml('TABLE','TAB1') FROM dual;
SQL> SELECT dbms_metadata.get_sxml('TABLE','TAB2') FROM dual;

5. Create a function using the DBMS_METADATA_DIFF API to compare the metadata for
the two tables. In this function, the get_table_sxml function that was just defined
in step 2 is used.

SQL> CREATE OR REPLACE FUNCTION compare_table_sxml(name1 IN VARCHAR2,
 2 name2 IN VARCHAR2) RETURN CLOB IS
 3 doc1 CLOB;
 4 doc2 CLOB;
 5 diffdoc CLOB;
 6 openc_handle NUMBER;
 7 BEGIN
 8 --
 9 -- Fetch the SXML for the two tables
 10 --
 11 doc1 := get_table_sxml(name1);
 12 doc2 := get_table_sxml(name2);
 13 --
 14 -- Specify the object type in the OPENC call
 15 --
 16 openc_handle := DBMS_METADATA_DIFF.OPENC('TABLE');
 17 --
 18 -- Add each document
 19 --
 20 DBMS_METADATA_DIFF.ADD_DOCUMENT(openc_handle,doc1);
 21 DBMS_METADATA_DIFF.ADD_DOCUMENT(openc_handle,doc2);
 22 --
 23 -- Fetch the SXML difference document
 24 --
 25 diffdoc := DBMS_METADATA_DIFF.FETCH_CLOB(openc_handle);
 26 DBMS_METADATA_DIFF.CLOSE(openc_handle);
 27 RETURN diffdoc;
 28 END;
 29 /

Function created.

6. Use the function to fetch the SXML difference document for the two tables:

SQL> SELECT compare_table_sxml('TAB1','TAB2') FROM dual;

<TABLE xmlns="http://xmlns.oracle.com/ku" version="1.0">
 <SCHEMA>SCOTT</SCHEMA>
 <NAME value1="TAB1">TAB2</NAME>
 <RELATIONAL_TABLE>
 <COL_LIST>
 <COL_LIST_ITEM>
 <NAME>EMPNO</NAME>
 <DATATYPE>NUMBER</DATATYPE>
 <PRECISION>4</PRECISION>
 <SCALE>0</SCALE>

Using the DBMS_METADATA_DIFF API to Compare Object Metadata

Using the Metadata APIs 20-19

 </COL_LIST_ITEM>
 <COL_LIST_ITEM>
 <NAME>ENAME</NAME>
 <DATATYPE>VARCHAR2</DATATYPE>
 <LENGTH value1="10">20</LENGTH>
 </COL_LIST_ITEM>
 <COL_LIST_ITEM src="1">
 <NAME>JOB</NAME>
 <DATATYPE>VARCHAR2</DATATYPE>
 <LENGTH>9</LENGTH>
 </COL_LIST_ITEM>
 <COL_LIST_ITEM>
 <NAME>DEPTNO</NAME>
 <DATATYPE>NUMBER</DATATYPE>
 <PRECISION>2</PRECISION>
 <SCALE>0</SCALE>
 </COL_LIST_ITEM>
 <COL_LIST_ITEM src="2">
 <NAME>MGR</NAME>
 <DATATYPE>NUMBER</DATATYPE>
 <PRECISION>4</PRECISION>
 <SCALE>0</SCALE>
 </COL_LIST_ITEM>
 </COL_LIST>
 <PRIMARY_KEY_CONSTRAINT_LIST src="2">
 <PRIMARY_KEY_CONSTRAINT_LIST_ITEM>
 <COL_LIST>
 <COL_LIST_ITEM>
 <NAME>EMPNO</NAME>
 </COL_LIST_ITEM>
 </COL_LIST>
 </PRIMARY_KEY_CONSTRAINT_LIST_ITEM>
 </PRIMARY_KEY_CONSTRAINT_LIST>
 </RELATIONAL_TABLE>
</TABLE>

1 row selected.

The SXML difference document shows the union of the two SXML documents,
with the XML attributes value1 and src identifying the differences. When an
element exists in only one document it is marked with src. Thus, <COL_LIST_ITEM
src="1"> means that this element is in the first document (TAB1) but not in the
second. When an element is present in both documents but with different values,
the element's value is the value in the second document and the value1 gives its
value in the first. For example, <LENGTH value1="10">20</LENGTH> means that the
length is 10 in TAB1 (the first document) and 20 in TAB2.

7. Compare the result using the DBMS_METADATA_DIFF browsing APIs:

SQL> SELECT dbms_metadata_diff.compare_sxml('TABLE','TAB1','TAB2') FROM dual;

8. Create a function using the DBMS_METADATA.CONVERT API to generate an
ALTERXML document. This is an XML document containing ALTER statements to
make one object like another. You can also use parse items to get information
about the individual ALTER statements. (This example uses the functions defined
thus far.)

SQL> CREATE OR REPLACE FUNCTION get_table_alterxml(name1 IN VARCHAR2,
 2 name2 IN VARCHAR2) RETURN CLOB IS
 3 diffdoc CLOB;

Using the DBMS_METADATA_DIFF API to Compare Object Metadata

20-20 Oracle Database Utilities

 4 openw_handle NUMBER;
 5 transform_handle NUMBER;
 6 alterxml CLOB;
 7 BEGIN
 8 --
 9 -- Use the function just defined to get the difference document
 10 --
 11 diffdoc := compare_table_sxml(name1,name2);
 12 --
 13 -- Specify the object type in the OPENW call
 14 --
 15 openw_handle := DBMS_METADATA.OPENW('TABLE');
 16 --
 17 -- Use the ALTERXML transform to generate the ALTER_XML document
 18 --
 19 transform_handle := DBMS_METADATA.ADD_TRANSFORM(openw_handle,'ALTERXML');
 20 --
 21 -- Request parse items
 22 --
 23 DBMS_METADATA.SET_PARSE_ITEM(openw_handle,'CLAUSE_TYPE');
 24 DBMS_METADATA.SET_PARSE_ITEM(openw_handle,'NAME');
 25 DBMS_METADATA.SET_PARSE_ITEM(openw_handle,'COLUMN_ATTRIBUTE');
 26 --
 27 -- Create a temporary LOB
 28 --
 29 DBMS_LOB.CREATETEMPORARY(alterxml, TRUE);
 30 --
 31 -- Call CONVERT to do the transform
 32 --
 33 DBMS_METADATA.CONVERT(openw_handle,diffdoc,alterxml);
 34 --
 35 -- Close context and return the result
 36 --
 37 DBMS_METADATA.CLOSE(openw_handle);
 38 RETURN alterxml;
 39 END;
 40 /

Function created.

9. Use the function to fetch the ALTER_XML document:

SQL> SELECT get_table_alterxml('TAB1','TAB2') FROM dual;

<ALTER_XML xmlns="http://xmlns.oracle.com/ku" version="1.0">
 <OBJECT_TYPE>TABLE</OBJECT_TYPE>
 <OBJECT1>
 <SCHEMA>SCOTT</SCHEMA>
 <NAME>TAB1</NAME>
 </OBJECT1>
 <OBJECT2>
 <SCHEMA>SCOTT</SCHEMA>
 <NAME>TAB2</NAME>
 </OBJECT2>
 <ALTER_LIST>
 <ALTER_LIST_ITEM>
 <PARSE_LIST>
 <PARSE_LIST_ITEM>
 <ITEM>NAME</ITEM>
 <VALUE>MGR</VALUE>
 </PARSE_LIST_ITEM>

Using the DBMS_METADATA_DIFF API to Compare Object Metadata

Using the Metadata APIs 20-21

 <PARSE_LIST_ITEM>
 <ITEM>CLAUSE_TYPE</ITEM>
 <VALUE>ADD_COLUMN</VALUE>
 </PARSE_LIST_ITEM>
 </PARSE_LIST>
 <SQL_LIST>
 <SQL_LIST_ITEM>
 <TEXT>ALTER TABLE "SCOTT"."TAB1" ADD ("MGR" NUMBER(4,0))</TEXT>
 </SQL_LIST_ITEM>
 </SQL_LIST>
 </ALTER_LIST_ITEM>
 <ALTER_LIST_ITEM>
 <PARSE_LIST>
 <PARSE_LIST_ITEM>
 <ITEM>NAME</ITEM>
 <VALUE>JOB</VALUE>
 </PARSE_LIST_ITEM>
 <PARSE_LIST_ITEM>
 <ITEM>CLAUSE_TYPE</ITEM>
 <VALUE>DROP_COLUMN</VALUE>
 </PARSE_LIST_ITEM>
 </PARSE_LIST>
 <SQL_LIST>
 <SQL_LIST_ITEM>
 <TEXT>ALTER TABLE "SCOTT"."TAB1" DROP ("JOB")</TEXT>
 </SQL_LIST_ITEM>
 </SQL_LIST>
 </ALTER_LIST_ITEM>
 <ALTER_LIST_ITEM>
 <PARSE_LIST>
 <PARSE_LIST_ITEM>
 <ITEM>NAME</ITEM>
 <VALUE>ENAME</VALUE>
 </PARSE_LIST_ITEM>
 <PARSE_LIST_ITEM>
 <ITEM>CLAUSE_TYPE</ITEM>
 <VALUE>MODIFY_COLUMN</VALUE>
 </PARSE_LIST_ITEM>
 <PARSE_LIST_ITEM>
 <ITEM>COLUMN_ATTRIBUTE</ITEM>
 <VALUE> SIZE_INCREASE</VALUE>
 </PARSE_LIST_ITEM>
 </PARSE_LIST>
 <SQL_LIST>
 <SQL_LIST_ITEM>
 <TEXT>ALTER TABLE "SCOTT"."TAB1" MODIFY
 ("ENAME" VARCHAR2(20))
 </TEXT>
 </SQL_LIST_ITEM>
 </SQL_LIST>
 </ALTER_LIST_ITEM>
 <ALTER_LIST_ITEM>
 <PARSE_LIST>
 <PARSE_LIST_ITEM>
 <ITEM>CLAUSE_TYPE</ITEM>
 <VALUE>ADD_CONSTRAINT</VALUE>
 </PARSE_LIST_ITEM>
 </PARSE_LIST>
 <SQL_LIST>
 <SQL_LIST_ITEM>

Using the DBMS_METADATA_DIFF API to Compare Object Metadata

20-22 Oracle Database Utilities

 <TEXT>ALTER TABLE "SCOTT"."TAB1" ADD PRIMARY KEY
 ("EMPNO") ENABLE
 </TEXT>
 </SQL_LIST_ITEM>
 </SQL_LIST>
 </ALTER_LIST_ITEM>
 <ALTER_LIST_ITEM>
 <PARSE_LIST>
 <PARSE_LIST_ITEM>
 <ITEM>NAME</ITEM>
 <VALUE>TAB1</VALUE>
 </PARSE_LIST_ITEM>
 <PARSE_LIST_ITEM>
 <ITEM>CLAUSE_TYPE</ITEM>
 <VALUE>RENAME_TABLE</VALUE>
 </PARSE_LIST_ITEM>
 </PARSE_LIST>
 <SQL_LIST>
 <SQL_LIST_ITEM>
 <TEXT>ALTER TABLE "SCOTT"."TAB1" RENAME TO "TAB2"</TEXT>
 </SQL_LIST_ITEM>
 </SQL_LIST>
 </ALTER_LIST_ITEM>
 </ALTER_LIST>
</ALTER_XML>

1 row selected.

10. Compare the result using the DBMS_METADATA_DIFF browsing API:

SQL> SELECT dbms_metadata_diff.compare_alter_xml('TABLE','TAB1','TAB2') FROM
dual;

11. The ALTER_XML document contains an ALTER_LIST of each of the alters. Each
ALTER_LIST_ITEM has a PARSE_LIST containing the parse items as name-value
pairs and a SQL_LIST containing the SQL for the particular alter. You can parse
this document and decide which of the SQL statements to execute, using the
information in the PARSE_LIST. (Note, for example, that in this case one of the
alters is a DROP_COLUMN, and you might choose not to execute that.)

12. Create one last function that uses the DBMS_METADATA.CONVERT API and the ALTER
DDL transform to convert the ALTER_XML document into SQL DDL:

SQL> CREATE OR REPLACE FUNCTION get_table_alterddl(name1 IN VARCHAR2,
 2 name2 IN VARCHAR2) RETURN CLOB IS
 3 alterxml CLOB;
 4 openw_handle NUMBER;
 5 transform_handle NUMBER;
 6 alterddl CLOB;
 7 BEGIN
 8 --
 9 -- Use the function just defined to get the ALTER_XML document
 10 --
 11 alterxml := get_table_alterxml(name1,name2);
 12 --
 13 -- Specify the object type in the OPENW call
 14 --
 15 openw_handle := DBMS_METADATA.OPENW('TABLE');
 16 --
 17 -- Use ALTERDDL transform to convert the ALTER_XML document to SQL DDL

Performance Tips for the Programmatic Interface of the DBMS_METADATA API

Using the Metadata APIs 20-23

 18 --
 19 transform_handle := DBMS_METADATA.ADD_TRANSFORM(openw_handle,'ALTERDDL');
 20 --
 21 -- Use the SQLTERMINATOR transform parameter to append a terminator
 22 -- to each SQL statement
 23 --
 24 DBMS_METADATA.SET_TRANSFORM_PARAM(transform_handle,'SQLTERMINATOR',true);
 25 --
 26 -- Create a temporary lob
 27 --
 28 DBMS_LOB.CREATETEMPORARY(alterddl, TRUE);
 29 --
 30 -- Call CONVERT to do the transform
 31 --
 32 DBMS_METADATA.CONVERT(openw_handle,alterxml,alterddl);
 33 --
 34 -- Close context and return the result
 35 --
 36 DBMS_METADATA.CLOSE(openw_handle);
 37 RETURN alterddl;
 38 END;
 39 /

Function created.

13. Use the function to fetch the SQL ALTER statements:

SQL> SELECT get_table_alterddl('TAB1','TAB2') FROM dual;
ALTER TABLE "SCOTT"."TAB1" ADD ("MGR" NUMBER(4,0))
/
 ALTER TABLE "SCOTT"."TAB1" DROP ("JOB")
/
 ALTER TABLE "SCOTT"."TAB1" MODIFY ("ENAME" VARCHAR2(20))
/
 ALTER TABLE "SCOTT"."TAB1" ADD PRIMARY KEY ("EMPNO") ENABLE
/
 ALTER TABLE "SCOTT"."TAB1" RENAME TO "TAB2"
/

1 row selected.

14. Compare the results using the DBMS_METADATA_DIFF browsing API:

SQL> SELECT dbms_metadata_diff.compare_alter('TABLE','TAB1','TAB2') FROM dual;
ALTER TABLE "SCOTT"."TAB1" ADD ("MGR" NUMBER(4,0))
 ALTER TABLE "SCOTT"."TAB1" DROP ("JOB")
 ALTER TABLE "SCOTT"."TAB1" MODIFY ("ENAME" VARCHAR2(20))
 ALTER TABLE "SCOTT"."TAB1" ADD PRIMARY KEY ("EMPNO") USING INDEX
 PCTFREE 10 INITRANS 2 STORAGE (INITIAL 16384 NEXT 16384 MINEXTENTS 1
 MAXEXTENTS 505 PCTINCREASE 50 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL
 DEFAULT) ENABLE ALTER TABLE "SCOTT"."TAB1" RENAME TO "TAB2"

1 row selected.

Performance Tips for the Programmatic Interface of the DBMS_
METADATA API

This section describes how to enhance performance when using the programmatic
interface of the DBMS_METADATA API.

Example Usage of the DBMS_METADATA API

20-24 Oracle Database Utilities

1. Fetch all of one type of object before fetching the next. For example, if you are
retrieving the definitions of all objects in your schema, first fetch all tables, then all
indexes, then all triggers, and so on. This will be much faster than nesting OPEN
contexts; that is, fetch one table then all of its indexes, grants, and triggers, then the
next table and all of its indexes, grants, and triggers, and so on. "Example Usage of
the DBMS_METADATA API" on page 20-24 reflects this second, less efficient
means, but its purpose is to demonstrate most of the programmatic calls, which
are best shown by this method.

2. Use the SET_COUNT procedure to retrieve more than one object at a time. This
minimizes server round trips and eliminates many redundant function calls.

3. When writing a PL/SQL package that calls the DBMS_METADATA API, declare LOB
variables and objects that contain LOBs (such as SYS.KU$_DDLS) at package scope
rather than within individual functions. This eliminates the creation and deletion
of LOB duration structures upon function entrance and exit, which are very
expensive operations.

Example Usage of the DBMS_METADATA API
This section provides an example of how the DBMS_METADATA API could be used. A
script is provided that automatically runs the demo for you by performing the
following actions:

■ Establishes a schema (MDDEMO) and some payroll users.

■ Creates three payroll-like tables within the schema and any associated indexes,
triggers, and grants.

■ Creates a package, PAYROLL_DEMO, that uses the DBMS_METADATA API. The PAYROLL_
DEMO package contains a procedure, GET_PAYROLL_TABLES, that retrieves the DDL
for the two tables in the MDDEMO schema that start with PAYROLL. For each table, it
retrieves the DDL for the table's associated dependent objects; indexes, grants, and
triggers. All the DDL is written to a table named MDDEMO.DDL.

To execute the example, do the following:

1. Start SQL*Plus as user system. You will be prompted for a password.

sqlplus system

2. Install the demo, which is located in the file mddemo.sql in rdbms/demo:

SQL> @mddemo

For an explanation of what happens during this step, see "What Does the DBMS_
METADATA Example Do?" on page 20-25.

3. Connect as user mddemo. You will be prompted for a password, which is also
mddemo.

SQL> CONNECT mddemo
Enter password:

4. Set the following parameters so that query output will be complete and readable:

SQL> SET PAGESIZE 0
SQL> SET LONG 1000000

See Also: Oracle Database SecureFiles and Large Objects Developer's
Guide

Example Usage of the DBMS_METADATA API

Using the Metadata APIs 20-25

5. Execute the GET_PAYROLL_TABLES procedure, as follows:

SQL> CALL payroll_demo.get_payroll_tables();

6. Execute the following SQL query:

SQL> SELECT ddl FROM DDL ORDER BY SEQNO;

The output generated is the result of the execution of the GET_PAYROLL_TABLES
procedure. It shows all the DDL that was performed in Step 2 when the demo was
installed. See "Output Generated from the GET_PAYROLL_TABLES Procedure" on
page 20-27 for a listing of the actual output.

What Does the DBMS_METADATA Example Do?
When the mddemo script is run, the following steps take place. You can adapt these
steps to your own situation.

1. Drops users as follows, if they exist. This will ensure that you are starting out with
fresh data. If the users do not exist, then a message to that effect is displayed, no
harm is done, and the demo continues to execute.

CONNECT system
Enter password: password
SQL> DROP USER mddemo CASCADE;
SQL> DROP USER mddemo_clerk CASCADE;
SQL> DROP USER mddemo_mgr CASCADE;

2. Creates user mddemo, identified by mddemo:

SQL> CREATE USER mddemo IDENTIFIED BY mddemo;
SQL> GRANT resource, connect, create session,
 1 create table,
 2 create procedure,
 3 create sequence,
 4 create trigger,
 5 create view,
 6 create synonym,
 7 alter session,
 8 TO mddemo;

3. Creates user mddemo_clerk, identified by clerk:

CREATE USER mddemo_clerk IDENTIFIED BY clerk;

4. Creates user mddemo_mgr, identified by mgr:

CREATE USER mddemo_mgr IDENTIFIED BY mgr;

5. Connect to SQL*Plus as mddemo (the password is also mddemo):

CONNECT mddemo
Enter password:

6. Creates some payroll-type tables:

SQL> CREATE TABLE payroll_emps
 2 (lastname VARCHAR2(60) NOT NULL,
 3 firstname VARCHAR2(20) NOT NULL,
 4 mi VARCHAR2(2),
 5 suffix VARCHAR2(10),
 6 dob DATE NOT NULL,
 7 badge_no NUMBER(6) PRIMARY KEY,

Example Usage of the DBMS_METADATA API

20-26 Oracle Database Utilities

 8 exempt VARCHAR(1) NOT NULL,
 9 salary NUMBER (9,2),
 10 hourly_rate NUMBER (7,2))
 11 /

SQL> CREATE TABLE payroll_timecards
 2 (badge_no NUMBER(6) REFERENCES payroll_emps (badge_no),
 3 week NUMBER(2),
 4 job_id NUMBER(5),
 5 hours_worked NUMBER(4,2))
 6 /

7. Creates a dummy table, audit_trail. This table is used to show that tables that do
not start with payroll are not retrieved by the GET_PAYROLL_TABLES procedure.

SQL> CREATE TABLE audit_trail
 2 (action_time DATE,
 3 lastname VARCHAR2(60),
 4 action LONG)
 5 /

8. Creates some grants on the tables just created:

SQL> GRANT UPDATE (salary,hourly_rate) ON payroll_emps TO mddemo_clerk;
SQL> GRANT ALL ON payroll_emps TO mddemo_mgr WITH GRANT OPTION;

SQL> GRANT INSERT,UPDATE ON payroll_timecards TO mddemo_clerk;
SQL> GRANT ALL ON payroll_timecards TO mddemo_mgr WITH GRANT OPTION;

9. Creates some indexes on the tables just created:

SQL> CREATE INDEX i_payroll_emps_name ON payroll_emps(lastname);
SQL> CREATE INDEX i_payroll_emps_dob ON payroll_emps(dob);
SQL> CREATE INDEX i_payroll_timecards_badge ON payroll_timecards(badge_no);

10. Creates some triggers on the tables just created:

SQL> CREATE OR REPLACE PROCEDURE check_sal(salary in number) AS BEGIN
 2 RETURN;
 3 END;
 4 /

Note that the security is kept fairly loose to keep the example simple.

SQL> CREATE OR REPLACE TRIGGER salary_trigger BEFORE INSERT OR UPDATE OF salary
ON payroll_emps
FOR EACH ROW WHEN (new.salary > 150000)
CALL check_sal(:new.salary)
/

SQL> CREATE OR REPLACE TRIGGER hourly_trigger BEFORE UPDATE OF hourly_rate ON
payroll_emps
FOR EACH ROW
BEGIN :new.hourly_rate:=:old.hourly_rate;END;
/

11. Sets up a table to hold the generated DDL:

CREATE TABLE ddl (ddl CLOB, seqno NUMBER);

12. Creates the PAYROLL_DEMO package, which provides examples of how DBMS_
METADATA procedures can be used.

Example Usage of the DBMS_METADATA API

Using the Metadata APIs 20-27

SQL> CREATE OR REPLACE PACKAGE payroll_demo AS PROCEDURE get_payroll_tables;
END;
/

Output Generated from the GET_PAYROLL_TABLES Procedure
After you execute the mddemo.payroll_demo.get_payroll_tables procedure, you can
execute the following query:

SQL> SELECT ddl FROM ddl ORDER BY seqno;

The results are as follows, which reflect all the DDL executed by the script as described
in the previous section.

CREATE TABLE "MDDEMO"."PAYROLL_EMPS"
 ("LASTNAME" VARCHAR2(60) NOT NULL ENABLE,
 "FIRSTNAME" VARCHAR2(20) NOT NULL ENABLE,
 "MI" VARCHAR2(2),
 "SUFFIX" VARCHAR2(10),
 "DOB" DATE NOT NULL ENABLE,
 "BADGE_NO" NUMBER(6,0),
 "EXEMPT" VARCHAR2(1) NOT NULL ENABLE,
 "SALARY" NUMBER(9,2),
 "HOURLY_RATE" NUMBER(7,2),
 PRIMARY KEY ("BADGE_NO") ENABLE
) ;

 GRANT UPDATE ("SALARY") ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_CLERK";
 GRANT UPDATE ("HOURLY_RATE") ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_CLERK";
 GRANT ALTER ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT DELETE ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT INDEX ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT INSERT ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT SELECT ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT UPDATE ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT REFERENCES ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT ON COMMIT REFRESH ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT QUERY REWRITE ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;

 CREATE INDEX "MDDEMO"."I_PAYROLL_EMPS_DOB" ON "MDDEMO"."PAYROLL_EMPS" ("DOB")
 PCTFREE 10 INITRANS 2 MAXTRANS 255
 STORAGE(INITIAL 10240 NEXT 10240 MINEXTENTS 1 MAXEXTENTS 121 PCTINCREASE 50
 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT) TABLESPACE "SYSTEM" ;

 CREATE INDEX "MDDEMO"."I_PAYROLL_EMPS_NAME" ON "MDDEMO"."PAYROLL_EMPS" ("LASTNAME")
 PCTFREE 10 INITRANS 2 MAXTRANS 255
 STORAGE(INITIAL 10240 NEXT 10240 MINEXTENTS 1 MAXEXTENTS 121 PCTINCREASE 50
 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT) TABLESPACE "SYSTEM" ;

 CREATE OR REPLACE TRIGGER hourly_trigger before update of hourly_rate on payroll_emps
for each row
begin :new.hourly_rate:=:old.hourly_rate;end;
/
ALTER TRIGGER "MDDEMO"."HOURLY_TRIGGER" ENABLE;

Note: To see the entire script for this example, including the
contents of the PAYROLL_DEMO package, see the file mddemo.sql
located in your $ORACLE_HOME/rdbms/demo directory.

Summary of DBMS_METADATA Procedures

20-28 Oracle Database Utilities

 CREATE OR REPLACE TRIGGER salary_trigger before insert or update of salary on payroll_emps
for each row
WHEN (new.salary > 150000) CALL check_sal(:new.salary)
/
ALTER TRIGGER "MDDEMO"."SALARY_TRIGGER" ENABLE;

CREATE TABLE "MDDEMO"."PAYROLL_TIMECARDS"
 ("BADGE_NO" NUMBER(6,0),
 "WEEK" NUMBER(2,0),
 "JOB_ID" NUMBER(5,0),
 "HOURS_WORKED" NUMBER(4,2),
 FOREIGN KEY ("BADGE_NO")
 REFERENCES "MDDEMO"."PAYROLL_EMPS" ("BADGE_NO") ENABLE
) ;

 GRANT INSERT ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_CLERK";
 GRANT UPDATE ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_CLERK";
 GRANT ALTER ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT DELETE ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT INDEX ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT INSERT ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT SELECT ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT UPDATE ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT REFERENCES ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT ON COMMIT REFRESH ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT QUERY REWRITE ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;

 CREATE INDEX "MDDEMO"."I_PAYROLL_TIMECARDS_BADGE" ON "MDDEMO"."PAYROLL_TIMECARDS" ("BADGE_NO")
 PCTFREE 10 INITRANS 2 MAXTRANS 255
 STORAGE(INITIAL 10240 NEXT 10240 MINEXTENTS 1 MAXEXTENTS 121 PCTINCREASE 50
 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT) TABLESPACE "SYSTEM" ;

Summary of DBMS_METADATA Procedures
This section provides brief descriptions of the procedures provided by the DBMS_
METADATA API. For detailed descriptions of these procedures, see Oracle Database
PL/SQL Packages and Types Reference.

Table 20–1 provides a brief description of the procedures provided by the DBMS_
METADATA programmatic interface for retrieving multiple objects.

Table 20–1 DBMS_METADATA Procedures Used for Retrieving Multiple Objects

PL/SQL Procedure Name Description

DBMS_METADATA.OPEN() Specifies the type of object to be retrieved, the version of its
metadata, and the object model.

DBMS_METADATA.SET_FILTER() Specifies restrictions on the objects to be retrieved, for example,
the object name or schema.

DBMS_METADATA.SET_COUNT() Specifies the maximum number of objects to be retrieved in a
single FETCH_xxx call.

DBMS_METADATA.GET_QUERY() Returns the text of the queries that are used by FETCH_xxx. You
can use this as a debugging aid.

DBMS_METADATA.SET_PARSE_ITEM() Enables output parsing by specifying an object attribute to be
parsed and returned.

Summary of DBMS_METADATA Procedures

Using the Metadata APIs 20-29

Table 20–2 lists the procedures provided by the DBMS_METADATA browsing interface and
provides a brief description of each one. These functions return metadata for one or
more dependent or granted objects. These procedures do not support heterogeneous
object types.

Table 20–3 provides a brief description of the DBMS_METADATA procedures and functions
used for XML submission.

DBMS_METADATA.ADD_TRANSFORM() Specifies a transform that FETCH_xxx applies to the XML
representation of the retrieved objects.

DBMS_METADATA.SET_TRANSFORM_PARAM() Specifies parameters to the XSLT stylesheet identified by
transform_handle.

DBMS_METADATA.SET_REMAP_PARAM() Specifies parameters to the XSLT stylesheet identified by
transform_handle.

DBMS_METADATA.FETCH_xxx() Returns metadata for objects meeting the criteria established by
OPEN, SET_FILTER, SET_COUNT, ADD_TRANSFORM, and so on.

DBMS_METADATA.CLOSE() Invalidates the handle returned by OPEN and cleans up the
associated state.

Table 20–2 DBMS_METADATA Procedures Used for the Browsing Interface

PL/SQL Procedure Name Description

DBMS_METADATA.GET_xxx() Provides a way to return metadata for a single object. Each GET_xxx call consists of
an OPEN procedure, one or two SET_FILTER calls, optionally an ADD_TRANSFORM
procedure, a FETCH_xxx call, and a CLOSE procedure.

The object_type parameter has the same semantics as in the OPEN procedure.
schema and name are used for filtering.

If a transform is specified, then session-level transform flags are inherited.

DBMS_METADATA.GET_
DEPENDENT_xxx()

Returns the metadata for one or more dependent objects, specified as XML or
DDL.

DBMS_METADATA.GET_
GRANTED_xxx()

Returns the metadata for one or more granted objects, specified as XML or DDL.

Table 20–3 DBMS_METADATA Procedures and Functions for Submitting XML Data

PL/SQL Name Description

DBMS_METADATA.OPENW() Opens a write context.

DBMS_METADATA.ADD_TRANSFORM() Specifies a transform for the XML documents

DBMS_METADATA.SET_TRANSFORM_
PARAM() and
DBMS_METADATA.SET_REMAP_PARAM()

SET_TRANSFORM_PARAM specifies a parameter to a transform.

SET_REMAP_PARAM specifies a remapping for a transform.

DBMS_METADATA.SET_PARSE_ITEM() Specifies an object attribute to be parsed.

DBMS_METADATA.CONVERT() Converts an XML document to DDL.

DBMS_METADATA.PUT() Submits an XML document to the database.

DBMS_METADATA.CLOSE() Closes the context opened with OPENW.

Table 20–1 (Cont.) DBMS_METADATA Procedures Used for Retrieving Multiple Objects

PL/SQL Procedure Name Description

Summary of DBMS_METADATA_DIFF Procedures

20-30 Oracle Database Utilities

Summary of DBMS_METADATA_DIFF Procedures
This section provides brief descriptions of the procedures and functions provided by
the DBMS_METADATA_DIFF API. For detailed descriptions of these procedures, see Oracle
Database PL/SQL Packages and Types Reference.

Table 20–4 DBMS_METADATA_DIFF Procedures and Functions

PL/SQL Procedure Name Description

OPENC function Specifies the type of objects to be compared.

ADD_DOCUMENT procedure Specifies an SXML document to be compared.

FETCH_CLOB functions and procedures Returns a CLOB showing the differences between the two
documents specified by ADD_DOCUMENT.

CLOSE procedure Invalidates the handle returned by OPENC and cleans up
associated state.

21

Original Export 21-1

21Original Export

This chapter describes how to use the original Export utility (exp) to write data from
an Oracle database into an operating system file in binary format. This file is stored
outside the database, and it can be read into another Oracle database using the original
Import utility.

The following topics are discussed in this chapter:

■ What is the Export Utility?

■ Before Using Export

■ Invoking Export

■ Export Modes

■ Export Parameters

■ Example Export Sessions

■ Warning, Error, and Completion Messages

■ Exit Codes for Inspection and Display

■ Conventional Path Export Versus Direct Path Export

■ Invoking a Direct Path Export

■ Network Considerations

■ Character Set and Globalization Support Considerations

■ Using Instance Affinity with Export and Import

Note: Original Export is desupported for general use as of Oracle
Database 11g. The only supported use of original Export in Oracle
Database 11g is backward migration of XMLType data to Oracle
Database 10g release 2 (10.2) or earlier. Therefore, Oracle recommends
that you use the new Data Pump Export and Import utilities, except in
the following situations which require original Export and Import:

■ You want to import files that were created using the original
Export utility (exp).

■ You want to export files that will be imported using the original
Import utility (imp). An example of this would be if you wanted to
export data from Oracle Database 10g and then import it into an
earlier database release.

What is the Export Utility?

21-2 Oracle Database Utilities

■ Considerations When Exporting Database Objects

■ Transportable Tablespaces

■ Exporting From a Read-Only Database

■ Using Export and Import to Partition a Database Migration

■ Using Different Releases of Export and Import

What is the Export Utility?
The Export utility provides a simple way for you to transfer data objects between
Oracle databases, even if they reside on platforms with different hardware and
software configurations.

When you run Export against an Oracle database, objects (such as tables) are extracted,
followed by their related objects (such as indexes, comments, and grants), if any.

An Export file is an Oracle binary-format dump file that is typically located on disk or
tape. The dump files can be transferred using FTP or physically transported (in the
case of tape) to a different site. The files can then be used with the Import utility to
transfer data between databases that are on systems not connected through a network.
The files can also be used as backups in addition to normal backup procedures.

Export dump files can only be read by the Oracle Import utility. The version of the
Import utility cannot be earlier than the version of the Export utility used to create the
dump file.

You can also display the contents of an export file without actually performing an
import. To do this, use the Import SHOW parameter. See "SHOW" on page 22-18 for
more information.

To load data from ASCII fixed-format or delimited files, use the SQL*Loader utility.

Before Using Export
Before you begin using Export, be sure you take care of the following items (described
in detail in the following sections):

■ If you created your database manually, ensure that the catexp.sql or catalog.sql
script has been run. If you created your database using the Database
Configuration Assistant (DBCA), it is not necessary to run these scripts.

■ Ensure there is sufficient disk or tape storage to write the export file

■ Verify that you have the required access privileges

Running catexp.sql or catalog.sql
To use Export, you must run the script catexp.sql or catalog.sql (which runs
catexp.sql) after the database has been created or migrated to a newer release.

The catexp.sql or catalog.sql script needs to be run only once on a database. The
script performs the following tasks to prepare the database for export and import
operations:

■ Creates the necessary export and import views in the data dictionary

■ Creates the EXP_FULL_DATABASE and IMP_FULL_DATABASE roles

■ Assigns all necessary privileges to the EXP_FULL_DATABASE and IMP_FULL_
DATABASE roles

Invoking Export

Original Export 21-3

■ Assigns EXP_FULL_DATABASE and IMP_FULL_DATABASE to the DBA role

■ Records the version of catexp.sql that has been installed

The EXP_FULL_DATABASE and IMP_FULL_DATABASE roles are powerful. Database
administrators should use caution when granting these roles to users.

Ensuring Sufficient Disk Space for Export Operations
Before you run Export, ensure that there is sufficient disk or tape storage space to write
the export file. If there is not enough space, then Export terminates with a write-failure
error.

You can use table sizes to estimate the maximum space needed. You can find table
sizes in the USER_SEGMENTS view of the Oracle data dictionary. The following query
displays disk usage for all tables:

SELECT SUM(BYTES) FROM USER_SEGMENTS WHERE SEGMENT_TYPE='TABLE';

The result of the query does not include disk space used for data stored in LOB (large
object) or VARRAY columns or in partitioned tables.

Verifying Access Privileges for Export and Import Operations
To use Export, you must have the CREATE SESSION privilege on an Oracle database.
This privilege belongs to the CONNECT role established during database creation. To
export tables owned by another user, you must have the EXP_FULL_DATABASE role
enabled. This role is granted to all database administrators (DBAs).

If you do not have the system privileges contained in the EXP_FULL_DATABASE role,
then you cannot export objects contained in another user's schema. For example, you
cannot export a table in another user's schema, even if you created a synonym for it.

Several system schemas cannot be exported because they are not user schemas; they
contain Oracle-managed data and metadata. Examples of schemas that are not
exported include SYS, ORDSYS, and MDSYS.

Invoking Export
You can invoke Export and specify parameters by using any of the following methods:

■ Command-line entries

■ Parameter files

■ Interactive mode

Before you use one of these methods, be sure to read the descriptions of the available
parameters. See "Export Parameters" on page 21-9.

Invoking Export as SYSDBA
SYSDBA is used internally and has specialized functions; its behavior is not the same as
for generalized users. Therefore, you should not typically need to invoke Export as
SYSDBA except in the following situations:

■ At the request of Oracle technical support

See Also: Oracle Database Reference for more information about
dictionary views

Invoking Export

21-4 Oracle Database Utilities

■ When importing a transportable tablespace set

Command-Line Entries
You can specify all valid parameters and their values from the command line using the
following syntax (you will then be prompted for a username and password):

exp PARAMETER=value

or

exp PARAMETER=(value1,value2,...,valuen)

The number of parameters cannot exceed the maximum length of a command line on
the system.

Parameter Files
You can specify all valid parameters and their values in a parameter file. Storing the
parameters in a file allows them to be easily modified or reused, and is the
recommended method for invoking Export. If you use different parameters for
different databases, then you can have multiple parameter files.

Create the parameter file using any flat file text editor. The command-line option
PARFILE=filename tells Export to read the parameters from the specified file rather
than from the command line. For example:

The syntax for parameter file specifications is one of the following:

PARAMETER=value
PARAMETER=(value)
PARAMETER=(value1, value2, ...)

The following example shows a partial parameter file listing:

FULL=y
FILE=dba.dmp
GRANTS=y
INDEXES=y
CONSISTENT=y

You can add comments to the parameter file by preceding them with the pound (#)
sign. Export ignores all characters to the right of the pound (#) sign.

You can specify a parameter file at the same time that you are entering parameters on
the command line. In fact, you can specify the same parameter in both places. The
position of the PARFILE parameter and other parameters on the command line
determines which parameters take precedence. For example, assume the parameter file
params.dat contains the parameter INDEXES=y and Export is invoked with the
following line:

exp PARFILE=params.dat INDEXES=n

In this case, because INDEXES=n occurs after PARFILE=params.dat, INDEXES=n overrides
the value of the INDEXES parameter in the parameter file.

Note: The maximum size of the parameter file may be limited by
the operating system. The name of the parameter file is subject to
the file-naming conventions of the operating system.

Export Modes

Original Export 21-5

Interactive Mode
If you prefer to be prompted for the value of each parameter, then you can simply
specify either exp at the command line. You will be prompted for a username and
password.

Commonly used parameters are then displayed. You can accept the default value, if
one is provided, or enter a different value. The command-line interactive method does
not provide prompts for all functionality and is provided only for backward
compatibility. If you want to use an interactive interface, then Oracle recommends that
you use the Oracle Enterprise Manager Export Wizard.

Restrictions When Using Export's Interactive Method
Keep in mind the following points when you use the interactive method:

■ In user mode, Export prompts for all usernames to be included in the export
before exporting any data. To indicate the end of the user list and begin the current
Export session, press Enter.

■ In table mode, if you do not specify a schema prefix, then Export defaults to the
exporter's schema or the schema containing the last table exported in the current
session.

For example, if beth is a privileged user exporting in table mode, then Export
assumes that all tables are in the beth schema until another schema is specified.
Only a privileged user (someone with the EXP_FULL_DATABASE role) can export
tables in another user's schema.

■ If you specify a null table list to the prompt "Table to be exported," then the Export
utility exits.

Getting Online Help
Export provides online help. Enter exp help=y on the command line to invoke Export
help.

Export Modes
The Export utility supports four modes of operation:

■ Full: Exports a full database. Only users with the EXP_FULL_DATABASE role can use
this mode. Use the FULL parameter to specify this mode.

■ Tablespace: Enables a privileged user to move a set of tablespaces from one Oracle
database to another. Use the TRANSPORT_TABLESPACE parameter to specify this
mode.

■ User: Enables you to export all objects that belong to you (such as tables, grants,
indexes, and procedures). A privileged user importing in user mode can import all
objects in the schemas of a specified set of users. Use the OWNER parameter to
specify this mode in Export.

■ Table: Enables you to export specific tables and partitions. A privileged user can
qualify the tables by specifying the schema that contains them. For any table for
which a schema name is not specified, Export defaults to the exporter's schema
name. Use the TABLES parameter to specify this mode.

See Table 21–1 for a list of objects that are exported and imported in each mode.

Export Modes

21-6 Oracle Database Utilities

You can use conventional path Export or direct path Export to export in any mode
except tablespace mode.The differences between conventional path Export and direct
path Export are described in "Conventional Path Export Versus Direct Path Export" on
page 21-27.

Note: The original Export utility does not export any table that was
created with deferred segment creation and has not had a segment
created for it. The most common way for a segment to be created is to
store a row into the table, though other operations such as ALTER
TABLE ALLOCATE EXTENTS will also create a segment. If a segment does
exist for the table and the table is exported, then the SEGMENT
CREATION DEFERRED clause is not included in the CREATE TABLE
statement that is executed by the original Import utility.

Table 21–1 Objects Exported in Each Mode

Object Table Mode User Mode

Full
Database
Mode

Tablespace
Mode

Analyze cluster No Yes Yes No

Analyze
tables/statistics

Yes Yes Yes Yes

Application contexts No No Yes No

Auditing information Yes Yes Yes No

B-tree, bitmap, domain
function-based indexes

Yes1 Yes Yes Yes

Cluster definitions No Yes Yes Yes

Column and table
comments

Yes Yes Yes Yes

Database links No Yes Yes No

Default roles No No Yes No

Dimensions No Yes Yes No

Directory aliases No No Yes No

External tables
(without data)

Yes Yes Yes No

Foreign function
libraries

No Yes Yes No

Indexes owned by
users other than table
owner

Yes
(Privileged
users only)

Yes Yes Yes

Index types No Yes Yes No

Java resources and
classes

No Yes Yes No

Job queues No Yes Yes No

Nested table data Yes Yes Yes Yes

Object grants Yes (Only for
tables and
indexes)

Yes Yes Yes

Export Modes

Original Export 21-7

Object type definitions
used by table

Yes Yes Yes Yes

Object types No Yes Yes No

Operators No Yes Yes No

Password history No No Yes No

Postinstance actions
and objects

No No Yes No

Postschema procedural
actions and objects

No Yes Yes No

Posttable actions Yes Yes Yes Yes

Posttable procedural
actions and objects

Yes Yes Yes Yes

Preschema procedural
objects and actions

No Yes Yes No

Pretable actions Yes Yes Yes Yes

Pretable procedural
actions

Yes Yes Yes Yes

Private synonyms No Yes Yes No

Procedural objects No Yes Yes No

Profiles No No Yes No

Public synonyms No No Yes No

Referential integrity
constraints

Yes Yes Yes No

Refresh groups No Yes Yes No

Resource costs No No Yes No

Role grants No No Yes No

Roles No No Yes No

Rollback segment
definitions

No No Yes No

Security policies for
table

Yes Yes Yes Yes

Sequence numbers No Yes Yes No

Snapshot logs No Yes Yes No

Snapshots and
materialized views

No Yes Yes No

System privilege grants No No Yes No

Table constraints
(primary, unique,
check)

Yes Yes Yes Yes

Table data Yes Yes Yes Yes

Table definitions Yes Yes Yes Yes

Table 21–1 (Cont.) Objects Exported in Each Mode

Object Table Mode User Mode

Full
Database
Mode

Tablespace
Mode

Export Modes

21-8 Oracle Database Utilities

Table-Level and Partition-Level Export
You can export tables, partitions, and subpartitions in the following ways:

■ Table-level Export: exports all data from the specified tables

■ Partition-level Export: exports only data from the specified source partitions or
subpartitions

In all modes, partitioned data is exported in a format such that partitions or
subpartitions can be imported selectively.

Table-Level Export
In table-level Export, you can export an entire table (partitioned or nonpartitioned)
along with its indexes and other table-dependent objects. If the table is partitioned,
then all of its partitions and subpartitions are also exported. This applies to both direct
path Export and conventional path Export. You can perform a table-level export in any
Export mode.

Partition-Level Export
In partition-level Export, you can export one or more specified partitions or
subpartitions of a table. You can only perform a partition-level export in table mode.

For information about how to specify table-level and partition-level Exports, see
"TABLES" on page 21-18.

Tablespace definitions No No Yes No

Tablespace quotas No No Yes No

Triggers Yes Yes2 Yes3 Yes

Triggers owned by
other users

Yes
(Privileged
users only)

No No No

User definitions No No Yes No

User proxies No No Yes No

User views No Yes Yes No

User-stored
procedures, packages,
and functions

No Yes Yes No

1 Nonprivileged users can export and import only indexes they own on tables they own. They cannot
export indexes they own that are on tables owned by other users, nor can they export indexes owned
by other users on their own tables. Privileged users can export and import indexes on the specified
users' tables, even if the indexes are owned by other users. Indexes owned by the specified user on
other users' tables are not included, unless those other users are included in the list of users to
export.

2 Nonprivileged and privileged users can export and import all triggers owned by the user, even if
they are on tables owned by other users.

3 A full export does not export triggers owned by schema SYS. You must manually re-create SYS
triggers either before or after the full import. Oracle recommends that you re-create them after the
import in case they define actions that would impede progress of the import.

Table 21–1 (Cont.) Objects Exported in Each Mode

Object Table Mode User Mode

Full
Database
Mode

Tablespace
Mode

Export Parameters

Original Export 21-9

Export Parameters
This section contains descriptions of the Export command-line parameters.

BUFFER
Default: operating system-dependent. See your Oracle operating system-specific
documentation to determine the default value for this parameter.

Specifies the size, in bytes, of the buffer used to fetch rows. As a result, this parameter
determines the maximum number of rows in an array fetched by Export. Use the
following formula to calculate the buffer size:

buffer_size = rows_in_array * maximum_row_size

If you specify zero, then the Export utility fetches only one row at a time.

Tables with columns of type LOBs, LONG, BFILE, REF, ROWID, LOGICAL ROWID, or DATE are
fetched one row at a time.

Example: Calculating Buffer Size
This section shows an example of how to calculate buffer size.

The following table is created:

CREATE TABLE sample (name varchar(30), weight number);

The maximum size of the name column is 30, plus 2 bytes for the indicator. The
maximum size of the weight column is 22 (the size of the internal representation for
Oracle numbers), plus 2 bytes for the indicator.

Therefore, the maximum row size is 56 (30+2+22+2).

To perform array operations for 100 rows, a buffer size of 5600 should be specified.

COMPRESS
Default: y

Specifies how Export and Import manage the initial extent for table data.

The default, COMPRESS=y, causes Export to flag table data for consolidation into one
initial extent upon import. If extent sizes are large (for example, because of the
PCTINCREASE parameter), then the allocated space will be larger than the space
required to hold the data.

If you specify COMPRESS=n, then Export uses the current storage parameters, including
the values of initial extent size and next extent size. The values of the parameters may
be the values specified in the CREATE TABLE or ALTER TABLE statements or the values
modified by the database system. For example, the NEXT extent size value may be
modified if the table grows and if the PCTINCREASE parameter is nonzero.

The COMPRESS parameter does not work with bitmapped tablespaces.

Note: The BUFFER parameter applies only to conventional path
Export. It has no effect on a direct path Export. For direct path
Exports, use the RECORDLENGTH parameter to specify the size of the
buffer that Export uses for writing to the export file.

Export Parameters

21-10 Oracle Database Utilities

CONSISTENT
Default: n

Specifies whether Export uses the SET TRANSACTION READ ONLY statement to ensure
that the data seen by Export is consistent to a single point in time and does not change
during the execution of the exp command. You should specify CONSISTENT=y when
you anticipate that other applications will be updating the target data after an export
has started.

If you use CONSISTENT=n, then each table is usually exported in a single transaction.
However, if a table contains nested tables, then the outer table and each inner table are
exported as separate transactions. If a table is partitioned, then each partition is
exported as a separate transaction.

Therefore, if nested tables and partitioned tables are being updated by other
applications, then the data that is exported could be inconsistent. To minimize this
possibility, export those tables at a time when updates are not being done.

Table 21–2 shows a sequence of events by two users: user1 exports partitions in a table
and user2 updates data in that table.

If the export uses CONSISTENT=y, then none of the updates by user2 are written to the
export file.

If the export uses CONSISTENT=n, then the updates to TAB:P1 are not written to the
export file. However, the updates to TAB:P2 are written to the export file, because the
update transaction is committed before the export of TAB:P2 begins. As a result, the
user2 transaction is only partially recorded in the export file, making it inconsistent.

If you use CONSISTENT=y and the volume of updates is large, then the rollback segment
usage will be large. In addition, the export of each table will be slower, because the
rollback segment must be scanned for uncommitted transactions.

Note: Although the actual consolidation is performed upon
import, you can specify the COMPRESS parameter only when you
export, not when you import. The Export utility, not the Import
utility, generates the data definitions, including the storage
parameter definitions. Therefore, if you specify COMPRESS=y when
you export, then you can import the data in consolidated form only.

Note: Neither LOB data nor subpartition data is compressed.
Rather, values of initial extent size and next extent size at the time
of export are used.

Table 21–2 Sequence of Events During Updates by Two Users

TIme Sequence user1 user2

1 Begins export of TAB:P1 No activity

2 No activity Updates TAB:P2
Updates TAB:P1
Commits transaction

3 Ends export of TAB:P1 No activity

4 Exports TAB:P2 No activity

Export Parameters

Original Export 21-11

Keep in mind the following points about using CONSISTENT=y:

■ CONSISTENT=y is unsupported for exports that are performed when you are
connected as user SYS or you are using AS SYSDBA, or both.

■ Export of certain metadata may require the use of the SYS schema within recursive
SQL. In such situations, the use of CONSISTENT=y will be ignored. Oracle
recommends that you avoid making metadata changes during an export process
in which CONSISTENT=y is selected.

■ To minimize the time and space required for such exports, you should export
tables that need to remain consistent separately from those that do not. For
example, export the emp and dept tables together in a consistent export, and then
export the remainder of the database in a second pass.

■ A "snapshot too old" error occurs when rollback space is used up, and space taken
up by committed transactions is reused for new transactions. Reusing space in the
rollback segment allows database integrity to be preserved with minimum space
requirements, but it imposes a limit on the amount of time that a read-consistent
image can be preserved.

If a committed transaction has been overwritten and the information is needed for
a read-consistent view of the database, then a "snapshot too old" error results.

To avoid this error, you should minimize the time taken by a read-consistent
export. (Do this by restricting the number of objects exported and, if possible, by
reducing the database transaction rate.) Also, make the rollback segment as large
as possible.

CONSTRAINTS
Default: y

Specifies whether the Export utility exports table constraints.

DIRECT
Default: n

Specifies the use of direct path Export.

Specifying DIRECT=y causes Export to extract data by reading the data directly,
bypassing the SQL command-processing layer (evaluating buffer). This method can be
much faster than a conventional path Export.

For information about direct path Exports, including security and performance
considerations, see "Invoking a Direct Path Export" on page 21-28.

FEEDBACK
Default: 0 (zero)

Specifies that Export should display a progress meter in the form of a period for n
number of rows exported. For example, if you specify FEEDBACK=10, then Export

Note: Rollback segments will be deprecated in a future Oracle
database release. Oracle recommends that you use automatic undo
management instead.

See Also: "OBJECT_CONSISTENT" on page 21-15

Export Parameters

21-12 Oracle Database Utilities

displays a period each time 10 rows are exported. The FEEDBACK value applies to all
tables being exported; it cannot be set individually for each table.

FILE
Default: expdat.dmp

Specifies the names of the export dump files. The default extension is .dmp, but you can
specify any extension. Because Export supports multiple export files, you can specify
multiple file names to be used. For example:

exp scott FILE = dat1.dmp, dat2.dmp, dat3.dmp FILESIZE=2048

When Export reaches the value you have specified for the maximum FILESIZE, Export
stops writing to the current file, opens another export file with the next name specified
by the FILE parameter, and continues until complete or the maximum value of
FILESIZE is again reached. If you do not specify sufficient export file names to
complete the export, then Export prompts you to provide additional file names.

FILESIZE
Default: Data is written to one file until the maximum size, as specified in Table 21–3,
is reached.

Export supports writing to multiple export files, and Import can read from multiple
export files. If you specify a value (byte limit) for the FILESIZE parameter, then Export
will write only the number of bytes you specify to each dump file.

When the amount of data Export must write exceeds the maximum value you
specified for FILESIZE, it will get the name of the next export file from the FILE
parameter (see "FILE" on page 21-12 for more information) or, if it has used all the
names specified in the FILE parameter, then it will prompt you to provide a new
export file name. If you do not specify a value for FILESIZE (note that a value of 0 is
equivalent to not specifying FILESIZE), then Export will write to only one file,
regardless of the number of files specified in the FILE parameter.

The FILESIZE parameter has a maximum value equal to the maximum value that can
be stored in 64 bits.

Table 21–3 shows that the maximum size for dump files depends on the operating
system you are using and on the release of the Oracle database that you are using.

Note: If the space requirements of your export file exceed the
available disk space, then Export will terminate, and you will have
to repeat the Export after making sufficient disk space available.

Table 21–3 Maximum Size for Dump Files

Operating System Release of Oracle Database Maximum Size

Any Before 8.1.5 2 gigabytes

32-bit 8.1.5 2 gigabytes

64-bit 8.1.5 and later Unlimited

32-bit with 32-bit files Any 2 gigabytes

32-bit with 64-bit files 8.1.6 and later Unlimited

Export Parameters

Original Export 21-13

The maximum value that can be stored in a file is dependent on your operating
system. You should verify this maximum value in your Oracle operating
system-specific documentation before specifying FILESIZE. You should also ensure
that the file size you specify for Export is supported on the system on which Import
will run.

The FILESIZE value can also be specified as a number followed by KB (number of
kilobytes). For example, FILESIZE=2KB is the same as FILESIZE=2048. Similarly, MB
specifies megabytes (1024 * 1024) and GB specifies gigabytes (1024**3). B remains the
shorthand for bytes; the number is not multiplied to obtain the final file size
(FILESIZE=2048B is the same as FILESIZE=2048).

FLASHBACK_SCN
Default: none

Specifies the system change number (SCN) that Export will use to enable flashback.
The export operation is performed with data consistent as of this specified SCN.

The following is an example of specifying an SCN. When the export is performed, the
data will be consistent as of SCN 3482971.

> exp FILE=exp.dmp FLASHBACK_SCN=3482971

FLASHBACK_TIME
Default: none

Enables you to specify a timestamp. Export finds the SCN that most closely matches
the specified timestamp. This SCN is used to enable flashback. The export operation is
performed with data consistent as of this SCN.

You can specify the time in any format that the DBMS_FLASHBACK.ENABLE_AT_TIME
procedure accepts. This means that you can specify it in either of the following ways:

> exp FILE=exp.dmp FLASHBACK_TIME="TIMESTAMP '2006-05-01 11:00:00'"

> exp FILE=exp.dmp FLASHBACK_TIME="TO_TIMESTAMP('12-02-2005 14:35:00', 'DD-MM-YYYY HH24:MI:SS')"

Also, the old format, as shown in the following example, will continue to be accepted
to ensure backward compatibility:

> exp FILE=exp.dmp FLASHBACK_TIME="'2006-05-01 11:00:00'"

FULL
Default: n

See Also: Oracle Database Advanced Application Developer's Guide
for more information about using flashback

See Also:

■ Oracle Database Advanced Application Developer's Guide for more
information about using flashback

■ Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_FLASHBACK package

Export Parameters

21-14 Oracle Database Utilities

Indicates that the export is a full database mode export (that is, it exports the entire
database). Specify FULL=y to export in full database mode. You need to have the EXP_
FULL_DATABASE role to export in this mode.

Points to Consider for Full Database Exports and Imports
A full database export and import can be a good way to replicate or clean up a
database. However, to avoid problems be sure to keep the following points in mind:

■ A full export does not export triggers owned by schema SYS. You must manually
re-create SYS triggers either before or after the full import. Oracle recommends that
you re-create them after the import in case they define actions that would impede
progress of the import.

■ A full export also does not export the default profile. If you have modified the
default profile in the source database (for example, by adding a password
verification function owned by schema SYS), then you must manually pre-create
the function and modify the default profile in the target database after the import
completes.

■ If possible, before beginning, make a physical copy of the exported database and
the database into which you intend to import. This ensures that any mistakes are
reversible.

■ Before you begin the export, it is advisable to produce a report that includes the
following information:

– A list of tablespaces and data files

– A list of rollback segments

– A count, by user, of each object type such as tables, indexes, and so on

This information lets you ensure that tablespaces have already been created and
that the import was successful.

■ If you are creating a completely new database from an export, then remember to
create an extra rollback segment in SYSTEM and to make it available in your
initialization parameter file (init.ora)before proceeding with the import.

■ When you perform the import, ensure you are pointing at the correct instance.
This is very important because on some UNIX systems, just the act of entering a
subshell can change the database against which an import operation was
performed.

■ Do not perform a full import on a system that has more than one database unless
you are certain that all tablespaces have already been created. A full import creates
any undefined tablespaces using the same data file names as the exported
database. This can result in problems in the following situations:

– If the data files belong to any other database, then they will become corrupted.
This is especially true if the exported database is on the same system, because
its data files will be reused by the database into which you are importing.

– If the data files have names that conflict with existing operating system files.

GRANTS
Default: y

Specifies whether the Export utility exports object grants. The object grants that are
exported depend on whether you use full database mode or user mode. In full

Export Parameters

Original Export 21-15

database mode, all grants on a table are exported. In user mode, only those granted by
the owner of the table are exported. System privilege grants are always exported.

HELP
Default: none

Displays a description of the Export parameters. Enter exp help=y on the command
line to invoke it.

INDEXES
Default: y

Specifies whether the Export utility exports indexes.

LOG
Default: none

Specifies a file name (for example, export.log) to receive informational and error
messages.

If you specify this parameter, then messages are logged in the log file and displayed to
the terminal display.

OBJECT_CONSISTENT
Default: n

Specifies whether the Export utility uses the SET TRANSACTION READ ONLY statement to
ensure that the data exported is consistent to a single point in time and does not
change during the export. If OBJECT_CONSISTENT is set to y, then each object is
exported in its own read-only transaction, even if it is partitioned. In contrast, if you
use the CONSISTENT parameter, then there is only one read-only transaction.

OWNER
Default: none

Indicates that the export is a user-mode export and lists the users whose objects will be
exported. If the user initiating the export is the database administrator (DBA), then
multiple users can be listed.

User-mode exports can be used to back up one or more database users. For example, a
DBA may want to back up the tables of deleted users for a period of time. User mode
is also appropriate for users who want to back up their own data or who want to move
objects from one owner to another.

PARFILE
Default: none

Specifies a file name for a file that contains a list of Export parameters. For more
information about using a parameter file, see "Invoking Export" on page 21-3.

See Also: "CONSISTENT" on page 21-10

Export Parameters

21-16 Oracle Database Utilities

QUERY
Default: none

This parameter enables you to select a subset of rows from a set of tables when doing a
table mode export. The value of the query parameter is a string that contains a WHERE
clause for a SQL SELECT statement that will be applied to all tables (or table partitions)
listed in the TABLES parameter.

For example, if user scott wants to export only those employees whose job title is
SALESMAN and whose salary is less than 1600, then he could do the following (this
example is UNIX-based):

exp scott TABLES=emp QUERY=\"WHERE job=\'SALESMAN\' and sal \<1600\"

When executing this query, Export builds a SQL SELECT statement similar to the
following:

SELECT * FROM emp WHERE job='SALESMAN' and sal <1600;

The values specified for the QUERY parameter are applied to all tables (or table
partitions) listed in the TABLES parameter. For example, the following statement will
unload rows in both emp and bonus that match the query:

exp scott TABLES=emp,bonus QUERY=\"WHERE job=\'SALESMAN\' and sal\<1600\"

Again, the SQL statements that Export executes are similar to the following:

SELECT * FROM emp WHERE job='SALESMAN' and sal <1600;

SELECT * FROM bonus WHERE job='SALESMAN' and sal <1600;

If a table is missing the columns specified in the QUERY clause, then an error message
will be produced, and no rows will be exported for the offending table.

Restrictions When Using the QUERY Parameter
■ The QUERY parameter cannot be specified for full, user, or tablespace-mode exports.

■ The QUERY parameter must be applicable to all specified tables.

■ The QUERY parameter cannot be specified in a direct path Export (DIRECT=y)

■ The QUERY parameter cannot be specified for tables with inner nested tables.

■ You cannot determine from the contents of the export file whether the data is the
result of a QUERY export.

RECORDLENGTH
Default: operating system-dependent

Note: Because the value of the QUERY parameter contains blanks,
most operating systems require that the entire string WHERE
job=\'SALESMAN\' and sal\<1600 be placed in double quotation
marks or marked as a literal by some method. Operating system
reserved characters also need to be preceded by an escape
character. See your Oracle operating system-specific documentation
for information about special and reserved characters on your
system.

Export Parameters

Original Export 21-17

Specifies the length, in bytes, of the file record. The RECORDLENGTH parameter is
necessary when you must transfer the export file to another operating system that uses
a different default value.

If you do not define this parameter, then it defaults to your platform-dependent value
for buffer size.

You can set RECORDLENGTH to any value equal to or greater than your system's buffer
size. (The highest value is 64 KB.) Changing the RECORDLENGTH parameter affects only
the size of data that accumulates before writing to the disk. It does not affect the
operating system file block size.

RESUMABLE
Default: n

The RESUMABLE parameter is used to enable and disable resumable space allocation.
Because this parameter is disabled by default, you must set RESUMABLE=y to use its
associated parameters, RESUMABLE_NAME and RESUMABLE_TIMEOUT.

RESUMABLE_NAME
Default: 'User USERNAME (USERID), Session SESSIONID, Instance INSTANCEID'

The value for this parameter identifies the statement that is resumable. This value is a
user-defined text string that is inserted in either the USER_RESUMABLE or DBA_RESUMABLE
view to help you identify a specific resumable statement that has been suspended.

This parameter is ignored unless the RESUMABLE parameter is set to y to enable
resumable space allocation.

RESUMABLE_TIMEOUT
Default: 7200 seconds (2 hours)

The value of the parameter specifies the time period during which an error must be
fixed. If the error is not fixed within the timeout period, then execution of the
statement is terminated.

This parameter is ignored unless the RESUMABLE parameter is set to y to enable
resumable space allocation.

ROWS
Default: y

Specifies whether the rows of table data are exported.

Note: You can use this parameter to specify the size of the Export
I/O buffer.

See Also:

■ Oracle Database Concepts

■ Oracle Database Administrator's Guide for more information
about resumable space allocation

Export Parameters

21-18 Oracle Database Utilities

STATISTICS
Default: ESTIMATE

Specifies the type of database optimizer statistics to generate when the exported data
is imported. Options are ESTIMATE, COMPUTE, and NONE.

In some cases, Export will place the precalculated statistics in the export file, and also
the ANALYZE statements to regenerate the statistics.

However, the precalculated optimizer statistics will not be used at export time if a
table has columns with system-generated names.

The precalculated optimizer statistics are flagged as questionable at export time if:

■ There are row errors while exporting

■ The client character set or NCHAR character set does not match the server character
set or NCHAR character set

■ A QUERY clause is specified

■ Only certain partitions or subpartitions are exported

TABLES
Default: none

Specifies that the export is a table-mode export and lists the table names and partition
and subpartition names to export. You can specify the following when you specify the
name of the table:

■ schemaname specifies the name of the user's schema from which to export the table
or partition. If a schema name is not specified, then the exporter's schema is used
as the default. System schema names such as ORDSYS, MDSYS, CTXSYS, LBACSYS,
and ORDPLUGINS are reserved by Export.

■ tablename specifies the name of the table or tables to be exported. Table-level
export lets you export entire partitioned or nonpartitioned tables. If a table in the
list is partitioned and you do not specify a partition name, then all its partitions
and subpartitions are exported.

The table name can contain any number of '%' pattern matching characters,
which can each match zero or more characters in the table name against the table
objects in the database. All the tables in the relevant schema that match the
specified pattern are selected for export, as if the respective table names were
explicitly specified in the parameter.

■ partition_name indicates that the export is a partition-level Export. Partition-level
Export lets you export one or more specified partitions or subpartitions within a
table.

The syntax you use to specify the preceding is in the form:

schemaname.tablename:partition_name
schemaname.tablename:subpartition_name

Note: Specifying ROWS=n does not preclude saving the
precalculated statistics in the export file. This enables you to tune
plan generation for queries in a nonproduction database using
statistics from a production database.

Export Parameters

Original Export 21-19

If you use tablename:partition_name, then the specified table must be partitioned,
and partition_name must be the name of one of its partitions or subpartitions. If the
specified table is not partitioned, then the partition_name is ignored and the entire
table is exported.

See "Example Export Session Using Partition-Level Export" on page 21-24 for several
examples of partition-level Exports.

Table Name Restrictions
The following restrictions apply to table names:

■ By default, table names in a database are stored as uppercase. If you have a table
name in mixed-case or lowercase, and you want to preserve case-sensitivity for the
table name, then you must enclose the name in quotation marks. The name must
exactly match the table name stored in the database.

Some operating systems require that quotation marks on the command line be
preceded by an escape character. The following are examples of how
case-sensitivity can be preserved in the different Export modes.

– In command-line mode:

TABLES='\"Emp\"'

– In interactive mode:

Table(T) to be exported: "Emp"

– In parameter file mode:

TABLES='"Emp"'

■ Table names specified on the command line cannot include a pound (#) sign,
unless the table name is enclosed in quotation marks. Similarly, in the parameter
file, if a table name includes a pound (#) sign, then the Export utility interprets the
rest of the line as a comment, unless the table name is enclosed in quotation marks.

For example, if the parameter file contains the following line, then Export
interprets everything on the line after emp# as a comment and does not export the
tables dept and mydata:

TABLES=(emp#, dept, mydata)

However, given the following line, the Export utility exports all three tables,
because emp# is enclosed in quotation marks:

TABLES=("emp#", dept, mydata)

TABLESPACES
Default: none

The TABLESPACES parameter specifies that all tables in the specified tablespace be
exported to the Export dump file. This includes all tables contained in the list of
tablespaces and all tables that have a partition located in the list of tablespaces.
Indexes are exported with their tables, regardless of where the index is stored.

Note: Some operating systems require single quotation marks
rather than double quotation marks, or the reverse. Different
operating systems also have other restrictions on table naming.

Export Parameters

21-20 Oracle Database Utilities

You must have the EXP_FULL_DATABASE role to use TABLESPACES to export all tables in
the tablespace.

When TABLESPACES is used in conjunction with TRANSPORT_TABLESPACE=y, you can
specify a limited list of tablespaces to be exported from the database to the export file.

TRANSPORT_TABLESPACE
Default: n

When specified as y, this parameter enables the export of transportable tablespace
metadata.

Encrypted columns are not supported in transportable tablespace mode.

TRIGGERS
Default: y

Specifies whether the Export utility exports triggers.

TTS_FULL_CHECK
Default: n

When TTS_FULL_CHECK is set to y, Export verifies that a recovery set (set of tablespaces
to be recovered) has no dependencies (specifically, IN pointers) on objects outside the
recovery set, and the reverse.

USERID (username/password)
Default: none

Specifies the username, password, and optional connect string of the user performing
the export. If you omit the password, then Export will prompt you for it.

If you connect as user SYS, then you must also specify AS SYSDBA in the connect string.
Your operating system may require you to treat AS SYSDBA as a special string, in which
case the entire string would be enclosed in quotation marks.

Note: You cannot export transportable tablespaces and then import
them into a database at a lower release level. The target database must
be at the same or higher release level as the source database.

See Also:

■ "Transportable Tablespaces" on page 21-34

■ Oracle Database Administrator's Guide

■ Oracle Database Concepts

See Also:

■ Oracle Database Heterogeneous Connectivity User's Guide

■ The user's guide for your Oracle Net protocol for information
about specifying a connect string for Oracle Net

Example Export Sessions

Original Export 21-21

VOLSIZE
Default: none

Specifies the maximum number of bytes in an export file on each volume of tape.

The VOLSIZE parameter has a maximum value equal to the maximum value that can be
stored in 64 bits on your platform.

The VOLSIZE value can be specified as a number followed by KB (number of
kilobytes). For example, VOLSIZE=2KB is the same as VOLSIZE=2048. Similarly, MB
specifies megabytes (1024 * 1024) and GB specifies gigabytes (1024**3). B remains the
shorthand for bytes; the number is not multiplied to get the final file size
(VOLSIZE=2048B is the same as VOLSIZE=2048).

Example Export Sessions
This section provides examples of the following types of Export sessions:

■ Example Export Session in Full Database Mode

■ Example Export Session in User Mode

■ Example Export Sessions in Table Mode

■ Example Export Session Using Partition-Level Export

In each example, you are shown how to use both the command-line method and the
parameter file method. Some examples use vertical ellipses to indicate sections of
example output that were too long to include.

Example Export Session in Full Database Mode
Only users with the DBA role or the EXP_FULL_DATABASE role can export in full database
mode. In this example, an entire database is exported to the file dba.dmp with all
GRANTS and all data.

Parameter File Method
> exp PARFILE=params.dat

The params.dat file contains the following information:

FILE=dba.dmp
GRANTS=y
FULL=y
ROWS=y

Command-Line Method
> exp FULL=y FILE=dba.dmp GRANTS=y ROWS=y

Export Messages
Information is displayed about the release of Export you are using and the release of
Oracle Database that you are connected to. Status messages are written out as the
entire database is exported. A final completion message is returned when the export
completes successfully, without warnings.

Example Export Sessions

21-22 Oracle Database Utilities

Example Export Session in User Mode
User-mode exports can be used to back up one or more database users. For example, a
DBA may want to back up the tables of deleted users for a period of time. User mode
is also appropriate for users who want to back up their own data or who want to move
objects from one owner to another. In this example, user scott is exporting his own
tables.

Parameter File Method
> exp scott PARFILE=params.dat

The params.dat file contains the following information:

FILE=scott.dmp
OWNER=scott
GRANTS=y
ROWS=y
COMPRESS=y

Command-Line Method
> exp scott FILE=scott.dmp OWNER=scott GRANTS=y ROWS=y COMPRESS=y

Export Messages
Information is displayed about the release of Export you are using and the release of
Oracle Database that you are connected to. Then, status messages similar to the
following are shown:

.

.

. about to export SCOTT's tables via Conventional Path ...

. . exporting table BONUS 0 rows exported

. . exporting table DEPT 4 rows exported

. . exporting table EMP 14 rows exported

. . exporting table SALGRADE 5 rows exported

.

.

.
Export terminated successfully without warnings.

Example Export Sessions in Table Mode
In table mode, you can export table data or the table definitions. (If no rows are
exported, then the CREATE TABLE statement is placed in the export file, with grants and
indexes, if they are specified.)

A user with the EXP_FULL_DATABASE role can use table mode to export tables from any
user's schema by specifying TABLES=schemaname.tablename.

If schemaname is not specified, then Export defaults to the exporter's schema name. In
the following example, Export defaults to the SYSTEM schema for table a and table c:

> exp TABLES=(a, scott.b, c, mary.d)

A user with the EXP_FULL_DATABASE role can also export dependent objects that are
owned by other users. A nonprivileged user can export only dependent objects for the
specified tables that the user owns.

Exports in table mode do not include cluster definitions. As a result, the data is
exported as unclustered tables. Thus, you can use table mode to uncluster tables.

Example Export Sessions

Original Export 21-23

Example 1: DBA Exporting Tables for Two Users
In this example, a DBA exports specified tables for two users.

Parameter File Method
> exp PARFILE=params.dat

The params.dat file contains the following information:

FILE=expdat.dmp
TABLES=(scott.emp,blake.dept)
GRANTS=y
INDEXES=y

Command-Line Method
> exp FILE=expdat.dmp TABLES=(scott.emp,blake.dept) GRANTS=y INDEXES=y

Export Messages
Information is displayed about the release of Export you are using and the release of
Oracle Database that you are connected to. Then, status messages similar to the
following are shown:

.

.

.
About to export specified tables via Conventional Path ...
Current user changed to SCOTT
. . exporting table EMP 14 rows exported
Current user changed to BLAKE
. . exporting table DEPT 8 rows exported
Export terminated successfully without warnings.

Example 2: User Exports Tables That He Owns
In this example, user blake exports selected tables that he owns.

Parameter File Method
> exp blake PARFILE=params.dat

The params.dat file contains the following information:

FILE=blake.dmp
TABLES=(dept,manager)
ROWS=y
COMPRESS=y

Command-Line Method
> exp blake FILE=blake.dmp TABLES=(dept, manager) ROWS=y COMPRESS=y

Export Messages
Information is displayed about the release of Export you are using and the release of
Oracle Database that you are connected to. Then, status messages similar to the
following are shown:

.

.

.

Example Export Sessions

21-24 Oracle Database Utilities

About to export specified tables via Conventional Path ...
. . exporting table DEPT 8 rows exported
. . exporting table MANAGER 4 rows exported
Export terminated successfully without warnings.

Example 3: Using Pattern Matching to Export Various Tables
In this example, pattern matching is used to export various tables for users scott and
blake.

Parameter File Method
> exp PARFILE=params.dat

The params.dat file contains the following information:

FILE=misc.dmp
TABLES=(scott.%P%,blake.%,scott.%S%)

Command-Line Method
> exp FILE=misc.dmp TABLES=(scott.%P%,blake.%,scott.%S%)

Export Messages
Information is displayed about the release of Export you are using and the release of
Oracle Database that you are connected to. Then, status messages similar to the
following are shown:

.

.

.
About to export specified tables via Conventional Path ...
Current user changed to SCOTT
. . exporting table DEPT 4 rows exported
. . exporting table EMP 14 rows exported
Current user changed to BLAKE
. . exporting table DEPT 8 rows exported
. . exporting table MANAGER 4 rows exported
Current user changed to SCOTT
. . exporting table BONUS 0 rows exported
. . exporting table SALGRADE 5 rows exported
Export terminated successfully without warnings.

Example Export Session Using Partition-Level Export
In partition-level Export, you can specify the partitions and subpartitions of a table
that you want to export.

Example 1: Exporting a Table Without Specifying a Partition
Assume emp is a table that is partitioned on employee name. There are two partitions,
m and z. As this example shows, if you export the table without specifying a partition,
then all of the partitions are exported.

Parameter File Method
> exp scott PARFILE=params.dat

The params.dat file contains the following:

TABLES=(emp)

Example Export Sessions

Original Export 21-25

ROWS=y

Command-Line Method
> exp scott TABLES=emp rows=y

Export Messages
Information is displayed about the release of Export you are using and the release of
Oracle Database that you are connected to. Then, status messages similar to the
following are shown:

.

.

.
About to export specified tables via Conventional Path ...
. . exporting table EMP
. . exporting partition M 8 rows exported
. . exporting partition Z 6 rows exported
Export terminated successfully without warnings.

Example 2: Exporting a Table with a Specified Partition
Assume emp is a table that is partitioned on employee name. There are two partitions,
m and z. As this example shows, if you export the table and specify a partition, then
only the specified partition is exported.

Parameter File Method
 > exp scott PARFILE=params.dat

The params.dat file contains the following:

TABLES=(emp:m)
ROWS=y

Command-Line Method
> exp scott TABLES=emp:m rows=y

Export Messages
Information is displayed about the release of Export you are using and the release of
Oracle Database that you are connected to. Then, status messages similar to the
following are shown:

.

.

.
About to export specified tables via Conventional Path ...
. . exporting table EMP
. . exporting partition M 8 rows exported
Export terminated successfully without warnings.

Example 3: Exporting a Composite Partition
Assume emp is a partitioned table with two partitions, m and z. Table emp is partitioned
using the composite method. Partition m has subpartitions sp1 and sp2, and partition
z has subpartitions sp3 and sp4. As the example shows, if you export the composite
partition m, then all its subpartitions (sp1 and sp2) will be exported. If you export the
table and specify a subpartition (sp4), then only the specified subpartition is exported.

Warning, Error, and Completion Messages

21-26 Oracle Database Utilities

Parameter File Method
> exp scott PARFILE=params.dat

The params.dat file contains the following:

TABLES=(emp:m,emp:sp4)
ROWS=y

Command-Line Method
> exp scott TABLES=(emp:m, emp:sp4) ROWS=y

Export Messages
Information is displayed about the release of Export you are using and the release of
Oracle Database that you are connected to. Then, status messages similar to the
following are shown:

.

.

.
About to export specified tables via Conventional Path ...
. . exporting table EMP
. . exporting composite partition M
. . exporting subpartition SP1 1 rows exported
. . exporting subpartition SP2 3 rows exported
. . exporting composite partition Z
. . exporting subpartition SP4 1 rows exported
Export terminated successfully without warnings.

Warning, Error, and Completion Messages
This section describes the different types of messages issued by Export and how to
save them in a log file.

Log File
You can capture all Export messages in a log file, either by using the LOG parameter or,
for those systems that permit it, by redirecting the output to a file. A log of detailed
information is written about successful unloads and any errors that may have
occurred.

Warning Messages
Export does not terminate after recoverable errors. For example, if an error occurs
while exporting a table, then Export displays (or logs) an error message, skips to the
next table, and continues processing. These recoverable errors are known as warnings.

Export also issues warnings when invalid objects are encountered.

For example, if a nonexistent table is specified as part of a table-mode Export, then the
Export utility exports all other tables. Then it issues a warning and terminates
successfully.

Nonrecoverable Error Messages
Some errors are nonrecoverable and terminate the Export session. These errors
typically occur because of an internal problem or because a resource, such as memory,

Conventional Path Export Versus Direct Path Export

Original Export 21-27

is not available or has been exhausted. For example, if the catexp.sql script is not
executed, then Export issues the following nonrecoverable error message:

EXP-00024: Export views not installed, please notify your DBA

Completion Messages
When an export completes without errors, a message to that effect is displayed, for
example:

Export terminated successfully without warnings

If one or more recoverable errors occurs but the job continues to completion, then a
message similar to the following is displayed:

Export terminated successfully with warnings

If a nonrecoverable error occurs, then the job terminates immediately and displays a
message stating so, for example:

Export terminated unsuccessfully

Exit Codes for Inspection and Display
Export provides the results of an operation immediately upon completion. Depending
on the platform, the outcome may be reported in a process exit code and the results
recorded in the log file. This enables you to check the outcome from the command line
or script. Table 21–4 shows the exit codes that get returned for various results.

For UNIX, the exit codes are as follows:

EX_SUCC 0
EX_OKWARN 0
EX_FAIL 1

Conventional Path Export Versus Direct Path Export
Export provides two methods for exporting table data:

■ Conventional path Export

■ Direct path Export

Conventional path Export uses the SQL SELECT statement to extract data from tables.
Data is read from disk into a buffer cache, and rows are transferred to the evaluating
buffer. The data, after passing expression evaluation, is transferred to the Export client,
which then writes the data into the export file.

Table 21–4 Exit Codes for Export

Result Exit Code

Export terminated successfully without warnings

Import terminated successfully without warnings

EX_SUCC

Export terminated successfully with warnings

Import terminated successfully with warnings

EX_OKWARN

Export terminated unsuccessfully

Import terminated unsuccessfully

EX_FAIL

Invoking a Direct Path Export

21-28 Oracle Database Utilities

Direct path Export is much faster than conventional path Export because data is read
from disk into the buffer cache and rows are transferred directly to the Export client.
The evaluating buffer (that is, the SQL command-processing layer) is bypassed. The
data is already in the format that Export expects, thus avoiding unnecessary data
conversion. The data is transferred to the Export client, which then writes the data into
the export file.

Invoking a Direct Path Export
To use direct path Export, specify the DIRECT=y parameter on the command line or in
the parameter file. The default is DIRECT=n, which extracts the table data using the
conventional path. The rest of this section discusses the following topics:

■ Security Considerations for Direct Path Exports

■ Performance Considerations for Direct Path Exports

■ Restrictions for Direct Path Exports

Security Considerations for Direct Path Exports
Oracle Virtual Private Database (VPD) and Oracle Label Security are not enforced
during direct path Exports.

The following users are exempt from Virtual Private Database and Oracle Label
Security enforcement regardless of the export mode, application, or utility used to
extract data from the database:

■ The database user SYS

■ Database users granted the EXEMPT ACCESS POLICY privilege, either directly or
through a database role

This means that any user who is granted the EXEMPT ACCESS POLICY privilege is
completely exempt from enforcement of VPD and Oracle Label Security. This is a
powerful privilege and should be carefully managed. This privilege does not affect the
enforcement of traditional object privileges such as SELECT, INSERT, UPDATE, and
DELETE. These privileges are enforced even if a user has been granted the EXEMPT
ACCESS POLICY privilege.

Performance Considerations for Direct Path Exports
You may be able to improve performance by increasing the value of the RECORDLENGTH
parameter when you invoke a direct path Export. Your exact performance gain
depends upon the following factors:

■ DB_BLOCK_SIZE

■ The types of columns in your table

■ Your I/O layout (The drive receiving the export file should be separate from the
disk drive where the database files reside.)

The following values are generally recommended for RECORDLENGTH:

■ Multiples of the file system I/O block size

See Also:

■ "Support for Fine-Grained Access Control" on page 21-34

■ Oracle Database Advanced Application Developer's Guide

Character Set and Globalization Support Considerations

Original Export 21-29

■ Multiples of DB_BLOCK_SIZE

An export file that is created using direct path Export will take the same amount of
time to import as an export file created using conventional path Export.

Restrictions for Direct Path Exports
Keep the following restrictions in mind when you are using direct path mode:

■ To invoke a direct path Export, you must use either the command-line method or a
parameter file. You cannot invoke a direct path Export using the interactive
method.

■ The Export parameter BUFFER applies only to conventional path Exports. For direct
path Export, use the RECORDLENGTH parameter to specify the size of the buffer that
Export uses for writing to the export file.

■ You cannot use direct path when exporting in tablespace mode (TRANSPORT_
TABLESPACES=Y).

■ The QUERY parameter cannot be specified in a direct path Export.

■ A direct path Export can only export data when the NLS_LANG environment
variable of the session invoking the export equals the database character set. If
NLS_LANG is not set or if it is different than the database character set, then a
warning is displayed and the export is discontinued. The default value for the
NLS_LANG environment variable is AMERICAN_AMERICA.US7ASCII.

Network Considerations
This section describes factors to consider when using Export across a network.

Transporting Export Files Across a Network
Because the export file is in binary format, use a protocol that supports binary
transfers to prevent corruption of the file when you transfer it across a network. For
example, use FTP or a similar file transfer protocol to transmit the file in binary mode.
Transmitting export files in character mode causes errors when the file is imported.

Exporting with Oracle Net
With Oracle Net, you can perform exports over a network. For example, if you run
Export locally, then you can write data from a remote Oracle database into a local
export file.

To use Export with Oracle Net, include the connection qualifier string @connect_
string when entering the username and password in the exp command. For the exact
syntax of this clause, see the user's guide for your Oracle Net protocol.

Character Set and Globalization Support Considerations
The following sections describe the globalization support behavior of Export with
respect to character set conversion of user data and data definition language (DDL).

See Also:

■ Oracle Database Net Services Administrator's Guide

■ Oracle Database Heterogeneous Connectivity User's Guide

Character Set and Globalization Support Considerations

21-30 Oracle Database Utilities

User Data
The Export utility always exports user data, including Unicode data, in the character
sets of the Export server. (Character sets are specified at database creation.) If the
character sets of the source database are different than the character sets of the import
database, then a single conversion is performed to automatically convert the data to
the character sets of the Import server.

Effect of Character Set Sorting Order on Conversions
If the export character set has a different sorting order than the import character set,
then tables that are partitioned on character columns may yield unpredictable results.
For example, consider the following table definition, which is produced on a database
having an ASCII character set:

CREATE TABLE partlist
 (
 part VARCHAR2(10),
 partno NUMBER(2)
)
PARTITION BY RANGE (part)
 (
 PARTITION part_low VALUES LESS THAN ('Z')
 TABLESPACE tbs_1,
 PARTITION part_mid VALUES LESS THAN ('z')
 TABLESPACE tbs_2,
 PARTITION part_high VALUES LESS THAN (MAXVALUE)
 TABLESPACE tbs_3
);

This partitioning scheme makes sense because z comes after Z in ASCII character sets.

When this table is imported into a database based upon an EBCDIC character set, all of
the rows in the part_mid partition will migrate to the part_low partition because z
comes before Z in EBCDIC character sets. To obtain the desired results, the owner of
partlist must repartition the table following the import.

Data Definition Language (DDL)
Up to three character set conversions may be required for data definition language
(DDL) during an export/import operation:

1. Export writes export files using the character set specified in the NLS_LANG
environment variable for the user session. A character set conversion is performed
if the value of NLS_LANG differs from the database character set.

2. If the export file's character set is different than the import user session character
set, then Import converts the character set to its user session character set. Import
can only perform this conversion for single-byte character sets. This means that for
multibyte character sets, the import file's character set must be identical to the
export file's character set.

3. A final character set conversion may be performed if the target database's
character set is different from the character set used by the import user session.

To minimize data loss due to character set conversions, ensure that the export
database, the export user session, the import user session, and the import database all
use the same character set.

See Also: Oracle Database Globalization Support Guide

Considerations When Exporting Database Objects

Original Export 21-31

Single-Byte Character Sets and Export and Import
Some 8-bit characters can be lost (that is, converted to 7-bit equivalents) when you
import an 8-bit character set export file. This occurs if the system on which the import
occurs has a native 7-bit character set, or the NLS_LANG operating system environment
variable is set to a 7-bit character set. Most often, this is apparent when accented
characters lose the accent mark.

To avoid this unwanted conversion, you can set the NLS_LANG operating system
environment variable to be that of the export file character set.

Multibyte Character Sets and Export and Import
During character set conversion, any characters in the export file that have no
equivalent in the target character set are replaced with a default character. (The default
character is defined by the target character set.) To guarantee 100% conversion, the
target character set must be a superset (or equivalent) of the source character set.

Using Instance Affinity with Export and Import
You can use instance affinity to associate jobs with instances in databases you plan to
export and import. Be aware that there may be some compatibility issues if you are
using a combination of releases.

Considerations When Exporting Database Objects
The following sections describe points you should consider when you export
particular database objects.

Exporting Sequences
If transactions continue to access sequence numbers during an export, then sequence
numbers might be skipped. The best way to ensure that sequence numbers are not
skipped is to ensure that the sequences are not accessed during the export.

Sequence numbers can be skipped only when cached sequence numbers are in use.
When a cache of sequence numbers has been allocated, they are available for use in the
current database. The exported value is the next sequence number (after the cached
values). Sequence numbers that are cached, but unused, are lost when the sequence is
imported.

See Also: Oracle Database Globalization Support Guide

Caution: When the character set width differs between the Export
server and the Import server, truncation of data can occur if
conversion causes expansion of data. If truncation occurs, then
Import displays a warning message.

See Also:

■ Oracle Database Administrator's Guide

■ Oracle Database Reference

■ Oracle Database Upgrade Guide

Considerations When Exporting Database Objects

21-32 Oracle Database Utilities

Exporting LONG and LOB Datatypes
On export, LONG datatypes are fetched in sections. However, enough memory must be
available to hold all of the contents of each row, including the LONG data.

LONG columns can be up to 2 gigabytes in length.

All data in a LOB column does not need to be held in memory at the same time. LOB
data is loaded and unloaded in sections.

Exporting Foreign Function Libraries
The contents of foreign function libraries are not included in the export file. Instead,
only the library specification (name, location) is included in full database mode and
user-mode export. You must move the library's executable files and update the library
specification if the database is moved to a new location.

Exporting Offline Locally Managed Tablespaces
If the data you are exporting contains offline locally managed tablespaces, then Export
will not be able to export the complete tablespace definition and will display an error
message. You can still import the data; however, you must create the offline locally
managed tablespaces before importing to prevent DDL commands that may reference
the missing tablespaces from failing.

Exporting Directory Aliases
Directory alias definitions are included only in a full database mode export. To move a
database to a new location, the database administrator must update the directory
aliases to point to the new location.

Directory aliases are not included in user-mode or table-mode export. Therefore, you
must ensure that the directory alias has been created on the target system before the
directory alias is used.

Exporting BFILE Columns and Attributes
The export file does not hold the contents of external files referenced by BFILE
columns or attributes. Instead, only the names and directory aliases for files are copied
on Export and restored on Import. If you move the database to a location where the
old directories cannot be used to access the included files, then the database
administrator (DBA) must move the directories containing the specified files to a new
location where they can be accessed.

Exporting External Tables
The contents of external tables are not included in the export file. Instead, only the
table specification (name, location) is included in full database mode and user-mode
export. You must manually move the external data and update the table specification if
the database is moved to a new location.

Note: Oracle also recommends that you convert existing LONG
columns to LOB columns. LOB columns are subject to far fewer
restrictions than LONG columns. Further, LOB functionality is
enhanced in every release, whereas LONG functionality has been
static for several releases.

Considerations When Exporting Database Objects

Original Export 21-33

Exporting Object Type Definitions
In all Export modes, the Export utility includes information about object type
definitions used by the tables being exported. The information, including object name,
object identifier, and object geometry, is needed to verify that the object type on the
target system is consistent with the object instances contained in the export file. This
ensures that the object types needed by a table are created with the same object
identifier at import time.

Note, however, that in table mode, user mode, and tablespace mode, the export file
does not include a full object type definition needed by a table if the user running
Export does not have execute access to the object type. In this case, only enough
information is written to verify that the type exists, with the same object identifier and
the same geometry, on the Import target system.

The user must ensure that the proper type definitions exist on the target system, either
by working with the DBA to create them, or by importing them from full database
mode or user-mode exports performed by the DBA.

It is important to perform a full database mode export regularly to preserve all object
type definitions. Alternatively, if object type definitions from different schemas are
used, then the DBA should perform a user mode export of the appropriate set of users.
For example, if table1 belonging to user scott contains a column on blake's type
type1, then the DBA should perform a user mode export of both blake and scott to
preserve the type definitions needed by the table.

Exporting Nested Tables
Inner nested table data is exported whenever the outer containing table is exported.
Although inner nested tables can be named, they cannot be exported individually.

Exporting Advanced Queue (AQ) Tables
Queues are implemented on tables. The export and import of queues constitutes the
export and import of the underlying queue tables and related dictionary tables. You
can export and import queues only at queue table granularity.

When you export a queue table, both the table definition information and queue data
are exported. Because the queue table data and the table definition is exported, the
user is responsible for maintaining application-level data integrity when queue table
data is imported.

Exporting Synonyms
You should be cautious when exporting compiled objects that reference a name used
as a synonym and as another object. Exporting and importing these objects will force a
recompilation that could result in changes to the object definitions.

The following example helps to illustrate this problem:

CREATE PUBLIC SYNONYM emp FOR scott.emp;

CONNECT blake/paper;
CREATE TRIGGER t_emp BEFORE INSERT ON emp BEGIN NULL; END;
CREATE VIEW emp AS SELECT * FROM dual;

See Also: Oracle Streams Advanced Queuing User's Guide

Transportable Tablespaces

21-34 Oracle Database Utilities

If the database in the preceding example were exported, then the reference to emp in
the trigger would refer to blake's view rather than to scott's table. This would cause
an error when Import tried to reestablish the t_emp trigger.

Possible Export Errors Related to Java Synonyms
If an export operation attempts to export a synonym named DBMS_JAVA when there is
no corresponding DBMS_JAVA package or when Java is either not loaded or loaded
incorrectly, then the export will terminate unsuccessfully. The error messages that are
generated include, but are not limited to, the following: EXP-00008, ORA-00904, and
ORA-29516.

If Java is enabled, then ensure that both the DBMS_JAVA synonym and DBMS_JAVA
package are created and valid before rerunning the export.

If Java is not enabled, then remove Java-related objects before rerunning the export.

Support for Fine-Grained Access Control
You can export tables with fine-grained access control policies enabled. When doing
so, consider the following:

■ The user who imports from an export file containing such tables must have the
appropriate privileges (specifically, the EXECUTE privilege on the DBMS_RLS package
so that the tables' security policies can be reinstated). If a user without the correct
privileges attempts to export a table with fine-grained access policies enabled,
then only those rows that the exporter is privileged to read will be exported.

■ If fine-grained access control is enabled on a SELECT statement, then conventional
path Export may not export the entire table because fine-grained access may
rewrite the query.

■ Only user SYS, or a user with the EXP_FULL_DATABASE role enabled or who has
been granted EXEMPT ACCESS POLICY, can perform direct path Exports on tables
having fine-grained access control.

Transportable Tablespaces
The transportable tablespace feature enables you to move a set of tablespaces from one
Oracle database to another.

To move or copy a set of tablespaces, you must make the tablespaces read-only, copy
the data files of these tablespaces, and use Export and Import to move the database
information (metadata) stored in the data dictionary. Both the data files and the
metadata export file must be copied to the target database. The transport of these files
can be done using any facility for copying flat binary files, such as the operating
system copying facility, binary-mode FTP, or publishing on CD-ROMs.

After copying the data files and exporting the metadata, you can optionally put the
tablespaces in read/write mode.

Export and Import provide the following parameters to enable movement of
transportable tablespace metadata.

Note: You cannot export transportable tablespaces and then import
them into a database at a lower release level. The target database must
be at the same or higher release level as the source database.

Using Export and Import to Partition a Database Migration

Original Export 21-35

■ TABLESPACES

■ TRANSPORT_TABLESPACE

See "TABLESPACES" on page 21-19 and "TRANSPORT_TABLESPACE" on page 21-20
for more information about using these parameters during an export operation.

Exporting From a Read-Only Database
To extract metadata from a source database, Export uses queries that contain ordering
clauses (sort operations). For these queries to succeed, the user performing the export
must be able to allocate sort segments. For these sort segments to be allocated in a
read-only database, the user's temporary tablespace should be set to point at a
temporary, locally managed tablespace.

Using Export and Import to Partition a Database Migration
When you use the Export and Import utilities to migrate a large database, it may be
more efficient to partition the migration into multiple export and import jobs. If you
decide to partition the migration, then be aware of the following advantages and
disadvantages.

Advantages of Partitioning a Migration
Partitioning a migration has the following advantages:

■ Time required for the migration may be reduced, because many of the subjobs can
be run in parallel.

■ The import can start as soon as the first export subjob completes, rather than
waiting for the entire export to complete.

Disadvantages of Partitioning a Migration
Partitioning a migration has the following disadvantages:

■ The export and import processes become more complex.

■ Support of cross-schema references for certain types of objects may be
compromised. For example, if a schema contains a table with a foreign key
constraint against a table in a different schema, then you may not have the
required parent records when you import the table into the dependent schema.

How to Use Export and Import to Partition a Database Migration
To perform a database migration in a partitioned manner, take the following steps:

1. For all top-level metadata in the database, issue the following commands:

a. exp FILE=full FULL=y CONSTRAINTS=n TRIGGERS=n ROWS=n INDEXES=n

b. imp FILE=full FULL=y

See Also:

■ Oracle Database Administrator's Guide for details about
managing transportable tablespaces

■ Oracle Database Concepts for an introduction to transportable
tablespaces

Using Different Releases of Export and Import

21-36 Oracle Database Utilities

2. For each scheman in the database, issue the following commands:

a. exp OWNER=scheman FILE=scheman

b. imp FILE=scheman FROMUSER=scheman TOUSER=scheman IGNORE=y

All exports can be done in parallel. When the import of full.dmp completes, all
remaining imports can also be done in parallel.

Using Different Releases of Export and Import
This section describes compatibility issues that relate to using different releases of
Export and the Oracle database.

Whenever you are moving data between different releases of the Oracle database, the
following basic rules apply:

■ The Import utility and the database to which data is being imported (the target
database) must be the same release. For example, if you try to use the Import
utility 9.2.0.7 to import into a 9.2.0.8 database, then you may encounter errors.

■ The version of the Export utility must be equal to the release of either the source or
target database, whichever is earlier.

For example, to create an export file for an import into a later release database, use
a version of the Export utility that equals the source database. Conversely, to create
an export file for an import into an earlier release database, use a version of the
Export utility that equals the release of the target database.

– In general, you can use the Export utility from any Oracle8 release to export
from an Oracle9i server and create an Oracle8 export file.

Restrictions When Using Different Releases of Export and Import
The following restrictions apply when you are using different releases of Export and
Import:

■ Export dump files can be read only by the Import utility because they are stored in
a special binary format.

■ Any export dump file can be imported into a later release of the Oracle database.

■ The Import utility cannot read export dump files created by the Export utility of a
later maintenance release. For example, a release 9.2 export dump file cannot be
imported by a release 9.0.1 Import utility.

■ Whenever a lower version of the Export utility runs with a later release of the
Oracle database, categories of database objects that did not exist in the earlier
release are excluded from the export.

■ Export files generated by Oracle9i Export, either direct path or conventional path,
are incompatible with earlier releases of Import and can be imported only with
Oracle9i Import. When backward compatibility is an issue, use the earlier release
or version of the Export utility against the Oracle9i database.

Examples of Using Different Releases of Export and Import
Table 21–5 shows some examples of which Export and Import releases to use when
moving data between different releases of the Oracle database.

Using Different Releases of Export and Import

Original Export 21-37

Table 21–5 covers moving data only between the original Export and Import utilities.
For Oracle Database 10g release 1 (10.1) or higher, Oracle recommends the Data Pump
Export and Import utilities in most cases because these utilities provide greatly
enhanced performance compared to the original Export and Import utilities.

Table 21–5 Using Different Releases of Export and Import

Export from->Import to Use Export Release Use Import Release

8.1.6 -> 8.1.6 8.1.6 8.1.6

8.1.5 -> 8.0.6 8.0.6 8.0.6

8.1.7 -> 8.1.6 8.1.6 8.1.6

9.0.1 -> 8.1.6 8.1.6 8.1.6

9.0.1 -> 9.0.2 9.0.1 9.0.2

9.0.2 -> 10.1.0 9.0.2 10.1.0

10.1.0 -> 9.0.2 9.0.2 9.0.2

See Also: Oracle Database Upgrade Guide for more information about
exporting and importing data between different releases, including
releases higher than 10.1

Using Different Releases of Export and Import

21-38 Oracle Database Utilities

22

Original Import 22-1

22 Original Import

This chapter describes how to use the original Import utility (imp) to import dump
files that were created using the original Export utility.

This chapter discusses the following topics:

■ What Is the Import Utility?

■ Before Using Import

■ Importing into Existing Tables

■ Effect of Schema and Database Triggers on Import Operations

■ Invoking Import

■ Import Modes

■ Import Parameters

■ Example Import Sessions

■ Exit Codes for Inspection and Display

■ Error Handling During an Import

■ Table-Level and Partition-Level Import

■ Controlling Index Creation and Maintenance

■ Network Considerations

■ Character Set and Globalization Support Considerations

■ Using Instance Affinity

■ Considerations When Importing Database Objects

■ Support for Fine-Grained Access Control

■ Snapshots and Snapshot Logs

■ Transportable Tablespaces

■ Storage Parameters

■ Read-Only Tablespaces

■ Dropping a Tablespace

■ Reorganizing Tablespaces

■ Importing Statistics

■ Using Export and Import to Partition a Database Migration

What Is the Import Utility?

22-2 Oracle Database Utilities

■ Tuning Considerations for Import Operations

■ Using Different Releases of Export and Import

What Is the Import Utility?
The Import utility reads object definitions and table data from dump files created by
the original Export utility. The dump file is in an Oracle binary-format that can be read
only by original Import.

The version of the Import utility cannot be earlier than the version of the Export utility
used to create the dump file.

Table Objects: Order of Import
Table objects are imported as they are read from the export dump file. The dump file
contains objects in the following order:

1. Type definitions

2. Table definitions

3. Table data

4. Table indexes

5. Integrity constraints, views, procedures, and triggers

6. Bitmap, function-based, and domain indexes

The order of import is as follows: new tables are created, data is imported and indexes
are built, triggers are imported, integrity constraints are enabled on the new tables,
and any bitmap, function-based, and/or domain indexes are built. This sequence
prevents data from being rejected due to the order in which tables are imported. This
sequence also prevents redundant triggers from firing twice on the same data (once
when it is originally inserted and again during the import).

Before Using Import
Before you begin using Import, be sure you take care of the following items (described
in detail in the following sections):

■ If you created your database manually, ensure that the catexp.sql or catalog.sql
script has been run. If you created your database using the Database
Configuration Assistant (DBCA), it is not necessary to run these scripts.

■ Verify that you have the required access privileges.

Running catexp.sql or catalog.sql
To use Import, you must run the script catexp.sql or catalog.sql (which runs
catexp.sql) after the database has been created or migrated to a newer version.

The catexp.sql or catalog.sql script needs to be run only once on a database. The
script performs the following tasks to prepare the database for export and import
operations:

■ Creates the necessary import views in the data dictionary

■ Creates the EXP_FULL_DATABASE and IMP_FULL_DATABASE roles

Before Using Import

Original Import 22-3

■ Assigns all necessary privileges to the EXP_FULL_DATABASE and IMP_FULL_
DATABASE roles

■ Assigns EXP_FULL_DATABASE and IMP_FULL_DATABASE to the DBA role

■ Records the version of catexp.sql that has been installed

Verifying Access Privileges for Import Operations
To use Import, you must have the CREATE SESSION privilege on an Oracle database.
This privilege belongs to the CONNECT role established during database creation.

You can perform an import operation even if you did not create the export file.
However, keep in mind that if the export file was created by a user with the EXP_FULL_
DATABASE role, then you must have the IMP_FULL_DATABASE role to import it. Both of
these roles are typically assigned to database administrators (DBAs).

Importing Objects Into Your Own Schema
Table 22–1 lists the privileges required to import objects into your own schema. All of
these privileges initially belong to the RESOURCE role.

Table 22–1 Privileges Required to Import Objects into Your Own Schema

Object Required Privilege (Privilege Type, If Applicable)

Clusters CREATE CLUSTER (System) or UNLIMITED TABLESPACE (System).
The user must also be assigned a tablespace quota.

Database links CREATE DATABASE LINK (System) and CREATE SESSION (System)
on remote database

Triggers on tables CREATE TRIGGER (System)

Triggers on schemas CREATE ANY TRIGGER (System)

Indexes CREATE INDEX (System) or UNLIMITED TABLESPACE (System). The
user must also be assigned a tablespace quota.

Integrity constraints ALTER TABLE (Object)

Libraries CREATE ANY LIBRARY (System)

Packages CREATE PROCEDURE (System)

Private synonyms CREATE SYNONYM (System)

Sequences CREATE SEQUENCE (System)

Snapshots CREATE SNAPSHOT (System)

Stored functions CREATE PROCEDURE (System)

Stored procedures CREATE PROCEDURE (System)

Table data INSERT TABLE (Object)

Table definitions
(including comments and
audit options)

CREATE TABLE (System) or UNLIMITED TABLESPACE (System). The
user must also be assigned a tablespace quota.

Views CREATE VIEW (System) and SELECT (Object) on the base table, or
SELECT ANY TABLE (System)

Object types CREATE TYPE (System)

Foreign function libraries CREATE LIBRARY (System)

Dimensions CREATE DIMENSION (System)

Before Using Import

22-4 Oracle Database Utilities

Importing Grants
To import the privileges that a user has granted to others, the user initiating the import
must either own the objects or have object privileges with the WITH GRANT OPTION.
Table 22–2 shows the required conditions for the authorizations to be valid on the
target system.

Importing Objects Into Other Schemas
To import objects into another user's schema, you must have the IMP_FULL_DATABASE
role enabled.

Importing System Objects
To import system objects from a full database export file, the IMP_FULL_DATABASE role
must be enabled. The parameter FULL specifies that the following system objects are
included in the import:

■ Profiles

■ Public database links

■ Public synonyms

■ Roles

■ Rollback segment definitions

■ Resource costs

■ Foreign function libraries

■ Context objects

■ System procedural objects

■ System audit options

■ System privileges

■ Tablespace definitions

■ Tablespace quotas

■ User definitions

■ Directory aliases

Operators CREATE OPERATOR (System)

Indextypes CREATE INDEXTYPE (System)

Table 22–2 Privileges Required to Import Grants

Grant Conditions

Object privileges The object must exist in the user's schema, or

the user must have the object privileges with the WITH GRANT
OPTION or,

the user must have the IMP_FULL_DATABASE role enabled.

System privileges User must have the SYSTEM privilege and also the WITH ADMIN
OPTION.

Table 22–1 (Cont.) Privileges Required to Import Objects into Your Own Schema

Object Required Privilege (Privilege Type, If Applicable)

Importing into Existing Tables

Original Import 22-5

■ System event triggers

Processing Restrictions
The following restrictions apply when you process data with the Import utility:

■ When a type definition has evolved and data referencing that evolved type is
exported, the type definition on the import system must have evolved in the same
manner.

■ The table compression attribute of tables and partitions is preserved during export
and import. However, the import process does not use the direct path API, hence
the data will not be stored in the compressed format when imported.

Importing into Existing Tables
This section describes factors to consider when you import data into existing tables:

■ Manually Creating Tables Before Importing Data

■ Disabling Referential Constraints

■ Manually Ordering the Import

Manually Creating Tables Before Importing Data
When you choose to create tables manually before importing data into them from an
export file, you should use either the same table definition previously used or a
compatible format. For example, although you can increase the width of columns and
change their order, you cannot do the following:

■ Add NOT NULL columns

■ Change the datatype of a column to an incompatible datatype (LONG to NUMBER, for
example)

■ Change the definition of object types used in a table

■ Change DEFAULT column values

Disabling Referential Constraints
In the normal import order, referential constraints are imported only after all tables are
imported. This sequence prevents errors that could occur if a referential integrity
constraint exists for data that has not yet been imported.

These errors can still occur when data is loaded into existing tables. For example, if
table emp has a referential integrity constraint on the mgr column that verifies that the
manager number exists in emp, then a legitimate employee row might fail the
referential integrity constraint if the manager's row has not yet been imported.

Note: When tables are manually created before data is imported,
the CREATE TABLE statement in the export dump file will fail because
the table already exists. To avoid this failure and continue loading
data into the table, set the Import parameter IGNORE=y. Otherwise,
no data will be loaded into the table because of the table creation
error.

Effect of Schema and Database Triggers on Import Operations

22-6 Oracle Database Utilities

When such an error occurs, Import generates an error message, bypasses the failed
row, and continues importing other rows in the table. You can disable constraints
manually to avoid this.

Referential constraints between tables can also cause problems. For example, if the emp
table appears before the dept table in the export dump file, but a referential check
exists from the emp table into the dept table, then some of the rows from the emp table
may not be imported due to a referential constraint violation.

To prevent errors like these, you should disable referential integrity constraints when
importing data into existing tables.

Manually Ordering the Import
When the constraints are reenabled after importing, the entire table is checked, which
may take a long time for a large table. If the time required for that check is too long,
then it may be beneficial to order the import manually.

To do so, perform several imports from an export file instead of one. First, import
tables that are the targets of referential checks. Then, import the tables that reference
them. This option works if tables do not reference each other in a circular fashion, and
if a table does not reference itself.

Effect of Schema and Database Triggers on Import Operations
Triggers that are defined to trigger on DDL events for a specific schema or on
DDL-related events for the database, are system triggers. These triggers can have
detrimental effects on certain import operations. For example, they can prevent
successful re-creation of database objects, such as tables. This causes errors to be
returned that give no indication that a trigger caused the problem.

Database administrators and anyone creating system triggers should verify that such
triggers do not prevent users from performing database operations for which they are
authorized. To test a system trigger, take the following steps:

1. Define the trigger.

2. Create some database objects.

3. Export the objects in table or user mode.

4. Delete the objects.

5. Import the objects.

6. Verify that the objects have been successfully re-created.

Invoking Import
You can invoke Import, and specify parameters by using any of the following
methods:

■ Command-line entries

Note: A full export does not export triggers owned by schema
SYS. You must manually re-create SYS triggers either before or after
the full import. Oracle recommends that you re-create them after
the import in case they define actions that would impede progress
of the import.

Invoking Import

Original Import 22-7

■ Parameter files

■ Interactive mode

Before you use one of these methods, be sure to read the descriptions of the available
parameters. See "Import Parameters" on page 22-11.

Command-Line Entries
You can specify all valid parameters and their values from the command line using the
following syntax (you will then be prompted for a username and password):

imp PARAMETER=value

or

imp PARAMETER=(value1,value2,...,valuen)

The number of parameters cannot exceed the maximum length of a command line on
the system.

Parameter Files
You can specify all valid parameters and their values in a parameter file. Storing the
parameters in a file allows them to be easily modified or reused. If you use different
parameters for different databases, then you can have multiple parameter files.

Create the parameter file using any flat file text editor. The command-line option
PARFILE=filename tells Import to read the parameters from the specified file rather
than from the command line. For example:

The syntax for parameter file specifications can be any of the following:

PARAMETER=value
PARAMETER=(value)
PARAMETER=(value1, value2, ...)

The following example shows a partial parameter file listing:

FULL=y
FILE=dba.dmp
GRANTS=y
INDEXES=y
CONSISTENT=y

You can add comments to the parameter file by preceding them with the pound (#)
sign. Import ignores all characters to the right of the pound (#) sign.

You can specify a parameter file at the same time that you are entering parameters on
the command line. In fact, you can specify the same parameter in both places. The
position of the PARFILE parameter and other parameters on the command line
determines which parameters take precedence. For example, assume the parameter file
params.dat contains the parameter INDEXES=y and Import is invoked with the
following line:

imp PARFILE=params.dat INDEXES=n

Note: The maximum size of the parameter file may be limited by
the operating system. The name of the parameter file is subject to
the file-naming conventions of the operating system.

Import Modes

22-8 Oracle Database Utilities

In this case, because INDEXES=n occurs after PARFILE=params.dat, INDEXES=n overrides
the value of the INDEXES parameter in the parameter file.

Interactive Mode
If you prefer to be prompted for the value of each parameter, then you can simply
specify imp at the command line. You will be prompted for a username and password.

Commonly used parameters are then displayed. You can accept the default value, if
one is provided, or enter a different value. The command-line interactive method does
not provide prompts for all functionality and is provided only for backward
compatibility.

Invoking Import As SYSDBA
SYSDBA is used internally and has specialized functions; its behavior is not the same as
for generalized users. Therefore, you should not typically need to invoke Import as
SYSDBA, except in the following situations:

■ At the request of Oracle technical support

■ When importing a transportable tablespace set

Getting Online Help
Import provides online help. Enter imp help=y to invoke Import help.

Import Modes
The Import utility supports four modes of operation:

■ Full: Imports a full database. Only users with the IMP_FULL_DATABASE role can use
this mode. Use the FULL parameter to specify this mode.

■ Tablespace: Enables a privileged user to move a set of tablespaces from one Oracle
database to another. Use the TRANSPORT_TABLESPACE parameter to specify this
mode.

■ User: Enables you to import all objects that belong to you (such as tables, grants,
indexes, and procedures). A privileged user importing in user mode can import all
objects in the schemas of a specified set of users. Use the FROMUSER parameter to
specify this mode.

■ Table: Enables you to import specific tables and partitions. A privileged user can
qualify the tables by specifying the schema that contains them. Use the TABLES
parameter to specify this mode.

See Table 22–3 for a list of objects that are imported in each mode.

See Also:

■ "Import Parameters" on page 22-11

■ "Network Considerations" on page 22-35 for information about
how to specify an export from a remote database

Import Modes

Original Import 22-9

A user with the IMP_FULL_DATABASE role must specify one of these modes. Otherwise,
an error results. If a user without the IMP_FULL_DATABASE role fails to specify one of
these modes, then a user-level Import is performed.

Caution: When you use table mode to import tables that have
columns of type ANYDATA, you may receive the following error:

ORA-22370: Incorrect usage of method. Nonexistent type.

This indicates that the ANYDATA column depends on other types that
are not present in the database. You must manually create
dependent types in the target database before you use table mode
to import tables that use the ANYDATA type.

Table 22–3 Objects Imported in Each Mode

Object Table Mode User Mode

Full
Database
Mode

Tablespace
Mode

Analyze cluster No Yes Yes No

Analyze
tables/statistics

Yes Yes Yes Yes

Application contexts No No Yes No

Auditing information Yes Yes Yes No

B-tree, bitmap, domain
function-based indexes

Yes1 Yes Yes Yes

Cluster definitions No Yes Yes Yes

Column and table
comments

Yes Yes Yes Yes

Database links No Yes Yes No

Default roles No No Yes No

Dimensions No Yes Yes No

Directory aliases No No Yes No

External tables
(without data)

Yes Yes Yes No

Foreign function
libraries

No Yes Yes No

Indexes owned by
users other than table
owner

Yes
(Privileged
users only)

Yes Yes Yes

Index types No Yes Yes No

Java resources and
classes

No Yes Yes No

Job queues No Yes Yes No

Nested table data Yes Yes Yes Yes

Object grants Yes (Only for
tables and
indexes)

Yes Yes Yes

Import Modes

22-10 Oracle Database Utilities

Object type definitions
used by table

Yes Yes Yes Yes

Object types No Yes Yes No

Operators No Yes Yes No

Password history No No Yes No

Postinstance actions
and objects

No No Yes No

Postschema procedural
actions and objects

No Yes Yes No

Posttable actions Yes Yes Yes Yes

Posttable procedural
actions and objects

Yes Yes Yes Yes

Preschema procedural
objects and actions

No Yes Yes No

Pretable actions Yes Yes Yes Yes

Pretable procedural
actions

Yes Yes Yes Yes

Private synonyms No Yes Yes No

Procedural objects No Yes Yes No

Profiles No No Yes No

Public synonyms No No Yes No

Referential integrity
constraints

Yes Yes Yes No

Refresh groups No Yes Yes No

Resource costs No No Yes No

Role grants No No Yes No

Roles No No Yes No

Rollback segment
definitions

No No Yes No

Security policies for
table

Yes Yes Yes Yes

Sequence numbers No Yes Yes No

Snapshot logs No Yes Yes No

Snapshots and
materialized views

No Yes Yes No

System privilege grants No No Yes No

Table constraints
(primary, unique,
check)

Yes Yes Yes Yes

Table data Yes Yes Yes Yes

Table definitions Yes Yes Yes Yes

Table 22–3 (Cont.) Objects Imported in Each Mode

Object Table Mode User Mode

Full
Database
Mode

Tablespace
Mode

Import Parameters

Original Import 22-11

Import Parameters
This section contains descriptions of the Import command-line parameters.

BUFFER
Default: operating system-dependent

The integer specified for BUFFER is the size, in bytes, of the buffer through which data
rows are transferred.

BUFFER determines the number of rows in the array inserted by Import. The following
formula gives an approximation of the buffer size that inserts a given array of rows:

buffer_size = rows_in_array * maximum_row_size

For tables containing LOBs, LONG, BFILE, REF, ROWID,UROWID, or TIMESTAMP columns,
rows are inserted individually. The size of the buffer must be large enough to contain
the entire row, except for LOB and LONG columns. If the buffer cannot hold the longest
row in a table, then Import attempts to allocate a larger buffer.

For DATE columns, two or more rows are inserted at once if the buffer is large enough.

Tablespace definitions No No Yes No

Tablespace quotas No No Yes No

Triggers Yes Yes2 Yes3 Yes

Triggers owned by
other users

Yes
(Privileged
users only)

No No No

User definitions No No Yes No

User proxies No No Yes No

User views No Yes Yes No

User-stored
procedures, packages,
and functions

No Yes Yes No

1 Nonprivileged users can export and import only indexes they own on tables they own. They cannot
export indexes they own that are on tables owned by other users, nor can they export indexes owned
by other users on their own tables. Privileged users can export and import indexes on the specified
users' tables, even if the indexes are owned by other users. Indexes owned by the specified user on
other users' tables are not included, unless those other users are included in the list of users to
export.

2 Nonprivileged and privileged users can export and import all triggers owned by the user, even if
they are on tables owned by other users.

3 A full export does not export triggers owned by schema SYS. You must manually re-create SYS
triggers either before or after the full import. Oracle recommends that you re-create them after the
import in case they define actions that would impede progress of the import.

Note: See your Oracle operating system-specific documentation
to determine the default value for this parameter.

Table 22–3 (Cont.) Objects Imported in Each Mode

Object Table Mode User Mode

Full
Database
Mode

Tablespace
Mode

Import Parameters

22-12 Oracle Database Utilities

COMMIT
Default: n

Specifies whether Import should commit after each array insert. By default, Import
commits only after loading each table, and Import performs a rollback when an error
occurs, before continuing with the next object.

If a table has nested table columns or attributes, then the contents of the nested tables
are imported as separate tables. Therefore, the contents of the nested tables are always
committed in a transaction distinct from the transaction used to commit the outer
table.

If COMMIT=n and a table is partitioned, then each partition and subpartition in the
Export file is imported in a separate transaction.

For tables containing LOBs, LONG, BFILE, REF, ROWID, UROWID, or TIMESTAMP columns,
array inserts are not done. If COMMIT=y, then Import commits these tables after each
row.

COMPILE
Default: y

Specifies whether Import should compile packages, procedures, and functions as they
are created.

If COMPILE=n, then these units are compiled on their first use. For example, packages
that are used to build domain indexes are compiled when the domain indexes are
created.

CONSTRAINTS
Default: y

Specifies whether table constraints are to be imported. The default is to import
constraints. If you do not want constraints to be imported, then you must set the
parameter value to n.

Note that primary key constraints for index-organized tables (IOTs) and object tables
are always imported.

DATA_ONLY
Default: n

To import only data (no metadata) from a dump file, specify DATA_ONLY=y.

When you specify DATA_ONLY=y, any import parameters related to metadata that are
entered on the command line (or in a parameter file) become invalid. This means that
no metadata from the dump file will be imported.

The metadata-related parameters are the following: COMPILE, CONSTRAINTS, DATAFILES,
DESTROY, GRANTS, IGNORE, INDEXES, INDEXFILE, ROWS=n, SHOW, SKIP_UNUSABLE_INDEXES,
STATISTICS, STREAMS_CONFIGURATION, STREAMS_INSTANTIATION, TABLESPACES, TOID_
NOVALIDATE, TRANSPORT_TABLESPACE, TTS_OWNERS.

See Also: "Importing Stored Procedures, Functions, and
Packages" on page 22-40

Import Parameters

Original Import 22-13

DATAFILES
Default: none

When TRANSPORT_TABLESPACE is specified as y, use this parameter to list the data files
to be transported into the database.

DESTROY
Default: n

Specifies whether the existing data files making up the database should be reused.
That is, specifying DESTROY=y causes Import to include the REUSE option in the data file
clause of the SQL CREATE TABLESPACE statement, which causes Import to reuse the
original database's data files after deleting their contents.

Note that the export file contains the data file names used in each tablespace. If you
specify DESTROY=y and attempt to create a second database on the same system (for
testing or other purposes), then the Import utility will overwrite the first database's
data files when it creates the tablespace. In this situation you should use the default,
DESTROY=n, so that an error occurs if the data files already exist when the tablespace is
created. Also, when you need to import into the original database, you will need to
specify IGNORE=y to add to the existing data files without replacing them.

FEEDBACK
Default: 0 (zero)

Specifies that Import should display a progress meter in the form of a period for n
number of rows imported. For example, if you specify FEEDBACK=10, then Import
displays a period each time 10 rows have been imported. The FEEDBACK value applies
to all tables being imported; it cannot be individually set for each table.

FILE
Default: expdat.dmp

Specifies the names of the export files to import. The default extension is .dmp. Because
Export supports multiple export files (see the following description of the FILESIZE
parameter), you may need to specify multiple file names to be imported. For example:

imp scott IGNORE=y FILE = dat1.dmp, dat2.dmp, dat3.dmp FILESIZE=2048

You need not be the user who exported the export files; however, you must have read
access to the files. If you were not the exporter of the export files, then you must also
have the IMP_FULL_DATABASE role granted to you.

FILESIZE
Default: operating system-dependent

Lets you specify the same maximum dump file size you specified on export.

See Also: "TRANSPORT_TABLESPACE" on page 22-23

Caution: If data files are stored on a raw device, thenDESTROY=n
does not prevent files from being overwritten.

Import Parameters

22-14 Oracle Database Utilities

The FILESIZE value can be specified as a number followed by KB (number of
kilobytes). For example, FILESIZE=2KB is the same as FILESIZE=2048. Similarly, MB
specifies megabytes (1024 * 1024) and GB specifies gigabytes (1024**3). B remains the
shorthand for bytes; the number is not multiplied to obtain the final file size
(FILESIZE=2048B is the same as FILESIZE=2048).

FROMUSER
Default: none

A comma-delimited list of schemas to import. This parameter is relevant only to users
with the IMP_FULL_DATABASE role. The parameter enables you to import a subset of
schemas from an export file containing multiple schemas (for example, a full export
dump file or a multischema, user-mode export dump file).

Schema names that appear inside function-based indexes, functions, procedures,
triggers, type bodies, views, and so on, are not affected by FROMUSER or TOUSER
processing. Only the name of the object is affected. After the import has completed,
items in any TOUSER schema should be manually checked for references to old
(FROMUSER) schemas, and corrected if necessary.

You will typically use FROMUSER in conjunction with the Import parameter TOUSER,
which you use to specify a list of usernames whose schemas will be targets for import
(see "TOUSER" on page 22-23). The user that you specify with TOUSER must exist in the
target database before the import operation; otherwise an error is returned.

If you do not specify TOUSER, then Import will do the following:

■ Import objects into the FROMUSER schema if the export file is a full dump or a
multischema, user-mode export dump file

■ Create objects in the importer's schema (regardless of the presence of or absence of
the FROMUSER schema on import) if the export file is a single-schema, user-mode
export dump file created by an unprivileged user

FULL
Default: y

Specifies whether to import the entire export dump file.

Points to Consider for Full Database Exports and Imports
A full database export and import can be a good way to replicate or clean up a
database. However, to avoid problems be sure to keep the following points in mind:

■ A full export does not export triggers owned by schema SYS. You must manually
re-create SYS triggers either before or after the full import. Oracle recommends that

Note: The maximum size allowed is operating system-dependent.
You should verify this maximum value in your Oracle operating
system-specific documentation before specifying FILESIZE.

Note: Specifying FROMUSER=SYSTEM causes only schema objects
belonging to user SYSTEM to be imported; it does not cause system
objects to be imported.

Import Parameters

Original Import 22-15

you re-create them after the import in case they define actions that would impede
progress of the import.

■ A full export also does not export the default profile. If you have modified the
default profile in the source database (for example, by adding a password
verification function owned by schema SYS), then you must manually pre-create
the function and modify the default profile in the target database after the import
completes.

■ If possible, before beginning, make a physical copy of the exported database and
the database into which you intend to import. This ensures that any mistakes are
reversible.

■ Before you begin the export, it is advisable to produce a report that includes the
following information:

– A list of tablespaces and data files

– A list of rollback segments

– A count, by user, of each object type such as tables, indexes, and so on

This information lets you ensure that tablespaces have already been created and
that the import was successful.

■ If you are creating a completely new database from an export, then remember to
create an extra rollback segment in SYSTEM and to make it available in your
initialization parameter file (init.ora)before proceeding with the import.

■ When you perform the import, ensure you are pointing at the correct instance.
This is very important because on some UNIX systems, just the act of entering a
subshell can change the database against which an import operation was
performed.

■ Do not perform a full import on a system that has more than one database unless
you are certain that all tablespaces have already been created. A full import creates
any undefined tablespaces using the same data file names as the exported
database. This can result in problems in the following situations:

– If the data files belong to any other database, then they will become corrupted.
This is especially true if the exported database is on the same system, because
its data files will be reused by the database into which you are importing.

– If the data files have names that conflict with existing operating system files.

GRANTS
Default: y

Specifies whether to import object grants.

By default, the Import utility imports any object grants that were exported. If the
export was a user-mode export, then the export file contains only first-level object
grants (those granted by the owner).

If the export was a full database mode export, then the export file contains all object
grants, including lower-level grants (those granted by users given a privilege with the
WITH GRANT OPTION). If you specify GRANTS=n, then the Import utility does not import
object grants. (Note that system grants are imported even if GRANTS=n.)

Import Parameters

22-16 Oracle Database Utilities

HELP
Default: none

Displays a description of the Import parameters. Enter imp HELP=y on the command
line to invoke it.

IGNORE
Default: n

Specifies how object creation errors should be handled. If you accept the default,
IGNORE=n, then Import logs or displays object creation errors before continuing.

If you specify IGNORE=y, then Import overlooks object creation errors when it attempts
to create database objects, and continues without reporting the errors.

Note that only object creation errors are ignored; other errors, such as operating system,
database, and SQL errors, are not ignored and may cause processing to stop.

In situations where multiple refreshes from a single export file are done with
IGNORE=y, certain objects can be created multiple times (although they will have
unique system-defined names). You can prevent this for certain objects (for example,
constraints) by doing an import with CONSTRAINTS=n. If you do a full import with
CONSTRAINTS=n, then no constraints for any tables are imported.

If a table already exists and IGNORE=y, then rows are imported into existing tables
without any errors or messages being given. You might want to import data into tables
that already exist in order to use new storage parameters or because you have already
created the table in a cluster.

If a table already exists and IGNORE=n, then errors are reported and the table is
skipped with no rows inserted. Also, objects dependent on tables, such as indexes,
grants, and constraints, will not be created.

INDEXES
Default: y

Specifies whether to import indexes. System-generated indexes such as LOB indexes,
OID indexes, or unique constraint indexes are re-created by Import regardless of the
setting of this parameter.

You can postpone all user-generated index creation until after Import completes, by
specifying INDEXES=n.

If indexes for the target table already exist at the time of the import, then Import
performs index maintenance when data is inserted into the table.

Note: Export does not export grants on data dictionary views for
security reasons that affect Import. If such grants were exported,
then access privileges would be changed and the importer would
not be aware of this.

Caution: When you import into existing tables, if no column in
the table is uniquely indexed, rows could be duplicated.

Import Parameters

Original Import 22-17

INDEXFILE
Default: none

Specifies a file to receive index-creation statements.

When this parameter is specified, index-creation statements for the requested mode
are extracted and written to the specified file, rather than used to create indexes in the
database. No database objects are imported.

If the Import parameter CONSTRAINTS is set to y, then Import also writes table
constraints to the index file.

The file can then be edited (for example, to change storage parameters) and used as a
SQL script to create the indexes.

To make it easier to identify the indexes defined in the file, the export file's CREATE
TABLE statements and CREATE CLUSTER statements are included as comments.

Perform the following steps to use this feature:

1. Import using the INDEXFILE parameter to create a file of index-creation statements.

2. Edit the file, making certain to add a valid password to the connect strings.

3. Rerun Import, specifying INDEXES=n.

(This step imports the database objects while preventing Import from using the
index definitions stored in the export file.)

4. Execute the file of index-creation statements as a SQL script to create the index.

The INDEXFILE parameter can be used only with the FULL=y, FROMUSER, TOUSER, or
TABLES parameters.

LOG
Default: none

Specifies a file (for example, import.log) to receive informational and error messages. If
you specify a log file, then the Import utility writes all information to the log in
addition to the terminal display.

PARFILE
Default: none

Specifies a file name for a file that contains a list of Import parameters. For more
information about using a parameter file, see "Parameter Files" on page 22-7.

RECORDLENGTH
Default: operating system-dependent

Specifies the length, in bytes, of the file record. The RECORDLENGTH parameter is
necessary when you must transfer the export file to another operating system that uses
a different default value.

If you do not define this parameter, then it defaults to your platform-dependent value
for BUFSIZ.

You can set RECORDLENGTH to any value equal to or greater than your system's BUFSIZ.
(The highest value is 64 KB.) Changing the RECORDLENGTH parameter affects only the

Import Parameters

22-18 Oracle Database Utilities

size of data that accumulates before writing to the database. It does not affect the
operating system file block size.

You can also use this parameter to specify the size of the Import I/O buffer.

RESUMABLE
Default: n

The RESUMABLE parameter is used to enable and disable resumable space allocation.
Because this parameter is disabled by default, you must set RESUMABLE=y to use its
associated parameters, RESUMABLE_NAME and RESUMABLE_TIMEOUT.

RESUMABLE_NAME
Default: 'User USERNAME (USERID), Session SESSIONID, Instance INSTANCEID'

The value for this parameter identifies the statement that is resumable. This value is a
user-defined text string that is inserted in either the USER_RESUMABLE or DBA_RESUMABLE
view to help you identify a specific resumable statement that has been suspended.

This parameter is ignored unless the RESUMABLE parameter is set to y to enable
resumable space allocation.

RESUMABLE_TIMEOUT
Default: 7200 seconds (2 hours)

The value of the parameter specifies the time period during which an error must be
fixed. If the error is not fixed within the timeout period, then execution of the
statement is terminated.

This parameter is ignored unless the RESUMABLE parameter is set to y to enable
resumable space allocation.

ROWS
Default: y

Specifies whether to import the rows of table data.

If ROWS=n, then statistics for all imported tables will be locked after the import
operation is finished.

SHOW
Default: n

When SHOW=y, the contents of the export dump file are listed to the display and not
imported. The SQL statements contained in the export are displayed in the order in
which Import will execute them.

The SHOW parameter can be used only with the FULL=y, FROMUSER, TOUSER, or TABLES
parameter.

See Also:

■ Oracle Database Concepts

■ Oracle Database Administrator's Guide for more information
about resumable space allocation

Import Parameters

Original Import 22-19

SKIP_UNUSABLE_INDEXES
Default: the value of the Oracle database configuration parameter, SKIP_UNUSABLE_
INDEXES, as specified in the initialization parameter file

Both Import and the Oracle database provide a SKIP_UNUSABLE_INDEXES parameter.
The Import SKIP_UNUSABLE_INDEXES parameter is specified at the Import command
line. The Oracle database SKIP_UNUSABLE_INDEXES parameter is specified as a
configuration parameter in the initialization parameter file. It is important to
understand how they affect each other.

If you do not specify a value for SKIP_UNUSABLE_INDEXES at the Import command line,
then Import uses the database setting for the SKIP_UNUSABLE_INDEXES configuration
parameter, as specified in the initialization parameter file.

If you do specify a value for SKIP_UNUSABLE_INDEXES at the Import command line,
then it overrides the value of the SKIP_UNUSABLE_INDEXES configuration parameter in
the initialization parameter file.

A value of y means that Import will skip building indexes that were set to the Index
Unusable state (by either system or user). Other indexes (not previously set to Index
Unusable) continue to be updated as rows are inserted.

This parameter enables you to postpone index maintenance on selected index
partitions until after row data has been inserted. You then have the responsibility to
rebuild the affected index partitions after the Import.

You can use the INDEXFILE parameter in conjunction with INDEXES=n to provide the
SQL scripts for re-creating the index. If the SKIP_UNUSABLE_INDEXES parameter is not
specified, then row insertions that attempt to update unusable indexes will fail.

STATISTICS
Default: ALWAYS

Specifies what is done with the database optimizer statistics at import time.

The options are:

■ ALWAYS

Always import database optimizer statistics regardless of whether they are
questionable.

■ NONE

Do not import or recalculate the database optimizer statistics.

■ SAFE

Import database optimizer statistics only if they are not questionable. If they are
questionable, then recalculate the optimizer statistics.

■ RECALCULATE

Note: Indexes that are unique and marked Unusable are not
allowed to skip index maintenance. Therefore, the SKIP_UNUSABLE_
INDEXES parameter has no effect on unique indexes.

See Also: The ALTER SESSION statement in the Oracle Database
SQL Language Reference

Import Parameters

22-20 Oracle Database Utilities

Do not import the database optimizer statistics. Instead, recalculate them on
import. This requires that the original export operation that created the dump file
must have generated the necessary ANALYZE statements (that is, the export was not
performed with STATISTICS=NONE). These ANALYZE statements are included in the
dump file and used by the import operation for recalculation of the table's
statistics.

STREAMS_CONFIGURATION
Default: y

Specifies whether to import any general Streams metadata that may be present in the
export dump file.

STREAMS_INSTANTIATION
Default: n

Specifies whether to import Streams instantiation metadata that may be present in the
export dump file. Specify y if the import is part of an instantiation in a Streams
environment.

TABLES
Default: none

Specifies that the import is a table-mode import and lists the table names and partition
and subpartition names to import. Table-mode import lets you import entire
partitioned or nonpartitioned tables. The TABLES parameter restricts the import to the
specified tables and their associated objects, as listed in Table 22–3 on page 22-9. You
can specify the following values for the TABLES parameter:

■ tablename specifies the name of the table or tables to be imported. If a table in the
list is partitioned and you do not specify a partition name, then all its partitions
and subpartitions are imported. To import all the exported tables, specify an
asterisk (*) as the only table name parameter.

tablename can contain any number of '%' pattern matching characters, which can
each match zero or more characters in the table names in the export file. All the
tables whose names match all the specified patterns of a specific table name in the
list are selected for import. A table name in the list that consists of all pattern
matching characters and no partition name results in all exported tables being
imported.

■ partition_name and subpartition_name let you restrict the import to one or more
specified partitions or subpartitions within a partitioned table.

The syntax you use to specify the preceding is in the form:

tablename:partition_name

See Also:

■ Oracle Database Concepts for more information about the
optimizer and the statistics it uses

■ "Importing Statistics" on page 22-46

See Also: Oracle Streams Replication Administrator's Guide

See Also: Oracle Streams Replication Administrator's Guide

Import Parameters

Original Import 22-21

tablename:subpartition_name

If you use tablename:partition_name, then the specified table must be partitioned,
and partition_name must be the name of one of its partitions or subpartitions. If the
specified table is not partitioned, then the partition_name is ignored and the entire
table is imported.

The number of tables that can be specified at the same time is dependent on
command-line limits.

As the export file is processed, each table name in the export file is compared against
each table name in the list, in the order in which the table names were specified in the
parameter. To avoid ambiguity and excessive processing time, specific table names
should appear at the beginning of the list, and more general table names (those with
patterns) should appear at the end of the list.

Although you can qualify table names with schema names (as in scott.emp) when
exporting, you cannot do so when importing. In the following example, the TABLES
parameter is specified incorrectly:

imp TABLES=(jones.accts, scott.emp, scott.dept)

The valid specification to import these tables is as follows:

imp FROMUSER=jones TABLES=(accts)
imp FROMUSER=scott TABLES=(emp,dept)

For a more detailed example, see "Example Import Using Pattern Matching to Import
Various Tables" on page 22-29.

Table Name Restrictions
The following restrictions apply to table names:

■ By default, table names in a database are stored as uppercase. If you have a table
name in mixed-case or lowercase, and you want to preserve case-sensitivity for the
table name, then you must enclose the name in quotation marks. The name must
exactly match the table name stored in the database.

Some operating systems require that quotation marks on the command line be
preceded by an escape character. The following are examples of how
case-sensitivity can be preserved in the different Import modes.

– In command-line mode:

tables='\"Emp\"'

– In interactive mode:

Table(T) to be exported: "Exp"

– In parameter file mode:

tables='"Emp"'

Note: Some operating systems, such as UNIX, require that you
use escape characters before special characters, such as a
parenthesis, so that the character is not treated as a special
character. On UNIX, use a backslash (\) as the escape character, as
shown in the following example:

TABLES=\(emp,dept\)

Import Parameters

22-22 Oracle Database Utilities

■ Table names specified on the command line cannot include a pound (#) sign,
unless the table name is enclosed in quotation marks. Similarly, in the parameter
file, if a table name includes a pound (#) sign, then the Import utility interprets the
rest of the line as a comment, unless the table name is enclosed in quotation marks.

For example, if the parameter file contains the following line, then Import
interprets everything on the line after emp# as a comment and does not import the
tables dept and mydata:

TABLES=(emp#, dept, mydata)

However, given the following line, the Import utility imports all three tables
because emp# is enclosed in quotation marks:

TABLES=("emp#", dept, mydata)

TABLESPACES
Default: none

When TRANSPORT_TABLESPACE is specified as y, use this parameter to list the
tablespaces to be transported into the database. If there is more than one tablespace in
the export file, then you must specify all of them as part of the import operation.

See "TRANSPORT_TABLESPACE" on page 22-23 for more information.

TOID_NOVALIDATE
Default: none

When you import a table that references a type, but a type of that name already exists
in the database, Import attempts to verify that the preexisting type is, in fact, the type
used by the table (rather than a different type that just happens to have the same
name).

To do this, Import compares the type's unique identifier (TOID) with the identifier
stored in the export file. Import will not import the table rows if the TOIDs do not
match.

In some situations, you may not want this validation to occur on specified types (for
example, if the types were created by a cartridge installation). You can use the TOID_
NOVALIDATE parameter to specify types to exclude from TOID comparison.

The syntax is as follows:

TOID_NOVALIDATE=([schemaname.]typename [, ...])

For example:

imp scott TABLES=jobs TOID_NOVALIDATE=typ1

Note: Some operating systems require single quotation marks
rather than double quotation marks, or the reverse; see your Oracle
operating system-specific documentation. Different operating
systems also have other restrictions on table naming.

For example, the UNIX C shell attaches a special meaning to a
dollar sign ($) or pound sign (#) (or certain other special
characters). You must use escape characters to get such characters
in the name past the shell and into Import.

Import Parameters

Original Import 22-23

imp scott TABLES=salaries TOID_NOVALIDATE=(fred.typ0,sally.typ2,typ3)

If you do not specify a schema name for the type, then it defaults to the schema of the
importing user. For example, in the first preceding example, the type typ1 defaults to
scott.typ1 and in the second example, the type typ3 defaults to scott.typ3.

Note that TOID_NOVALIDATE deals only with table column types. It has no effect on
table types.

The output of a typical import with excluded types would contain entries similar to
the following:

[...]
. importing IMP3's objects into IMP3
. . skipping TOID validation on type IMP2.TOIDTYP0
. . importing table "TOIDTAB3"
[...]

TOUSER
Default: none

Specifies a list of user names whose schemas will be targets for Import. The user
names must exist before the import operation; otherwise an error is returned. The IMP_
FULL_DATABASE role is required to use this parameter. To import to a different schema
than the one that originally contained the object, specify TOUSER. For example:

imp FROMUSER=scott TOUSER=joe TABLES=emp

If multiple schemas are specified, then the schema names are paired. The following
example imports scott's objects into joe's schema, and fred's objects into ted's
schema:

imp FROMUSER=scott,fred TOUSER=joe,ted

If the FROMUSER list is longer than the TOUSER list, then the remaining schemas will be
imported into either the FROMUSER schema, or into the importer's schema, based on
normal defaulting rules. You can use the following syntax to ensure that any extra
objects go into the TOUSER schema:

imp FROMUSER=scott,adams TOUSER=ted,ted

Note that user ted is listed twice.

TRANSPORT_TABLESPACE
Default: n

When specified as y, instructs Import to import transportable tablespace metadata
from an export file.

Encrypted columns are not supported in transportable tablespace mode.

Caution: When you inhibit validation of the type identifier, it is
your responsibility to ensure that the attribute list of the imported
type matches the attribute list of the existing type. If these attribute
lists do not match, then results are unpredictable.

See Also: "FROMUSER" on page 22-14 for information about
restrictions when using FROMUSER and TOUSER

Example Import Sessions

22-24 Oracle Database Utilities

TTS_OWNERS
Default: none

When TRANSPORT_TABLESPACE is specified as y, use this parameter to list the users who
own the data in the transportable tablespace set.

See "TRANSPORT_TABLESPACE" on page 22-23.

USERID (username/password)
Default: none

Specifies the username, password, and an optional connect string of the user
performing the import.

If you connect as user SYS, then you must also specify AS SYSDBA in the connect string.
Your operating system may require you to treat AS SYSDBA as a special string, in which
case the entire string would be enclosed in quotation marks.

VOLSIZE
Default: none

Specifies the maximum number of bytes in a dump file on each volume of tape.

The VOLSIZE parameter has a maximum value equal to the maximum value that can
be stored in 64 bits on your platform.

The VOLSIZE value can be specified as number followed by KB (number of kilobytes).
For example, VOLSIZE=2KB is the same as VOLSIZE=2048. Similarly, MB specifies
megabytes (1024 * 1024) and GB specifies gigabytes (1024**3). The shorthand for bytes
remains B; the number is not multiplied to get the final file size (VOLSIZE=2048B is the
same as VOLSIZE=2048).

Example Import Sessions
This section gives some examples of import sessions that show you how to use the
parameter file and command-line methods. The examples illustrate the following
scenarios:

■ Example Import of Selected Tables for a Specific User

■ Example Import of Tables Exported by Another User

■ Example Import of Tables from One User to Another

■ Example Import Session Using Partition-Level Import

■ Example Import Using Pattern Matching to Import Various Tables

Note: You cannot export transportable tablespaces and then import
them into a database at a lower release level. The target database must
be at the same or higher release level as the source database.

See Also:

■ Oracle Database Heterogeneous Connectivity User's Guide

■ The user's guide for your Oracle Net protocol for information
about specifying a connect string for Oracle Net

Example Import Sessions

Original Import 22-25

Example Import of Selected Tables for a Specific User
In this example, using a full database export file, an administrator imports the dept
and emp tables into the scott schema.

Parameter File Method
> imp PARFILE=params.dat

The params.dat file contains the following information:

FILE=dba.dmp
SHOW=n
IGNORE=n
GRANTS=y
FROMUSER=scott
TABLES=(dept,emp)

Command-Line Method
> imp FILE=dba.dmp FROMUSER=scott TABLES=(dept,emp)

Import Messages
Information is displayed about the release of Import you are using and the release of
Oracle Database that you are connected to. Status messages are also displayed.

Example Import of Tables Exported by Another User
This example illustrates importing the unit and manager tables from a file exported by
blake into the scott schema.

Parameter File Method
> imp PARFILE=params.dat

The params.dat file contains the following information:

FILE=blake.dmp
SHOW=n
IGNORE=n
GRANTS=y
ROWS=y
FROMUSER=blake
TOUSER=scott
TABLES=(unit,manager)

Command-Line Method
> imp FROMUSER=blake TOUSER=scott FILE=blake.dmp TABLES=(unit,manager)

Import Messages
Information is displayed about the release of Import you are using and the release of
Oracle Database that you are connected to. Status messages are also displayed.

Example Import of Tables from One User to Another
In this example, a database administrator (DBA) imports all tables belonging to scott
into user blake's account.

Example Import Sessions

22-26 Oracle Database Utilities

Parameter File Method
 > imp PARFILE=params.dat

The params.dat file contains the following information:

FILE=scott.dmp
FROMUSER=scott
TOUSER=blake
TABLES=(*)

Command-Line Method
> imp FILE=scott.dmp FROMUSER=scott TOUSER=blake TABLES=(*)

Import Messages
Information is displayed about the release of Import you are using and the release of
Oracle Database that you are connected to. Then, status messages similar to the
following are shown:

.

.

.
Warning: the objects were exported by SCOTT, not by you

import done in WE8DEC character set and AL16UTF16 NCHAR character set
. importing SCOTT's objects into BLAKE
. . importing table "BONUS" 0 rows imported
. . importing table "DEPT" 4 rows imported
. . importing table "EMP" 14 rows imported
. . importing table "SALGRADE" 5 rows imported
Import terminated successfully without warnings.

Example Import Session Using Partition-Level Import
This section describes an import of a table with multiple partitions, a table with
partitions and subpartitions, and repartitioning a table on different columns.

Example 1: A Partition-Level Import
In this example, emp is a partitioned table with three partitions: P1, P2, and P3.

A table-level export file was created using the following command:

> exp scott TABLES=emp FILE=exmpexp.dat ROWS=y

Export Messages
Information is displayed about the release of Export you are using and the release of
Oracle Database that you are connected to. Then, status messages similar to the
following are shown:

.

.

.
About to export specified tables via Conventional Path ...
. . exporting table EMP
. . exporting partition P1 7 rows exported
. . exporting partition P2 12 rows exported
. . exporting partition P3 3 rows exported
Export terminated successfully without warnings.

Example Import Sessions

Original Import 22-27

In a partition-level Import you can specify the specific partitions of an exported table
that you want to import. In this example, these are P1 and P3 of table emp:

> imp scott TABLES=(emp:p1,emp:p3) FILE=exmpexp.dat ROWS=y

Import Messages
Information is displayed about the release of Import you are using and the release of
Oracle Database that you are connected to. Status messages are also displayed.

Example 2: A Partition-Level Import of a Composite Partitioned Table
This example demonstrates that the partitions and subpartitions of a composite
partitioned table are imported. emp is a partitioned table with two composite
partitions: P1 and P2. Partition P1 has three subpartitions: P1_SP1, P1_SP2, and P1_SP3.
Partition P2 has two subpartitions: P2_SP1 and P2_SP2.

A table-level export file was created using the following command:

> exp scott TABLES=emp FILE=exmpexp.dat ROWS=y

Export Messages
Information is displayed about the release of Export you are using and the release of
Oracle Database that you are connected to. Then, status messages similar to the
following are shown:

When the command executes, the following Export messages are displayed:

.

.

.
About to export specified tables via Conventional Path ...
. . exporting table EMP
. . exporting composite partition P1
. . exporting subpartition P1_SP1 2 rows exported
. . exporting subpartition P1_SP2 10 rows exported
. . exporting subpartition P1_SP3 7 rows exported
. . exporting composite partition P2
. . exporting subpartition P2_SP1 4 rows exported
. . exporting subpartition P2_SP2 2 rows exported
Export terminated successfully without warnings.

The following Import command results in the importing of subpartition P1_SP2 and
P1_SP3 of composite partition P1 in table emp and all subpartitions of composite
partition P2 in table emp.

> imp scott TABLES=(emp:p1_sp2,emp:p1_sp3,emp:p2) FILE=exmpexp.dat ROWS=y

Import Messages
Information is displayed about the release of Import you are using and the release of
Oracle Database that you are connected to. Then, status messages similar to the
following are shown:

.

.

.

. importing SCOTT's objects into SCOTT

. . importing subpartition "EMP":"P1_SP2" 10 rows imported

. . importing subpartition "EMP":"P1_SP3" 7 rows imported

. . importing subpartition "EMP":"P2_SP1" 4 rows imported

. . importing subpartition "EMP":"P2_SP2" 2 rows imported

Example Import Sessions

22-28 Oracle Database Utilities

Import terminated successfully without warnings.

Example 3: Repartitioning a Table on a Different Column
This example assumes the emp table has two partitions based on the empno column.
This example repartitions the emp table on the deptno column.

Perform the following steps to repartition a table on a different column:

1. Export the table to save the data.

2. Drop the table from the database.

3. Create the table again with the new partitions.

4. Import the table data.

The following example illustrates these steps.

> exp scott table=emp file=empexp.dat
.
.
.

About to export specified tables via Conventional Path ...
. . exporting table EMP
. . exporting partition EMP_LOW 4 rows exported
. . exporting partition EMP_HIGH 10 rows exported
Export terminated successfully without warnings.

SQL> connect scott
Connected.
SQL> drop table emp cascade constraints;
Statement processed.
SQL> create table emp
 2 (
 3 empno number(4) not null,
 4 ename varchar2(10),
 5 job varchar2(9),
 6 mgr number(4),
 7 hiredate date,
 8 sal number(7,2),
 9 comm number(7,2),
 10 deptno number(2)
 11)
 12 partition by range (deptno)
 13 (
 14 partition dept_low values less than (15)
 15 tablespace tbs_1,
 16 partition dept_mid values less than (25)
 17 tablespace tbs_2,
 18 partition dept_high values less than (35)
 19 tablespace tbs_3
 20);
Statement processed.
SQL> exit

> imp scott tables=emp file=empexp.dat ignore=y
.
.
.
import done in WE8DEC character set and AL16UTF16 NCHAR character set
. importing SCOTT's objects into SCOTT

Example Import Sessions

Original Import 22-29

. . importing partition "EMP":"EMP_LOW" 4 rows imported

. . importing partition "EMP":"EMP_HIGH" 10 rows imported
Import terminated successfully without warnings.

The following SQL SELECT statements show that the data is partitioned on the deptno
column:

SQL> connect scott
Connected.
SQL> select empno, deptno from emp partition (dept_low);
EMPNO DEPTNO
---------- ----------
 7782 10
 7839 10
 7934 10
3 rows selected.
SQL> select empno, deptno from emp partition (dept_mid);
EMPNO DEPTNO
---------- ----------
 7369 20
 7566 20
 7788 20
 7876 20
 7902 20
5 rows selected.
SQL> select empno, deptno from emp partition (dept_high);
EMPNO DEPTNO
---------- ----------
 7499 30
 7521 30
 7654 30
 7698 30
 7844 30
 7900 30
6 rows selected.
SQL> exit;

Example Import Using Pattern Matching to Import Various Tables
In this example, pattern matching is used to import various tables for user scott.

Parameter File Method
imp PARFILE=params.dat

The params.dat file contains the following information:

FILE=scott.dmp
IGNORE=n
GRANTS=y
ROWS=y
FROMUSER=scott
TABLES=(%d%,b%s)

Command-Line Method
imp FROMUSER=scott FILE=scott.dmp TABLES=(%d%,b%s)

Exit Codes for Inspection and Display

22-30 Oracle Database Utilities

Import Messages
Information is displayed about the release of Import you are using and the release of
Oracle Database that you are connected to. Then, status messages similar to the
following are shown:

.

.

.
import done in US7ASCII character set and AL16UTF16 NCHAR character set
import server uses JA16SJIS character set (possible charset conversion)
. importing SCOTT's objects into SCOTT
. . importing table "BONUS" 0 rows imported
. . importing table "DEPT" 4 rows imported
. . importing table "SALGRADE" 5 rows imported
Import terminated successfully without warnings.

Exit Codes for Inspection and Display
Import provides the results of an operation immediately upon completion. Depending
on the platform, the outcome may be reported in a process exit code and the results
recorded in the log file. This enables you to check the outcome from the command line
or script. Table 22–4 shows the exit codes that get returned for various results.

For UNIX, the exit codes are as follows:

EX_SUCC 0
EX_OKWARN 0
EX_FAIL 1

Error Handling During an Import
This section describes errors that can occur when you import database objects.

Row Errors
If a row is rejected due to an integrity constraint violation or invalid data, then Import
displays a warning message but continues processing the rest of the table. Some errors,
such as "tablespace full," apply to all subsequent rows in the table. These errors cause
Import to stop processing the current table and skip to the next table.

A "tablespace full" error can suspend the import if the RESUMABLE=y parameter is
specified.

Failed Integrity Constraints
A row error is generated if a row violates one of the integrity constraints in force on
your system, including:

■ NOT NULL constraints

Table 22–4 Exit Codes for Import

Result Exit Code

Import terminated successfully without warnings EX_SUCC

Import terminated successfully with warnings EX_OKWARN

Import terminated unsuccessfully EX_FAIL

Error Handling During an Import

Original Import 22-31

■ Uniqueness constraints

■ Primary key (not null and unique) constraints

■ Referential integrity constraints

■ Check constraints

Invalid Data
Row errors can also occur when the column definition for a table in a database is
different from the column definition in the export file. The error is caused by data that
is too long to fit into a new table's columns, by invalid datatypes, or by any other
INSERT error.

Errors Importing Database Objects
Errors can occur for many reasons when you import database objects, as described in
this section. When these errors occur, import of the current database object is
discontinued. Import then attempts to continue with the next database object in the
export file.

Object Already Exists
If a database object to be imported already exists in the database, then an object
creation error occurs. What happens next depends on the setting of the IGNORE
parameter.

If IGNORE=n (the default), then the error is reported, and Import continues with the
next database object. The current database object is not replaced. For tables, this
behavior means that rows contained in the export file are not imported.

If IGNORE=y, then object creation errors are not reported. The database object is not
replaced. If the object is a table, then rows are imported into it. Note that only object
creation errors are ignored; all other errors (such as operating system, database, and
SQL errors) are reported and processing may stop.

Sequences
If sequence numbers need to be reset to the value in an export file as part of an import,
then you should drop sequences. If a sequence is not dropped before the import, then
it is not set to the value captured in the export file, because Import does not drop and
re-create a sequence that already exists. If the sequence already exists, then the export
file's CREATE SEQUENCE statement fails and the sequence is not imported.

See Also:

■ Oracle Database Advanced Application Developer's Guide

■ Oracle Database Concepts

Caution: Specifying IGNORE=y can cause duplicate rows to be
entered into a table unless one or more columns of the table are
specified with the UNIQUE integrity constraint. This could occur, for
example, if Import were run twice.

Table-Level and Partition-Level Import

22-32 Oracle Database Utilities

Resource Errors
Resource limitations can cause objects to be skipped. When you are importing tables,
for example, resource errors can occur because of internal problems or when a
resource such as memory has been exhausted.

If a resource error occurs while you are importing a row, then Import stops processing
the current table and skips to the next table. If you have specified COMMIT=y, then
Import commits the partial import of the current table. If not, then a rollback of the
current table occurs before Import continues. See the description of "COMMIT" on
page 22-12.

Domain Index Metadata
Domain indexes can have associated application-specific metadata that is imported
using anonymous PL/SQL blocks. These PL/SQL blocks are executed at import time,
before the CREATE INDEX statement. If a PL/SQL block causes an error, then the
associated index is not created because the metadata is considered an integral part of
the index.

Table-Level and Partition-Level Import
You can import tables, partitions, and subpartitions in the following ways:

■ Table-level Import: Imports all data from the specified tables in an export file.

■ Partition-level Import: Imports only data from the specified source partitions or
subpartitions.

Guidelines for Using Table-Level Import
For each specified table, table-level Import imports all rows of the table. With
table-level Import:

■ All tables exported using any Export mode (except TRANSPORT_TABLESPACES) can
be imported.

■ Users can import the entire (partitioned or nonpartitioned) table, partitions, or
subpartitions from a table-level export file into a (partitioned or nonpartitioned)
target table with the same name.

If the table does not exist, and if the exported table was partitioned, then table-level
Import creates a partitioned table. If the table creation is successful, then table-level
Import reads all source data from the export file into the target table. After Import, the
target table contains the partition definitions of all partitions and subpartitions
associated with the source table in the export file. This operation ensures that the
physical and logical attributes (including partition bounds) of the source partitions are
maintained on import.

Guidelines for Using Partition-Level Import
Partition-level Import can only be specified in table mode. It lets you selectively load
data from specified partitions or subpartitions in an export file. Keep the following
guidelines in mind when using partition-level Import.

■ Import always stores the rows according to the partitioning scheme of the target
table.

■ Partition-level Import inserts only the row data from the specified source
partitions or subpartitions.

Table-Level and Partition-Level Import

Original Import 22-33

■ If the target table is partitioned, then partition-level Import rejects any rows that
fall above the highest partition of the target table.

■ Partition-level Import cannot import a nonpartitioned exported table. However, a
partitioned table can be imported from a nonpartitioned exported table using
table-level Import.

■ Partition-level Import is legal only if the source table (that is, the table called
tablename at export time) was partitioned and exists in the export file.

■ If the partition or subpartition name is not a valid partition in the export file, then
Import generates a warning.

■ The partition or subpartition name in the parameter refers to only the partition or
subpartition in the export file, which may not contain all of the data of the table on
the export source system.

■ If ROWS=y (default), and the table does not exist in the import target system, then
the table is created and all rows from the source partition or subpartition are
inserted into the partition or subpartition of the target table.

■ If ROWS=y (default) and IGNORE=y, but the table already existed before import, then
all rows for the specified partition or subpartition in the table are inserted into the
table. The rows are stored according to the existing partitioning scheme of the
target table.

■ If ROWS=n, then Import does not insert data into the target table and continues to
process other objects associated with the specified table and partition or
subpartition in the file.

■ If the target table is nonpartitioned, then the partitions and subpartitions are
imported into the entire table. Import requires IGNORE=y to import one or more
partitions or subpartitions from the export file into a nonpartitioned table on the
import target system.

Migrating Data Across Partitions and Tables
If you specify a partition name for a composite partition, then all subpartitions within
the composite partition are used as the source.

In the following example, the partition specified by the partition name is a composite
partition. All of its subpartitions will be imported:

imp SYSTEM FILE=expdat.dmp FROMUSER=scott TABLES=b:py

The following example causes row data of partitions qc and qd of table scott.e to be
imported into the table scott.e:

imp scott FILE=expdat.dmp TABLES=(e:qc, e:qd) IGNORE=y

If table e does not exist in the import target database, then it is created and data is
inserted into the same partitions. If table e existed on the target system before import,
then the row data is inserted into the partitions whose range allows insertion. The row
data can end up in partitions of names other than qc and qd.

Note: With partition-level Import to an existing table, you must set
up the target partitions or subpartitions properly and use
IGNORE=y.

Controlling Index Creation and Maintenance

22-34 Oracle Database Utilities

Controlling Index Creation and Maintenance
This section describes the behavior of Import with respect to index creation and
maintenance.

Delaying Index Creation
Import provides you with the capability of delaying index creation and maintenance
services until after completion of the import and insertion of exported data.
Performing index creation, re-creation, or maintenance after Import completes is
generally faster than updating the indexes for each row inserted by Import.

Index creation can be time consuming, and therefore can be done more efficiently after
the import of all other objects has completed. You can postpone creation of indexes
until after the import completes by specifying INDEXES=n. (INDEXES=y is the default.)
You can then store the missing index definitions in a SQL script by running Import
while using the INDEXFILE parameter. The index-creation statements that would
otherwise be issued by Import are instead stored in the specified file.

After the import is complete, you must create the indexes, typically by using the
contents of the file (specified with INDEXFILE) as a SQL script after specifying
passwords for the connect statements.

Index Creation and Maintenance Controls
If SKIP_UNUSABLE_INDEXES=y, then the Import utility postpones maintenance on all
indexes that were set to Index Unusable before the Import. Other indexes (not
previously set to Index Unusable) continue to be updated as rows are inserted. This
approach saves on index updates during the import of existing tables.

Delayed index maintenance may cause a violation of an existing unique integrity
constraint supported by the index. The existence of a unique integrity constraint on a
table does not prevent existence of duplicate keys in a table that was imported with
INDEXES=n. The supporting index will be in an UNUSABLE state until the duplicates are
removed and the index is rebuilt.

Example of Postponing Index Maintenance
For example, assume that partitioned table t with partitions p1 and p2 exists on the
import target system. Assume that local indexes p1_ind on partition p1 and p2_ind on
partition p2 exist also. Assume that partition p1 contains a much larger amount of data
in the existing table t, compared with the amount of data to be inserted by the export
file (expdat.dmp). Assume that the reverse is true for p2.

Consequently, performing index updates for p1_ind during table data insertion time is
more efficient than at partition index rebuild time. The opposite is true for p2_ind.

Users can postpone local index maintenance for p2_ind during import by using the
following steps:

1. Issue the following SQL statement before import:

ALTER TABLE t MODIFY PARTITION p2 UNUSABLE LOCAL INDEXES;

2. Issue the following Import command:

imp scott FILE=expdat.dmp TABLES = (t:p1, t:p2) IGNORE=y
SKIP_UNUSABLE_INDEXES=y

Character Set and Globalization Support Considerations

Original Import 22-35

This example executes the ALTER SESSION SET SKIP_UNUSABLE_INDEXES=y
statement before performing the import.

3. Issue the following SQL statement after import:

ALTER TABLE t MODIFY PARTITION p2 REBUILD UNUSABLE LOCAL INDEXES;

In this example, local index p1_ind on p1 will be updated when table data is inserted
into partition p1 during import. Local index p2_ind on p2 will be updated at index
rebuild time, after import.

Network Considerations
With Oracle Net, you can perform imports over a network. For example, if you run
Import locally, then you can read data into a remote Oracle database.

To use Import with Oracle Net, include the connection qualifier string @connect_
string when entering the username and password in the imp command. For the exact
syntax of this clause, see the user's guide for your Oracle Net protocol.

Character Set and Globalization Support Considerations
The following sections describe the globalization support behavior of Import with
respect to character set conversion of user data and data definition language (DDL).

User Data
The Export utility always exports user data, including Unicode data, in the character
sets of the Export server. (Character sets are specified at database creation.) If the
character sets of the source database are different than the character sets of the import
database, then a single conversion is performed to automatically convert the data to
the character sets of the Import server.

Effect of Character Set Sorting Order on Conversions
If the export character set has a different sorting order than the import character set,
then tables that are partitioned on character columns may yield unpredictable results.
For example, consider the following table definition, which is produced on a database
having an ASCII character set:

CREATE TABLE partlist
 (
 part VARCHAR2(10),
 partno NUMBER(2)
)
PARTITION BY RANGE (part)
 (
 PARTITION part_low VALUES LESS THAN ('Z')
 TABLESPACE tbs_1,
 PARTITION part_mid VALUES LESS THAN ('z')
 TABLESPACE tbs_2,
 PARTITION part_high VALUES LESS THAN (MAXVALUE)
 TABLESPACE tbs_3
);

See Also:

■ Oracle Database Net Services Administrator's Guide

■ Oracle Database Heterogeneous Connectivity User's Guide

Character Set and Globalization Support Considerations

22-36 Oracle Database Utilities

This partitioning scheme makes sense because z comes after Z in ASCII character sets.

When this table is imported into a database based upon an EBCDIC character set, all of
the rows in the part_mid partition will migrate to the part_low partition because z
comes before Z in EBCDIC character sets. To obtain the desired results, the owner of
partlist must repartition the table following the import.

Data Definition Language (DDL)
Up to three character set conversions may be required for data definition language
(DDL) during an export/import operation:

1. Export writes export files using the character set specified in the NLS_LANG
environment variable for the user session. A character set conversion is performed
if the value of NLS_LANG differs from the database character set.

2. If the export file's character set is different than the import user session character
set, then Import converts the character set to its user session character set. Import
can only perform this conversion for single-byte character sets. This means that for
multibyte character sets, the import file's character set must be identical to the
export file's character set.

3. A final character set conversion may be performed if the target database's
character set is different from the character set used by the import user session.

To minimize data loss due to character set conversions, ensure that the export
database, the export user session, the import user session, and the import database all
use the same character set.

Single-Byte Character Sets
Some 8-bit characters can be lost (that is, converted to 7-bit equivalents) when you
import an 8-bit character set export file. This occurs if the system on which the import
occurs has a native 7-bit character set, or the NLS_LANG operating system environment
variable is set to a 7-bit character set. Most often, this is apparent when accented
characters lose the accent mark.

To avoid this unwanted conversion, you can set the NLS_LANG operating system
environment variable to be that of the export file character set.

Multibyte Character Sets
During character set conversion, any characters in the export file that have no
equivalent in the target character set are replaced with a default character. (The default
character is defined by the target character set.) To guarantee 100% conversion, the
target character set must be a superset (or equivalent) of the source character set.

See Also: Oracle Database Globalization Support Guide

See Also: Oracle Database Globalization Support Guide

Caution: When the character set width differs between the Export
server and the Import server, truncation of data can occur if
conversion causes expansion of data. If truncation occurs, then
Import displays a warning message.

Considerations When Importing Database Objects

Original Import 22-37

Using Instance Affinity
You can use instance affinity to associate jobs with instances in databases you plan to
export and import. Be aware that there may be some compatibility issues if you are
using a combination of releases.

Considerations When Importing Database Objects
The following sections describe restrictions and points you should consider when you
import particular database objects.

Importing Object Identifiers
The Oracle database assigns object identifiers to uniquely identify object types, object
tables, and rows in object tables. These object identifiers are preserved by Import.

When you import a table that references a type, but a type of that name already exists
in the database, Import attempts to verify that the preexisting type is, in fact, the type
used by the table (rather than a different type that just happens to have the same
name).

To do this, Import compares the types's unique identifier (TOID) with the identifier
stored in the export file. If those match, then Import then compares the type's unique
hashcode with that stored in the export file. Import will not import table rows if the
TOIDs or hashcodes do not match.

In some situations, you may not want this validation to occur on specified types (for
example, if the types were created by a cartridge installation). You can use the
parameter TOID_NOVALIDATE to specify types to exclude from the TOID and hashcode
comparison. See "TOID_NOVALIDATE" on page 22-22 for more information.

Import uses the following criteria to decide how to handle object types, object tables,
and rows in object tables:

■ For object types, if IGNORE=y, the object type already exists, and the object
identifiers, hashcodes, and type descriptors match, then no error is reported. If the
object identifiers or hashcodes do not match and the parameter TOID_NOVALIDATE
has not been set to ignore the object type, then an error is reported and any tables
using the object type are not imported.

■ For object types, if IGNORE=n and the object type already exists, then an error is
reported. If the object identifiers, hashcodes, or type descriptors do not match and
the parameter TOID_NOVALIDATE has not been set to ignore the object type, then
any tables using the object type are not imported.

See Also:

■ Oracle Database Administrator's Guide

■ Oracle Database Reference

■ Oracle Database Upgrade Guide

Caution: Be very careful about using TOID_NOVALIDATE, because
type validation provides an important capability that helps avoid
data corruption. Be sure you are confident of your knowledge of
type validation and how it works before attempting to perform an
import operation with this feature disabled.

Considerations When Importing Database Objects

22-38 Oracle Database Utilities

■ For object tables, if IGNORE=y, then the table already exists, and the object
identifiers, hashcodes, and type descriptors match, no error is reported. Rows are
imported into the object table. Import of rows may fail if rows with the same object
identifier already exist in the object table. If the object identifiers, hashcodes, or
type descriptors do not match, and the parameter TOID_NOVALIDATE has not been
set to ignore the object type, then an error is reported and the table is not
imported.

■ For object tables, if IGNORE=n and the table already exists, then an error is reported
and the table is not imported.

Because Import preserves object identifiers of object types and object tables, consider
the following when you import objects from one schema into another schema using
the FROMUSER and TOUSER parameters:

■ If the FROMUSER object types and object tables already exist on the target system,
then errors occur because the object identifiers of the TOUSER object types and
object tables are already in use. The FROMUSER object types and object tables must
be dropped from the system before the import is started.

■ If an object table was created using the OID AS option to assign it the same object
identifier as another table, then both tables cannot be imported. You can import
one of the tables, but the second table receives an error because the object
identifier is already in use.

Importing Existing Object Tables and Tables That Contain Object Types
Users frequently create tables before importing data to reorganize tablespace usage or
to change a table's storage parameters. The tables must be created with the same
definitions as were previously used or a compatible format (except for storage
parameters). For object tables and tables that contain columns of object types, format
compatibilities are more restrictive.

For object tables and for tables containing columns of objects, each object the table
references has its name, structure, and version information written out to the export
file. Export also includes object type information from different schemas, as needed.

Import verifies the existence of each object type required by a table before importing
the table data. This verification consists of a check of the object type's name followed
by a comparison of the object type's structure and version from the import system with
that found in the export file.

If an object type name is found on the import system, but the structure or version do
not match that from the export file, then an error message is generated and the table
data is not imported.

The Import parameter TOID_NOVALIDATE can be used to disable the verification of the
object type's structure and version for specific objects.

Importing Nested Tables
Inner nested tables are exported separately from the outer table. Therefore, situations
may arise where data in an inner nested table might not be properly imported:

■ Suppose a table with an inner nested table is exported and then imported without
dropping the table or removing rows from the table. If the IGNORE=y parameter is
used, then there will be a constraint violation when inserting each row in the outer
table. However, data in the inner nested table may be successfully imported,
resulting in duplicate rows in the inner table.

Considerations When Importing Database Objects

Original Import 22-39

■ If nonrecoverable errors occur inserting data in outer tables, then the rest of the
data in the outer table is skipped, but the corresponding inner table rows are not
skipped. This may result in inner table rows not being referenced by any row in
the outer table.

■ If an insert to an inner table fails after a recoverable error, then its outer table row
will already have been inserted in the outer table and data will continue to be
inserted into it and any other inner tables of the containing table. This
circumstance results in a partial logical row.

■ If nonrecoverable errors occur inserting data in an inner table, then Import skips
the rest of that inner table's data but does not skip the outer table or other nested
tables.

You should always carefully examine the log file for errors in outer tables and inner
tables. To be consistent, table data may need to be modified or deleted.

Because inner nested tables are imported separately from the outer table, attempts to
access data from them while importing may produce unexpected results. For example,
if an outer row is accessed before its inner rows are imported, an incomplete row may
be returned to the user.

Importing REF Data
REF columns and attributes may contain a hidden ROWID that points to the referenced
type instance. Import does not automatically recompute these ROWIDs for the target
database. You should execute the following statement to reset the
ROWIDs to their proper values:

ANALYZE TABLE [schema.]table VALIDATE REF UPDATE;

Importing BFILE Columns and Directory Aliases
Export and Import do not copy data referenced by BFILE columns and attributes from
the source database to the target database. Export and Import only propagate the
names of the files and the directory aliases referenced by the BFILE columns. It is the
responsibility of the DBA or user to move the actual files referenced through BFILE
columns and attributes.

When you import table data that contains BFILE columns, the BFILE locator is
imported with the directory alias and file name that was present at export time. Import
does not verify that the directory alias or file exists. If the directory alias or file does
not exist, then an error occurs when the user accesses the BFILE data.

For directory aliases, if the operating system directory syntax used in the export
system is not valid on the import system, then no error is reported at import time. The
error occurs when the user seeks subsequent access to the file data. It is the
responsibility of the DBA or user to ensure the directory alias is valid on the import
system.

Importing Foreign Function Libraries
Import does not verify that the location referenced by the foreign function library is
correct. If the formats for directory and file names used in the library's specification on
the export file are invalid on the import system, then no error is reported at import
time. Subsequent usage of the callout functions will receive an error.

See Also: Oracle Database SQL Language Reference for more
information about the ANALYZE TABLE statement

Considerations When Importing Database Objects

22-40 Oracle Database Utilities

It is the responsibility of the DBA or user to manually move the library and ensure the
library's specification is valid on the import system.

Importing Stored Procedures, Functions, and Packages
The behavior of Import when a local stored procedure, function, or package is
imported depends upon whether the COMPILE parameter is set to y or to n.

When a local stored procedure, function, or package is imported and COMPILE=y, the
procedure, function, or package is recompiled upon import and retains its original
timestamp specification. If the compilation is successful, then it can be accessed by
remote procedures without error.

If COMPILE=n, then the procedure, function, or package is still imported, but the
original timestamp is lost. The compilation takes place the next time the procedure,
function, or package is used.

Importing Java Objects
When you import Java objects into any schema, the Import utility leaves the resolver
unchanged. (The resolver is the list of schemas used to resolve Java full names.) This
means that after an import, all user classes are left in an invalid state until they are
either implicitly or explicitly revalidated. An implicit revalidation occurs the first time
the classes are referenced. An explicit revalidation occurs when the SQL statement
ALTER JAVA CLASS...RESOLVE is used. Both methods result in the user classes being
resolved successfully and becoming valid.

Importing External Tables
Import does not verify that the location referenced by the external table is correct. If
the formats for directory and file names used in the table's specification on the export
file are invalid on the import system, then no error is reported at import time.
Subsequent usage of the callout functions will result in an error.

It is the responsibility of the DBA or user to manually move the table and ensure the
table's specification is valid on the import system.

Importing Advanced Queue (AQ) Tables
Importing a queue table also imports any underlying queues and the related
dictionary information. A queue can be imported only at the granularity level of the
queue table. When a queue table is imported, export pre-table and post-table action
procedures maintain the queue dictionary.

Importing LONG Columns
LONG columns can be up to 2 gigabytes in length. In importing and exporting, the LONG
columns must fit into memory with the rest of each row's data. The memory used to
store LONG columns, however, does not need to be contiguous, because LONG data is
loaded in sections.

Import can be used to convert LONG columns to CLOB columns. To do this, first create a
table specifying the new CLOB column. When Import is run, the LONG data is converted

See Also: "COMPILE" on page 22-12

See Also: Oracle Streams Advanced Queuing User's Guide

Considerations When Importing Database Objects

Original Import 22-41

to CLOB format. The same technique can be used to convert LONG RAW columns to BLOB
columns.

Importing LOB Columns When Triggers Are Present
As of Oracle Database 10g, LOB handling has been improved to ensure that triggers
work properly and that performance remains high when LOBs are being loaded. To
achieve these improvements, the Import utility automatically changes all LOBs that
were empty at export time to be NULL after they are imported.

If you have applications that expect the LOBs to be empty rather than NULL, then
after the import you can issue a SQL UPDATE statement for each LOB column.
Depending on whether the LOB column type was a BLOB or a CLOB, the syntax would
be one of the following:

UPDATE <tablename> SET <lob column> = EMPTY_BLOB() WHERE <lob column> = IS NULL;
UPDATE <tablename> SET <lob column> = EMPTY_CLOB() WHERE <lob column> = IS NULL;

It is important to note that once the import is performed, there is no way to distinguish
between LOB columns that are NULL versus those that are empty. Therefore, if that
information is important to the integrity of your data, then be sure you know which
LOB columns are NULL and which are empty before you perform the import.

Importing Views
Views are exported in dependency order. In some cases, Export must determine the
ordering, rather than obtaining the order from the database. In doing so, Export may
not always be able to duplicate the correct ordering, resulting in compilation warnings
when a view is imported, and the failure to import column comments on such views.

In particular, if viewa uses the stored procedure procb, and procb uses the view viewc,
then Export cannot determine the proper ordering of viewa and viewc. If viewa is
exported before viewc, and procb already exists on the import system, then viewa
receives compilation warnings at import time.

Grants on views are imported even if a view has compilation errors. A view could
have compilation errors if an object it depends on, such as a table, procedure, or
another view, does not exist when the view is created. If a base table does not exist,
then the server cannot validate that the grantor has the proper privileges on the base
table with the GRANT OPTION. Access violations could occur when the view is used if the
grantor does not have the proper privileges after the missing tables are created.

Importing views that contain references to tables in other schemas requires that the
importer have SELECT ANY TABLE privilege. If the importer has not been granted this
privilege, then the views will be imported in an uncompiled state. Note that granting
the privilege to a role is insufficient. For the view to be compiled, the privilege must be
granted directly to the importer.

Note: Oracle recommends that you convert existing LONG columns
to LOB columns. LOB columns are subject to far fewer restrictions
than LONG columns. Further, LOB functionality is enhanced in every
release, whereas LONG functionality has been static for several
releases.

Support for Fine-Grained Access Control

22-42 Oracle Database Utilities

Importing Partitioned Tables
Import attempts to create a partitioned table with the same partition or subpartition
names as the exported partitioned table, including names of the form SYS_Pnnn. If a
table with the same name already exists, then Import processing depends on the value
of the IGNORE parameter.

Unless SKIP_UNUSABLE_INDEXES=y,inserting the exported data into the target table
fails if Import cannot update a nonpartitioned index or index partition that is marked
Indexes Unusable or is otherwise not suitable.

Support for Fine-Grained Access Control
To restore the fine-grained access control policies, the user who imports from an export
file containing such tables must have the EXECUTE privilege on the DBMS_RLS package,
so that the security policies on the tables can be reinstated.

If a user without the correct privileges attempts to import from an export file that
contains tables with fine-grained access control policies, then a warning message is
issued.

Snapshots and Snapshot Logs

Snapshot Log
The snapshot log in a dump file is imported if the master table already exists for the
database to which you are importing and it has a snapshot log.

When a ROWID snapshot log is exported, ROWIDs stored in the snapshot log have no
meaning upon import. As a result, each ROWID snapshot's first attempt to do a fast
refresh fails, generating an error indicating that a complete refresh is required.

To avoid the refresh error, do a complete refresh after importing a ROWID snapshot log.
After you have done a complete refresh, subsequent fast refreshes will work properly.
In contrast, when a primary key snapshot log is exported, the values of the primary
keys do retain their meaning upon import. Therefore, primary key snapshots can do a
fast refresh after the import.

Snapshots
A snapshot that has been restored from an export file has reverted to a previous state.
On import, the time of the last refresh is imported as part of the snapshot table
definition. The function that calculates the next refresh time is also imported.

Each refresh leaves a signature. A fast refresh uses the log entries that date from the
time of that signature to bring the snapshot up to date. When the fast refresh is
complete, the signature is deleted and a new signature is created. Any log entries that

Note: In certain situations, particularly those involving data
warehousing, snapshots may be referred to as materialized views.
This section retains the term snapshot.

See Also: Oracle Database Advanced Replication for Import-specific
information about migration and compatibility and for more
information about snapshots and snapshot logs

Transportable Tablespaces

Original Import 22-43

are not needed to refresh other snapshots are also deleted (all log entries with times
before the earliest remaining signature).

Importing a Snapshot
When you restore a snapshot from an export file, you may encounter a problem under
certain circumstances.

Assume that a snapshot is refreshed at time A, exported at time B, and refreshed again
at time C. Then, because of corruption or other problems, the snapshot needs to be
restored by dropping the snapshot and importing it again. The newly imported
version has the last refresh time recorded as time A. However, log entries needed for a
fast refresh may no longer exist. If the log entries do exist (because they are needed for
another snapshot that has yet to be refreshed), then they are used, and the fast refresh
completes successfully. Otherwise, the fast refresh fails, generating an error that says a
complete refresh is required.

Importing a Snapshot into a Different Schema
Snapshots and related items are exported with the schema name explicitly given in the
DDL statements. To import them into a different schema, use the FROMUSER and TOUSER
parameters. This does not apply to snapshot logs, which cannot be imported into a
different schema.

Transportable Tablespaces
The transportable tablespace feature enables you to move a set of tablespaces from one
Oracle database to another.

To move or copy a set of tablespaces, you must make the tablespaces read-only,
manually copy the data files of these tablespaces to the target database, and use Export
and Import to move the database information (metadata) stored in the data dictionary
over to the target database. The transport of the data files can be done using any
facility for copying flat binary files, such as the operating system copying facility,
binary-mode FTP, or publishing on CD-ROMs.

After copying the data files and exporting the metadata, you can optionally put the
tablespaces in read/write mode.

Export and Import provide the following parameters to enable movement of
transportable tablespace metadata.

■ TABLESPACES

■ TRANSPORT_TABLESPACE

See "TABLESPACES" on page 22-22 and "TRANSPORT_TABLESPACE" on page 22-23
for information about using these parameters during an import operation.

Note: You cannot export transportable tablespaces and then import
them into a database at a lower release level. The target database must
be at the same or higher release level as the source database.

Storage Parameters

22-44 Oracle Database Utilities

Storage Parameters
By default, a table is imported into its original tablespace.

If the tablespace no longer exists, or the user does not have sufficient quota in the
tablespace, then the system uses the default tablespace for that user, unless the table:

■ Is partitioned

■ Is a type table

■ Contains LOB, VARRAY, or OPAQUE type columns

■ Has an index-organized table (IOT) overflow segment

If the user does not have sufficient quota in the default tablespace, then the user's
tables are not imported. See "Reorganizing Tablespaces" on page 22-45 to see how you
can use this to your advantage.

The OPTIMAL Parameter
The storage parameter OPTIMAL for rollback segments is not preserved during export
and import.

Storage Parameters for OID Indexes and LOB Columns
Tables are exported with their current storage parameters. For object tables, the
OIDINDEX is created with its current storage parameters and name, if given. For
tables that contain LOB, VARRAY, or OPAQUE type columns, LOB, VARRAY, or OPAQUE type
data is created with their current storage parameters.

If you alter the storage parameters of existing tables before exporting, then the tables
are exported using those altered storage parameters. Note, however, that storage
parameters for LOB data cannot be altered before exporting (for example, chunk size
for a LOB column, whether a LOB column is CACHE or NOCACHE, and so forth).

Note that LOB data might not reside in the same tablespace as the containing table.
The tablespace for that data must be read/write at the time of import or the table will
not be imported.

If LOB data resides in a tablespace that does not exist at the time of import, or the user
does not have the necessary quota in that tablespace, then the table will not be
imported. Because there can be multiple tablespace clauses, including one for the table,
Import cannot determine which tablespace clause caused the error.

Overriding Storage Parameters
Before using the Import utility to import data, you may want to create large tables
with different storage parameters. If so, then you must specify IGNORE=y on the
command line or in the parameter file.

See Also:

■ Oracle Database Administrator's Guide for details about
managing transportable tablespaces

■ Oracle Database Concepts for an introduction to transportable
tablespaces

Reorganizing Tablespaces

Original Import 22-45

Read-Only Tablespaces
Read-only tablespaces can be exported. On import, if the tablespace does not already
exist in the target database, then the tablespace is created as a read/write tablespace. If
you want read-only functionality, then you must manually make the tablespace
read-only after the import.

If the tablespace already exists in the target database and is read-only, then you must
make it read/write before the import.

Dropping a Tablespace
You can drop a tablespace by redefining the objects to use different tablespaces before
the import. You can then issue the imp command and specify IGNORE=y.

In many cases, you can drop a tablespace by doing a full database export, then creating
a zero-block tablespace with the same name (before logging off) as the tablespace you
want to drop. During import, with IGNORE=y, the relevant CREATE TABLESPACE
statement will fail and prevent the creation of the unwanted tablespace.

All objects from that tablespace will be imported into their owner's default tablespace
except for partitioned tables, type tables, and tables that contain LOB or VARRAY
columns or index-only tables with overflow segments. Import cannot determine which
tablespace caused the error. Instead, you must first create a table and then import the
table again, specifying IGNORE=y.

Objects are not imported into the default tablespace if the tablespace does not exist, or
you do not have the necessary quotas for your default tablespace.

Reorganizing Tablespaces
If a user's quota allows it, the user's tables are imported into the same tablespace from
which they were exported. However, if the tablespace no longer exists or the user does
not have the necessary quota, then the system uses the default tablespace for that user
as long as the table is unpartitioned, contains no LOB or VARRAY columns, is not a type
table, and is not an index-only table with an overflow segment. This scenario can be
used to move a user's tables from one tablespace to another.

For example, you need to move joe's tables from tablespace A to tablespace B after a
full database export. Follow these steps:

1. If joe has the UNLIMITED TABLESPACE privilege, then revoke it. Set joe's quota on
tablespace A to zero. Also revoke all roles that might have such privileges or
quotas.

When you revoke a role, it does not have a cascade effect. Therefore, users who
were granted other roles by joe will be unaffected.

2. Export joe's tables.

3. Drop joe's tables from tablespace A.

4. Give joe a quota on tablespace B and make it the default tablespace for joe.

5. Import joe's tables. (By default, Import puts joe's tables into
tablespace B.)

Importing Statistics

22-46 Oracle Database Utilities

Importing Statistics
If statistics are requested at export time and analyzer statistics are available for a table,
then Export will include the ANALYZE statement used to recalculate the statistics for the
table into the dump file. In most circumstances, Export will also write the
precalculated optimizer statistics for tables, indexes, and columns to the dump file. See
the description of the Import parameter "STATISTICS" on page 22-19.

Because of the time it takes to perform an ANALYZE statement, it is usually preferable
for Import to use the precalculated optimizer statistics for a table (and its indexes and
columns) rather than execute the ANALYZE statement saved by Export. By default,
Import will always use the precalculated statistics that are found in the export dump
file.

The Export utility flags certain precalculated statistics as questionable. The importer
might want to import only unquestionable statistics, not precalculated statistics, in the
following situations:

■ Character set translations between the dump file and the import client and the
import database could potentially change collating sequences that are implicit in
the precalculated statistics.

■ Row errors occurred while importing the table.

■ A partition level import is performed (column statistics will no longer be
accurate).

In certain situations, the importer might want to always use ANALYZE statements rather
than precalculated statistics. For example, the statistics gathered from a fragmented
database may not be relevant when the data is imported in a compressed form. In
these cases, the importer should specify STATISTICS=RECALCULATE to force the
recalculation of statistics.

If you do not want any statistics to be established by Import, then you should specify
STATISTICS=NONE.

Using Export and Import to Partition a Database Migration
When you use the Export and Import utilities to migrate a large database, it may be
more efficient to partition the migration into multiple export and import jobs. If you
decide to partition the migration, then be aware of the following advantages and
disadvantages.

Advantages of Partitioning a Migration
Partitioning a migration has the following advantages:

■ Time required for the migration may be reduced, because many of the subjobs can
be run in parallel.

■ The import can start as soon as the first export subjob completes, rather than
waiting for the entire export to complete.

Note: Specifying ROWS=n will not prevent the use of precalculated
statistics. This feature allows plan generation for queries to be
tuned in a nonproduction database using statistics from a
production database. In these cases, the import should specify
STATISTICS=SAFE.

Tuning Considerations for Import Operations

Original Import 22-47

Disadvantages of Partitioning a Migration
Partitioning a migration has the following disadvantages:

■ The export and import processes become more complex.

■ Support of cross-schema references for certain types of objects may be
compromised. For example, if a schema contains a table with a foreign key
constraint against a table in a different schema, then you may not have the
required parent records when you import the table into the dependent schema.

How to Use Export and Import to Partition a Database Migration
To perform a database migration in a partitioned manner, take the following steps:

1. For all top-level metadata in the database, issue the following commands:

a. exp FILE=full FULL=y CONSTRAINTS=n TRIGGERS=n ROWS=n INDEXES=n

b. imp FILE=full FULL=y

2. For each scheman in the database, issue the following commands:

a. exp OWNER=scheman FILE=scheman

b. imp FILE=scheman FROMUSER=scheman TOUSER=scheman IGNORE=y

All exports can be done in parallel. When the import of full.dmp completes, all
remaining imports can also be done in parallel.

Tuning Considerations for Import Operations
This section discusses some ways to possibly improve the performance of an import
operation. The information is categorized as follows:

■ Changing System-Level Options

■ Changing Initialization Parameters

■ Changing Import Options

■ Dealing with Large Amounts of LOB Data

■ Dealing with Large Amounts of LONG Data

Changing System-Level Options
The following suggestions about system-level options may help improve performance
of an import operation:

■ Create and use one large rollback segment and take all other rollback segments
offline. Generally a rollback segment that is one half the size of the largest table
being imported should be big enough. It can also help if the rollback segment is
created with the minimum number of two extents, of equal size.

■ Put the database in NOARCHIVELOG mode until the import is complete. This will
reduce the overhead of creating and managing archive logs.

Note: Oracle recommends that you use automatic undo
management instead of rollback segments.

Tuning Considerations for Import Operations

22-48 Oracle Database Utilities

■ Create several large redo files and take any small redo log files offline. This will
result in fewer log switches being made.

■ If possible, have the rollback segment, table data, and redo log files all on separate
disks. This will reduce I/O contention and increase throughput.

■ If possible, do not run any other jobs at the same time that may compete with the
import operation for system resources.

■ Ensure that there are no statistics on dictionary tables.

■ Set TRACE_LEVEL_CLIENT=OFF in the sqlnet.ora file.

■ If possible, increase the value of DB_BLOCK_SIZE when you re-create the database.
The larger the block size, the smaller the number of I/O cycles needed. This change
is permanent, so be sure to carefully consider all effects it will have before making it.

Changing Initialization Parameters
The following suggestions about settings in your initialization parameter file may help
improve performance of an import operation.

■ Set LOG_CHECKPOINT_INTERVAL to a number that is larger than the size of the redo
log files. This number is in operating system blocks (512 on most UNIX systems).
This reduces checkpoints to a minimum (at log switching time).

■ Increase the value of SORT_AREA_SIZE. The amount you increase it depends on
other activity taking place on the system and on the amount of free memory
available. (If the system begins swapping and paging, then the value is probably
set too high.)

■ Increase the value for DB_BLOCK_BUFFERS and SHARED_POOL_SIZE.

Changing Import Options
The following suggestions about usage of import options may help improve
performance. Be sure to also read the individual descriptions of all the available
options in "Import Parameters" on page 22-11.

■ Set COMMIT=N. This causes Import to commit after each object (table), not after each
buffer. This is why one large rollback segment is needed. (Because rollback
segments will be deprecated in future releases, Oracle recommends that you use
automatic undo management instead.)

■ Specify a large value for BUFFER or RECORDLENGTH, depending on system activity,
database size, and so on. A larger size reduces the number of times that the export
file has to be accessed for data. Several megabytes is usually enough. Be sure to
check your system for excessive paging and swapping activity, which can indicate
that the buffer size is too large.

■ Consider setting INDEXES=N because indexes can be created at some point after the
import, when time is not a factor. If you choose to do this, then you need to use the
INDEXFILE parameter to extract the DLL for the index creation or to rerun the
import with INDEXES=Y and ROWS=N.

Dealing with Large Amounts of LOB Data
Keep the following in mind when you are importing large amounts of LOB data:

Using Different Releases of Export and Import

Original Import 22-49

Eliminating indexes significantly reduces total import time. This is because LOB data
requires special consideration during an import because the LOB locator has a primary
key that cannot be explicitly dropped or ignored during an import.

Ensure that there is enough space available in large contiguous chunks to complete the
data load.

Dealing with Large Amounts of LONG Data
Keep in mind that importing a table with a LONG column may cause a higher rate of
I/O and disk usage, resulting in reduced performance of the import operation. There
are no specific parameters that will improve performance during an import of large
amounts of LONG data, although some of the more general tuning suggestions made
in this section may help overall performance.

Using Different Releases of Export and Import
This section describes compatibility issues that relate to using different releases of
Export and the Oracle database.

Whenever you are moving data between different releases of the Oracle database, the
following basic rules apply:

■ The Import utility and the database to which data is being imported (the target
database) must be the same version. For example, if you try to use the Import
utility 9.2.0.7 to import into a 9.2.0.8 database, then you may encounter errors.

■ The version of the Export utility must be equal to the version of either the source
or target database, whichever is earlier.

For example, to create an export file for an import into a later release database, use
a version of the Export utility that equals the source database. Conversely, to create
an export file for an import into an earlier release database, use a version of the
Export utility that equals the version of the target database.

– In general, you can use the Export utility from any Oracle8 release to export
from an Oracle9i server and create an Oracle8 export file.

Restrictions When Using Different Releases of Export and Import
The following restrictions apply when you are using different releases of Export and
Import:

■ Export dump files can be read only by the Import utility because they are stored in
a special binary format.

■ Any export dump file can be imported into a later release of the Oracle database.

■ The Import utility cannot read export dump files created by the Export utility of a
later maintenance release or version. For example, a release 9.2 export dump file
cannot be imported by a release 9.0.1 Import utility.

■ Whenever a lower version of the Export utility runs with a later version of the
Oracle database, categories of database objects that did not exist in the earlier
version are excluded from the export.

■ Export files generated by Oracle9i Export, either direct path or conventional path,
are incompatible with earlier releases of Import and can be imported only with

See Also: "Importing LONG Columns" on page 22-40

Using Different Releases of Export and Import

22-50 Oracle Database Utilities

Oracle9i Import. When backward compatibility is an issue, use the earlier release
or version of the Export utility against the Oracle9i database.

Examples of Using Different Releases of Export and Import
Table 22–5 shows some examples of which Export and Import releases to use when
moving data between different releases of the Oracle database.

Table 22–5 covers moving data only between the original Export and Import utilities.
For Oracle Database 10g release 1 (10.1) or higher, Oracle recommends the Data Pump
Export and Import utilities in most cases because these utilities provide greatly
enhanced performance compared to the original Export and Import utilities.

Table 22–5 Using Different Releases of Export and Import

Export from->Import to Use Export Release Use Import Release

8.1.6 -> 8.1.6 8.1.6 8.1.6

8.1.5 -> 8.0.6 8.0.6 8.0.6

8.1.7 -> 8.1.6 8.1.6 8.1.6

9.0.1 -> 8.1.6 8.1.6 8.1.6

9.0.1 -> 9.0.2 9.0.1 9.0.2

9.0.2 -> 10.1.0 9.0.2 10.1.0

10.1.0 -> 9.0.2 9.0.2 9.0.2

See Also: Oracle Database Upgrade Guide for more information about
exporting and importing data between different releases, including
releases higher than 10.1

Part V
Part V Appendixes

This section contains the following appendix:

Appendix A, "SQL*Loader Syntax Diagrams"

This appendix provides diagrams of the SQL*Loader syntax.

A

SQL*Loader Syntax Diagrams A-1

A SQL*Loader Syntax Diagrams

This appendix describes SQL*Loader syntax in graphic form (sometimes called
railroad diagrams or DDL diagrams). For information about the syntax notation used,
see the Oracle Database SQL Language Reference.

The following diagrams are shown with certain clauses collapsed (such as pos_spec).
These diagrams are expanded and explained further along in the appendix.

Options Clause

OPTIONS (options)

A-2 Oracle Database Utilities

Load Statement

infile_clause

UNRECOVERABLE

RECOVERABLE LOAD

CONTINUE_LOAD

DATA CHARACTERSET char_set_name

LENGTH
SEMANTICS

BYTE

CHAR

CHARACTER
BYTEORDER

BIG

LITTLE

ENDIAN

BYTEORDERMARK
CHECK

NOCHECK

infile_clause

,

READSIZE size READBUFFERS integer

INSERT

APPEND

REPLACE

TRUNCATE

concatenate_clause PRESERVE BLANKS
into_table_clause

,
BEGINDATA

INFILE
*

input_filename

os_file_proc_clause BADFILE filename

DISCARDFILE filename

DISCARDS

DISCARDMAX
integer

"

var

fix

str

’string’

X’hex_string

integer

"

SQL*Loader Syntax Diagrams A-3

concatenate_clause

CONCATENATE
integer

(integer)

CONTINUEIF

THIS

NEXT PRESERVE (
pos_spec

LAST
PRESERVE (operator

str

X’hex_str’

)

A-4 Oracle Database Utilities

into_table_clause

INTO TABLE name
SORTED

INDEXES
(name

,

)

SINGLEROW
(

PARTITION name

SUBPARTITION name
)

RESUME

YES

NO
REPLACE

INSERT

REPLACE

USING
DELETE

TRUNCATE

TRUNCATE

APPEND

OPTIONS (STORAGE=(storage_spec) , FILE=database_filename)

EVALUATE CHECK_CONSTRAINTS

REENABLE
DISABLED_CONSTRAINTS EXCEPTIONS table

WHEN field_condition

OID_spec

SID_spec

XMLTYPE_spec FIELDS
delim_spec

TRAILING
NULLCOLS

SKIP n
field_list

SQL*Loader Syntax Diagrams A-5

field_condition

delim_spec

full_fieldname

termination_spec

enclosure_spec

oid_spec

sid_spec

(full_fieldname

pos_spec
operator

’char_string’

X’hex_string’

BLANKS

)

AND

enclosure_spec

termination_spec

OPTIONALLY
enclosure_spec

full_fieldname

TERMINATED
BY

WHITESPACE

X’hexstr’

’string’

EOF

ENCLOSED
BY

’string’

X’hexstr’
AND

’string’

X’hexstr’

OID (fieldname)

SID (
fieldname

CONSTANT SID_val
)

A-6 Oracle Database Utilities

xmltype_spec

field_list

dgen_fld_spec

ref_spec

init_spec

XMLTYPE (fieldname)

(column_name

dgen_fld_spec

scalar_fld_spec

col_obj_fld_spec

collection_fld_spec

filler_fld_spec

,

)

RECNUM

SYSDATE

CONSTANT val

SEQUENCE (

COUNT

MAX

integer

, incr
)

REF_spec

SID_spec

BFILE_spec

init_spec

EXPRESSION " sql_string "

REF (
fieldname

CONSTANT val

,

)

NULLIF

DEFAULTIF
field_condition

SQL*Loader Syntax Diagrams A-7

bfile_spec

filler_fld_spec

scalar_fld_spec

lobfile_spec

pos_spec

BFILE (
fieldname

CONSTANT val
,

fieldname

CONSTANT val
)

FILLER

BOUNDFILLER

pos_spec datatype_spec PIECED

LOBFILE_spec

POSITION pos_spec
datatype_spec PIECED

init_spec " sql_string "

LOBFILE (
fieldname

CONSTANT filename

CHARACTERSET name

LENGTH
SEMANTICS

BYTE

CHAR

CHARACTER
BYTEORDER

BIG

LITTLE

ENDIAN

BYTEORDERMARK
CHECK

NOCHECK
)

(

start

*
+integer

:

–
end

)

A-8 Oracle Database Utilities

datatype_spec

delim_spec

INTEGER

(length)

SIGNED

UNSIGNED

EXTERNAL
(length) delim_spec

FLOAT
EXTERNAL

(length) delim_spec

DECIMAL

ZONED

EXTERNAL
(length) delim_spec

(precision
, scale

)

DOUBLE

BYTEINT

SMALLINT

SIGNED

UNSIGNED

RAW
(length)

GRAPHIC
EXTERNAL (graphic_char_length)

VARGRAPHIC

VARCHAR

(max_length)

datatype_spec_cont

SQL*Loader Syntax Diagrams A-9

datatype_spec_cont

col_obj_fld_spec

collection_fld_spec

nested_table_spec

CHAR
(length) delim_spec

VARCHARC (length_of_length
, max_size_bytes

)

VARRAWC (length_of_length
, max_size_bytes

)

LONG
VARRAW

(max_bytes)

DATE
EXTERNAL (length) "mask" delim_spec

TIME

TIMESTAMP

fractional_second_precision WITH
LOCAL

TIME ZONE "mask"

INTERVAL

YEAR
year_precision

TO MONTH

DAY
day_precision

TO SECOND
fractional_second_precision

COLUMN OBJECT
TREAT AS typename init_spec

field_list
sql_string_spec

nested_table_spec

BOUNDFILLER
varray_spec

NESTED TABLE

SDF_spec count_spec init_spec

count_spec field_list

delim_spec

A-10 Oracle Database Utilities

varray_spec

sdf_spec

count_spec

VARRAY

SDF_spec count_spec init_spec

count_spec field_list

delim_spec

SDF (

field_name

CONSTANT filename os_file_proc_clause READSIZE size

CHARACTERSET name

LENGTH
SEMANTICS

BYTE

CHAR

CHARACTER

BYTEORDER
BIG

LITTLE

ENDIAN
BYTEORDERMARK

CHECK

NOCHECK delim_spec
)

COUNT (
fieldname

CONSTANT positive_integer
)

Index-1

Index

A
access privileges

Export and Import, 21-3
ADD_FILE parameter

Data Pump Export utility
interactive-command mode, 2-48

ADR
See automatic diagnostic repository

ADR base
in ADRCI utility, 16-3

ADR home
in ADRCI utility, 16-3

ADRCI
troubleshooting, 16-58

ADRCI utility, 16-1
ADR base, 16-3
ADR home, 16-3
batch mode, 16-6
commands, 16-14
getting help, 16-4
homepath, 16-4
interactive mode, 16-4
starting, 16-4

Advanced Queuing
exporting advanced queue tables, 21-33
importing advanced queue tables, 22-40

aliases
directory

exporting, 21-32
importing, 22-39

analyzer statistics, 22-46
analyzing redo log files, 19-1
ANYDATA type

effect on table-mode Import, 22-9
using SQL strings to load, 10-44

APPEND parameter
SQL*Loader utility, 9-30

append to table
SQL*Loader, 9-26

archived LOBs
restrictions on export, 2-47

archiving
disabling

effect on direct path loads, 12-14
arrays

committing after insert, 22-12
atomic null, 11-5
ATTACH parameter

Data Pump Export utility, 2-9
Data Pump Import utility, 3-9

attaching to an existing job
Data Pump Export utility, 2-10

attributes
null, 11-4

attribute-value constructors
overriding, 11-6

automatic diagnostic repository, 16-2

B
backslash escape character, 9-4
backups

restoring dropped snapshots
Import, 22-43

bad files
specifying for SQL*Loader, 9-9

BAD parameter
SQL*Loader command line, 8-2

BADFILE parameter
SQL*Loader utility, 9-9

BEGINDATA parameter
SQL*Loader control file, 9-8

BFILEs
in original Export, 21-32
in original Import, 22-39
loading with SQL*Loader, 11-14, 11-21

big-endian data
external tables, 14-9

bind arrays
determining size of for SQL*Loader, 9-35
minimizing SQL*Loader memory

requirements, 9-38
minimum requirements, 9-34
size with multiple SQL*Loader INTO TABLE

statements, 9-38
specifying maximum size, 8-3
specifying number of rows, 8-10
SQL*Loader performance implications, 9-34

BINDSIZE parameter
SQL*Loader command line, 8-3, 9-35

blanks

Index-2

loading fields consisting of blanks, 10-34
SQL*Loader BLANKS parameter for field

comparison, 10-26
trailing, 10-21
trimming, 10-35

external tables, 14-19
whitespace, 10-35

BLANKS parameter
SQL*Loader utility, 10-26

BLOBs
loading with SQL*Loader, 11-14

bound fillers, 10-5
buffer cache size

and Data Pump operations involving
Streams, 5-3

BUFFER parameter
Export utility, 21-9
Import utility, 22-11

buffers
calculating for export, 21-9
specifying with SQL*Loader BINDSIZE

parameter, 9-35
byte order, 10-31

big-endian, 10-31
little-endian, 10-31
specifying in SQL*Loader control file, 10-32

byte order marks, 10-33
precedence

for first primary datafile, 10-33
for LOBFILEs and SDFs, 10-33

suppressing checks for, 10-34
BYTEORDER parameter

SQL*Loader utility, 10-32
BYTEORDERMARK parameter

SQL*Loader utility, 10-34

C
cached sequence numbers

Export, 21-31
catalog.sql script

preparing database for Export and Import, 21-2,
22-2

catexp.sql script
preparing database for Export and Import, 21-2,

22-2
catldr.sql script

preparing for direct path loads, 12-8
changing a database ID, 18-2
changing a database name, 18-5
CHAR datatype

delimited form and SQL*Loader, 10-19
character fields

delimiters and SQL*Loader, 10-12, 10-19
determining length for SQL*Loader, 10-24
SQL*Loader datatypes, 10-12

character sets
conversion

during Export and Import, 21-30, 22-35
eight-bit to seven-bit conversions

Export/Import, 21-31, 22-36
identifying for external tables, 14-6
multibyte

Export/Import, 21-31
SQL*Loader, 9-13

single-byte
Export/Import, 21-31, 22-36

SQL*Loader control file, 9-16
SQL*Loader conversion between, 9-13
Unicode, 9-13

character strings
external tables

specifying bytes or characters, 14-10
SQL*Loader, 10-27

character-length semantics, 9-17
CHARACTERSET parameter

SQL*Loader utility, 9-16
check constraints

overriding disabling of, 12-19
CLOBs

loading with SQL*Loader, 11-14
CLUSTER parameter

Data Pump Export utility, 2-10
Data Pump Import utility, 3-10

collection types supported by SQL*Loader, 7-12
collections, 7-12

loading, 11-22
column array rows

specifying number of, 12-15
column objects

loading, 11-1
with user-defined constructors, 11-6

COLUMNARRAYROWS parameter
SQL*Loader command line, 8-3

columns
exporting LONG datatypes, 21-32
loading REF columns, 11-11
naming

SQL*Loader, 10-4
objects

loading nested column objects, 11-3
stream record format, 11-2
variable record format, 11-2

reordering before Import, 22-5
setting to a constant value with

SQL*Loader, 10-45
setting to a unique sequence number with

SQL*Loader, 10-47
setting to an expression value with

SQL*Loader, 10-46
setting to null with SQL*Loader, 10-46
setting to the current date with

SQL*Loader, 10-47
setting to the datafile record number with

SQL*Loader, 10-46
specifying

SQL*Loader, 10-4
specifying as PIECED

SQL*Loader, 12-11
using SQL*Loader, 10-46

Index-3

comments
in Export and Import parameter files, 21-4, 22-7
with external tables, 14-2, 15-2

COMMIT parameter
Import utility, 22-12

COMPILE parameter
Import utility, 22-12

completion messages
Export, 21-27
Import, 21-27

COMPRESS parameter
Export utility, 21-9

COMPRESSION parameter
Data Pump Export utility, 2-11

CONCATENATE parameter
SQL*Loader utility, 9-21

concurrent conventional path loads, 12-22
configuration

of LogMiner utility, 19-2
CONSISTENT parameter

Export utility, 21-10
nested tables and, 21-10
partitioned table and, 21-10

consolidating
extents, 21-9

CONSTANT parameter
SQL*Loader, 10-45

constraints
automatic integrity and SQL*Loader, 12-20
direct path load, 12-18
disabling referential constraints, 22-5
enabling

after a parallel direct path load, 12-25
enforced on a direct load, 12-18
failed

Import, 22-30
load method, 12-7

CONSTRAINTS parameter
Export utility, 21-11
Import utility, 22-12

constructors
attribute-value, 11-6

overriding, 11-6
user-defined, 11-6

loading column objects with, 11-6
CONTENT parameter

Data Pump Export utility, 2-12
Data Pump Import utility, 3-9

CONTINUE_CLIENT parameter
Data Pump Export utility

interactive-command mode, 2-49
Data Pump Import utility

interactive-command mode, 3-55
CONTINUEIF parameter

SQL*Loader utility, 9-21
control files

character sets, 9-16
data definition language syntax, 9-1
specifying data, 9-8
specifying SQL*Loader discard file, 9-11

CONTROL parameter
SQL*Loader command line, 8-3

conventional path Export
compared to direct path, 21-27

conventional path loads
behavior when discontinued, 9-19
compared to direct path loads, 12-7
concurrent, 12-23
of a single partition, 12-3
SQL*Loader bind array, 9-34
when to use, 12-3

conversion of character sets
during Export/Import, 21-30, 22-35
effect of character set sorting on, 21-30, 22-35

conversion of data
during direct path loads, 12-4

conversion of input characters, 9-14
CREATE REPORT command, ADRCI utility, 16-15
CREATE SESSION privilege

Export, 21-3, 22-3
Import, 21-3, 22-3

creating
incident package, 16-11
tables

manually, before import, 22-5

D
data

conversion
direct path load, 12-4

delimiter marks in data and SQL*Loader, 10-20
distinguishing different input formats for

SQL*Loader, 9-30
distinguishing different input row object

subtypes, 9-30, 9-32
exporting, 21-17
generating unique values with

SQL*Loader, 10-47
including in control files, 9-8
loading data contained in the SQL*Loader control

file, 10-45
loading in sections

SQL*Loader, 12-11
loading into more than one table

SQL*Loader, 9-30
maximum length of delimited data for

SQL*Loader, 10-21
moving between operating systems using

SQL*Loader, 10-30
recovery

SQL*Loader direct path load, 12-10
saving in a direct path load, 12-10
saving rows

SQL*Loader, 12-14
unsorted

SQL*Loader, 12-13
values optimized for SQL*Loader

performance, 10-45
data fields

Index-4

specifying the SQL*Loader datatype, 10-6
data files

specifying buffering for SQL*Loader, 9-9
specifying for SQL*Loader, 9-6

DATA parameter
SQL*Loader command line, 8-4

Data Pump Export utility
ATTACH parameter, 2-10
CLUSTER parameter, 2-10
command-line mode, 2-7, 3-6
COMPRESSION parameter, 2-11
CONTENT parameter, 2-12
controlling resource consumption, 5-2
DATA_OPTIONS parameter, 2-13
dump file set, 2-1
DUMPFILE parameter, 2-14
encryption of SecureFiles, 2-16
ENCRYPTION parameter, 2-15
ENCRYPTION_ALGORITHM parameter, 2-16
ENCRYPTION_MODE parameter, 2-17
ENCRYPTION_PASSWORD parameter, 2-18
ESTIMATE parameter, 2-20
ESTIMATE_ONLY parameter, 2-21
EXCLUDE parameter, 2-21
excluding objects, 2-21
export modes, 2-2
FILESIZE command

interactive-command mode, 2-49
FILESIZE parameter, 2-23
filtering data that is exported

using EXCLUDE parameter, 2-21
using INCLUDE parameter, 2-26

FLASHBACK_SCN parameter, 2-24
FLASHBACK_TIME parameter, 2-24
FULL parameter, 2-25
HELP parameter

interactive-command mode, 2-50
INCLUDE parameter, 2-26
interactive-command mode, 2-47

ADD_FILE parameter, 2-48
CONTINUE_CLIENT parameter, 2-49
EXIT_CLIENT parameter, 2-49
FILESIZE, 2-49
HELP parameter, 2-50
KILL_JOB parameter, 2-50
PARALLEL parameter, 2-50
START_JOB parameter, 2-51
STATUS parameter, 2-51, 3-57
STOP_JOB parameter, 2-52, 3-57

interfaces, 2-2
invoking

as SYSDBA, 2-2, 3-2
job names

specifying, 2-28
JOB_NAME parameter, 2-28
LOGFILE parameter, 2-29
NETWORK_LINK parameter, 2-30
NOLOGFILE parameter, 2-31
PARALLEL parameter

command-line mode, 2-32

interactive-command mode, 2-50
PARFILE parameter, 2-33
QUERY parameter, 2-34
REMAP_DATA parameter, 2-35
REUSE_DUMPFILES parameter, 2-36
SAMPLE parameter, 2-37
SCHEMAS parameter, 2-37
SecureFiles LOB considerations, 1-14
SERVICE_NAME parameter, 2-38
SOURCE_EDITION parameter, 2-39
specifying a job name, 2-28
syntax diagrams, 2-54
TABLES parameter, 2-40
TABLESPACES parameter, 2-43
transparent data encryption, 2-18
TRANSPORT_FULL_CHECK parameter, 2-43
TRANSPORT_TABLESPACES parameter, 2-44
TRANSPORTABLE parameter, 2-45
transportable tablespace mode

and time zone file versions, 2-4
VERSION parameter, 2-46
versioning, 1-13

Data Pump Import utility
ATTACH parameter, 3-9
attaching to an existing job, 3-9
changing name of source datafile, 3-32
CLUSTER parameter, 3-10
command-line mode

NOLOGFILE parameter, 3-26
STATUS parameter, 3-41

CONTENT parameter, 3-11
controlling resource consumption, 5-2
DATA_OPTIONS parameter, 3-11
DIRECTORY parameter, 3-12
DUMPFILE parameter, 3-13
ENCRYPTION_PASSWORD parameter, 3-14
ESTIMATE parameter, 3-15
estimating size of job, 3-15
EXCLUDE parameter, 3-16
filtering data that is imported

using EXCLUDE parameter, 3-16
using INCLUDE parameter, 3-20

FLASHBACK_SCN parameter, 3-18
FLASHBACK_TIME parameter, 3-19
full import mode, 3-3
FULL parameter, 3-20
HELP parameter

command-line mode, 3-20
interactive-command mode, 3-55

INCLUDE parameter, 3-20
interactive-command mode, 3-54

CONTINUE_CLIENT parameter, 3-55
EXIT_CLIENT parameter, 3-55
HELP parameter, 3-55
KILL_JOB parameter, 3-56
START_JOB parameter, 3-57
STOP_JOB parameter, 3-57

interfaces, 3-2
JOB_NAME parameter, 3-22
LOGFILE parameter, 3-23

Index-5

PARALLEL parameter
command-line mode, 3-26
interactive-command mode, 3-56

PARFILE parameter, 3-28
PARTITION_OPTIONS parameter, 3-29
QUERY parameter, 3-30
REMAP_DATA parameter, 3-31
REMAP_DATAFILE parameter, 3-32
REMAP_SCHEMA parameter, 3-33
REMAP_TABLE parameter, 3-35
REMAP_TABLESPACE parameter, 3-35
REUSE_DATAFILES parameter, 3-36
schema mode, 3-3
SCHEMAS parameter, 3-37
SERVICE_NAME parameter, 3-37
SKIP_UNUSABLE_INDEXES parameter, 3-38
SOURCE_EDITION parameter, 3-39
specifying a job name, 3-22
specifying dump file set to import, 3-13
SQLFILE parameter, 3-40
STREAMS_CONFIGURATION parameter, 3-41
syntax diagrams, 3-59
table mode, 3-3
TABLE_EXISTS_ACTION parameter, 3-42
TABLES parameter, 3-43
tablespace mode, 3-4
TABLESPACES parameter, 3-45
TARGET_EDITION parameter, 3-46
TRANSFORM parameter, 3-46
transparent data encryption, 3-14
TRANSPORT_DATAFILES parameter, 3-49
TRANSPORT_FULL_CHECK parameter, 3-50
TRANSPORT_TABLESPACES parameter, 3-51
TRANSPORTABLE parameter, 3-52
transportable tablespace mode, 3-4

and time zone file versions, 3-4
VERSION parameter, 3-53
versioning, 1-13

Data Pump legacy mode, 4-1
DATA_OPTIONS parameter

Data Pump Export utility, 2-13
Data Pump Import utility, 3-11

database ID (DBID)
changing, 18-2

database identifier
changing, 18-2

database migration
partitioning of, 21-35, 22-46

database name (DBNAME)
changing, 18-5

database objects
exporting LONG columns, 21-32

databases
changing the database ID, 18-2
changing the name, 18-5
exporting entire, 21-13
full import, 22-14
privileges for exporting and importing, 21-3, 22-3
reusing existing datafiles

Import, 22-13

datafiles
preventing overwrite during import, 22-13
reusing during import, 22-13
specifying, 8-4
specifying format for SQL*Loader, 9-9

DATAFILES parameter
Import utility, 22-13

DATAPUMP_EXP_FULL_DATABASE role, 1-6
DATAPUMP_IMP_FULL_DATABASE role, 1-6
datatypes

BFILEs
in original Export, 21-32
in original Import, 22-39
loading with SQL*Loader, 11-14

BLOBs
loading with SQL*Loader, 11-14

CLOBs
loading with SQL*Loader, 11-14

converting SQL*Loader, 10-18
describing for external table fields, 14-22
determining character field lengths for

SQL*Loader, 10-24
determining DATE length, 10-24
identifying for external tables, 14-20
native

conflicting length specifications in
SQL*Loader, 10-17

NCLOBs
loading with SQL*Loader, 11-14

nonscalar, 11-4
specifying in SQL*Loader, 10-6
supported by the LogMiner utility, 19-67
types used by SQL*Loader, 10-6
unsupported by LogMiner utility, 19-69

date cache feature
DATE_CACHE parameter, 8-4
external tables, 14-35
SQL*Loader, 12-16

DATE datatype
delimited form and SQL*Loader, 10-19
determining length, 10-24
mask

SQL*Loader, 10-24
DATE_CACHE parameter

SQL*Loader utility, 8-4
DBID (database identifier)

changing, 18-2
DBMS_DATAPUMP PL/SQL package, 6-1
DBMS_LOGMNR PL/SQL procedure

LogMiner utility and, 19-4
DBMS_LOGMNR_D PL/SQL procedure

LogMiner utility and, 19-4
DBMS_LOGMNR_D.ADD_LOGFILES PL/SQL

procedure
LogMiner utility and, 19-4

DBMS_LOGMNR_D.BUILD PL/SQL procedure
LogMiner utility and, 19-4

DBMS_LOGMNR_D.END_LOGMNR PL/SQL
procedure

LogMiner utility and, 19-5

Index-6

DBMS_LOGMNR.ADD_LOGFILE PL/SQL
procedure

ADDFILE option, 19-9
NEW option, 19-9

DBMS_LOGMNR.COLUMN_PRESENT
function, 19-13

DBMS_LOGMNR.MINE_VALUE function, 19-13
null values and, 19-14

DBMS_LOGMNR.START_LOGMNR PL/SQL
procedure, 19-9

calling multiple times, 19-25
COMMITTED_DATA_ONLY option, 19-20
CONTINUOUS_MINE option, 19-8
ENDTIME parameter, 19-23
LogMiner utility and, 19-5
options for, 19-10
PRINT_PRETTY_SQL option, 19-24
SKIP_CORRUPTION option, 19-22
STARTTIME parameter, 19-23

DBMS_METADATA PL/SQL package, 20-3
DBNAME

changing, 18-5
DBNEWID utility, 18-1

changing a database ID, 18-2
changing a database name, 18-5
effect on global database names, 18-2
restrictions, 18-9
syntax, 18-8
troubleshooting a database ID change, 18-7

DBVERIFY utility
output, 17-3
restrictions, 17-1
syntax, 17-1
validating a segment, 17-3
validating disk blocks, 17-1

default schema
as determined by SQL*Loader, 9-25

DEFAULTIF parameter
SQL*Loader, 10-25

DELETE ANY TABLE privilege
SQL*Loader, 9-26

DELETE CASCADE
effect on loading nonempty tables, 9-26
SQL*Loader, 9-26

DELETE privilege
SQL*Loader, 9-26

delimited data
maximum length for SQL*Loader, 10-21

delimited fields
field length, 10-24

delimited LOBs, 11-19
delimiters

in external tables, 14-5
loading trailing blanks, 10-21
marks in data and SQL*Loader, 10-20
specifying for external tables, 14-17
specifying for SQL*Loader, 9-27, 10-19
SQL*Loader enclosure, 10-37
SQL*Loader field specifications, 10-37
termination, 10-37

DESTROY parameter
Import utility, 22-13

dictionary
requirements for LogMiner utility, 19-4

dictionary version mismatch, 19-32
DIRECT parameter

Export utility, 21-11
direct path Export, 21-27, 21-28

compared to conventional path, 21-27
effect of EXEMPT ACCESS POLICY

privilege, 21-28
performance issues, 21-28
restrictions, 21-29
security considerations, 21-28

direct path load
advantages, 12-5
behavior when discontinued, 9-19
choosing sort order

SQL*Loader, 12-14
compared to conventional path load, 12-7
concurrent, 12-23
conditions for use, 12-6
data saves, 12-10, 12-14
DIRECT command-line parameter

SQL*Loader, 12-8
dropping indexes, 12-18
effect of disabling archiving, 12-14
effect of PRIMARY KEY constraints, 12-26
effect of UNIQUE KEY constraints, 12-26
field defaults, 12-7
improper sorting

SQL*Loader, 12-13
indexes, 12-8
instance recovery, 12-10
intersegment concurrency, 12-23
intrasegment concurrency, 12-23
location of data conversion, 12-4
media recovery, 12-11
optimizing on multiple-CPU systems, 12-17
partitioned load

SQL*Loader, 12-22
performance, 12-8, 12-12
preallocating storage, 12-12
presorting data, 12-13
recovery, 12-10
ROWS command-line parameter, 12-10
setting up, 12-8
specifying, 12-8
specifying number of rows to be read, 8-10
SQL*Loader data loading method, 7-9
table insert triggers, 12-20
temporary segment storage requirements, 12-9
triggers, 12-18
using, 12-7, 12-8
version requirements, 12-6

directory aliases
exporting, 21-32
importing, 22-39

directory objects
using with Data Pump

Index-7

effect of Oracle ASM, 1-12
DIRECTORY parameter

Data Pump Export utility, 2-13
Data Pump Import utility, 3-12

disabled unique indexes
loading tables with, 1-2

discard files
SQL*Loader, 9-11

specifying a maximum, 9-12
DISCARD parameter

SQL*Loader command-line, 8-4
discarded SQL*Loader records, 7-8

causes, 9-12
discard file, 9-11
limiting, 9-12

DISCARDMAX parameter
SQL*Loader command-line, 8-5

discontinued loads, 9-18
continuing, 9-20
conventional path behavior, 9-19
direct path behavior, 9-19

dropped snapshots
Import, 22-43

dump files
maximum size, 21-12

DUMPFILE parameter
Data Pump Export utility, 2-14
Data Pump Import utility, 3-13

E
EBCDIC character set

Import, 21-31, 22-36
ECHO command, ADRCI utility, 16-16
eight-bit character set support, 21-31, 22-36
enclosed fields

whitespace, 10-40
enclosure delimiters, 10-19

SQL*Loader, 10-37
encrypted columns

in external tables, 15-4
ENCRYPTION parameter

Data Pump Export utility, 2-15
ENCRYPTION_ALGORITHM parameter

Data Pump Export utility, 2-16
ENCRYPTION_MODE parameter

Data Pump Export utility, 2-17
ENCRYPTION_PASSWORD parameter

Data Pump Export utility, 2-18
Data Pump Import utility, 3-14

errors
caused by tab characters in SQL*Loader

data, 10-3
LONG data, 22-31
object creation, 22-31

Import parameter IGNORE, 22-16
resource errors on import, 22-32
writing to export log file, 21-15

ERRORS parameter
SQL*Loader command line, 8-5

escape character
quoted strings and, 9-4
usage in Data Pump Export, 2-7
usage in Data Pump Import, 3-7
usage in Export, 21-19
usage in Import, 22-21

ESTIMATE parameter
Data Pump Export utility, 2-20
Data Pump Import utility, 3-15

ESTIMATE_ONLY parameter
Data Pump Export utility, 2-20

estimating size of job
Data Pump Export utility, 2-20

EVALUATE CHECK_CONSTRAINTS clause, 12-19
EXCLUDE parameter

Data Pump Export utility, 2-21
Data Pump Import utility, 3-16

exit codes
Export and Import, 21-27, 22-30
SQL*Loader, 1-15, 8-12

EXIT command, ADRCI utility, 16-16
EXIT_CLIENT parameter

Data Pump Export utility
interactive-command mode, 2-49

Data Pump Import utility
interactive-command mode, 3-55

EXP_FULL_DATABASE role
assigning in Export, 21-2, 22-3

expdat.dmp
Export output file, 21-12

Export
BUFFER parameter, 21-9
character set conversion, 21-30, 22-35
COMPRESS parameter, 21-9
CONSISTENT parameter, 21-10
CONSTRAINTS parameter, 21-11
conventional path, 21-27
creating

necessary privileges, 21-2, 22-3
necessary views, 21-2, 22-2

database optimizer statistics, 21-18
DIRECT parameter, 21-11
direct path, 21-27
displaying online help, 21-15
example sessions, 21-21

full database mode, 21-21
partition-level, 21-24
table mode, 21-22
user mode, 21-15, 21-22

exit codes, 21-27, 22-30
exporting an entire database, 21-13
exporting indexes, 21-15
exporting sequence numbers, 21-31
exporting synonyms, 21-33
exporting to another operating system, 21-17,

22-17
FEEDBACK parameter, 21-11
FILE parameter, 21-12
FILESIZE parameter, 21-12
FLASHBACK_SCN parameter, 21-13

Index-8

FLASHBACK_TIME parameter, 21-13
full database mode

example, 21-21
FULL parameter, 21-13
GRANTS parameter, 21-14
HELP parameter, 21-15
INDEXES parameter, 21-15
invoking, 21-3, 22-6
log files

specifying, 21-15
LOG parameter, 21-15
logging error messages, 21-15
LONG columns, 21-32
OBJECT_CONSISTENT parameter, 21-15
online help, 21-5
OWNER parameter, 21-15
parameter file, 21-15

maximum size, 21-4, 22-7
parameter syntax, 21-9
PARFILE parameter, 21-15
partitioning a database migration, 21-35, 22-46
QUERY parameter, 21-16
RECORDLENGTH parameter, 21-16
redirecting output to a log file, 21-26
remote operation, 21-29, 22-35
restrictions based on privileges, 21-3
RESUMABLE parameter, 21-17
RESUMABLE_NAME parameter, 21-17
RESUMABLE_TIMEOUT parameter, 21-17
ROWS parameter, 21-17
sequence numbers, 21-31
STATISTICS parameter, 21-18
storage requirements, 21-3
table mode

example session, 21-22
table name restrictions, 21-19
TABLES parameter, 21-18
TABLESPACES parameter, 21-19
TRANSPORT_TABLESPACE parameter, 21-20
TRIGGERS parameter, 21-20
TTS_FULL_CHECK parameter, 21-20
user access privileges, 21-3, 22-3
user mode

example session, 21-15, 21-22
specifying, 21-15

USERID parameter, 21-20
VOLSIZE parameter, 21-21

export dump file
importing the entire file, 22-14

export file
listing contents before importing, 22-18
specifying, 21-12

exporting
archived LOBs, 2-47

EXPRESSION parameter
SQL*Loader, 10-46

extents
consolidating, 21-9

EXTERNAL parameter
SQL*Loader, 10-16

EXTERNAL SQL*Loader datatypes
numeric

determining len, 10-24
external tables

access parameters, 13-3, 14-2, 15-2
and encrypted columns, 15-4
big-endian data, 14-9
cacheing data during reads, 14-15
column_transforms clause, 14-3
datatypes, 14-22
date cache feature, 14-35
delimiters, 14-5
describing datatype of a field, 14-22
field_definitions clause, 14-3, 14-15
fixed-length records, 14-4
identifying character sets, 14-6
identifying datatypes, 14-20
improving performance when using

date cache feature, 14-35
IO_OPTIONS clause, 14-15
little-endian data, 14-9
opaque_format_spec, 13-3, 14-2, 15-2
preprocessing data, 14-6
record_format_info clause, 14-3
reserved words, 13-5, 14-36, 15-16
restrictions, 13-4, 14-35
setting a field to a default value, 14-30
setting a field to null, 14-30
skipping records when loading data, 14-12
specifying delimiters, 14-17
specifying load conditions, 14-10
trimming blanks, 14-19
use of SQL strings, 13-5, 14-35
using comments, 14-2, 15-2
variable-length records, 14-5

EXTERNAL_TABLE parameter
SQL*Loader, 8-5

F
fatal errors

See nonrecoverable error messages
FEEDBACK parameter

Export utility, 21-11
Import utility, 22-13

field conditions
specifying for SQL*Loader, 10-25

field length
SQL*Loader specifications, 10-37

field location
SQL*Loader, 10-2

fields
character data length and SQL*Loader, 10-24
comparing to literals with SQL*Loader, 10-27
delimited

determining length, 10-24
SQL*Loader, 10-19

loading all blanks, 10-34
predetermined size

length, 10-24

Index-9

SQL*Loader, 10-37
relative positioning and SQL*Loader, 10-37
specifying default delimiters for

SQL*Loader, 9-27
specifying for SQL*Loader, 10-4
SQL*Loader delimited

specifications, 10-37
FIELDS clause

SQL*Loader, 9-27
terminated by whitespace, 10-39

file names
quotation marks and, 9-4
specifying multiple SQL*Loader, 9-8
SQL*Loader, 9-4
SQL*Loader bad file, 9-9

FILE parameter
Export utility, 21-12
Import utility, 22-13
SQL*Loader utility, 12-25

FILESIZE parameter
Data Pump Export utility, 2-23
Export utility, 21-12
Import utility, 22-13

FILLER field
using as argument to init_spec, 10-4

filtering data
using Data Pump Export utility, 2-1
using Data Pump Import utility, 3-1

filtering metadata that is imported
Data Pump Import utility, 3-16

finalizing
in ADRCI utility, 16-3

fine-grained access support
Export and Import, 22-42

fixed-format records, 7-4
fixed-length records

external tables, 14-4
FLASHBACK_SCN parameter

Data Pump Export utility, 2-23
Data Pump Import utility, 3-18
Export utility, 21-13

FLASHBACK_TIME parameter
Data Pump Export utility, 2-24
Data Pump Import utility, 3-18
Export utility, 21-13

FLOAT EXTERNAL data values
SQL*Loader, 10-16

foreign function libraries
exporting, 21-32
importing, 22-39, 22-40

formats
SQL*Loader input records and, 9-31

formatting errors
SQL*Loader, 9-9

FROMUSER parameter
Import utility, 22-14

full database mode
Import, 22-14
specifying with FULL, 21-14

full export mode

Data Pump Export utility, 2-3
FULL parameter

Data Pump Export utility, 2-25
Data Pump Import utility, 3-19
Export utility, 21-13
Import utility, 22-14

G
globalization

SQL*Loader, 9-13
grants

exporting, 21-14
importing, 22-15

GRANTS parameter
Export utility, 21-14
Import utility, 22-15

H
HELP parameter

Data Pump Export utility
command-line mode, 2-26
interactive-command mode, 2-50

Data Pump Import utility
command-line mode, 3-20
interactive-command mode, 3-55

Export utility, 21-15
Import utility, 22-16

hexadecimal strings
SQL*Loader, 10-27

homepath
in ADRCI utility, 16-4

HOST command, ADRCI utility, 16-17

I
IGNORE parameter

Import utility, 22-16
IMP_FULL_DATABASE role

assigning in Import, 21-2, 22-3
Import

BUFFER parameter, 22-11
character set conversion, 21-30, 21-31, 22-35,

22-36
COMMIT parameter, 22-12
committing after array insert, 22-12
COMPILE parameter, 22-12
CONSTRAINTS parameter, 22-12
creating

necessary privileges, 21-2, 22-3
necessary views, 21-2, 22-2

creating an index-creation SQL script, 22-17
database optimizer statistics, 22-19
DATAFILES parameter, 22-13
DESTROY parameter, 22-13
disabling referential constraints, 22-5
displaying online help, 22-16
dropping a tablespace, 22-45
errors importing database objects, 22-31
example sessions, 22-24

Index-10

all tables from one user to another, 22-25
selected tables for specific user, 22-25
tables exported by another user, 22-25
using partition-level Import, 22-26

exit codes, 21-27, 22-30
export file

importing the entire file, 22-14
listing contents before import, 22-18

FEEDBACK parameter, 22-13
FILE parameter, 22-13
FILESIZE parameter, 22-13
FROMUSER parameter, 22-14
FULL parameter, 22-14
grants

specifying for import, 22-15
GRANTS parameter, 22-15
HELP parameter, 22-16
IGNORE parameter, 22-16
importing grants, 22-15
importing objects into other schemas, 22-4
importing rows, 22-18
importing tables, 22-20
INDEXES parameter, 22-16
INDEXFILE parameter, 22-17
INSERT errors, 22-31
invalid data, 22-31
invoking, 21-3, 22-6
LOG parameter, 22-17
LONG columns, 22-40
manually creating tables before import, 22-5
manually ordering tables, 22-6
NLS_LANG environment variable, 21-31, 22-36
object creation errors, 22-16
online help, 21-5
parameter file, 22-17

maximum size, 21-4, 22-7
parameter syntax, 22-11
PARFILE parameter, 22-17
partition-level, 22-32
pattern matching of table names, 22-20
read-only tablespaces, 22-45
RECORDLENGTH parameter, 22-17
records

specifying length, 22-17
redirecting output to a log file, 21-26
refresh error, 22-42
remote operation, 21-29, 22-35
reorganizing tablespace during, 22-45
resource errors, 22-32
restrictions

importing into own schema, 22-3
RESUMABLE parameter, 22-18
RESUMABLE_NAME parameter, 22-18
RESUMABLE_TIMEOUT parameter, 22-18
reusing existing datafiles, 22-13
rows

specifying for import, 22-18
ROWS parameter, 22-18
schema objects, 22-4
sequences, 22-31

SHOW parameter, 22-18
single-byte character sets, 21-31, 22-36
SKIP_UNUSABLE_INDEXES parameter, 22-19
snapshot master table, 22-42
snapshots, 22-42

restoring dropped, 22-43
specifying by user, 22-14
specifying index creation commands, 22-17
specifying the export file, 22-13
STATISTICS parameter, 22-19
storage parameters

overriding, 22-44
stored functions, 22-40
stored procedures, 22-40
STREAMS_CONFIGURATION parameter, 22-20
STREAMS_INSTANTIATION parameter, 22-20
system objects, 22-4
table name restrictions, 2-41, 3-44, 22-22
table objects

import order, 22-2
table-level, 22-32
TABLES parameter, 22-20
TABLESPACES parameter, 22-22
TOID_NOVALIDATE parameter, 22-22
TOUSER parameter, 22-23
TRANSPORT_TABLESPACE parameter, 22-23
TTS_OWNER parameter, 22-24
tuning considerations, 22-47
user access privileges, 21-3, 22-3
USERID parameter, 22-24
VOLSIZE parameter, 22-24

incident
fault diagnosability infrastructure, 16-2
packaging, 16-10

incident package
fault diagnosability infrastructure, 16-3

INCLUDE parameter
Data Pump Export utility, 2-26
Data Pump Import utility, 3-20

index options
SORTED INDEXES with SQL*Loader, 9-29
SQL*Loader SINGLEROW parameter, 9-30

Index Unusable state
indexes left in Index Unusable state, 9-20, 12-9

indexes
creating manually, 22-17
direct path load

left in direct load state, 12-9
dropping

SQL*Loader, 12-18
estimating storage requirements, 12-9
exporting, 21-15
importing, 22-16
index-creation commands

Import, 22-17
left in unusable state, 9-20, 12-13
multiple-column

SQL*Loader, 12-13
presorting data

SQL*Loader, 12-13

Index-11

skipping maintenance, 8-11, 12-18
skipping unusable, 8-11, 12-18
SQL*Loader, 9-29
state after discontinued load, 9-20
unique, 22-16

INDEXES parameter
Export utility, 21-15
Import utility, 22-16

INDEXFILE parameter
Import utility, 22-17

INFILE parameter
SQL*Loader utility, 9-7

insert errors
Import, 22-31
specifying, 8-5

INSERT into table
SQL*Loader, 9-25

instance affinity
Export and Import, 21-31

instance recovery, 12-11
integrity constraints

disabled during direct path load, 12-19
enabled during direct path load, 12-18
failed on Import, 22-30
load method, 12-7

interactive method
Data Pump Export utility, 2-2

internal LOBs
loading, 11-14

interrupted loads, 9-18
INTO TABLE statement

effect on bind array size, 9-38
multiple statements with SQL*Loader, 9-30
SQL*Loader, 9-24

column names, 10-4
discards, 9-12

invalid data
Import, 22-31

invoking
Export, 21-3, 22-6

at the command line, 21-4, 22-7
direct path, 21-28
interactively, 21-5, 22-8
with a parameter file, 21-4, 22-7

Import, 21-3, 22-6
as SYSDBA, 21-3, 22-8
at the command line, 21-4, 22-7
interactively, 21-5, 22-8
with a parameter file, 21-4, 22-7

IPS command, ADRCI utility, 16-17

J
JOB_NAME parameter

Data Pump Export utility, 2-28
Data Pump Import utility, 3-22

K
key values

generating with SQL*Loader, 10-47
KILL_JOB parameter

Data Pump Export utility
interactive-command mode, 2-50

Data Pump Import utility, 3-56

L
leading whitespace

definition, 10-36
trimming and SQL*Loader, 10-38

legacy mode in Data Pump, 4-1
length indicator

determining size, 9-36
length-value pair specified LOBs, 11-20
libraries

foreign function
exporting, 21-32
importing, 22-39, 22-40

little-endian data
external tables, 14-9

LOAD parameter
SQL*Loader command line, 8-7

loading
collections, 11-22
column objects, 11-1

in variable record format, 11-2
with a derived subtype, 11-3
with user-defined constructors, 11-6

datafiles containing tabs
SQL*Loader, 10-3

external table data
skipping records, 14-12
specifying conditions, 14-9, 14-13

LOBs, 11-14
nested column objects, 11-3
object tables, 11-9
object tables with a subtype, 11-10
REF columns, 11-11
subpartitioned tables, 12-5
tables, 12-5

LOB data
in delimited fields, 11-15
in length-value pair fields, 11-16
in predetermined size fields, 11-15
loading with SQL*Loader, 11-14
no compression during export, 21-10
size of read buffer, 8-9
types supported by SQL*Loader, 7-13, 11-14

LOB data types, 7-7
LOBFILEs, 7-7, 11-14, 11-17
log files

after a discontinued load, 9-20
Export, 21-15, 21-26
Import, 21-26, 22-17
specifying for SQL*Loader, 8-7
SQL*Loader, 7-9

LOG parameter
Export utility, 21-15
Import utility, 22-17

Index-12

SQL*Loader command line, 8-7
LOGFILE parameter

Data Pump Export utility, 2-29
Data Pump Import utility, 3-23

logical records
consolidating multiple physical records using

SQL*Loader, 9-21
LogMiner utility

accessing redo data of interest, 19-10
adjusting redo log file list, 19-25
analyzing output, 19-12
configuration, 19-2
considerations for reapplying DDL

statements, 19-25
current log file list

stored information about, 19-34
DBMS_LOGMNR PL/SQL procedure and, 19-4
DBMS_LOGMNR_D PL/SQL procedure

and, 19-4
DBMS_LOGMNR_D.ADD_LOGFILES PL/SQL

procedure and, 19-4
DBMS_LOGMNR_D.BUILD PL/SQL procedure

and, 19-4
DBMS_LOGMNR_D.END_LOGMNR PL/SQL

procedure and, 19-5
DBMS_LOGMNR.START_LOGMNR PL/SQL

procedure and, 19-5
DDL tracking

time or SCN ranges, 19-33
determining redo log files being analyzed, 19-9
dictionary

purpose of, 19-3
dictionary extracted to flat file

stored information about, 19-34
dictionary options, 19-5

flat file and, 19-6
online catalog and, 19-5
redo log files and, 19-5

ending a session, 19-40
executing reconstructed SQL, 19-23
extracting data values from redo logs, 19-13
filtering data by SCN, 19-23
filtering data by time, 19-23
formatting returned data, 19-24
graphical user interface, 19-1
levels of supplemental logging, 19-26
LogMiner dictionary defined, 19-3
mining a subset of data in redo log files, 19-25
mining database definition for, 19-3
operations overview, 19-4
parameters

stored information about, 19-34
redo log files

on a remote database, 19-26
stored information about, 19-34

requirements for dictionary, 19-4
requirements for redo log files, 19-4
requirements for source and mining

databases, 19-3
restrictions with XMLType data, 19-17

sample configuration, 19-3
showing committed transactions only, 19-20
skipping corruptions, 19-22
source database definition for, 19-2
specifying redo log files to mine, 19-8

automatically, 19-8
manually, 19-9

specifying redo logs for analysis, 19-38
starting, 19-9, 19-39
starting multiple times within a session, 19-25
steps for extracting dictionary to a flat file, 19-8
steps for extracting dictionary to redo log

files, 19-7
steps for using dictionary in online catalog, 19-6
steps in a typical session, 19-37
supplemental log groups, 19-26

conditional, 19-26
unconditional, 19-26

supplemental logging, 19-26
database level, 19-27
database-level identification keys, 19-27
disabling database-level, 19-28
interactions with DDL tracking, 19-32
log groups, 19-26
minimal, 19-27
stored information about, 19-34
table-level identification keys, 19-29
table-level log groups, 19-30
user-defined log groups, 19-31

support for transparent data encryption, 19-11
supported database versions, 19-69
supported datatypes, 19-67
supported redo log file versions, 19-69
suppressing delimiters in SQL_REDO and SQL_

UNDO, 19-24
table-level supplemental logging, 19-29
tracking DDL statements, 19-31

requirements, 19-32
unsupported datatypes, 19-69
using the online catalog, 19-6
using to analyze redo log files, 19-1
V$DATABASE view, 19-34
V$LOGMNR_CONTENTS view, 19-4, 19-12,

19-19
V$LOGMNR_DICTIONARY view, 19-34
V$LOGMNR_LOGS view, 19-34

querying, 19-34
V$LOGMNR_PARAMETERS view, 19-34
views, 19-34

LogMiner Viewer, 19-1
LONG data

exporting, 21-32
importing, 22-40

M
master tables

Oracle Data Pump API, 1-6
snapshots

original Import, 22-42

Index-13

materialized views, 22-42
media recovery

direct path load, 12-11
Metadata API

enhancing performance, 20-23
retrieving collections, 20-12
using to retrieve object metadata, 20-2

missing data columns
SQL*Loader, 9-28

multibyte character sets
blanks with SQL*Loader, 10-27
SQL*Loader, 9-13

multiple-column indexes
SQL*Loader, 12-13

multiple-CPU systems
optimizing direct path loads, 12-17

multiple-table load
generating unique sequence numbers using

SQL*Loader, 10-48
SQL*Loader control file specification, 9-30

multithreading
on multiple-CPU systems, 12-17

MULTITHREADING parameter
SQL*Loader command line, 8-7

N
named pipes

external table loads, 7-10
native datatypes

conflicting length specifications
SQL*Loader, 10-17

NCLOBs
loading with SQL*Loader, 11-14

nested column objects
loading, 11-3

nested tables
exporting, 21-33

consistency and, 21-10
importing, 22-38

NETWORK_LINK parameter
Data Pump Export utility, 2-30
Data Pump Import utility, 3-24

networks
Export and Import, 21-29, 22-35

NLS_LANG environment variable, 21-30, 22-36
with Export and Import, 21-31, 22-36

NO_INDEX_ERRORS parameter
SQL*Loader command line, 8-8

NOLOGFILE parameter
Data Pump Export utility, 2-31
Data Pump Import utility, 3-26

nonrecoverable error messages
Export, 21-26
Import, 21-26

nonscalar datatypes, 11-4
NOT NULL constraint

load method, 12-7
null data

missing columns at end of record during

load, 9-28
unspecified columns and SQL*Loader, 10-4

NULL values
objects, 11-4

NULLIF clause
SQL*Loader, 10-25, 10-34

NULLIF...BLANKS clause
SQL*Loader, 10-26

nulls
atomic, 11-5
attribute, 11-4

NUMBER datatype
SQL*Loader, 10-18, 10-19

numeric EXTERNAL datatypes
delimited form and SQL*Loader, 10-19
determining length, 10-24

O
object identifiers, 11-9

importing, 22-37
object names

SQL*Loader, 9-4
object tables

loading, 11-9
with a subtype

loading, 11-10
object type definitions

exporting, 21-33
object types supported by SQL*Loader, 7-12
OBJECT_CONSISTENT parameter

Export utility, 21-15
objects, 7-12

creation errors, 22-31
ignoring existing objects during import, 22-16
import creation errors, 22-16
loading nested column objects, 11-3
NULL values, 11-4
stream record format, 11-2
variable record format, 11-2

offline locally managed tablespaces
exporting, 21-32

OID
See object identifiers

online help
Export and Import, 21-5

opaque_format_spec, 13-3, 14-2, 15-2
operating systems

moving data to different systems using
SQL*Loader, 10-30

OPTIMAL storage parameter
used with Export/Import, 22-44

optimizer statistics, 22-46
optimizing

direct path loads, 12-12
SQL*Loader input file processing, 9-9

OPTIONALLY ENCLOSED BY clause
SQL*Loader, 10-37

OPTIONS parameter
for parallel loads, 9-26

Index-14

SQL*Loader utility, 9-3
Oracle Advanced Queuing

See Advanced Queuing
Oracle Automatic Storage Management (ASM)

Data Pump and, 1-12
Oracle Data Pump

direct path loads
restrictions, 1-3

master table, 1-6
tuning performance, 5-2

Oracle Data Pump API, 6-1
client interface, 6-1
job states, 6-1
monitoring job progress, 1-9

ORACLE_DATAPUMP access driver
effect of SQL ENCRYPT clause on, 15-4
reserved words, 15-1, 15-16

ORACLE_LOADER access driver
reserved words, 14-2, 14-36

OWNER parameter
Export utility, 21-15

P
packages

creating, 16-11
padding of literal strings

SQL*Loader, 10-27
parallel loads, 12-22

restrictions on direct path, 12-23
when using PREPROCESSOR clause, 14-8

PARALLEL parameter
Data Pump Export utility

command-line interface, 2-32
interactive-command mode, 2-50

Data Pump Import utility
command-line mode, 3-26
interactive-command mode, 3-56

SQL*Loader command line, 8-8
parameter files

Export, 21-15
Export and Import

comments in, 21-4, 22-7
maximum size, 21-4, 22-7

Import, 22-17
SQL*Loader, 8-8

PARFILE parameter
Data Pump Export utility, 2-33
Data Pump Import utility, 3-28
Export command line, 21-15
Import command line, 22-17
SQL*Loader command line, 8-8

PARTITION_OPTIONS parameter
Data Pump Import utility, 3-29

partitioned loads
concurrent conventional path loads, 12-22
SQL*Loader, 12-22

partitioned object support in SQL*Loader, 7-13
partitioned tables

export consistency and, 21-10

exporting, 21-8
importing, 22-25, 22-32
loading, 12-5

partitioning a database migration, 21-35, 22-46
advantages of, 21-35, 22-46
disadvantages of, 21-35, 22-46
procedure during export, 21-35, 22-47

partition-level Export, 21-8
example session, 21-24

partition-level Import, 22-32
specifying, 21-18

pattern matching
table names during import, 22-20

performance
improving when using integrity

constraints, 12-22
optimizing for direct path loads, 12-12
optimizing reading of SQL*Loader data files, 9-9
tuning original Import, 22-47

performance tuning
Oracle Data Pump, 5-2

PIECED parameter
SQL*Loader, 12-11

POSITION parameter
using with data containing tabs, 10-3
with multiple SQL*Loader INTO TABLE

clauses, 9-32, 10-2, 10-3
predetermined size fields

SQL*Loader, 10-37
predetermined size LOBs, 11-19
preprocessing data for external tables, 14-6

effects of parallel processing, 14-8
prerequisites

SQL*Loader, 12-1
PRESERVE parameter, 9-22
preserving

whitespace, 10-40
PRIMARY KEY constraints

effect on direct path load, 12-26
primary key OIDs

example, 11-9
primary key REF columns, 11-12
privileges

EXEMPT ACCESS POLICY
effect on direct path export, 21-28

required for Export and Import, 21-2, 22-3
required for SQL*Loader, 12-1

problem
fault diagnosability infrastructure, 16-2

problem key
fault diagnosability infrastructure, 16-3

PURGE command, ADRCI utility, 16-34

Q
QUERY parameter

Data Pump Export utility, 2-34
Data Pump Import utility, 3-30
Export utility, 21-16

restrictions, 21-16

Index-15

QUIT command, ADRCI utility, 16-35
quotation marks

escape characters and, 9-4
file names and, 9-4
SQL strings and, 9-4
table names and, 2-41, 3-44, 21-19, 22-22
usage in Data Pump Export, 2-7
usage in Data Pump Import, 3-7
use with database object names, 9-4

R
read-consistent export, 21-10
read-only tablespaces

Import, 22-45
READSIZE parameter

SQL*Loader command line, 8-8
effect on LOBs, 8-9
maximum size, 8-9

RECNUM parameter
use with SQL*Loader SKIP parameter, 10-46

RECORDLENGTH parameter
Export utility, 21-16
Import utility, 22-17

records
consolidating into a single logical record

SQL*Loader, 9-21
discarded by SQL*Loader, 7-8, 9-11
DISCARDMAX command-line parameter, 8-5
distinguishing different formats for

SQL*Loader, 9-31
extracting multiple logical records using

SQL*Loader, 9-30
fixed format, 7-4
missing data columns during load, 9-28
rejected by SQL*Loader, 7-8, 9-9
setting column to record number with

SQL*Loader, 10-46
specifying how to load, 8-7
specifying length for export, 21-17
specifying length for import, 22-17
stream record format, 7-5

recovery
direct path load

SQL*Loader, 12-10
replacing rows, 9-26

redo log file
LogMiner utility

versions supported, 19-69
redo log files

analyzing, 19-1
requirements for LogMiner utility, 19-4
specifying for the LogMiner utility, 19-8

redo logs
direct path load, 12-11
instance and media recovery

SQL*Loader, 12-11
minimizing use during direct path loads, 12-14
saving space

direct path load, 12-15

REF columns, 11-11
loading, 11-11
primary key, 11-12
system-generated, 11-12

REF data
importing, 22-39

referential integrity constraints
disabling for import, 22-5
SQL*Loader, 12-18

refresh error
snapshots

Import, 22-42
reject files

specifying for SQL*Loader, 9-9
rejected records

SQL*Loader, 7-8, 9-9
relative field positioning

where a field starts and SQL*Loader, 10-37
with multiple SQL*Loader INTO TABLE

clauses, 9-31
REMAP_DATA parameter

Data Pump Export utility, 2-35
Data Pump Import utility, 3-31

REMAP_DATAFILE parameter
Data Pump Import utility, 3-32

REMAP_SCHEMA parameter
Data Pump Import utility, 3-33

REMAP_TABLE parameter
Data Pump Import utility, 3-35

REMAP_TABLESPACE parameter
Data Pump Import utility, 3-35

remote operation
Export/Import, 21-29, 22-35

REPLACE table
replacing a table using SQL*Loader, 9-26

reserved words
external tables, 13-5, 14-36, 15-16
ORACLE_DATAPUMP access driver, 15-1, 15-16
ORACLE_LOADER access driver, 14-2, 14-36
SQL*Loader, 7-3

resource consumption
controlling in Data Pump Export utility, 5-2
controlling in Data Pump Import utility, 5-2

resource errors
Import, 22-32

RESOURCE role, 22-3
restrictions

importing into another user’s schema, 22-4
table names in Export parameter file, 21-19
table names in Import parameter file, 2-41, 3-44,

22-22
RESUMABLE parameter

Export utility, 21-17
Import utility, 22-18
SQL*Loader utility, 8-9

resumable space allocation
enabling and disabling, 8-9, 21-17, 22-18

RESUMABLE_NAME parameter
Export utility, 21-17
Import utility, 22-18

Index-16

SQL*Loader utility, 8-9
RESUMABLE_TIMEOUT parameter

Export utility, 21-17
Import utility, 22-18
SQL*Loader utility, 8-9

retrieving object metadata
using Metadata API, 20-2

REUSE_DATAFILES parameter
Data Pump Import utility, 3-36

REUSE_DUMPFILES parameter
Data Pump Export utility, 2-36

roles
DATAPUMP_EXP_FULL_DATABASE, 1-6
DATAPUMP_IMP_FULL_DATABASE, 1-6
EXP_FULL_DATABASE, 21-2
IMP_FULL_DATABASE, 22-2
RESOURCE, 22-3

rollback segments
effects of CONSISTENT Export parameter, 21-10

row errors
Import, 22-30

ROWID columns
loading with SQL*Loader, 12-2

rows
choosing which to load using SQL*Loader, 9-27
exporting, 21-17
specifying for import, 22-18
specifying number to insert before save

SQL*Loader, 12-10
updates to existing rows with SQL*Loader, 9-26

ROWS parameter
Export utility, 21-17
Import utility, 22-18
performance issues

SQL*Loader, 12-14
SQL*Loader command line, 8-10
using to specify when data saves occur, 12-10

RUN command, ADRCI utility, 16-35

S
SAMPLE parameter

Data Pump Export utility, 2-37
schema mode export

Data Pump Export utility, 2-3
schemas

specifying for Export, 21-18
SCHEMAS parameter

Data Pump Export utility, 2-37
Data Pump Import utility, 3-37

scientific notation for FLOAT EXTERNAL, 10-16
script files

running before Export and Import, 21-2, 22-2
SDFs

See secondary datafiles
secondary datafiles, 7-7, 11-24
SecureFiles

encryption during Data Pump export, 2-16
SecureFiles LOBs

export considerations, 1-14

security considerations
direct path export, 21-28

segments
temporary

FILE parameter in SQL*Loader, 12-25
SELECT command, ADRCI utility, 16-36

functions, 16-37
sequence numb, 10-47
sequence numbers

cached, 21-31
exporting, 21-31
for multiple tables and SQL*Loader, 10-48
generated by SQL*Loader SEQUENCE

clause, 10-47
generated, not read and SQL*Loader, 10-4

SERVICE_NAME parameter
Data Pump Export utility, 2-38
Data Pump Import utility, 3-37

SET BASE command, ADRCI utility, 16-44
SET BROWSER command, ADRCI utility, 16-44
SET CONTROL command, ADRCI utility, 16-44
SET ECHO command, ADRCI utility, 16-45
SET EDITOR command, ADRCI utility, 16-45
SET HOMEPATH command, ADRCI utility, 16-45
SET TERMOUT command, ADRCI utility, 16-46
short records with missing data

SQL*Loader, 9-28
SHOW ALERT command, ADRCI utility, 16-46
SHOW BASE command, ADRCI utility, 16-48
SHOW CONTROL command, ADRCI utility, 16-49
SHOW HM_RUN command, ADRCI utility, 16-50
SHOW HOMEPATH command, ADRCI

utility, 16-51
SHOW HOMES command, ADRCI utility, 16-51
SHOW INCDIR command, ADRCI utility, 16-51
SHOW INCIDENT command, ADRCI utility, 16-52
SHOW parameter

Import utility, 22-18
SHOW PROBLEM command, ADRCI utility, 16-56
SHOW REPORT command, ADRCI utility, 16-57
SHOW TRACEFILE command, ADRCI utility, 16-57
SILENT parameter

SQL*Loader command line, 8-10
single-byte character sets

Export and Import, 21-31, 22-36
SINGLEROW parameter, 9-30, 12-18
single-table loads

continuing, 9-20
SKIP parameter

effect on SQL*Loader RECNUM
specification, 10-46

SQL*Loader command line, 8-11
SKIP_INDEX_MAINTENANCE parameter

SQL*Loader command line, 8-11, 12-18
SKIP_UNUSABLE_INDEXES parameter

Import utility, 22-19
SQL*Loader command line, 8-11, 12-18

SKIP_USABLE_INDEXES parameter
Data Pump Import utility, 3-38

skipping index maintenance, 8-11, 12-18

Index-17

skipping unusable indexes, 8-11, 12-18
snapshot log

Import, 22-42
snapshots, 22-42

importing, 22-42
master table

Import, 22-42
restoring dropped

Import, 22-43
SORTED INDEXES clause

direct path loads, 9-29
SQL*Loader, 12-13

sorting
multiple-column indexes

SQL*Loader, 12-13
optimum sort order

SQL*Loader, 12-14
presorting in direct path load, 12-13
SORTED INDEXES clause

SQL*Loader, 12-13
SOURCE_EDITION parameter

Data Pump Export utility, 2-39
Data Pump Import utility, 3-39

SPOOL command, ADRCI utility, 16-58
SQL operators

applying to fields, 10-41
SQL strings

applying SQL operators to fields, 10-41
quotation marks and, 9-4

SQL*Loader
appending rows to tables, 9-26
BAD command-line parameter, 8-2
bad file, 8-2
BADFILE parameter, 9-9
bind arrays and performance, 9-34
BINDSIZE command-line parameter, 8-3, 9-35
choosing which rows to load, 9-27
COLUMNARRAYROWS command-line

parameter, 8-3
command-line parameters, 8-1
continuing single-table loads, 9-20
CONTROL command-line parameter, 8-3
conventional path loads, 7-9, 12-3
DATA command-line parameter, 8-4
data conversion, 7-7
data definition language

syntax diagrams, A-1
datatype specifications, 7-7
DATE_CACHE command-line parameter, 8-4
determining default schema, 9-25
DIRECT command-line parameter, 12-8
direct path method, 7-9

using date cache feature to improve
performance, 12-16

DISCARD command-line parameter, 8-4
discarded records, 7-8
DISCARDFILE parameter, 9-11
DISCARDMAX command-line parameter, 8-5
DISCARDMAX parameter, 9-12
DISCARDS parameter, 9-12

errors caused by tabs, 10-3
ERRORS command-line parameter, 8-5
exclusive access, 12-22
external table loads, 7-10
EXTERNAL_TABLE parameter, 8-5
FILE command-line parameter, 8-7
file names, 9-4
globalization technology, 9-13
index options, 9-29
inserting rows into tables, 9-25
INTO TABLE statement, 9-24
LOAD command-line parameter, 8-7
load methods, 12-1
loading column objects, 11-1
loading data across different platforms, 10-30
loading data contained in the control file, 10-45
loading object tables, 11-9
LOG command-line parameter, 8-7
log files, 7-9
methods of loading data, 7-9
multiple INTO TABLE statements, 9-30
MULTITHREADING command-line

parameter, 8-7
object names, 9-4
parallel data loading, 12-22, 12-23, 12-26
PARFILE command-line parameter, 8-8
portable datatypes, 10-11
READSIZE command-line parameter, 8-8

maximum size, 8-9
rejected records, 7-8
replacing rows in tables, 9-26
required privileges, 12-1
RESUMABLE parameter, 8-9
RESUMABLE_NAME parameter, 8-9
RESUMABLE_TIMEOUT parameter, 8-9
ROWS command-line parameter, 8-10
SILENT command-line parameter, 8-10
SINGLEROW parameter, 9-30
SKIP_INDEX_MAINTENANCE command-line

parameter, 8-11
SKIP_UNUSABLE_INDEXES command-line

parameter, 8-11
SORTED INDEXES during direct path loads, 9-29
specifying columns, 10-4
specifying data files, 9-6
specifying field conditions, 10-25
specifying fields, 10-4
specifying more than one data file, 9-8
STREAMSIZE command-line parameter, 8-12
suppressing messages, 8-10
USERID command-line parameter, 8-12

SQL*Loader control files
guidelines when creating, 7-3

SQL*Loader datatypes
nonportable, 10-6

SQLFILE parameter
Data Pump Import utility, 3-40

START_JOB parameter
Data Pump Export utility

interactive-command mode, 2-51

Index-18

Data Pump Import utility
interactive-command mode, 3-57

starting
LogMiner utility, 19-9

statistics
analyzer, 22-46
database optimizer

specifying for Export, 21-18
optimizer, 22-46
specifying for Import, 22-19

STATISTICS parameter
Export utility, 21-18
Import utility, 22-19

STATUS parameter
Data Pump Export utility, 2-40

interactive-command mode, 2-51
Data Pump Import utility, 3-41

interactive-command mode, 3-57
STOP_JOB parameter

Data Pump Export utility
interactive-command mode, 2-52

Data Pump Import utility
interactive-command mode, 3-57

STORAGE parameter, 12-25
storage parameters

estimating export requirements, 21-3
OPTIMAL parameter, 22-44
overriding

Import, 22-44
preallocating

direct path load, 12-12
temporary for a direct path load, 12-9
using with Export/Import, 22-44

stored functions
importing, 22-40

effect of COMPILE parameter, 22-40
stored package, 22-40
stored packages

importing, 22-40
stored procedures

direct path load, 12-21
importing, 22-40

effect of COMPILE parameter, 22-40
stream buffer

specifying size for direct path, 12-15
stream record format, 7-5

loading column objects in, 11-2
Streams environment in Data Pump

setting buffer cache size, 5-3
STREAMS_CONFIGURATION parameter

Data Pump Import utility, 3-41
Import utility, 22-20

STREAMS_INSTANTIATION parameter
Import utility, 22-20

STREAMSIZE parameter
SQL*Loader command line, 8-12

string comparisons
SQL*Loader, 10-27

subpartitioned tables
loading, 12-5

subtypes
loading multiple, 9-33

supplemental logging
LogMiner utility, 19-26

database-level identification keys, 19-27
log groups, 19-26
table-level, 19-29
table-level identification keys, 19-29
table-level log groups, 19-30

See also LogMiner utility
synonyms

exporting, 21-33
syntax diagrams

Data Pump Export, 2-54
Data Pump Import, 3-59
SQL*Loader, A-1

SYSDATE parameter
SQL*Loader, 10-47

system objects
importing, 22-4

system triggers
effect on import, 22-6
testing, 22-6

system-generated OID REF columns, 11-12

T
table names

preserving case sensitivity, 21-19
TABLE_EXISTS_ACTION parameter

Data Pump Import utility, 3-42
table-level Export, 21-8
table-level Import, 22-32
table-mode Export

Data Pump Export utility, 2-3
specifying, 21-18

table-mode Import
examples, 22-25

tables
Advanced Queuing

exporting, 21-33
importing, 22-40

appending rows with SQL*Loader, 9-26
defining before Import, 22-5
definitions

creating before Import, 22-5
exclusive access during direct path loads

SQL*Loader, 12-22
external, 13-1
importing, 22-20
insert triggers

direct path load in SQL*Loader, 12-20
inserting rows using SQL*Loader, 9-25
loading data into more than one table using

SQL*Loader, 9-30
loading object tables, 11-9
maintaining consistency during Export, 21-10
manually ordering for Import, 22-6
master table

Import, 22-42

Index-19

name restrictions
Export, 21-19
Import, 2-41, 3-44, 22-20, 22-22

nested
exporting, 21-33
importing, 22-38

objects
order of import, 22-2

partitioned, 21-8
replacing rows using SQL*Loader, 9-26
specifying for export, 21-18
specifying table-mode Export, 21-18
SQL*Loader method for individual tables, 9-25
truncating

SQL*Loader, 9-26
updating existing rows using SQL*Loader, 9-26
See also external tables

TABLES parameter
Data Pump Export utility, 2-40
Data Pump Import utility, 3-43
Export utility, 21-18
Import utility, 22-20

tablespace mode Export
Data Pump Export utility, 2-4

tablespaces
dropping during import, 22-45
exporting a set of, 21-34, 22-43
metadata

transporting, 22-23
read-only

Import, 22-45
reorganizing

Import, 22-45
TABLESPACES parameter

Data Pump Export utility, 2-42
Data Pump Import utility, 3-45
Export utility, 21-19
Import utility, 22-22

tabs
loading datafiles containing tabs, 10-3
trimming, 10-35
whitespace, 10-35

TARGET_EDITION parameter
Data Pump Import utility, 3-46

temporary segments, 12-24
FILE parameter

SQL*Loader, 12-25
temporary storage in a direct path load, 12-9
TERMINATED BY clause

with OPTIONALLY ENCLOSED BY, 10-37
terminated fields

specified with a delimiter, 10-37
time zone file versions

Data Pump Export, 2-4
Data Pump Import, 3-4

TOID_NOVALIDATE parameter
Import utility, 22-22

TOUSER parameter
Import utility, 22-23

trace files

viewing with ADRCI, 16-9
trailing blanks

loading with delimiters, 10-21
TRAILING NULLCOLS parameter

SQL*Loader utility, 9-3, 9-29
trailing whitespace

trimming, 10-39
TRANSFORM parameter

Data Pump Import utility, 3-46
transparent data encryption

as handled by Data Pump Export, 2-18
as handled by Data Pump Import, 3-14
LogMiner support, 19-11

TRANSPORT_DATAFILES parameter
Data Pump Import utility, 3-49

TRANSPORT_FULL_CHECK parameter
Data Pump Export utility, 2-43
Data Pump Import utility, 3-50

TRANSPORT_TABLESPACE parameter
Export utility, 21-20
Import utility, 22-23

TRANSPORT_TABLESPACES parameter
Data Pump Export utility, 2-44
Data Pump Import utility, 3-51

transportable option
used during table-mode export, 2-41

TRANSPORTABLE parameter
Data Pump Export utility, 2-45
Data Pump Import utility, 3-52

transportable tablespaces, 21-34, 22-43
transportable-tablespace mode Export

Data Pump Export utility, 2-4
triggers

database insert, 12-20
logon

effect in SQL*Loader, 9-25
permanently disabled, 12-22
replacing with integrity constraints, 12-20
system

testing, 22-6
update

SQL*Loader, 12-21
TRIGGERS parameter

Export utility, 21-20
trimming

summary, 10-36
trailing whitespace

SQL*Loader, 10-39
TTS_FULL_CHECK parameter

Export utility, 21-20
TTS_OWNERS parameter

Import utility, 22-24

U
UNIQUE KEY constraints

effect on direct path load, 12-26
unique values

generating with SQL*Loader, 10-47
unloading entire database

Index-20

Data Pump Export utility, 2-3
UNRECOVERABLE clause

SQL*Loader, 12-15
unsorted data

direct path load
SQL*Loader, 12-13

user mode export
specifying, 21-15

USER_SEGMENTS view
Export and, 21-3

user-defined constructors, 11-6
loading column objects with, 11-6

USERID parameter
Export utility, 21-20
Import utility, 22-24
SQL*Loader command line, 8-12

V
V$DATABASE view, 19-34
V$LOGMNR_CONTENTS view, 19-12

formatting information returned to, 19-20
impact of querying, 19-13
information within, 19-10
limiting information returned to, 19-19
LogMiner utility, 19-4
requirements for querying, 19-10, 19-12

V$LOGMNR_DICTIONARY view, 19-34
V$LOGMNR_LOGS view, 19-9, 19-34

querying, 19-34
V$LOGMNR_PARAMETERS view, 19-34
V$SESSION_LONGOPS view

monitoring Data Pump jobs with, 1-9
VARCHAR2 datatype

SQL*Loader, 10-18
VARCHARC datatype

SQL*Loader, 10-16
variable records, 7-4

format, 11-2
variable-length records

external tables, 14-5
VARRAWC datatype, 10-17
VARRAY columns

memory issues when loading, 11-26
VERSION parameter

Data Pump Export utility, 2-46
Data Pump Import utility, 3-53

viewing
trace files with ADRCI, 16-9

VOLSIZE parameter
Export utility, 21-21
Import utility, 22-24

W
warning messages

Export, 21-26
Import, 21-26

WHEN clause
SQL*Loader, 9-27, 10-25

SQL*Loader discards resulting from, 9-12
whitespace

included in a field, 10-38
leading, 10-36
preserving, 10-40
terminating a field, 10-39
trimming, 10-35

X
XML columns

loading with SQL*Loader, 11-14
treatment by SQL*Loader, 11-14

XML type tables
identifying in SQL*Loader, 9-5

XMLTYPE clause
in SQL*Loader control file, 9-5

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documentation
	Syntax Diagrams
	Conventions

	What's New in Database Utilities?
	Oracle Database 11g Release 2 (11.2.0.3) New Features in Oracle Database Utilities
	Oracle Database 11g Release 2 (11.2.0.2) New Features in Oracle Database Utilities
	Oracle Database 11g Release 2 (11.2.0.1) New Features in Oracle Database Utilities
	New Features in Oracle Database Utilities 11g Release 1

	Part I Oracle Data Pump
	1 Overview of Oracle Data Pump
	Data Pump Components
	How Does Data Pump Move Data?
	Using Data File Copying to Move Data
	Using Direct Path to Move Data
	Using External Tables to Move Data
	Using Conventional Path to Move Data
	Using Network Link Import to Move Data

	Required Roles for Data Pump Export and Import Operations
	What Happens During Execution of a Data Pump Job?
	Coordination of a Job
	Tracking Progress Within a Job
	Filtering Data and Metadata During a Job
	Transforming Metadata During a Job
	Maximizing Job Performance
	Loading and Unloading of Data

	Monitoring Job Status
	Monitoring the Progress of Executing Jobs

	File Allocation
	Specifying Files and Adding Additional Dump Files
	Default Locations for Dump, Log, and SQL Files
	Oracle RAC Considerations
	Using Directory Objects When Oracle Automatic Storage Management Is Enabled

	Using Substitution Variables

	Moving Data Between Different Database Releases
	SecureFiles LOB Considerations
	Data Pump Exit Codes

	2 Data Pump Export
	What Is Data Pump Export?
	Invoking Data Pump Export
	Data Pump Export Interfaces
	Data Pump Export Modes
	Full Export Mode
	Schema Mode
	Table Mode
	Tablespace Mode
	Transportable Tablespace Mode

	Network Considerations

	Filtering During Export Operations
	Data Filters
	Metadata Filters

	Parameters Available in Export's Command-Line Mode
	ABORT_STEP
	ACCESS_METHOD
	ATTACH
	CLUSTER
	COMPRESSION
	CONTENT
	DATA_OPTIONS
	DIRECTORY
	DUMPFILE
	ENCRYPTION
	ENCRYPTION_ALGORITHM
	ENCRYPTION_MODE
	ENCRYPTION_PASSWORD
	ESTIMATE
	ESTIMATE_ONLY
	EXCLUDE
	FILESIZE
	FLASHBACK_SCN
	FLASHBACK_TIME
	FULL
	HELP
	INCLUDE
	JOB_NAME
	KEEP_MASTER
	LOGFILE
	METRICS
	NETWORK_LINK
	NOLOGFILE
	PARALLEL
	PARFILE
	QUERY
	REMAP_DATA
	REUSE_DUMPFILES
	SAMPLE
	SCHEMAS
	SERVICE_NAME
	SOURCE_EDITION
	STATUS
	TABLES
	TABLESPACES
	TRANSPORT_FULL_CHECK
	TRANSPORT_TABLESPACES
	TRANSPORTABLE
	VERSION

	Commands Available in Export's Interactive-Command Mode
	ADD_FILE
	CONTINUE_CLIENT
	EXIT_CLIENT
	FILESIZE
	HELP
	KILL_JOB
	PARALLEL
	START_JOB
	STATUS
	STOP_JOB

	Examples of Using Data Pump Export
	Performing a Table-Mode Export
	Data-Only Unload of Selected Tables and Rows
	Estimating Disk Space Needed in a Table-Mode Export
	Performing a Schema-Mode Export
	Performing a Parallel Full Database Export
	Using Interactive Mode to Stop and Reattach to a Job

	Syntax Diagrams for Data Pump Export

	3 Data Pump Import
	What Is Data Pump Import?
	Invoking Data Pump Import
	Data Pump Import Interfaces
	Data Pump Import Modes
	Full Import Mode
	Schema Mode
	Table Mode
	Tablespace Mode
	Transportable Tablespace Mode

	Network Considerations

	Filtering During Import Operations
	Data Filters
	Metadata Filters

	Parameters Available in Import's Command-Line Mode
	ABORT_STEP
	ACCESS_METHOD
	ATTACH
	CLUSTER
	CONTENT
	DATA_OPTIONS
	DIRECTORY
	DUMPFILE
	ENCRYPTION_PASSWORD
	ESTIMATE
	EXCLUDE
	FLASHBACK_SCN
	FLASHBACK_TIME
	FULL
	HELP
	INCLUDE
	JOB_NAME
	KEEP_MASTER
	LOGFILE
	MASTER_ONLY
	METRICS
	NETWORK_LINK
	NOLOGFILE
	PARALLEL
	PARFILE
	PARTITION_OPTIONS
	QUERY
	REMAP_DATA
	REMAP_DATAFILE
	REMAP_SCHEMA
	REMAP_TABLE
	REMAP_TABLESPACE
	REUSE_DATAFILES
	SCHEMAS
	SERVICE_NAME
	SKIP_UNUSABLE_INDEXES
	SOURCE_EDITION
	SQLFILE
	STATUS
	STREAMS_CONFIGURATION
	TABLE_EXISTS_ACTION
	TABLES
	TABLESPACES
	TARGET_EDITION
	TRANSFORM
	TRANSPORT_DATAFILES
	TRANSPORT_FULL_CHECK
	TRANSPORT_TABLESPACES
	TRANSPORTABLE
	VERSION

	Commands Available in Import's Interactive-Command Mode
	CONTINUE_CLIENT
	EXIT_CLIENT
	HELP
	KILL_JOB
	PARALLEL
	START_JOB
	STATUS
	STOP_JOB

	Examples of Using Data Pump Import
	Performing a Data-Only Table-Mode Import
	Performing a Schema-Mode Import
	Performing a Network-Mode Import

	Syntax Diagrams for Data Pump Import

	4 Data Pump Legacy Mode
	Parameter Mappings
	Using Original Export Parameters with Data Pump
	Using Original Import Parameters with Data Pump

	Management of File Locations in Data Pump Legacy Mode
	Adjusting Existing Scripts for Data Pump Log Files and Errors
	Log Files
	Error Cases
	Exit Status

	5 Data Pump Performance
	Data Performance Improvements for Data Pump Export and Import
	Tuning Performance
	Controlling Resource Consumption
	Effects of Compression and Encryption on Performance

	Initialization Parameters That Affect Data Pump Performance
	Setting the Size Of the Buffer Cache In a Streams Environment

	6 The Data Pump API
	How Does the Client Interface to the Data Pump API Work?
	Job States

	What Are the Basic Steps in Using the Data Pump API?
	Examples of Using the Data Pump API

	Part II SQL*Loader
	7 SQL*Loader Concepts
	SQL*Loader Features
	SQL*Loader Parameters
	SQL*Loader Control File
	Input Data and Data Files
	Fixed Record Format
	Variable Record Format
	Stream Record Format
	Logical Records
	Data Fields

	LOBFILEs and Secondary Data Files (SDFs)
	Data Conversion and Datatype Specification
	Discarded and Rejected Records
	The Bad File
	SQL*Loader Rejects
	Oracle Database Rejects

	The Discard File

	Log File and Logging Information
	Conventional Path Loads, Direct Path Loads, and External Table Loads
	Conventional Path Loads
	Direct Path Loads
	Parallel Direct Path

	External Table Loads
	Choosing External Tables Versus SQL*Loader
	Behavior Differences Between SQL*Loader and External Tables
	Multiple Primary Input Data Files
	Syntax and Datatypes
	Byte-Order Marks
	Default Character Sets, Date Masks, and Decimal Separator
	Use of the Backslash Escape Character

	Loading Objects, Collections, and LOBs
	Supported Object Types
	column objects
	row objects

	Supported Collection Types
	Nested Tables
	VARRAYs

	Supported LOB Types

	Partitioned Object Support
	Application Development: Direct Path Load API
	SQL*Loader Case Studies
	Case Study Files
	Running the Case Studies
	Case Study Log Files
	Checking the Results of a Case Study

	8 SQL*Loader Command-Line Reference
	Invoking SQL*Loader
	Specifying Parameters on the Command Line
	Alternative Ways to Specify Parameters
	Loading Data Across a Network

	Command-Line Parameters
	BAD (bad file)
	BINDSIZE (maximum size)
	COLUMNARRAYROWS
	CONTROL (control file)
	DATA (data file)
	DATE_CACHE
	DIRECT (data path)
	DISCARD (file name)
	DISCARDMAX (integer)
	ERRORS (errors to allow)
	EXTERNAL_TABLE
	Restrictions When Using EXTERNAL_TABLE

	FILE (tablespace file to load into)
	LOAD (number of records to load)
	LOG (log file)
	MULTITHREADING
	NO_INDEX_ERRORS
	PARALLEL (parallel load)
	PARFILE (parameter file)
	READSIZE (read buffer size)
	RESUMABLE
	RESUMABLE_NAME
	RESUMABLE_TIMEOUT
	ROWS (rows per commit)
	SILENT (feedback mode)
	SKIP (records to skip)
	SKIP_INDEX_MAINTENANCE
	SKIP_UNUSABLE_INDEXES
	STREAMSIZE
	USERID (username/password)

	Exit Codes for Inspection and Display

	9 SQL*Loader Control File Reference
	Control File Contents
	Comments in the Control File

	Specifying Command-Line Parameters in the Control File
	OPTIONS Clause

	Specifying File Names and Object Names
	File Names That Conflict with SQL and SQL*Loader Reserved Words
	Specifying SQL Strings
	Operating System Considerations
	Specifying a Complete Path
	Backslash Escape Character
	Nonportable Strings
	Using the Backslash as an Escape Character
	Escape Character Is Sometimes Disallowed

	Identifying XMLType Tables
	Specifying Data Files
	Examples of INFILE Syntax
	Specifying Multiple Data Files

	Identifying Data in the Control File with BEGINDATA
	Specifying Data File Format and Buffering
	Specifying the Bad File
	Examples of Specifying a Bad File Name
	How Bad Files Are Handled with LOBFILEs and SDFs
	Criteria for Rejected Records

	Specifying the Discard File
	Specifying the Discard File in the Control File
	Specifying the Discard File from the Command Line
	Examples of Specifying a Discard File Name
	Criteria for Discarded Records
	How Discard Files Are Handled with LOBFILEs and SDFs
	Limiting the Number of Discarded Records

	Handling Different Character Encoding Schemes
	Multibyte (Asian) Character Sets
	Unicode Character Sets
	Database Character Sets
	Data File Character Sets
	Input Character Conversion
	Considerations When Loading Data into VARRAYs or Primary-Key-Based REFs
	CHARACTERSET Parameter
	Control File Character Set
	Character-Length Semantics

	Shift-sensitive Character Data

	Interrupted Loads
	Discontinued Conventional Path Loads
	Discontinued Direct Path Loads
	Load Discontinued Because of Space Errors
	Load Discontinued Because Maximum Number of Errors Exceeded
	Load Discontinued Because of Fatal Errors
	Load Discontinued Because a Ctrl+C Was Issued

	Status of Tables and Indexes After an Interrupted Load
	Using the Log File to Determine Load Status
	Continuing Single-Table Loads

	Assembling Logical Records from Physical Records
	Using CONCATENATE to Assemble Logical Records
	Using CONTINUEIF to Assemble Logical Records

	Loading Logical Records into Tables
	Specifying Table Names
	INTO TABLE Clause

	Table-Specific Loading Method
	Loading Data into Empty Tables
	INSERT

	Loading Data into Nonempty Tables
	APPEND
	REPLACE
	Updating Existing Rows
	TRUNCATE

	Table-Specific OPTIONS Parameter
	Loading Records Based on a Condition
	Using the WHEN Clause with LOBFILEs and SDFs

	Specifying Default Data Delimiters
	fields_spec
	termination_spec
	enclosure_spec

	Handling Short Records with Missing Data
	TRAILING NULLCOLS Clause

	Index Options
	SORTED INDEXES Clause
	SINGLEROW Option

	Benefits of Using Multiple INTO TABLE Clauses
	Extracting Multiple Logical Records
	Relative Positioning Based on Delimiters

	Distinguishing Different Input Record Formats
	Relative Positioning Based on the POSITION Parameter

	Distinguishing Different Input Row Object Subtypes
	Loading Data into Multiple Tables
	Summary

	Bind Arrays and Conventional Path Loads
	Size Requirements for Bind Arrays
	Performance Implications of Bind Arrays
	Specifying Number of Rows Versus Size of Bind Array
	Calculations to Determine Bind Array Size
	Determining the Size of the Length Indicator
	Calculating the Size of Field Buffers

	Minimizing Memory Requirements for Bind Arrays
	Calculating Bind Array Size for Multiple INTO TABLE Clauses

	10 SQL*Loader Field List Reference
	Field List Contents
	Specifying the Position of a Data Field
	Using POSITION with Data Containing Tabs
	Using POSITION with Multiple Table Loads
	Examples of Using POSITION

	Specifying Columns and Fields
	Specifying Filler Fields
	Specifying the Datatype of a Data Field

	SQL*Loader Datatypes
	Nonportable Datatypes
	INTEGER(n)
	SMALLINT
	FLOAT
	DOUBLE
	BYTEINT
	ZONED
	DECIMAL
	VARGRAPHIC
	VARCHAR
	VARRAW
	LONG VARRAW

	Portable Datatypes
	CHAR
	Datetime and Interval Datatypes
	DATE
	TIME
	TIME WITH TIME ZONE
	TIMESTAMP
	TIMESTAMP WITH TIME ZONE
	TIMESTAMP WITH LOCAL TIME ZONE
	INTERVAL YEAR TO MONTH
	INTERVAL DAY TO SECOND

	GRAPHIC
	GRAPHIC EXTERNAL
	Numeric EXTERNAL
	RAW
	VARCHARC
	VARRAWC
	Conflicting Native Datatype Field Lengths
	Field Lengths for Length-Value Datatypes

	Datatype Conversions
	Datatype Conversions for Datetime and Interval Datatypes
	Specifying Delimiters
	Syntax for Termination and Enclosure Specification
	Delimiter Marks in the Data
	Maximum Length of Delimited Data
	Loading Trailing Blanks with Delimiters

	How Delimited Data Is Processed
	Fields Using Only TERMINATED BY
	Fields Using ENCLOSED BY Without TERMINATED BY
	Fields Using ENCLOSED BY With TERMINATED BY
	Fields Using OPTIONALLY ENCLOSED BY With TERMINATED BY

	Conflicting Field Lengths for Character Datatypes
	Predetermined Size Fields
	Delimited Fields
	Date Field Masks

	Specifying Field Conditions
	Comparing Fields to BLANKS
	Comparing Fields to Literals

	Using the WHEN, NULLIF, and DEFAULTIF Clauses
	Examples of Using the WHEN, NULLIF, and DEFAULTIF Clauses

	Loading Data Across Different Platforms
	Byte Ordering
	Specifying Byte Order
	Using Byte Order Marks (BOMs)
	Suppressing Checks for BOMs

	Loading All-Blank Fields
	Trimming Whitespace
	Datatypes for Which Whitespace Can Be Trimmed
	Specifying Field Length for Datatypes for Which Whitespace Can Be Trimmed
	Predetermined Size Fields
	Delimited Fields

	Relative Positioning of Fields
	No Start Position Specified for a Field
	Previous Field Terminated by a Delimiter
	Previous Field Has Both Enclosure and Termination Delimiters

	Leading Whitespace
	Previous Field Terminated by Whitespace
	Optional Enclosure Delimiters

	Trimming Trailing Whitespace
	Trimming Enclosed Fields

	How the PRESERVE BLANKS Option Affects Whitespace Trimming
	How [NO] PRESERVE BLANKS Works with Delimiter Clauses

	Applying SQL Operators to Fields
	Referencing Fields
	Common Uses of SQL Operators in Field Specifications
	Combinations of SQL Operators
	Using SQL Strings with a Date Mask
	Interpreting Formatted Fields
	Using SQL Strings to Load the ANYDATA Database Type

	Using SQL*Loader to Generate Data for Input
	Loading Data Without Files
	Setting a Column to a Constant Value
	CONSTANT Parameter

	Setting a Column to an Expression Value
	EXPRESSION Parameter

	Setting a Column to the Data File Record Number
	RECNUM Parameter

	Setting a Column to the Current Date
	SYSDATE Parameter

	Setting a Column to a Unique Sequence Number
	SEQUENCE Parameter

	Generating Sequence Numbers for Multiple Tables
	Example: Generating Different Sequence Numbers for Each Insert

	11 Loading Objects, LOBs, and Collections
	Loading Column Objects
	Loading Column Objects in Stream Record Format
	Loading Column Objects in Variable Record Format
	Loading Nested Column Objects
	Loading Column Objects with a Derived Subtype
	Specifying Null Values for Objects
	Specifying Attribute Nulls
	Specifying Atomic Nulls

	Loading Column Objects with User-Defined Constructors

	Loading Object Tables
	Loading Object Tables with a Subtype

	Loading REF Columns
	Specifying Table Names in a REF Clause
	System-Generated OID REF Columns
	Primary Key REF Columns
	Unscoped REF Columns That Allow Primary Keys

	Loading LOBs
	Loading LOB Data from a Primary Data File
	LOB Data in Predetermined Size Fields
	LOB Data in Delimited Fields
	LOB Data in Length-Value Pair Fields

	Loading LOB Data from LOBFILEs
	Dynamic Versus Static LOBFILE Specifications
	Examples of Loading LOB Data from LOBFILEs
	One LOB per File
	Predetermined Size LOBs
	Delimited LOBs
	Length-Value Pair Specified LOBs

	Considerations When Loading LOBs from LOBFILEs

	Loading BFILE Columns
	Loading Collections (Nested Tables and VARRAYs)
	Restrictions in Nested Tables and VARRAYs
	Secondary Data Files (SDFs)

	Dynamic Versus Static SDF Specifications
	Loading a Parent Table Separately from Its Child Table
	Memory Issues When Loading VARRAY Columns

	12 Conventional and Direct Path Loads
	Data Loading Methods
	Loading ROWID Columns

	Conventional Path Load
	Conventional Path Load of a Single Partition
	When to Use a Conventional Path Load

	Direct Path Load
	Data Conversion During Direct Path Loads
	Direct Path Load of a Partitioned or Subpartitioned Table
	Direct Path Load of a Single Partition or Subpartition
	Advantages of a Direct Path Load
	Restrictions on Using Direct Path Loads
	Restrictions on a Direct Path Load of a Single Partition
	When to Use a Direct Path Load
	Integrity Constraints
	Field Defaults on the Direct Path
	Loading into Synonyms

	Using Direct Path Load
	Setting Up for Direct Path Loads
	Specifying a Direct Path Load
	Building Indexes
	Improving Performance
	Temporary Segment Storage Requirements

	Indexes Left in an Unusable State
	Using Data Saves to Protect Against Data Loss
	Using the ROWS Parameter
	Data Save Versus Commit

	Data Recovery During Direct Path Loads
	Media Recovery and Direct Path Loads
	Instance Recovery and Direct Path Loads

	Loading Long Data Fields
	Loading Data As PIECED

	Optimizing Performance of Direct Path Loads
	Preallocating Storage for Faster Loading
	Presorting Data for Faster Indexing
	SORTED INDEXES Clause
	Unsorted Data
	Multiple-Column Indexes
	Choosing the Best Sort Order

	Infrequent Data Saves
	Minimizing Use of the Redo Log
	Disabling Archiving
	Specifying the SQL*Loader UNRECOVERABLE Clause
	Setting the SQL NOLOGGING Parameter

	Specifying the Number of Column Array Rows and Size of Stream Buffers
	Specifying a Value for the Date Cache

	Optimizing Direct Path Loads on Multiple-CPU Systems
	Avoiding Index Maintenance
	Direct Loads, Integrity Constraints, and Triggers
	Integrity Constraints
	Enabled Constraints
	Disabled Constraints
	Reenable Constraints

	Database Insert Triggers
	Replacing Insert Triggers with Integrity Constraints
	When Automatic Constraints Cannot Be Used
	Preparation
	Using an Update Trigger
	Duplicating the Effects of Exception Conditions
	Using a Stored Procedure

	Permanently Disabled Triggers and Constraints
	Increasing Performance with Concurrent Conventional Path Loads

	Parallel Data Loading Models
	Concurrent Conventional Path Loads
	Intersegment Concurrency with Direct Path
	Intrasegment Concurrency with Direct Path
	Restrictions on Parallel Direct Path Loads
	Initiating Multiple SQL*Loader Sessions
	Parameters for Parallel Direct Path Loads
	Using the FILE Parameter to Specify Temporary Segments
	Using the FILE Parameter
	Using the STORAGE Parameter

	Enabling Constraints After a Parallel Direct Path Load
	PRIMARY KEY and UNIQUE KEY Constraints

	General Performance Improvement Hints

	Part III External Tables
	13 External Tables Concepts
	How Are External Tables Created?
	Location of Data Files and Output Files
	Access Parameters

	Datatype Conversion During External Table Use
	External Table Restrictions

	14 The ORACLE_LOADER Access Driver
	access_parameters Clause
	record_format_info Clause
	FIXED length
	VARIABLE size
	DELIMITED BY
	CHARACTERSET
	PREPROCESSOR
	Using Parallel Processing with the PREPROCESSOR Clause
	Restriction When Using the PREPROCESSOR Clause

	LANGUAGE
	TERRITORY
	DATA IS...ENDIAN
	BYTEORDERMARK (CHECK | NOCHECK)
	STRING SIZES ARE IN
	LOAD WHEN
	BADFILE | NOBADFILE
	DISCARDFILE | NODISCARDFILE
	LOG FILE | NOLOGFILE
	SKIP
	READSIZE
	DISABLE_DIRECTORY_LINK_CHECK
	DATE_CACHE
	string
	condition_spec
	[directory object name:] filename
	condition
	range start : range end

	IO_OPTIONS clause

	field_definitions Clause
	delim_spec
	Example: External Table with Terminating Delimiters
	Example: External Table with Enclosure and Terminator Delimiters
	Example: External Table with Optional Enclosure Delimiters

	trim_spec
	MISSING FIELD VALUES ARE NULL
	field_list
	pos_spec Clause
	start
	*
	increment
	end
	length

	datatype_spec Clause
	[UNSIGNED] INTEGER [EXTERNAL] [(len)]
	DECIMAL [EXTERNAL] and ZONED [EXTERNAL]
	ORACLE_DATE
	ORACLE_NUMBER
	Floating-Point Numbers
	DOUBLE
	FLOAT [EXTERNAL]
	BINARY_DOUBLE
	BINARY_FLOAT
	RAW
	CHAR
	date_format_spec
	DATE
	MASK
	TIMESTAMP
	INTERVAL

	VARCHAR and VARRAW
	VARCHARC and VARRAWC

	init_spec Clause

	column_transforms Clause
	transform
	column_name
	NULL
	CONSTANT
	CONCAT
	LOBFILE
	lobfile_attr_list

	Example: Creating and Loading an External Table Using ORACLE_ LOADER
	Parallel Loading Considerations for the ORACLE_LOADER Access Driver
	Performance Hints When Using the ORACLE_LOADER Access Driver
	Restrictions When Using the ORACLE_LOADER Access Driver
	Reserved Words for the ORACLE_LOADER Access Driver

	15 The ORACLE_DATAPUMP Access Driver
	access_parameters Clause
	comments
	COMPRESSION
	ENCRYPTION
	LOGFILE | NOLOGFILE
	File Names for LOGFILE

	VERSION Clause
	Effects of Using the SQL ENCRYPT Clause

	Unloading and Loading Data with the ORACLE_DATAPUMP Access Driver
	Parallel Loading and Unloading
	Combining Dump Files

	Supported Datatypes
	Unsupported Datatypes
	Unloading and Loading BFILE Datatypes
	Unloading LONG and LONG RAW Datatypes
	Unloading and Loading Columns Containing Final Object Types
	Tables of Final Object Types

	Performance Hints When Using the ORACLE_DATAPUMP Access Driver
	Restrictions When Using the ORACLE_DATAPUMP Access Driver
	Reserved Words for the ORACLE_DATAPUMP Access Driver

	Part IV Other Utilities
	16 ADRCI: ADR Command Interpreter
	About the ADR Command Interpreter (ADRCI) Utility
	Definitions
	Starting ADRCI and Getting Help
	Using ADRCI in Interactive Mode
	Getting Help
	Using ADRCI in Batch Mode

	Setting the ADRCI Homepath Before Using ADRCI Commands
	Viewing the Alert Log
	Finding Trace Files
	Viewing Incidents
	Packaging Incidents
	About Packaging Incidents
	Creating Incident Packages
	Creating a Logical Incident Package
	Adding Diagnostic Information to a Logical Incident Package
	Generating a Physical Incident Package

	ADRCI Command Reference
	CREATE REPORT
	ECHO
	EXIT
	HOST
	IPS
	Using the <ADR_HOME> and <ADR_BASE> Variables in IPS Commands
	IPS ADD
	IPS ADD FILE
	IPS ADD NEW INCIDENTS
	IPS COPY IN FILE
	IPS COPY OUT FILE
	IPS CREATE PACKAGE
	IPS DELETE PACKAGE
	IPS FINALIZE
	IPS GENERATE PACKAGE
	IPS GET MANIFEST
	IPS GET METADATA
	IPS PACK
	IPS REMOVE
	IPS REMOVE FILE
	IPS SET CONFIGURATION
	IPS SHOW CONFIGURATION
	IPS SHOW FILES
	IPS SHOW INCIDENTS
	IPS SHOW PACKAGE
	IPS UNPACK FILE

	PURGE
	QUIT
	RUN
	SELECT
	AVG
	CONCAT
	COUNT
	DECODE
	LENGTH
	MAX
	MIN
	NVL
	REGEXP_LIKE
	SUBSTR
	SUM
	TIMESTAMP_TO_CHAR
	TOLOWER
	TOUPPER

	SET BASE
	SET BROWSER
	SET CONTROL
	SET ECHO
	SET EDITOR
	SET HOMEPATH
	SET TERMOUT
	SHOW ALERT
	SHOW BASE
	SHOW CONTROL
	SHOW HM_RUN
	SHOW HOMEPATH
	SHOW HOMES
	SHOW INCDIR
	SHOW INCIDENT
	SHOW PROBLEM
	SHOW REPORT
	SHOW TRACEFILE
	SPOOL

	Troubleshooting ADRCI

	17 DBVERIFY: Offline Database Verification Utility
	Using DBVERIFY to Validate Disk Blocks of a Single Data File
	Syntax
	Parameters
	Sample DBVERIFY Output For a Single Data File

	Using DBVERIFY to Validate a Segment
	Syntax
	Parameters
	Sample DBVERIFY Output For a Validated Segment

	18 DBNEWID Utility
	What Is the DBNEWID Utility?
	Ramifications of Changing the DBID and DBNAME
	Considerations for Global Database Names

	Changing the DBID and DBNAME of a Database
	Changing the DBID and Database Name
	Changing Only the Database ID
	Changing Only the Database Name
	Troubleshooting DBNEWID

	DBNEWID Syntax
	Parameters
	Restrictions and Usage Notes
	Additional Restrictions for Releases Earlier Than Oracle Database 10g

	19 Using LogMiner to Analyze Redo Log Files
	LogMiner Benefits
	Introduction to LogMiner
	LogMiner Configuration
	Sample Configuration
	Requirements

	Directing LogMiner Operations and Retrieving Data of Interest

	LogMiner Dictionary Files and Redo Log Files
	LogMiner Dictionary Options
	Using the Online Catalog
	Extracting a LogMiner Dictionary to the Redo Log Files
	Extracting the LogMiner Dictionary to a Flat File

	Redo Log File Options

	Starting LogMiner
	Querying V$LOGMNR_CONTENTS for Redo Data of Interest
	How the V$LOGMNR_CONTENTS View Is Populated
	Querying V$LOGMNR_CONTENTS Based on Column Values
	The Meaning of NULL Values Returned by the MINE_VALUE Function
	Usage Rules for the MINE_VALUE and COLUMN_PRESENT Functions

	Querying V$LOGMNR_CONTENTS Based on XMLType Columns and Tables
	Restrictions When Using LogMiner With XMLType Data
	Example of a PL/SQL Procedure for Assembling XMLType Data

	Filtering and Formatting Data Returned to V$LOGMNR_CONTENTS
	Showing Only Committed Transactions
	Skipping Redo Corruptions
	Filtering Data by Time
	Filtering Data by SCN
	Formatting Reconstructed SQL Statements for Re-execution
	Formatting the Appearance of Returned Data for Readability

	Reapplying DDL Statements Returned to V$LOGMNR_CONTENTS
	Calling DBMS_LOGMNR.START_LOGMNR Multiple Times
	Supplemental Logging
	Database-Level Supplemental Logging
	Minimal Supplemental Logging
	Database-Level Identification Key Logging

	Disabling Database-Level Supplemental Logging
	Table-Level Supplemental Logging
	Table-Level Identification Key Logging
	Table-Level User-Defined Supplemental Log Groups
	Usage Notes for User-Defined Supplemental Log Groups

	Tracking DDL Statements in the LogMiner Dictionary
	DDL_DICT_TRACKING and Supplemental Logging Settings
	DDL_DICT_TRACKING and Specified Time or SCN Ranges

	Accessing LogMiner Operational Information in Views
	Querying V$LOGMNR_LOGS
	Querying Views for Supplemental Logging Settings

	Steps in a Typical LogMiner Session
	Enable Supplemental Logging
	Extract a LogMiner Dictionary
	Specify Redo Log Files for Analysis
	Start LogMiner
	Query V$LOGMNR_CONTENTS
	End the LogMiner Session

	Examples Using LogMiner
	Examples of Mining by Explicitly Specifying the Redo Log Files of Interest
	Example 1: Finding All Modifications in the Last Archived Redo Log File
	Example 2: Grouping DML Statements into Committed Transactions
	Example 3: Formatting the Reconstructed SQL
	Example 4: Using the LogMiner Dictionary in the Redo Log Files
	Example 5: Tracking DDL Statements in the Internal Dictionary
	Example 6: Filtering Output by Time Range

	Examples of Mining Without Specifying the List of Redo Log Files Explicitly
	Example 1: Mining Redo Log Files in a Given Time Range
	Example 2: Mining the Redo Log Files in a Given SCN Range
	Example 3: Using Continuous Mining to Include Future Values in a Query

	Example Scenarios
	Scenario 1: Using LogMiner to Track Changes Made by a Specific User
	Scenario 2: Using LogMiner to Calculate Table Access Statistics

	Supported Datatypes, Storage Attributes, and Database and Redo Log File Versions
	Supported Datatypes and Table Storage Attributes
	Unsupported Datatypes and Table Storage Attributes
	Supported Databases and Redo Log File Versions
	SecureFiles LOB Considerations

	20 Using the Metadata APIs
	Why Use the DBMS_METADATA API?
	Overview of the DBMS_METADATA API
	Using the DBMS_METADATA API to Retrieve an Object's Metadata
	Typical Steps Used for Basic Metadata Retrieval
	Retrieving Multiple Objects
	Placing Conditions on Transforms
	Accessing Specific Metadata Attributes

	Using the DBMS_METADATA API to Re-Create a Retrieved Object
	Using the DBMS_METADATA API to Retrieve Collections of Different Object Types
	Filtering the Return of Heterogeneous Object Types

	Using the DBMS_METADATA_DIFF API to Compare Object Metadata
	Performance Tips for the Programmatic Interface of the DBMS_ METADATA API
	Example Usage of the DBMS_METADATA API
	What Does the DBMS_METADATA Example Do?
	Output Generated from the GET_PAYROLL_TABLES Procedure

	Summary of DBMS_METADATA Procedures
	Summary of DBMS_METADATA_DIFF Procedures

	21 Original Export
	What is the Export Utility?
	Before Using Export
	Running catexp.sql or catalog.sql
	Ensuring Sufficient Disk Space for Export Operations
	Verifying Access Privileges for Export and Import Operations

	Invoking Export
	Invoking Export as SYSDBA
	Command-Line Entries
	Parameter Files
	Interactive Mode
	Restrictions When Using Export's Interactive Method

	Getting Online Help

	Export Modes
	Table-Level and Partition-Level Export
	Table-Level Export
	Partition-Level Export

	Export Parameters
	BUFFER
	Example: Calculating Buffer Size

	COMPRESS
	CONSISTENT
	CONSTRAINTS
	DIRECT
	FEEDBACK
	FILE
	FILESIZE
	FLASHBACK_SCN
	FLASHBACK_TIME
	FULL
	Points to Consider for Full Database Exports and Imports

	GRANTS
	HELP
	INDEXES
	LOG
	OBJECT_CONSISTENT
	OWNER
	PARFILE
	QUERY
	Restrictions When Using the QUERY Parameter

	RECORDLENGTH
	RESUMABLE
	RESUMABLE_NAME
	RESUMABLE_TIMEOUT
	ROWS
	STATISTICS
	TABLES
	Table Name Restrictions

	TABLESPACES
	TRANSPORT_TABLESPACE
	TRIGGERS
	TTS_FULL_CHECK
	USERID (username/password)
	VOLSIZE

	Example Export Sessions
	Example Export Session in Full Database Mode
	Example Export Session in User Mode
	Example Export Sessions in Table Mode
	Example 1: DBA Exporting Tables for Two Users
	Example 2: User Exports Tables That He Owns
	Example 3: Using Pattern Matching to Export Various Tables

	Example Export Session Using Partition-Level Export
	Example 1: Exporting a Table Without Specifying a Partition
	Example 2: Exporting a Table with a Specified Partition
	Example 3: Exporting a Composite Partition

	Warning, Error, and Completion Messages
	Log File
	Warning Messages
	Nonrecoverable Error Messages
	Completion Messages

	Exit Codes for Inspection and Display
	Conventional Path Export Versus Direct Path Export
	Invoking a Direct Path Export
	Security Considerations for Direct Path Exports
	Performance Considerations for Direct Path Exports
	Restrictions for Direct Path Exports

	Network Considerations
	Transporting Export Files Across a Network
	Exporting with Oracle Net

	Character Set and Globalization Support Considerations
	User Data
	Effect of Character Set Sorting Order on Conversions

	Data Definition Language (DDL)
	Single-Byte Character Sets and Export and Import
	Multibyte Character Sets and Export and Import

	Using Instance Affinity with Export and Import
	Considerations When Exporting Database Objects
	Exporting Sequences
	Exporting LONG and LOB Datatypes
	Exporting Foreign Function Libraries
	Exporting Offline Locally Managed Tablespaces
	Exporting Directory Aliases
	Exporting BFILE Columns and Attributes
	Exporting External Tables
	Exporting Object Type Definitions
	Exporting Nested Tables
	Exporting Advanced Queue (AQ) Tables
	Exporting Synonyms
	Possible Export Errors Related to Java Synonyms
	Support for Fine-Grained Access Control

	Transportable Tablespaces
	Exporting From a Read-Only Database
	Using Export and Import to Partition a Database Migration
	Advantages of Partitioning a Migration
	Disadvantages of Partitioning a Migration
	How to Use Export and Import to Partition a Database Migration

	Using Different Releases of Export and Import
	Restrictions When Using Different Releases of Export and Import
	Examples of Using Different Releases of Export and Import

	22 Original Import
	What Is the Import Utility?
	Table Objects: Order of Import

	Before Using Import
	Running catexp.sql or catalog.sql
	Verifying Access Privileges for Import Operations
	Importing Objects Into Your Own Schema
	Importing Grants
	Importing Objects Into Other Schemas
	Importing System Objects

	Processing Restrictions

	Importing into Existing Tables
	Manually Creating Tables Before Importing Data
	Disabling Referential Constraints
	Manually Ordering the Import

	Effect of Schema and Database Triggers on Import Operations
	Invoking Import
	Command-Line Entries
	Parameter Files
	Interactive Mode
	Invoking Import As SYSDBA
	Getting Online Help

	Import Modes
	Import Parameters
	BUFFER
	COMMIT
	COMPILE
	CONSTRAINTS
	DATA_ONLY
	DATAFILES
	DESTROY
	FEEDBACK
	FILE
	FILESIZE
	FROMUSER
	FULL
	Points to Consider for Full Database Exports and Imports

	GRANTS
	HELP
	IGNORE
	INDEXES
	INDEXFILE
	LOG
	PARFILE
	RECORDLENGTH
	RESUMABLE
	RESUMABLE_NAME
	RESUMABLE_TIMEOUT
	ROWS
	SHOW
	SKIP_UNUSABLE_INDEXES
	STATISTICS
	STREAMS_CONFIGURATION
	STREAMS_INSTANTIATION
	TABLES
	Table Name Restrictions

	TABLESPACES
	TOID_NOVALIDATE
	TOUSER
	TRANSPORT_TABLESPACE
	TTS_OWNERS
	USERID (username/password)
	VOLSIZE

	Example Import Sessions
	Example Import of Selected Tables for a Specific User
	Example Import of Tables Exported by Another User
	Example Import of Tables from One User to Another
	Example Import Session Using Partition-Level Import
	Example 1: A Partition-Level Import
	Example 2: A Partition-Level Import of a Composite Partitioned Table
	Example 3: Repartitioning a Table on a Different Column

	Example Import Using Pattern Matching to Import Various Tables

	Exit Codes for Inspection and Display
	Error Handling During an Import
	Row Errors
	Failed Integrity Constraints
	Invalid Data

	Errors Importing Database Objects
	Object Already Exists
	Sequences
	Resource Errors
	Domain Index Metadata

	Table-Level and Partition-Level Import
	Guidelines for Using Table-Level Import
	Guidelines for Using Partition-Level Import
	Migrating Data Across Partitions and Tables

	Controlling Index Creation and Maintenance
	Delaying Index Creation
	Index Creation and Maintenance Controls
	Example of Postponing Index Maintenance

	Network Considerations
	Character Set and Globalization Support Considerations
	User Data
	Effect of Character Set Sorting Order on Conversions

	Data Definition Language (DDL)
	Single-Byte Character Sets
	Multibyte Character Sets

	Using Instance Affinity
	Considerations When Importing Database Objects
	Importing Object Identifiers
	Importing Existing Object Tables and Tables That Contain Object Types
	Importing Nested Tables
	Importing REF Data
	Importing BFILE Columns and Directory Aliases
	Importing Foreign Function Libraries
	Importing Stored Procedures, Functions, and Packages
	Importing Java Objects
	Importing External Tables
	Importing Advanced Queue (AQ) Tables
	Importing LONG Columns
	Importing LOB Columns When Triggers Are Present
	Importing Views
	Importing Partitioned Tables

	Support for Fine-Grained Access Control
	Snapshots and Snapshot Logs
	Snapshot Log
	Snapshots
	Importing a Snapshot
	Importing a Snapshot into a Different Schema

	Transportable Tablespaces
	Storage Parameters
	The OPTIMAL Parameter
	Storage Parameters for OID Indexes and LOB Columns
	Overriding Storage Parameters

	Read-Only Tablespaces
	Dropping a Tablespace
	Reorganizing Tablespaces
	Importing Statistics
	Using Export and Import to Partition a Database Migration
	Advantages of Partitioning a Migration
	Disadvantages of Partitioning a Migration
	How to Use Export and Import to Partition a Database Migration

	Tuning Considerations for Import Operations
	Changing System-Level Options
	Changing Initialization Parameters
	Changing Import Options
	Dealing with Large Amounts of LOB Data
	Dealing with Large Amounts of LONG Data

	Using Different Releases of Export and Import
	Restrictions When Using Different Releases of Export and Import
	Examples of Using Different Releases of Export and Import

	Part V Appendixes
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

