ORACLE"

Oracle® Database
Object-Relational Developer's Guide
12c Release 2 (12.2)

E50037-06

May 2017

Oracle Database Object-Relational Developer's Guide, 12c Release 2 (12.2)
E50037-06

Copyright © 1996, 2017, Oracle and/or its affiliates. All rights reserved.
Primary Author: Prashant Kannan

Contributing Authors: Preethy P G, Tulika Das

Contributors: Janis Greenberg, Sundeep Abraham, Shashaanka Agrawal, Geeta Arora, Eric Belden,
Chandrasekharan Iyer, Geoff Lee, Anand Manikutty, Valarie Moore, Magdi Morsi, Helen Yeh, Adiel Yoaz,
Qin Yu

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

PIEIACE ...ttt XV
BN o 1T Ve < ISR PR RRRRRRRRN XV
Documentation AcCeSSIDILILYcccvvvviimiiiiiiiiiiiii s XV
J RS F=RTe B D)ool b0 s 1<) o X 1< TR XVi
(@03 0 M7= 110) 1= J0UTRT RO ORRRRRR XVi

Changes in This Release for Oracle Database Object-Relational Developer's

GUILE <. Xix
Changes in Oracle Database 12c Release 2 (12.2.0.1) c..ccuvuvuviiieiririniriiicieeeeicecreeeeeeeeeeeeeeeeeeeeeees XiX
INEW FEALUTES ...ttt ettt ettt s s et e s et e e st et e e st e te et e saeeneesaeenees XiX
Deprecated FEatures...........couoiiiiiiiii s XiX
Desupported FEaturesoiiiiiiiic XX

1 Introduction to Oracle Objects

1.1 About Oracle ODJEcts.........c.ciiiiieiiiiei e 11
1.2 Advantages Of ODJECES. ...t 1-1
1.3 Key Features of the Object-Relational Model.ccccovnnnninnnnnniinniccneeeceenes 1-2
1.3.1 Database Features of Oracle Objects............cocccovuiiiiieiriininiiicccce e 1-2
1.3.2 Language Binding Features of Oracle Objects.........cccccoovriiiiiiiriiiiiiiceece 1-13

2 Basic Components of Oracle Objects

2.1 SQL Object Types and References............ooccueueiiirieiiicicieieccicecie s 2-1
2.1.1 Null Objects and AtribULES ..o 2-2
2.1.2 Character Length SEManticscccccoiiiiiiiiiiiiiiicccecccee e 2-3
2.1.3 Defining Object Tables with Single Constraintsccccccovoiiiiiiiiiiinicicieae, 2-3
2.1.4 Defining Object Tables with Multiple Constraints............ccccoeoviiiiniiiiiiiiican. 2-4
2.1.5 Defining Indexes for Object Tablesccccouiiiiiiiiiiiii 2-4
2.1.6 Defining Triggers for Object Tables..........ccooevvviiiiniiniiiiiine 2-5
2.1.7 Rules for REF Columns and Attributes.........c.cccccovevevniiniiiiiccc, 2-5
2.1.8 NamMe RESOIULIONueuiiiiiiiiciciiiictctreee ettt et 2-6
2.1.9 Restriction on Using User-Defined Types with a Remote Databaseccco......... 2-8

2.2 Object MethOdsS ...ttt e 2-8

2.2.1 About Object Methods.......cccciiiiiiiiiiiiiiiiccrcccreecee e 2-8
2.2.2 Member Methodscoviimiiiiiiiic e 2-9
2.2.3 Declaring and Invoking Static Methods...........ccccooiiiiiiiiiiiiiie, 2-13
2.2.4 Constructor Methods ... 2-13
2.2.5 External Implemented Methods.........cccccooiiiiiiiiii 2-14
2.3 Inheritance in SQL ObJECt TYPESc.cueururuiiiiiiiirieicicieieireecieeeeeeeeeeee e 2-14
2.3.1 About Inheritance in SQL Object TYPes........ccoiiiiiiiiiiiiiiiiiccccceaes 2-15
2.3.2 Supertypes and SUDLYPES ... 2-15
2.3.3 FINAL and NOT FINAL Types and Methods for Inheritance............ccccccccovvireinnnn 2-17
2.3.4 Changing a FINAL TYPE to NOT FINALccccccceviiiiiiiiinns 2-18
2.3.5 Subtype Creation ... 2-18
2.3.6 NOT INSTANTIABLE Types and Methodscccoiiiiiiiiiiiniiiiccce, 2-22
2.3.7 Creating a Non-INSTANTIABLE Object Typeccccoeuiiiiimiiiiceccec 2-23
2.3.8 Changing an Object Type to INSTANTIABLEccocooiiii 2-23
2.3.9 Overloaded and Overridden Methods...........ccccecvviiiiiiniiiiiiiiies 2-23
2.3.10 Dynamic Method Dispatch...........ccccooiiiiiiiiiiiiiiiiiccccccec e 2-25
2.3.11 Type Substitution in a Type Hierarchycccccooiiiiiiiiiiiiiiiiicce, 2-26
2.3.12 Column and Row Substitutabilitycccooeoiiiiioiiiiii 2-26
2.3.13 Newly Created Subtypes Stored in Substitutable Columnscccoooeieiiiirninnnns 2-29
2.3.14 Dropping Subtypes After Creating Substitutable Columnsccccoveeiviininennnce. 2-30
2.3.15 Turning Off Substitutability in a New Table...........cccccooiiiiiiiiiiene, 2-30
2.3.16 Constraining Substitutability............ccooiiiiiiiiiiiiii 2-31
2.3.17 Modifying Substitutability on a Table...........ccccoooiiii 2-32
2.3.18 Restrictions on Modifying Substitutability.........cccocooiieiiininiiiie, 2-32
2.3.19 Assignments AcCross TYPES ... 2-33
2.4 Functions and Operators Useful with Objects..........cccccccuirviiiiiiiiniiiiiicccccce 2-35
241 CAST .o 2-36
242 CURSOR ..ottt 2-36
243 DEREFcoiiiiiiiiii e 2-36
244 IS OF tYPe oottt s 2-37
245 REF ..ot 2-38
246 SYS_TYPEID.......ciiiiiiiiiiiiiieisrittc et 2-38
247 TABLE() oo 2-39
248 TREAT .o s 2-40
249 VALUE ... 2-41

3 Using PL/SQL With Object Types

3.1 Declaring and Initializing Objects in PL/SQLcccccccooiiiiiiiicicrrececeeeeeeeeeaes 3-1
3.1.1 Defining ObJect TYPESccccviuimiiiiiiiiiiiiicccc e 3-1
3.1.2 Declaring Objects in @ PL/SQL BIOCKcooormiiiiiiiiiiicicc 3-2
3.1.3 How PL/SQL Treats Uninitialized Objects..........cccecvuviniviviniiniiiiiin, 3-3

3.2 Object Manipulation in PL/SQLc.ccccoiiiiiiiiiiiieiececeeeeeeeeeeeeee e 3-3

3.3

34

3.2.1 Accessing Object Attributes With Dot Notation...........cccceeiiiiiiii, 3-3

3.2.2 Calling Object Constructors and Methods ... 3-4
3.2.3 Accessing Object MethOds ... 3-4
3.2.4 Updating and Deleting ObJectscccouiiiiiiiiiiiiiiiiiccce 3-5
3.2.5 Manipulating Object Manipulation with Ref Modifiers..........c.ccccooriiiirnininnnnn. 3-5
Use of Overloading in PL/SQL with Inheritancecccccoviiiiiiniiiien, 3-6
3.3.1 Resolving PL/SQL Functions with Inheritance...........c.cccccooioiiiiininiiiciiieeee. 3-6
3.3.2 Resolving PL/SQL Functions with Inheritance Dynamicallycccccoovoiiiiiinnaee. 3-7
Using Dynamic SQL With ObjJectscccooiiiiiiiiiiiiiis 3-8
3.4.1 Using Dynamic SQL with Object Types and Collections............c.ccoooeueueiiirciiiniinnnnn. 3-8
3.4.2 Calling Package Procedures with Object Types and Collections............cccccccuevinnunnenne. 3-9

Object Support in Oracle Programming Environments

4.1
4.2
4.3
44

4.5

4.6

4.7

4.8
4.9

SQL and ODbjJect TYPES.....cvwuiuimimiiiririiititiicicicics s 4-1
SQL DEVEIOPET ...ttt 4-2
PL/SQL ..ttt 4-2
Oracle Call Interface (OCI)c.coecireerieririeirienieieneeere ettt sttt ettt sa e saenens 4-2
4.4.1 About Oracle Call Interface (OCI)oeueerrieueirinirieieirinieiecrnieie ettt sesesieseseenees 4-2
4.4.2 Associative Access in OCI Programs...........cccoviiiviniiiiinininiiinicccncces 4-3
4.4.3 Navigational Access in OCI Programs...........ccccceiiiiiiiiiiiiiiiccciicccceneeens 4-4
4.4.4 ODbject CaChE.......c.oiiiiiii e 4-4
4.4.5 Building an OCI Program That Manipulates Objects...........cccccoeeiriiiiiirciniiiiccne 4-5
4.4.6 Defining User-Defined Constructors in Ccccooveinirinirinicniiieeece s 4-5
PO C ettt et e et e et e e et e e s eateeasaaeeseaeesasetesaeaaeesanae e e et e e eaateseaateeeanaeeseneesaaaesns 4-6
4.5.1 ADPOUL PrO*C/Ca o 4-6
4.5.2 Ass0OCiative ACCESS IN PTOXC /Cat oottt ettt et e st e e st e s e eaaeesenaeeean 4-6
4.5.3 Navigational Access In Pro*C/Ca+...ccoviiiiiiiiiic s 4-7
4.5.4 Conversion Between Oracle Types and C Types..........ccoeueueiiinieiiiiciciciniccec, 4-7
4.5.5 Oracle Type Translator (OTT) ..ot 4-8
Oracle C++ Call Interface (OCCI).....coueirieririerierenieieniererieerieiertet ettt sttt b et be st b esaese e seenens 4-8
4.6.1 About Oracle C++ Call Interface (OCCI)cc.coereuerieereirieirieirieirenteeneeienteeseeeseeeseeaens 4-8
4.6.2 OCCI Associative Relational and Object Interfacesccocoeuevveiiiiiiiiiiiice, 4-8
4.6.3 The OCCI Navigational Interfaceccooeoveiniiiniiiniiniccc s 4-9
Java Tools for Accessing Oracle ODJEcts..........cccooviiiiiiiriiiiic e 4-9
4.7.1 JDBC Access to Oracle Object Dataccccooiiiiiiiiiiiiiiiiicccces 4-9
4.7.2 Data Mapping Strategiescccoveerieiiiiucieieieiceie et 4-10
4.7.3 JPUDLISNETcuiiiiiii ettt ettt st 4-10
4.7.4 Java ObjJect STOrage.......cocovviiiiiriiiicicc s 4-11
4.7.5 Defining User-Defined Constructors in Java.........ccceiiiiniiiiinininiiiiicccceeenen. 4-15
4.7.6 JDEVEIOPET ...t 4-15
XIMIL Lt 4-16
Utilities Providing Support for ObJECtSccevririiiiiiiniiicce e 4-16
49.1 Import/EXport of ObJect TYPES......ccoiiiiimiiiiiiiiiiciiiece e 4-16

SO RS @) Wil 1o Y- To =) BTSRRI 4-17

5 Support for Collection Data Types

Vi

5.1 Collection Data TYPEScccoeueiiiiiiiieiiicieie e 5-1
5.1.1 Creating a Collection TYPe.......cccocuiuiuiiiimiiiiiiciticcccecce e 5-2
5.1.2 Creating an Instance of a VARRAY or Nested Table............cccccooerviinininicnninicnnnnn, 5-2
5.1.3 Using the Constructor Method to Insert Values into a Nested Table............................ 5-2
5.1.4 Invoking Constructors Literally to Specify Defaults...........c.ccooeiiiiiiiii, 5-3
5.1.5 ADOUL VAITAYS...c.cviieiiiiietct 5-3
5.1.6 Creating and Populating a VARRAYccccooiiiiiiiiiiiccceeeccc e 5-4
5.1.7 Nested TabIes........cccoiiiiiiiiiiii e 5-5
5.1.8 Increasing the Size and Precision of VARRAY and Nested Table Elements................ 5-6
5.1.9 Increasing VARRAY Limit SiZe......cccoooiiiiiiiiiiiiiiicic 5-7
5.1.10 Creating a Varray Containing LOB Referencesccccccoivviniininiinninnnn, 5-8

5.2 Multilevel COLeCtion TYPEScccvvveuiuruririiiiiciiiririieieieeeeeeeeee et 5-8
5.2.1 Nested Table Storage Tables for Multilevel Collection Types.........cccccoceuvirrininiinnnne. 5-8
5.2.2 Varray Storage for Multilevel Collectionscoooeeieiiiiiicieiiiccecc 5-11
5.2.3 Specifying LOB Storage for VARRAY of VARRAY Type.......cccoovvrurirmiriirniicniercinnne. 5-11
5.2.4 Specifying LOB Storage for a Nested Table of VARRAYScoeeiiiininincncncninencnee. 5-12
5.2.5 Constructors for Multilevel Collections............ccccoeuviemiiiiniiiiiiiiieeae 5-12

5.3 Operations on Collection Data TYPesccoceueiriiiiiiiiiiiiecce s 5-13
5.3.1 Collection QUETYINGccoviuriiiiiiicieieieiicie et 5-13
5.3.2 DML Operations on Collections............cccueueiiiicieieiiiiicicicce e 5-17
5.3.3 Using BULK COLLECT to Return Entire Result Setscccooiriinininnnnncncnnieenee. 5-20
5.3.4 Conditions that Compare Nested Tables...........cccccooiiiiiininiiiniiiiiicce, 5-20
5.3.5 Multiset Operations for Nested Tablescccccoouoiiiiiiiiiiiiicc 5-22

5.4 Partitioning Tables That Contain Oracle Objects.........cccoouiiiiiiiiiii, 5-26

Applying an Object Model to Relational Data

6.1 Why Use ODbject VIEWS.......cocuiiiiiiie vt 6-1
6.2 Defining Object VIEWScceiiuiiiiiiiieice e 6-2
6.3 Object Views Used in APPLICAtiONS.........ccueueuririririiiriririiiereeceerreeeee s 6-3
6.4 Objects Nested in Object VIEWS...........cccriiiiiiiiiiiicccc s 6-4
6.5 Identifying Null Objects in Object VIEWS........c.ccouoiiiiciiiiicc s 6-5
6.6 Nested Tables and Varrays Used in Object VIieWs..........ccoooueieiiiiiiiiiiiiciiccee 6-6

6.6.1 Single-Level Collections in Object VIEWScccovvviiviiiiiiiiiiiiiic e 6-6

6.6.2 Multilevel Collections in Object VIEWSccovuvuviiiiiririiiiirirccccrrecceeeeeeeeees 6-7
6.7 Object Identifiers for Object VIEWScccccovviviiiiiiiiiiiiiiiiiiiniicces 6-8
6.8 References Created to View ObjJectsccoiiiiioiiiiiii e 6-9
6.9 Creating References to Objects With REFcccccoooiiiiiiiiiiic e 6-10
6.10 Inverse Relationships Modelled with Object VIEWS.........cccccoeueiiiirnrieirrcccereeeeeeenes 6-10
6.11 Object View Manipulations..........ccccevuviiiiiiiriiiniiiiiiiiiiccrceeeeeeeeeee s 6-11

6.11.1 Nested Table Columns Updated in VIieWscccocooeriiiiiiiininiicceece, 6-12

8

6.11.2 INSTEAD OF Triggers to Control Mutating and Validation...........c.ccccceoeiieinnnnn. 6-12

6.12 Applying the Object Model to Remote Tablesccccccceveriiiiiinriiccrrcceeeeeeeeeeees 6-13
6.13 Defining Complex Relationships in Object VIeWs..........ccccceviiiivviiiiiinnniiicccccceee 6-14
6.13.1 Tables and Types to Demonstrate Circular View References............ccccccevuvurivininnnne. 6-15
6.13.2 Creating Object Views with Circular References...........cccccooeiiiniiiiiini, 6-16
6.14 Object View Hierarchies ..o 6-18
6.14.1 Creating an Object View Hierarchycccococeevvvrnniiinnnrccrrceceeeeeeeeeeees 6-20
6.14.2 About Querying a View in a Hierarchy ..., 6-25
6.14.3 Privileges for Operations on View Hierarchiescccccocvvvivvnnnninnnniinnnne, 6-26

Managing Oracle Objects

7.1 Privileges on Object Types and Their Methodscccoooiiiiiiiiiiiicc 7-1
7.1.1 System Privileges for Object TYPes.......c.coceuiruiiiniiieiiiiiieiee s 7-1
7.1.2 Schema Object Privilegesccccovvvieiiiiiiiiiiiiiiiiiiiiccccc s 7-2
7.1.3 Types Used in New Types Or Tablesccccovvviiiiiniiiinirrcicccrcceeeeeeeeeens 7-2
7.1.4 Example: Privileges on Object TYPeScccoovvvviviiiiiniiiiiiiiiiiniiinrnccscccees 7-2
7.1.5 Access Privileges on Objects, Types, and Tables...........cccccooeriiiiiiiiiniiii, 7-4

7.2 Type DePendenciescccoiiurieiiiiiieieieiecie ettt 7-5
7.2.1 Creating INCOMPIEte TYPEScvvvveveriririrerirerirecreeerreee e 7-6
7.2.2 Completing Incomplete TYPEScccvvviviviviriiiririiiiirccccecree s 7-7
7.2.3 Recompiling a Type Manuallyccccovviiiiiiiniiiiicnssss 7-7
7.2.4 Using CREATE OR REPLACE TYPE with Type and Table Dependencies.................. 7-7
7.2.5 Creating or Replacing Type with FOIce ..o, 7-8
7.2.6 Type Dependencies of Substitutable Tables and Columnsc.cccocevvvrrvrrreneenes 7-8
7.2.7 The DROP TYPE FORCE OpHOncooevviiiiiiiiiieeeicic e 7-9

7.3 Synonyms for ObjJect TYPES. ... 7-10
7.3.1 Creating a Type SYNONYML.......ccccuiiiiiiieiiiicie et 7-10
7.3.2 Using a TYPe SYNONYIN ...c.cooviiiiieiiiicieieieccie ettt 7-11

7.4 Performance TUNING ... e 7-13

Advanced Topics for Oracle Objects

8.1 StOrage Of ODJECESc.cveuiiiiiiiiiciriciciccere e 8-1
8.1.1 Leaf-Level AttribULescccouviviiiviiiiiiiiiiicr s 8-1
8.1.2 How Row Objects Are Split Across ColUMNS.......cccevvriiieiiiiiieiecee e, 8-2
8.1.3 Hidden Columns for Tables with Column Objects.........c.ccoooiririiiiiiiiiic, 8-2
8.1.4 Hidden Columns for Substitutable Columns and Object Tables............cccocvuvuvirnnnnnen. 8-2
8.1.5 Querying for Typeids of Objects Stored in Tables..........cccccovuvuvvirirrnnirirrrccrne 8-4
8.1.6 Storage Of REFS........cccccoviviiiiiiiiiiiiiiins s 8-4
8.1.7 Internal Layout of Nested Tables..........c.cccooiiiiiiiiiii e, 8-4
8.1.8 Internal Layout of VARRAYSccccooiiiiiiiiiiiiiicee s 8-5

8.2 Creating Indexes on Typeids or Attributes..........ccccovviiiiiiriiiee e 8-5
8.2.1 Indexing a Type-Discriminant COIUMNccccoviviiiriiiiiiiiiiiicirccerecees 8-5
8.2.2 Indexing Subtype Attributes of a Substitutable Columnc.cccoeeiiniiiiininiinnnn, 8-6

Vii

viii

8.3

8.4
8.5

8.6
8.7
8.8

TYPe EVOLULION ...t 8-6

8.3.1 About Type EVOIULONccovoviiiiiiicre s 8-7
8.3.2 Type Evolution and Dependent Schema ODbjectsc.ccccvuvuvuvivirinirnninnnnriiirene 8-7
8.3.3 Options for Updating Dataccccceviviviiiiiniininiiiiiiiiiiicnccscs 8-8
8.3.4 Effects of Structural Changes to TyPesccccooiimiieiiiiiiiiii 8-8
8.3.5 Altering a Type by Adding and Dropping Attributes...........cccooiiiiiii, 8-9
8.3.6 Altering a Type by Adding a Nested Table Attributec.ccccceeuvrveiivnnicine 8-10
8.3.7 About Validating Types That Have Been Altered...........ccccccovuviriiivnvininiinnniiine, 8-11
8.3.8 ALTER TYPE Statement for Type Evolution...........ccccccvvvviniiiiiiniiiniiiine, 8-14
8.3.9 ALTER TABLE Statement for Type EVOlUution............cooovoiiii, 8-15
Storing XMLTypes and LOBs in an ANYDATA Column ..o, 8-15
System-Defined and User-Defined Constructors............cccceeueueueuciiinieiiieieinnneceeeeeeeeeeeenes 8-15
8.5.1 The Attribute-Value CONStIUCIOTccvuviiiririiiiiiiiiiicicicrr s 8-16
8.5.2 Constructors and Type EVOIUtioNn.........cooooiiiiiiiice, 8-16
8.5.3 Advantages of User-Defined Constructorsccceovoirueiiiiiciciiiiccecce, 8-16
8.5.4 Defining and Implementing User-Defined Constructors...........cccocovvvvvviinniiiiinininnnnn. 8-17
8.5.5 Overloaded and Hidden Constructors............cccocveveiiiiiiiiiiiiiniccccne, 8-18
8.5.6 Calling User-Defined CONSLIUCIOTScccvuviviviiiiiiiiiiiiiiiiciniccicrcens 8-18
8.5.7 Constructors for SQLJ Object Types........ccoorueiiiriiieiiiiccc 8-20
Transient and Generic TYPeSccoviiiriiiiiieic e 8-20
User-Defined Aggregate FUNCHONS.........ccccceuiiiiiiiiiiiiieicccececceeeeceeeeeeeee e 8-23
How Locators Improve the Performance of Nested Tablesccccccccevvivviiiinnninicnenes 8-24

Design Considerations for Oracle Objects

9.1

9.2
9.3

94

9.5

General Storage Considerations for ODJECEScciiiiiiiiiiiiiiicccccccee 9-1
9.1.1 About Storing Objects as Columns or ROWScccceuoioiiiiiiiiicec, 9-1
9.1.2 Storage Considerations for Object Identifiers (OIDS)c.cooerueiiiiciciiiiiini, 9-4
Performance of Object COMPATISONSccoviuiiiiiiimiiiiiiii e 9-5
Design Considerations for REFS..........ccccccoiiiiiiicccccccccceec e 9-6
9.3.1 Storage Size of REFS........cccociiiiiiiiiiiiiiiccccccccc e 9-6
9.3.2 Integrity Constraints for REF COlumMNS..........cccocoiiiiiiiiiiiiiiicccccce 9-6
9.3.3 Performance and Storage Considerations for Scoped REFsccccoovieiiriiiniinnnnn. 9-6
9.3.4 Performance Improvement for Object Access Using the WITH ROWID Option........ 9-8
Design Considerations for COLLECHONSc.cccciuiuiuiiiiiiiiiiicicceeeeeecee e 9-8
9.4.1 Viewing Object Data in Relational Form with Unnesting Queries.............cccccceevunucee. 9-9
9.4.2 Storage Considerations for Varrays.........ccoooceeeioiceiiiiiiccicecceece e 9-10
9.4.3 Performance of Varrays Versus Nested Tables...........c.ccccooouriririiiiiniinniinicnice, 9-11
9.44 Design Considerations for Nested Tables...........cccccoouiiiviiiiiiiiiiiiiicnns 9-11
9.4.5 Design Considerations for Multilevel Collections..............cccceciiiiininiinininincnciniene. 9-14
Design Considerations for Methodsc.cccciiiiiiiiiiiniis 9-18
9.5.1 Choice of Language for Method FUNCHONSc.coovimiiiiiiiiiiiccc 9-18
9.5.2 Static Methods. ... 9-20
9.5.3 About Using SELF IN OUT NOCOPY with Member Procedures..........c.cccccevrvumennee. 9-20

9.5.4 Function-Based Indexes on the Return Values of Type Methods...........cccccccceurrnennnen. 9-21

9.6 Reusable Code Using Invoker Rightscccccceiuiiiiiiiiccceecceeeeeeeeeeeeees 9-22
9.7 Roles with Invoker's Rights SUDPTOGIams..........ccccceuviriiiriiririiiiiiiicccreeeeeees 9-23
9.8 Replication SUPPOrt fOr ODJECES.......cuevviiiiiiiiiiiiiiiiiici s 9-23
9.8.1 Object Replication Using Oracle Golden Gateccccouoiiriioiiiiciiiiiccce 9-23
9.8.2 Active Data Guard and Logical Standby Support for Objects...........cccouvvvinininininnns 9-24
9.9 Materialized View Support fOr ODJECESc.coueuiuiiiiriririiiiicircceceeeeeeeeeee s 9-24
9.9.1 Object, Collection, or REF Type COIUMNSccccccviiiiiiiiiiiiiicccceccccceaens 9-24
9.9.2 Object TabLesooiiiiiiiiiiiii s 9-24
9.10 Constraints 0N ODbJECESccueuiiiiieieiiicie e 9-25
9.11 Considerations Related to Type EvVOIUtion ... 9-26
9.11.1 Pushing a Type Change Out t0o CHeNts ... 9-26
9.11.2 About Changing Default CONStructors...........cccoviiiiiiiiniiiiiiccccces 9-26
9.11.3 About Altering the FINAL Property of a Type.......cccooviiriiiiiiiicc 9-27
9.12 Parallel Queries with Oracle ObjJectsccceueioiiiiiiiiiicc e 9-27
9.13 Design Consideration Tips and TecChniques...........ccccocvuvimiiiiiiiiiiiiiines 9-27
9.13.1 Whether to Evolve a Type or Create a SUDtype.......ccccocviiiiiiiniiiicccceae, 9-28
9.13.2 How ANYDATA Differs from User-Defined Types.........ccccouvivivininininiinnniniinincnnce. 9-28
9.13.3 Polymorphic Views: An Alternative to an Object View Hierarchy 9-29
9.13.4 The SQLJ ObjJect TYPe.....ccoiueieieiiiiieieieiicic ettt 9-29
9.13.5 Miscellaneous Design TipPs.......ccccciiiiiiiiiiiiiiiceiitece e 9-31
Glossary
Index

List of Figures

1-1
1-2
1-3
2-1
2-2
6-1
6-2
6-3
6-4
9-1
9-2
9-3
9-4

Object Type and Object INSTANCES. ... 1-4
Object Attributes and Methods.............cooiiiiii e 1-5
A Type HIerarchy ... 1-13
Supertypes and Subtypes in Type Hierarchy...........ccocoevvnnrnnnnnnnnenreeeeeeeeene 2-16
Hierarchy of TYPeS.......coueiiiriiiiicii e 2-25
Object Type HIerarchy........cccocvuviviviiiiiiiiiiiiiiiiiini s 6-19
Flat Storage Model for Object View Hierarchy...........cccccccoeeiiiiiiiiciiiicceccceenenns 6-21
Horizontal Storage Model for Object View Hierarchy...........ccccooeuoiriicinicniniie 6-22
Vertical Storage Model for Object View Hierarchy............cccoooiiiiie 6-24
Representation of the people_reltab Relational Table...........cccccocoovrniiiiiniinan, 9-3
Nested Table STOTAGE........ccvvuviriririririirirr s 9-12
Object-Relational Representation of the people_objtab Object Table..................c.c........... 9-15
Object-Relational Representation of the projects_objtab Object Table..............c.............. 9-16

Xi

Xii

List of Tables

8-1
8-2
9-1

ALTER TYPE Options for Type EVOIUtioN.........cccccvuviiiiviiiiiiiiiiiiicces
Generic SQL TYPES.....ocurieiiiicieieiicicie ettt
Differences Between SQLJ and Custom Object Types.........ccccovvvvvvrmeieiriceeieicrieeicennens

Xiii

Xiv

Audience

Preface

Oracle Database Object-Relational Developer’s Guide explains how to use the object-
relational features of the Oracle Database, 12¢ release 2 (12.2.0.1). Information in this
guide applies to versions of the Oracle Database that run on all platforms, and does
not include system-specific information.

* Audience (page xv)
® Documentation Accessibility (page xv)
* Related Documents (page xvi)

¢ Conventions (page xvi)

Oracle Database Object-Relational Developer’s Guide is intended for programmers
developing new applications or converting existing applications to run in the Oracle
environment. The object-relational features are often used in content management,
data warehousing, data/information integration, and similar applications that deal
with complex structured data. The object views feature can be valuable when writing
new C++, C#, Java, or XML applications on top of an existing relational schema.

This guide assumes that you have a working knowledge of application programming
and that you are familiar with the use of Structured Query Language (SQL) to access
information in relational databases. You should be familiar with the information in
Oracle Database SQL Language Quick Reference, Oracle Database PL/SQL Language
Reference, and Oracle Database 2 Day Developer’s Guide, and with object-oriented
programming techniques.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http:/ /www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http:/ /www.oracle.com/pls/
topic/lookup?ctx=acc&id=info or visit http:/ /www-.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

XV

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Related Documents

For more information, see these Oracle resources:

Oracle Database Concepts for information about basic Oracle concepts

Oracle Database SQL Language Reference and Oracle Database Administrator’s Guide
for information about SQL

Oracle Database PL/SQL Language Reference for information about PL/SQL, the
procedural language extension to Oracle SQL

Oracle Database Development Guide for general information about developing
applications

Oracle Database [DBC Developer’s Guide and Oracle Database Java Developer's Guide
for information about Oracle object-relational features through Java

Oracle Call Interface Programmer’s Guide and Oracle C++ Call Interface Programmer’s
Guide for information about using the Oracle Call Interface (OCI) and Oracle C++
Call Interface (OCCI) to build third-generation language (3GL) applications that
interact with one or more the Oracle databases

Pro*C/C++ Programmer’s Guide for information about Oracle's Pro* series of
precompilers, which allow you to embed SQL and PL/SQL in 3GL application
programs written in Ada, C, C++, COBOL, or FORTRAN

Oracle XML DB Developer’s Guide and Oracle XML Developer’s Kit Programmer’s
Guide for information about developing applications with XML

Oracle Database SecureFiles and Large Objects Developer's Guide for information
about Large Objects (LOBs)

Oracle Data Provider for NET Developer’s Guide for Microsoft Windows

Oracle Developer Tools for Visual Studio Help

Many of the examples in this book use the sample schemas, which are installed by
default when you select the Basic Installation option with an Oracle Database
installation. Refer to Oracle Database Sample Schemas for information on how these
schemas were created and how you can use them yourself.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN)

http://ww. oracl e. conf t echnet wor k/ i ndex. ht m

For the latest version of the Oracle documentation, including this guide, visit

http://wwm. oracl e. conf t echnet wor k/ document ati on/ i ndex. ht m

Conventions

The following text conventions are used in this document:

XVi

http://www.oracle.com/technetwork/index.html
http://www.oracle.com/technetwork/documentation/index.html

Convention

Meaning

boldface

italic

nonospace

Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

XVii

Changes in This Release for Oracle

Database Object-Relational Developer's

Guide

This preface contains:

Changes in Oracle Database 12c Release 2 (12.2.0.1) (page xix)

Changes in Oracle Database 12¢ Release 2 (12.2.0.1)

The following are the changes in Oracle Database Object-Relational Developer’s Guide for
Oracle Database 12¢ Release 2 (12.2.0.1).

New Features

New Features (page xix)
Deprecated Features (page xix)

Desupported Features (page xx)

The following features are new in this release:

Support for PIDL and PCTAS on Varray and ADT Columns. For more
information, see the Parallel Queries with Oracle Objects (page 9-27) section.

Collation Support for Object Types— A relational column created to store a
user-defined type (UDT) attribute inherits the UDT's collation property. As such,
an object column can be created under any user-level and table-level collation.
However, since all UDTs in Oracle Database 12c¢ release 2 (12.2.0.1) are created
using the pseudo-collation USI NG_NLS_COWP, relevant columns for the UDT
attributes are created with this collation property as well. The only collation
allowed is USI NG_NLS_COWP.

Deprecated Features

This section lists the features deprecated in Oracle Database 12c release 2 (12.2.0.1).

REFs to object tables using primary keys as object identifiers. Users must not
create REF columns/attributes scoped to or having REFERENCES constraints
with any such table. Users must use system-generated object identifiers generated
using sys_guid() sql functions for object tables.

NESTED TABLE stored as index-organized table (IOT)

Xix

e ALTER TYPE ...I NVALI DATE has been deprecated. You must use ALTER
TYPE ... CASCADE instead.

Desupported Features
This section lists the features desupported in Oracle Database 12c release 2 (12.2.0.1).

® Desupport of Advanced Replication. Multi-master based replication of objects is
desupported. Oracle strongly recommends you to use Oracle Logical Standby and
Oracle Golden Gate that uses log-based replication. For more information, refer to
Replication Support for Objects (page 9-23).

¢ Desupport of SQLJ Support Inside Oracle Database

XX

1

Introduction to Oracle Objects

There are advantages and key features to the Oracle object-relational model.

Topics:
* About Oracle Objects (page 1-1)
* Advantages of Objects (page 1-1)

* Key Features of the Object-Relational Model (page 1-2)

1.1 About Oracle Objects

Oracle object types are user-defined types that make it possible to model real-world
entities, such as customers and purchase orders, as objects in the database.

New object types can be created from any built-in database types and any previously
created object types, object references, and collection types. Object types can work
with complex data, such as images, audio, and video. Oracle Database stores metadata
for user-defined types in a schema that is available to SQL, PL/SQL, Java, and other
languages.

Object types and related object-oriented features, such as varrays and nested tables,
provide higher-level ways to organize and access data in the database. Underneath the
object layer, data is still stored in columns and tables, but you can work with the data
in terms of the real-world entities that make the data meaningful. Instead of thinking
in terms of columns and tables when you query the database, you can simply select
entities that you have created, such as customers and purchase orders.

You can begin to use object-oriented features while continuing to work with most of
your data relationally, or you use to an object-oriented approach entirely.

Object types are also known as user-defined types or ADTs. Oracle Database PL/SQL
Language Reference generally refers to them as ADTs.

1.2 Advantages of Objects

The object-type model, in general, is similar to the class mechanism found in C++ and
Java.

Like classes, the reusability of objects makes it possible to develop database
applications faster and more efficiently. By natively supporting object types in the
database, Oracle Database enables application developers to directly access the data
structures used by their applications.

Objects offer other advantages over a purely relational approach, such as:
¢ Objects Can Encapsulate Operations Along with Data (page 1-2)

* Objects Are Efficient (page 1-2)

Introduction to Oracle Objects 1-1

Key Features of the Object-Relational Model

¢ Objects Can Represent Part-Whole Relationships (page 1-2)

Objects Can Encapsulate Operations Along with Data

Database tables contain only data. Objects can include the ability to perform
operations that are likely to be performed on that data.

Thus, an object such as a purchase order might include a method to calculate the cost
of all the items purchased. Or a customer object might have methods to return the
customer's buying history and payment pattern. An application can simply call the
methods to retrieve the information.

Objects Are Efficient

Using object types allows for greater efficiency:

* Object types and their methods are stored with the data in the database, so they
are available for any application to use. Developers do not need to re-create
similar structures and methods in every application. This also ensures that
developers are using consistent standards.

* You can fetch and manipulate a set of related objects as a single unit. A single
request to fetch an object from the server can retrieve other objects that are
connected to it. When you reference a column of a SQL object type, you retrieve
the whole object.

Objects Can Represent Part-Whole Relationships
Object types allow you to represent part-whole relationships.

In a relational table for stock items, for example, a piston and an engine may have the
same status. Using objects can reduce the need to represent pistons as parts of engines
with complicated schemas of multiple tables with primary key-foreign key
relationships. An object can have other objects as attributes, and the attribute objects
can have their own object attributes too. An entire parts-list hierarchy can be built up
in this way from interlocking object types.

1.3 Key Features of the Object-Relational Model

Oracle Database implements the object-type model as an extension of the relational
model, while continuing to support standard relational database functionality, such as
queries, fast commits, backup and recovery, scalable connectivity, row-level locking,
read consistency, and more.

SQL and various programmatic interfaces and languages, including PL/SQL, Java,
Oracle Call Interface, Pro*C/C++, and C# have been enhanced with extensions to
support Oracle objects. The result is an object-relational model that offers the
intuitiveness and economy of an object interface while preserving the high
concurrency and throughput of a relational database.

Topics:
e Database Features of Oracle Objects (page 1-2)

* Language Binding Features of Oracle Objects (page 1-13)

1.3.1 Database Features of Oracle Objects

There are certain features and concepts of the object-relational model that are related
to the database.

1-2 Oracle Database Object-Relational Developer's Guide

Key Features of the Object-Relational Model

Note:

Running Examples: Many examples in this guide can be run using the HR
sample schema. Comments at the beginning of most examples indicate if any
previous example code is required.

Refer to Oracle Database Sample Schemas for information on how these schemas
were created and how you can use them yourself.

Topics:

e About Object Types (page 1-3)

* About Object Instances (page 1-5)

* About Object Methods (page 1-6)

* How Objects are Stored in Tables (page 1-6)

* Object Identifiers Used to Identify Row Objects (page 1-8)
* References to Row Objects (page 1-8)

® Oracle Collections Data Types (page 1-11)

* Object Views Used to Access Relational Data (page 1-12)
* Use of Type Inheritance (page 1-12)

¢ Type Evolution Used to Change an Existing Object Type (page 1-13)
1.3.1.1 About Object Types

An object type is a kind of data type.

You can use an object in the same ways that you use standard data types such as
NUMBER or VARCHAR2. For example, you can specify an object type as the data type of
a column in a relational table, and you can declare variables of an object type. The
value is a variable or an instance of that type. An object instance is also called an
object.

Figure 1-1 (page 1-4) shows an object type, per son_t yp, and two instances of the
object type.

Introduction to Oracle Objects 1-3

Key Features of the Object-Relational Model

Figure 1-1 Object Type and Object Instances

Object Type person_typ
Attributes Methods
idno get_idno
first_name display_details
last_name
email
phone
Object Object
idno: 65 idno: 101
first_ name: Verna first_name: John
last_ name: Mills last_name: Smith
email: vmills@example.com email: jsmith@example.com
phone: 1-650-555-0125 phone: 1-650-555-0135

Object types serve as blueprints or templates that define both structure and behavior.
Object types are database schema objects, subject to the same kinds of administrative
control as other schema objects. Application code can retrieve and manipulate these
objects. See Managing Oracle Objects (page 7-1).

You use the CREATE TYPE SQL statement to define object types.

Example 1-1 (page 1-4) shows how to create an object type named per son_t yp. In
the example, an object specification and object body are defined. For information on
the CREATE TYPE SQL statement and on the CREATE TYPE BODY SQL statement, see
Oracle Database PL/SQL Language Reference.

Note: Running Examples: Many examples on this subject can be run using
the HR sample schemas. Comments at the beginning of most examples indicate
if any previous example code is required.

Refer to Oracle Database Sample Schemas for information on how these schemas
were created and how you can use them yourself.

Example 1-1 Creating the person_typ Object Type
CREATE TYPE person_typ AS OBJECT (

i dno NUMBER,

first_nane VARCHAR2(20) ,
| ast _nane VARCHAR2(25) ,
enai | VARCHAR2(25) ,
phone VARCHAR2(20) ,

MAP MEMBER FUNCTI ON get i dno RETURN NUMBER,
MEMBER PROCEDURE di spl ay_details (SELF I N OUT NOCOPY person_typ));
/

CREATE TYPE BODY person_typ AS
MAP MEMBER FUNCTI ON get _i dno RETURN NUMBER | S
BEG N
RETURN i dno;
END;
MEMBER PROCEDURE di spl ay_details (SELF I N OUT NOCOPY person_typ) IS

1-4 Oracle Database Object-Relational Developer's Guide

Key Features of the Object-Relational Model

BEG N
- use the PUT_LINE procedure of the DBVMS_QUTPUT package to display details
DBMS_QUTPUT. PUT_LINE(TO CHAR(idno) || " " || first_name || ' ' || |ast_nane);
DBMS_OQUTPUT. PUT_LI NE(email || " ' || phone);
END;
END;

/

Object types differ from the standard data types that are native to a relational
database:

¢ Oracle Database does not supply predefined object types. You define the object
types you want by combining built-in types with user-defined ones as shown in
Example 1-1 (page 1-4).

* Object types are composed of attributes and methods as illustrated in Figure 1-2
(page 1-5).

— Attributes hold the data about an object. Attributes have declared data types
which can, in turn, be other object types.

- Methods are procedures or functions that applications can use to perform
operations on the attributes of the object type. Methods are optional. They
define the behavior of objects of that type.

Figure 1-2 Object Attributes and Methods
Figure 1-2 (page 1-5) shows the relationship of attributes and methods in the spec.

spec

| attribute declarations |

public interface

[method specs |

body
| method bodies

| private implementation

1.3.1.2 About Object Instances
A variable of an object type is an instance of the type, or an object.

An object has the attributes and methods defined for its type. Because an object
instance is a concrete thing, you can assign values to its attributes and call its methods.

Defining an object type does not allocate any storage. After they are defined, object
types can be used in SQL statements in most of the same places you use types such as
NUMBER or VARCHAR?2. Storage is allocated once you create an instance of the object

type.
Example 1-2 (page 1-5) shows how to create object instances of the per son_t yp

created in Example 1-1 (page 1-4), and define a relational table to keep track of these
instances as contacts.

Example 1-2 Creating the contacts Table with an Object Type Column

- requires existing person_typ fr. Ex 1-1
CREATE TABLE contacts (

cont act person_typ,

contact date DATE);

Introduction to Oracle Objects 1-5

Key Features of the Object-Relational Model

I NSERT | NTO contacts VALUES (
person_typ (65, 'Verna', 'MIls"', 'vmlls@xanple.com, '1-650-555-0125"),
to_date(' 24 Jun 2003', 'dd Mon YYYY'));

The cont act s table is a relational table with an object type as the data type of its
contact column. Objects that occupy columns of relational tables are called column
objects. See "How Objects are Stored in Tables (page 1-6)".

1.3.1.3 About Object Methods

Object methods are functions or procedures that you can declare in an object type
definition to implement behavior that you want objects of that type to perform.

The general kinds of methods that can be declared in a type definition are:

e Member Methods

Using member methods, you can provide access to the data of an object, and
otherwise define operations that an application performs on the data. To perform
an operation, the application calls the appropriate method on the appropriate
object.

e Static Methods

Static methods compare object instances and perform operations that do not use
the data of any particular object, but, instead, are global to an object type.

e Constructor Methods

A default constructor method is implicitly defined for every object type, unless it
is overwritten with a user-defined constructor. A constructor method is called on
a type to construct or create an object instance of the type.

Example 1-3 (page 1-6) show the get _i dno() method, created in Example 1-1
(page 1-4), to display the Id number of persons in the cont act s table:

Example 1-3 Using the get_idno Object Method

- requires Ex 1-1 and Ex 1-2
SELECT c. contact.get _idno() FROM contacts c;

See "Object Methods (page 2-8)" for detailed information.

1.3.1.4 How Objects are Stored in Tables

Objects can be stored in two types of tables:

* Object tables: store only objects

In an object table, each row represents an object, which is referred to as a row
object. See "Creating and Using Object Tables (page 1-7)"

e Relational tables: store objects with other table data

Objects that are stored as columns of a relational table, or are attributes of other
objects, are called column objects. Example 1-2 (page 1-5) shows the cont act s
table which stores an instance of the per son_t yp object.

Objects that have meaning outside of the relational database in which they are
contained, or objects that are shared among more than one relational database object,
should be made referenceable as row objects. That is, such objects should be stored as
a row object in an object table instead of in a column of a relational table.

1-6 Oracle Database Object-Relational Developer's Guide

Key Features of the Object-Relational Model

See Also:

"About Storing Objects as Columns or Rows (page 9-1)"

1.3.1.4.1 Creating and Using Object Tables
You create object tables using a CREATE TABLE statement.

Example 1-4 (page 1-7) shows a CREATE TABLE statement that creates an object
table for per son_t yp objects.

Example 1-4 Creating the person_obj_table Object Table

- requires Ex. 1-1
CREATE TABLE person_obj _table OF person_typ;

You can view this table in two ways:

* As asingle-column table, in which each row is a per son_t yp object, allowing
you to perform object-oriented operations.

e Asa multi-column table, in which each attribute of the object type per son_t yp
such asi dno, first_nane,| ast _nane, and so on, occupies a column, allowing
you to perform relational operations.

1.3.1.4.2 Performing Operations on Object Tables

You can perform various operations on object tables such as inserting objects into the
table or selecting objects from the table.

Example 1-5 (page 1-7) illustrates several operations on an object table.
Example 1-5 Operations on the person_obj_table Object Table

- requires Ex. 1-1 and 1-4
I NSERT | NTO person_obj _table VALUES (
person_typ(101, 'John', 'Smth', 'jsnith@xanple.com, '1-650-555-0135"));

SELECT VALUE(p) FROM person_obj _table p
WHERE p.last_name = 'Smith';

DECLARE
person person_typ;

BEG N -- PL/SQ block for selecting a person and displaying details
SELECT VALUE(p) | NTO person FROM person_obj _table p WHERE p.idno = 101,
person. di splay_detail s();

END;

/

The | NSERT | NTOSQL statement in Example 1-5 (page 1-7)inserts a per son_t yp
object into the per son_obj _t abl e, treating per son_obj _t abl e as a multi-column
table.

The SELECT SQL statement selects from per son_obj _t abl e as a single-column
table, using the VALUE function to return rows as object instances. See "VALUE
(page 2-41)" for information on the VALUE function.

The PL/SQL block selects a specific person and executes a member function of
per son_t yp to display details about the specified person. For more information
about using PL/SQL with objects, see Using PL/SQL With Object Types (page 3-1).

Introduction to Oracle Objects 1-7

Key Features of the Object-Relational Model

1.3.1.5 Object Identifiers Used to Identify Row Objects
Object identifiers (OIDs) uniquely identify row objects in object tables.

You cannot directly access object identifiers, but you can make references (REFs) to the
object identifiers and directly access the REFs, as discussed in "References to Row
Objects (page 1-8)".

There are two types of object identifiers.

* System-Generated Object Identifiers (default)

Oracle automatically creates system-generated object identifiers for row objects in
object tables unless you choose the primary-key based option.

¢ Primary-Key Based Object Identifiers

You have the option to create primary-key based OIDs when you create the table
using the CREATE TABLE statement.

Note:

Column objects are identified by the primary key of the row, and, therefore,
do not need a specific object identifier.

See Also:
¢ "Object Identifiers for Object Views (page 6-8)"

e "Storage Considerations for Object Identifiers (OIDs) (page 9-4)"

1.3.1.6 References to Row Objects

A REF is a logical pointer or reference to a row object that you can construct from an
object identifier (OID).

You can use the REF to obtain, examine, or update the object. You can change a REF so
that it points to a different object of the same object type hierarchy or assign it a null
value.

REFs are Oracle Database built-in data types. REFs and collections of REFs model
associations among objects, particularly many-to-one relationships, thus reducing the
need for foreign keys. REFs provide an easy mechanism for navigating between
objects.

Example 1-6 (page 1-8) illustrates a simple use of a REF.
Example 1-6 Using a REF to the emp_person_typ Object

CREATE TYPE enp_person_typ AS OBJECT (
nane VARCHAR2(30) ,
manager REF enp_person_typ);
/
CREATE TABLE enp_person_obj _tabl e OF enp_person_typ;

I NSERT | NTO enp_person_obj _tabl e VALUES (
enp_person_typ ('John Snith', NULL));

1-8 Oracle Database Object-Relational Developer's Guide

Key Features of the Object-Relational Model

I NSERT | NTO enp_person_obj _table
SELECT enp_person_typ (' Bob Jones', REF(e))

FROM emp_person_obj _table e

WHERE e. name = 'John Smith';

This example first creates the enp_per son_t yp John Smith, with NULL value for a
manager. Then it adds the enp_per son_t yp Bob Jones as John Smith's supervisee.
The following query and its output show the effect:

COLUWN nane FORMAT A10
COLUWN nmenager FORMVAT A50
select * fromenp_person_obj table e;

NAVE MANAGER

John Snith

Bob Jones 0000220208424E801067C2EABBE040578CE70A0707424E8010
67CLEABBE040578CE70A0707

Example 1-10 (page 1-11) shows how to dereference the object, so that Manager
appears as a name rather than an object identifier.

See "Rules for REF Columns and Attributes (page 2-5)" and "Design Considerations
for REFs (page 9-6)".

1.3.1.6.1 Using Scoped REFs

Scoped REF types require less storage space and allow more efficient access than
unscoped REF types.

You can constrain a column type, collection element, or object type attribute to
reference a specified object table. Use the SQL constraint subclause SCOPE | S when
you declare the REF.

Example 1-7 (page 1-9) shows REF column cont act _r ef scoped to
per son_obj _t abl e which is an object table of type per son_t yp.

Example 1-7 Creating the contacts_ref Table Using a Scoped REF

- requires Ex. 1-1, 1-4, and 1-5

CREATE TABLE contacts_ref (
contact _ref REF person_typ SCOPE IS person_obj _table,
contact _date DATE);

To insert a row in the table, you could issue the following;:

I NSERT | NTO cont act s_r ef
SELECT REF(p), '26 Jun 2003'
FROM person_obj _table p
VHERE p.idno = 101;

A REF can be scoped to an object table of the declared type (per son_t yp in the
example) or of any subtype of the declared type. If a REF is scoped to an object table of
a subtype, the REF column is effectively constrained to hold only references to
instances of the subtype (and its subtypes, if any) in the table. See "Inheritance in SQL
Object Types (page 2-14)".

Introduction to Oracle Objects 1-9

Key Features of the Object-Relational Model

1.3.1.6.2 Checking for Dangling REFs

Dangling REFs are REFs where the object identified by the REF becomes unavailable.
Objects are unavailable if they have been deleted or some privilege necessary to them
has been deleted.

® Use the Oracle Database SQL predicate | S DANGLI NGto test REFs for dangling
REFs.

You can avoid dangling REFs by defining referential integrity constraints. See "Rules
for REF Columns and Attributes (page 2-5)".

1.3.1.7 Dereferencing REFs

Accessing the object that the REF refers to is called dereferencing the REF.

There are various ways to dereference a REF, both with and without the DEREF
command.

Topics:

e Dereferencing a REF with the DEREF Command (page 1-10)
* Dereferencing a Dangling REF (page 1-10)

e Dereferencing a REF Implicilty (page 1-10)

1.3.1.7.1 Dereferencing a REF with the DEREF Command
This example shows how to use the DEREF command to derefence a REF.
Example 1-8 Using DEREF to Dereference a REF

SELECT DEREF(e. nmanager) FROM enp_person_obj table e;
DEREF(E. MANAGER) (NAME, MANAGER)

EMP_PERSON TYP(' John Smith', NULL)
This example shows that dereferencing a dangling REF returns a null object.

1.3.1.7.2 Dereferencing a Dangling REF

You can dereference a dangling REF with the DELETE command.
Dereferencing a dangling REF returns a null object.

Example 1-9 Dereferencing a Dangling Ref

DELETE from person_obj _table WHERE i dno = 101,
/
SELECT DEREF(c.contact_ref), c.contact_date FROM contacts_ref c;

1.3.1.7.3 Dereferencing a REF Implicilty
Oracle Database provides implicit dereferencing of REFs.

For example, to access the manager's name for an employee, you can use a SELECT
statement.

Example 1-10 (page 1-11) follows the pointer from the person's name and retrieves
the manager's name e. manager . nane.

1-10 Oracle Database Object-Relational Developer's Guide

Key Features of the Object-Relational Model

Example 1-10 Implicitly Dereferencing a REF

- requires Ex. 1-6
SELECT e. nane, e.nmanager.nanme FROM enp_person_obj table e
VHERE e. nane = 'Bob Jones';

Dereferencing the REF in this manner is allowed in SQL, but PL/SQL requires the
DEREF keyword as in Example 1-8 (page 1-10).

1.3.1.8 Obtaining a REF to a Row Object

You obtain a REF to a row object by selecting the object from its object table and
applying the REF operator.

® Select the object from its object table and apply the REF operator.

Example 1-11 (page 1-11) shows how to obtain a REF to the person with an i dno
equal to 101.

The query returns exactly one row. See "Storage Size of REFs (page 9-6)".
Example 1-11 Obtaining a REF to a Row Object

- requires Ex. 1-1, 1-4, and 1-5
DECLARE
person_ref REF person_typ;
person person_typ;
BEG N

SELECT REF(p) |NTO person_ref
FROM person_obj _table p
VWHERE p.idno = 101;

sel ect deref(person_ref) into person fromdual;
person. di splay_details();

END;
/

1.3.1.9 REF Variables Compared

Two REF variables can be compared if, and only if, the targets that they reference are
both of the same declared type, or one is a subtype of the other.

REF variables can only be compared for equality.

1.3.1.10 Oracle Collections Data Types

For modeling multi-valued attributes and many-to-many relationships, Oracle
Database supports these two collection data types:

* Varrays

e Nested Tables

You can use collection types anywhere other data types are used. You can have object
attributes of a collection type in addition to columns of a collection type. For example,
a purchase order object type might contain a nested table attribute that holds the
collection of line items for the purchase order.

To define a collection type, use the CREATE TYPE. . . AS TABLE OF statement.

Introduction to Oracle Objects 1-11

Key Features of the Object-Relational Model

Example 1-12 (page 1-12) shows CREATE TYPE statements that define a collection and
an object type.

Example 1-12 Creating the people_typ Collection Data Type

- requires Ex. 1-1
CREATE TYPE peopl e_typ AS TABLE OF person_typ;
/

CREATE TYPE dept _persons_typ AS OBJECT (
dept _no CHAR(5),
dept _name CHAR(20),
dept _ngr person_typ,

dept _enps people_typ);
/

Note the following about this example:
* The collection type, peopl e_t yp, is specifically a nested table type.

e Thedept _persons_t yp object type has an attribute dept _enps of
peopl e_t yp. Each row in the dept _enps nested table is an object of type
per son_t yp which was defined in Example 1-1 (page 1-4).

See "Collection Data Types (page 5-1)"

1.3.1.11 Object Views Used to Access Relational Data
An object view is a way to access relational data using object-relational features.

An object view lets you develop object-oriented applications without changing the
underlying relational schema.

You can access objects that belong to an object view in the same way that you access
row objects in an object table. Oracle Database also supports materialized view objects
of user-defined types from data stored in relational schemas and tables.

Object views let you exploit the polymorphism that a type hierarchy makes possible.
A polymorphic expression takes a value of the expression's declared type or any of
that type's subtypes. If you construct a hierarchy of object views that mirrors some or
all of the structure of a type hierarchy, you can query any view in the hierarchy to
access data at just the level of specialization you are interested in. If you query an
object view that has subviews, you can get back polymorphic data—rows for both the
type of the view and for its subtypes. See Applying an Object Model to Relational Data

(page 6-1).
1.3.1.12 Use of Type Inheritance

Type inheritance enables you to create type hierarchies.

A type hierarchy is a set of successive levels of increasingly specialized subtypes that
derive from a common ancestor object type, which is called a supertype. Derived
subtypes inherit the features of the parent object type and can extend the parent type
definition. The specialized types can add new attributes or methods, or redefine
methods inherited from the parent. The resulting type hierarchy provides a higher
level of abstraction for managing the complexity of an application model. For
example, specialized types of persons, such as a student type or a part-time student
type with additional attributes or methods, might be derived from a general person
object type.

1-12 Oracle Database Object-Relational Developer's Guide

Key Features of the Object-Relational Model

See Also:

"Inheritance in SQL Object Types (page 2-14)"

Figure 1-3 (page 1-13) illustrates two subtypes, St udent _t and Enpl oyee_t,
created under Person_t,and the Part Ti meSt udent _t, a subtype under
Student _t.

Figure 1-3 A Type Hierarchy

Person _t
Student_t Employee_t

PartTimeStudent t

1.3.1.13 Type Evolution Used to Change an Existing Object Type

Type evolution enables you to modify, or evolve, an existing object type, even those
already used in tables.

Type evolution works through the ALTER TYPE statement, enabling you to propagate
changes through all instances of the object type.

The ALTER TYPE statement checks for dependencies of the type to be altered, using
essentially the same validations as a CREATE TYPE statement. If a type or any of its
dependent types fails the type validations, the ALTER TYPE statement rolls back.

Metadata for all tables and columns that use an altered type are updated for the new
type definition so that data can be stored in the new format. Existing data can be
converted to the new format either all at once or piecemeal, as it is updated. In either
case, data is always presented in the new type definition even if it is still stored in the
format of the older one.

See Also:
e "Type Evolution (page 8-6)"

e "Considerations Related to Type Evolution (page 9-26)"

1.3.2 Language Binding Features of Oracle Objects

Certain key features of the object-relational model are related to languages and
application programming interfaces (APISs).

Related languages and application programming interfaces (APIs):
SQL Object Extensions

To support object-related features, Oracle Database provides SQL extensions,
including DDL, to create, alter, or drop object types; to store object types in tables; and
to create, alter, or drop object views. There are DML and query extensions to support
object types, references, and collections. See "SQL and Object Types (page 4-1)".

Introduction to Oracle Objects 1-13

Key Features of the Object-Relational Model

PL/SQL Object Extensions

PL/SQL can operate on object types seamlessly. Thus, application developers can use
PL/SQL to implement logic and operations on user-defined types that execute in the
database server. See Using PL/SQL With Object Types (page 3-1).

Java Support for Oracle Objects

Oracle Java VM is tightly integrated with Oracle Database and supports access to
Oracle Objects through object extensions to Java Database Connectivity (JDBC). This
provides dynamic SQL, and SQL]J, which provides static SQL. Thus, application
developers can use Java to implement logic and operations on object types that
execute in the database. You can map SQL types to existing Java classes to provide
persistent storage for Java objects. See "Java Object Storage (page 4-11)".

See Also:

Oracle Database JDBC Developer’s Guide

External Procedures

You can implement database functions, procedures, or member methods of an object
type in PL/SQL, Java, C, or .NET as external procedures. External procedures are best
suited for tasks that are more quickly or easily done in a low-level language such as C.
External procedures are always run in a safe mode outside the address space of the
database. Generic external procedures can be written that declare one or more
parameters to be of a system-defined generic type. Thus, an external procedure can
use the system-defined generic type to work with data of any built-in or user-defined

type.
Object Type Translator/JPublisher

Object Type Translator (OTT) and Oracle JPublisher provide client-side mappings to
object type schemas by using schema information from the Oracle data dictionary to
generate header files containing Java classes and C structures and indicators. You can
use these generated header files in host-language applications for transparent access to
database objects.

Client-Side Cache

Oracle Database provides an object cache for efficient access to persistent objects
stored in the database. Copies of objects can be brought into the object cache. Once the
data has been cached in the client, the application can traverse through these at
memory speed. Any changes made to objects in the cache can be committed to the
database by using the object extensions to Oracle Call Interface programmatic
interfaces.

Oracle Call Interface and Oracle C++ Call Interface

Oracle Call Interface (OCI) and Oracle C++ Call Interface provide a comprehensive
application programming interface for application and tool developers. Oracle Call
Interface provides a run-time environment with functions to connect to an Oracle
Database, and control transactions that access objects in the database. It allows
application developers to access and manipulate objects and their attributes in the
client-side object cache either navigationally, by traversing a graph of inter-connected
objects, or associatively by specifying the nature of the data through declarative SQL
DML. Oracle Call Interface provides a number of functions to access metadata about
object types defined in the database at run-time. See "Oracle Call Interface (OCI)
(page 4-2)" and "Oracle C++ Call Interface (OCCI) (page 4-8)".

1-14 Oracle Database Object-Relational Developer's Guide

Key Features of the Object-Relational Model

Pro*C/C++ Object Extensions

The Oracle Pro*C/C++ precompiler provides an embedded SQL application
programming interface and offers a higher level of abstraction than Oracle Call
Interface. Like Oracle Call Interface, the Pro*C/C++ precompiler allows application
developers to use the Oracle client-side object cache and the Object Type Translator
Utility. Pro*C/C++ supports the use of C bind variables for Oracle object types.
Pro*C/C++ also provides simplified syntax to allocate and free objects of SQL types
and access them using SQL DML or the navigational interface. See "Oracle Call
Interface (OCI) (page 4-2)".

.NET Object Extensions

Oracle Developer Tools for Visual Studio (ODT) and Oracle Data Provider for .NET
(ODP.NET) support .NET custom objects that map to Oracle object-relational data
types, collections, and REFs. ODT is a set of tools incorporated into a Visual Studio
integrated development environment, which allow managing these data types inside
the Oracle database. Through the ODT Custom Class Wizard, Oracle objects can be
automatically mapped to .NET custom types to ease data sharing between Oracle

databases and .NET applications. Data access to these .NET custom types occur
through ODP.NET.

See Also:
® Oracle Database Extensions for .NET Developer's Guide for Microsoft Windows
® Oracle Data Provider for NET Developer’s Guide for Microsoft Windows

® Oracle Developer Tools for Visual Studio Help

Introduction to Oracle Objects 1-15

Key Features of the Object-Relational Model

1-16 Object-Relational Developer's Guide

2

Basic Components of Oracle Objects

The basic components of Oracle Objects are object types, subprograms, and the
hierarchy of object types.

Basic information about working with Oracle SQL objects includes what object types
and subprograms are, and how to create and work with a hierarchy of object types
that are derived from a shared root type and are connected by inheritance.

Note:

Running Examples: In order to run examples in chapter 2, you may need to
drop any objects you created for Chapter 1.

Topics:

SQL Object Types and References (page 2-1)

Object Methods (page 2-8)
® Inheritance in SQL Object Types (page 2-14)

* Functions and Operators Useful with Objects (page 2-35)

2.1 SQL Object Types and References
This section describes SQL object types and references.
Topics:
e Null Objects and Attributes (page 2-2)
® Character Length Semantics (page 2-3)
¢ Defining Object Tables with Single Constraints (page 2-3)
¢ Defining Indexes for Object Tables (page 2-4)
e Defining Triggers for Object Tables (page 2-5)
* Rules for REF Columns and Attributes (page 2-5)
e Name Resolution (page 2-6)

® Restriction on Using User-Defined Types with a Remote Database (page 2-8)

You create Oracle SQL object types with the CREATE TYPE statement. A typical
example of object type creation is shown in Example 2-1 (page 2-2).

Basic Components of Oracle Objects 2-1

SQL Object Types and References

See Also:

e Oracle Database PL/SQL Language Reference for information on the CREATE
TYPE SQL statement

e Oracle Database PL/SQL Language Reference for information on the CREATE
TYPE BODY SQL statement

2.1.1 Null Objects and Attributes

An object whose value is NULL is called atomically null.

An atomically null object is different from an object that has null values for all its
attributes.

In an object with null values, a table column, object attribute, collection, or collection
element might be NULL if it has been initialized to NULL or has not been initialized at
all. Usually, a NULL value is replaced by an actual value later on. When all the
attributes are null, you can still change these attributes and call the object's
subprograms or methods. With an atomically null object, you can do neither of these
things.

Example 2-1 (page 2-2) creates the cont act s table and defines the per son_t yp
object type and two instances of this type.

Example 2-1 Inserting NULLs for Objects in a Table
CREATE OR REPLACE TYPE person_typ AS OBJECT (

i dno NUMBER,
name VARCHAR2(30) ,
phone VARCHAR2(20) ,

MAP MEMBER FUNCTI ON get _i dno RETURN NUMBER,
MEMBER PROCEDURE di spl ay_details (SELF I N QUT NOCOPY person_typ));
/

CREATE OR REPLACE TYPE BQODY person_typ AS
MAP MEMBER FUNCTI ON get _i dno RETURN NUMBER | S
BEG N
RETURN i dno;
END;
MEMBER PROCEDURE di splay_details (SELF IN QUT NOCOPY person_typ) IS
BEG N
- use the PUT_LINE procedure of the DBVMS_QUTPUT package to display details
DBVS_QUTPUT. PUT_LINE(TO CHAR(idno) || " - ' || name || ' - ' || phone);
END;
END;
/
CREATE TABLE contacts (
cont act person_typ,
contact _date DATE);

I NSERT | NTO contacts VALUES (
person_typ (NULL, NULL, NULL), '24 Jun 2003);

I NSERT | NTO contacts VALUES (
NULL, '24 Jun 2003);

Two instances of per son_t yp are inserted into the table and give two different
results. In both cases, Oracle Database allocates space in the cont act s table for a new

2-2 Oracle Database Object-Relational Developer's Guide

SQL Object Types and References

row and sets its DATE column to the value given. But in the first case, Oracle Database
allocates space for an object in the cont act column and sets each of the object's
attributes to NULL. In the second case, Oracle Database sets the per son_t yp field
itself to NULL and does not allocate space for an object.

In some cases, you can omit checks for null values. A table row or row object cannot be
null. A nested table of objects cannot contain an element whose value is NULL.

A nested table or array can be null, so you do need to handle that condition. A null
collection is different from an empty one, one that has no elements.

See "How PL/SQL Treats Uninitialized Objects (page 3-3)"

2.1.2 Character Length Semantics

Lengths for character types CHAR and VARCHAR2 may be specified as a number of
characters, instead of bytes, in object attributes and collections even if some of the
characters consist of multiple bytes.

To specify character-denominated lengths for CHAR and VARCHAR? attributes, you add
the qualifier char to the length specification.

Like CHAR and VARCHAR2, NCHAR and NVARCHAR2 may also be used as attribute types
in objects and collections. NCHAR and NVARCHARZ are always implicitly measured in
terms of characters, so no char qualifier is used.

For example, the following statement creates an object with both a character-length
VARCHAR? attribute and an NCHAR attribute:

Example 2-2 Creating the employee_typ Object Using a char Qualifier
CREATE OR REPLACE TYPE enpl oyee_typ AS OBJECT (

nanme VARCHAR2('30 char),
| anguage NCHAR(10) ,
phone VARCHAR2(20));

/

For CHAR and VARCHAR? attributes whose length is specified without a char qualifier,
the NLS_LENGTH_SEMANTI CSinitialization parameter setting (CHAR or BYTE)
indicates the default unit of measure.

Oracle Database Globalization Support Guide for information on character length
semantics

2.1.3 Defining Object Tables with Single Constraints
You can define constraints on an object table just as you can on other tables.

You can define constraints on the leaf-level scalar attributes of a column object, with
the exception of REFs that are not scoped.

Example 2-3 (page 2-3) places a single constraint, an implicit PRI MARY KEY
constraint, on the of f i ce_i d column of the object table of f i ce_t ab.

Example 2-3 Creating the office_tab Object Table with a Constraint

- requires Ex. 2-1
CREATE OR REPLACE TYPE | ocation_typ AS OBJECT (
bui | di ng_no NUMBER,
city VARCHAR2(40));
/

CREATE OR REPLACE TYPE office_typ AS OBJECT (

Basic Components of Oracle Objects 2-3

SQL Object Types and References

office_id VARCHAR(10) ,
office_loc location_typ,
occupant person_typ);/

CREATE TABLE office_tab OF office_typ (
office_id PRI MARY KEY);

The object type | ocat i on_t yp defined in Example 2-3 (page 2-3) is the type of the
dept _| oc column in the depart ment _nyr s table in Example 2-4 (page 2-4).

2.1.4 Defining Object Tables with Multiple Constraints

You can define object tables with multiple constraints.
You can define object tables with multiple constraints.
Example 2-4 Creating the department_mgrs Table with Multiple Constraints

Example 2-4 (page 2-4) defines constraints on scalar attributes of the | ocat i on_t yp
objects in the table.

- requires Ex. 2-1 and 2-3
CREATE TABLE departnent _ngrs (
dept _no NUMBER PRI MARY KEY,
dept _name CHAR(20),
dept _ngr person_typ,
dept _| oc | ocation_typ,
CONSTRAINT dept _| oc_consl
UNI QUE (dept _I oc. building_no, dept_loc.city),
CONSTRAINT dept _| oc_cons2
CHECK (dept_loc.city IS NOT NULL));

I NSERT | NTO departnment _mgrs VALUES
(101, 'Physical Sciences',
person_typ(65,' Vrinda MIIs', '1-1-650-555-0125"),
| ocation_typ(300, 'Palo Alto'));

See "Constraints on Objects (page 9-25)"

2.1.5 Defining Indexes for Object Tables

You can define indexes on an object table or on the storage table for a nested table
column or attribute just as you can on other tables.

Define indexes on leaf-level scalar attributes of column objects. You can only define
indexes on REF attributes or columns if the REF is scoped.

Example 2-5 Creating an Index on an Object Type in a Table

- requires Ex. 2-1, 2-3,

CREATE TABLE departnent _| oc (
dept _no NUMBER PRI MARY KEY,
dept _name CHAR(20),
dept _addr location_typ);

CREATE I NDEX i _dept_addrl
ON departnent_|oc (dept_addr.city);

I NSERT | NTO departnent _| oc VALUES
(101, 'Physical Sciences',
| ocation_typ(300, 'Palo Alto'));
I NSERT | NTO departnent _| oc VALUES

2-4 Oracle Database Object-Relational Developer's Guide

SQL Object Types and References

(104, 'Life Sciences',
| ocation_typ(400, 'Menlo Park'));
I NSERT | NTO departnent _| oc VALUES
(103, 'Biological Sciences',
| ocation_typ(500, 'Redwood Shores'));

This example, Example 2-5 (page 2-4), indexes ci t y, which is a leaf-level scalar
attribute of the column object dept _addr .

Wherever Oracle Database expects a column name in an index definition, you can also
specify a scalar attribute of a column object.

For an example of an index on a nested table, see Storing Elements of Nested Tables
(page 5-5).

2.1.6 Defining Triggers for Object Tables
You can define triggers on an object table just as you can on other tables.

You cannot define a trigger on the storage table for a nested table column or attribute.
You cannot modify LOB values in a trigger body. Otherwise, there are no special
restrictions on using object types with triggers.

Example 2-6 (page 2-5) defines a trigger on the of f i ce_t ab table defined in
"Defining Object Tables with Single Constraints (page 2-3)".

Example 2-6 Creating a Trigger on Objects in a Table

- requires Ex. 2-1 and 2-3
CREATE TABLE movenent (

i dno NUMBER,
ol d_office | ocation_typ,
new of fice | ocation_typ);

CREATE TRI GGER triggerl
BEFORE UPDATE
OF office_|loc
ON office_tab
FOR EACH ROW
VHEN (new.office_loc.city = 'Redwood Shores')
BEG N
I'F :new of fice_|l oc. building_no = 600 THEN
I NSERT | NTO novenent (idno, ol d_office, new office)
VALUES (:ol d.occupant.idno, :old.office_loc, :newoffice_loc);
END | F;
END; /
I NSERT | NTO of fice_tab VALUES
("BE32', location_typ(300, 'Palo Alto"), person_typ(280, 'John Chan',
" 415-555-0101"));

UPDATE office_tab set office_loc =location_typ(600, 'Redwood Shores')
where office id = 'BE32';

select * fromoffice_tab;
sel ect * from novenent;
See"INSTEAD OF Triggers to Control Mutating and Validation (page 6-12)"

2.1.7 Rules for REF Columns and Attributes

Rules for REF columns and attributes can be enforced by the use of constraints.

Basic Components of Oracle Objects 2-5

SQL Object Types and References

In Oracle Database, a REF column or attribute can be unconstrained or constrained
using a SCOPE clause or a referential constraint clause. When a REF column is
unconstrained, it may store object references to row objects contained in any object
table of the corresponding object type.

Oracle Database does not ensure that the object references stored in such columns
point to valid and existing row objects. Therefore, REF columns may contain object
references that do not point to any existing row object. Such REF values are referred to
as dangling references.

A SCOPE constraint can be applied to a specific object table. All the REF values stored
in a column with a SCOPE constraint point at row objects of the table specified in the
SCOPE clause. The REF values may, however, be dangling.

A REF column may be constrained with a REFERENTI AL constraint similar to the
specification for foreign keys. The rules for referential constraints apply to such
columns. That is, the object reference stored in these columns must point to a valid
and existing row object in the specified object table.

PRI MARY KEY constraints cannot be specified for REF columns. However, you can
specify NOT NULL constraints for such columns.

See Also:
® "References to Row Objects (page 1-8)"

e "Substitution of REF Columns and Attributes (page 2-29)"

2.1.8 Name Resolution
There are several ways to resolve names in Oracle Database.
Oracle SQL lets you omit qualifying table names in some relational operations.

For example, if dept _addr is a column in the depart ment _| oc table and
ol d_of fi ce is a column in the novenent table, you can use the following:

SELECT * FROM department _| oc WHERE EXI STS
('SELECT * FROM novenent WHERE dept _addr = ol d_office);

Oracle Database determines which table each column belongs to.

Using dot notation, you can qualify the column names with table names or table
aliases to make things more maintainable. For example:

Example 2-7 Using the Dot Notation for Name Resolution

- requires Ex. 2-1, 2-3, 2-5, and 2-6
SELECT * FROM depart ment _| oc WHERE EXI STS
(SELECT * FROM novenment WHERE department _| oc. dept _addr = novenent.ol d_office);

SELECT * FROM department _| oc d WHERE EXI STS
(SELECT * FROM novenent m WHERE d. dept _addr = mol d_office);

In some cases, object-relational features require you to specify the table aliases.

2.1.8.1 When Table Aliases Are Required

Table aliases can be required to avoid problems resolving references.

2-6 Oracle Database Object-Relational Developer's Guide

SQL Object Types and References

Oracle Database requires you to use a table alias to qualify any dot-notational
reference to subprograms or attributes of objects, to avoid inner capture and similar
problems resolving references.

Inner capture is a situation caused by using unqualified names. For example, if you
add an assi gnnment column to dept s and forget to change the query, Oracle
Database automatically recompiles the query so that the inner SELECT uses the
assi gnnent column from the dept s table.

Use of a table alias is optional when referencing top-level attributes of an object table
directly, without using the dot notation. For example, the following statements define
two tables that contain the per son_t yp object type. per son_obj _t abl e is an object
table for objects of type per son_t yp, and cont act s is a relational table that contains
a column of the object per son_t yp.

The following queries show some correct and incorrect ways to reference attribute
i dno:

Note:

These statements are not related to other examples in this chapter.

#1 SELECT idno FROM person_obj _table; --Correct

#2 SELECT contact.idno FROM contacts; --111egal

#3 SELECT contacts. contact.idno FROM contacts; --111egal
#4 SELECT p.contact.idno FROM contacts p; --Correct

e In#l1,i dno is the name of a column of per son_obj _t abl e. It references this
top-level attribute directly, without using the dot notation, so no table alias is
required.

e In#2,idno is the name of an attribute of the per son_t yp object in the column
named cont act . This reference uses the dot notation and so requires a table alias,
as shown in #4.

e #3 uses the table name itself to qualify the reference. This is incorrect; a table alias
is required.

You must qualify a reference to an object attribute or subprogram with a table alias
rather than a table name even if the table name is itself qualified by a schema name.

For example, the following expression incorrectly refers to the HR schema,
depar t ment _I| oc table, dept _addr column, and ci t y attribute of that column. The
expression is incorrect because depar t ment _| oc is a table name, not an alias.

HR. department _| oc. dept _addr.city
The same requirement applies to attribute references that use REFs.

Table aliases should uniquely pick out the same table throughout a query and should
not be the same as schema names that could legally appear in the query.

Note:

Oracle recommends that you define table aliases in all UPDATE, DELETE, and
SELECT statements and subqueries and use them to qualify column references
whether or not the columns contain object types.

Basic Components of Oracle Objects 2-7

Object Methods

2.1.9 Restriction on Using User-Defined Types with a Remote Database

Objects or user-defined types (specifically, types declared with a SQL CREATE TYPE
statement, as opposed to types declared within a PL/SQL package) are currently
useful only within a single database.

Oracle Database restricts use of a database link as follows:

You cannot connect to a remote database to select, insert, or update a user-defined
type or an object REF on a remote table.

You can use the CREATE TYPE statement with the optional keyword O Dto create
a user-specified object identifier (OID) that allows an object type to be used in
multiple databases. See the discussion on assigning an OID to an object type in the
Oracle Database Data Cartridge Developer’s Guide.

You cannot use database links within PL/SQL code to declare a local variable of a
remote user-defined type.

You cannot convey a user-defined type argument or return value in a PL/SQL
remote procedure call.

2.2 Object Methods

Object methods implement behavior that objects of that type perform.

Topics:

About Object Methods (page 2-8)

Member Methods (page 2-9)

Declaring and Invoking Static Methods (page 2-13)
Constructor Methods (page 2-13)

External Implemented Methods (page 2-14)

2.2.1 About Object Methods

Object methods, also known as subprograms, are functions or procedures that you can
declare in an object type definition to implement behavior that you want objects of
that type to perform. An application calls the subprograms to invoke the behavior.

Subprograms can be written in PL/SQL or virtually any other programming language.
Methods written in PL/SQL or Java are stored in the database. Methods written in
other languages, such as C, are stored externally.

Note:

SQL requires parentheses for all subprogram calls, even those that do not have
arguments. This is not true for PL/SQL.

See "Calling Object Constructors and Methods (page 3-4)" for further
discussion of invoking methods in PL/SQL.

2-8 Oracle Database Object-Relational Developer's Guide

Object Methods

2.2.2 Member Methods

Member methods provide an application with access to the data of an object instance.

You define a member method in the object type for each operation that you want an
object of that type to be able to perform. Non-comparison member methods are
declared as either MEMBER FUNCTI ON or MEMBER PROCEDURE. Comparison methods
use MAP MEMBER FUNCTI ON or ORDER MEMBER FUNCTI ON as described in "Member
Methods for Comparing Objects (page 2-10)".

As an example of a member method, you might declare a function get _sun{() that
sums the total cost of a purchase order's line items. The following line of code calls this
function for purchase order po and returns the amount into sum | i ne_i t ens.

sumline_ itens: = po.get _sum);abo

Dot notation specifies the current object and the method it calls. Parentheses are
required even if there are no parameters.

Topics:
® Declaring SELF Parameters in Member Methods (page 2-9)

* Member Methods for Comparing Objects (page 2-10)

2.2.2.1 Declaring SELF Parameters in Member Methods

Member methods have a built-in parameter named SELF that denotes the object
instance currently invoking the method.

SELF can be explicitly declared, but that is not necessary. It is simpler to write member
methods that reference the attributes and methods of SELF implicitly without the
SELF qualifier. In Example 2-8 (page 2-9), the code and comments demonstrate
method invocations that use an implicit SELF parameter rather than qualify the
attributes hgt , | en, and wt h.

Example 2-8 Creating a Member Method

- Ex. 2-8 Creating a Menber Method
CREATE OR REPLACE TYPE solid_typ AS OBJECT (

[en | NTEGER,
w h | NTEGER,
hgt | NTEGER,

MEMBER FUNCTI ON surface RETURN | NTEGER

MEMBER FUNCTI ON vol unme RETURN | NTEGER

MEMBER PROCEDURE di splay (SELF IN OUT NOCOPY solid_typ));
/

CREATE OR REPLACE TYPE BODY solid_typ AS
MEMBER FUNCTI ON vol ume RETURN | NTEGER | S

BEG N

RETURN len * wth * hgt;
- RETURN SELF.len * SELF.wth * SELF.hgt; -- equivalent to previous line
END;

MEMBER FUNCTI ON surface RETURN | NTEGER IS
BEG N -- not necessary to include SELF in follow ng |ine
RETURN 2 * (len * wth + len * hgt + wh * hgt);

END;
MEMBER PROCEDURE di spl ay (SELF IN OUT NOCCPY solid_typ) IS
BEGI N
DBMS_OUTPUT. PUT_LINE(' Length: ' || len || ' - ' || 'Wdth: ' || wth

Basic Components of Oracle Objects 2-9

Object Methods

[-
DBMS_OUTPUT. PUT_LINE(' Vol ume: * ||

|| "Height: ' || hgt);
|
|| surface);

volune || ' - ' || 'Surface area: '

END;
END;
/

CREATE TABLE solids of solid_typ;

I NSERT | NTO solids VALUES(10, 10, 10);

I NSERT | NTO sol ids VALUES(3, 4, 5);

SELECT * FROM sol i ds;

SELECT s.volune(), s.surface() FROM solids s WHERE s.len = 10;

DECLARE
solid solid_typ;

BEG N -- PL/SQ block for selecting a solid and displaying details
SELECT VALUE(s) INTO solid FROM solids s WHERE s.len = 10;
solid.display();

END;

/

SELF is always the first parameter passed to the method.
* In member functions, if SELF is not declared, its parameter mode defaults to | N.

* In member procedures, if SELF is not declared, its parameter mode defaults to | N
QOUT. The default behavior does not include the NOCOPY compiler hint.

See also "About Using SELF IN OUT NOCOPY with Member Procedures
(page 9-20)".

2.2.2.2 Member Methods for Comparing Objects

To compare and order variables of an object type, you must specify a basis for
comparing them.

The values of a scalar data type such as CHAR or REAL have a predefined order, which
allows them to be compared. But an object type, such as a per son_t yp, which can
have multiple attributes of various data types, has no predefined axis of comparison.
You have the option to define a map method or an order method for comparing
objects, but not both.

A map method maps object return values to scalar values and can order multiple
values by their position on the scalar axis. An order method directly compares values
for two particular objects.

2.2.2.2.1 About Map Methods
Map methods return values that can be used for comparing and sorting.

Return values can be any Oracle built-in data types (except LOBs and BFI LEs) and
ANSI SQL types such as CHARACTER or REAL. See the specific sections in Oracle
Database SQL Language Quick Reference.

Generally, map methods perform calculations on the attributes of the object to
produce the return value.

Map methods are called automatically to evaluate such comparisons as obj _1 >
obj _2 and comparisons implied by the DI STI NCT, GROUP BY, UNI ON, and ORDER BY
clauses which require sorting by rows.

Where obj _1 and obj _2 are two object variables that can be compared using a map
method map() , the comparison:

2-10 Oracle Database Object-Relational Developer's Guide

Object Methods

obj 1 > obj_2

is equivalent to:

obj _1. map() > obj_2. map()

Comparisons are similar for other relational operators.

Creating a Map Method (page 2-11) defines a map method ar ea() that provides a
basis for comparing rectangle objects by their area:

2.2.2.2.2 Creating a Map Method

You create maps using the CREATE TYPE statement.

Example 2-9 Creating a Map Method

CREATE OR REPLACE TYPE rectangl e_typ AS OBJECT (
| en NUMBER,
wi d NUMVBER,
MAP MEMBER FUNCTI ON area RETURN NUMBER);

/

CREATE OR REPLACE TYPE BODY rectangle_typ AS
MAP MEMBER FUNCTI ON area RETURN NUMBER | S
BEG N

RETURN | en * wid;
END area;
END;
/

2.2.2.2.3 Invoking a Map Method
Map methods are invoked in the same manner as other member methods.

Example 2-10 Invoking a Map Method

DECLARE
po rectangl e_typ;

BEG N
po :=NEWrectangl e_typ(10,5);

DBMS_QUTPUT. PUT_LI NE(" AREA:' || po.area()); -- prints AREA 50
END;
/

A subtype can declare a map method only if its root supertype declares one.

See "Comparing Equal and Not Equal Conditions (page 5-21)" for the use of map
methods when comparing collections that contain object types.

2.2.2.2.4 Order Methods
Order methods make direct one-to-one object comparisons.

Unlike map methods, order methods cannot determine the order of a number of
objects. They simply tell you that the current object is less than, equal to, or greater
than the object that it is being compared to, based on the criterion used.

An order method is a function for an object (SELF), with one declared parameter that
is an object of the same type. The method must return either a negative number, zero,
or a positive number. This value signifies that the object (the implicit undeclared SELF
parameter) is less than, equal to, or greater than the declared parameter object.

Basic Components of Oracle Objects 2-11

Object Methods

As with map methods, an order method, if one is defined, is called automatically
whenever two objects of that type need to be compared.

Order methods are useful where comparison semantics may be too complex to use a
map method.

Example 2-11 (page 2-12) shows an order method that compares locations by
building number:

Example 2-11 Creating and Invoking an Order Method

DROP TYPE | ocation_typ FORCE;
- above necessary if you have previously created object
CREATE OR REPLACE TYPE | ocation_typ AS OBJECT (
bui | di ng_no NUMBER,
city VARCHAR2(40) ,
ORDER MEMBER FUNCTI ON match (I location_typ) RETURN I NTEGER);/
CREATE OR REPLACE TYPE BQDY | ocation_typ AS
ORDER MEMBER FUNCTI ON match (I location_typ) RETURN I NTEGER | S
BEG N
I'F building_no < |.building_no THEN

RETURN - 1; -- any negative nunber will do
ELSI F bui | ding_no > I.building_no THEN
RETURN 1; -- any positive nunber will do
ELSE
RETURN 0;
END | F;
END;
END; /

- invoking match method
DECLARE
loc location_typ;
secloc location_typ;
a nunber;

BEG N
loc :=NEWI ocation_typ(300, 'San Francisco');
secloc :=NEW I ocation_typ(200, ' Redwood Shores');

a := loc. mtch(secloc);
DBMS_OQUTPUT. PUT_LI NE(' order (1 is greater, -1 is lesser):' ||a); -- prints order:1
END;

/

Only a type that is not derived from another type can declare an order method; a
subtype cannot define one.

2.2.2.2.5 Guidelines for Comparison Methods
You can declare a map method or an order method but not both.

For map and order type methods, you can compare objects using SQL statements and
PL/SQL procedural statements. However, if you do not declare one of these methods,
you can only compare objects in SQL statements, and only for equality or inequality.
Two objects of the same type are considered equal only if the values of their
corresponding attributes are equal.

When sorting or merging a large number of objects, use a map method, which maps
all the objects into scalars, then sorts the scalars. An order method is less efficient
because it must be called repeatedly (it can compare only two objects at a time). See
"Performance of Object Comparisons (page 9-5)".

2-12 Oracle Database Object-Relational Developer's Guide

Object Methods

2.2.2.2.6 Comparison Methods in Type Hierarchies

In a type hierarchy, if the root type (supertype) does not specify a map or an order
method, neither can the subtypes.

e Map Method in a Type Hierarchy

If the root type specifies a map method, any of its subtypes can override it. If the
root type does not specify a map method, no subtype can specify one either.

¢ Order Method in a Type Hierarchy

Only the root type can define an order method. If the root type does not define
one, its subtypes cannot add one.

2.2.3 Declaring and Invoking Static Methods

Static methods are invoked on the object type, not its instances. You use a static
method for operations that are global to the type and do not need to reference the data
of a particular object instance. A static method has no SELF parameter.

Static methods are declared using STATI CFUNCTI ON or STATI C PROCEDURE.

You invoke a static method by using dot notation to qualify the method call with the
name of the object type, for example:

t ype_nane. net hod()

See "Static Methods (page 9-20)" for information on design considerations.

2.2.4 Constructor Methods

A constructor method is a function that returns a new instance of the user-defined
type and sets up the values of its attributes.

Constructor methods are either system-defined or user-defined.

To invoke a constructor, the keyword NEWcan be used, but is not required.

See Also:

See Example 2-10 (page 2-11) and "Calling Object Constructors and Methods
(page 3-4)"

2.2.4.1 System-Defined Constructors

By default, the system implicitly defines a constructor function for all object types that
have attributes.

A system-defined constructor is sometimes known as the attribute value constructor.
For the per son_t yp object type defined in Example 2-1 (page 2-2) the name of the
constructor method is the name of the object type, as shown in the following
invocation:

person_typ (1, 'John Smith', '1-650-555-0135"),

2.2.4.2 Defining User-Defined Constructors

You can define constructor functions of your own to create and initialize user-defined
types.

Basic Components of Oracle Objects 2-13

Inheritance in SQL Object Types

Default system-defined constructors (or attribute value constructors) are convenient to
use because they already exist, but user-defined constructors have some important
advantages with respect to type evolution. See "Advantages of User-Defined
Constructors (page 8-16)". See "Using the Constructor Method to Insert Values into a
Nested Table (page 5-2)" for information on user-defined constructors for

collections.

2.2.4.3 Literal Invocation of a Constructor Method

A literal invocation of a constructor method is a call to the constructor method in
which arguments are either literals (as opposed to bind variables), or further literal
invocations of constructor methods. For example:

CREATE TABLE peopl e_tab OF person_typ;

I NSERT | NTO peopl e_tab VALUES (
person_typ(101, 'John Smith', '1-650-555-0135"));
2.2.5 External Implemented Methods

You can use PL/SQL to invoke external subprograms that have been written in other
languages.

Using external methods provides access to the strengths and capabilities of those
languages.

See Also:

Object Support in Oracle Programming Environments (page 4-1)

2.3 Inheritance in SQL Object Types

SQL object inheritance is based on a family tree of object types that forms a type
hierarchy. The type hierarchy consists of a parent object type, called a supertype, and
one or more levels of child object types, called subtypes, which are derived from the
parent.

Topics:

* About Inheritance in SQL Object Types (page 2-15)

® Supertypes and Subtypes (page 2-15)

¢ FINAL and NOT FINAL Types and Methods for Inheritance (page 2-17)
® Subtype Creation (page 2-18)

¢ NOT INSTANTIABLE Types and Methods (page 2-22)

e Overloaded and Overridden Methods (page 2-23)

* Dynamic Method Dispatch (page 2-25)

e Type Substitution in a Type Hierarchy (page 2-26)

¢ Column and Row Substitutability (page 2-26)

e Newly Created Subtypes Stored in Substitutable Columns (page 2-29)

2-14 Oracle Database Object-Relational Developer's Guide

Inheritance in SQL Object Types

* Dropping Subtypes After Creating Substitutable Columns (page 2-30)
¢ Turning Off Substitutability in a New Table (page 2-30)

¢ Constraining Substitutability (page 2-31)

* Modifying Substitutability on a Table (page 2-32)

* Restrictions on Modifying Substitutability (page 2-32)

* Assignments Across Types (page 2-33)

2.3.1 About Inheritance in SQL Object Types

Inheritance is the mechanism that connects subtypes in a hierarchy to their supertypes.

Subtypes automatically inherit the attributes and methods of their parent type. Also,
the inheritance link remains alive. Subtypes automatically acquire any changes made
to these attributes or methods in the parent: any attributes or methods updated in a
supertype are updated in subtypes as well.

Note:

Oracle only supports single inheritance. Therefore, a subtype can derive
directly from only one supertype, not more than one.

With object types in a type hierarchy, you can model an entity such as a customer, and
also define different specializing subtypes of customers under the original type. You
can then perform operations on a hierarchy and have each type implement and
execute the operation in a special way.

2.3.2 Supertypes and Subtypes

A subtype can be derived from a supertype either directly or indirectly through
intervening levels of other subtypes.

A supertype can have multiple sibling subtypes, but a subtype can have at most one
direct parent supertype (single inheritance).

Basic Components of Oracle Objects 2-15

Inheritance in SQL Object Types

Figure 2-1 Supertypes and Subtypes in Type Hierarchy

A
Supertype of all
' |
> D
Subtype of A, .
supertype of C Subtype of A;

T

C
Subtype of B

To derive a subtype from a supertype, define a specialized variant of the supertype
that adds new attributes and methods to the set inherited from the parent or redefine
(override) the inherited methods. For example, from a per son_t yp object type you
might derive the specialized types st udent _t yp and enpl oyee_t yp. Each of these
subtypes is still a per son_t yp, but a special kind of person. What distinguishes a
subtype from its parent supertype is some change made to the attributes or methods
that the subtype received from its parent.

Unless a subtype redefines an inherited method, it always contains the same core set
of attributes and methods that are in the parent type, plus any attributes and methods
that it adds. If a per son_t yp object type has the three attributes i dno, nane, and
phone and the method get _i dno(), then any object type that is derived from

per son_t yp will have these same three attributes and a method get _i dno() . If the
definition of per son_t yp changes, so do the definitions of any subtypes.

Subtypes are created using the keyword UNDER as follows:
CREATE TYPE st udent _t yp UNDERperson_typ

See Also:

Example 2-15 (page 2-19) for a complete example

You can specialize the attributes or methods of a subtype in these ways:

* Add new attributes that its parent supertype does not have.

For example, you might specialize st udent _t yp as a special kind of
per son_t yp by adding an attribute for maj or . A subtype cannot drop or change
the type of an attribute it inherited from its parent; it can only add new attributes.

¢ Add entirely new methods that the parent does not have.

* Change the implementation of some of the methods that a subtype inherits so that
the subtype's version executes different code from the parent's.

2-16 Oracle Database Object-Relational Developer's Guide

Inheritance in SQL Object Types

For example, a ellipse object might define a method cal cul at e() . Two subtypes
ofel lipse_typ,circle_typandsphere_typ, might each implement this
method in a different way.

See Also:

"Overloaded and Overridden Methods (page 2-23)"

The inheritance relationship between a supertype and its subtypes is the source of
much of the power of objects and much of their complexity.

Being able to change a method in a supertype and have the change take effect in all the
subtypes downstream just by recompiling is very powerful. But this same capability
means that you have to consider whether or not you want to allow a type to be
specialized or a method to be redefined. Similarly, for a table or column to be able to
contain any type in a hierarchy is also powerful, but you must decide whether or not
to allow this in a particular case. Also, you may need to constrain DML statements and
queries so that they pick out just the range of types that you want from the type
hierarchy.

2.3.3 FINAL and NOT FINAL Types and Methods for Inheritance

Object types can be inheritable and methods can be overridden if they are so defined.

For an object type or method to be inheritable, the definition must specify that it is
inheritable. For both types and methods, the keywords FI NAL or NOT FI NAL are used
are used to determine inheritability.

¢ Object type: For an object type to be inheritable, thus allowing subtypes to be
derived from it, the object definition must specify this.

NOT FI NAL means subtypes can be derived. FI NAL, (default) means that no
subtypes can be derived from it.

e Method: The definition must indicate whether or not it can be overridden.

NOT FI NAL (default) means the method can be overridden. FI NAL means that
subtypes cannot override it by providing their own implementation.

See Example 2-13 (page 2-18), Example 2-12 (page 2-17), and Changing a FINAL
TYPE to NOT FINAL (page 2-18).

2.3.3.1 Creating an Object Type as NOT FINAL with a FINAL Member Function

You can create a NOT FI NAL object type with a FI NAL member function as in
Example 2-12 (page 2-17).

Example 2-12 Creating an Object Type as NOT FINAL with a FINAL Member
Function

DROP TYPE person_typ FORCE
- above necessary if you have previously created object

CREATE OR REPLACE TYPE person_typ AS OBJECT (

i dno NUMBER,

narme VARCHAR2(30) ,

phone VARCHAR2(20) ,

FI NAL MAP MEMBER FUNCTI ON get _i dno RETURN NUMBER)
NOT FI NAL;

/

Basic Components of Oracle Objects 2-17

Inheritance in SQL Object Types

2.3.3.2 Creating a NOT FINAL Object Type
You can create an object type as NOT FI NAL.

Example 2-13 (page 2-18) declares per son_t yp to be a NOT FI NAL type and
therefore subtypes of per son_t yp can be defined.

Example 2-13 Creating the person_typ Object Type as NOT FINAL

DROP TYPE person_typ FORCE;
- above necessary if you have previously created object

CREATE OR REPLACE TYPE person_typ AS OBJECT (

i dno NUMBER,

nane VARCHAR2(30) ,

phone VARCHAR2(20))
NOT FI NAL;

/

2.3.4 Changing a FINAL TYPE to NOT FINAL

You can change inheritance by changing a final type to a not final type and vice versa
with an ALTER TYPE statement.

For example, the following statement changes per son_t yp to a final type:

ALTER TYPE person_typ FI NAL;

You can only alter a type from NOT FI NAL to FI NAL if the target type has no subtypes.

2.3.5 Subtype Creation

You create a subtype using a CREATE TYPE statement that specifies the immediate
parent of the subtype with the UNDER keyword.

Topics:

¢ Creating a Parent or Supertype Object (page 2-18)

* Creating a Subtype Object (page 2-19)

* Generalized Invocation (page 2-20)

e Creating Multiple Subtypes (page 2-21)

¢ Creating Tables that Contains Supertype and Subtype Objects (page 2-21)

2.3.5.1 Creating a Parent or Supertype Object
You can create a parent or supertype object using the CREATE TYPE statement.

Example 2-14 (page 2-18) provides a parent or supertype per son_t yp object to
demonstrate subtype definitions in Example 2-15 (page 2-19), Example 2-18
(page 2-21), and Example 2-19 (page 2-21).

Note the show() in Example 2-14 (page 2-18). In the subtype examples that follow,
the show() function of the parent type is overridden to specifications for each subtype
using the OVERRI DI NGkeyword.

Example 2-14 Creating the Parent or Supertype person_typ Object

DROP TYPE person_typ FORCE
- if created

2-18 Oracle Database Object-Relational Developer's Guide

Inheritance in SQL Object Types

CREATE OR REPLACE TYPE person_typ AS OBJECT (

i dno NUMVBER,
name VARCHAR2(30) ,
phone VARCHAR2(20) ,

MAP MEMBER FUNCTI ON get _i dno RETURN NUMBER,
MEMBER FUNCTI ON show RETURN VARCHAR2)
NOT FI NAL;

/

CREATE OR REPLACE TYPE BQDY person_typ AS
MAP MEMBER FUNCTI ON get _i dno RETURN NUMBER | S
BEG N
RETURN i dno;
END;
- function that can be overriden by subtypes
MEMBER FUNCTI ON show RETURN VARCHAR2 | S
BEG N
RETURN 'Id: ' || TOCHAR(idno) || ', Name: ' || nane;
END;

END;
/

2.3.5.2 Creating a Subtype Object
A subtype inherits the attributes and methods of the supertype.

These are inherited:
e All the attributes declared in or inherited by the supertype.

* Any methods declared in or inherited by supertype.

Example 2-15 (page 2-19) defines the st udent _t yp object as a subtype of
per son_t yp, which inherits all the attributes declared in or inherited by
per son_t yp and any methods inherited by or declared in per son_t yp.

Example 2-15 Creating a student_typ Subtype Using the UNDER Clause

- requires Ex. 2-14
CREATE TYPE student _typ UNDER person_typ (
dept _i d NUMBER,
mej or VARCHAR2(30),
OVERRI DI NG MEMBER FUNCTI ON show RETURN VARCHARZ)
NOT FI NAL;
/

CREATE TYPE BODY student _typ AS
OVERRI DI NG MEMBER FUNCTI ON show RETURN VARCHAR2 | S
BEG N
RETURN (sel f AS person_typ).show || ' -- Major: ' || mjor ;
END;

END;
/

The statement that defines st udent _t yp specializes per son_t yp by adding two
new attributes, dept _i d and maj or and overrides the showmethod. New attributes
declared in a subtype must have names that are different from the names of any
attributes or methods declared in any of its supertypes, higher up in its type hierarchy.

Basic Components of Oracle Objects 2-19

Inheritance in SQL Object Types

2.3.5.3 Generalized Invocation

Generalized invocation provides a mechanism to invoke a method of a supertype or a
parent type, rather than the specific subtype member method.

Example 2-15 (page 2-19) demonstrates this using the following syntax:
(SELF AS person_typ).show

The st udent _t yp showmethod first calls the per son_t yp showmethod to do the
common actions and then does its own specific action, which is to append ' - -

Maj or : ' to the value returned by the per son_t yp showmethod. This way,
overriding subtype methods can call corresponding overriding parent type methods to
do the common actions before doing their own specific actions.

Methods are invoked just like normal member methods, except that the type name
after AS should be the type name of the parent type of the type that the expression
evaluates to.

2.3.5.4 Using Generalized Invocation

In Example 2-16 (page 2-20), there is an implicit SELF argument just like the implicit
self argument of a normal member method invocation. In this case, it invokes the
per son_t yp showmethod rather than the specific st udent _t yp showmethod.

Example 2-16 Using Generalized Invocation

- Requires Ex. 2-14 and 2-15
DECLARE
myvar student_typ := student _typ(100, 'Sami, '6505556666', 100, 'Math');
name VARCHAR2(100);
BEG N
name := (myvar AS person_typ).show, --Generalized invocation
END;
/

2.3.5.5 Using Generalized Expression

Generalized expression, like member method invocation, is also supported when a
method is invoked with an explicit self argument.

Example 2-17 Using Generalized Expression

- Requires Ex. 2-14 and 2-15
DECLARE
myvar2 student _typ := student _typ(101, 'Sam, '6505556666', 100, 'Math');
nane2 VARCHAR2(100);
BEG N
name2 : = person_typ. show((myvar2 AS person_typ)); -- Generalized expression
END;
/

Double parentheses are used in this example because ((myvar 2 AS per son_typ)) is
both an expression that must be resolved and the parameter of the show function.

NOTE: Constructor methods cannot be invoked using this syntax. Also, the type name
that appears after AS in this syntax should be one of the parent types of the type of the
expression for which method is being invoked.

This syntax can only be used to invoke corresponding overriding member methods of
the parent types.

2-20 Oracle Database Object-Relational Developer's Guide

Inheritance in SQL Object Types

2.3.5.6 Creating Multiple Subtypes
A type can have multiple child subtypes, and these subtypes can also have subtypes.

Example 2-18 (page 2-21) creates another subtype enpl oyee_t yp under
per son_t yp in addition to the already existing subtype, st udent _t yp, created in
Example 2-15 (page 2-19).

Example 2-18 Creating an employee_typ Subtype Using the UNDER Clause
- requires Ex. 2-14

DROP TYPE enpl oyee_typ FORCE;
- if previously created
CREATE OR REPLACE TYPE enpl oyee_typ UNDER person_typ (
enp_i d NUMBER,
myr VARCHAR2(30),
OVERRI DI NG MEMBER FUNCTI ON show RETURN VARCHAR?) ;
/

CREATE OR REPLACE TYPE BODY enpl oyee_typ AS
OVERRI DI NG MEMBER FUNCTI ON show RETURN VARCHAR2 | 'S

BEG N
RETURN (SELF AS person_typ).show| ' -- Enployee Id: '
|| TOCHAR(emp_id) || ', Manager: ' || mor ;
END;
END,

/

2.3.5.7 Creating a Subtype Under Another Subtype
A subtype can be defined under another subtype.

The new subtype inherits all the attributes and methods that its parent type has, both
declared and inherited. Example 2-19 (page 2-21) defines a new subtype

part _time_student _typ under st udent _t yp created in Example 2-15

(page 2-19). The new subtype inherits all the attributes and methods of st udent _t yp
and adds another attribute, nunber _hours.

Example 2-19 Creating a part_time_student_typ Subtype Using the UNDER Clause

CREATE TYPE part _time_student_typ UNDER student _typ (
nunber _hours NUVBER,
OVERRI DI NG MEMBER FUNCTI ON show RETURN VARCHAR?) ;

/

CREATE TYPE BCDY part_tine_student _typ AS
OVERRI DI NG MEMBER FUNCTI ON show RETURN VARCHAR? | S

BEG N
RETURN (SELF AS person_typ).show| ' -- Major: " || major ||
", Hours: ' || TO_CHAR(nunber_hours);
END;
END;

/

2.3.5.8 Creating Tables that Contain Supertype and Subtype Objects

You can create tables that contain supertype and subtype instances.

Basic Components of Oracle Objects 2-21

Inheritance in SQL Object Types

You can then populate the tables as shown with the per son_obj _t abl e in
Example 2-20 (page 2-22).

Example 2-20 Inserting Values into Substitutable Rows of an Object Table

CREATE TABLE person_obj _table OF person_typ;

I NSERT | NTO person_obj _table
VALUES (person_typ(12, 'Bob Jones', '650-555-0130"));

I NSERT | NTO person_obj _table
VALUES (student typ(51, 'Joe Lane', '1-650-555-0140', 12, 'H STORY'));

I NSERT | NTO person_obj _table
VALUES (enpl oyee_typ(55, 'Jane Smith', '1-650-555-0144",
100, 'Jennifer Nelson'));

I NSERT | NTO person_obj _table
VALUES (part_time_student_typ(52, 'KimPatel', '1-650-555-0135", 14,
"PHYSICS', 20));

You can call the show() function for the supertype and subtypes in the table with the
following:

SELECT p. show() FROM person_obj _table p;

The output is similar to:

Id: 12, Name: Bob Jones

Id: 51, Name: Joe Lane -- Mjor: H STORY

Id: 55, Name: Jane Smith -- Enployee Id: 100, Manager: Jennifer Nelson
Id: 52, Name: KimPatel -- Major: PHYSICS, Hours: 20

Note that data that the show() method displayed depends on whether the object is a
supertype or subtype, and if the show() method of the subtype is overridden. For
example, Bob Jones is a per son_t yp, that is, an supertype. Only his nane and | d are
displayed. For Joe Lane, a st udent _t yp, his name and | d are provided by the
show() function of the supertype, and his maj or is provided by the overridden
show() function of the subtype.

2.3.6 NOT INSTANTIABLE Types and Methods
Types and methods can be declared NOT | NSTANTI ABLE when they are created.
NOT | NSTANTI ABLE types and methods:

e NOT | NSTANTI ABLE Types

If a type is not instantiable, you cannot instantiate instances of that type. There are
no constructors (default or user-defined) for it. You might use this with types
intended to serve solely as supertypes from which specialized subtypes are
instantiated.

e NOT | NSTANTI ABLE Methods

A non-instantiable method serves as a placeholder. It is declared but not
implemented in the type. You might define a non-instantiable method when you
expect every subtype to override the method in a different way. In this case, there
is no point in defining the method in the supertype.

You can alter an instantiable type to a non-instantiable type and vice versa with an
ALTERTYPE statement.

2-22 Oracle Database Object-Relational Developer's Guide

Inheritance in SQL Object Types

A type that contains a non-instantiable method must itself be declared not instantiable,
as shown in Example 2-21 (page 2-23).

2.3.7 Creating a Non-INSTANTIABLE Object Type

If a subtype does not provide an implementation for every inherited non-instantiable
method, the subtype itself, like the supertype, must be declared not instantiable.

A non-instantiable subtype can be defined under an instantiable supertype.

Example 2-21 Creating an Object Type that is NOT INSTANTIABLE

DROP TYPE person_typ FORCE;
- if previously created
CREATE OR REPLACE TYPE person_typ AS OBJECT (

i dno NUMBER,
nanme VARCHAR2(30) ,
phone VARCHAR2(20) ,

NOT | NSTANTI ABLE MEMBER FUNCTI ON get _i dno RETURN NUMBER)
NOT | NSTANTI ABLE NOT FI NAL;/

2.3.8 Changing an Object Type to INSTANTIABLE

The ALTER TYPE statement can make a non-instantiable type instantiable.

In Example 2-22 (page 2-23) an ALTER TYPE statement makes per son_t yp
instantiable.

Example 2-22 Altering an Object Type to INSTANTIABLE
CREATE OR REPLACE TYPE person_typ AS OBJECT (

i dno NUMBER,
nane VARCHAR2(30) ,
phone VARCHAR2(20))

NOT | NSTANTI ABLE NOT FI NAL; /
ALTER TYPE person_typ | NSTANTI ABLE;

Changing to a Not Instantiable Type

You can alter an instantiable type to a non-instantiable type only if the type has no
columns, views, tables, or instances that reference that type, either directly, or
indirectly, through another type or subtype.

You cannot declare a non-instantiable type to be FI NAL. This would actually be
pointless.

2.3.9 Overloaded and Overridden Methods

A subtype can redefine methods it inherits, and it can also add new methods,
including methods with the same name.

Topics:

* Overloading Methods (page 2-24)

¢ Opverriding and Hiding Methods (page 2-24)

* Restrictions on Overriding Methods (page 2-25)

See the examples in "Subtype Creation (page 2-18)" and Example 8-7 (page 8-17).

Basic Components of Oracle Objects 2-23

Inheritance in SQL Object Types

2.3.9.1 Overloading Methods

Adding new methods that have the same names as inherited methods to the subtype
is called overloading.

Methods that have the same name but different signatures are called overloads when
they exist in the same user-defined type.

A method signature consists of the method's name and the number, types, and the
order of the method's formal parameters, including the implicit sel f parameter.

Overloading is useful when you want to provide a variety of ways of doing
something. For example, an ellipse object might overload a cal cul at e() method
with another cal cul at e() method to enable calculation of a different shape.

The compiler uses the method signatures to determine which method to call when a
type has several overloaded methods.

In the following pseudocode, subtype Ci r cl e_t yp creates an overload of
cal cul ate():

CREATE TYPE el lipse_typ AS OBJECT (...,

MEMBER PROCEDURE cal cul at e(x NUMBER, x NUVBER),
) NOT FI NAL;

CREATE TYPE circle_typ UNDER el lipse_typ (...,
MEMBER PROCEDURE cal cul at e(x NUMBER),

)

The ci rcl e_t yp contains two versions of cal cul at e() . One is the inherited
version with two NUMBER parameters and the other is the newly created method with
one NUMBER parameter.

2.3.9.2 Overriding and Hiding Methods

Redefining an inherited method to customize its behavior in a subtype is called
overriding, in the case of member methods, or hiding, in the case of static methods.

Unlike overloading, you do not create a new method, just redefine an existing one,
using the keyword OVERRI DI NG

Overriding and hiding redefine an inherited method to make it do something different
in the subtype. For example, a subtype ci r cl e_t yp derived fromael | i pse_typ
supertype might override a member method cal cul at e() to customize it
specifically for calculating the area of a circle. For examples of overriding methods, see
"Subtype Creation (page 2-18)".

Overriding and hiding are similar in that, in either case, the version of the method
redefined in the subtype eclipses the original version of the same name and signature
so that the new version is executed rather than the original one whenever a subtype
instance invokes the method. If the subtype itself has subtypes, these inherit the
redefined method instead of the original version.

With overriding, the system relies on type information contained in the member
method's implicit self argument to dynamically choose the correct version of the
method to execute. With hiding, the correct version is identified at compile time, and
dynamic dispatch is not necessary. See "Dynamic Method Dispatch (page 2-25)".

To override or hide a method, you must preserve its signature. Overloads of a method
all have the same name, so the compiler uses the signature of the subtype's method to
identify the particular version in the supertype that is superseded.

2-24 Oracle Database Object-Relational Developer's Guide

Inheritance in SQL Object Types

You signal the override with the OVERRI DI NGkeyword in the CREATE TYPE BODY
statement. This is not required when a subtype hides a static method.

In the following pseudocode, the subtype signals that it is overriding method
cal cul ate():

CREATE TYPE el | ipse_typ AS OBJECT (...,

MEMBER PROCEDURE cal cul ate(),

FI'NAL MEMBER FUNCTI ON function_nytype(x NUMBER)...
) NOT FINAL;

CREATE TYPE circle_typ UNDER el lipse_typ (...,
OVERRI DI NG MEMBER PROCEDURE cal cul ate(),

)

For a diagram of this hierarchy, see Figure 2-2 (page 2-25).

2.3.9.3 Restrictions on Overriding Methods

There are certain restrictions on overriding methods:
¢ Only methods that are not declared to be final in the supertype can be overridden.

¢ Order methods may appear only in the root type of a type hierarchy: they may not
be redefined (overridden) in subtypes.

* A static method in a subtype may not redefine a member method in the
supertype.

* A member method in a subtype may not redefine a static method in the
supertype.

¢ If a method being overridden provides default values for any parameters, then the
overriding method must provide the same default values for the same parameters.

2.3.10 Dynamic Method Dispatch

Dynamic method dispatch refers to the way that method calls are dispatched to the
nearest implementation at run time, working up the type hierarchy from the current or
specified type.

Dynamic method dispatch is only available when overriding member methods and
does not apply to static methods.

With method overriding, a type hierarchy can define multiple implementations of the
same method. In the following hierarchy of types el | i pse_typ,circl e_typ, and
spher e_t yp, each type might define a cal cul at e() method differently.

Figure 2-2 Hierarchy of Types

ellipse_typ | Base type

T

] Subtype of
circle_typ ellipse_type
sphere_typ Subtype of

circle_type

Basic Components of Oracle Objects 2-25

Inheritance in SQL Object Types

When one of these methods is invoked, the type of the object instance that invokes it
determines which implementation of the method to use. The call is then dispatched to
that implementation for execution. This process of selecting a method implementation
is called virtual or dynamic method dispatch because it is done at run time, not at
compile time.

The method call works up the type hierarchy: never down. If the call invokes a
member method of an object instance, the type of that instance is the current type, and
the implementation defined or inherited by that type is used. If the call invokes a static
method of a type, the implementation defined or inherited by that specified type is
used.

See Also:

Oracle Database PL/SQL Language Reference for information on how
subprograms calls are resolved

2.3.11 Type Substitution in a Type Hierarchy

When you work with types in a type hierarchy, sometimes you need to work at the
most general level, for example, to select or update all persons. But at other times, you
need to select or update only a specific subtype such as a student, or only persons who
are not students.

The (polymorphic) ability to select all persons and get back not only objects whose
declared type is per son_t yp but also objects whose declared subtype is

st udent _typ or enpl oyee_t yp is called substitutability. A supertype is
substitutable if one of its subtypes can substitute or stand in for it in a variable or
column whose declared type is the supertype.

In general, types are substitutable. Object attributes, collection elements and REFs are
substitutable. An attribute defined as a REF, type, or collection of type per son_t yp
can hold a REF to an instance of, or instances of an instance of per son_t yp, or an
instance of any subtype of per son_t yp.

This seems expected, given that a subtype is, after all, just a specialized kind of one of
its supertypes. Formally, though, a subtype is a type in its own right: it is not the same
type as its supertype. A column that holds all persons, including all persons who are
students and all persons who are employees, actually holds data of multiple types.

In principle, object attributes, collection elements and REFs are always substitutable:
there is no syntax at the level of the type definition to constrain their substitutability to
some subtype. You can, however, turn off or constrain substitutability at the storage
level, for specific tables and columns. See "Turning Off Substitutability in a New Table
(page 2-30)" and "Constraining Substitutability (page 2-31)".

2.3.12 Column and Row Substitutability

Object type columns and object-type rows in object tables are substitutable, and so are
views: a column or row of a specific type can contain instances of that type and any of
its subtypes.

Topics:
e About Column and Row Substitutability (page 2-27)
e Using OBJECT_VALUE and OBJECT_ID with Substitutable Rows (page 2-28)

2-26 Oracle Database Object-Relational Developer's Guide

Inheritance in SQL Object Types

* Subtypes with Attributes of a Supertype (page 2-28)
® Substitution of REF Columns and Attributes (page 2-29)

* Substitution of Collection Elements (page 2-29)

2.3.12.1 About Column and Row Substitutability
You can substitute object type columns and object type rows in object tables.

Consider the per son_t yp type hierarchy such as the one introduced in Example 2-14
(page 2-18). You can create an object table of per son_t yp that contains rows of all
types. To do this, you insert an instance of a given type into an object table using the
constructor for that type in the VALUES clause of the | NSERT statement as shown in
Example 2-20 (page 2-22).

Similarly, Example 2-23 (page 2-27) shows that a substitutable column of type

per son_t yp can contain instances of all three types, in a relational table or view. The
example recreates person, student, and part-time student objects from that type
hierarchy and inserts them into the per son_t yp column cont act .

Example 2-23 Inserting Values into Substitutable Columns of a Table

DROP TYPE person_typ FORCE;
- if previously created

DROP TYPE student _typ FORCE; -- if previously created
DROP TYPE part_time_student _typ FORCE, -- if previously created

DROP TABLE contacts; if previously created
CREATE OR REPLACE TYPE person_typ AS OBJECT (

i dno NUMBER,

nane VARCHAR2(30) ,
phone VARCHAR2(20))
NOT FI NAL; /

CREATE TYPE student _typ UNDER person_typ (
dept _i d NUMBER,
maj or VARCHAR2(30))
NOT FI NAL;
/
CREATE TYPE part _tine_student _typ UNDER student _typ (
nunber _hours NUVBER);
/
CREATE TABLE contacts (
cont act person_typ,
contact _date DATE);

I NSERT | NTO contacts
VALUES (person_typ (12, 'Bob Jones', '650-555-0130"), '24 Jun 2003");

| NSERT | NTO contacts
VALUES (student _typ(51, 'Joe Lane', '1-650-555-0178", 12, 'H STORY'),
'24 Jun 2003);

I NSERT | NTO contacts
VALUES (part_time_student_typ(52, 'KimPatel', '1-650-555-0190", 14,
"PHYSICS', 20), '24 Jun 2003');

A newly created subtype can be stored in any substitutable tables and columns of its
supertype, including tables and columns that existed before the subtype was created.

Basic Components of Oracle Objects 2-27

Inheritance in SQL Object Types

In general, you can access attributes using dot notation. To access attributes of a
subtype of a row or column's declared type, you can use the TREAT function. For
example:

SELECT TREAT(contact AS student_typ).mjor FROM contacts;
See "TREAT (page 2-40)".

2.3.12.2 Using OBJECT_VALUE and OBJECT_ID with Substitutable Rows

You can access and identify the object identifier (OID) and value of a substitutable
row.

Use the OBJECT_VALUE and OBJECT_| D pseudocolumns to allow access and identify
the value and object identifier of a substitutable row in an object table as shown in
Example 2-24 (page 2-28).

See Also:

For further information on these pseudocolumns
e Oracle Database SQL Language Reference

e Oracle Database SQL Language Reference

Example 2-24 Using OBJECT_VALUE and OBJECT_ID

DROP TABLE person_obj _table; -- required if previously created
CREATE TABLE person_obj _table OF person_typ;

I NSERT | NTO person_obj _table
VALUES (person_typ(20, 'Bob Jones', '650-555-0130"));

SELECT p. object_id, p.object_value FROM person_obj _table p;

2.3.12.3 Subtypes with Attributes of a Supertype
A subtype can have an attribute whose type is the type of a supertype. For example:
Example 2-25 Creating a Subtype with a Supertype Attribute

- requires Ex 2-22
CREATE TYPE student _typ UNDER person_typ (
dept_id NUMBER
maj or VARCHAR2(30) ,
advi sor person_typ);
/

However, columns of such types are not substitutable. Similarly, a subtype can have a
collection attribute whose element type is one of its supertypes, but, again, columns of
such types are not substitutable. For example, if st udent _t yp had a nested table or
varray of per son_t yp, the st udent _t yp column would not be substitutable.

You can, however, define substitutable columns of subtypes that have REF attributes
that reference supertypes. For example, the conposi t e_cat egor y_t yp subtype
shown in Example 2-26 (page 2-29) contains the subcat egory_r ef _| i st nested
table. This table contains subcat egory_ref | i st _t yp which are REFs to

cat egor y_t yp. The subtype was created as follows:

2-28 Oracle Database Object-Relational Developer's Guide

Inheritance in SQL Object Types

Example 2-26 Defining Columns of Subtypes that have REF Attributes

- not to be executed
CREATE TYPE subcategory_ref list_typ
AS TABLE OF REF category_typ;
/

CREATE TYPE conposi te_category_typ
UNDER cat egory_typ

(

subcategory_ref |ist subcategory ref list_typ

See "Turning Off Substitutability in a New Table (page 2-30)".

2.3.12.4 Substitution of REF Columns and Attributes

REF columns and attributes are substitutable in both views and tables. For example, in
either a view or a table, a column declared to be REF per son_t yp can hold references
to instances of per son_t yp or any of its subtypes.

2.3.12.5 Substitution of Collection Elements

Collection elements are substitutable in both views and tables. For example, a nested
table of per son_t yp can contain object instances of per son_t yp or any of its
subtypes.

2.3.13 Newly Created Subtypes Stored in Substitutable Columns

If you create a subtype, any table that already has substitutable columns of the
supertype can store the new subtype as well.

This means that your options for creating subtypes are affected by the existence of
such tables. If such a table exists, you can only create subtypes that are substitutable,
that is, subtypes that do not violate table limits or constraints.

The following example creates a per son_t yp and then shows several attempts to
create a subtype st udent _t yp under per son_t yp.

Example 2-27 Creating a Subtype After Creating Substitutable Columns

DROP TYPE person_typ FORCE;

DROP TABLE person_obj _tabl e;

DROP TYPE student _typ;

- performabove drops if objects/tables created
CREATE OR REPLACE TYPE person_typ AS OBJECT (

i dno NUMBER,

name VARCHAR2(30) ,
phone VARCHAR2(20))
NOT FI NAL; /

CREATE TABLE person_obj _table (p person_typ);
The following statement fails because st udent _t yp has a supertype attribute, and
table per son_obj _t abl e has a substitutable column p of the supertype.

CREATE TYPE student _typ UNDER person_typ (-- incorrect CREATE subtype
advi sor person_typ);
/

Basic Components of Oracle Objects 2-29

Inheritance in SQL Object Types

The next attempt succeeds. This version of the st udent _t yp subtype is substitutable.
Oracle Database automatically enables table per son_obj _t abl e to store instances of
this new type.

CREATE TYPE student _typ UNDER person_typ (
dept _i d NUMBER,
maj or VARCHAR2(30));/
I NSERT | NTO person_obj _table
VALUES (student typ(51, 'Joe Lane', '1-650-555-0178", 12, 'H STORY'));

2.3.14 Dropping Subtypes After Creating Substitutable Columns

When you drop a subtype with the VALI DATE option, it checks that no instances of the
subtype are stored in any substitutable column of the supertype. If there are no such
instances, the DROP operation completes.

The following statement fails because an instance of st udent _t yp is stored in
substitutable column p of table per son_obj _t abl e:

DROP TYPE student _typ VALIDATE -- incorrect: an instance still exists ;

To drop the type, first delete any of its instances in substitutable columns of the
supertype:

- Delete fromtable and drop student_typ subtype exanple, not sanmple schema
DELETE FROM person_obj _table WHERE p IS OF (student_typ);

DROP TYPE student _typ VALI DATE;

See Also:

Oracle Database PL/SQL Language Reference for further information on DROP
and VALI DATE

2.3.15 Turning Off Substitutability in a New Table

You can turn off all substitutability on a column or attribute, including embedded
attributes and nested collections, while creating a table.

Use the clause NOT SUBSTI TUTABLE AT ALL LEVELS when you create a table.

This turns off all column or attribute substitutability, including embedded attributes
and collections nested to any level.

In the following example, the clause confines the column of f i ce of a relational table
to storing only of f i ce_t yp instances and disallows any subtype instances:

Example 2-28 Turning off Substitutability When Creating a Table

DROP TYPE | ocation_typ FORCE, -- required if previously created
DROP TYPE office_typ FORCE, -- required if previously created
CREATE OR REPLACE TYPE | ocation_typ AS OBJECT (

bui | ding_no NUVBER,

city VARCHAR2(40));
/

CREATE TYPE peopl e_typ AS TABLE OF person_typ;

/
CREATE TYPE office typ AS OBJECT (

2-30 Oracle Database Object-Relational Developer's Guide

Inheritance in SQL Object Types

office_id VARCHAR(10) ,

| ocation | ocation_typ,
occupant person_typ)
NOT FI NAL; /

CREATE TABLE dept office (
dept _no NUVBER,
office office_typ)

COLUWN of fice NOT SUBSTI TUTABLE AT ALL LEVELS;

With object tables, the clause can be applied to the table as a whole, such as:

DROP TABLE office_tab; -- if previously created
CREATE TABLE of fice_tab OF office_typ
NOT SUBSTI TUTABLE AT ALL LEVELS,;

The clause can also turn off substitutability in a particular column, that is, for a
particular attribute of the object type of the table:

DROP TABLE office_tab; -- if previously created
CREATE TABLE office_tab OF office_typ
COLUWN occupant NOT SUBSTI TUTABLE AT ALL LEVELS;

You can specify that the element type of a collection is not substitutable using syntax
such as the following;:

DROP TABLE peopl e_t ab;
- required if previously created
CREATE TABLE peopl e_tab (
peopl e_col um people_typ)
NESTED TABLE peopl e_col um
NOT SUBSTI TUTABLE AT ALL LEVELS STORE AS peopl e_col um_nt;

There is no mechanism to turn off substitutability for REF columns.

You can use either NOT SUBSTI TUTABLE AT ALL LEVELS or | S CF type to constrain
an object column, but you cannot use both.

2.3.16 Constraining Substitutability

You can impose a constraint that limits the range of subtypes permitted in an object
column or attribute to a particular subtype in the declared type's hierarchy.

Do this with thel S OF t ype constraint.

The following statement creates a table of of f i ce_t yp in which occupants are
constrained to just those persons who are employees:

Example 2-29 Constraining Substitutability When Creating a Table

DROP TABLE office_tab;

- if previously created

CREATE TABLE office_tab OF office_typ
COLUWN occupant IS OF (ONLY enpl oyee_typ);

Although the type of f i ce_t yp allows authors to be of type per son_t yp, the
column declaration imposes a constraint to store only instances of enpl oyee_t yp.

You can only use the | S OF t ype operator to constrain row and column objects to a
single subtype (not several), and you must use the ONLY keyword, as in the preceding
example.

Basic Components of Oracle Objects 2-31

Inheritance in SQL Object Types

You can use either | SOFt ype or NOT SUBSTI TUTABLE AT ALL LEVELS to constrain
an object column, but you cannot use both.

2.3.17 Modifying Substitutability on a Table

In an existing table, you can change an object column from SUBSTI TUTABLE to NOT
SUBSTI TUTABLE (or from NOT SUBSTI TUTABLE to SUBSTI TUTABLE) by using an
ALTERTABLE statement.

Specify the clause [NOT] SUBSTI TUTABLE AT ALL LEVELS for the particular column
in the ALTER TABLE statement.

You can modify substitutability only for a specific column, not for an object table as a
whole.

The following statement makes the column of f i ce substitutable:
Example 2-30 Modifying Substitutability in a Table

- Requires Ex. 2-28
ALTER TABLE dept _of fice
MODI FY COLUMN of fi ce SUBSTI TUTABLE AT ALL LEVELS;

The following statement makes the column not substitutable. Notice that it also uses
the FORCE keyword. This keyword causes any hidden columns containing typeid
information or data for subtype attributes to be dropped:

- Alter table substitutability with FORCE

ALTER TABLE dept _office
MODI FY COLUMN of fi ce NOT SUBSTI TUTABLE AT ALL LEVELS FORCE;

-- DROP TABLE dept _of fi ce;
If you do not use the FORCE keyword to make a column not substitutable, the column
and all attributes of the type must be FI NAL or the ALTER TABLE statement will fail.

A VARRAY column can be modified from SUBSTI TUTABLE to NOT SUBSTI TUTABLE
only if the element type of the varray is final itself and has no embedded types (in its
attributes or in their attributes, and so on) that are not final.

See "Hidden Columns for Substitutable Columns and Object Tables (page 8-2)" for
more information about hidden columns for typeids and subtype attributes.

2.3.18 Restrictions on Modifying Substitutability

You can change the substitutability of only one column at a time with an ALTER
TABLE statement.

To change substitutability for multiple columns, issue multiple statements.

In an object table, you can only modify substitutability for a column if substitutability
was not explicitly set at the table level, when the table was created.

For example, the following attempt to modify substitutability for column address
succeeds because substitutability has not been explicitly turned on or off at the table
level in the CREATE TABLE statement:

DROP TABLE of fice_tab;
- if previously created
CREATE TABLE of fice_tab OF office_typ;

2-32 Oracle Database Object-Relational Developer's Guide

Inheritance in SQL Object Types

ALTER TABLE of fice_tab
MODI FY COLUWN occupant NOT SUBSTI TUTABLE AT ALL LEVELS FORCE

However, in the following example, substitutability is explicitly set at the table level,
so the attempt to modify the setting for column address fails:

DROP TABLE of fice_tab;

- if previously created

CREATE TABLE office_tab OF office_typ
NOT SUBSTI TUTABLE AT ALL LEVELS;

/* Following SQ statenent generates an error: */
ALTER TABLE office_tab
MODI FY COLUWN occupant SUBSTI TUTABLE AT ALL LEVELS FORCE -- incorrect ALTER;

A column whose substitutability is already constrained by an | S OF t ype operator
cannot have its substitutability modified with a [NOT] SUBSTI TUTABLE AT ALL
LEVELS clause. See "Constraining Substitutability (page 2-31)" for information about
| SOFtype.

2.3.19 Assignments Across Types

The assignment rules described in this section apply to | NSERT/ UPDATE statements,
the RETURNI NGclause, function parameters, and PL/SQL variables.

Topics:

e Typical Object to Object Assignment (page 2-33)
¢ Widening Assignment (page 2-33)

e Narrowing Assignment (page 2-34)

¢ Collection Assignments (page 2-35)

2.3.19.1 Typical Object to Object Assignment
Substitutability is the ability of a subtype to stand in for one of its supertypes.

Substituting a supertype for a subtype, that is substitution in the other direction, raises
an error at compile time.

Assigning a source of type sour ce_t yp to a target of type t ar get _t yp must be of
one of the following two patterns:

e Casel:source_typandtarget_typ are the same type

e Case2:source_typisasubtypeoftarget_typ (widening)

Case 2 illustrates widening.

2.3.19.2 Widening Assignment

Widening is an assignment in which the declared type of the source is more specific
than the declared type of the target.

An example of widening is assigning an employee instance to a variable of a person
type.

An employee is a more narrowly defined, specialized kind of person, so you can put
an employee in a slot meant for a person if you do not mind ignoring whatever extra

Basic Components of Oracle Objects 2-33

Inheritance in SQL Object Types

specialization makes that person an employee. All employees are persons, so a
widening assignment always works.

To illustrate widening, suppose that you have the following table:

TABLE T(pers_col person_typ, enp_col enployee_typ,
stu_col student_typ)

The following assignments show widening. The assignments are valid unless
per scol has been defined to be not substitutable.
UPDATE T set pers_col = enp_col;

The following is a PL/SQL example, which first requires you to create a per son_t yp
and an enpl oyee_typ:

Example 2-31 PL/SQL Assignment

DROP TYPE person_typ FORCE;
- if previously created
CREATE TYPE person_typ AS OBJECT (

i dno NUMVBER
nane VARCHAR2(30) ,
phone VARCHAR2(20))
NOT FI NAL;
/
DROP TYPE enpl oyee_typ FORCE, -- if previously created
CREATE TYPE enpl oyee_typ UNDER person_typ (
enp_i d NUMBER

nmgr VARCHAR2(30)) ;
/
- PL/SQ assignnent exanpl e
DECLARE

varl person_typ;

var2 enpl oyee_typ;

BEG N
var2 := enpl oyee_typ(55, 'Jane Smith', '1-650-555-0144", 100, 'Jennifer Nelson');
varl : = var2,

END;

/

2.3.19.3 Narrowing Assignment
A narrowing assignment is the reverse of widening.

A narrowing assignment involves regarding a more general, less specialized type of
thing, such as a person, as a more narrowly defined type of thing, such as an
employee. Not all persons are employees, so a particular assignment like this works
only if the person in question actually happens to be an employee. Thus, in the end,
narrowing assignments only work in cases such as Case 1, described in "Typical Object
to Object Assignment (page 2-33)".

To do a narrowing assignment, you must use the TREAT function to test that the
source instance of the more general declared type is in fact an instance of the more
specialized target type and can therefore be operated on as such. The TREAT function
does a runtime check to confirm this and returns NULL if the source value, the person
in question, is not of the target type or one of its subtypes.

For example, the following UPDATE statement sets values of per son_t yp in column
per scol into column enpcol of enpl oyee_t yp. For each value in per scol , the
assignment succeeds if that person is also an employee. If the person is not an
employee, TREAT returns NULL, and the assignment returns NULL.

2-34 Oracle Database Object-Relational Developer's Guide

Functions and Operators Useful with Objects

UPDATE T set enp_col = TREAT(pers_col AS enployee typ);

The following statement attempts to do a narrowing assignment without explicitly
changing the declared type of the source value. The statement will return an error:

UPDATE T set enp_col = pers_col;
See "Using TREAT for Narrowing Assignments (page 2-40)".

2.3.19.4 Collection Assignments

In assignments of expressions of a collection type, the source and target must be of the
same declared type.

Neither widening nor narrowing is permitted in expression assignments of collection
types. However, a subtype value can be assigned to a supertype collection. For
example, after creating a new st udent _t yp, suppose we have the following
collection types:

Example 2-32 Create Collection person_set

- Requires 2-21
DROP st udent _typ;
- if previously created
CREATE TYPE student _typ UNDER person_typ (
dept _i d NUMBER,
mej or VARCHAR2(30))
NOT FI NAL;
/
CREATE TYPE person_set AS TABLE OF person_typ;
/

CREATE TYPE student _set AS TABLE OF student _typ;
/

Expressions of these different collection types cannot be assigned to each other, but a
collection element of st udent _t yp can be assigned to a collection of per son_set
type:
DECLARE

varl person_set;

var2 student_set;

el enl person_typ;

el en? student _typ;
BEG N

varl :=var2; /* ILLEGAL - collections not of same type */

varl : = person_set (elenl, elenR); [/* LEGAL : Element is of subtype */
END;
/

2.4 Functions and Operators Useful with Objects

Several functions and operators are particularly useful for working with objects and
references to objects.

Examples are given throughout this book.

Basic Components of Oracle Objects 2-35

Functions and Operators Useful with Objects

2.4.1 CAST

2.4.2 CURSOR

2.4.3 DEREF

Note:

In PL/SQL the VALUE, REF and DEREF functions can appear only in a SQL
statement. For information about SQL functions, see Oracle Database SQL
Language Reference.

Topics:

e CAST (page 2-36)

e CURSOR (page 2-36)

¢ DEREF (page 2-36)

e IS OF type (page 2-37)

¢ REF (page 2-38)

e SYS_TYPEID (page 2-38)
e TABLE() (page 2-39)

e TREAT (page 2-40)

¢ VALUE (page 2-41)

CAST converts one built-in data type or collection-typed value into another built-in
data type or collection-typed value. For example:

Example 2-33 Using the CAST Function
CREATE TYPE person_|ist_typ AS TABLE OF person_typ;/

SELECT CAST(COLLECT(contact) AS person_list_typ)
FROM cont act s;

For more information about the SQL CAST function, Oracle Database SQL Language
Reference.

A CURSCOR expression returns a nested cursor.

The cursor form of expression is equivalent to the PL/SQL REF CURSOR and can be
passed as a REF CURSOR argument to a function.

For more information about the SQL CURSOR expression, see Oracle Database SQL
Language Reference.

The DEREF function in a SQL statement returns the object instance corresponding to a
REF.

The object instance returned by DEREF may be of the declared type of the REF or any
of its subtypes.

2-36 Oracle Database Object-Relational Developer's Guide

Functions and Operators Useful with Objects

For example, the following statement returns per son_t yp objects from the table
contact _ref.

Example 2-34 Using the DEREF Function
- Using the DEREF Function exanple, not sanple schema

SELECT DEREF(c.contact_ref), c.contact_date
FROM contacts_ref c;

See "Dereferencing REFs (page 1-10)". For more information about the SQL DEREF
function, see Oracle Database SQL Language Reference.

2.4.41S OF type

The | S OF t ype predicate tests object instances for the level of specialization of their
type.

For example, the following query retrieves all student instances (including any
subtypes of students) stored in the per son_obj _t abl e table.

Example 2-35 Using the IS OF type Operator to Query Value of a Subtype
- Using the IS OF type Operator to query Value of a subtype

SELECT VALUE(p)
FROM person_obj _table p
VWHERE VALUE(p) IS OF (student_typ);

For any object that is not of a specified subtype, or a subtype of a specified subtype, | S
OF returns FALSE. Subtypes of a specified subtype are just more specialized versions
of the specified subtype. If you want to exclude such subtypes, you can use the ONLY
keyword. This keyword causes | S OF to return FALSE for all types except the
specified types.

In the following example, the statement tests objects in object table

per son_obj _t abl e, which contains persons, employees, and students, and returns
REFs just to objects of the two specified person subtypes enpl oyee_t yp,

st udent _t yp, and their subtypes, if any:

- Using the IS OF type Operator to query for nultiple subtypes

SELECT REF(p)
FROM person_obj _table p
WHERE VALUE(p) IS OF (enpl oyee_typ, student_typ);

Here is a similar example in PL/SQL. The code does something if the person is an
employee or student:

- Using the IS OF type Operator with PL/SQ

DECLARE
var person_typ;
BEG N
var := enployee_typ(55, 'Jane Smth', '1-650-555-0144', 100, 'Jennifer Nelson');
IF var IS OF (enployee_typ, student_typ) THEN
DBMS_QUTPUT. PUT_LI NE(' Var is an enpl oyee_typ or student_typ object.');
ELSE
DBMS_QUTPUT. PUT_LI NE(' Var is not an enpl oyee_typ or student_typ object.');
END | F;
END;
/

Basic Components of Oracle Objects 2-37

Functions and Operators Useful with Objects

2.4.5 REF

The following statement returns only students whose most specific or specialized type

is st udent _t yp. If the table or view contains any objects of a subtype of

student _typ,suchaspart_time_student _typ, these are excluded. The example

uses the TREAT function to convert objects that are students to st udent _t yp from the
declared type of the view, per son_t yp:

- Using the IS OF type Operator to query for specific subtype only

SELECT TREAT(VALUE(p) AS student typ)
FROM person_obj _table p
WHERE VALUE(p) 1S OF(ONLY student typ):

To test the type of the object that a REF points to, you can use the DEREF function to
dereference the REF before testing with the | S OF t ype predicate.

For example, if cont act _r ef is declared to be REF per son_t yp, you can get just the
rows for students as follows:

- Using the IS OF type Operator with DEREF

SELECT *
FROM cont act s_r ef
WHERE DEREF(contact ref) IS OF (student_typ);

For more information about the SQL | S OF t ype condition, see Oracle Database SQL
Language Reference.

The REF function in a SQL statement takes as an argument a correlation name (or table
alias) for an object table or view and returns a reference (a REF) to an object instance
from that table or view.

The REF function may return references to objects of the declared type of the table,
view, or any of its subtypes. For example, the following statement returns the
references to all persons, including references to students and employees, whose i dno
attribute is 12:

Example 2-36 Using the REF Function

- Using the REF Function exanple, not sanple schema

SELECT REF(p)
FROM person_obj _table p
VHERE p.idno = 12;

For more information about the SQL REF function, see Oracle Database SQL Language
Reference.

2.4.6 SYS_TYPEID

The SYS_TYPEI D function can be used in a query to return the typeid (a hidden type)
of the most specific type of the object instance passed as an argument.

The most specific type of an object instance is the type that the instance belongs to, that
is, the farthest removed instance from the root type. For example, if Tim is a part-time
student, he is also a student and a person, but his most specific type is part-time
student.

2-38 Oracle Database Object-Relational Developer's Guide

Functions and Operators Useful with Objects

2.4.7 TABLE()

The function returns the typeids from the hidden type-discriminant column that is
associated with every substitutable column. The function returns a null typeid for a
final, root type.

The syntax of the function is:
SYS TYPEI D(obj ect _type_val ue)

Function SYS_TYPEI Dmay be used only with arguments of an object type. Its
primary purpose is to make it possible to build an index on a hidden type-
discriminant column.

All types that belong to a type hierarchy are assigned a non-null typeid that is unique
within the type hierarchy. Types that do not belong to a type hierarchy have a null
typeid.

Every type except a final root type belongs to a type hierarchy. A final root type has no
types related to it by inheritance:

¢ It cannot have subtypes derived from it because it is final.

e Itis notitself derived from some other type because it is a root type, so it does not
have any supertypes.

For an example of SYS_TYPEI D, consider the substitutable object table

per son_obj _t abl e, of per son_t yp. per son_t yp is the root type of a hierarchy
that has st udent _t yp as a subtype and part _ti ne_st udent _t yp as a subtype of
st udent _t yp. See Example 2-20 (page 2-22).

The following query uses SYS_TYPEI D. It gets the nane attribute and t ypei d of the
object instances in the per son_obj _t abl e table. Each of the instances is of a
different type:

Example 2-37 Using the SYS_TYPEID Function

- Using the SYS TYPEID Function exanple, not sanple schema
SELECT name, SYS_TYPEI D(VALUE(p)) typeid FROM person_obj _table p;

See "Hidden Columns for Substitutable Columns and Object Tables (page 8-2)" for
information about the type-discriminant and other hidden columns. For more
information about the SQL SYS TYPEI D function, see Oracle Database SQL Language
Reference.

Table functions are functions that produce a collection of rows, a nested table or a
varray, that can be queried like a physical database table or assigned to a PL/SQL
collection variable.

You can use a table function like the name of a database table, in the FROMclause of a
query, or like a column name in the SELECT list of a query.

A table function can take a collection of rows as input. An input collection parameter
can be either a collection type, such as a VARRAY or a PL/SQL table, or a REF CURSOR

Use PI PELI NED to instruct Oracle Database to return the results of a table function
iteratively. A table function returns a nested table or varray type. You query table
functions by using the TABLE keyword before the function name in the FROMclause of
the query.

Basic Components of Oracle Objects 2-39

Functions and Operators Useful with Objects

2.4.8 TREAT

For information on TABLE() functions, see Oracle Database Data Cartridge Developer’s
Guide and Oracle Database PL/SQL Language Reference.

The TREAT function does a runtime check to confirm that an expression can be
operated on as if it were of a different specified type in the hierarchy, normally a
subtype of the declared type of the expression.

In other words, the TREAT function attempts to treat a supertype instance as a subtype
instance, for example, to treat a person as a student. If the person is a student, then the
person is returned as a student, with the additional attributes and methods that a
student may have. If the person is not a student, TREAT returns NULL in SQL.

The two main uses of TREAT are:
¢ Innarrowing assignments, to modify the type of an expression so that the

expression can be assigned to a variable of a more specialized type in the
hierarchy: that is, to set a supertype value into a subtype.

¢ To access attributes or methods of a subtype of the declared type of a row or
column.

A substitutable object table or column of type T has a hidden column for every
attribute of every subtype of T. These hidden columns contain subtype attribute
data, but you cannot list them with a DESCRI BE statement. TREAT enables you to
access these columns.

2.4.8.1 Using TREAT for Narrowing Assignments

The TREAT function is used for narrowing assignments, that is, assignments that set a
supertype value into a subtype. For a comparison to widening assignments, see
"Assignments Across Types (page 2-33)".

In Example 2-38 (page 2-40), TREAT returns all (and only) st udent _t yp instances
from per son_obj _t abl e of type per son_t yp, a supertype of st udent _t yp. The
statement uses TREAT to modify the type of p from per son_t yp to st udent _t yp.

Example 2-38 Using the TREAT Function to Return a Specific Subtype in a Query
- Using the TREAT Function to Return a Specific Subtype in a Query exanple,

- not sanple schema

SELECT TREAT(VALUE(p) AS student_typ)
FROM person_obj _table p;

For each p, the TREAT modification succeeds only if the most specific or specialized
type of the value of p is st udent _t yp or one of its subtypes. If p is a person who is
not a student, or if p is NULL, TREAT returns NULL in SQL or, in PL/SQL, raises an
exception.

You can also use TREAT to modify the declared type of a REF expression. For example:
- Using the TREAT Function to nodify declared type of a REF exanple,

- not sanple schema

SELECT TREAT(REF(p) AS REF student _typ)
FROM person_obj _table p;

2-40 Oracle Database Object-Relational Developer's Guide

Functions and Operators Useful with Objects

2.49 VALUE

The previous example returns REFs to all st udent _t yp instances. In SQL it returns
NULL REFs for all person instances that are not students, and in PL/SQL it raises an
exception.

2.4.8.2 Using the TREAT Function to Access Subtype Attributes or Methods

Perhaps the most important use of TREAT is to access attributes or methods of a
subtype of a row or column's declared type. The following query retrieves the nmaj or
attribute of all persons, students and part-time students, who have this attribute. NULL
is returned for persons who are not students:

Example 2-39 Using the TREAT Function to Access Attributes of a Specific
Subtype

SELECT name, TREAT(VALUE(p) AS student _typ).najor mjor
FROM person_obj _table p;

The following query will not work because mej or is an attribute of st udent _t yp but
not of per son_t yp, the declared type of table per sons:

SELECT name, VALUE(p).mjor najor FROM person_obj table p -- incorrect;

The following is a PL/SQL example:

DECLARE
var person_typ;

BEG N
var := enployee_typ(55, 'Jane Smth', '1-650-555-0144', 100, 'Jennifer Nelson');
DBVS_QUTPUT. PUT_LI NE(TREAT(var AS enpl oyee_typ).ngr);

END,

/

For more information about the SQL TREAT function, see Oracle Database SQL
Language Reference.

In a SQL statement, the VALUE function takes as its argument a correlation variable
(table alias) for an object table or object view and returns object instances
corresponding to rows of the table or view.

The VALUE function may return instances of the declared type of the row or any of its
subtypes.

Example 2-40 (page 2-41) first creates a part _t i me_st udent _t yp, and then shows
a SELECT query returning all persons, including students and employees, from table
per son_obj _t abl e of person_typ.

Example 2-40 Using the VALUE Function

- Requires Ex. 2-31 and 2-32

CREATE TYPE part _tine_student _typ UNDER student _typ (
nunber _hours NUVBER);

/

SELECT VALUE(p) FROM person_obj _table p;

To retrieve only part time students, that is, instances whose most specific type is
part _time_student _typ, use the ONLY keyword to confine the selection:

SELECT VALUE(p) FROM person_obj _table p
VHERE VALUE(p) IS OF (ONLY part_time_student _typ);

Basic Components of Oracle Objects 2-41

Functions and Operators Useful with Objects

In the following example, VALUE is used to update a object instance in an object table:

UPDATE person_obj table p
SET VALUE(p) = person_typ(12, 'Bob Jones', '1-650-555-0130")
WHERE p.idno = 12;

See Also:

See also Example 5-22 (page 5-18). For more information about the SQL
VAL UE function, see Oracle Database SQL Language Reference.

2-42 Oracle Database Object-Relational Developer's Guide

3

Using PL/SQL With Object Types

You can use object types with PL/SQL

Topics:

* Declaring and Initializing Objects in PL/SQL (page 3-1)

* Object Manipulation in PL/SQL (page 3-3)

* Use of Overloading in PL/SQL with Inheritance (page 3-6)
* Using Dynamic SQL With Objects (page 3-8)

3.1 Declaring and Initializing Objects in PL/SQL

Using object types in a PL/SQL block, subprogram, or package is a two-step process.

1. You must define object types using the SQL statement CREATE TYPE, in
SQL*Plus or other similar programs.

See Also:

"About Object Types (page 1-3)"

After an object type is defined and installed in the schema, you can use it in any
PL/SQL block, subprogram, or package.

2. InPL/SQL, you then declare a variable whose data type is the user-defined type
or ADT that you just defined.

Objects or ADTs follow the usual scope and instantiation rules.

3.1.1 Defining Object Types
You can define object types using CREATE TYPE.

Example 3-1 (page 3-1) provides two object types, and a table of object types.
Subsequent examples show how to declare variables of those object types in PL/SQL
and perform other operations with these objects.

Example 3-1 Working With Object Types
CREATE TYPE address_typ AS OBJECT (

street VARCHAR2(30) ,
city VARCHAR2(20) ,
state CHAR(2),

postal _code VARCHAR2(6));
/
CREATE TYPE enpl oyee_typ AS OBJECT (

Using PL/SQL With Object Types 3-1

Declaring and Initializing Objects in PL/SQL

enpl oyee_id NUVBER(6) ,
first_nane VARCHAR2(20) ,
| ast _nane VARCHAR2(25) ,
enai | VARCHAR2(25) ,
phone_nunber VARCHAR2(20) ,
hire_date DATE,

job_id VARCHAR2(10),
salary NUVBER(8, 2) ,
comm ssi on_pct NUMBER(2, 2) ,
manager _i d NUMBER(6) ,
departnent _id NUMBER(4) ,
address address_typ,

MAP MEMBER FUNCTI ON get i dno RETURN NUMBER,

MEMBER PROCEDURE di spl ay_address (SELF I N QUT NOCOPY enpl oyee_typ));
/
CREATE TYPE BQODY enpl oyee_typ AS

MAP MEMBER FUNCTI ON get i dno RETURN NUMBER | S

BEG N
RETURN enpl oyee_i d;
END;
MEMBER PROCEDURE di spl ay_address (SELF IN OUT NOCOPY enpl oyee typ) IS
BEG N
DBMS_QUTPUT. PUT_LINE(first_name || ' ' || last_nane);
DBMS_QUTPUT. PUT_LI NE(addr ess. street);
DBMS_QUTPUT. PUT_LI NE(address.city || ', " || address.state || ' ' ||
address. postal _code);
END;
END;

/
CREATE TABLE enpl oyee_tab OF enpl oyee_typ;

3.1.2 Declaring Objects in a PL/SQL Block

You can use objects or ADTs wherever built-in types such as CHAR or NUMBER can be
used.

® Declare objects in the same way you declare built-in types.

Example 3-2 (page 3-2) declares object enp of type enpl oyee_t yp. Then, the
constructor for object type enpl oyee_t yp initializes the object.

Example 3-2 Declaring Objects in a PL/SQL Block

- Requires Ex. 3-1
DECLARE
enp enployee_typ; -- enp is atonically null
BEG N
- call the constructor for enpl oyee_typ
enp : = enployee_typ(315, 'Francis', 'Logan', 'FLOGAN ,
'415.555.0100', '01-MAY-04', 'SA MAN, 11000, .15, 101, 110,
address_typ(' 376 Mssion', 'San Francisco', 'CA, '94222'));

DBVS_QUTPUT. PUT_LI NE(erp. first_name || " ' || enp.last_nane); -- display details
enp. di spl ay_address(); -- call object method to display details
END;

/

The formal parameter of a PL/SQL subprogram can have data types of user-defined
types. Therefore, you can pass objects to stored subprograms and from one
subprogram to another.

In the next code line, the object type enpl oyee_t yp specifies the data type of a
formal parameter:

3-2 Oracle Database Object-Relational Developer's Guide

Object Manipulation in PL/SQL

PROCEDURE open_acct (new_acct IN OUT enployee_typ) IS ...
In this code line, object type enpl oyee_t yp specifies the return type of a function:
FUNCTI ON get _acct (acct_id I N NUVBER) RETURN enpl oyee typ IS ...

3.1.3 How PL/SQL Treats Uninitialized Objects

User-defined types, just like collections, are atomically null, until you initialize the
object by calling the constructor for its object type. That is, the object itself is null, not
just its attributes.

Comparing a null object with any other object always yields NULL. Also, if you assign
an atomically null object to another object, the other object becomes atomically null
(and must be reinitialized). Likewise, if you assign the non-value NULL to an object,
the object becomes atomically null.

In an expression, attributes of an uninitialized object evaluate to NULL. When applied
to an uninitialized object or its attributes, the | SNULL comparison operator yields
TRUE.

See Example 2-1 (page 2-2) for an illustration of null objects and objects with null
attributes.

3.2 Object Manipulation in PL/SQL

This section describes how to manipulate object attributes and methods in PL/SQL.

This section includes the following topics:

® Accessing Object Attributes With Dot Notation (page 3-3)
e Calling Object Constructors and Methods (page 3-4)

e Updating and Deleting Objects (page 3-5)

* Manipulating Object Manipulation with Ref Modifiers (page 3-5)

3.2.1 Accessing Object Attributes With Dot Notation

You refer to an attribute by name. To access or change the value of an attribute, you
use dot notation.

Attribute names can be chained, which lets you access the attributes of a nested object
type. Example 3-3 (page 3-3) uses dot notation and generates the same output as
Example 3-2 (page 3-2).

Example 3-3 Accessing Object Attributes

- Requires Ex. 3-1
DECLARE
enp enpl oyee_typ;
BEG N
enp : = enployee_typ(315, 'Francis', 'Logan', 'FLOGAN ,
"415.555. 0100, '01-MAY-04', 'SA MAN, 11000, .15, 101, 110,
address_typ(' 376 Mssion', 'San Francisco', 'CA', '94222'));

DBVS_QUTPUT. PUT_LI NE(enp. first_name || ' ' || enp.last_nane);
DBVS_QUTPUT. PUT_LI NE(enp. addr ess. street);
DBVS_QUTPUT. PUT_LI NE(enp. address.city || ', ' ||enp. address.state || ' ' ||

enp. addr ess. postal _code);
END,
/

Using PL/SQL With Object Types 3-3

Object Manipulation in PL/SQL

3.2.2 Calling Object Constructors and Methods

Calls to a constructor are allowed wherever function calls are allowed.

A constructor, like all functions, is called as part of an expression, as shown in
Example 3-3 (page 3-3) and Example 3-4 (page 3-4).

When you pass parameters to a constructor, the call assigns initial values to the
attributes of the object being instantiated. When you call the default constructor to fill
in all attribute values, you must supply a parameter for every attribute; unlike
constants and variables, attributes cannot have default values. You can call a
constructor using named notation instead of positional notation.

Example 3-4 Inserting Rows in an Object Table

- Requires Ex. 3-1
DECLARE
enp enpl oyee_typ;
BEG N
I NSERT | NTO enpl oyee_tab VALUES (enpl oyee_typ(310, 'Evers', 'Boston', 'EBCSTON,
'617.555.0100', '01-AUG 04', 'SA REP', 9000, .15, 101, 110,
address_typ(' 123 Main', 'San Francisco', 'CA', '94111')));
I NSERT | NTO enpl oyee_tab VALUES (enpl oyee_typ(320, 'Martha', 'Dunn', ' NMDUNN ,
' 650. 555. 0150, ' 30- SEP-04', 'AC MR, 12500, 0, 101, 110,
address_typ(' 123 Broadway', 'Redwood City', 'CA', '94065')));
END;
/
SELECT VALUE(e) from enpl oyee_tab e;

3.2.3 Accessing Object Methods

Like packaged subprograms, methods are called using dot notation.

In Example 3-5 (page 3-4), the di spl ay_addr ess method is called to display
attributes of an object. Note the use of the VALUE function which returns the value of
an object. VALUE takes as its argument a correlation variable. In this context, a
correlation variable is a row variable or table alias associated with a row in an object
table.

Example 3-5 Accessing Object Methods

- Requires Ex. 3-1 and Ex. 3-4
DECLARE

enp enpl oyee_typ;

BEG N
SELECT VALUE(e) | NTO enp FROM enpl oyee_tab e WHERE e. enpl oyee_id = 310;
enp. di spl ay_address();

END;

/

In SQL statements, calls to a parameterless method require an empty parameter list. In
procedural statements, an empty parameter list is optional unless you chain calls, in
which case it is required for all but the last call. Also, if you chain two function calls,
the first function must return an object that can be passed to the second function.

If a PL/SQL function is used in place of an ADT constructor during a DML operation,
the function may execute multiple times as part of the DML execution. For the
function to execute only once per occurrence, it must be a deterministic function.

For static methods, calls use the notation t ype_nane. net hod_narne rather than
specifying an instance of the type.

3-4 Oracle Database Object-Relational Developer's Guide

Object Manipulation in PL/SQL

When you call a method using an instance of a subtype, the actual method that is
executed depends on declarations in the type hierarchy. If the subtype overrides the
method that it inherits from its supertype, the call uses the subtype implementation.
Otherwise, the call uses the supertype implementation. This capability is known as
dynamic method dispatch.

See Also:

"Dynamic Method Dispatch (page 2-25)"

3.2.4 Updating and Deleting Objects

From inside a PL/SQL block you can modify and delete rows in an object table.
Example 3-6 Updating and Deleting Rows in an Object Table

- Requires Ex. 3-1 and 3-4
DECLARE
enp enpl oyee_typ;
BEG N
I NSERT | NTO enpl oyee_tab VALUES (enpl oyee_typ(370, 'Robert', 'Mers', 'RWERS',
' 415.555.0150', '07-NOv-04', 'SA REP', 8800, .12, 101, 110,
address_typ('540 Fillnore', 'San Francisco', 'CA', '94011')));
UPDATE enpl oyee_tab e SET e.address.street = '1040 California'
VHERE e. enpl oyee_id = 370;
DELETE FROM enpl oyee_tab e WHERE e. enpl oyee_id = 310;
END;
/
SELECT VALUE(e) from enpl oyee_tab e;

3.2.5 Manipulating Object Manipulation with Ref Modifiers

You can retrieve REFs using the function REF, which takes as its argument a
correlation variable or alias.

You can declare REFs as variables, parameters, fields, or attributes. You can use REFs
as input or output variables in SQL data manipulation statements.

Example 3-7 Updating Rows in an Object Table With a REF Modifier
- Requires Ex. 3-1, 3-4, and 3-6

DECLARE
enp enpl oyee_typ;
enp_ref REF enpl oyee_typ;
BEG N

SELECT REF(e) |NTO enp_ref FROM enpl oyee_tab e WHERE e. enpl oyee_id = 370;
UPDATE enpl oyee_tab e
SET e.address = address_typ(' 8701 Col l ege', 'CQakland', 'CA', '94321")
VHERE REF(e) = enp_ref;
END;
/

You cannot navigate through REFs in PL/SQL. For example, the assignment in
Example 3-8 (page 3-6) using a REF is not allowed. Instead, use the function DEREF

or make calls to the package UTL_REF to access the object. For information on the REF
function, see Oracle Database SQL Language Reference.

Using PL/SQL With Object Types 3-5

Use of Overloading in PL/SQL with Inheritance

Example 3-8 Trying to Use DEREF in a SELECT INTO Statement, Incorrect
- Requires Ex. 3-1, 3-4, and 3-6

DECLARE
enp enpl oyee_typ;
enp_ref REF enpl oyee_typ;
enp_nane VARCHAR2(50) ;
BEG N

SELECT REF(e) |NTO enp_ref FROM enpl oyee_tab e WHERE e. enpl oyee_id = 370;
- the follow ng assignnent raises an error, not allowed in PL/SQL enp :=

DEREF(enp_ref); -- cannot use DEREF in procedural statenments
enp_nane := enp.first_name || " ' || enp.last_naneg;
DBVS_QUTPUT. PUT_LI NE(enp_nane) ;

END;

/

This assignment raises an error as described below:

not allowed in PL/SQL
- enmp_name ;= enp_ref.first_name || ' ' || enp_ref.last_nane;
- enp := DEREF(enp_ref); not allowed, cannot use DEREF in procedural statenents

For detailed information on the DEREF function, see Oracle Database SQL Language
Reference.

3.3 Use of Overloading in PL/SQL with Inheritance

Overloading allows you to substitute a subtype value for a formal parameter that is a
supertype. This capability is known as substitutability.

The following rules are about overloading and substitutability.
Rules of Substitution
If more than one instance of an overloaded procedure matches the procedure call, the

following substitution rules determine which procedure, if any, is called:

¢ If the signatures of the overloaded procedures only differ in that some parameters
are object types from the same supertype-subtype hierarchy, the closest match is
used. The closest match is one where all the parameters are at least as close as any
other overloaded instance, as determined by the depth of inheritance between the
subtype and supertype, and at least one parameter is closer.

e If instances of two overloaded methods match, and some argument types are
closer in one overloaded procedure while others are closer in the second
procedure, a semantic error occurs.

¢ If some parameters differ in their position within the object type hierarchy, and
other parameters are of different data types so that an implicit conversion would
be necessary, then a semantic error occurs.

3.3.1 Resolving PL/SQL Functions with Inheritance
Resolving PL/SQL functions with inheritance follows the rules of substitution.

See Use of Overloading in PL/SQL with Inheritance (page 3-6)

Example 3-9 (page 3-7) creates a type hierarchy that has three levels starting with
super _t . There is a package with two overloaded instances of a function that are the
same except for the position of the argument type in the type hierarchy. The

3-6 Oracle Database Object-Relational Developer's Guide

Use of Overloading in PL/SQL with Inheritance

invocation declares a variable of type f i nal _t , and then calls the overloaded
function.

The instance of the function that executes is the one that accepts a Sub_t parameter,
because sub_t is closer to fi nal _t than super _t in the hierarchy. This follows the
rules of substitution.

Note that because determining which instance to call happens at compile time, the fact
that the argument passed in was also a f i nal _t isignored. If the declaration was v
super_t :=final _t(1, 2, 3), the overloaded function with the argument super _t
would be called.

Example 3-9 Resolving PL/SQL Functions With Inheritance

CREATE OR REPLACE TYPE super _t AS OBJECT
(n NUMBER) NOT final;
/
CREATE OR REPLACE TYPE sub_t UNDER super _t
(n2 NUMBER) NOT final;
/
CREATE OR REPLACE TYPE final _t UNDER sub_t
(n3 NUMBER);
/
CREATE OR REPLACE PACKACE p IS
FUNCTI ON func (arg super_t) RETURN NUVBER;
FUNCTI ON func (arg sub_t) RETURN NUMBER
END;
/
CREATE OR REPLACE PACKAGE BODY p IS
FUNCTI ON func (arg super t) RETURN NUMBER |'S BEG N RETURN 1; END;
FUNCTI ON func (arg sub_t) RETURN NUMBER |'S BEG N RETURN 2; END;
END;
/

DECLARE
v final _t :=final_t(1,2,3);
BEG N
DBMS_QUTPUT. PUT_LI NE(p. func(v)); -- prints 2
END,
/

3.3.2 Resolving PL/SQL Functions with Inheritance Dynamically

Dynamically resolving PL/SQL functions with inheritance follows the rules of
substitution.

See Use of Overloading in PL/SQL with Inheritance (page 3-6)

In Example 3-10 (page 3-7), determining which instance to call happens at run time
because the functions are overriding member functions of the type hierarchy. This is
dynamic method dispatch, described in "Dynamic Method Dispatch (page 2-25)".

Though v is an instance of super _t , because the value of f i nal _t is assigned tov,
the sub_t instance of the function is called, following the rules of substitution.

Example 3-10 Resolving PL/SQL Functions With Inheritance Dynamically

-- Performthe follow ng drop commands if you created these objects in Ex. 3-9
-- DROP PACKAGE p;
-- DROP TYPE final t;
- DROP TYPE _sub_t;
DROP TYPE super _t FORCE;
CREATE OR REPLACE TYPE super_t AS OBJECT

Using PL/SQL With Object Types 3-7

Using Dynamic SQL With Objects

(n NUMBER, MEMBER FUNCTI ON func RETURN NUMBER) NOT fi nal;
/
CREATE OR REPLACE TYPE BQODY super _t AS

MEMBER FUNCTI ON func RETURN NUMBER |'S BEG N RETURN 1; END; END,
/
CREATE TYPE sub_t UNDER super _t

(n2 NUMBER,

OVERRI DI NG MEMBER FUNCTI ON func RETURN NUMBER) NOT fi nal;

/
CREATE OR REPLACE TYPE BODY sub_t AS

OVERRI DI NG MEMBER FUNCTI ON func RETURN NUMBER |'S BEG N RETURN 2; END; END;
/
CREATE OR REPLACE TYPE final _t UNDER sub_t

(n3 NUMBER);
/

DECLARE
v super_t := final _t(1,2,3);
BEG N
DBMS_QUTPUT. PUT_LI NE(" answer:"|| v.func); -- prints 2
END,
/

3.4 Using Dynamic SQL With Objects

Dynamic SQL is a feature of PL/SQL that enables you to enter SQL information, such
as a table name, the full text of a SQL statement, or variable information at run-time.

Topics:
¢ Using Dynamic SQL with Object Types and Collections (page 3-8)

e Calling Package Procedures wtih Object Types and Collections (page 3-9)

See Also:

Oracle Database PL/SQL Language Reference

3.4.1 Using Dynamic SQL with Object Types and Collections
You can use dynamic SQL with object types and collections.

Example 3-11 (page 3-8) illustrates the use of objects and collections with dynamic
SQL. First, the example defines the object type per son_t yp and the VARRAY type
hobbi es_var, then it defines the package, t eans, that uses these types.

You need AUTHI D CURRENT_USER to execute dynamic package methods; otherwise,
these methods raise an insufficient privileges error when you run Example 3-12

(page 3-9), which is an anonymous block that calls the procedures in package
TEAVS.

Example 3-11 A Package that Uses Dynamic SQL for Object Types and Collections

CREATE OR REPLACE TYPE person_typ AS OBJECT (nanme VARCHAR2(25), age NUMBER);
/

CREATE TYPE hobbi es_var AS VARRAY(10) OF VARCHAR2(25);

/

CREATE OR REPLACE PACKACE teans

3-8 Oracle Database Object-Relational Developer's Guide

Using Dynamic SQL With Objects

AUTH D CURRENT_USER AS
PROCEDURE create_table (tab_name VARCHAR2);
PROCEDURE i nsert_row (tab_nane VARCHAR2, p person_typ, h hobbies_var);
PROCEDURE print_table (tab_nane VARCHAR?);
END;
/
CREATE OR REPLACE PACKAGE BQODY teams AS
PROCEDURE create_table (tab_name VARCHAR?) IS

BEG N
EXECUTE | MVEDI ATE ' CREATE TABLE ' || tab_nane ||
(pers person_typ, hobbs hobbies_var)';
END;

PROCEDURE i nsert _row (
tab_name VARCHARZ,

p person_typ,
h hobbi es_var) IS

BEG N
EXECUTE | MVEDI ATE ' INSERT INTO ' || tab_nane ||
" VALUES (:1, :2)' USING p, h;
END;

PROCEDURE print_table (tab_nanme VARCHAR2) IS
TYPE refcurtyp IS REF CURSOR,
v_cur refcurtyp;
p person_typ;

h hobbi es_var;

BEG N
OPEN v_cur FOR ' SELECT pers, hobbs FROM' || tab_name;
LOOP

FETCH v_cur INTO p, h;
EXIT WHEN v_cur %NOTFOUND;
- print attributes of 'p' and elenments of 'K
DBVS_CQUTPUT. PUT_LI NE(' Nane: " || p.name || ' - Age: ' || p.age);
FOR i IN h.FIRST..h. LAST
LOOP
DBMS_QUTPUT. PUT_LI NE(' Hobby(" || i || "): " |] h(i));
END LOCP;
END LOOP;
CLOSE v_cur;
END;
END;
/

3.4.2 Calling Package Procedures with Object Types and Collections

You can call package procedures with object types and collections.

From an anonymous block,Example 3-12 (page 3-9), you might call the procedures
in package TEAMS as shown in Example 3-11 (page 3-8)

Example 3-12 Calling Procedures from the TEAMS Package

DECLARE

t eam name VARCHAR2(15);
BEG N

team name : = 'Notables';

TEAMS. creat e_t abl e(t eam nane);
TEAMS. i nsert _row(team name, person_typ('John', 31),
hobbi es_var (' skiing', 'coin collecting, '"tennis'));
TEAMS. i nsert _row(team name, person_typ(' Mary', 28),
hobbi es_var('golf', "quilting', 'rock clinbing', 'fencing));
TEAMS. print _t abl e(t eam name);

Using PL/SQL With Object Types 3-9

Using Dynamic SQL With Objects

END;

3-10 Oracle Database Object-Relational Developer's Guide

A

Object Support in Oracle Programming
Environments

In an Oracle database, you can create object types with SQL data definition language
(DDL) commands, and you can manipulate objects with SQL data manipulation
language (DML) commands. From there, you can use many Oracle application
programming environments and tools that have built-in support for Oracle Objects.

Topics:

* SQL and Object Types (page 4-1)

¢ SQL Developer (page 4-2)

e PL/SQL (page 4-2)

* Oracle Call Interface (OCI) (page 4-2)

* Pro*C/C++ (page 4-6)

* Oracle C++ Call Interface (OCCI) (page 4-8)

¢ Java Tools for Accessing Oracle Objects (page 4-9)
¢ XML (page 4-16)

¢ Utilities Providing Support for Objects (page 4-16)

4.1 SQL and Object Types

Oracle SQL data definition language (DDL) provides operations to support object
types.

These operations include:

* Defining object types, nested tables, and arrays
® Specifying privileges

® Specifying table columns of object types

* Creating object tables

Oracle SQL DML provides the following support for object types:
* Querying and updating objects and collections

¢ Manipulating REFs

Object Support in Oracle Programming Environments 4-1

SQL Developer

See Also:

For a complete description of Oracle SQL syntax, see Oracle Database SQL
Language Reference

4.2 SQL Developer

SQL Developer provides a visual development environment for database developers
and DBAs to create and manipulate database schema objects including Oracle Objects

SQL Developer enables you to run reports, monitor performance and perform many
other database-related tasks using a rich graphical user interface.

See Also:

Oracle SQL Developer User’s Guide

4.3 PL/SQL

Object types and subtypes can be used in PL/SQL procedures and functions in most
places where built-in types can appear.

The parameters and variables of PL/SQL functions and procedures can be of object
types.

You can implement the methods associated with object types in PL/SQL. These
methods (functions and procedures) reside on the server as part of a user's schema.

See Also:

For a complete description of PL/SQL, see the Oracle Database PL/SQL
Language Reference

4.4 Oracle Call Interface (OCl)

OCl is a set of C library functions that applications can use to manipulate data and
schemas in an Oracle database.

* About Oracle Call Interface (OCI) (page 4-2)
* Associative Access in OCI Programs (page 4-3)

* Navigational Access in OCI Programs (page 4-4)

4.4.1 About Oracle Call Interface (OCI)

OCI supports both traditional 3GL and object-oriented techniques for database access,
as explained in the following sections.

An important component of OCl is a set of calls to manage a workspace called the
object cache. The object cache is a memory block on the client side that allows
programs to store entire objects and to navigate among them without additional round
trips to the server.

4-2 Oracle Database Object-Relational Developer's Guide

Oracle Call Interface (OClI)

The object cache is completely under the control and management of the application
programs using it. The Oracle server has no access to it. The application programs
using it must maintain data coherency with the server and protect the workspace
against simultaneous conflicting access.

OCI provides functions to
® Access objects on the server using SQL.

® Access, manipulate and manage objects in the object cache by traversing pointers
or REFs.

¢ Convert Oracle dates, strings and numbers to C data types.

* Manage the size of the object cache's memory.

OCI improves concurrency by allowing individual objects to be locked. It improves
performance by supporting complex object retrieval.

OCI developers can use the object type translator to generate the C data types
corresponding to a Oracle object types.

See Also:

Oracle Call Interface Programmer’s Guide for more information about using
objects with OCI

4.4.2 Associative Access in OCI Programs

OCI programs support associative access to objects with an API that can manipulate
object data.

Traditionally, 3GL programs manipulate data stored in a relational database by
executing SQL statements and PL/SQL procedures. Data is usually manipulated on
the server without incurring the cost of transporting the data to the client(s). OCI
supports this associative access to objects by providing an API for executing SQL
statements that manipulate object data. Specifically, OCI enables you to:

* Execute SQL statements that manipulate object data and object type schema
information

e Pass object instances, object references (REFs), and collections as input variables in
SQL statements

® Return object instances, REFs, and collections as output of SQL statement fetches

e Describe the properties of SQL statements that return object instances, REFs, and
collections

® Describe and execute PL/SQL procedures or functions with object parameters or
results

* Synchronize object and relational functionality through enhanced commit and
rollback functions

See "Associative Access in Pro*C/C++ (page 4-6)".

Object Support in Oracle Programming Environments 4-3

Oracle Call Interface (OClI)

4.4.3 Navigational Access in OCI Programs
OCI programs provide navigational access by means of an APL

In the object-oriented programming paradigm, applications model their real-world
entities as a set of inter-related objects that form graphs of objects. The relationships
between objects are implemented as references. An application processes objects by
starting at some initial set of objects, using the references in these initial objects to
traverse the remaining objects, and performing computations on each object. OCI
provides an API for this style of access to objects, known as navigational access.
Specifically, OCI enables you to:

® Cache objects in memory on the client machine

* Dereference an object reference and pin the corresponding object in the object
cache. The pinned object is transparently mapped in the host language
representation.

* Notify the cache when the pinned object is no longer needed

* Fetch a graph of related objects from the database into the client cache in one call
* Lock objects

* Create, update, and delete objects in the cache

* Flush changes made to objects in the client cache to the database

See "Navigational Access in Pro*C/C++ (page 4-7)".

4.4.4 Object Cache

To support high-performance navigational access of objects, OCI runtime provides an
object cache for caching objects in memory.

The object cache supports references (REFs) to database objects in the object cache, the
database objects can be identified (that is, pinned) through their references.
Applications do not need to allocate or free memory when database objects are loaded
into the cache, because the object cache provides transparent and efficient memory
management for database objects.

Also, when database objects are loaded into the cache, they are transparently mapped
into the host language representation. For example, in the C programming language,
the database object is mapped to its corresponding C structure. The object cache
maintains the association between the object copy in the cache and the corresponding
database object. Upon transaction commit, changes made to the object copy in the
cache are propagated automatically to the database.

The object cache maintains a fast look-up table for mapping REFs to objects. When an
application dereferences a REF and the corresponding object is not yet cached in the
object cache, the object cache automatically sends a request to the server to fetch the
object from the database and load it into the object cache. Subsequent dereferences of
the same REF are faster because they become local cache access and do not incur
network round-trips.

To notify the object cache that an application is accessing an object in the cache, the
application pins the object; when it is finished with the object, it unpins it. The object
cache maintains a pin count for each object in the cache. The count is incremented

4-4 Oracle Database Object-Relational Developer's Guide

Oracle Call Interface (OClI)

upon a pin call and decremented upon an unpin call. When the pin count goes to zero,
it means the object is no longer needed by the application.

The object cache uses a least-recently used (LRU) algorithm to manage the size of the
cache. When the cache reaches the maximum size, the LRU algorithm frees candidate
objects with a pin count of zero.

4.4.5 Building an OCI Program That Manipulates Objects

You can build an OCI program to manipulate objects by representing types in the C
host language format.

When you build an OCI program that manipulates objects, you must complete the
following general steps

1. Define the object types that correspond to the application objects.

2. Execute the SQL DDL statements to populate the database with the necessary
object types.

3. Represent the object types in the host language format.

For example, to manipulate instances of the object types in a C program, you must
represent these types in the C host language format. You can do this by
representing the object types as C structs. You can use a tool provided by Oracle
called the Object Type Translator (OTT) to generate the C mapping of the object
types. The OTT puts the equivalent C structs in header (*.h) files. You include these
*.h files in the *.c files containing the C functions that implement the application.

4. Construct the application executable by compiling and linking the application's *.c
files with the OCI library.

See Also:

Oracle Call Interface Programmer’s Guide for tips and techniques for using OCI
program effectively with objects

4.4.6 Defining User-Defined Constructors in C

When defining a user-defined constructor in C, you must specify SELF (and you may
optionally specify SELF TDO) in the PARAMETERS clause.

On entering the C function, the attributes of the C structure that the object maps to are
all initialized to NULL. The value returned by the function is mapped to an instance of
the user-defined type.

Example 4-1 (page 4-5) shows how to define a user-defined constructor in C.
Example 4-1 Defining a User-Defined Constructor in C

CREATE LI BRARY person_|lib TRUSTED AS STATIC
/

CREATE TYPE person AS OBJECT
(nanme VARCHAR2(30),
CONSTRUCTOR FUNCTI ON person(SELF I N QUT NOCOPY person, nane VARCHAR?)
RETURN SELF AS RESULT);
/

CREATE TYPE BODY person IS

Object Support in Oracle Programming Environments 4-5

Pro*C/C++

CONSTRUCTOR FUNCTI ON person(SELF IN QUT NOCOPY person, nane VARCHAR?2)
RETURN SELF AS RESULT
IS EXTERNAL NAME "cons_person_typ" LIBRARY person_lib W TH CONTEXT
PARAMETERS(cont ext, SELF, name OCI String, name | NDI CATCR sh4);
END; /

The SELF parameter is mapped like an | N parameter, so in the case of a NOT FI NAL
type, it is mapped to (dvoi d *),not (dvoi d **).The return value's TDOmust
match the TDOof SELF and is therefore implicit. The return value can never be null, so
the return indicator is implicit as well.

4.5 Pro*C/C++

The Oracle Pro*C/C++ precompiler allows programmers to use user-defined data
types in C and C++ programs.

Topics:

e About Pro*C/C++ (page 4-6)

® Associative Access in Pro*C/C++ (page 4-6)

¢ Navigational Access in Pro*C/C++ (page 4-7)

e Conversion Between Oracle Types and C Types (page 4-7)
¢ Oracle Type Translator (OTT) (page 4-8)

4.5.1 About Pro*C/C++

Pro*C developers can use the Object Type Translator to map Oracle object types and
collections into C data types to be used in the Pro*C application.

Pro*C provides compile time type checking of object types and collections and
automatic type conversion from database types to C data types.

Pro*C includes an EXEC SQL syntax to create and destroy objects and offers two ways
to access objects in the server:

* SQL statements and PL/SQL functions or procedures embedded in Pro*C
programs.

* An interface to the object cache (described under "Oracle Call Interface (OCI)
(page 4-2)"), where objects can be accessed by traversing pointers, then modified
and updated on the server.

See Also:

For a complete description of the Pro*C/C++ precompiler, see Pro*C/C++
Programmer’s Guide

4.5.2 Associative Access in Pro*C/C++

For background information on associative access, see "Associative Access in OCI
Programs (page 4-3)".

Pro*C/C++ offers the following capabilities for associative access to objects:

4-6 Oracle Database Object-Relational Developer's Guide

Pro*C/C++

* Support for transient copies of objects allocated in the object cache

e Support for transient copies of objects referenced as input host variables in
embedded SQL | NSERT, UPDATE, and DELETE statements, or in the WHERE clause
of a SELECT statement

* Support for transient copies of objects referenced as output host variables in
embedded SQL SELECT and FETCH statements

* Support for ANSI dynamic SQL statements that reference object types through the
DESCRI BE statement, to get the object's type and schema information

4.5.3 Navigational Access in Pro*C/C++

For background information on navigational access, see "Navigational Access in OCI
Programs (page 4-4)".

Pro*C/C++ offers the following capabilities to support a more object-oriented
interface to objects:

* Support for dereferencing, pinning, and optionally locking an object in the object
cache using an embedded SQL OBJECT DEREF statement

e Allowing a Pro*C/C++ user to inform the object cache when an object has been
updated or deleted, or when it is no longer needed, using embedded SQL OBJECT
UPDATE, OBJECT DELETE, and OBJECT RELEASE statements

* Support for creating new referenceable objects in the object cache using an
embedded SQL OBJECT CREATE statement

® Support for flushing changes made in the object cache to the server with an
embedded SQL OBJECT FLUSH statement

4.5.4 Conversion Between Oracle Types and C Types

Pro*C/C++ provides ease-of-use enhancements to simplify use of OCI types in C and
C++ applications.

The C representation for objects that is generated by the Oracle Type Translator (OTT)
uses OCI types which are opaque and insulate you from changes to their internal
formats, but are cumbersome to use in a C or C++ application. These representations
include OCl St ri ng and OCl Nunber for scalar attributes and OCl Tabl e, CCl Ar r ay,
and OCl Ref types for collection types and object references.

With Pro*C/C++ enhancements:

¢ Object attributes can be retrieved and implicitly converted to C types with the
embedded SQL OBJECT GET statement.

* Object attributes can be set and converted from C types with the embedded SQL
OBJECT SET statement.

e Collections can be mapped to a host array with the embedded SQL COLLECTI ON
CET statement. Furthermore, if the collection is comprised of scalar types, then the
OCI types can be implicitly converted to a compatible C type.

¢ Host arrays can be used to update the elements of a collection with the embedded
SQL COLLECTI ON SET statement. As with the COLLECTI ON GET statement, if the

Object Support in Oracle Programming Environments 4-7

Oracle C++ Call Interface (OCCI)

collection is comprised of scalar types, C types are implicitly converted to OCI

types.

4.5.5 Oracle Type Translator (OTT)

The Oracle Type Translator (OTT) is a program that automatically generates C
language structure declarations corresponding to object types.

OTT makes it easier to use the Pro*C precompiler and the OCI server access package.

See Also:

For complete information about OTT, see Oracle Call Interface Programmer’s
Guide and Pro*C/C++ Programmer’s Guide.

4.6 Oracle C++ Call Interface (OCCI)

The Oracle C++ Call Interface (OCCI) is a C++ API that enables you to use the object-
oriented features, native classes, and methods of the C++ programing language to
access the Oracle database.

Topics:
* About Oracle C++ Call Interface (OCCI) (page 4-8)
* OCCI Associative Relational and Object Interfaces (page 4-8)

¢ The OCCI Navigational Interface (page 4-9)

4.6.1 About Oracle C++ Call Interface (OCCI)

The OCCI interface is modeled on the JDBC interface and, like the JDBC interface, is
easy to use. OCCl itself is built on top of OCI and provides the power and
performance of OCI using an object-oriented paradigm.

OCl is a C API to the Oracle database. It supports the entire Oracle feature set and
provides efficient access to both relational and object data, but it can be challenging to
use—particularly if you want to work with complex, object data types. Object types
are not natively supported in C, and simulating them in C is not easy. OCCI addresses
this by providing a simpler, object-oriented interface to the functionality of OCI. It
does this by defining a set of wrappers for OCI. By working with these higher-level
abstractions, developers can avail themselves of the underlying power of OCI to
manipulate objects in the server through an object-oriented interface that is
significantly easier to program.

The Oracle C++ Call Interface, OCCI, can be roughly divided into three sets of
functionalities, namely:

® Associative relational access
* Associative object access

* Navigational access

4.6.2 OCCI Associative Relational and Object Interfaces

The associative relational API and object classes provide SQL access to the database.

4-8 Oracle Database Object-Relational Developer's Guide

Java Tools for Accessing Oracle Objects

Through these interfaces, SQL is executed on the server to create, manipulate, and
fetch object or relational data. Applications can access any data type on the server,
including the following;:

¢ Large objects
* Objects/Structured types
e Arrays

e References

4.6.3 The OCCI Navigational Interface

The navigational interface is a C++ interface that lets you seamlessly access and
modify object-relational data in the form of C++ objects without using SQL.

The C++ objects are transparently accessed and stored in the database as needed.

With the OCCI navigational interface, you can retrieve an object and navigate through
references from that object to other objects. Server objects are materialized as C++ class
instances in the application cache.

An application can use OCCI object navigational calls to perform the following
functions on the server's objects:

e Create, access, lock, delete, and flush objects

¢ Get references to the objects and navigate through them

See Also:

Oracle C++ Call Interface Programmer’s Guide for a complete account of how to
build applications with the Oracle C++ API

4.7 Java Tools for Accessing Oracle Objects

Oracle provides various ways to integrate Oracle object features with Java.

These interfaces enable you both to access SQL data from Java and to provide
persistent database storage for Java objects.

Topics:

* JDBC Access to Oracle Object Data (page 4-9)

e Data Mapping Strategies (page 4-10)

® JPublisher Used to Create Java Classes for JDBC and SQL]J Programs (page 4-11)
* Java Object Storage (page 4-11)

* Defining User-Defined Constructors in Java (page 4-15)

* JDeveloper (page 4-15)

4.7.1 JDBC Access to Oracle Object Data

JDBC (Java Database Connectivity) is a set of Java interfaces to the Oracle server.

Object Support in Oracle Programming Environments 4-9

Java Tools for Accessing Oracle Objects

Oracle provides tight integration between objects and JDBC. You can map SQL types
to Java classes with considerable flexibility.

Oracle JDBC:

¢ Allows access to objects and collection types (defined in the database) in Java
programs through dynamic SQL.

e Translates types defined in the database into Java classes through default or
customizable mappings.

Version 2.0 of the JDBC specification supports object-relational constructs such as
user-defined (object) types. JDBC materializes Oracle objects as instances of particular
Java classes. Using JDBC to access Oracle objects involves creating the Java classes for
the Oracle objects and populating these classes. You can either:

¢ Let JDBC materialize the object as a STRUCT. In this case, JDBC creates the classes
for the attributes and populates them for you.

* Manually specify the mappings between Oracle objects and Java classes; that is,
customize your Java classes for object data. The driver then populates the
customized Java classes that you specify, which imposes a set of constraints on the
Java classes. To satisfy these constraints, you can choose to define your classes
according to either the SQLDat a interface or the ORADat a interface.

See Also:

Oracle Database [DBC Developer’s Guide for complete information about JDBC

4.7.2 Data Mapping Strategies

Oracle SQLJ supports either strongly typed or weakly typed Java representations of
object types, reference types (REFs), and collection types (varrays and nested tables) to
be used in iterators or host expressions.

Strongly typed representations use a custom Java class that corresponds to a particular
object type, REF type, or collection type and must implement the interface

or acl e.sql .ORADat a. The Oracle JPublisher utility can automatically generate such
custom Java classes.

Weakly typed representations use the class or acl e.sql .STRUCT (for objects),
or acl e.sql .REF (for references), or or acl e.sql .ARRAY (for collections).

4.7.3 JPublisher

Oracle JPublisher is a utility that generates Java classes to represent the following user-
defined database entities in your Java program:

e Database object types
* Database reference (REF) types

e Database collection types (varrays or nested tables)

e PL/SQL packages

4-10 Oracle Database Object-Relational Developer's Guide

Java Tools for Accessing Oracle Objects

JPublisher enables you to specify and customize the mapping of database object types,
reference types, and collection types (varrays or nested tables) to Java classes, in a
strongly typed paradigm.

4.7.3.1 JPublisher Used to Create Java Classes for JOBC and SQLJ Programs

Oracle lets you map Oracle object types, reference types, and collection types to Java
classes and preserve all the benefits of strong typing. You can:

* Use JPublisher to automatically generate custom Java classes and use those classes
without any change.

® Subclass the classes produced by JPublisher to create your own specialized Java
classes.

¢ Manually code custom Java classes without using JPublisher if the classes meet
the requirements stated in Oracle Database [Publisher User’s Guide.

We recommend that you use JPublisher and subclass when the generated classes do
not do everything you need.

4.7.3.2 What JPublisher Produces for a User-Defined Object Type

When you run JPublisher for a user-defined object type, it automatically creates the
following:

® A custom object class to act as a type definition to correspond to your Oracle
object type

This class includes getter and setter methods for each attribute. The method
names are of the form get Xxx() and set Xxx() for attribute xxx.

Also, you can optionally instruct JPublisher to generate wrapper methods in your
class that invoke the associated Oracle object methods executing in the server.

® A related custom reference class for object references to your Oracle object type

This class includes a get Val ue() method that returns an instance of your
custom object class, and a set Val ue() method that updates an object value in
the database, taking as input an instance of the custom object class.

When you run JPublisher for a user-defined collection type, it automatically creates
the following:

® A custom collection class to act as a type definition to correspond to your Oracle
collection type

This class includes overloaded get Array() and set Array() methods to
retrieve or update a collection as a whole, a get El enent () method and

set El ement () method to retrieve or update individual elements of a collection,
and additional utility methods.

JPublisher-produced custom Java classes in any of these categories implement the
ORADat a interface and the get Fact or y() method.

4.7.4 Java Object Storage

JPublisher enables you to construct Java classes that map to existing SQL types. You
can then access the SQL types from a Java application using JDBC.

Object Support in Oracle Programming Environments 4-11

Java Tools for Accessing Oracle Objects

You can also go in the other direction. That is, you can create SQL types that map to
existing Java classes. This capability enables you to provide persistent storage for Java
objects. Such SQL types are called SQL types of Language Java, or SQL]J object types.
They can be used as the type of an object, an attribute, a column, or a row in an object
table. You can navigationally access objects of such types—]Java objects—through
either object references or foreign keys, and you can query and manipulate such
objects from SQL.

You create SQL]J types with a CREATE TYPE statement as you do other user-defined
SQL types. For SQL]J types, two special elements are added to the CREATE TYPE
statement:

¢ An EXTERNAL NAME phrase, used to identify the Java counterpart for each SQLJ
attribute and method and the Java class corresponding to the SQLJ type itself

* A USI NGclause, to specify how the SQL]J type is to be represented to the server.
The USI NGclause specifies the interface used to retrieve a SQL] type and the kind
of storage.

For example:
Example 4-2 Mapping SQL Types to Java Classes

- Mapping SQL Types to Java O asses exanple, not sanmple schema
CREATE TYPE ful | _address AS OBJECT (a NUMBER);
/

CREATE OR REPLACE TYPE person_t AS OBJECT
EXTERNAL NAME ' Person' LANGUAGE JAVA
USI NG SQLDat a (

ss_no NUMBER (9) EXTERNAL NAME 'social SecurityNo',

name varchar (100) EXTERNAL NAME 'nane',

address full _address EXTERNAL NAME 'addrs',

birth_date date EXTERNAL NAME 'birthDate',

MEMBER FUNCTI ON age RETURN NUMBER EXTERNAL NAME 'age () return int',

MEMBER FUNCTI ON addr essf RETURN ful | _address
EXTERNAL NAME ' get _address () return |ong_address',

STATIC function createf RETURN person_t EXTERNAL NAME 'create ()

return Person',

STATIC function createf (name VARCHAR2, addrs full _address, bDate DATE)
RETURN person_t EXTERNAL NAME 'create (java.lang. String, Long_address,
oracle.sql.date) return Person',

ORDER member FUNCTI ON conpare (in_person person_t) RETURN NUVBER
EXTERNAL NAME 'isSame (Person) return int')

/

SQLJ types use the corresponding Java class as the body of the type; you do not
specify a type body in SQL to contain implementations of the type's methods as you
do with ordinary object types.

4.7.4.1 Creating SQLJ Object Types
You can create SQLJ object types using SQL statements

The SQL statements to create SQLJ types and specify their mappings to Java are placed
in a file called a deployment descriptor. Related SQL constraints and privileges are
also specified in this file. The types are created when the file is executed.

Below is an overview of the process of creating SQL versions of Java types/classes:

1. Design the Java types.

4-12 Oracle Database Object-Relational Developer's Guide

Java Tools for Accessing Oracle Objects

6.

Generate the Java classes.

Create the SQL] object type statements.

Construct the JAR file. This is a single file that contains all the classes needed.
Using the | oadj ava utility, install the Java classes defined in the JAR file.

Execute the statements to create the SQL]J object types.

4.7.4.2 Additional Notes About Mapping

The following are additional notes to consider when mapping of Java classes to SQL
types:

You can map a SQL]J static function to a user-defined constructor in the Java class.
The return value of this function is of the user-defined type in which the function
is locally defined.

Java static variables are mapped to SQLJ static methods that return the value of
the corresponding static variable identified by EXTERNAL NAVME. The EXTERNAL
NAME clause for an attribute is optional with a SQLDat a or ORADat a
representation.

Every attribute in a SQL]J type of a SQL representation must map to a Java field,
but not every Java field must be mapped to a corresponding SQL]J attribute: you
can omit Java fields from the mapping.

You can omit classes: you can map a SQL] type to a non-root class in a Java class
hierarchy without also mapping SQL]J types to the root class and intervening
superclasses. Doing this enables you to hide the superclasses while still including
attributes and methods inherited from them.

However, you must preserve the structural correspondence between nodes in a
class hierarchy and their counterparts in a SQLJ type hierarchy. In other words,
for two Java classes j _Aand j _B that are related through inheritance and are
mapped to two SQL types s_Aand s_B, respectively, there must be exactly one
corresponding node on the inheritance path from s_Ato s_B for each node on the
inheritance path fromj _Atoj _B.

You can map a Java class to multiple SQL]J types as long as you do not violate the
restriction in the preceding paragraph. In other words, no two SQLJ types
mapped to the same Java class can have a common supertype ancestor.

If all Java classes are not mapped to SQL]J types, it is possible that an attribute of a
SQL]J object type might be set to an object of an unmapped Java class. Specifically,
to a class occurring above or below the class to which the attribute is mapped in
an inheritance hierarchy. If the object's class is a superclass of the attribute's type/
class, an error is raised. If it is a subclass of the attribute's type/class, the object is
mapped to the most specific type in its hierarchy for which a SQL mapping exists

4.7.4.3 SQLJ Type Evolution
You can evole SQLJ types using the ALTER TYPE statement.

The ALTER TYPE statement enables you to evolve a type by, for example, adding or
dropping attributes or methods.

Object Support in Oracle Programming Environments 4-13

Java Tools for Accessing Oracle Objects

When a SQLJ type is evolved, an additional validation is performed to check the
mapping between the class and the type. If the class and the evolved type match, the
type is marked valid. Otherwise, the type is marked as pending validation.

Being marked as pending validation is not the same as being marked invalid. A type
that is pending validation can still be manipulated with ALTER TYPE and GRANT
statements, for example.

If a type that has a SQL representation is marked as pending evaluation, you can still
access tables of that type using any DML or SELECT statement that does not require a
method invocation.

You cannot, however, execute DML or SELECT statements on tables of a type that has
a serializable representation and has been marked as pending validation. Data of a
serializable type can be accessed only navigationally, through method invocations.
These are not possible with a type that is pending validation. However, you can still
re-evolve the type until it passes validation.

See "Type Evolution (page 8-6)".

4.7.4.4 Constraints

For SQLJ types having a SQL representation, the same constraints can be defined as
for ordinary object types.

Constraints are defined on tables, not on types, and are defined at the column level.
The following constraints are supported for SQLJ types having a SQL representation:

* Unique constraints

¢ Primary Key

e Check constraints

e NOT NULL constraints on attributes

e Referential constraints

The | S OF TYPE constraint on column substitutability is supported, too, for SQL]J
types having a SQL representation. See "Constraining Substitutability (page 2-31)".

4.7.4.5 Querying SQLJ Objects

SQLJ types can be queried just like ordinary SQL object types.

* Query SQLJ types just like ordinary object types.

Methods called in a SELECT statement must not attempt to change attribute values.
4.7.4.6 Inserting Java Objects

You can insert Java objects into tables.

Inserting a row in a table containing a column of a SQLJ type requires a call to the
type's constructor function to create a Java object of that type.

* Use an implicit, system-generated constructor, or define a static function that
maps to a user-defined constructor in the Java class.

4.7.4.7 Updating SQLJ Objects

You can update SQL]J objects several ways.

4-14 Oracle Database Object-Relational Developer's Guide

Java Tools for Accessing Oracle Objects

SQL] objects can be updated by:
¢ Using an UPDATE statement to modify the value of one or more attributes

* Invoking a method that updates the attributes and returns SELF—that is, returns
the object itself with the changes made.

For example, suppose that r ai se() is a member function that increments the sal ary
field /attribute by a specified amount and returns SELF. The following statement gives
every employee in the object table enpl oyee_obj t ab a raise of 1000:

UPDATE enpl oyee_objtab SET c=c.rai se(1000);

A column of a SQL]J type can be set to NULL or to another column using the same
syntax as for ordinary object types. For example, the following statement assigns
column d to column c:

UPDATE enpl oyee reltab SET c=d;

4.7.5 Defining User-Defined Constructors in Java

When you implement a user-defined constructor in Java, the supply the string
supplied as the implementing routine must correspond to a static function. For the
return type of the function, specify the Java type mapped to the SQL type.

When you implement a user-defined constructor in Java, the string supplied as the
implementing routine must correspond to a static function. For the return type of the
function, specify the Java type mapped to the SQL type.

Example 4-3 (page 4-15) is an example of a type declaration that involves a user-
defined constructor implemented in Java.

Example 4-3 Defining a User-Defined Constructor in Java

- Defining a User-Defined Constructor in Java exanple, not sanple schena
CREATE TYPE personl_typ AS OBJECT
EXTERNAL NAME ' pkgl.J_Person' LANGUAGE JAVA
USI NG SQLDat a(
nane VARCHAR2(30),
age NUMBER,
CONSTRUCTOR FUNCTI ON personl_typ(SELF IN OQUT NOCOPY personl_typ, name VARCHARZ,
age NUMBER) RETURN SELF AS RESULT
AS LANGUAGE JAVA
NAME ' pkgl.J_Person.J_Person(java.lang. String, int) return J_Person')

4.7.6 JDeveloper

Oracle JDeveloper is a full-featured, cross-platform, integrated development
environment for creating multitier Java applications that is well integrated with Oracle
Application Server and Database.

Oracle JDeveloper enables you to develop, debug, and deploy Java client applications,
dynamic HTML applications, web and application server components, JavaBean
components, and database stored procedures based on industry-standard models.

JDeveloper is also the integrated development environment for ADF and TopLink.

Object Support in Oracle Programming Environments 4-15

XML

4.7.6.1 Application Development Framework (ADF)

ADF is a framework for building scalable enterprise Java EE applications. Developers
can use ADF to build applications where the application data is persisted to Oracle
Object tables as well as other schema objects.

4.7.6.2 TopLink

TopLink is a framework for mapping Java objects to a variety of persistence
technologies, including databases, and provides facilities to build applications
leveraging Oracle Objects.

4.8 XML

XM.Type views wrap existing relational and object-relational data in XML formats.
These views are similar to object views. Each row of an XMLType view corresponds to
an XMLType instance. The object identifier for uniquely identifying each row in the
view can be created using an expression such as ext r act () on the XMLType value.

See Also:

Oracle XML DB Developer’s Guide for information and examples on using XML
with Oracle objects

4.9 Utilities Providing Support for Objects

This section describes several Oracle utilities that provide support for Oracle objects.

This section contains these topics:
e Import/Export of Object Types (page 4-16)
¢ SQL*Loader (page 4-17)

4.9.1 Import/Export of Object Types

Export and Import utilities move data into and out of Oracle databases. They also back
up or archive data and aid migration to different releases of the Oracle RDBMS.

Export and Import support object types. Export writes object type definitions and all
of the associated data to the dump file. Import then re-creates these items from the
dump file.

When you import object tables, by default, O Ds are preserved.

See Also:

Oracle Database Ultilities for instructions on how to use the Import and Export
utilities

4.9.1.1 Types

The definition statements for derived types are exported. On an Import, a subtype
may be created before the supertype definition has been imported. In this case, the

4-16 Oracle Database Object-Relational Developer's Guide

Utilities Providing Support for Objects

subtype is created with compilation errors, which may be ignored. The type is
revalidated after its supertype is created.

4.9.1.2 Object View Hierarchies

View definitions for all views belonging to a view hierarchy are exported.

4.9.2 SQL*Loader

The SQL*Loader utility moves data from external files into tables in an Oracle
database.

The files SQL*Loader moves may contain data consisting of basic scalar data types,
such as | NTEGER, CHAR, or DATE, as well as complex user-defined data types such as
row and column objects (including objects that have object, collection, or REF
attributes), collections, and LOBs. Currently, SQL*Loader supports single-level
collections only: you cannot yet use SQL*Loader to load multilevel collections, that is,
collections whose elements are, or contain, other collections. SQL*Loader uses control
tiles, which contain SQL*Loader data definition language (DDL) statements, to
describe the format, content, and location of the datafiles.

SQL*Loader provides two approaches to loading data:

e Conventional path loading, which uses the SQL | NSERT statement and a bind
array buffer to load data into database tables

¢ Direct path loading, which uses the Direct Path Load API to write data blocks
directly to the database on behalf of the SQL*Loader client.

Direct path loading does not use a SQL interface and thus avoids the overhead of
processing the associated SQL statements. Consequently, direct path loading
generally provides much better performance than conventional path loading.

Either approach can be used to load data of supported object and collection data types.

See Also:

Oracle Database Utilities for instructions on how to use SQL*Loader

Object Support in Oracle Programming Environments 4-17

Utilities Providing Support for Objects

4-18 Object-Relational Developer's Guide

5

Support for Collection Data Types

There are different ways create and manage these collection types: varrays and nested

tables.
See Also:
Oracle Database PL/SQL Language Reference for a complete introduction to
collections

Topics:

® Collection Data Types (page 5-1)
e Multilevel Collection Types (page 5-8)
¢ Operations on Collection Data Types (page 5-13)

* Partitioning Tables That Contain Oracle Objects (page 5-26)

5.1 Collection Data Types
Oracle supports the varray and nested table collection data types.
* Avarray is an ordered collection of elements.

* A nested table can have any number of elements and is unordered.

If you need to store only a fixed number of items, or loop through the elements in
order, or often need to retrieve and manipulate the entire collection as a value, then
use a varray.

If you need to run efficient queries on a collection, handle arbitrary numbers of
elements, or perform mass insert, update, or delete operations, then use a nested table.
See "Design Considerations for Collections (page 9-8)".

Topics:

* Creating a Collection Type (page 5-2)

¢ Creating a Collection Type (page 5-2)

* Creating an Instance of a VARRAY or Nested Table (page 5-2)

¢ Using the Constructor Method to Insert Values into a Nested Table (page 5-2)
* About Varrays (page 5-3)

* Nested Tables (page 5-5)

Support for Collection Data Types 5-1

Collection Data Types

¢ Increasing the Size and Precision of VARRAY and Nested Table Elements
(page 5-6)

* Increasing VARRAY Limit Size (page 5-7)

® Creating a Varray Containing LOB References (page 5-8)

5.1.1 Creating a Collection Type
You use CREATE TYPE and CREATE TYPE BCDY to create a nested table type.

Example 5-1 (page 5-2) demonstrates creating a per son_t yp object and a
peopl e_t yp as a nested table type of per son_t yp objects, which are both used in
other examples.

Example 5-1 CREATE TYPE person_typ for Subsequent Examples
CREATE TYPE person_typ AS OBJECT (

i dno NUMBER,
nanme VARCHAR2(30) ,
phone VARCHAR2(20) ,

MAP MEMBER FUNCTI ON get _i dno RETURN NUMBER,
MEMBER PROCEDURE di spl ay_details (SELF I N OUT NOCOPY person_typ));
/

CREATE TYPE BODY person_typ AS
MAP MEMBER FUNCTI ON get _i dno RETURN NUMBER | S
BEG N
RETURN i dno;
END;
MEMBER PROCEDURE di spl ay_details (SELF IN OUT NOCOPY person_typ) IS
BEG N
- use the put_line procedure of the DBVMS_OUTPUT package to display details
DBMS_QUTPUT. put _l i ne(TO CHAR(idno) || " - ' || name || ' - ' || phone);
END;
END;
/

CREATE TYPE peopl e_typ AS TABLE OF person_typ; -- nested table type
/

5.1.2 Creating an Instance of a VARRAY or Nested Table

You create an instance of a collection type by calling the constructor method of the
type, in the same way that you create an instance of any other object type .

The name of a constructor method is simply the name of the type. You specify the
elements of the collection as a comma-delimited list of arguments to the method, for
example.

(person_typ(1, 'John Smith', '1-650-555-0135"),

Calling a constructor method with an empty list creates an empty collection of that
type. Note that an empty collection is an actual collection that happens to be empty; it
is not the same as a null collection. See "Design Considerations for Nested Tables
(page 9-11)" for more information on using nested tables.

5.1.3 Using the Constructor Method to Insert Values into a Nested Table

You can use a constructor method in a SQL statement to insert values into a nested
table.

5-2 Oracle Database Object-Relational Developer's Guide

Collection Data Types

Example 5-2 (page 5-3) first creates a table that contains an instance of the nested
table type peopl e_t yp, named peopl e_col umm, and then shows how to use the
constructor method in a SQL statement to insert values into peopl e_t yp. This
example uses a literal invocation of the constructor method.

Example 5-2 Using the Constructor Method to Insert Values into a Nested Table

- Requires Ex. 5-1
CREATE TABLE peopl e_tab (
group_no NUMBER,
peopl e_col um people_typ) -- an instance of nested table
NESTED TABLE peopl e_col unn STORE AS peopl e_colum_nt; -- storage table for NT

I NSERT | NTO peopl e_tab VALUES (
100,
peopl e_typ(person_typ(1, 'John Smith', '1-650-555-0135"),
person_typ(2, 'Diane Smith', NULL)));

5.1.4 Invoking Constructors Literally to Specify Defaults

When you declare a table column to be of an object type or collection type, you can
include a DEFAULT clause.

This provides a value to use in cases where you do not explicitly specify a value for
the column.

The DEFAULT clause must contain a literal invocation of the constructor method for
that object or collection.

Example 5-3 (page 5-3) shows how to use literal invocations of constructor methods
to specify defaults for the per son_t yp object and the peopl e_t yp nested table:

Example 5-3 Using Literal Invocations of Constructor Methods to Specify Defaults

- requires Ex. 5-1
CREATE TABLE depart nent _persons (
dept _no NUMBER PRI MARY KEY,
dept _name CHAR(20),
dept _nmgr person_typ DEFAULT person_typ(10,' John Doe', NULL),
dept _enps peopl e_typ DEFAULT people_typ()) -- instance of nested table type
NESTED TABLE dept _enps STORE AS dept _enps_t ab;

I NSERT | NTO depart ment _persons VALUES
(101, 'Physical Sciences', person_typ(65,'Vrinda MIls', '1-650-555-0125"),
peopl e_typ(person_typ(1, 'John Smth', '1-650-555-0135"),
person_typ(2, 'Diane Smith', NULL)));
I NSERT | NTO depart ment _persons VALUES
(104, 'Life Sciences', person_typ(70,'Janmes Hall', '1-415-555-0101"),
people_typ()); -- an enpty people_typ table

Note that peopl e_t yp() is a literal invocation of the constructor method for an
empty peopl e_t yp nested table.

The depar t ment _per sons table can be queried in two ways as shown in
Example 5-16 (page 5-14) and Example 5-17 (page 5-14).

5.1.5 About Varrays

A varray is an ordered set of data elements. All elements of a given varray are of the
same data type or a subtype of the declared one. Each element has an index, which is a

Support for Collection Data Types 5-3

Collection Data Types

number corresponding to the position of the element in the array. The index number is
used to access a specific element.

When you define a varray, you specify the maximum number of elements it can
contain, although you can change this number later. The number of elements in an
array is the size of the array.

The following statement creates an array type emai | _| i st _arr that has no more
than ten elements, each of data type VARCHAR2(80) .

CREATE TYPE emai| _|ist_arr AS VARRAY(10) OF VARCHAR2(80);
/

5.1.6 Creating and Populating a VARRAY

Creating an array type, as with a SQL object type, does not allocate space.

It defines a data type, which you can use as:
e The data type of a column of a relational table.
* An object type attribute.

® The type of a PL/SQL variable, parameter, or function return value.

Example 5-4 (page 5-4) creates a VARRAY type that is an array of an object type. The
phone_varray_t yp VARRAY type is used as a data type for a column in the

dept _phone_l i st table. The | NSERT statements show how to insert values into
phone_varray_t yp by invoking the constructors for the varray
phone_varray_t yp and the object phone_t yp.

You can create a VARRAY type of XMLType or LOB type for procedural purposes, such
as in PL/SQL or view queries. However, database storage for varrays of these types is
not supported. Thus you cannot create an object table or an object type column of a
varray type of XMLType or LOB type.

Example 5-4 Creating and Populating a VARRAY Data Type

CREATE TYPE phone_typ AS OBJECT (
country_code VARCHAR2(2),
area_code VARCHAR2(3),
ph_nunber VARCHAR2(7)) ;
/
CREATE TYPE phone_varray_typ AS VARRAY(5) OF phone_typ;
/
CREATE TABLE dept _phone_list (
dept _no NUMBER(5),
phone_l i st phone_varray_typ);

I NSERT | NTO dept _phone_list VALUES (
100,
phone_varray_typ(phone_typ ('01', '650", '5550123"),
phone_typ ('01', '650', '5550148')
phone_typ ('01', '650", '5550192')));
A varray is normally stored inline, that is, in the same tablespace as the other data in
its row. If it is sufficiently large, Oracle stores it as a BLOB. See "Storage Considerations
for Varrays (page 9-10)"

See Oracle Database SQL Language Reference for information and examples on the
STORE AS LOB clause of the CREATE TABLE statement

5-4 Oracle Database Object-Relational Developer's Guide

Collection Data Types

5.1.7 Nested Tables

A nested table is an unordered set of data elements, all of the same data type. No
maximum is specified in the definition of the table, and the order of the elements is not
preserved. You select, insert, delete, and update in a nested table just as you do with
ordinary tables using the TABLE expression.

A nested table can be viewed as a single column. If the column in a nested table is an
object type, the table can also be viewed as a multi-column table, with a column for
each attribute of the object type.

Topics:
® Creating Nested Tables (page 5-5)
e Storing Elements of Nested Tables (page 5-5)

® Specifying a Tablespace When Storing a Nested Table (page 5-6)

5.1.7.1 Creating Nested Tables

To create nested table types, use the CREATE TYPE ... AS TABLE OF statement. For
example:

CREATE TYPE peopl e_typ AS TABLE OF person_typ;

A table type definition does not allocate space. It defines a type, which you can use as:
¢ The data type of a column of a relational table.

* An object type attribute.

e A PL/SQL variable, parameter, or function return type.

5.1.7.2 Storing Elements of Nested Tables
Elements of a nested table are actually stored in a separate storage table.

Oracle stores nested table data in a single storage table associated with the object table
for both nested table types that are columns in a relational table or attributes in an
object table. The storage table contains a column that identifies the parent table row or
object that each element of the nested table belongs to. See Figure 9-2 (page 9-12).

The NESTED TABLE. . STORE AS clause specifies storage names for nested tables.
Storage names are used to create an index on a nested table.

Example 5-5 (page 5-5) demonstrates creating and populating a nested table, and
specifying the nested table storage using the per son_t yp object and the
peopl e_t yp nested table as defined in Example 5-1 (page 5-2).

Example 5-5 Creating and Populating Simple Nested Tables

- Requires 5-1
CREATE TABLE students (
graduation DATE,
mat h_maj ors people_typ, -- nested tables (empty)
chem maj ors peopl e_typ,
physi cs_maj ors peopl e_typ)
NESTED TABLE nath_mej ors STORE AS math_majors_nt -- storage tables
NESTED TABLE chem mgj ors STORE AS chem mj ors_nt
NESTED TABLE physi cs_maj ors STORE AS physics_nmajors_nt;

Support for Collection Data Types 5-5

Collection Data Types

CREATE | NDEX math_i dno_i dx ON math_naj ors_nt (idno);
CREATE | NDEX chem_i dno_i dx ON chem ngj ors_nt (i dno);
CREATE | NDEX physi cs_i dno_i dx ON physics_najors_nt(idno);

I NSERT | NTO students (graduation) VALUES ('01-JUN-03');
UPDATE st udents
SET math_mgjors =
peopl e_typ (person_typ(12, 'Bob Jones', '650-555-0130"),
person_typ(31, 'Sarah Chen', '415-555-0120"),
person_typ(45, 'Chris Wods', '415-555-0124")),
chem ngjors =
peopl e_typ (person_typ(51, 'Joe Lane', '650-555-0140"),
person_typ(31, 'Sarah Chen', '415-555-0120"),
person_typ(52, 'KimPatel', '650-555-0135")),
physics_mgjors =
peopl e_typ (person_typ(12, 'Bob Jones', '650-555-0130"),
person_typ(45, 'Chris Wods', '415-555-0124"))
WHERE graduation = '01-JUN-03';

SELECT midno math_id, c.idno chem.id, p.idno physics_id FROMstudents s,
TABLE(s. mat h_majors) m TABLE(s.chem mgjors) c, TABLE(s.physics_najors) p;

A convenient way to access the elements of a nested table individually is to use a
nested cursor or the TABLE function. See "Collection Querying (page 5-13)".

5.1.7.3 Specifying a Tablespace When Storing a Nested Table

A nested table can be stored in a different tablespace than its parent table.

In Example 5-6 (page 5-6), the nested table is stored in the syst emtablespace:
Example 5-6 Specifying a Different Tablespace for Storing a Nested Table

- Requires Ex. 5-1, nust renove code in Ex. 5-2 if created
CREATE TABLE peopl e_tab (
peopl e_col um peopl e_typ)
NESTED TABLE peopl e_col unmn STORE AS peopl e_col um_nt (TABLESPACE systen);

If the TABLESPACE clause is not specified, then the storage table of the nested table is
created in the tablespace where the parent table is created. For multilevel nested
tables, Oracle creates the child table in the same tablespace as its immediately
preceding parent table.

You can issue an ALTERTABLE. . MOVE statement to move a table to a different
tablespace. If you do this on a table with nested table columns, only the parent table
moves; no action is taken on the storage tables of the nested table. To move a storage
table for a nested table to a different tablespace, issue ALTER TABLE. . MOVE on the
storage table. For example:

ALTER TABLE peopl e_tab MOVE TABLESPACE system -- noving table
ALTER TABLE peopl e_col urm_nt MOVE TABLESPACE exanpl e; -- noving storage table

Now the peopl e_t ab table is in the Syst emtablespace and the nested table storage
is stored in the exanpl e tablespace.

5.1.8 Increasing the Size and Precision of VARRAY and Nested Table Elements

You can increase the size of the variable character or RAWtype, or increase the
precision of the numeric type when the element type of a VARRAY type or nested table
type is a variable character, or a RAWor numeric type.

A new type version is generated for the VARRAY type or nested table type.

5-6 Oracle Database Object-Relational Developer's Guide

Collection Data Types

You make these changes using an ALTERTYPE. . MODI FY statement, which has this
option:

CASCADE: Propagates the change to its type and table dependents

See Also:

"ALTER TYPE Statement for Type Evolution (page 8-14)" for further
description of CASCADE

Example 5-7 (page 5-7) increases the sizes of a VARRAY and a nested table element
type.

Example 5-7 Increasing the Size of an Element Type in a VARRAY and Nested
Table

CREATE TYPE emmi| |ist_arr AS VARRAY(10) OF VARCHAR2(80);
/
ALTER TYPE enai| |ist_arr MODIFY ELEMENT TYPE VARCHARZ(100) CASCADE;

CREATE TYPE enui | _|ist_tab AS TABLE OF VARCHARZ2(30);
/
ALTER TYPE emai | _list_tab MODI FY ELEMENT TYPE VARCHAR2(40) CASCADE;

5.1.9 Increasing VARRAY Limit Size

The ALTERTYPE ... MODI FY LI M T syntax allows you to increase the number of
elements of a VARRAY type.

If you increase the number of elements of a VARRAY type, a new type version is
generated for the VARRAY type, and becomes part of the type change history.

The ALTERTYPE ... MODI FY LI M T statement has these options:
¢ | NVALI DATE: Invalidates all dependent objects

e CASCADE: Propagates the change to its type and table dependents
Example 5-8 Increasing the VARRAY Limit Size

- if you have already creating follow ng types, drop them
DROP TYPE enmmil _|ist_tab FORCE
DROP TYPE enmmil _list_arr FORCE
CREATE TYPE emni | list_arr AS VARRAY(10) OF VARCHAR2(80);
/
CREATE TYPE enui | _|ist_typ AS OBJECT (
section_no NUMBER,
enails emai |l _list_arr);
/

CREATE TYPE enmi | _varray_typ AS VARRAY(5) OF email _list_typ;
/

ALTER TYPE enmi | _varray_typ MODIFY LIMT 100 | NVALI DATE;

When a VARRAY type is altered, changes are propagated to the dependent tables. See
"About Propagating VARRAY Size Change (page 9-10)".

Support for Collection Data Types 5-7

Multilevel Collection Types

5.1.10 Creating a Varray Containing LOB References
To create a varray of LOB references, first define a VARRAY type of type REF.

Note: The following example refers to enai | _| i st _t yp which was defined in
Example 5-8 (page 5-7). This example creates a table dept _enmi | _| i st and defines a
column ermai | _addr s of the array type in it.

Example 5-9 Creating a VARRAY Containing LOB References

- Requires Ex. 5-8
CREATE TYPE ref_email varray_typ AS VARRAY(5) OF REF email _list_typ;
/

CREATE TABLE dept _email _list (
dept _no NUVBER,

emai | _addrs ref_email _varray_typ)
VARRAY emai | _addrs STORE AS LOB dept _emails_| ob3;

5.2 Multilevel Collection Types

Multilevel collection types are collection types whose elements are themselves directly
or indirectly another collection type.

Possible multilevel collection types are:
* Nested table of nested table type

¢ Nested table of varray type

® Varray of nested table type

* Varray of varray type

* Nested table or varray of a user-defined type that has an attribute that is a nested
table or varray type

Like single-level collection types, multilevel collection types:

¢ (Can be used as columns in a relational table or with object attributes in an object
table.

* Require that both the source and the target be of the same declared data type for
assignment.

Topics:
* Nested Table Storage Tables for Multilevel Collection Types (page 5-8)
¢ Varray Storage for Multilevel Collections (page 5-11)

* Constructors for Multilevel Collections (page 5-12)

5.2.1 Nested Table Storage Tables for Multilevel Collection Types

To use a multilevel nested table collection of nested tables, you must specify a nested-
table storage clause.

A nested table type column or object table attribute requires a storage table to store
rows for all its nested tables as described in "Storing Elements of Nested Tables

(page 5-5)".

5-8 Oracle Database Object-Relational Developer's Guide

Multilevel Collection Types

With a multilevel nested table collection of nested tables, you must specify a nested-
table storage clause (STORE AS) for both the inner set and the outer set of nested
tables. You must have as many nested table storage clauses as you have levels of
nested tables in a collection. See "Nested Table Storage (page 9-11)".

See Also:

"Unnesting Queries with Multilevel Collections (page 5-16)"

Every nested table storage table contains a column, referenceable by
NESTED_TABLE_| D, that keys rows in the storage table to the associated row in the
parent table. A parent table that is itself a nested table has two system-supplied ID
columns:

* A system-supplied ID column that is referenceable by NESTED_TABLE_| D, which
keys its rows back to rows in its parent table.

* A system-supplied ID column that is hidden and referenced by the
NESTED _TABLE | D column in its nested table children.

If you do not specify a primary key with a NESTED_TABLE_| D column, then the
database automatically creates a b-tree index on the NESTED_TABLE_| D column for
better performance.

See Example 5-12 (page 5-11) for an example where the nested table has a primary
key in which the first column is NESTED _TABLE_| D..

Topics:
* Creating Multilevel Nested Table Storage (page 5-9)

* Creating Multilevel Nested Table Storage Using the COLUMN_VALUE Keyword
(page 5-10)

* Specifying Physical Attributes for Nested Table Storage (page 5-10)

5.2.1.1 Creating Multilevel Nested Table Storage
You can create a nested table of nested tables.

Example 5-10 (page 5-10) creates the multilevel collection type nt _country_typ,a
nested table of nested tables. The example models a system of corporate regions in
which each region has a nested table collection of the countries, and each country has a
nested table collection of its locations. This example requires the r egi ons,
countries,and| ocati ons tables of the Oracle HR sample schema.

See Also:

Oracle Database Sample Schemas for information on using sample schemas

In Example 5-10 (page 5-10), the SQL statements create the table r egi on_t ab, which
contains the column count r i es, whose type is a multilevel collection,

nt _count ry_t yp. This multilevel collection is a nested table of an object type that
has the nested table attribute | ocat i ons. Separate nested table clauses are provided
for the outer count ri es nested table and for the inner | ocat i ons nested table.

Support for Collection Data Types 5-9

Multilevel Collection Types

In Example 5-10 (page 5-10) you can refer to the inner nested table | ocat i ons by
name because this nested table is a named attribute of an object. However, if the inner
nested table is not an attribute of an object, it has no name. The keyword COLUMN_VALUE is
provided for this case. See Example 5-11 (page 5-10)

Example 5-10 Multilevel Nested Table Storage

- Requires the HR sanpl e schema
CREATE TYPE | ocation_typ AS OBJECT (

location_id NUMVBER(4) ,
street_address VARCHAR2(40),
post al _code VARCHAR2(12) ,
city VARCHAR2(30) ,
state_province VARCHAR2(25));

/

CREATE TYPE nt | ocation_typ AS TABLE OF location_typ; -- nested table type
/

CREATE TYPE country_typ AS OBJECT (

country_id CHAR(2),

country nane VARCHAR2(40),

| ocations nt_location_typ); -- inner nested table
/

CREATE TYPE nt_country_typ AS TABLE OF country_typ; -- multilevel collection type
/

CREATE TABLE region_tab (
region_id NUMBER,
regi on_name VARCHAR2(25),
countries nt_country_typ) -- outer nested table
NESTED TABLE countries STORE AS nt_countries_tab
(NESTED TABLE | ocations STORE AS nt | ocations_tah);

5.2.1.2 Creating Multilevel Nested Table Storage Using the COLUMN_VALUE Keyword
You can use the keyword COLUMN_VALUE place of a name for an inner nested table.

In Example 5-11 (page 5-10) an inner nested table is unnamed and represented by the
keyword COLUMN_VALUE.

Example 5-11 Multilevel Nested Table Storage Using the COLUMN_VALUE
Keyword

CREATE TYPE inner_table AS TABLE OF NUVBER
/
CREATE TYPE outer _table AS TABLE OF inner_table;
/
CREATE TABLE tabl (
col 1 NUMBER, -- inner nested table, unnamed
col 2 outer_table)
NESTED TABLE col 2 STORE AS col 2_ntab
(NESTED TABLE COLUWN VALUE STORE AS cv_ntab);

5.2.1.3 Specifying Physical Attributes for Nested Table Storage
You can physical attributes for nested table storage.

Example 5-12 (page 5-11) shows how to specify physical attributes for the storage
tables in the nested table clause.

5-10 Oracle Database Object-Relational Developer's Guide

Multilevel Collection Types

Specifying a primary key with NESTED_TABLE_| Das the first column and index-
organizing the table causes Oracle database to physically cluster all the nested table
rows that belong to the same parent row, for more efficient access. In Example 5-12
(page 5-11) the nested table has a primary key in which the first column is
NESTED_TABLE_| D. This column contains the ID of the row in the parent table with
which a storage table row is associated.

Example 5-12 Specifying Physical Attributes for Nested Table Storage

- Requires Ex. 5-10
- drop the following if you have previously created it
DROP TABLE regi on_tab FORCE;

CREATE TABLE region_tab (
region_id NUMBER,
region_name VARCHAR2(25),
countries nt_country_typ)
NESTED TABLE countries STORE AS nt_countries_tab (
(PRI MARY KEY (NESTED TABLE ID, country_id))
NESTED TABLE | ocations STORE AS nt_| ocati ons_tab);

5.2.2 Varray Storage for Multilevel Collections

Multilevel varrays are stored in one of two ways, depending on whether the varray is
a varray of varrays or a varray of nested tables.

e Inavarray of varrays, the entire varray is stored inline in the row unless it is
larger than approximately 4000 bytes or LOB storage is explicitly specified.

¢ Inavarray of nested tables, the entire varray is stored in a LOB, with only the
LOB locator stored in the row. There is no storage table associated with nested
table elements of a varray.

See Also:
* "Storage Considerations for Varrays (page 9-10)"

e Oracle Database SecureFiles and Large Objects Developer’s Guide for a general
understanding of LOBs

You can explicitly specify LOB storage for varrays.

5.2.3 Specifying LOB Storage for VARRAY of VARRAY Type
You can explicitly specify LOB storage for VARRAYs of VARRAY type.

Example 5-13 (page 5-11) shows explicit L OB storage specified for a VARRAYof
VARRAY type..

Example 5-13 Specifying LOB Storage for a VARRAY of VARRAY Type

- Requires Ex. 5-8, drop following if created

DROP TYPE enmi |l _varray_typ FORCE;
CREATE TYPE emai | _|ist_typ2 AS OBJECT (
section_no NUMBER,
enail s emai |l _list_arr);

Support for Collection Data Types 5-11

Multilevel Collection Types

CREATE TYPE emai| _varray_typ AS VARRAY(5) OF email _|ist_typ2;
/

CREATE TABLE dept _enmil _list2 (
dept _no NUMBER,
enai | _addrs email _varray_typ)
VARRAY emai | _addrs STORE AS LOB dept _emmi | s_| ob2;

5.2.4 Specifying LOB Storage for a Nested Table of VARRAYs

You can explicitly specify LOB storage for a nested table of varray elements.

Example 5-14 (page 5-12) shows the COLUMN_VALUE keyword used with varrays. See
Example 5-11 (page 5-10) for discussion of this keyword and its use with nested tables.

Example 5-14 Specifying LOB Storage for a Nested Table of VARRAYs

- drop the follow ng types if you have created them
DROP TYPE email _list_typ FORCE
DROP TABLE dept _emai | _| i st FORCE;
DROP TYPE emai | |ist_arr FORCE

CREATE TYPE emmi| |ist_arr AS VARRAY(10) OF VARCHAR2(80);
/

CREATE TYPE email| _|ist_typ AS TABLE OF email _list_arr;
/

CREATE TABLE dept _email _list (
dept _no NUVBER,
emai | _addrs email _list_typ)
NESTED TABLE emmi | _addrs STORE AS enmil _addrs_nt

(
VARRAY COLUMN_VALUE STORE AS LOB
dept _emai | s_| ob);

5.2.5 Constructors for Multilevel Collections

Multilevel collection types are created by calling the constructor of the respective type,
just like single-level collections and other object types.

The constructor for a multilevel collection type is a system-defined function that has
the same name as the type and returns a new instance of it. Constructor parameters
have the names and types of the attributes of the object type.

Example 5-15 (page 5-12) shows the constructor call for the multilevel collection type
nt _country_ typ.Thent country_typ constructor calls the country_typ
constructor, which calls the nt _| ocati on_t yp, which calls the | ocati on_typ
constructor.

Note:

nt _country_typ is a multilevel collection because it is a nested table that
contains another nested table as an attribute.

Example 5-15 Using Constructors for Multilevel Collections

- Requires 5-10 and HR sanpl e schema
I NSERT | NTO regi on_tab
VALUES(1, 'Europe', nt_country_typ(

5-12 Oracle Database Object-Relational Developer's Guide

Operations on Collection Data Types

country typ("IT, "Italy', nt_location_typ (
| ocation_typ(1000, '1297 Via Cola di Rie','00989','Roma', ''),
| ocation_typ(1100, '93091 Calle della Testa','10934','Venice','"))

),

country_typ('CH, 'Switzerland', nt_location_typ (
| ocation_typ(2900, '20 Rue des Corps-Saints', '1730', 'Geneva', 'Geneve'),
| ocation_typ(3000, 'Mirtenstrasse 921', '3095', 'Bern', 'BE))

),
country typ('UK', 'United Kingdom, nt_location_typ (
| ocation_typ(2400, '8204 Arthur St', '', 'London', 'London'),
| ocation_typ(2500, 'Magdal en Centre, The Oxford Science Park', 'OX9 9ZB',
"xford', 'Oxford'),
| ocation_typ(2600, '9702 Chester Road', '09629850293', 'Stretford',
" Manchester'))

)
)
)s

5.3 Operations on Collection Data Types
Operations on collection data types includes querying and comparing.
Topics:
¢ Collection Querying (page 5-13)
e DML Operations on Collections (page 5-17)
e Using BULK COLLECT to Return Entire Result Sets (page 5-20)
e Conditions that Compare Nested Tables (page 5-20)

* Multiset Operations for Nested Tables (page 5-22)

5.3.1 Collection Querying

There are two general ways to query a table that contains a collection type as a column
or attribute.

e Nest the collections in the result rows that contain them.

e Distribute or unnest collections so that each collection element appears on a row
by itself.

Topics:

* Nesting Results of Collection Queries (page 5-13)

¢ Unnesting Results of Collection Queries (page 5-14)

* Unnesting Queries Containing Table Expression Subqueries (page 5-15)
* Using a Table Expression in a CURSOR Expression (page 5-16)

* Unnesting Queries with Multilevel Collections (page 5-16)

5.3.1.1 Nesting Results of Collection Queries

Querying a collection column in the SELECT list nests the elements of the collection in
the result row that the collection is associated with.

Support for Collection Data Types 5-13

Operations on Collection Data Types

The queries in Example 5-16 (page 5-14) use the depar t nent _per sons table shown
in Example 5-3 (page 5-3).

The column dept _enps is a nested table collection of per son_t yp type. The
dept _enps collection column appears in the SELECT list like an ordinary scalar
column

Example 5-16 Nesting Results of Collection Queries

- Requires Ex. 5-1 and Ex. 5-3
SELECT d. dept _enps
FROM depart nent _persons d;

These queries retrieve this nested collection of employees.

DEPT_EMPS(1 DNO, NAME, PHONE)

PECPLE_TYP(PERSON TYP(1, 'John Snith', '1-650-555-0135'),
PERSON TYP(2, 'Diane Smith', '1-650-555-0135'))

The results are also nested if an object type column in the SELECT list contains a
collection attribute, even if that collection is not explicitly listed in the SELECT list
itself. For example, the query SELECT * FROMdepar t ment _per sons produces a
nested result.

5.3.1.2 Unnesting Results of Collection Queries
You can unnest the results of collection queries.

Unnesting collection query results is useful because not all tools or applications can
deal with results in a nested format. To view Oracle collection data using tools that
require a conventional format, you must unnest, or flatten, the collection attribute of a
row into one or more relational rows. You can do this using a TABLE expression with
the collection. TABLE expressions enable you to query a collection in the FROMclause
like a table. In effect, you join the nested table with the row that contains the nested
table.

TABLE expressions can be used to query any collection value expression, including
transient values such as variables and parameters.

See Also:

Oracle Database SQL Language Reference for further information on the TABLE
expression and unnesting collections

The query inExample 5-17 (page 5-14), like that of Example 5-16 (page 5-14), retrieves
the collection of employees, but here the collection is unnested.

Example 5-17 Unnesting Results of Collection Queries

- Requires Ex. 5-1 and 5-3
SELECT e. *
FROM depart ment _persons d, TABLE(d. dept_enps) e;

Output:

| DNO NAVE PHONE

1 John Smith 1-650- 555-0135
2 Diane Snith 1-650- 555-0135

5-14 Oracle Database Object-Relational Developer's Guide

Operations on Collection Data Types

Example 5-17 (page 5-14)shows that a TABLE expression can have its own table alias.
A table alias for the TABLE expression appears in the SELECT list to select columns
returned by the TABLE expression.

The TABLE expression uses another table alias to specify the table that contains the
collection column that the TABLE expression references. The expression

TABLE(d. dept _enps) specifies the depar t ment _per sons table as containing the
dept _enps collection column. To reference a table column, a TABLE expression can
use the table alias of any table appearing to the left of it in a FROMclause. This is called
left correlation.

InExample 5-17 (page 5-14), the depar t ment _per sons table is listed in the FROM
clause solely to provide a table alias for the TABLE expression to use. No columns
from the depar t ment _per sons table other than the column referenced by the
TABLE expression appear in the result.

The following example produces rows only for departments that have employees.
SELECT d. dept _no, e.*

FROM depart nent _persons d, TABLE(d.dept_enps) e;
To get rows for departments with or without employees, you can use outer-join
syntax:
SELECT d. dept _no, e.*

FROM depart nent _persons d, TABLE(d.dept_enps) (+) e;

The (+) indicates that the dependent join between depar t ment _per sons and

e. dept _enps should be NULL-augmented. That is, there will be rows of

depart ment _per sons in the output for which e. dept _enps is NULL or empty,
with NULL values for columns corresponding to e. dept _enps.

5.3.1.3 Unnesting Queries Containing Table Expression Subqueries

A TABLE expression can contain a subquery of a collection.

This is an alternative to the examples in "Unnesting Results of Collection Queries
(page 5-14)" which show a TABLE expression that contains the name of a collection.

Example 5-18 (page 5-15) returns the collection of employees whose department
number is 101.

Example 5-18 Using a Table Expression Containing a Subquery of a Collection

- Requires Ex. 5-1 and 5-3
SELECT *
FROM TABLE(SELECT d. dept _enps
FROM depart nent _persons d
VWHERE d. dept _no = 101);

Subqueries in a TABLE expression have these restrictions:
* The subquery must return a collection type.
e The SELECT list of the subquery must contain exactly one item.

¢ The subquery must return only a single collection; it cannot return collections for
multiple rows. For example, the subquery SELECT dept _enps FROM
depart ment _per sons succeeds in a TABLE expression only if table
depart ment _per sons contains just a single row. If the table contains more than
one row, the subquery produces an error.

Support for Collection Data Types 5-15

Operations on Collection Data Types

5.3.1.4 Using a Table Expression in a CURSOR Expression
You can use a TABLE expression in a CURSOR expression.

Example 5-19 (page 5-16) shows a TABLE expression used in the FROMclause of a
SELECT embedded in a CURSOR expression.

Example 5-19 Using a Table Expression in a CURSOR Expression

- Requires Ex. 5-1 and 5-3

SELECT d. dept _no, CURSOR(SELECT * FROM TABLE(d. dept _enps))
FROM depart nent _persons d
VWHERE d. dept _no = 101;

5.3.1.5 Unnesting Queries with Multilevel Collections

Unnesting queries can be also used with multilevel collections, both varrays and
nested tables.

Example 5-20 (page 5-16) shows an unnesting query on a multilevel nested table
collection of nested tables. From the table r egi on_t ab where each region has a
nested table of count r i es and each country has a nested table of | ocat i ons, the
query returns the names of all r egi ons, countri es, and | ocat i ons.

Example 5-20 Unnesting Queries with Multilevel Collections Using the TABLE
Function

- Requires Ex. 5-10 and 5-15
SELECT r.regi on_name, c.country_name, |.location_id
FROM region_tab r, TABLE(r.countries) c, TABLE(c.locations) |;

- the following query is optimzed to run against the locations table
SELECT | .location_id, |.city
FROM region_tab r, TABLE(r.countries) c, TABLE(c.locations) |;

The output should be as follows:

REG ON_NAME COUNTRY_NAME LOCATI ON I D
Eur ope Italy 1000
Eur ope Italy 1100
Eur ope Swi t zerl and 2900
Eur ope Swi t zer | and 3000
Eur ope United Kingdom 2400
Eur ope United Kingdom 2500
Eur ope United Kingdom 2600

7 rows sel ected.

LOCATION.ID O TY
1000 Roma
1100 Venice
2900 Geneva
3000 Bern
2400 London
2500 Oxford
2600 Stretford

7 rows sel ected.

5-16 Oracle Database Object-Relational Developer's Guide

Operations on Collection Data Types

Because no columns of the base table r egi on_t ab appear in the second SELECT list,
the query is optimized to run directly against the | ocat i ons storage table.

Outer-join syntax can also be used with queries of multilevel collections. See "Viewing
Object Data in Relational Form with Unnesting Queries (page 9-9)".
5.3.2 DML Operations on Collections

Oracle supports the following DML operations on collections:
* Inserts and updates that provide a new value for the entire collection

¢ Individual or piecewise updates of nested tables and multilevel nested tables,
including inserting, deleting, and updating elements

Oracle does not support piecewise updates on VARRAY columns. However, VARRAY
columns can be inserted into or updated as an atomic unit. This section contains these
topics:

* Performing Piecewise Operations on Nested Tables (page 5-17)

e Updating a Nested Table (page 5-18)

* Performing Piecewise Operations on Multilevel Nested Tables (page 5-18)

* Performing Piecewise INSERT to Inner Nested Table (page 5-18)

® Performing Atomical Changes on VARRAYs and Nested Tables (page 5-19)
¢ Updating Collections as Atomic Data Items (page 5-19)

5.3.2.1 Performing Piecewise Operations on Nested Tables

For piecewise operations on nested table columns, use the TABLE expression.

The TABLE expression uses a subquery to extract the nested table, so that the | NSERT,
UPDATE, or DELETE statement applies to the nested table rather than the top-level
table.

CAST operators are also helpful. With them, you can do set operations on nested tables
using SQL notation, without actually storing the nested tables in the database.

See Also:

e Oracle Database SQL Language Reference
e "CAST (page 2-36)"

The DML statements in Example 5-21 (page 5-17) demonstrate piecewise operations
on nested table columns.

Example 5-21 Piecewise Operations on Collections

- Requires Ex. 5-1 and 5-3
I NSERT | NTO TABLE(SELECT d. dept _enps
FROM depart nent _persons d
VWHERE d. dept _no = 101)
VALUES (5, 'Kevin Taylor', '1-408-555-0199');

UPDATE TABLE(SELECT d. dept _enps

Support for Collection Data Types 5-17

Operations on Collection Data Types

FROM depart nent _persons d
VHERE d. dept_no = 101) e
person_typ(5, 'Kevin Taylor', '1-408-555-0199")
5,

SET VALUE(e)
VHERE e. i dno

DELETE FROM TABLE(SELECT d. dept _enps
FROM depart nent _persons d
VHERE d. dept_no = 101) e
VHERE e.idno = 5;

5.3.2.1.1 Updating a Nested Table

You can use VALUE to return object instance rows for updating.

Example 5-22 (page 5-18) shows VALUE used to return object instance rows for
updating:

Example 5-22 Using VALUE to Update a Nested Table

- Requires Ex. 5-1, 5-3
UPDATE TABLE(SELECT d. dept _enps FROM depart ment _persons d
VWHERE d.dept_no = 101) p
person_typ(2, 'Diane Smith', '1-650-555-0148")
2;

SET VALUE(p)
VWHERE p. i dno

5.3.2.2 Performing Piecewise Operations on Multilevel Nested Tables
Piecewise DML is possible only on multilevel nested tables, not on multilevel varrays.

You can perform DML operations atomically on both VARRAYs and nested tables
multilevel collections as described in "Updating Collections as Atomic Data Items
(page 5-19)".

Example 5-23 (page 5-18) shows a piecewise insert operation on the countri es
nested table of nested tables. The example inserts a new country, complete with its
own nested table of | ocati on_t yp:

Example 5-23 Piecewise INSERT on a Multilevel Collection

- Requires Ex. 5-10 and 5-15
I NSERT | NTO TABLE(SELECT countries FROMregion_tab r WHERE r.region_id = 2)
VALUES ('CA', 'Canada', nt_location_typ(
| ocation_typ(1800, '147 Spadina Ave', 'MV 2L7', 'Toronto', 'Ontario')));

5.3.2.2.1 Performing Piecewise INSERT to Inner Nested Table
You can use piecewise insert into an inner nested table to make an individual addition.

Example 5-24 (page 5-18) performs a piecewise insert into an inner nested table to
add a location for a country. Like the preceding example, this example uses a TABLE
expression containing a subquery that selects the inner nested table to specify the
target for the insert.

Example 5-24 Piecewise INSERT into an Inner Nested Table

- Requires Ex. 5-10 and 5-15

I NSERT | NTO TABLE(SELECT c.locations
FROM TABLE(SELECT r.countries FROMregion_tab r WHERE r.region_id = 2) ¢
VHERE c. country_id = 'US")
VALUES (1700, '2004 Lakeview Rd', '98199', 'Seattle', 'Washington');

SELECT r.region_nanme, c.country_name, |.location_id
FROM region_tab r, TABLE(r.countries) c, TABLE(c.locations) I;

5-18 Oracle Database Object-Relational Developer's Guide

Operations on Collection Data Types

5.3.2.3 Performing Atomical Changes on VARRAYs and Nested Tables
You can make atomical changes to nested tables and VARRAYs.
Note: While nested tables can also be changed in a piecewise fashions, varrays cannot.

Example 5-25 (page 5-19) shows how you can manipulate SQL varray object types
with PL/SQL statements. In this example, varrays are transferred between PL/SQL
variables and SQL tables. You can insert table rows containing collections, update a
row to replace its collection, and select collections into PL/SQL variables.

However, you cannot update or delete individual varray elements directly with SQL;
you have to select the varray from the table, change it in PL/SQL, then update the
table to include the new varray. You can also do this with nested tables, but nested
tables have the option of doing piecewise updates and deletes.

Example 5-25 Using INSERT, UPDATE, DELETE, and SELECT Statements With
Varrays

CREATE TYPE dnames_var |'S VARRAY(7) OF VARCHAR2(30);
/
CREATE TABLE depts (region VARCHAR2(25), dept_nanes dnanmes_var);
BEG N
I NSERT | NTO depts VALUES(' Europe', dnanes_var (' Shipping',' Sales','Finance'));
I NSERT | NTO depts VALUES(' Americas', dnames_var (' Sales','Finance','Shipping'));
I NSERT | NTO dept s
VALUES(' Asi a', dnanes_var (' Finance','Payroll'," Shipping','Sales'));
COWM T,
END,
/
DECLARE
new_dnanes dnanes_var := dnanes_var (' Benefits', 'Advertising', 'Contracting',
"Executive', 'Marketing');
sonme_dnanes dnames_var;
BEG N
UPDATE depts SET dept _nanes = new_dnanmes WHERE region = ' Europe';
COWM T,
SELECT dept _nanes | NTO sone_dnames FROM depts WHERE region = ' Europe';
FOR i IN sone_dnanes. FIRST .. sone_dnanes. LAST
LooP
DBVS_QUTPUT. PUT_LI NE(' dept _names = ' || sone_dnames(i));
END LOOP;
END,
/

5.3.2.4 Updating Collections as Atomic Data Items

Multilevel collections (both VARRAY and nested tables) can also be updated atomically
with an UPDATE statement. For example, suppose v_count ry is a variable declared to
be of the count ri es nested table type nt _country_typ.

Example 5-26 (page 5-19) updates r egi on_t ab by setting the count ri es collection
as a unit to the value of v_country.

The section "Constructors for Multilevel Collections (page 5-12)" shows how to insert
an entire multilevel collection with an | NSERT statement.

Example 5-26 Using UPDATE to Insert an Entire Multilevel Collection

- Requires Ex. 5-10 and 5-15
INSERT INTO region_tab (region_id, region_name) VALUES(2, 'Anmericas');

Support for Collection Data Types 5-19

Operations on Collection Data Types

DECLARE
v_country nt_country_typ;
BEG N
v_country := nt_country_typ(country_typ(
"US', '"United States of America', nt_location_typ (
| ocation_typ(1500,'2011 Interiors Blvd','99236',' San Francisco','California'),
| ocation_typ(1600,' 2007 Zagora St','50090',' South Brunswick',' New Jersey'))));
UPDATE region_tab r
SET r.countries = v_country WHERE r.region_id = 2;
END;
/
- Invocation:
SELECT r.region_nane, c.country _name, |.location_id
FROM region_tab r, TABLE(r.countries) c, TABLE(c.locations) |
VWHERE r.region_id = 2;

5.3.3 Using BULK COLLECT to Return Entire Result Sets

The PL/SQL BULK COLLECT clause is an alternative to using DML statements, which
can be time consuming to process. You can return an entire result set in one operation.

In Example 5-27 (page 5-20), BULK COLLECT is used with a multilevel collection that
includes an object type.

Example 5-27 Using BULK COLLECT with Collections

- unrelated to other exanples in this chapter

CREATE TYPE dnanes_var |'S VARRAY(7) OF VARCHAR2(30);

/

CREATE TABLE depts (region VARCHAR2(25), dept_nanmes dnames_var);

BEG N
I NSERT | NTO depts VALUES(' Europe', dnames_var (' Shipping',' Sales','Finance'));
I NSERT | NTO depts VALUES(' Americas', dnames_var (' Sales','Finance',' Shipping'));
I NSERT | NTO dept s

VALUES(' Asia', dnames_var (' Finance',"'Payroll'," Shipping','Sales'));

COW T;

END;

/

DECLARE
TYPE dnanes_tab IS TABLE OF dnanes_var;
v_depts dnames_t ab;

BEG N
SELECT dept _names BULK COLLECT | NTO v_depts FROM depts;
DBMS_QUTPUT. PUT_LI NE(v_depts. COUNT); -- prints 3

END;

/

5.3.4 Conditions that Compare Nested Tables

Using certain conditions, you can compare nested tables, including multilevel nested
tables. There is no mechanism for comparing varrays.

The SQL examples in this section use the nested tables created in Example 5-5
(page 5-5), and contain the objects created in Example 5-1 (page 5-2).

Topics:
¢ Comparing Equal and Not Equal Conditions (page 5-21)
e Comparing the IN Condition (page 5-21)

e Comparing Subset of Multiset Conditions (page 5-21)

5-20 Oracle Database Object-Relational Developer's Guide

Operations on Collection Data Types

¢ Determing Members of a Nested Table (page 5-22)
® Determining Empty Conditions (page 5-22)
¢ Determining Set Conditions (page 5-22)

5.3.4.1 Comparing Equal and Not Equal Conditions

The equal (=) and not equal (<>) conditions determine whether the input nested tables
are identical or not, returning the result as a Boolean value.

Two nested tables are equal if they have the same named type, have the same
cardinality, and their elements are equal. Elements are equal depending on whether
they are equal by the elements own equality definitions, except for object types which
require a map method. Equality is determined in the existing order of the elements,
because nested tables are unordered.

In Example 5-28 (page 5-21), the nested tables contain per son_t yp objects, which
have an associated map method. See Example 5-1 (page 5-2). Since the two nested
tables in the WHERE clause are not equal, no rows are selected.

Example 5-28 Using an Equality Comparison with Nested Tables

- Requires Ex. 5-1 and 5-5
SELECT p. nane

FROM st udents, TABLE(physics_majors) p
VWHERE math_maj ors = physics_mgj ors;

5.3.4.2 Comparing the IN Condition

The | N condition checks whether or not a nested table is in a list of nested tables,
returning the result as a Boolean value. NULL is returned if the nested table is a null
nested table.

Example 5-29 Using an IN Comparison with Nested Tables

- Requires Ex. 5-1 and 5-5
SELECT p.idno, p.nane
FROM st udents, TABLE(physics_majors) p
VHERE physics_majors IN (math_majors, chem ngjors);

5.3.4.3 Comparing Subset of Multiset Conditions

The SUBMULTI SET [OF] condition checks whether or not a nested table is a subset of
another nested table, returning the result as a Boolean value. The OF keyword is
optional and does not change the functionality of SUBMULTI SET.

This condition is implemented only for nested tables.

See Also:

"Multiset Operations for Nested Tables (page 5-22)"

Example 5-30 Testing the SUBMULTISET OF Condition on a Nested Table

- Requires Ex. 5-1 and 5-5
SELECT p.idno, p.nane
FROM st udents, TABLE(physics_majors) p
VHERE physi cs_maj ors SUBMULTI SET OF mat h_mgj ors;

Support for Collection Data Types 5-21

Operations on Collection Data Types

5.3.4.4 Determing Members of a Nested Table

The MEMBER [OF] or NOT MEMBER|[OF] condition tests whether or not an element is a
member of a nested table, returning the result as a Boolean value. The OF keyword is
optional and has no effect on the output.

In Example 5-31 (page 5-22), the per son_t yp is an element of the same type as the
elements of the nested table mat h_mmaj ors.

Example 5-32 (page 5-22) presents an alternative approach to the MEMBER OF
condition, which performs more efficiently for large collections.

Example 5-31 Using MEMBER OF on a Nested Table

- Requires Ex. 5-1 and 5-5
SELECT graduation
FROM st udent s
VWHERE person_typ(12, 'Bob Jones', '1-650-555-0130") MEMBER OF math_ngjors;

Example 5-32 Alternative to Using MEMBER OF on a Nested Table

- Requires Ex. 5-1 and 5-5
SELECT graduation
FROM st udent s
VHERE person_typ(12, 'Bob Jones', '1-650-555-0130") in (select val ue(p)
from TABLE(math_najors) p);

5.3.4.5 Determining Empty Conditions

The I S[NOT] EMPTY condition checks whether a given nested table is empty or not
empty, regardless of whether any of the elements are NULL. If a NULL is given for the
nested table, the result is NULL. The result is returned as a Boolean value.

Example 5-33 Using IS NOT on a Nested Table

- Requires Ex. 5-1 and 5-5
SELECT p.idno, p.nane
FROM st udents, TABLE(physics_majors) p
VHERE physics_majors |'S NOT EMPTY;

5.3.4.6 Determining Set Conditions

The | S[NOT] A SET condition checks whether or not a given nested table is
composed of unique elements, returning a Boolean value.

Example 5-34 Using IS A SET on a Nested Table

- Requires Ex. 5-1 and 5-5
SELECT p.idno, p.nane

FROM st udents, TABLE(physics_majors) p
VWHERE physics_mjors |S A SET;

5.3.5 Multiset Operations for Nested Tables

You can usemultiset operators for nested tables. Multiset operations are not available
for varrays.

The SQL examples in this section use the nested tables created in Example 5-5
(page 5-5) and the objects created in Example 5-1 (page 5-2).

5-22 Oracle Database Object-Relational Developer's Guide

Operations on Collection Data Types

See Also:

e "Functions and Operators Useful with Objects (page 2-35)" for a
description of additional operations

e Oracle Database SQL Language Reference.for more information about using
operators with nested tables

5.3.5.1 CARDINALITY

The CARDI NALI TY function returns the number of elements in a nested table. The
return type is NUMBER If the nested table is a null collection, NULL is returned.

Example 5-35 Determining the CARDINALITY of a Nested Table

- Requires Ex. 5-1 and 5-5
SELECT CARDI NALI TY(nat h_naj ors)
FROM st udent s;

For more information about the CARDI NALI TY function, see Oracle Database SQL
Language Reference.

5.3.5.2 COLLECT

The COLLECT function is an aggregate function which creates a multiset from a set of
elements. The function takes a column of the element type as input and creates a
multiset from rows selected. To get the results of this function, you must use it within
a CAST function to specify the output type of COLLECT. See "CAST (page 2-36)" for an
example of the COLLECT function.

For more information about the COLLECT function, see Oracle Database SQL Language
Reference.

5.3.5.3 MULTISET EXCEPT

The MULTI SET EXCEPT operator inputs two nested tables and returns a nested table
whose elements are in the first nested table but not the second. The input nested tables
and the output nested table will all be of the same nested table type.

The ALL or DI STI NCT options can be used with the operator. The default is ALL.

e With the ALL option, for nt abl MULTI SET EXCEPT ALL nt ab2, all elements in
nt abl other than those in nt ab2 are part of the result. If a particular element
occurs mtimes in nt abl and n times in nt ab2, the result shows (m- n)
occurrences of the element if mis greater than n, otherwise, 0 occurrences of the
element.

e With the DI STI NCT option, any element that is present in nt ab1 and is also
present in nt ab2 is eliminated, irrespective of the number of occurrences.

Example 5-36 Using the MULTISET EXCEPT Operation on Nested Tables

- Requires Ex. 5-1 and 5-5
SELECT mat h_maj ors MULTI SET EXCEPT physi cs_mgj ors
FROM st udent s
VWHERE graduation = '01-JUN-03';

For more information about the MULTI SET EXCEPT operator, see Oracle Database SQL
Language Reference.

Support for Collection Data Types 5-23

Operations on Collection Data Types

5.3.5.4 MULTISET INTERSECT

The MULTI SET | NTERSECT operator returns a nested table whose values are common
to the two input nested tables. The input nested tables and the output nested table are
all type name equivalent.

There are two options associated with the operator: ALL or DI STI NCT. The default is
ALL. With the ALL option, if a particular value occurs mtimes in nt abl and n times in
nt ab2, the result contains the element M N(m n) times. With the DI STI NCT option,
the duplicates from the result are eliminated, including duplicates of NULL values if
they exist.

Example 5-37 Using the MULTISET INTERSECT Operation on Nested Tables

- Requires Ex. 5-1 and 5-5

SELECT math_maj ors MULTI SET | NTERSECT physics_mj ors
FROM st udent s

WHERE graduation = '01-JUN-03';

For more information about the MULTI SET | NTERSECT operator, see Oracle Database
SQL Language Reference.

5.3.5.5 MULTISET UNION

The MULTI SET UNI ON operator returns a nested table whose values are those of the
two input nested tables. The input nested tables and the output nested table are all
type name equivalent.

There are two options associated with the operator: ALL or DI STI NCT. The default is
ALL. With the ALL option, all elements in nt abl and nt ab2 are part of the result,
including all copies of NULLs. If a particular element occurs mtimes in nt abl and n
times in nt ab2, the result contains the element (M+ n) times. With the DI STI NCT
option, the duplicates from the result are eliminated, including duplicates of NULL
values if they exist.

Example 5-38 Using the MULTISET UNION Operation on Nested Tables

- Requires Ex. 5-1 and 5-5
SELECT mat h_mgaj ors MULTI SET UNI ON DI STINCT physi cs_mmj ors
FROM st udent s
WHERE graduation = '01-JUN-03';

PEOPLE_TYP(PERSON_TYP(12, 'Bob Jones', '1-650-555-0130"),
PERSON_TYP(31, 'Sarah Chen', '1-415-555-0120"),
PERSON_TYP(45, 'Chris Wods', '1-408-555-0128"))

- Requires Ex. 5-1 and 5-5
SELECT mat h_mgaj ors MULTI SET UNION ALL physics_majors
FROM st udent s
VWHERE graduation = '01-JUN-03';

Output:

PEOPLE_TYP(PERSON_TYP(12, 'Bob Jones', '1-650-555-0130"),
PERSON_TYP(31, 'Sarah Chen', '1-415-555-0120"),
PERSON_TYP(45, 'Chris Wods', '1-408-555-0128"),
PERSON_TYP(12, 'Bob Jones', '1-650-555-0130"),
PERSON_TYP(45, 'Chris Wods', '1-408-555-0128"))

For more information about the MULTI SET UNI ON operator, see Oracle Database SQL
Language Reference.

5-24 Oracle Database Object-Relational Developer's Guide

Operations on Collection Data Types

5.3.5.6 POWERMULTISET

The PONERMULTI SET function generates all non-empty submultisets from a given
multiset. The input to the POAERMULTI SET function can be any expression which
evaluates to a multiset. The limit on the cardinality of the multiset argument is 32.

Example 5-39 Using the POWERMULTISET Operation on Multiset

- Requires Ex. 5-1 and 5-5

SELECT * FROM TABLE(POAERMULTI SET(peopl e_typ (
person_typ(12, 'Bob Jones', '1-650-555-0130"),
person_typ(31, 'Sarah Chen', '1-415-555-0120"),
person_typ(45, 'Chris Wods', '1-415-555-0124"))));

For more information about the POAERMULTI SET function, see Oracle Database SQL
Language Reference.

5.3.5.7 POWERMULTISET_BY_CARDINALITY

The PONERMULTI SET_BY_CARDI NALI TY function returns all non-empty
submultisets of a nested table of the specified cardinality. The output is rows of nested
tables.

PONERMULTI SET_BY_CARDI NALI TY(x, |) isequivalent to
TABLE(PONERMULTI SET(X)) p where CARDI NALI TY(val ue(p)) =1, wherex isa
multiset and | is the specified cardinality.

The first input parameter to the POAERMULTI SET_BY_CARDI NALI TY can be any
expression which evaluates to a nested table. The length parameter must be a positive
integer, otherwise an error is returned. The limit on the cardinality of the nested table
argument is 32.

Example 5-40 Using the POWERMULTISET_BY_CARDINALITY Function

- Requires Ex. 5-1 and 5-5

SELECT * FROM TABLE(POAERVMULTI SET_BY_CARDI NALI TY(peopl e_typ (
person_typ(12, 'Bob Jones', '1-650-555-0130"),
person_typ(31, 'Sarah Chen', '1-415-555-0120"),
person_typ(45, 'Chris Wods', '1-415-555-0124')),2));

For more information about the PONERMULTI SET_BY_CARDI NALI TY function, see
Oracle Database SQL Language Reference.

5.3.5.8 SET

The SET function converts a nested table into a set by eliminating duplicates, and
returns a nested table whose elements are distinct from one another. The nested table
returned is of the same named type as the input nested table.

Example 5-41 Using the SET Function on a Nested Table

- Requires Ex. 5-1 and 5-5
SELECT SET(physics_maj ors)
FROM st udent s
VHERE graduation = '01-JUN-03';

For more information about the SET function, see Oracle Database SQL Language
Reference.

Support for Collection Data Types 5-25

Partitioning Tables That Contain Oracle Objects

5.4 Partitioning Tables That Contain Oracle Objects

Partitioning addresses the key problem of supporting very large tables and indexes by
allowing you to decompose them into smaller and more manageable pieces called
partitions.

Oracle extends partitioning capabilities by letting you partition tables that contain
objects, REFs, varrays, and nested tables. Varrays stored in LOBs are equipartitioned in
a way similar to LOBs. Nested table storage tables will be equipartitioned with the
base table. See also Oracle Database SecureFiles and Large Objects Developer’s Guide.

See Also:

For further information on equipartitioning
® Oracle Database VLDB and Partitioning Guide
® Oracle XML DB Developer’s Guide

Example 5-42 (page 5-26) partitions the purchase order table along zip codes
(ToZi p), which is an attribute of the Shi pToAddr embedded column object. The
Li nel t enLi st _nt nested table illustrates storage for the partitioned nested table.

Example 5-42 Partitioning a Nested Table That Contains Objects

CREATE TYPE Stockltemobjtyp AS OBJECT (
St ockNo NUMBER,
Price NUMVBER
TaxRat e NUMBER) ;

/

CREATE TYPE Lineltemobjtyp AS OBJECT (
Li nel t emNo NUMBER,
Stock_ref REF Stockltem objtyp,
Quantity NUMBER,
Di scount NUVBER);

/

CREATE TYPE Address_objtyp AS OBJECT (
Street VARCHAR2(200),
City VARCHAR2(200),
State CHAR(2),
Zi p VARCHAR2(20))
/

CREATE TYPE LineltenList_nt as table of Lineltem objtyp;
/

CREATE TYPE Pur chaseOrder _ntyp AS OBJECT (

PONo NUMBER,
OrderDate DATE,

Shi pDat e DATE,

O derForm BLOB,

Li nel tentLi st Li nel tenLi st _nt,
Shi pToAddr Address_obj typ,

MAP MEMBER FUNCTI ON
ret_val ue RETURN NUVBER,

5-26 Oracle Database Object-Relational Developer's Guide

Partitioning Tables That Contain Oracle Objects

MEMBER FUNCTI ON

total _val ue RETURN NUMBER);
/

CREATE TABLE PurchaseOrders_ntab of PurchaseOrder_ntyp
LOB (OrderForn) store as (nocache | ogging)
NESTED TABLE LineltenList STORE AS LineltenList_ntab
PARTI TI ON BY RANGE (Shi pToAddr . zi p)
(PARTI TI ON Pur Or der Zonel_part VALUES LESS THAN ('59999')
LOB (OrderForn) store as (
storage (INITIAL 10 M NEXTENTS 10 MAXEXTENTS 100))
NESTED TABLE LineltenList store as LineitenZonel part(
storage (INITIAL 10 M NEXTENTS 10 MAXEXTENTS 100)),
PARTI TI ON Pur Or der Zone2_part VALUES LESS THAN (' 79999")
LOB (OrderForn) store as (
storage (INITIAL 10 M NEXTENTS 10 MAXEXTENTS 100))
NESTED TABLE LineltenList store as LineitenZone2_part (
storage (INITIAL 10 M NEXTENTS 10 MAXEXTENTS 100)),
PARTI TI ON Pur Or der Zone3_part VALUES LESS THAN (' 99999')
LOB (OrderForn) store as (
storage (INITIAL 10 M NEXTENTS 10 MAXEXTENTS 100))
NESTED TABLE LineltenList store as LineitenZone3 part (
storage (INITIAL 10 M NEXTENTS 10 MAXEXTENTS 100)))

Support for Collection Data Types 5-27

Partitioning Tables That Contain Oracle Objects

5-28 Object-Relational Developer's Guide

6

Applying an Object Model to Relational
Data

You can write object-oriented applications without changing the underlying structure
of your relational data.

Topics:

e Why Use Object Views (page 6-1)

¢ Defining Object Views (page 6-2)

* Object Views Used in Applications (page 6-3)

¢ Objects Nested in Object Views (page 6-4)

e Identifying Null Objects in Object Views (page 6-5)

* Nested Tables and Varrays Used in Object Views (page 6-6)
® Object Identifiers for Object Views (page 6-8)

* References Created to View Objects (page 6-9)

* Inverse Relationships Modelled with Object Views (page 6-10)
* Object View Manipulations (page 6-11)

¢ Applying the Object Model to Remote Tables (page 6-13)

* Defining Complex Relationships in Object Views (page 6-14)

* Object View Hierarchies (page 6-18)

6.1 Why Use Object Views

Just as a view is a virtual table, an object view is a virtual object table. Each row in the
view is an object: you can call its methods, access its attributes using the dot notation,
and create a REF that points to it.

You can run object-oriented applications without converting existing tables to a
different physical structure. To do this, you can use object views to prototype or
transition to object-oriented applications because the data in the view can be taken
from relational tables and accessed as if the table were defined as an object table.

Object views can be used like relational views to present only the data that you want
users to see. For example, you might create an object view that presents selected data
from an employee table but omits sensitive data about salaries.

Applying an Object Model to Relational Data 6-1

Defining Object Views

Using object views can lead to better performance. Relational data that makes up a
row of an object view traverses the network as a unit, potentially saving many round
trips.

You can fetch relational data into the client-side object cache and map it into C
structures or C++ or Java classes, so 3GL applications can manipulate it just like native
classes. You can also use object-oriented features like complex object retrieval with
relational data.

* You can query the data in new ways by synthesizing objects from relational data.
You can view data from multiple tables by using object dereferencing instead of
writing complex joins with multiple tables.

* You can pin the object data from object views and use the data in the client side
object cache. When you retrieve these synthesized objects in the object cache by
means of specialized object-retrieval mechanisms, you reduce network traffic.

* You gain great flexibility when you create an object model within a view, enabling
you to continue developing the model. If you need to alter an object type, you can
simply replace the invalidated views with a new definition.

* You do not place any restrictions on the characteristics of the underlying storage
mechanisms by using objects in views. By the same token, you are not limited by
the restrictions of current technology. For example, you can synthesize objects
from relational tables which are parallelized and partitioned.

* You can create different complex data models from the same underlying data.

See Also:

- Oracle Database SQL Language Reference for a complete description of SQL
syntax and usage

— Oracle Database PL/SQL Language Reference for a complete discussion of
PL/SQL capabilities

— Oracle Database Java Developer’s Guide for a complete discussion of Java

— Oracle Call Interface Programmer’s Guide for a complete discussion of those
facilities

6.2 Defining Object Views

Object views allow you to present only data that you want users to see.

The procedure for defining an object view is:

1. Define an object type, where each attribute of the type corresponds to an existing
column in a relational table.

2. Write a query that specifies how to extract the data from the relational table.
Specify the columns in the same order as the attributes in the object type.

3. Specify a unique value, based on attributes of the underlying data, to serve as an
object identifier, enabling you to create pointers (REFs) to the objects in the view.
You can often use an existing primary key.

6-2 Oracle Database Object-Relational Developer's Guide

Object Views Used in Applications

See Also:

"Object Identifiers Used to Identify Row Objects (page 1-8)"

To update an object view where the attributes of the object type do not correspond
exactly to columns in existing tables, you may need to do the following;

Write an | NSTEAD CF trigger procedure for Oracle to execute whenever an application
program tries to update data in the object view. See "Object View Manipulations
(page 6-11)".

After these steps, you can use an object view just like an object table.

Example 6-1 (page 6-3) contains SQL statements to define an object view, where
each row in the view is an object of type enpl oyee_t :

Example 6-1 Creating an Object View

CREATE TABLE enp_table (
enpnum NUMBER (5),
ename VARCHAR2 (20),
salary NUMBER (9, 2),
job VARCHAR2 (20));

CREATE TYPE enpl oyee_t AS OBJECT (
enpno NUMBER (5),
ename VARCHAR2 (20),
salary NUMBER (9, 2),
job VARCHAR2 (20));
/

CREATE VI EWenp_viewl OF enpl oyee_t
W TH OBJECT | DENTI FI ER (enpno) AS
SELECT e.enpnum e.enane, e.salary, e.job
FROM enp_table e
WHERE j ob = ' Devel oper";

insert into enp_table values(1,'John', 1000.00,"Architect');
insert into enp_table values(2,' Robert', 900.00," Devel oper');
insert into enp_table values(3,'James', 2000.00, ' Director');

select * from enp_viewl;

EMPNO ENAME SALARY JOB

2 Robert 900 Devel oper

To access the data from the enpnumcolumn of the relational table, access the enpno
attribute of the object type.

6.3 Object Views Used in Applications

Data in the rows of an object view may come from more than one table, but the object
view still traverses the network in one operation. The instance appears in the client
side object cache as a C or C++ structure or as a PL/SQL object variable. You can
manipulate it like any other native structure.

Applying an Object Model to Relational Data 6-3

Objects Nested in Object Views

You can refer to object views in SQL statements in the same way you refer to an object
table. For example, object views can appear in a SELECT list, in an UPDATE- SET
clause, or in a WHERE clause.

You can also define object views on object views.

You can access object view data on the client side using the same OCI calls you use for
objects from object tables. For example, you can use OCl Cbj ect Pi n() for pinning a
REF and OClI Qbj ect Fl ush() for flushing an object to the server. When you update
or flush an object to the database in an object view, the database updates the object
view.

See Also:

See Oracle Call Interface Programmer’s Guide for more information about OCI
calls.

6.4 Objects Nested in Object Views

An object type can have other object types nested in it as attributes.

If the object type on which an object view is based has an attribute that itself is an
object type, then you must provide column objects for this attribute as part of the
process of creating the object view. If column objects of the attribute type already exist
in a relational table, you can simply select them; otherwise, you must synthesize the
object instances from underlying relational data just as you synthesize the principal
object instances of the view. You synthesize, or create, these objects by calling the
respective constructor methods of the object type to create the object instances, and
you can populate their attributes with data from relational columns specified in the
constructor.

For example, consider the department table dept in Example 6-2 (page 6-4). You
might want to create an object view where the addresses are objects inside the
department objects. That would allow you to define reusable methods for address
objects, and use them for all kinds of addresses.

First, create the types for the address and department objects, then create the view
containing the department number, name and address. The addr ess objects are
constructed from columns of the relational table.

Example 6-2 Creating a View with Nested Object Types

CREATE TABLE dept (
dept no NUMBER PRI MARY KEY,
dept nanme VARCHAR2(20) ,
deptstreet VARCHAR2(20),
deptcity VARCHAR2(10) ,
deptstate CHAR(2),
dept zi p VARCHAR2('10)) ;

CREATE TYPE address_t AS OBJECT (
street VARCHAR2(20),
city VARCHAR2(10),
state CHAR(2),
zip VARCHAR2(10)) ;
/
CREATE TYPE dept _t AS OBJECT (
dept no NUMBER,
deptnane VARCHAR2(20),

6-4 Oracle Database Object-Relational Developer's Guide

Identifying Null Objects in Object Views

addr ess address_t);
/

CREATE VI EW dept _vi ew OF dept _t WTH OBJECT | DENTI FI ER (deptno) AS
SELECT d. dept no, d. dept nane,
address_t (d. deptstreet,d.deptcity, d. deptstate,d.deptzip) AS
dept addr
FROM dept d;

insert into dept values(1,'Sales', 500 Oracle pkwy',' Redwood S','CA','94065');
insert into dept values(2,'ST','400 Oracle Pkwy',' Redwood S',' CA','94065');
insert into dept values(3,"'Apps', 300 Oracle pkwy',' Redwood S',' CA','94065');

select * from dept_view

DEPTNO DEPTNANE

1 Sales
ADDRESS T('500 Oracle pkwy', 'Redwood S', 'CA'", '94065")

2 ST
ADDRESS T('400 Oracle Pkwy', 'Redwood S', 'CA'", '94065")

3 Apps
ADDRESS T('300 Oracle pkwy', 'Redwood S', 'CA'", '94065")

6.5 Identifying Null Objects in Object Views

You can identify null objects in object views.

Because the constructor for an object never returns a null, none of the address objects
in the preceding view, Example 6-2 (page 6-4)can ever be null, even if the city, street,
and similar columns in the relational table are all null. The relational table has no
column that specifies whether or not the department address is null.

e Use the DECODE function, or a similar function, to return either a null or the
constructed object.

In Example 6-3 (page 6-5) the null dept st r eet column can be used to indicate that
the whole address is null.

The null dept st r eet column can be used to indicate that the whole address is null.
Example 6-3 Identifying Null Objects in an Object View

- Requires Ex. 6-2
CREATE OR REPLACE VI EW dept _vi ew AS
SELECT d. dept no, d. dept nane,
DECODE(d. dept street, NULL, NULL,
address_t(d. deptstreet, d.deptcity, d.deptstate, d.deptzip)) AS deptaddr
FROM dept d;

This technique makes it impossible to directly update the department address through

the view, because it does not correspond directly to a column in the relational table.
Instead, define an | NSTEAD OF trigger over the view to handle updates to this column.

Applying an Object Model to Relational Data 6-5

Nested Tables and Varrays Used in Object Views

6.6 Nested Tables and Varrays Used in Object Views

Collections, both nested tables and VARRAYSs, can be columns in views. You can select
these collections from underlying collection columns or you can synthesize them using
subqueries. The CAST- MULTI SET operator provides a way of synthesizing such
collections.

This section contains the following topics:
¢ Single-Level Collections in Object Views (page 6-6)

e Multilevel Collections in Object Views (page 6-7)

6.6.1 Single-Level Collections in Object Views
You can create an object view with a single level connection.

Using Example 6-1 (page 6-3) and Example 6-2 (page 6-4) as starting points, each
employee in an enp relational table has the structure in Example 6-4 (page 6-6).
Using this relational table, you can construct a dept _vi ewwith the department
number, name, address and a collection of employees belonging to the department.

First, define a nested table type for the employee type enpl oyee_t . Next, define a
department type with a department number, name, address, and a nested table of
employees. Finally, define the object view dept _vi ew.

The SELECT subquery inside the CAST- MULTI SET block selects the list of employees
that belong to the current department. The MULTI SET keyword indicates that this is a
list as opposed to a singleton value. The CAST operator casts the result set into the
appropriate type, in this case to the enpl oyee_| i st _t nested table type.

A query on this view could provide the list of departments, with each department row
containing the department number, name, the address object and a collection of
employees belonging to the department.

Example 6-4 Creating a View with a Single-Level Collection

- Requires Ex. 6-1 and Ex. 6-2
CREATE TABLE enp (
enpno NUMBER PRI MARY KEY,
enpname VARCHAR2(20) ,
salary NUMBER
job VARCHAR2 (20),
deptno NUMBER REFERENCES dept (dept no));

CREATE TYPE enpl oyee_list_t AS TABLE OF enployee t; -- nested table
/
CREATE TYPE dept _t AS OBJECT (
dept no NUMBER,
deptname VARCHAR2(20),
addr ess address_t,
enp_list enployee_|ist_t);
/
CREATE VI EW dept _vi ew OF dept _t WTH OBJECT | DENTI FI ER (deptno) AS
SELECT d. dept no, d. dept nane,
address_t (d. deptstreet,d.deptcity, d. deptstate, d.deptzip) AS deptaddr,
CAST(MULTI SET (
SELECT e. enpno, e.enpnane, e.salary, e.job
FROM emp e
VHERE e. deptno = d. dept no)

6-6 Oracle Database Object-Relational Developer's Guide

Nested Tables and Varrays Used in Object Views

AS enpl oyee_list_t)
AS enp_|ist
FROM dept d;

insert into dept values(100,'ST','400 Oracle Pkwy',' Redwood S',' CA', 94065);
insert into dept values(200,'Sales','500 Oracle Pkwy',' Redwood S',' CA', 94065);
insert into enp values(1,'John', 900, Devel operl', 100);

insert into enmp val ues(2,' Robert', 1000, " Devel oper2', 100);
insert into emp values(3,' Mary', 1000, Appsl', 200);
insert into enmp values(4,' Maria', 1500, ' Devel oper3',200);
select * from dept_view where deptno = 100;

DEPTNO DEPTNANE

100 ST
ADDRESS T('400 Oracle Pkwy', 'Redwood S', 'CA', '94065")
EMPLOYEE_LI ST_T(EMPLOYEE_T(1, 'John', 900, 'Devel oper1'), EMPLOYEE T(2, 'Robert’
, 1000, 'Devel oper2'))

select enp_list fromdept_view where deptno = 100;

EMP_LI ST(EMPNO, ENAME, SALARY, JOB)

EMPLOYEE_LI ST_T(EMPLOYEE T(1, 'John', 900, 'Devel operl'), EMPLOYEE T(2, 'Robert'
, 1000, 'Devel oper2'))

6.6.2 Multilevel Collections in Object Views
You can create to view and query objects.

Multilevel collections and single-level collections are created and used in object views
in the same way. The only difference is that, for a multilevel collection, you must
create an additional level of collections.

Example 6-5 (page 6-7) builds an object view containing a multilevel collection. The
view is based on flat relational tables that contain no collections. As a preliminary to
building the object view, the example creates the object and collection types it uses. An
object type (for example, enp_t) is defined to correspond to each relational table, with
attributes whose types correspond to the types of the respective table columns. In
addition, the employee type has a nested table (attribute) of projects, and the
department type has a nested table (attribute) of employees. The latter nested table is a
multilevel collection. The CAST- MULTI SET operator is used in the CREATE VI EW
statement to build the collections.

Example 6-5 Creating a View with Multilevel Collections

CREATE TABLE dept s
(deptno NUVBER,
deptname VARCHAR2(20));

CREATE TABLE enps
(ename VARCHAR2(20),
sal ary NUMBER,
deptname VARCHAR2(20));

Applying an Object Model to Relational Data 6-7

Object Identifiers for Object Views

CREATE TABLE proj ects
(projname VARCHAR2(20),
myr VARCHAR2(20)) ;

CREATE TYPE project _t AS OBJECT
(projname VARCHAR2(20),
myr VARCHAR2(20)) ;
/
CREATE TYPE nt _project _t AS TABLE OF project _t;
/
CREATE TYPE enp_t AS OBJECT
(enane VARCHAR2(20) ,
sal ary NUMBER,
deptnane VARCHAR2(20),
projects nt_project_t);
/
CREATE TYPE nt_enp_t AS TABLE OF enp_t;
/
CREATE TYPE depts_t AS OBJECT
(deptno NUVBER,
deptnane VARCHAR2(20),
enps nt_enmp_t);
/
CREATE VIEWv_depts OF depts_t WTH OBJECT | DENTI FI ER (deptno) AS
SELECT d. dept no, d. deptnane,
CAST(MULTI SET(SELECT e. enane, e.salary, e.deptnane,
CAST(MULTI SET(SELECT p. proj nane, p. nmgr
FROM proj ects p
VWHERE p. mgr = e. enane)
AS nt_project_t)
FROM enps e
VHERE e. dept nane = d. dept nane)
AS nt_enp_t)
FROM dept s d;

6.7 Object Identifiers for Object Views

You can construct pointers (REFs) to the row objects in an object view. Because the
view data is not stored persistently, you must specify a set of distinct values to be used
as object identifiers. Object identifiers allow you to reference the objects in object views
and pin them in the object cache.

If the view is based on an object table or an object view, then there is already an object
identifier associated with each row and you can reuse them. To do this, either omit the
W THOBJECT | DENTI FlI ER clause or specify W THOBJECT | DENTI FI ER DEFAULT.

However, if the row object is synthesized from relational data, you must choose some
other set of values.

You can specify object identifiers based on the primary key. This turns the set of
unique keys that identify the row object into an identifier for the object. These values
must be unique within the rows selected out of the view, because duplicates would
lead to problems during navigation through object references.

See Also:

"Object Identifiers Used to Identify Row Objects (page 1-8)" for a description
of primary-key based and system-generated object identifiers

6-8 Oracle Database Object-Relational Developer's Guide

References Created to View Objects

* Object views created with the W TH OBJECT | DENTI FI ER Clause

An object view created with the W TH OBJECT | DENTI FI ER clause has an object
identifier derived from the primary key.

For example, note the definition of the object type dept _t and the object view
dept _vi ewdescribed in "Single-Level Collections in Object Views (page 6-6)".

Because the underlying relational table has dept no as the primary key, each
department row has a unique department number. In the view, the dept no
column becomes the dept no attribute of the object type. Once you know that
dept no is unique within the view objects, you can specify it as the object
identifier.

® Object views created with the W THOBJECT | DENTI FI ER DEFAULT Clause

If the W THOBJECT | DENTI FI ERDEFAULT clause is specified, the object
identifier is either system-generated or primary-key based, depending on the
underlying table or view definition.

See Also:

See "Storage Considerations for Object Identifiers (OIDs) (page 9-4)".

6.8 References Created to View Objects

In this connected group of examples, Example 6-2 (page 6-4) and Example 6-4

(page 6-6), each object selected out of the dept _vi ewview has a unique object
identifier derived from the department number value. In the relational case, the
foreign key dept no in the enp employee table matches the dept no primary key
value in the dept department table. The primary key value creates the object identifier
in the dept _vi ew, allowing the foreign key value in the enp_vi ewto create a
reference to the primary key value in dept _vi ew.

To synthesize a primary key object reference, use the MAKE_REF operator. This takes
the view or table name that the reference points to, and a list of foreign key values, to
create the object identifier portion of the reference that matches a specific object in the
referenced view.

Example 6-6 (page 6-9) creates an enp_vi ewview which has the employee's
number, name, salary and a reference to the employee's department, by first creating
the employee type enp_t and then the view based on that type.

Example 6-6 Creating a Reference to Objects in a View

- Requires Ex. 6-2 and Ex. 6-4
- if you have previously created enp_t, you nust drop it
CREATE TYPE enp_t AS OBJECT (

enpno NUMBER

enanme VARCHAR2(20) ,

salary NUMBER,

deptref REF dept_t);
/
CREATE OR REPLACE VIEWenp_view OF enp_t W TH OBJECT | DENTI FI ER(enpno)

AS SELECT e. enpno, e.enpnane, e.salary,

MAKE_REF(dept _vi ew, e. dept no)
FROM enp e;

Applying an Object Model to Relational Data 6-9

Creating References to Objects with REF

The dept r ef column in the view holds the department reference. The following
simple query retrieves all employees whose departments are located in the city of
Redwood S:

SELECT e. enpno, e.salary, e.deptref.deptno
FROM enp_vi ew e
VWHERE e. deptref.address.city = 'Redwood S';

EMPNO SALARY DEPTREF. DEPTNO

2 1000 100
1 900 100
4 1500 200
3 1000 200

Note that you can also create enp_vi ewusing the REF modifier instead of MAKE_REF
as shown in Example 6-7 (page 6-10) to get the reference to the dept _vi ewobjects:

6.9 Creating References to Objects with REF

You can create views using a REF modifier to get references to objects.
Example 6-7 Query References to Objects with REF

- Requires Ex. 6-2, Ex. 6-4, and Ex. 6-6
CREATE OR REPLACE VIEWenp_view OF enp_t W TH OBJECT | DENTI FI ER(enpno)
AS SELECT e. enpno, e.enpnane, e.salary, REF(d)
FROM enp e, dept_view d
VHERE e. deptno = d. dept no;

In Example 6-7 (page 6-10), the dept _vi ewjoins the enp table on the dept no key.

The advantage of using the MAKE_REF operator, as in Example 6-6 (page 6-9), instead
of the REF modifier is that with the former, you can create circular references. For
example, you can create an employee view that has a reference to the employee's
department, while the department view has a list of references to the employees who
work in that department.

See Also:

"Object Cache (page 4-4)"

As with synthesized objects, you can also select persistently stored references as view
columns and use them seamlessly in queries. However, the object references to view
objects cannot be stored persistently.

6.10 Inverse Relationships Modelled with Object Views

You can use views with objects to model inverse relationships.
One-to-One Relationships

One-to-one relationships can be modeled with inverse object references. For example,
suppose that each employee has a particular desktop computer, and that the computer
belongs to that employee only.

A relational model would capture this using foreign keys either from the computer
table to the employee table, or in the reverse direction. Using views, you can model

6-10 Oracle Database Object-Relational Developer's Guide

Object View Manipulations

the objects so there is an object reference from the employee to the computer object
and also a reference from the computer object to the employee.

One-to-Many and Many-to-One Relationships

One-to-many relationships (or many-to-many relationships) can be modeled either by
using object references or by embedding the objects.

One-to-many relationship can be modeled by having a collection of objects or object
references. The many-to-one side of the relationship can be modeled using object
references.

Consider the department-employee case. In the underlying relational model, the
foreign key is in the employee table. The relationship between departments and
employees can be modeled using collections in views. The department view can have
a collection of employees, and the employee view can have a reference to the
department (or inline the department values). This gives both the forward relation
(from employee to department) and the inverse relation (department to list of
employees). The department view can also have a collection of references to employee
objects instead of embedding the employee objects.

6.11 Object View Manipulations

You can update, insert, and delete data in an object view using the same SQL DML
you use for object tables. Oracle updates the base tables of the object view if there is no
ambiguity.

Views are not always directly updatable.

A view is not directly updatable if the view query contains joins, set operators,
aggregate functions, or GROUP BY or DI STI NCT clauses. Also, individual columns of
a view are not directly updatable if they are based on pseudocolumns or expressions
in the view query.

If a view is not directly updatable, you can still update it indirectly using

| NSTEAD CF triggers. To do so, you define an | NSTEAD CF trigger for each kind of
DML statement you want to execute on the view. In the | NSTEAD CF trigger, code the
operations that must take place on the underlying tables of the view to accomplish the
desired change in the view. Then, when you issue a DML statement for which you
have defined an | NSTEAD OF trigger, Oracle transparently runs the associated trigger.

See Also:

"INSTEAD OF Triggers to Control Mutating and Validation (page 6-12)" for
an example of an | NSTEAD CF trigger

Note:

In an object view hierarchy, UPDATE and DELETE statements operate
polymorphically just as SELECT statements do: the set of rows picked out by
an UPDATE or DELETE statement on a view implicitly includes qualifying
rows in any subviews of the specified view as well.

For example, the following statement, which deletes all persons from Per son_v, also
deletes all students from St udent _v and all employees from the Enpl oyee_v view.

DELETE FROM Per son_v;

Applying an Object Model to Relational Data 6-11

Object View Manipulations

To exclude subviews and restrict the affected rows to just those in the view specified,
use the ONLY keyword. For example, the following statement updates only persons
and not employees or students.

UPDATE ONLY(Person_v) SET address = ...

See Also:

"Object View Hierarchies (page 6-18)" for a discussion of object view
hierarchy and examples defining St udent _v and Enpl oyee_v views

6.11.1 Nested Table Columns Updated in Views

You can modify a nested table by inserting new elements and updating or deleting
existing elements. Nested table columns that are virtual or synthesized, as in a view,
are not usually updatable. To overcome this, Oracle allows | NSTEAD OF triggers to be
created on these columns.

The | NSTEAD CF trigger defined on a nested table column (of a view) is fired when the
column is modified. Note that if the entire collection is replaced (by an update of the
parent row), the | NSTEAD CF trigger on the nested table column is not fired.

6.11.2 INSTEAD OF Triggers to Control Mutating and Validation

You can update complex views with | NSTEAD OF triggers.

I NSTEAD COF triggers provide a way to update complex views that otherwise could not
be updated. They can also be used to enforce constraints, check privileges, and
validate DML statements. Using these triggers, you can control mutation that might be
caused by inserting, updating, and deleting in the objects created though an object
view.

For instance, to enforce the condition that the number of employees in a department
cannot exceed 10, you can write an | NSTEAD OF trigger for the employee view. The
trigger is not needed to execute the DML statement because the view can be updated,
but you need it to enforce the constraint.

Example 6-8 (page 6-12) shows how to implement the trigger by means of SQL
statements.

Example 6-8 Creating INSTEAD OF Triggers on a View

- Requires Ex. 6-2, Ex. 6-4, and Ex. 6-6
CREATE TRI GGER enp_instr | NSTEAD OF | NSERT on enp_vi ew
FOR EACH ROV
DECLARE
dept _var dept_t;
enp_count integer;
BEG N
- Enforce the constraint
- First get the department nunmber fromthe reference
UTL_REF. SELECT _CBJECT(: NEW deptref, dept_var);

SELECT COUNT(*) | NTO enp_count
FROM enp
VHERE deptno = dept _var. dept no;
I F enp_count < 9 THEN
- Do the insert
I NSERT | NTO enp (enpno, enpnane, salary, deptno)

6-12 Oracle Database Object-Relational Developer's Guide

Applying the Object Model to Remote Tables

VALUES (: NEW enpno, :NEW ename, :NEWsalary, dept_var.deptno);
END | F;
END;
/

See Also:

"Defining Triggers for Object Tables (page 2-5)"

6.12 Applying the Object Model to Remote Tables

Although you cannot directly access remote tables as object tables, object views let you
access remote tables as if they were object tables.

Consider a company with two branches; one in Washington D.C. and another in
Chicago. Each site has an employee table. The headquarters in Washington has a
department table with a list of all the departments. To get a total view of the entire
organization, you can create views over the individual remote tables and then a
overall view of the organization.

To this requires the following;:

e Update theentryin| i st ener. or a, such as: (ADDRESS=(PROTOCOL=t cp)
(HOST=st adv07. us. exanpl e. com) (PORT=1640))

e Add entries to t nsnanes. or a, such as: chi cago=(DESCRI PTI ON=
(ADDRESS=(PROTOCOL=i pc) (KEY=l i nux))
(CONNECT_DATA=(SERVI CE_NAME=I i nux. r egr ess. r dbms. dev. us. exanp
le.com))

e Provide CREATE DATABASE LI NK code as shown in Example 6-9 (page 6-13)

Example 6-9 (page 6-13) begins by creating an object view for each employee table
and then creates the global view.

Example 6-9 Creating an Object View to Access Remote Tables

- Requires Ex. 6-2, Ex. 6-4, and Ex. 6-6
- Exanple requires DB links, such as these, modify for your use and uncomment
- CREATE DATABASE LI NK chicago CONNECT TO hr | DENTI FIED BY hr USING "instl';
- CREATE DATABASE LI NK washi ngt on CONNECT TO hr | DENTIFIED BY hr USING 'instl';
CREATE VI EW enp_washi ngt on_vi ew (eno, enane, salary, job)
AS SELECT e.enpno, e.enpnane, e.salary, e.job
FROM enp@washi ngt on e;

CREATE VI EW enp_chi cago_vi ew (eno, enane, salary, job)
AS SELECT e.enpno, e.enpnane, e.salary, e.job
FROM enp@hi cago e;

CREATE VI EW orgnzn_vi ew OF dept _t W TH OBJECT | DENTI FI ER (dept no)
AS SELECT d. deptno, d.deptnane,
address_t (d. deptstreet, d.deptcity, d. deptstate,d.deptzip) AS deptaddr,
CAST(MULTI SET (
SELECT e.eno, e.enane, e.salary, e.job
FROM enp_washi ngt on_vi ew e)
AS enployee_list_t) AS enp_list
FROM dept d
WHERE d. deptcity = 'Washi ngton'
UNI ON ALL
SELECT d. deptno, d. dept nane,

Applying an Object Model to Relational Data 6-13

Defining Complex Relationships in Object Views

address_t (d. deptstreet,d.deptcity, d. deptstate,d.deptzip) AS deptaddr,
CAST(MULTI SET (
SELECT e.eno, e.enane, e.salary, e.job
FROM enp_chi cago_vi ew e)
AS enpl oyee_list_t) AS enp_list
FROM dept d
VWHERE d. deptcity = ' Chicago';

This view has a list of all employees for each department. The UNI ONALL clause is
used because employees cannot work in more than one department.

6.13 Defining Complex Relationships in Object Views

You can define circular references in object views using the MAKE_REF operator:
Vi ew_A can refer to vi ew_B which in turn can refer to vi ew_A. This allows an object
view to synthesize a complex structure such as a graph from relational data.

For example, in the case of the department and employee, the department object
currently includes a list of employees. To conserve space, you may want to put
references to the employee objects inside the department object, instead of
materializing all the employees within the department object. You can construct (pin)
the references to employee objects, and later follow the references using the dot
notation to extract employee information.

Because the employee object already has a reference to the department in which the
employee works, an object view over this model contains circular references between
the department view and the employee view.

You can create circular references between object views in two different ways:

Note:

Both ways to create circular references require the setup described in "Tables
and Types to Demonstrate Circular View References (page 6-15)".

e First View After Second View
1. Create view A without any reference to view B.
2. Create view B, which includes a reference to view A.

3. Replace view A with a new definition that includes the reference to view B.

See the example in "Method 1: Re-create First View After Creating Second View
(page 6-16)"

e First View Using the FORCE Keyword
1. Create view A with a reference to view B using the FORCE keyword.

2. Create view B with a reference to view A. When view A is used, it is validated
and re-compiled.

See the example in "Method 2: Create First View Using FORCE Keyword
(page 6-17)"

Method 2 has fewer steps, but the FORCE keyword may hide errors in the view
creation. You need to query the USER_ERRORS catalog view to see if there were any

6-14 Oracle Database Object-Relational Developer's Guide

Defining Complex Relationships in Object Views

errors during the view creation. Use this method only if you are sure that there are no
errors in the view creation statement.

Also, if errors prevent the views from being recompiled upon use, you must recompile
them manually using the ALTER VI EWCOWP| LE command.

Perform the setup described next before attempting to use either method of creating
circular view references.

6.13.1 Tables and Types to Demonstrate Circular View References

First, you need set up some relational tables and associated object types. Although the
tables contain some objects, they are not object tables. To access the data objects, you
will create object views later.

The enp table stores the employee information:
Example 6-10 Creating emp table to demonstrate circular references

CREATE TABLE enp

(enpno NUMBER PRI MARY KEY,
enpname VARCHAR2(20) ,
salary NUMBER
deptno NUMBER);

-- first create a dummy, that is, inconplete, department type, so enp_t type
- created later will succeed

CREATE TYPE dept _t;
/

- Create the enployee type with a reference to the departnent, dept t:
CREATE TYPE enp_t AS OBJECT
(eno NUMBER,
enane VARCHAR2(20),
salary NUVBER,
deptref REF dept_t);
/

- Represent the list of references to enployees as a nested table:
CREATE TYPE enpl oyee_list_ref t AS TABLE OF REF enp_t;
/

- Create the departnment table as a relational table
CREATE TABLE dept

(deptno NUMBER PRI MARY KEY,
dept name VARCHAR2(20) ,
dept street VARCHAR2(20) ,
deptcity VARCHAR2(10) ,
deptstate CHAR(2),
deptzip VARCHAR2('10));

- Create object types that map to colums fromthe relational tables:
CREATE TYPE address_t AS OBJECT

(street VARCHAR2(20) ,
city VARCHAR2(10) ,
state CHAR(2),
zip VARCHAR2('10)) ;
/
- Fill inthe definition for dept _t, the inconplete type you previously created:

CREATE OR REPLACE TYPE dept _t AS OBJECT

Applying an Object Model to Relational Data 6-15

Defining Complex Relationships in Object Views

(dno NUMBER,
dname VARCHAR2(20) ,
dept addr address_t,

enpreflist enpl oyee_list_ref _t);
/

As Example 6-10 (page 6-15) indicates, you must create the enp table, then create a
dummy department type, dept _t which will enable the enp_t type to succeed once
you create it. After that, create enp_t with a reference to dept _t . Create a list of
references to employees as a nested table, enpl oyee_| i st _ref _t and create the
department table, dept . Then create an object type, addr ess_t that has columns
mapping to the relational tables, and finally fill in the definition for the incomplete
dept _t.

The following is example data you could use:

insert into emp values(1,'John","'900', 100);
insert into emp values(2,'janes',' 1000, 100);
insert into emp values(3,'jack', 2000, 200);

6.13.2 Creating Object Views with Circular References
You can create object views with circular references.

If you have established the underlying relational table definitions, as described in
Defining Complex Relationships in Object Views (page 6-14), you can create the object
views on top of them.

Topics:
® Method 1: Re-create First View After Creating Second View (page 6-16)

* Method 2: Create First View Using FORCE Keyword (page 6-17)

6.13.2.1 Method 1: Re-create First View After Creating Second View
You can recreate the first view after creating the second view.

First create the employee view with a null in the dept r ef column. Later, you can turn
that column into a reference.

Next, create the department view, which includes references to the employee objects.
This creates a list of references to employee objects, instead of including the entire
employee object.

Next, re-create the employee view with the reference to the department view.
Example 6-11 Creating an Object View with a Circular Reference, Method 1

- Requires Ex. 6-10
CREATE VI EW enp_view OF enp_t WTH OBJECT | DENTI FI ER(eno)
AS SELECT e.enpno, e.enpnane, e.salary, NULL
FROM enp e;

- create department view, including references to the enployee objects
CREATE VI EW dept _vi ew OF dept _t WTH OBJECT | DENTI Fl ER(dno)
AS SELECT d. dept no, d.deptnane,
address_t(d. deptstreet,d.deptcity,d. deptstate, d. deptzip),
CAST(MULTI SET (
SELECT MAKE_REF(enp_vi ew, e.enpno)
FROM emp e
VHERE e. deptno = d. dept no)

6-16 Oracle Database Object-Relational Developer's Guide

Defining Complex Relationships in Object Views

AS enpl oyee_list_ref_t)
FROM dept d;

CREATE OR REPLACE VIEWenp_view OF enp_t W TH OBJECT | DENTI FI ER(eno)
AS SELECT e. enpno, e.enpnane, e.salary,
MAKE_REF(dept _vi ew, e. dept no)
FROM enp e;

This creates the views.

6.13.2.2 Method 2: Create First View Using FORCE Keyword
You can force creation of a first view even if the other view does not yet exist.

If you are sure that the view creation statement has no syntax errors, you can use the
FORCE keyword to force the creation of the first view without the other view being
present.

First, create an employee view that includes a reference to the department view, which
does not exist at this point. This view cannot be queried until the department view is
created properly.

Next, create a department view that includes references to the employee objects. You
do not have to use the FORCE keyword here, because enp_vi ewalready exists. This
allows you to query the department view, getting the employee object by
dereferencing the employee reference from the nested table enpref | i st.

Note:

If you previously ran Example 6-11 (page 6-16), remove the views you created
before running Example 6-12 (page 6-17).

Example 6-12 Creating view with FORCE Method 2

- Requires Ex. 6-10
- create enpl oyee view
CREATE OR REPLACE FORCE VI EWenp_view OF enp_t W TH OBJECT | DENTI FI ER(eno)
AS SELECT e.enpno, e.enpnane, e.salary,
MAKE_REF(dept _vi ew, e. deptno)
FROM enp e;

- create a department view that includes references to the enpl oyee objects
CREATE OR REPLACE VI EW dept _vi ew OF dept_t WTH OBJECT | DENTI FI ER(dno)
AS SELECT d. dept no, d.deptnane,
address_t(d. deptstreet,d.deptcity,d. deptstate, d. deptzip),
CAST(MULTI SET (
SELECT MAKE_REF(enp_vi ew, e.enpno)
FROM emp e
VHERE e. deptno = d. dept no)
AS enpl oyee_list_ref_t)
FROM dept d;

-- Querying with DEREF nethod
SELECT DEREF(e. COLUWN_VALUE)
FROM TABLE(SELECT e.enpreflist FROM dept_view e WHERE e.dno = 100) e;

COLUVN_VALUE is a special name that represents the scalar value in a scalar nested

table. In this case, COLUMN_VALUE denotes the reference to the employee objects in the
nested table enprefli st.

Applying an Object Model to Relational Data 6-17

Object View Hierarchies

You can also access the employee number only, for all those employees whose name
begins with John.

Example 6-13 Querying with COLUMN_VALUE

- Requires Ex. 6-10 and 6-12
SELECT e. COLUWN_VALUE. eno

FROM TABLE(SELECT e. enpreflist FROM dept _view e WHERE e. dno = 100) e
VWHERE e. COLUWN_VALUE. enane |ike 'John%;

To get a tabular output, unnest the list of references by joining the department table
with the items in its nested table:

Example 6-14 Querying with COLUMN_VALUE, Unnesting References

- Requires Ex. 6-10 and 6-12

SELECT d. dno, e. COLUMN_VALUE. eno, e. COLUWN_VALUE. enane
FROM dept _vi ew d, TABLE(d.enpreflist) e

VWHERE e. COLUMN_VALUE. enare |ike ' John%
AND d. dno = 100;

Finally, you can rewrite the preceding query to use the enp_vi ewinstead of the
dept _vi ewto show how to navigate from one view to the other:

Example 6-15 Querying with COLUMN_VALUE, Querying emp_view

- Requires Ex. 6-10 and 6-12
SELECT e. deptref.dno, DEREF(f.COLUWN_VALUE)
FROM enp_view e, TABLE(e.deptref.enpreflist) f
VHERE e. deptref.dno = 100
AND f. COLUMN_VALUE. enane |ike 'John% ;

6.14 Object View Hierarchies

An object view hierarchy is a set of object views each of which is based on a different
type in a type hierarchy. Subviews in a view hierarchy are created under a superview,
analogously to the way subtypes in a type hierarchy are created under a supertype.

Each object view in a view hierarchy is populated with objects of a single type, but
queries on a given view implicitly address its subviews as well. Thus an object view
hierarchy gives you a simple way to frame queries that can return a polymorphic set
of objects of a given level of specialization or greater.

For example, suppose you have the following type hierarchy, with per son_t yp as
the root:

6-18 Oracle Database Object-Relational Developer's Guide

Object View Hierarchies

Figure 6-1 Object Type Hierarchy

Person_typ

T

| |
Student_typ Employee_typ

T

ParTimeStudent_typ

If you have created an object view hierarchy based on this type hierarchy, with an
object view built on each type, you can query the object view that corresponds to the
level of specialization you are interested in. For instance, you can query the view of
st udent _t yp to get a result set that contains only students, including part-time
students.

You can base the root view of an object view hierarchy on any type in a type hierarchy:
you do not need to start the object view hierarchy at the root type. Nor do you need to
extend an object view hierarchy to every leaf of a type hierarchy or cover every
branch. However, you cannot skip intervening subtypes in the line of descent. Any
subview must be based on a direct subtype of the type of its direct superview.

Just as a type can have multiple sibling subtypes, an object view can have multiple
sibling subviews. However, a subview based on a given type can participate in only
one object view hierarchy: two different object view hierarchies cannot each have a
subview based on the same subtype.

A subview inherits the object identifier (OID) from its superview. An OID cannot be
explicitly specified in any subview.

A root view can explicitly specify an object identifier using the W TH OBJECT | D
clause. If the OID is system-generated or the clause is not specified in the root view,
then subviews can be created only if the root view is based on a table or view that also
uses a system-generated OID.

The query underlying a view determines whether or not the view is updatable. For a
view to be updatable, its query must contain no joins, set operators, aggregate
functions, GROUP BY clause, DI STI NCT clause, pseudocolumns, or expressions. The
same applies to subviews.

If a view is not updatable, you can define | NSTEAD CF triggers to perform appropriate
DML actions. Note that | NSTEAD OF triggers are not inherited by subviews.

All views in a view hierarchy must be in the same schema.

Applying an Object Model to Relational Data 6-19

Object View Hierarchies

Note:

You can create views of types that are non-instantiable. A non-instantiable
type cannot have instances, so ordinarily there would be no point in creating
an object view of such a type. However, a non-instantiable type can have
subtypes that are instantiable. The ability to create object views of non-
instantiable types enables you to base an object view hierarchy on a type
hierarchy that contains a non-instantiable type.

6.14.1 Creating an Object View Hierarchy

You build an object view hierarchy by creating subviews under a root view. You do
this by using the UNDER keyword in the CREATE VI EWstatement, as show in
Example 6-17 (page 6-21).

The same object view hierarchy can be based on different underlying storage models.
In other words, a variety of layouts or designs of underlying tables can produce the
same object view hierarchy. The design of the underlying storage model affects the
performance and updatability of the object view hierarchy.

Three possible storage models are described. In the first, a flat model, all views in the
object view hierarchy are based on the same table. In the second, a horizontal model,
each view has a one-to-one correspondence with a different table. And in the third, a
vertical model, the views are constructed using joins.

To execute any of these storage models, first create types shown in Example 6-16
(page 6-20).

Example 6-16 Creating Types for Storage Model Examples
CREATE TYPE person_typ AS OBJECT
(ssn NUMBER,

nane VARCHAR2(30),
address VARCHAR2(100)) NOT FINAL;/

CREATE TYPE student _typ UNDER person_typ
(deptid NUMBER,
maj or VARCHAR2(30)) NOT FI NAL;/
CREATE TYPE enpl oyee_typ UNDER person_typ
(enpid NUMBER,
myr VARCHAR2(30));/
Topics:
e The Flat Model (page 6-20)
¢ The Horizontal Model (page 6-22)

e The Vertical Model (page 6-23)

6.14.1.1 The Flat Model
In the flat model, all the views in the hierarchy are based on the same table.

In the following example, the single table Al | Per sons contains columns for all the
attributes of per son_t yp, st udent _typ, and enpl oyee_t yp.

6-20 Oracle Database Object-Relational Developer's Guide

Object View Hierarchies

Figure 6-2 Flat Storage Model for Object View Hierarchy
Table AllPersons

TYPEID

1.2 or3 Person attributes (columns) | Student attributes

Employee attributes

View Person_v l

Person attributes

View Student_v v

Person attributes Student attributes

View Employee_v

Person attributes Employee attributes

<

The t ypei d column identifies the type of each row. These possible values are the
types created in Example 6-16 (page 6-20), 1 = person_t yp,2 =student _typ, and

3 =enpl oyee_typ:

Example 6-17 (page 6-21) creates the table Al | Per sons and then the views that

make up the object view hierarchy:
Example 6-17 Creating an Object View Hierarchy

- Requires Ex. 6-16
CREATE TABLE Al | Persons
(typei d NUMBER(1),

ssn NUVBER,

nane VARCHAR2(30),
address VARCHAR2(100),
deptid NUMBER,

maj or VARCHAR2(30),
enpi d NUMBER,

nmgr VARCHAR2(30));

CREATE VI EW Person_v OF person_typ
W TH OBJECT O D(ssn) AS
SELECT ssn, nane, address
FROM Al | Per sons
WHERE typeid = 1;

CREATE VI EW Student _v OF student _typ UNDER Person_v
AS
SELECT ssn, nane, address, deptid, major
FROM Al | Per sons
WHERE typeid = 2;

CREATE VI EW Enpl oyee_v OF enpl oyee_typ UNDER Person_v
AS
SELECT ssn, nane, address, enpid, ngr
FROM Al | Per sons
WHERE typeid = 3;

Applying an Object Model to Relational Data 6-21

Object View Hierarchies

The flat model has the advantage of simplicity and poses no obstacles to supporting
indexes and constraints. Its drawbacks are:

* A single table cannot contain more than 1000 columns, so the flat model imposes a
1000-column limit on the total number of columns that the object view hierarchy
can contain.

* Each row of the table will have NULLs for all the attributes not belonging to its
type. Such non-trailing NULLs can adversely affect performance.

6.14.1.2 The Horizontal Model
On the horizontal model, each view or subview is based on a different table.

In the example, the tables are relational, but they could just as well be object tables for
which column substitutability is turned off.

Figure 6-3 Horizontal Storage Model for Object View Hierarchy

Table only_person View Person_v

Person attributes P | Person attributes
Table only_students View Student_v

Person attributes Student attributes || Person attributes Student attributes
Table only_employees View Employee_v

Person attributes Employee attributes fm==—pp-| Person attributes Employee attributes

Example 6-18 (page 6-22) creates tables and then views based on these tables.
Example 6-18 -- Creating Table Horizontal Model

- Requires Ex. 6-16 and Ex. 6-17
CREATE TABLE only_persons
(ssn NUMBER,

nane VARCHAR2(30),

address VARCHAR2(100));

CREATE TABLE only_students
(ssn NUMBER,
nane VARCHAR2(30),
address VARCHAR2(100),
deptid NUVBER
maj or VARCHAR2(30));

CREATE TABLE only_enpl oyees
(ssn NUMBER,
nane VARCHAR2(30),
address VARCHAR2(100),
enpi d NUMBER,
nmyr VARCHAR2(30));

CREATE OR REPLACE VI EW Person_v OF person_typ
W TH OBJECT O D(ssn) AS
SELECT *
FROM onl y_per sons;

6-22 Oracle Database Object-Relational Developer's Guide

Object View Hierarchies

CREATE OR REPLACE VI EW Student _v OF student _typ UNDER Person_v
AS
SELECT *
FROM onl y_st udent s;

CREATE OR REPI ACE VI EW Enpl oyee_v OF enpl oyee_typ UNDER Person_v
AS
SELECT *
FROM onl y_enpl oyees;

The horizontal model is very efficient at processing queries of the form:
Example 6-19 -- Querying views horizontal model

- Requires Ex. 6-16 and Ex. 6-17

- add the follow ng data
insert into only_persons values(1234,'John',"abc');
insert into only_students values(1111,'Janes',"'abc', 100,'CS');
insert into only_enployees val ues(2222,"jack',"'abc',400,"Juliet');

SELECT VALUE(p) FROM Person_v p
VHERE VALUE(p) 1S OF (ONLY student typ);

QUTPUT:
VALUE(P) (SSN, NAME, ADDRESS)

Such queries only need to access a single physical table to get all the objects of the
specific type. The drawbacks of this model are that queries such as SELECT * FROM
vi ewrequire performing a UNI ON over all the underlying tables and projecting the
rows over just the columns in the specified view. (See "About Querying a View in a
Hierarchy (page 6-25)".) Also, indexes on attributes (and unique constraints) must
span multiple tables, and support for this does not currently exist.

6.14.1.3 The Vertical Model

In the vertical model, there is a physical table corresponding to each view in the
hierarchy.

However, the physical tables store only those attributes that are unique to their
corresponding subtypes.

Applying an Object Model to Relational Data 6-23

Object View Hierarchies

Figure 6-4 Vertical Storage Model for Object View Hierarchy

Table all_personattrs View Person_v

typeid Person attributes:
1,2, 0or 3 | ssn, name, address

Person attributes

A

Table all_studentattrs View Student_v
Student attributes: . .
snn deptid, major Person attributes Student attributes
Table all_employeeattrs View Employee_v
Employee attributes: . .
snn empid, mgr Person attributes Employee attributes

4

Example 6-20 (page 6-24) creates tables and then corresponding views.
Example 6-20 Creating table, views vertical model

CREATE TABLE al | _personattrs
(typeid NUMBER,

ssn NUMBER,

name VARCHAR2(30),

address VARCHAR2(100));

CREATE TABLE al | _studentattrs
(ssn NUMBER,

deptid NUVBER

maj or VARCHAR2(30));

CREATE TABLE al | _enpl oyeeattrs
(ssn NUMBER,

enpi d NUMBER,

nmgr VARCHAR2(30));

CREATE OR REPLACE VI EW Person_v OF person_typ
W TH OBJECT O D(ssn) AS

SELECT ssn, nane, address

FROM al | _personattrs

WHERE typeid = 1,

CREATE OR REPLACE VI EW Student _v OF student _typ UNDER Person_v
AS
SELECT x.ssn, x.nane, x.address, y.deptid, y.msjor
FROM al | _personattrs x, all_studentattrs y
VWHERE x.typeid = 2 AND X.SSn = y.ssn;

CREATE OR REPLACE VI EW Enpl oyee_v OF enpl oyee_typ UNDER Person_v
AS
SELECT x.ssn, x.name, x.address, y.enmpid, y.ngr
FROM al | _personattrs x, all_enployeeattrs y
VWHERE x.typeid = 3 AND X.SSn = y.ssn;

The vertical model can efficiently process queries of the kind SELECT * FROM
r oot _vi ew, and it is possible to index individual attributes and impose unique

6-24 Oracle Database Object-Relational Developer's Guide

Object View Hierarchies

constraints on them. However, to re-create an instance of a type, a join over object
identifiers (OIDs) must be performed for each level that the type is removed from the
root in the hierarchy.

6.14.2 About Querying a View in a Hierarchy
You can query any view or subview in an object view hierarchy.

The query returns rows for the declared type of the view that you query and for any of
the subtypes of that type.

So, for instance, in an object view hierarchy based on the per son_t yp type hierarchy,
you can query the view of per son_t yp to get a result set that contains all persons,
including students and employees; or you can query the view of st udent _t yp to get
a result set that contains only students, including part-time students.

In the SELECT list of a query, you can include either functions such as REF() and
VALUE() that return an object instance, or you can specify object attributes of the
declared type of the view, such as the nane and ssn attributes of per son_t yp.

If you specify functions, to return object instances, the query returns a polymorphic
result set: that is, it returns instances of both the declared type of the view and any
subtypes of that type.

For example, the following query returns instances of persons, employees, and
students of all types, as well as REFs to those instances.

Example 6-21 Query with REF and Value

-- Requires Ex. 6-20

insert into all_personattrs val ues(1,1111," John',"abc')
insert into all_personattrs val ues(2,2222,"'Jack', " def")
insert into all_personattrs val ues(3,3333,"'Janes', ' ghi’
insert into all_studentattrs values(2222,100,'CS);
insert into all_enployeeattrs val ues(3333,444,"'Julia");
SELECT REF(p), VALUE(p) FROM Person_v p;

)

QUTPUT:
REF(P)

00004A038A00465A6E6E779ECLF25FE040578CE70A447E0000001426010001000100290000000000
090600812A00078401FE0000000B03C2000C00000000000000000000000000000000000000
PERSON_TYP(1111, 'John', 'abc')

00004A038A00465A6E6E779ECLF25FE040578CE70A447E0000001426010001000100290000000000
090600812A00078401FE0000000B03C2222200000000000000000000000000000000000000
EMPLOYEE_TYP(3333, 'James', 'ghi', 444, 'Julia')

00004A038A00465A6E6E779ECLF25FE040578CE70A447E0000001426010001000100290000000000

090600812A00078401FE0000000B03C2171700000000000000000000000000000000000000
STUDENT_TYP(2222, 'Jack', 'def', 100, 'CS)

If you specify individual attributes of the declared type of the view in the SELECT list

or do a SELECT *, again the query returns rows for the declared type of the view and
any subtypes of that type, but these rows are projected over columns for the attributes

Applying an Object Model to Relational Data 6-25

Object View Hierarchies

of the declared type of the view, and only those columns are used. In other words, the
subtypes are represented only with respect to the attributes they inherit from and
share with the declared type of the view.

For example, the following query returns rows for all persons and rows for employees
and students of all types, but the result uses only the columns for the attributes of

per son_t yp—namely, name, ssn, and addr ess. It does not show rows for attributes
added in the subtypes, such as the dept i d attribute of st udent _t yp.

SELECT * FROM Person_v;
To exclude subviews from the result, use the ONLY keyword. The ONLY keyword
confines the selection to the declared type of the view that you are querying;:

SELECT VALUE(p) FROM ONLY(Person_v) p;

6.14.3 Privileges for Operations on View Hierarchies

Generally, a query on a view with subviews requires only the SELECT privilege on the
view being referenced and does not require any explicit privileges on subviews.

For example, the following query requires only SELECT privileges on Per son_v but
not on any of its subviews.

SELECT * FROM Person_v;

However, a query that selects for any attributes added in subtypes but not used by the
root type requires the SELECT privilege on all subviews as well. Such subtype
attributes may hold sensitive information that should reasonably require additional
privileges to access.

The following query, for example, requires SELECT privileges on Per son_v and also
on St udent _v, Enpl oyee_v (and on any other subview of Per son_v) because the
query selects object instances and thus gets all the attributes of the subtypes.

SELECT VALUE(p) FROM Person_v p;

To simplify the process of granting SELECT privileges on an entire view hierarchy,
you can use the H ERARCHY option. Specifying the H ERARCHY option when granting
a user SELECT privileges on a view implicitly grants SELECT privileges on all current
and future subviews of the view as well. For example:

GRANT SELECT ON Person_v TO user WTH H ERARCHY OPTI ON;

A query that excludes rows belonging to subviews also requires SELECT privileges on
all subviews. The reason is that information about which rows belong exclusively to
the most specific type of an instance may be sensitive, so the system requires SELECT

privileges on subviews for queries (such as the following one) that exclude all rows
from subviews.

SELECT * FROM ONLY(Person_v);

6-26 Oracle Database Object-Relational Developer's Guide

v

Managing Oracle Objects

This chapter explains how Oracle objects work in combination with the rest of the
database, and how to perform DML and DDL operations on them. It contains the
following major sections:

Privileges on Object Types and Their Methods (page 7-1)
Type Dependencies (page 7-5)

Synonyms for Object Types (page 7-10)

Performance Tuning (page 7-13)

7.1 Privileges on Object Types and Their Methods

Privileges for object types exist at the system level and the schema object level.

Topics:

System Privileges for Object Types (page 7-1)
Schema Object Privileges (page 7-2)

Types Used in New Types or Tables (page 7-2)
Example: Privileges on Object Types (page 7-2)

Access Privileges on Objects_ Types_ and Tables (page 7-4)

7.1.1 System Privileges for Object Types

Oracle database defines the following system privileges for object types:

CREATE TYPE enables you to create object types in your own schema

CREATE ANY TYPE enables you to create object types in any schema

ALTERANY TYPE enables you to alter object types in any schema

DROP ANY TYPE enables you to drop named types in any schema

EXECUTE ANY TYPE enables you to use and reference named types in any schema
UNDER ANY TYPE enables you to create subtypes under any non-final object types

UNDER ANY VI EWenables you to create subviews under any object view

The following roles are helpful:

The RESQURCE role includes the CREATE TYPE system privilege.

Managing Oracle Objects 7-1

Privileges on Object Types and Their Methods

* The DBA role includes all of these privileges.

7.1.2 Schema Object Privileges

Two schema object privileges apply to object types:
e EXECUTE enables you to use the type to:

— Define a table.

— Define a column in a relational table.

— Declare a variable or parameter of the named type.
EXECUTE lets you invoke the methods of a type, including the constructor.

Method execution and the associated permissions are the same as for stored
PL/SQL procedures.

* UNDERenables you to create a subtype or subview under the type or view on
which the privilege is granted.

Only a grantor with the UNDER privilege W TH GRANT OPTI ON on the direct
supertype or superview can grant the UNDER privilege on a subtype or subview.

The phrase W THHI ERARCHY OPTI ON grants a specified object privilege on all
subtypes of the object. This option is meaningful only with the SELECT object
privilege granted on an object view in an object view hierarchy. In this case, the
privilege applies to all subviews of the view on which the privilege is granted.

7.1.3 Types Used in New Types or Tables

In addition to the permissions detailed in the previous sections, you need specific
privileges to:

* Create types or tables that use types created by other users.

e Grant use of your new types or tables to other users.

You must have either the EXECUTE ANY TYPE system privilege or the EXECUTE object
privilege for any type used to define a new type or table. You must have been granted
these privileges explicitly, and not through a role.

To grant access to your new type or table to other users, you must have either the
required EXECUTE object privileges with the GRANT option or the EXECUTE ANY TYPE
system privilege with the option W THADM N OPTI ON. You must have been granted
these privileges explicitly, not through a role.

7.1.4 Example: Privileges on Object Types

This section presents several related examples, creating users or schemas and then
granting privileges on them.

Example 7-1 (page 7-3) creates three users or schemas, USER1, USER2, and USER3,
and grants them the CREATE SESSI ON and RESOURCE roles. Some of the subsequent
examples in this chapter use these schemas.

This example requires you to create and use several passwords. If you plan to run the
example, make these changes to your SQL code first.

7-2 Oracle Database Object-Relational Developer's Guide

Privileges on Object Types and Their Methods

Note:

For simplicity, this example does not perform the password management
techniques that a deployed system normally uses. In a production
environment, follow the Oracle Database password management guidelines,
and disable any sample accounts. See Oracle Database Security Guide for
password management guidelines and other security recommendations.

Example 7-1 Creating User Schemas

- Requires passwords
CONNECT SYSTEM
- Enter password
CREATE USER user1 PROFILE defaul t
| DENTI FI ED BY password DEFAULT TABLESPACE exanpl e ACCOUNT UNLOCK;
GRANT CREATE SESSI ON TO user1;
GRANT RESOURCE TO user1;
GRANT CREATE SYNONYM TO user 1;
GRANT CREATE PUBLI C SYNONYM TO user 1,
GRANT DROP PUBLI C SYNONYM TO user 1;
CREATE USER user2 PROFILE defaul t
| DENTI FI ED BY password DEFAULT TABLESPACE exanpl e ACCOUNT UNLOCK;
GRANT CREATE SESSI ON TO user 2;
GRANT RESOURCE TO user 2;
CREATE USER user3 PROFILE defaul t
| DENTI FI ED BY password DEFAULT TABLESPACE exanpl e ACCOUNT UNLOCK;
GRANT CREATE SESSI ON TO user 3;
GRANT RESOURCE TO user 3;

Example 7-2 (page 7-3) requires the input of a password, USERL performs the
CREATE and GRANT Data Definition Language (DDL) statements in the USER1
schema:

Example 7-2 Granting Privileges on Object Types

CREATE TYPE typel AS OBJECT (attrl NUMBER);

/

CREATE TYPE type2 AS OBJECT (attr2 NUMBER);

/

GRANT EXECUTE ON typel TO user?2;

GRANT EXECUTE ON type2 TO user2 WTH GRANT OPTI ON;

In Example 7-3 (page 7-3), USER2 performs the CREATE DDL statement in the
USER2 schema:

Example 7-3 Performing DDL Statements in USER2 Schema

- Requires Ex. 7-1, 7-2 and password input
CONNECT user 2

- Enter password

CREATE TABLE tabl OF userl.typel;

CREATE TYPE type3 AS OBJECT (attr3 userl.type2);
/

CREATE TABLE tab2 (col 1 userl.type2);

In Example 7-4 (page 7-4), the first two statements succeed because USER2 was
granted the EXECUTE privilege with the GRANT option on USER1's TYPEZ in the last
line of Example 7-2 (page 7-3) and Example 7-3 (page 7-3) created t ype3 as an object
using attr3 user 1. type2.

Managing Oracle Objects 7-3

Privileges on Object Types and Their Methods

However, the last grant Example 7-4 (page 7-4) fails because USER2 has not been
granted the EXECUTE privilege with the GRANT option on USERL. TYPEL.

Example 7-4 Performing Grants to USER3

- Requires Ex. 7-1, 7-2, and 7-3
GRANT EXECUTE ON type3 TO user3;
GRANT SELECT ON tab2 TO user3;

- Privileges on Qbject Types
GRANT SELECT ON tabl TO user3 -- incorrect statenent;

In Example 7-5 (page 7-4), USER3 has the necessary privileges to perform the
following actions:
Example 7-5 Creating Tables and Types

- Requires Ex. 7-1, 7-2, 7-3, and 7-4

CONNECT user 3

- Enter password

CREATE TYPE type4 AS OBJECT (attr4 user2.type3);
/

CREATE TABLE tab3 OF type4;

7.1.5 Access Privileges on Objects, Types, and Tables
Object types only make use of the EXECUTE privilege.

However, object tables use all the same privileges as relational tables:

READ or SELECT lets you access an object and its attributes from the table.

UPDATE lets you modify attributes of objects in the table.

| NSERT lets you add new objects to the table.

DELETE lets you delete objects from the table.
Similar table and column privileges regulate the use of table columns of object types.

Selecting columns of an object table does not require privileges on the type of the
object table. Selecting the entire row object, however, does.

Consider the schema and queries created below in Example 7-6 (page 7-4):
Example 7-6 SELECT Privileges on Type Access

- Requires Ex. 7-1, 7-2, 7-3, 7-4, and 7-5
CREATE TYPE enp_type AS OBJECT (
eno NUMBER,
ename VARCHAR2(36));
/
CREATE TABLE enp OF enp_type; // an object table
GRANT SELECT on enp TO userl,;
SELECT VALUE(e) FROM enp e;
SELECT eno, enane FROM enp;

For both queries, Oracle database checks the user's SELECT privilege for the object
table enp. For the first query, the user needs to obtain the enp_t ype type information
to interpret the data. When the query accesses the enp_t ype type, the database
checks the user's EXECUTE privilege.

The second query, however, does not involve named types, so the database does not
check type privileges.

7-4 Oracle Database Object-Relational Developer's Guide

Type Dependencies

Additionally, USER3 can perform queries such as these:

SELECT t.col 1. attr2 fromuser2.tab2 t;
SELECT t.attr4.attr3.attr2 FROMtab3 t;

Note that in both queries, USER3 does not have explicit privileges on the underlying
type. However, the statement succeeds because the type and table owners have the
necessary privileges with the GRANT option.

Oracle database checks privileges on the following requests and returns an error if the
requestor does not have the privilege for the action:

Pinning an object in the object cache using its REF value causes the database to
check the READ or SELECT privilege on the object table containing the object and
the EXECUTE privilege on the object type.

See Also:

Oracle Call Interface Programmer’s Guide for tips and techniques for using OCI
program effectively with objects

Modifying an existing object or flushing an object from the object cache causes the
database to check the UPDATE privilege on the destination object table. Flushing a
new object causes the database to check the | NSERT privilege on the destination
object table.

Deleting an object causes the database to check the DELETE privilege on the
destination table.

Invoking a method causes the database to check the EXECUTE privilege on the
corresponding object type.

Oracle database does not provide column level privileges for object tables.

7.2 Type Dependencies

Type dependencies fall into two broad categories:

Situations where types depend upon each other for their definitions, where one
type might be part of the definition of another type.

Situations where creating or dropping types is complicated by dependencies that
the type has such, as tables or types.

This section covers the following topics:

Creating Incomplete Types (page 7-6)
Completing Incomplete Types (page 7-7)
Recompiling a Type Manually (page 7-7)

Using CREATE OR REPLACE TYPE with Type and Table Dependencies
(page 7-7)

Type Dependencies of Substitutable Tables and Columns (page 7-8)
The DROP TYPE FORCE Option (page 7-9)

Managing Oracle Objects 7-5

Type Dependencies

* Creating a Type Synonym (page 7-10)
¢ Using a Type Synonym (page 7-11)

7.2.1 Creating Incomplete Types

Types that depend on each other for their definitions, either directly or through
intermediate types, are called mutually dependent. For example, you might want to
define object types enpl oyee and depart ment in such a way that one attribute of
enpl oyee is the department the employee belongs to and one attribute of

depart ment is the employee who manages the department.

If you visualize a diagram with arrows showing the relationships among a set of
mutually dependent types, the connections form a loop. To define such a circular
dependency, you must use REFs for at least one segment of the circle.

For example, you can define the types shown in Example 7-7 (page 7-6).
Example 7-7 Creating Dependent Object Types

- Requires Ex. 7-1 and password

CONNECT user 1

- Enter password

ALTER SESSI ON SET PLSQL_WARNINGS = 'enable:all’;

CREATE TYPE department; // a placehol der
/

CREATE TYPE enpl oyee AS OBJECT (
nane VARCHAR2(30) ,
dept REF department,
supv REF enpl oyee);

/

CREATE TYPE enmp_list AS TABLE OF enpl oyee;
/

CREATE TYPE departnent AS OBJECT (
nane VARCHAR2(30) ,
ngr REF enpl oyee,
staff enp_list);

/

This is a legal set of mutually dependent types and a legal sequence of SQL DDL
statements. Oracle database compiles it without errors.

Notice that the code in Example 7-7 (page 7-6) creates the type depar t ment twice.
The first statement is an optional, incomplete declaration of depar t ment that serves
as a placeholder for the REF attribute of enpl oyee to point to. The declaration is
incomplete in that it omits the AS OBJECT phrase and lists no attributes or methods.
These are specified later in the full declaration that completes the type. In the
meantime, depar t ment is created as an incomplete object type. This enables the
compilation of enpl oyee to proceed without errors.

If you do not create incomplete types as placeholders, types that refer to the missing
types still compile, but the compilation proceeds with errors. For example, if

depar t ment did not exist at all, Oracle database would create it as an incomplete
type and compile enpl oyee with errors. Then enpl oyee would be recompiled the
next time that some operation accesses it. This time, if all the types it depends on have
been created and its dependencies are satisfied, it compiles without errors.

7-6 Oracle Database Object-Relational Developer's Guide

Type Dependencies

Incomplete types also enable you to create types that contain REF attributes to a
subtype that has not yet been created. To create such a supertype, first create an
incomplete type of the subtype to be referenced. Create the complete subtype after you
create the supertype.

7.2.2 Completing Incomplete Types

When you have created all the types referenced by an incomplete type, complete the
declaration of the incomplete type, because there is no longer any need for it to remain
incomplete.

Completing the type recompiles it and enables the system to release various locks. You
complete the type with a CREATE TYPE statement.

* Execute a CREATE TYPE statement that specifies the attributes and methods of the
type, as shown at the end of Example 7-7 (page 7-6).

Also, you must complete any incomplete types that the database creates for you. If, as
discussed in the preceding section, you did not explicitly create depar t nent as an
incomplete type, then the database did. In this case, you still need to complete it.

You must complete an incomplete object type as an object type: you cannot complete
an object type as a collection type (a nested table type or an array type). The only
alternative is to drop the type.

7.2.3 Recompiling a Type Manually

If a type was created with compilation errors, and you attempt an operation on it, such
as creating tables or inserting rows, you may receive an error. You need to recompile
the type before attempting the operation. You recompile with an ALTER TYPE
statement.

e Execute an ALTERTYPEt ypenanme COWPI LE statement. After you have
successfully compiled the type, attempt the operation again.

7.2.4 Using CREATE OR REPLACE TYPE with Type and Table Dependencies

The CREATE OR REPLACE TYPE statement throws an error if the type being replaced
has table or type dependencies. This applies to objects, varrays, and nested table types.
This also applies to type dependencies involving either inheritance or type
composition (embedding one type into another). The latter might be a situation where
one type is attribute of another.

Using the FORCE option with a CREATE OR REPLACE TYPE statement enables you to
replace a type if it has type dependencies, but not table dependencies. Table
dependencies still cause errors.

* Use the FORCE option with a CREATE OR REPLACE TYPE statement to replace a
type if it has type dependencies.

Example 7-8 (page 7-7) shows a CREATE OR REPLACE statement (second statement)
that fails due to a type dependency.

Example 7-8 CREATE OR REPLACE Type and Table Failure

SQL> CREATE type t1 AS OBJECT (a number) not final;
2
Type created.

Managing Oracle Objects 7-7

Type Dependencies

SQL> CREATE TYPE t2 UNDER t1 (b varchar(10));
2 |/
Type created.

SQL> CREATE CR REPLACE TYPE t1 AS CBJECT (c varchar(20));
2 |/
CREATE OR REPLACE TYPE t1 AS OBJECT (c¢ varchar(20));
*
ERROR at line 1:
ORA-02303: cannot drop or replace a type with type or table dependents

7.2.5 Creating or Replacing Type with Force

A CREATE OR REPLACE FORCE statement fails if the type has a table dependency
because a type with a table dependency cannot be replaced.

Example 7-9 (page 7-8) shows code in which a CREATE OR REPLACE FORCE

statement succeeds in replacing a type that has a type dependency and then creates a
table using the parent type. However, the final CREATE OR REPLACE FORCE statement
fails because the type now has a table dependency and even with the FORCE option, a
type with a table dependency cannot be replaced.

See Also:

Oracle Database PL/SQL Language Reference for details of the CREATE OR
REPLACE TYPE SQL statement

Example 7-9 CREATE OR REPLACE with FORCE

SQL> CREATE OR REPLACE TYPE t1 FORCE AS OBJECT (c varchar(20));
2 |/
Type created.

SQL> CREATE TABLE thl (¢l t1);
Tabl e created.

SQL> CREATE OR REPLACE TYPE t1 FORCE AS OBJECT (d number);
2
CREATE OR REPLACE TYPE t1 FORCE AS OBJECT (d nunber);

ERROR at line 1:
ORA- 22866: cannot replace a type with table dependents

7.2.6 Type Dependencies of Substitutable Tables and Columns

A substitutable table or column of a specific type is dependent not only on that type
but on all subtypes of the type as well.

This is because a hidden column is added to the table for each attribute added in a
subtype of the type. The hidden columns are added even if the substitutable table or
column contains no data of that subtype.

See Also:

"Type Substitution in a Type Hierarchy (page 2-26)" for further explanation of
substitutability

7-8 Oracle Database Object-Relational Developer's Guide

Type Dependencies

In Example 7-10 (page 7-9), a per sons table of type per son_t yp is dependent not
only on per son_t yp but also on the per son_t yp subtypes st udent _t yp and
part _tine_student typ.

If you attempt to drop a subtype that has a dependent type, table, or column, the DROP
TYPE statement returns an error and aborts. Consequently, trying to drop a
part _ti me_student _typ raises an error because of the dependent per sons table.

If dependent tables or columns exist but contain no data of the type being dropped,
you can use the VALI DATE keyword to drop the type. The VALI DATE keyword causes
Oracle database to check for actual stored instances of the specified type and to drop
the type if none are found. This also removes hidden columns associated with
attributes unique to the type.

In Example 7-10 (page 7-9), the first DROP TYPE statement fails because

part _time_student _typ hasa dependent table (per sons). But if per sons
contains no instances of part _t i me_st udent _t yp (nor does any other dependent
table or column), the VALI DATE keyword causes the second DROP TYPE statement to
succeed.

Example 7-10 DROP TYPE with and without VALIDATE
CREATE TYPE person_typ AS OBJECT (

i dno NUMBER,

nane VARCHAR2(30) ,
phone VARCHAR2(20))
NOT FI NAL;

/
CREATE TYPE student _typ UNDER person_typ (
dept _i d NUMBER,
mej or VARCHAR2(30))
NOT FI NAL;
/
CREATE TYPE part _tine_student _typ UNDER student _typ (nunber_hours NUMBER);
/
CREATE TABLE persons OF person_typ;
- Followi ng generates an error due to presence of Persons table
DROP TYPE part _tinme_student _typ -- incorrect statenent;
- Followi ng succeeds if there are no stored instances of part_time_student_typ
DROP TYPE part _tinme_student _typ VALI DATE;

Note:

Oracle recommends that you always use the VALI DATE option while
dropping subtypes.

7.2.7 The DROP TYPE FORCE Option

The DROP TYPE statement has a FORCE option that causes the type to be dropped even
though it may have dependent types or tables.

Use the FORCE option with great care, because any dependent types or tables that do
exist are marked invalid and become inaccessible when the type is dropped. Data in a
table that is marked invalid for this reason can never be accessed again. The only
action that can be performed on such a table is to drop it.

See "Type Evolution (page 8-6)" for information about how to alter a type.

Managing Oracle Objects 7-9

Synonyms for Object Types

7.3 Synonyms for Object Types

Just as you can create synonyms for tables, views, and various other schema objects,
you can also define synonyms for object types.

Synonyms for types have the same advantages as synonyms for other kinds of schema
objects: they provide a location-independent way to reference the underlying schema
object. An application that uses public type synonyms can be deployed unaltered, in
any schema of a database, without requiring a qualified type name with the schema

name.
See Also:
Oracle Database Administrator’s Guide for more information on synonyms in
general

Topics:

* Creating a Type Synonym (page 7-10)
¢ Using a Type Synonym (page 7-11)

7.3.1 Creating a Type Synonym
You create a type synonym with a CREATE SYNONYMstatement.
The user must have been granted CREATE SYNONYMand CREATE PUBLI C SYNONYM
privileges.
For example, these statements create a type t yp1l and then create a synonym for it:
Example 7-11 CREATE TYPE/SYNONYM for userl

- Exanple requires Ex.7-1 which created userl and granted it the CREATE SYNONYM
- and CREATE PUBLI C SYNONYM pri vil eges
- connect as userl if not already connected.

CREATE TYPE typl AS OBJECT (x nunber);
/
CREATE SYNONYM synl FOR typl;

Synonyms can be created for collection types, too. The following example creates a
synonym for a nested table type:

CREATE TYPE typ2 AS TABLE OF NUMBER
/
CREATE SYNONYM syn2 FOR typ2;

You create a public synonym by using the PUBLI Ckeyword:

CREATE TYPE shape AS OBJECT (nane VARCHAR2(10));
/
CREATE PUBLI C SYNONYM pub_shape FOR shape;

With the REPLACE option you can make the synonym point to a different underlying
type. For example, the following statement causes syn1l to point to type t yp2 instead
of the type it formerly pointed to:

CREATE OR REPLACE SYNONYM synl FOR typ2;

7-10 Oracle Database Object-Relational Developer's Guide

Synonyms for Object Types

7.3.2 Using a Type Synonym

You can use a type synonym anywhere that you can refer to a type. For instance, you
can use a type synonym in a DDL statement to name the type of a table column or
type attribute.

Example 7-12 (page 7-11) uses synonym syn1 to specify the type of an attribute in
typet yp3:
Example 7-12 Using a Type Synonym in a Create Statement

- Requires Ex 7-1 and connection as userl

- drop synl and typl if created for Ex. 7-12
CREATE TYPE typl AS OBJECT (x nunber);

/

CREATE SYNONYM synl FOR typ1l;

CREATE TYPE typ3 AS OBJECT (a synl);
/

In the next statement, the type synonym syn1 calls the constructor of the object type
t ypl, for which syn1 is a synonym. The statement returns an object instance of t yp1:

SELECT syn1(0) FROM dual ;

In the following, syn2 is a synonym for a nested table type. The synonym replaces the
actual type name in a CAST expression.

SELECT CAST(MUJLTI SET(SELECT eno FROM USER3. EMP) AS syn2) FROM dual ;

This code returns the following output:

SQ> -- Type synonymused to call a constructor / nested table
SELECT syn1(0) FROM dual ;

SELECT CAST(MULTI SET(SELECT eno FROM USER3. EMP) AS syn2) FROM
dual ;

SQ> SYNL(0) (X)

Type synonyms can be used in the following kinds of statements:

e DML statements: SELECT, | NSERT, UPDATE, DELETE, FLASHBACK TABLE,
EXPLAI NPLAN, and LOCK TABLE

e DDL statements: AUDI T, NOAUDI T, GRANT, REVOKE, and COMVENT

7.3.2.1 Describing Schema Objects That Use Synonyms

If a type or table has been created using type synonyms, the DESCRI BE command
shows the synonyms that the types represent.

You can query the catalog view USER_SYNONYMS to find out the underlying type of a
type synonym.

¢ Use the DESCRI BE command to show the synonyms instead of the types they
represent.

Managing Oracle Objects 7-11

Synonyms for Object Types

Similarly, catalog views, which show type names, such as USER_TYPE_ATTRS, show
the type synonym names in their place.

See Also:

Chapter 2 of Oracle Database Reference for a complete list of the data dictionary
catalog views

7.3.2.2 Dependents of Type Synonyms

A type that directly or indirectly references a synonym in its type declaration is a
dependent of that synonym. Thus, in the following line from Example 7-12 (page 7-11),
type t yp3 is a dependent type of synonym syn1.

CREATE TYPE typ3 AS OBJECT (a synl);
/

Other kinds of schema objects that reference synonyms in their DDL statements also
become dependents of those synonyms. An object that depends on a type synonym
depends on both the synonym and the underlying type of the synonym.

The dependency relationships of a synonym affect your ability to drop or rename the
synonym. Dependent schema objects are also affected by some operations on
synonyms. The following sections describe these various ramifications.

7.3.2.3 Restriction on Replacing a Type Synonym

You can replace a synonym only if it has no dependent tables or valid user-defined
types. Replacing a synonym is equivalent to dropping it and then re-creating a new
synonym with the same name.

7.3.2.4 Dropping Type Synonyms

You drop a synonym with the DROP SYNONYMstatement as shown in Example 7-13
(page 7-12).

Example 7-13 Dropping Type Synonyms
CREATE SYNONYM syn4 FOR typl;

DROP SYNONYM syn4;

You cannot drop a type synonym if it has table or valid object types as dependents
unless you use the FORCE option. The FORCE option causes any columns that directly
or indirectly depend on the synonym to be marked unused, just as if the actual types
of the columns were dropped. (A column indirectly depends on a synonym if, for
instance, the synonym is used to specify the type of an attribute of the declared type of
the column.)

Any dependent schema objects of a dropped synonym are invalidated. They can be
revalidated by creating a local object or a new public synonym with the same name as
the dropped synonym.

Dropping the underlying base type of a type synonym has the same effect on
dependent objects as dropping the synonym.

7-12 Oracle Database Object-Relational Developer's Guide

Performance Tuning

7.3.2.5 Renaming Type Synonyms

You can rename a type synonym with the RENAVE statement. Renaming a synonym is
equivalent to dropping it and then re-creating it with a new name. You cannot rename
a type synonym if it has dependent tables or valid object types. The following example
fails because synonym syn1l has a dependent object type:

RENAME synl TO syn3 -- invalid statement;

7.3.2.6 Public Type Synonyms and Local Schema Objects

You cannot create a local schema object that has the same name as a public synonym if
the public synonym has a dependent table or valid object type in the local schema that
will hold the new schema object. Nor can you create a local schema object that has the

same name as a private synonym in the same schema.

For instance, in the following example, table shape_t ab is a dependent table of
public synonym pub_shape because the table has a column that uses the synonym in
its type definition. Consequently, the attempt to create a table that has the same name
as public synonym pub_shape, in the same schema as the dependent table, fails:

- Foll owi ng uses public synonym pub_shape

CREATE TABLE shape_tab (cl pub_shape);

- Following is not allowed

CREATE TABLE pub_shape (¢l NUMBER) -- invalid statenent;

7.4 Performance Tuning

When tuning objects, the following items need to be addressed:

e How objects and object views consume CPU and memory resources during
runtime

¢ How to monitor memory and CPU resources during runtime

¢ How to manage large numbers of objects

Some of the key performance factors are the following:
e DBMS_STATS package to collect statistics
e tkprof toprofile execution of SQL commands

e EXPLAI NPLANto generate the query plans

See Also:

Oracle Database SQL Tuning Guide for details on measuring and tuning the
performance of your application

Managing Oracle Objects 7-13

Performance Tuning

7-14 Object-Relational Developer's Guide

8

Advanced Topics for Oracle Objects

Advanced topics section are of interest once you start applying object-relational
techniques to large-scale applications or complex schemas.

Topics:

* Storage of Objects (page 8-1)

* Creating Indexes on Typeids or Attributes (page 8-5)

¢ Type Evolution (page 8-6)

¢ System-Defined and User-Defined Constructors (page 8-15)
¢ Transient and Generic Types (page 8-20)

® User-Defined Aggregate Functions (page 8-23)

* How Locators Improve the Performance of Nested Tables (page 8-24)

8.1 Storage of Objects

Oracle database automatically maps the complex structure of object types into simple
table structure for storage.

Topics:

e Leaf-Level Attributes (page 8-1)

¢ How Row Objects Are Split Across Columns (page 8-2)

e Hidden Columns for Tables with Column Objects (page 8-2)

¢ Hidden Columns for Substitutable Columns and Object Tables (page 8-2)
¢ Storage of REFs (page 8-4)

¢ Internal Layout of Nested Tables (page 8-4)

e Internal Layout of VARRAYs (page 8-5)

8.1.1 Leaf-Level Attributes

An object type is like a tree structure, where the branches represent the attributes.
Attributes that are objects sprout subbranches with their own attributes.

Ultimately, each branch ends at an attribute that is a built-in type; such as NUMBER,
VARCHAR2, or REF, or a collection type, such as VARRAY or nested table. Each of these
leaf-level attributes of the original object type is stored in a table column.

Advanced Topics for Oracle Objects 8-1

Storage of Objects

Leaf-level attributes that are not collection types are called the leaf-level scalar
attributes of the object type.

The following topics relate to the discussion of object tables and relational tables in
"How Objects are Stored in Tables (page 1-6)".

8.1.2 How Row Objects Are Split Across Columns

In an object table, Oracle database stores the data for every leaf-level scalar or REF
attribute in a separate column.

Note:

Each VARRAY is also stored in a column, unless it is too large. Oracle database
stores leaf-level attributes of nested table types in separate tables associated
with the object table. You must declare these tables as part of the object table
declaration. See "Internal Layout of VARRAYs (page 8-5)" and "Internal
Layout of Nested Tables (page 8-4)".

When you retrieve or change attributes of row objects in an object table, the database
performs the corresponding operations on the columns of the table. Accessing the
value of the row object itself invokes the default constructor for the type, using the
columns of the object table as arguments and produces a copy of the object.

The database stores the system-generated object identifier in a hidden column. The
database uses the object identifier to construct REFs to the object.

8.1.3 Hidden Columns for Tables with Column Objects

When a table (relational table) is defined with a column of an object type, the database
adds hidden columns to the table for the leaf-level attributes of the object type.

Each object-type column also has a corresponding hidden column to store the NULL
information for the column objects (that is, the atomic nulls of the top-level and the
nested objects).

8.1.4 Hidden Columns for Substitutable Columns and Object Tables

A substitutable column or object table has a hidden column not only for each attribute
of the object type of the column but also for each attribute added in any subtype of the
object type.

Hidden columns store the values of those attributes for any subtype instances inserted
in the substitutable column.

Besides the type-discriminant column and the null-image column, the following are
associated with a substitutable column of per son_t yp, created by Example 8-1

(page 8-3)

¢ A hidden column for each of the attributes of per son_t yp: i dno, nane, and
phone

e Hidden columns for attributes of the subtypes of per son_t yp

Thus, the following might be associated with a substitutable column of per son_t yp:
the attributes dept _i d and maj or (for st udent _typ)and nunber _hour s (for
part _tine_student typ).

8-2 Oracle Database Object-Relational Developer's Guide

Storage of Objects

When you create a subtype, the database automatically adds hidden columns for new
attributes in the subtype to tables containing a substitutable column of any of the
ancestor types of the new subtype. These retrofit the tables to store data of the new
type. If, for some reason, the columns cannot be added, creation of the subtype is
rolled back.

When you drop a subtype using DROP TYPE with the VALI DATE option, the database
automatically drops hidden columns for attributes unique to the subtype that do not
contain data. Errors are raised if these columns contain data.

Example 8-1 (page 8-3) creates types needed for related examples.
Example 8-1 Creating Types and Inserting in Tables

- drop any of these objects created for Ex.7-10
CREATE TYPE person_typ AS OBJECT (

i dno NUMBER,

name VARCHAR2(30) ,

phone VARCHAR2(20) ,

MAP MEMBER FUNCTI ON get i dno RETURN NUMBER)
NOT FI NAL;

/
CREATE TYPE BODY person_typ AS
MAP MEMBER FUNCTI ON get _i dno RETURN NUMBER | S
BEG N
RETURN i dno;
END;
END;
/
CREATE TYPE student _typ UNDER person_typ (
dept _i d NUMBER,
mej or VARCHAR2(30))
NOT FI NAL;
/
CREATE TYPE part _tine_student _typ UNDER student _typ (
nunber _hours NUVBER);
/
CREATE TYPE enpl oyee_typ UNDER person_typ (
enp_i d NUMBER,
myr VARCHAR2(30));
/
CREATE TABLE person_obj _table OF person_typ; // an object table
I NSERT | NTO person_obj _table
VALUES (person_typ(12, 'Bob Jones', '650-555-0130"));
I NSERT | NTO person_obj _table
VALUES (student typ(51, 'Joe Lane', '1-650-555-0140', 12, 'H STORY')):
I NSERT | NTO person_obj _table
VALUES (part_time_student_typ(52, 'KimPatel', '1-650-555-0135", 14,
"PHYSICS', 20));

Substitutable columns are associated with hidden type-discriminant columns. The
hidden columns contains an identifier, called a typeid, that identifies the most specific
type of each object in the substitutable columns. Typically, a typeid (RAW is one byte,
though it can be as big as four bytes for a large hierarchy.

You can find the typeid of a specified object instance using the function SYS_TYPEI D.

Example 8-2 (page 8-4) retrieves typeids of object instances stored in the
substitutable object table created in Example 8-1 (page 8-3).

Advanced Topics for Oracle Objects 8-3

Storage of Objects

8.1.5 Querying for Typeids of Objects Stored in Tables

You can retrieve typeids of object instances stored in a substitutable object table. See
Example 8-2 (page 8-4).

Example 8-2 Querying for Typeids of Objects Stored in the Table

- Requires Ex. 8-1
SELECT nane, SYS_TYPEI D(VALUE(p)) typeid
FROM per son_obj _table p;

Output:

NAVE TYPEI D
Bob Jones 01

Joe Lane 02

Ki m Pat el 03

The catalog views USER_TYPES, DBA_TYPES, and ALL_TYPES contain a TYPEI D
column (not hidden) that gives the typeid value for each type. You can join on this
column to get the type names corresponding to the typeids in a type-discriminant
column.

See Also:

"SYS_TYPEID (page 2-38)" for more information about SYS_TYPEI D, typeids,
and type-discriminant columns.

8.1.6 Storage of REFs

When the database constructs a REF to a row object, the constructed REF is made up of
the object identifier (OID), some metadata of the object table, and, optionally, the
ROW D.

The size of a REF in a column of REF type depends on the storage requirements
associated with the column, as follows:

e If the column is declared as a REF W TH ROW D, the database stores the RON Din
the REF column. The ROW D hint is ignored for object references in constrained
REF columns.

e If a column is declared as a REF with a SCOPE clause, the column decreases due to
the omission of the object table metadata and the ROW D. A scoped REF is 16 bytes
long.

8.1.7 Internal Layout of Nested Tables

The rows of a nested table are stored in a separate storage table. Each nested table
column has a single associated storage table. The storage table holds all the elements
for all of the nested tables in that column. The storage table has a hidden
NESTED_TABLE_I| D column with a system-generated value that lets Oracle database
map the nested table elements back to the appropriate row.

You can speed up queries that retrieve entire collections by making the storage table
index-organized. Include the ORGANI ZATI ON | NDEX clause inside the STORE AS
clause.

8-4 Oracle Database Object-Relational Developer's Guide

Creating Indexes on Typeids or Attributes

See "Nested Table Storage (page 9-11)".

A nested table type can contain objects or scalars:

¢ If the elements are objects, the storage table is like an object table: the top-level
attributes of the object type become the columns of the storage table. However,
you cannot construct REFs to objects in a nested table because a nested table row
has no object identifier column.

e If the elements are scalars, the storage table contains a single column called
COLUWN_VALUE that contains the scalar values.

8.1.8 Internal Layout of VARRAYs

All the elements of a VARRAY are stored in a single column. Depending upon the size
of the array, it may be stored inline or in a BLOB. See Storage Considerations for
Varrays (page 9-10) for details.

8.2 Creating Indexes on Typeids or Attributes

You can use indexes on typeids and attributes.

Topics:
¢ Indexing a Type-Discriminant Column (page 8-5)

* Indexing Subtype Attributes of a Substitutable Column (page 8-6)

8.2.1 Indexing a Type-Discriminant Column

Using the SYS_TYPEI D function, you can build an index on the hidden type-
discriminant column of substitutable columns. The type-discriminant column contains
typeids that identify the most specific type of every object instance stored in the
substitutable column.

The system uses this information to evaluate queries that filter by type using the | S
OF predicate, but you can access the typeids for your own purposes using the
SYS_TYPEI D function.

Generally, a type-discriminant column contains only a small number of distinct
typeids: at most, there can be only as many as there are types in the related type
hierarchy. The low cardinality of this column makes it a good candidate for a bitmap
index.

For example, the following statement creates a bitmap index on the type-discriminant
column underlying the substitutable cont act column of table cont act s. The
function SYS_TYPEI Dreferences the type-discriminant column:

Example 8-3 Create bitmap index on type-discriminant column

- Requires Ex. 8-1
CREATE TABLE contacts (
cont act person_typ,
contact _date DATE);
I NSERT | NTO contacts VALUES (
person_typ (65,'Vrinda MIIs', '1-650-555-0125"),'24 Jun 2003);
I NSERT | NTO contacts VALUES (
person_typ (12, 'Bob Jones', '650-555-0130"),"'24 Jun 2003");
I NSERT | NTO contacts VALUES (
student _typ(51, 'Joe Lane', '1-650-555-0140", 12, 'H STORY'),'24 Jun 2003');
I NSERT | NTO contacts VALUES (part_time_student_typ(52, 'Kim Patel"',

Advanced Topics for Oracle Objects 8-5

Type Evolution

' 1-650-555-0135', 14, 'PHYSICS', 20),'24 Jun 2003');
CREATE BI TMAP | NDEX typeid_idx ON contacts (SYS_TYPEID(contact));

8.2.2 Indexing Subtype Attributes of a Substitutable Column

You can build an index on attributes for any types that can be stored in a substitutable
column.

You can reference attributes of subtypes in the CREATE | NDEX statement by filtering
out types other than the desired subtype (and its subtypes) using the TREAT function;
you then use dot notation to specify the desired attribute.

For example, the following statement creates an index on the maj or attribute of all
students in the cont act s table. The declared type of the cont act column is
person_t yp, of which st udent _t yp is a subtype, so the column may contain
instances of per son_t yp, st udent _t yp, and subtypes of either one:

Example 8-4 Create index on attribute of all students

- Requires Ex.8-1- and 8-3
CREATE I NDEX majorl_idx ON contacts
(TREAT(contact AS student_typ).nmajor);

The st udent _t yp type first defined the maj or attribute: the per son_t yp supertype
does not have it. Consequently, all the values in the hidden column for the maj or
attribute are values for persons of type st udent _typ or partti mestudent _typ (a
st udent _t yp subtype). This means that the values of the hidden column are
identical to the values returned by the TREAT expression, maj or values for all
students, including student subtypes: both the hidden column and the TREAT
expression list majors for students and nulls for non-students. The system exploits this
fact and creates index maj or 1_i dx as an ordinary B-tree index on the hidden column.

Values in a hidden column are only identical to the values returned by the TREAT
expression just described if the type named as the target of the TREAT function

(st udent _t yp) is the type that first defined the maj or attribute. If the target of the
TREAT function is a subtype that merely inherited the attribute, as in the following
example, the TREAT expression returns non-null maj or values for the subtype (part-
time students) but not for its supertype (other students).

CREATE | NDEX maj or2_i dx ON contacts
(TREAT(contact AS part_tine_student _typ).mjor);

Here, the values stored in the hidden column for maj or may be different from the
results of the TREAT expression. Consequently, an ordinary B-tree index cannot be
created on the underlying column. Therefore, the database treats the TREAT
expression like any other function-based expression and tries to create the index as a
function-based index on the result.

The following example, like the previous one, creates a function-based index on the
maj or attribute of part-time students, but in this case, the hidden column for maj or is
associated with a substitutable object table per son_obj _t abl e:

CREATE | NDEX maj or3_i dx ON person_obj _table p
(TREAT(VALUE(p) AS part_time_student_typ).major);

8.3 Type Evolution

Type evolution is the process of changing a object type.

Topics:

8-6 Oracle Database Object-Relational Developer's Guide

Type Evolution

About Type Evolution (page 8-7)

Type Evolution and Dependent Schema Objects (page 8-7)
Options for Updating Data (page 8-8)

Effects of Structural Changes to Types (page 8-8)

Altering a Type by Adding and Dropping Attributes (page 8-9)
Altering a Type by Adding a Nested Table Attribute (page 8-10)
About Validating Types That Have Been Altered (page 8-11)
ALTER TYPE Statement for Type Evolution (page 8-14)

ALTER TABLE Statement for Type Evolution (page 8-15)

8.3.1 About Type Evolution

You can make the following changes to evolve an object type:

Add and drop attributes

Add and drop methods

Modify a numeric attribute to increase its length, precision, or scale
Modify a varying length character attribute to increase its length
Change the FI NAL and | NSTANTI ABLE properties of a type
Modify limit and size of VARRAYs

Modify length, precision, and scale of collection elements

Changes to a type affect things that reference the type. For example, if you add a new
attribute to a type, data in a column of that type must be presented so as to include the
new attribute.

8.3.2 Type Evolution and Dependent Schema Objects

Dependent schema objects of a type are objects that directly or indirectly reference the
type and are affected by a change to it.

A type can have these kinds of dependent schema objects: tables; types or subtypes;
program units (PL/SQL blocks) such as procedures, functions, packages, and triggers;
indextypes; views (including object views); function-based indexes; and operators.

How a dependent schema object is affected by a change to a type depends on the
object and on the nature of the change.

Dependent program units, views, operators, and indextypes are marked invalid
when the type is modified. The next time one of these invalid schema objects is
referenced, it is revalidated using the new type definition. If the object recompiles
successfully, it becomes valid and can be used again.

Dependent function-based indexes may be dropped or disabled, depending on
the type change, and must be rebuilt.

Advanced Topics for Oracle Objects 8-7

Type Evolution

¢ Dependent tables have one or more internal columns added for each attribute
added to the type, depending on the attribute type. New attributes are added with
NULL values. For each dropped attribute, the columns associated with that
attribute are dropped. For each modified attribute, the length, precision, or scale
of its associated column is changed accordingly.

These changes mainly involve updating the metadata of the tables and can be
performed quickly. However, the data in those tables must be updated to the format of
the new type version as well, as discussed in "Options for Updating Data

(page 8-8)".

8.3.3 Options for Updating Data

Depending on the amount of data, updating can be time-consuming, so the ALTER
TYPE command has options to let you choose whether to convert all dependent table
data immediately or to leave it in the old format to be converted piecemeal as it is
updated in the course of business.

The CASCADE option for ALTER TYPE propagates a type change to dependent types
and tables. See "ALTER TYPE Statement for Type Evolution (page 8-14)". CASCADE
itself has the following options that let you choose whether or not to convert table data
to the new type format as part of the propagation:

e | NCLUDI NG TABLE DATA: converts the data (default)

e NOT | NCLUDI NG TABLE DATA: does not convert data

By default, the CASCADE option converts the data. In either case, table data is always
returned in the format of the latest type version. If the table data is stored in the format
of an earlier type version, the database converts the data to the format of the latest
version before returning it, even though the format in which the data is actually stored
is not changed until the data is rewritten.

You can retrieve the definition of the latest type from the system view USER_SOURCE.
You can view definitions of all versions of a type in the USER_TYPE_VERSI ONS view.

See Also:

Oracle Database PL/SQL Language Reference for details about type specification
and body compilation

8.3.4 Effects of Structural Changes to Types

Structural changes to a type affect dependent data and require the data to be
converted. This is not true for changes that are confined to method definitions or
behavior (implementation) of the type.

These possible changes to a type are structural:
¢ Add or drop an attribute
* Modify the length, precision, or scale of an attribute

¢ Change the finality of a type from FI NAL to NOT FI NAL or the reverse

These changes result in new versions of the altered type and all its dependent types
and require the system to add, drop, or modify internal columns of dependent tables
as part of the process of converting to the new version.

8-8 Oracle Database Object-Relational Developer's Guide

Type Evolution

When you make any of these kinds of changes to a type that has dependent types or
tables, the effects of propagating the change are not confined only to metadata but also
affect data storage arrangements and require data conversion.

Besides converting data, you may also need to make other changes. For example, if a
new attribute is added to a type, and the type body invokes the constructor of the
type, then each constructor in the type body must be modified to specify a value for
the new attribute. Similarly, if a new method is added, then the type body must be
replaced to add the implementation of the new method. The type body can be
modified by using the CREATE OR REPLACE TYPE BODY statement.

8.3.5 Altering a Type by Adding and Dropping Attributes

You can make a simple change to a type by adding one attribute and dropping
another.

Example 8-5 (page 8-9)makes such a change to per son_t ype. The CASCADE
keyword propagates the type change to dependent types and tables, but the phrase
NOT | NCLUDI NG TABLE DATA prevents conversion of the related data.

Example 8-5 Altering an Object Type by Adding and Dropping an Attribute

- Drop person_typ and person_obj table if they exist
CREATE TYPE person_typ AS OBJECT (

i dno NUMBER,
nanme VARCHAR2(30)
phone VARCHAR2(20)) ;

/
CREATE TABLE person_obj _table OF person_typ;

I NSERT | NTO person_obj _tabl e
VALUES (person_typ(12, 'Bob Jones', '650-555-0130"));

SELECT val ue(p) FROM person_obj _table p;

VALUE(P) (1DNO, NAME, PHONE)

PERSON_TYP(12, 'Bob Jones', '650-555-0130")

You can add the email attribute and drop the phone attribute as follows:

ALTER TYPE person_typ
ADD ATTRI BUTE (emai | VARCHAR2(80)),
DROP ATTRI BUTE phone CASCADE NOT | NCLUDI NG TABLE DATA;

Then you can disconnect and reconnect to accommodate the type change:

connect oe/ oe;

connect hr/hr;

ALTER SESSI ON SET PLSQL_WARNINGS = 'enable:all’;

- The data of table person_obj_table has not been converted yet, but
- when the data is retrieved, Oracle returns the data based on

- the latest type version. The new attribute is initialized to NULL.
SELECT val ue(p) FROM person_obj _table p;

VALUE(P) (1DNO, NAME, EMAIL)

PERSON_TYP(12, 'Bob Jones', NULL)

During SELECT statements, even though column data may be converted to the latest
type version, the converted data is not written back to the column. If you retrieve a

Advanced Topics for Oracle Objects 8-9

Type Evolution

particular user-defined type column in a table often, consider converting that data to
the latest type version to eliminate redundant data conversions. Converting is
especially beneficial if the column contains VARRAY attributes which typically take
more time to convert than objects or nested table columns.

You can convert a column of data by issuing an UPDATE statement to set the column to
itself, as indicated in the following code snippet, which is unrelated to previous code.

UPDATE dept _tab SET enp_array_col = enp_array_col;

You can convert all columns in a table by using ALTER TABLE with the UPGRADE
I NCLUDI NG DATA. For example:

ALTER TYPE person_typ ADD ATTRI BUTE (photo BLOB)
CASCADE NOT | NCLUDI NG TABLE DATA;
ALTER TABLE person_obj _tabl e UPGRADE | NCLUDI NG DATA;

The ALTER TABLE line converts only the table listed. The CASCADE option prevents
conversion of other tables or dependents.

8.3.6 Altering a Type by Adding a Nested Table Attribute

You can add a nested table attribute to an object type that is included in a nested table.
The following steps are required to make this complex change to a type.

The steps require this initial schema which is then altered by the code in Step 1.

Initial Schema

- Drop existing person_typ, departnent_type, people_typ objects or tables
CREATE TYPE person_typ AS OBJECT (

i dno NUMBER,
name VARCHAR2(30) ,
phone VARCHAR2(20)) ;

/

- creating a nested table type
CREATE TYPE peopl e_typ AS TABLE OF person_typ;/
CREATE TYPE department _typ AS OBJECT (

manager person_typ,

enpl oyee people_typ); // a nested table/
CREATE TABLE departnent OF departnent _typ

NESTED TABLE enpl oyee STORE AS enpl oyee_store_nt;

The code example in Step 1 starts by creating a new object t asks_t yp and a nested
table type to hold it, t asks_nt t ab.

The following steps, both in the code example in Step 1, and in other programs, are
necessary to add the nested table t asks as an attribute to the object type
per son_t yp, which is already included in the nested table peopl e_t yp.

1. .

Altering an Object Type by Adding a Nested Table Attribute

- Requires Ex. 8-6
CREATE TYPE tasks_typ AS OBJECT (
priority VARCHAR2(2) ,
description VARCHAR2('30)) ;
/

CREATE TYPE tasks_nttab AS TABLE OF tasks_typ;
/

8-10 Oracle Database Object-Relational Developer's Guide

Type Evolution

- Propagate the change to enpl oyee_store_nt

- Specify a storage nane for the new nested table
ALTER TABLE enpl oyee_store_nt

UPGRADE NESTED TABLE tasks STORE AS tasks_nt;

2. Use CREATE OR REPLACE TYPE BOQDY for per son_t yp to update the
corresponding type body to make it current with the new type definition, if
necessary.

3. Upgrade the dependent tables to the latest type version and convert the data in the
tables. This validates the table and allow for data access again.

ALTER TABLE department UPGRADE | NCLUDI NG DATA;

4. Alter dependent PL/SQL program units as needed to take account of changes to
the type.

5. Use OTT or JPublisher to generate new header files for applications, depending on
whether the application is written in C or Java.

Adding a new attribute to a supertype also increases the number of attributes in all
its subtypes because these inherit the new attribute. Inherited attributes always
precede declared (locally defined) attributes, so adding a new attribute to a
supertype causes the ordinal position of all declared attributes of any subtype to be
incremented by one recursively.

You must update the mappings of the altered type to include the new attributes.
Oracle Type Translator (OTT) and JPublisher do this. If you use another tool, you
must be sure that the type headers are properly synchronized with the type
definition in the server; otherwise, unpredictable behavior may result.

6. Modify application code as needed and rebuild the application.

8.3.7 About Validating Types That Have Been Altered

When the system executes an ALTER TYPE statement, it first validates the requested
type change syntactically and semantically to make sure it is legal.

The system performs the same validations as for a CREATE TYPE statement plus some
additional ones. If the new specification of the target type or any of its dependent
types fails the type validations, the ALTER TYPE statement aborts. No new type
version is created, and all dependent objects remain unchanged.

If dependent tables exist, further checking ensures that restrictions relating to the
tables and indexes are observed. For example, it ensures that an attribute being
dropped is not used as a partitioning key. Again, if the ALTER TYPE statement fails
the check of table-related restrictions, then the type change is aborted, and no new
version of the type is created.

When a single ALTER TYPE statement adds multiple attributes, it is done in the order
specified. Multiple type changes can be specified in the same ALTER TYPE statement,
but no attribute name or method signature can be specified more than once in the
statement. For example, adding and modifying the same attribute in a single statement
is not allowed.

The following sections contain other notes on type changes including;:

* Dropping an Attribute (page 8-12)

Advanced Topics for Oracle Objects 8-11

Type Evolution

Modifying the Length, Precision, or Scale of an Attribute Type (page 8-12)
Dropping a Method (page 8-12)
Modifying the INSTANTIABLE Property (page 8-13)

Dropping an Attribute

Dropping all attributes from a root type is not allowed. Instead, you must drop
the type. Because a subtype inherits all the attributes from its supertype, dropping
all the attributes from a subtype does not reduce its attribute count to zero;
therefore, dropping all attributes declared locally in a subtype is allowed.

Only an attribute declared locally in the target type can be dropped. You cannot
drop an inherited attribute from a subtype. Instead, drop the attribute from the
type where it is locally declared.

Dropping an attribute which is part of a table partitioning or sub-partitioning key
in a table is not allowed.

When an attribute is dropped, the column corresponding to the dropped attribute
is dropped.

When an attribute is dropped, any indexes, statistics, constraints, and referential
integrity constraints that reference it are removed.

Modifying the Length, Precision, or Scale of an Attribute Type

You are not allowed to expand the length of an attribute referenced in a function-
based index, clustered key or domain index on a dependent table.

You are not allowed to decrease the length, precision, or scale of an attribute.

Dropping a Method

You can only drop a method from the type in which the method is defined (or
redefined): You cannot drop an inherited method from a subtype, and you cannot
drop an redefined method from a supertype.

If a method is not redefined, dropping it using the CASCADE option removes the
method from the target type and all subtypes. However, if a method is redefined
in a subtype, the CASCADE will fail and roll back. For the CASCADE to succeed,
you must first drop each redefined method from the subtype that defines it and
then drop the method from the supertype.

You can consult the USER_DEPENDENCI ES table to find all the schema objects,
including types, that depend on a given type. You can also run the
DBMS_UTI LI TY. GET_DEPENDENCY utility to find the dependencies of a type.

You can use the | NVALI DATE option to drop a method that has been redefined,
but the redefined versions in the subtypes must still be dropped manually. The
subtypes will remain in an invalid state until they are explicitly altered to drop the
redefined versions. Until then, an attempt to recompile the subtypes for
revalidation will produce the error Met hod does not overri de.

Unlike CASCADE, | NVALI DATE bypasses all the type and table checks and simply
invalidates all schema objects dependent on the type. The objects are revalidated
the next time they are accessed. This option is faster than using CASCADE, but you
must be certain that no problems occur when revalidating dependent types and

8-12 Oracle Database Object-Relational Developer's Guide

Type Evolution

tables. Table data cannot be accessed while a table is invalid; if a table cannot be
validated, its data remains inaccessible.

Modifying the INSTANTIABLE Property

Altering an object type from | NSTANTI ABLE to NOT | NSTANTI ABLE is allowed
only if the type has no table dependents.

Altering an object type from NOT | NSTANTI ABLE to | NSTANTI ABLE is allowed
anytime. This change does not affect tables.

Modifying the FINAL Property

Altering an object type from NOT FI NAL to FI NAL is only allowed if the target
type has no subtypes.

When you alter an object type from FI NAL to NOT FI NAL or vice versa, you must
use CASCADE to convert data in dependent columns and tables immediately. You
may not use the CASCADE option NOT | NCLUDI NG TABLE DATA to defer
converting data.

— From NOT FI NAL to FI NAL, you must use CASCADE | NCLUDI NG TABLE
DATA.

— From FI NAL to NOT FI NAL, you may use either CASCADE | NCLUDI NG
TABLE DATA or CASCADE CONVERT TO SUBSTI TUTABLE.

When you alter a type from FI NAL to NOT FI NAL, select the CASCADE option
based on whether or not you want to insert new subtypes of the altered types
into existing columns and tables.

By default, altering a type from FI NAL to NOT FI NAL enables you to create new
substitutable tables and columns of that type, but it does not automatically make
existing columns (or object tables) of that type substitutable. In fact, just the
opposite happens: existing columns and tables of the type are marked NOT
SUBSTI TUTABLE AT ALL LEVELS. If any embedded attribute of these columns is
substitutable, an error is generated. New subtypes of the altered type cannot be
inserted into these preexisting columns and tables.

To alter an object type to NOT FI NAL in a way that makes existing columns and
tables of the type substitutable (assuming that they are not marked NOT
SUBSTI TUTABLE), use the CASCADE option CONVERT TO SUBSTI TUTABLE.

The following example shows the use of CASCADE with the option CONVERT TO
SUBSTI TUTABLE:

CREATE TYPE shape AS OBJECT (
nane VARCHAR2(30),
area NUMBER)
FI NAL; /
ALTER TYPE shape NOT FI NAL CASCADE CONVERT TO SUBSTI TUTABLE;

This CASCADE option marks each existing column as SUBSTI TUTABLE AT ALL
LEVELS and causes a new, hidden column to be added for the Typeld of instances
stored in the column. The column can then store subtype instances of the altered

type.

Advanced Topics for Oracle Objects 8-13

Type Evolution

8.3.8 ALTER TYPE Statement for Type Evolution

Table 8-1 (page 8-14) lists some of the important options in the ALTER TYPE and
ALTERTYPE. . . CASCADE statements for altering the attribute or method definition of

a type.

Table 8-1 ALTER TYPE Options for Type Evolution

Option

Description

CASCADE

I NCLUDI NG TABLE
DATA (Option of
CASCADE)

NOT | NCLUDI NG
TABLE DATA (Option of
CASCADE)

FORCE (Option of
CASCADE)

Propagates the type change to dependent types and tables. The
statement aborts if an error is found in dependent types or tables
unless the FORCE option is specified.

If CASCADE is specified without other options, then the
| NCLUDI NG TABLE DATA option for CASCADE is implied, and
the database converts all table data to the latest type version.

Converts data stored in all user-defined columns to the most
recent version of the column type.

For each new attribute added to the column type, a new attribute
is added to the data and is initialized to NULL. For each attribute
dropped from the referenced type, the corresponding attribute
data is removed from the table. All tablespaces containing the
table data must be in read-write mode; otherwise, the statement
will not succeed.

Leaves column data as is, does not change type version. If an
attribute is dropped from a type referenced by a table, the
corresponding column of the dropped attribute is not removed
from the table. However, the metadata of the column is marked
unused. If the dropped attribute is stored out-of-line (for example,
VARRAY, LOB, or nested table attribute), the out-of-line data is not
removed. (Unused columns can be removed afterward by using
an ALTER TABLE DROP UNUSED COLUMNS statement.)

This option is useful when you have many large tables and may
run out of rollback segments if you convert them all in one
transaction. This option enables you to convert the data of each
dependent table later in a separate transaction (using an ALTER
TABLE UPGRADE | NCLUDI NG DATA statement).

Specifying this option speeds up the table upgrade because the
table data remains in the format of the old type version. However,
selecting data from this table requires converting the images
stored in the column to the latest type version. This is likely to
affect performance during subsequent SELECT statements.

Because this option only requires updating the table metadata, it
does not require that all tablespaces be on-line in read /write
mode for the statement to succeed.

Forces the system to ignore errors from dependent tables and
indexes. Errors are logged in a specified exception table so that
they can be queried afterward. Use this option with caution
because dependent tables can become inaccessible if some table
€errors occur.

8-14 Oracle Database Object-Relational Developer's Guide

Storing XMLTypes and LOBs in an ANYDATA Column

Table 8-1 (Cont.) ALTER TYPE Options for Type Evolution
__|

Option Description

CONVERT TO For use when altering a type from FI NAL to NOT FI NAL: Converts
SUBSTI TUTABLE data stored in all user-defined columns to the most recent version
(Option of CASCADE) of the column type and then marks these existing columns and

object tables of the type SUBSTI TUTABLE AT ALL LEVELSso
that they can store any newly created subtypes of the type.

If the type is altered to NOT FI NAL without specifying this
option, existing columns and tables of the type are marked NOT
SUBSTI TUTABLE AT ALL LEVELS, and new subtypes of the
type cannot be stored in them. You can only store these subtypes
in columns and tables created after the type was altered.

See Also:

Oracle Database SQL Language Reference for further information about ALTER
TYPE options

8.3.9 ALTER TABLE Statement for Type Evolution

You can use ALTER TABLE to convert table data to the latest version of referenced
types. For an example, see "Altering a Type by Adding a Nested Table Attribute
(page 8-10)". See Table 8-1 (page 8-14) for a discussion of the | NCLUDI NG DATA option.

See Also:

Oracle Database SQL Language Reference for information about ALTER TABLE
options

8.4 Storing XMLTypes and LOBs in an ANYDATA Column

Beginning with Oracle Database 12¢, you can use ALTER TABLE to store ADTs with
XM_TYPEs and LOB attributes in ANYDATA columns. You can also do the same for
standalone XMLTYPEs.

e Use the nodi fy_opaque_t ype clause, which instructs the database to store
these types unpacked. Otherwise, they cannot be stored in an ANYDATA column.

See Also:

Oracle Database SQL Language Reference for information about ALTER TABLE
used with the nodi fy_opaque_t ype clause

8.5 System-Defined and User-Defined Constructors

There are various aspects to system-defined constructors, also known as attribute-
value constructors, and user-defined constructors.

Topics:

Advanced Topics for Oracle Objects 8-15

System-Defined and User-Defined Constructors

* The Attribute-Value Constructor (page 8-16)

¢ Constructors and Type Evolution (page 8-16)

* Advantages of User-Defined Constructors (page 8-16)

* Defining and Implementing User-Defined Constructors (page 8-17)
* Overloaded and Hidden Constructors (page 8-18)

e Calling User-Defined Constructors (page 8-18)

* Constructors for SQL]J Object Types (page 8-20)

8.5.1 The Attribute-Value Constructor

The system-defined constructor, also known as the attribute-value constructor,
requires you to pass the constructor a value for each attribute of the type. The
constructor then sets the attributes of the new object instance to those values, as shown
in Example 8-6 (page 8-16).

The keyword NEWpreceding a call to a constructor is optional but recommended.
Example 8-6 Setting the attribute-value with the Constructor

CREATE TYPE shape AS OBJECT (
nane VARCHAR2(30),
area NUMBER);
/
CREATE TABLE bui | di ng_bl ocks of shape;

- attribute-value constructor: Sets instance attributes to the specified val ues
I NSERT | NTO bui | di ng_bl ocks
VALUES (
NEW shape(' ny_shape', 4));

8.5.2 Constructors and Type Evolution

The attribute-value constructor saves you the trouble of defining your own
constructors for a type. However, you must supply a value for every attribute declared
in the type or the constructor call fails to compile.

This requirement can create a problem if you evolve the type later on, especially
because the attribute-value constructor is implicit and not visible in the code, unlike a
user-defined constructor. When you change the attributes of a type, the attribute-value
constructor of the type changes, too. If you add an attribute, the updated attribute-
value constructor expects a value for the new attribute; otherwise, any attribute-value
constructor calls in your existing code fail.

See "Type Evolution (page 8-6)".

8.5.3 Advantages of User-Defined Constructors

User-defined constructors do not need to explicitly set a value for every attribute of a
type, unlike attribute-value constructors.

A user-defined constructor can have any number of arguments, of any type, and these
do not need to map directly to type attributes. When you define a constructor, you can
initialize the attributes to any appropriate values. For any attributes which you do not
supply values, the system initialized to NULL.

8-16 Oracle Database Object-Relational Developer's Guide

System-Defined and User-Defined Constructors

If you evolve a type—for example, by adding an attribute—calls to user-defined
constructors for the type do not need to be changed. User-defined constructors are not
automatically modified when the type evolves, so their signatures remain the same.
You may, however, need to change the definition of the constructor if you do not want
the new attribute to be initialized to NULL.

8.5.4 Defining and Implementing User-Defined Constructors

You define user-defined constructors in the type body, like an ordinary method. You
introduce the declaration and the definition with the phrase CONSTRUCTOR
FUNCTI ONand end with the clause RETURN SELF AS RESULT.

A constructor for a type must have the same name as the type. Example 8-7

(page 8-17) defines two constructor functions for the shape type. As the example
shows, you can overload user-defined constructors by defining multiple versions with
different signatures.

Example 8-7 Defining and Implementing User-Defined Constructors

CREATE TYPE shape AS OBJECT (
nane VARCHAR2(30),
area NUMBER,
CONSTRUCTOR FUNCTI ON shape(SELF I N QUT NOCOPY shape, name VARCHAR2)
RETURN SELF AS RESULT,
CONSTRUCTOR FUNCTI ON shape(SELF | N QUT NOCOPY shape, nanme VARCHARZ,
area NUMBER) RETURN SELF AS RESULT
) NOT FI NAL;
/

CREATE TYPE BCODY shape AS
CONSTRUCTOR FUNCTI ON shape(SELF I N OUT NOCOPY shape, name VARCHARZ)
RETURN SELF AS RESULT IS

BEG N
SELF. nanme : = nane;
SELF. area : = 0;
RETURN;

END;

CONSTRUCTOR FUNCTI ON shape(SELF I N OUT NOCOPY shape, name VARCHARZ,
area NUMBER) RETURN SELF AS RESULT IS

BEG N
SELF. name : = nane;
SELF. area : = area;
RETURN;
END;
END;

/

A user-defined constructor has an implicit first parameter SELF. Specifying this
parameter in the declaration of a user-defined constructor is optional. If you do specify
it, you must declare its mode to be | N QUT.

The required clause RETURN SELF AS RESULT ensures that the most specific type of
the instance being returned is the same as the most specific type of the SELF
argument. In the case of constructors, this is the type for which the constructor is
defined. For example, if the most specific type of the SELF argument on a call to the
shape constructor is shape, then this clause ensures that the shape constructor
returns an instance of shape (not an instance of a subtype of shape).

When a constructor function is called, the system initializes the attributes of the SELF
argument to NULL. Names of attributes subsequently initialized in the function body

Advanced Topics for Oracle Objects 8-17

System-Defined and User-Defined Constructors

may be qualified with SELF, such as SELF. name in Example 8-7 (page 8-17), to
distinguish them from the names of the arguments of the constructor function, if these
are the same. If the argument names are different, this qualification is not necessary.

The function body must include an explicit r et ur n; as shown. The return keyword
must not be followed by ar et ur n expression. The system automatically returns the
newly constructed SELF instance.

A user-defined constructor may be implemented in PL/SQL, C, or Java.

8.5.5 Overloaded and Hidden Constructors
You can overload user-defined constructors, like other type methods.

User-defined constructors are not inherited, so a user-defined constructor defined in a
supertype cannot be hidden in a subtype. However, a user-defined constructor does
hide, and thus supersede, the attribute-value constructor for its type if the signature of
the user-defined constructor exactly matches the signature of the attribute-value
constructor.

For the signatures to match, the names and types of the parameters (after the implicit
SELF parameter) of the user-defined constructor must be the same as the names and
types of the attributes of the type. The mode of the parameters (after the implicit SELF
parameter) of the user-defined constructor must be | N.

If an attribute-value constructor is not hidden by a user-defined constructor that has
the same name and signature, the attribute-value constructor can still be called.

Note that, if you evolve a type—for example, by adding an attribute—the signature of
the attribute-value constructor of the type changes accordingly. This can cause a
formerly hidden attribute-value constructor to become usable again.

8.5.6 Calling User-Defined Constructors

You call a user-defined constructor like any other function and you can use it
anywhere you can use an ordinary function.

The SELF argument is passed in implicitly and may not be passed in explicitly. In
other words, usages like the following are not allowed:

NEW const ruct or (i nstance, argumrent _|ist)

A user-defined constructor cannot occur in the DEFAULT clause of a CREATE or ALTER
TABLE statement, but an attribute-value constructor can. The arguments to the
attribute-value constructor must not contain references to PL/SQL functions or to
other columns, including the pseudocolumns LEVEL, PRI OR, and ROANUM or to date
constants that are not fully specified. The same is true for check constraint expressions:
an attribute-value constructor can be used as part of check constraint expressions
while creating or altering a table, but a user-defined constructor cannot.

Parentheses are required in SQL even for constructor calls that have no arguments. In
PL/SQL, parentheses are optional when invoking a zero-argument constructor. They
do, however, make it more obvious that the constructor call is a function call. The
following PL/SQL example omits parentheses in the constructor call to create a new
shape:

shape s := NEW ny_schena. shape;
The NEWkeyword and the schema name are optional.

Example 8-8 (page 8-19) creates a subtype under the type created in Example 8-7
(page 8-17) and shows examples for calling the user-defined constructors.

8-18 Oracle Database Object-Relational Developer's Guide

System-Defined and User-Defined Constructors

Example 8-8 Calling User-Defined Constructors

- Requires Ex. 8-8
CREATE TYPE rectangl e UNDER shape (
| en NUMBER,
wt h NUMBER,
CONSTRUCTOR FUNCTI ON rect angl e(SELF I N QUT NOCOPY rectangl e,
nane VARCHAR2, |en NUMBER wth NUMBER) RETURN SELF as RESULT
CONSTRUCTOR FUNCTI ON rect angl e(SELF | N QUT NOCOPY rectangl e,
name VARCHAR2, side NUMBER) RETURN SELF as RESULT);
/
SHOW ERRORS
CREATE TYPE BCDY rectangle IS
CONSTRUCTOR FUNCTI ON rect angl e(SELF | N QUT NOCOPY rectangl e,
nane VARCHAR2, |en NUMBER wth NUMBER) RETURN SELF AS RESULT IS

BEG N
SELF. name : = nane;
SELF.area := len*wth;
SELF.len := len;
SELF.wth := wth;
RETURN ;

END:;

CONSTRUCTOR FUNCTI ON rect angl e(SELF I N QUT NOCOPY rectangl e,
nane VARCHAR2, side NUMBER) RETURN SELF AS RESULT IS

BEG N
SELF. name : = nane;
SELF. area := side * side;
SELF.len : = side;
SELF.wth : = side;
RETURN ;

END;

END:;

/

CREATE TABLE shape_t abl e OF shape;

I NSERT | NTO shape_t abl e VALUES(shape(' shapel'));

I NSERT | NTO shape_t abl e VALUES(shape(' shape2', 20));

I NSERT | NTO shape_tabl e VALUES(rectangle('rectangle', 2, 5));

I NSERT | NTO shape_tabl e VALUES(rectangl e(' quadrangle', 12, 3));
I NSERT | NTO shape_t abl e VALUES(rectangl e(' square', 12));

The following query selects the rows in the shape_t abl e:
SELECT VALUE(s) FROM shape_table s;

VALUE(S) (NAME, AREA)

SHAPE(' shapel', 0)
SHAPE(' shape2', 20)
RECTANGLE('rectangle', 10, 2, 5)
RECTANGLE(' quadrangl e', 36, 12, 3)
RECTANGLE(' square', 144, 12, 12)

The following PL/SQL code calls the constructor:
s shape : = NEW shape('void');

Advanced Topics for Oracle Objects 8-19

Transient and Generic Types

8.5.7 Constructors for SQLJ Object Types

A SQLJ object type is a SQL object type mapped to a Java class. A SQL]J object type has
an attribute-value constructor. It can also have user-defined constructors that are
mapped to constructors in the referenced Java class.

Example 8-9 Creating a SQLJ Object

CREATE TYPE address AS OBJECT
EXTERNAL NAME ' university.address' LANGUAGE JAVA
USI NG SQLDat a(
street VARCHAR2(100) EXTERNAL NAME 'street',
city VARCHAR2(50) EXTERNAL NAME 'city',
state VARCHAR2(50) EXTERNAL NAME 'state',
zi pcode NUMBER EXTERNAL NAME ' zi pcode',
CONSTRUCTOR FUNCTI ON address (SELF IN OUT NOCOPY address, street VARCHAR?,
city VARCHAR2, state VARCHAR2, zipcode NUMBER)
RETURN SELF AS RESULT AS LANGUAGE JAVA
NAME 'university.address (java.lang.String, java.lang.String,
java.lang. String, int) return address');
/

A SQLJ type of a serialized representation can have only a user-defined constructor.
The internal representation of an object of SQL]J type is opaque to SQL, so an attribute-
value constructor is not possible for a SQLJ type.

8.6 Transient and Generic Types

Oracle database has three generic (that is, generically programmed) SQL data types
that enable you to dynamically encapsulate and access type descriptions, data
instances, and sets of data instances of any other SQL type, including object and
collection types. You can also use these three types to create anonymous types,
including anonymous collection types.

The three SQL types are implemented as opaque types. In other words, the internal
structure of these types is not known to the database; their data can be queried only by
implementing functions (typically 3GL routines) for the purpose. Oracle database
provides both an OCI and a PL/SQL API for implementing such functions.

Of the three types, ANYTYPE is transient, and ANYDATA and ANYDATASET are not
transient, but rather persistent. Transient types cannot be persistently stored because
their structures are opaque to the database. You cannot create columns of transient
types or make them attributes of persistent types.

Beginning with Oracle Database release 12c, release 12.2, transient types can be created
on Active Data Guard instance if:

1. Real Time Apply is running on Active Data Guard, and

2. Logical Standby is not lagging far behind the Primary (typically, order of
seconds).

The three generic SQL types are described in Table 8-2 (page 8-21).

8-20 Oracle Database Object-Relational Developer's Guide

Transient and Generic Types

Table 8-2 Generic SQL Types
- - - ___|

Type Description

SYS. ANYTYPE A type description type. A SYS. ANYTYPE can contain a type
description of any SQL type, named or unnamed, including object
types and collection types.

An ANYTYPE can contain a type description of a persistent type, but
an ANYTYPE itself is transient: in other words, the value in an
ANYTYPE itself is not automatically stored in the database. To create
a persistent type, use a CREATE TYPE statement from SQL.

SYS. ANYDATA A self-describing data instance type. A SYS. ANYDATA contains an
instance of a given type, with data, plus a description of the type. In
this sense, a SYS. ANYDATA is self-describing. An ANYDATA can be
persistently stored in the database.

The following cannot be stored in an ANYDATA column:
* Another opaque type except XMLTYPE

e LOB types (BLOB/CLOB/NCLOB)

* VARRAY types with maximum size greater than 4K
e Transient types

SYS. ANYDATASET A self-describing data set type. A SYS. ANYDATASET type contains a
description of a given type plus a set of data instances of that type.
An ANYDATASET can be persistently stored in the database.

The following cannot be stored in an ANYDATASET column:
* Another opaque type such as ANYDATA or XMLTYPE

e LOB types (BLOB/CLOB/NCLOB)

* VARRAY types with maximum size greater than 4K

e ADTs that contain any of the above types

¢ Transient types

Each of these three types can be used with any built-in type native to the database as
well as with object types and collection types, both named and unnamed. The types
provide a generic way to work dynamically with type descriptions, lone instances, and
sets of instances of other types. Using the APIs, you can create a transient ANYTYPE
description of any kind of type. Similarly, you can create or convert (cast) a data value
of any SQL type to an ANYDATA and can convert an ANYDATA (back) to a SQL type.
And similarly again with sets of values and ANYDATASET.

The generic types simplify working with stored procedures. You can use the generic
types to encapsulate descriptions and data of standard types and pass the
encapsulated information into parameters of the generic types. In the body of the
procedure, you can detail how to handle the encapsulated data and type descriptions
of whatever type.

You can also store encapsulated data of a variety of underlying types in one table
column of type ANYDATA or ANYDATASET. For example, you can use ANYDATA with
Advanced Queuing to model queues of heterogeneous types of data. You can query
the data of the underlying data types like any other data.

Example 8-10 (page 8-22) defines and executes a PL/SQL procedure that uses
methods built into SYS. ANYDATA to access information about data stored in a
SYS. ANYDATA table column.

Advanced Topics for Oracle Objects 8-21

Transient and Generic Types

Example 8-10 Using SYS.ANYDATA

CREATE OR REPLACE TYPE dogowner AS OBJECT (
ownerno NUMBER, ownernane VARCHAR2(10));
/
CREATE OR REPLACE TYPE dog AS OBJECT (
breed VARCHAR2(10), dogname VARCHAR2(10));
/
CREATE TABLE nytab (id NUMBER data SYS. ANYDATA);
I NSERT | NTO nytab VALUES (1, SYS. ANYDATA. Convert Nunber (5)):
I NSERT | NTO nytab VALUES (2, SYS. ANYDATA. Convert bject (
dogowner (5555, 'John')));
comit;

CREATE OR REPLACE procedure P IS
CURSOR cur |'S SELECT id, data FROM nytab;

v_id nytab.id%WYPE;

v_data mytab. dat a%YPE;

v_type SYS. ANYTYPE;

v_typecode PLS_| NTEGER;

v_typenane VARCHAR2(60);

v_dummy PLS_| NTEGER;

v_n NUMBER,

v_dogowner dogowner ;

non_nul | _anyt ype_f or _NUVMBER excepti on;
unknown_t ypenane excepti on;

BEG N
OPEN cur;
LooP
FETCH cur INTO v_id, v_data;
EXIT WHEN cur 9%NOTFOUND;
v_typecode := v_data. Get Type (v_type /* QUT */);
CASE v_typecode
VHEN Dbns_Types. Typecode_NUMBER THEN
IF v_type I'S NOT NULL
THEN RAI SE non_nul | _anytype_for _NUMBER; END IF;
v_dumy := v_data. Get NUMBER (v_n /* QUT */);
Dbms_CQut put . Put _Li ne (
To_Char(v_id) || ": NUMBER ="' || To_Char(v_n));
VHEN Dbns_Types. Typecode_(bj ect THEN
v_typenane : = v_data. Get TypeNange();
I F v_typename NOT IN (' HR DOGOWNER)
THEN RAI SE unknown_t ypename; END | F;
v_dumy := v_data. Get bject (v_dogowner /* QUT */);
Dbms_CQut put . Put _Li ne (

To_Char(v_id) || ': user-defined type ="' || v_typenane ||
"(" || v_dogowner.ownerno || ', ' || v_dogowner.ownername || ')");
END CASE;
END LOOP;
CLCSE cur;

EXCEPTI ON
VWHEN non_nul | _anyt ype_f or _NUMBER THEN
RAI SE_Appl i cation_Error (-20000,
"Paradox: the return AnyType instance FROM Get Type ' ||
"shoul d be NULL for all but user-defined types');
VWHEN unknown_t ypenane THEN
RAI SE_Appl i cation_Error (-20000,
"Unknown user-defined type ' || v_typenane ||

8-22 Oracle Database Object-Relational Developer's Guide

User-Defined Aggregate Functions

" - programwitten to handl e only HR DOGOMER);
END,
/

SELECT t.data.gettypenane() FROM nytab t;
SET SERVERQUTPUT ON;
EXEC P

The query and the procedure P in the preceding code sample produce output like the
following:

T. DATA. GETTYPENANE()

SYS. NUMBER

HR. DOGOWNER

1: NUMBER = 5

2: user-defined type = HR DOGOWNER(5555, John)

Corresponding to the three generic SQL types are three OCI types that model them.
Each has a set of functions for creating and accessing the respective type:

¢ (OCl Type: corresponds to SYS. ANYTYPE
e (OCl AnyDat a: corresponds to SYS. ANYDATA

¢ (OCl AnyDat aSet : corresponds to SYS. ANYDATASET

See Also:

- Oracle Call Interface Programmer’s Guide for the OCl Type, OCl AnyDat a,
and OCl AnyDat aSet APIs and details on how to use them

— Oracle Database PL/SQL Packages and Types Reference for information about
the interfaces to the ANYTYPE, ANYDATA, and ANYDATASET types and the
DBMS_TYPES package, which defines constants for built-in and user-
defined types, for use with ANYTYPE, ANYDATA, and ANYDATASET

8.7 User-Defined Aggregate Functions

Oracle database provides a number of pre-defined aggregate functions such as MAX,
M N, SUMfor performing operations on a set of records.

These pre-defined aggregate functions can be used only with scalar data. However,
you can create your own custom implementations of these functions, or define entirely
new aggregate functions, to use with complex data—for example, with multimedia
data stored using object types, opaque types, and LOBs.

User-defined aggregate functions are used in SQL DML statements just like the Oracle
database built-in aggregates. Once such functions are registered with the server, the
database simply invokes the aggregation routines that you supplied instead of the
native ones.

User-defined aggregates can be used with scalar data as well. For example, it may be
worthwhile to implement special aggregate functions for working with complex
statistical data associated with financial or scientific applications.

User-defined aggregates are a feature of the Extensibility Framework. You implement
them using CDCl Aggr egat e interface routines.

Advanced Topics for Oracle Objects 8-23

How Locators Improve the Performance of Nested Tables

See Also:

Oracle Database Data Cartridge Developer’s Guide for information on using the
ODCl Aggr egat e interface routines to implement user-defined aggregate
functions

8.8 How Locators Improve the Performance of Nested Tables

You can use nested table locators to improve performance when retrieving data.

Collection types do not map directly to a native type or structure in languages such as
C++ and Java. An application using those languages must access the contents of a
collection through Oracle database interfaces, such as OCI.

Generally, when the client accesses a nested table explicitly or implicitly (by fetching
the containing object), the database returns the entire collection value to the client
process. For performance reasons, a client may wish to delay or avoid retrieving the
entire contents of the collection. Oracle database handles this case for you by using a
locator instead of the actual nested table value. When you really access the contents of
the collection, they are automatically transferred to the client.

A nested table locator is like a handle to the collection value. It attempts to preserve
the value or copy semantics of the nested table by containing the database snapshot as
of its time of retrieval. The snapshot helps the database retrieve the correct
instantiation of the nested table value at a later time when the collection elements are
fetched using the locator. The locator is scoped to a session and cannot be used across
sessions. Because database snapshots are used, it is possible to get a snapshot t oo
ol d error if there is a high update rate on the nested table. Unlike a LOB locator, the
nested table locator is truly a locator and cannot be used to modify the collection
instance.

See Also:

"Nested Table Locators (page 9-12)" for more specific information

8-24 Oracle Database Object-Relational Developer's Guide

9

Design Considerations for Oracle Objects

There are implementation and performance characteristics of the Oracle object-
relational model that you should understand.

Then you can map a logical data model into an Oracle physical implementation, and
develop applications that use object-oriented features.

Topics:

* General Storage Considerations for Objects (page 9-1)
® Performance of Object Comparisons (page 9-5)

* Design Considerations for REFs (page 9-6)

* Design Considerations for Collections (page 9-8)

* Design Considerations for Methods (page 9-18)

¢ Reusable Code Using Invoker Rights (page 9-22)

* Roles with Invoker's Rights Subprograms (page 9-23)
® Replication Support for Objects (page 9-23)

* Materialized View Support for Objects (page 9-24)

* Constraints on Objects (page 9-25)

¢ Considerations Related to Type Evolution (page 9-26)
¢ Parallel Queries with Oracle Objects (page 9-27)

® Design Consideration Tips and Techniques (page 9-27)

9.1 General Storage Considerations for Objects
There are general storage considerations for various object types.
Topics:
¢ About Storing Objects as Columns or Rows (page 9-1)

e Storage Considerations for Object Identifiers (OIDs) (page 9-4)

9.1.1 About Storing Objects as Columns or Rows

You can store objects in relational tables as column objects or in object tables as row
objects. Those objects that have meaning outside of the relational database they reside
in, should be made referenceable as row objects in an object table. Otherwise, they
should be stored as column objects in a relational table.

Design Considerations for Oracle Objects 9-1

General Storage Considerations for Objects

See "How Objects are Stored in Tables (page 1-6)" for an introduction to table storage.

This section describes the following topics:
® Column Object Storage in Relational Tables (page 9-2)
* Row Object Storage in Object Tables (page 9-4)

9.1.1.1 Column Object Storage in Relational Tables

Column object storage is similar to storage of an equivalent set of scalar columns that
collectively make up the object.

The difference is the additional overhead of maintaining the atomic null values of any
noncollection columns objects and their embedded object attributes. These values,
called null indicators (or sometimes, null images), specify for every column object,
whether or not the column object is null and whether or not each of its embedded
object attributes is null.

Note that null indicators do not specify whether the scalar attributes of a column
object are null. Oracle uses a different method to determine whether scalar attributes
are null.

Consider a table that holds the identification number, name, address, and phone
numbers of people within an organization. You can create three different object types
to hold the name, address, and phone numbers and an object enpl oyee_obj t yp that
contains the name and address objects. Because each person may have more than one
phone number, you need to create a nested table type based on the phone number
object type

First, enter the SQL statements in Example 9-1 (page 9-2) to create the four object
types and a table for phone number objects.

Example 9-1 Creating Object Types for Columns in a Relational Table

CREATE TYPE nane_objtyp AS OBJECT (

first VARCHAR2(15) ,
middl e VARCHAR2(15) ,
| ast VARCHAR2(15)) ;
/
CREATE TYPE address_objtyp AS OBJECT (
street VARCHAR2(200) ,
city VARCHAR2(200),
state VARCHAR2(2) ,
zi pcode VARCHAR2(20)) ;
NOT FI NAL;

/

CREATE TYPE phone_objtyp AS OBJECT (
| ocation VARCHAR2(15) ,
num VARCHAR2(14));

/

CREATE TYPE enpl oyee_objtyp AS OBJECT (
nane nane_obj typ,
address address_objtyp);

/

CREATE TYPE phone_ntabtyp AS TABLE OF phone_objtyp;
/

9-2 Oracle Database Object-Relational Developer's Guide

General Storage Considerations for Objects

See Also:

"Design Considerations for Nested Tables (page 9-11)" for more information
about nested tables

Next, create a table to hold the information about the people in the organization with
the SQL statement in Example 9-2 (page 9-3). This statement also creates an id for
people in the organization.

Example 9-2 Creating a Table with Column Objects

CREATE TABLE people_reltab (
id NUMBER(4) CONSTRAINT pk_peopl e_reltab PRI MARY KEY,
enpl oyee enpl oyee_obj typ
phones_ntab phone_nt abtyp)
NESTED TABLE phones_ntab STORE AS phone_store_ntab;

Figure 9-1 Representation of the people_reltab Relational Table

id employee phones ntab

nested table_id | location | nhum

first | middle | last | address

type_id street | city | state | zipcode

The peopl e_r el t ab table has two column objects: enpl oyee and phones_nt ab.
The phones_nt ab column object is a nested table, a collection type of column object.

The storage for each object in the peopl e_r el t ab table is that of the attributes of the
object plus overhead for the null indicator.

The null indicators for an object and its embedded object attributes occupy one bit
each. Thus, an object with n embedded object attributes (including objects at all levels
of nesting) has a storage overhead of CEl L(n/ 8) bytes. There is one null indicator
column for each noncollection column object, nane_obj and addr ess_obj . The null
indicator column length is one byte, as one bit represents the object itself, which
translates to CEl L(1/ 8) or 1.

Since the null indicator is one byte in size, the overhead of null information for each
row of the peopl e_r el t ab table is two bytes, one for each object column.

Every noncollection object has a null indicator column, whether or not the object is
FI NAL. The columns in these examples are FI NAL.

Design Considerations for Oracle Objects 9-3

General Storage Considerations for Objects

See Also:

Oracle Database SQL Language Reference for more information about CEl L

9.1.1.2 Row Object Storage in Object Tables

Row objects are stored in object tables. An object table is a special kind of table that
holds objects and provides a relational view of the attributes of those objects. An object
table is logically and physically similar to a relational table whose column types
correspond to the top level attributes of the object type stored in the object table. The
key difference is that an object table can optionally contain an additional object
identifier (OID) column and index.

9.1.2 Storage Considerations for Object Identifiers (OIDs)

There are two types of object identifiers for row objects in object tables which can be
stored and referenced.

An object identifier (OID) allows the corresponding row object to be referred to and
from other objects or from relational tables. A built-in data type called a REF
represents such references. REFs use object identifiers (OIDs) to point to row objects.

You can use either system-generated OIDs or primary-key based OIDs.

See Also:

"References to Row Objects (page 1-8)"

9.1.2.1 System-Generated Object Identifiers (OIDs)
System-generated OIDs are the default for row objects in an object table.

Oracle assigns to each row object a unique system-generated OID, 16 bytes in length,
that is automatically indexed for efficient OID-based lookups. The OID column is the
equivalent of having an extra 16-byte primary key column. In a distributed
environment, the system-generated unique identifier lets Oracle identify objects
unambiguously.

The object identifier column is a hidden column that Oracle uses to construct
references to the row objects. Oracle provides no access to the internal structure of
object identifiers. This structure can change at any time. Applications are only
concerned with using object references for fetching and navigating objects.

9.1.2.2 Primary-Key Based Object Identifiers (OIDs)

Oracle allows the option of specifying the primary key value of a row object as its
object identifier, if there is a primary key column.

Instead of using the system-generated OIDs, you use a CREATE TABLE statement with
this clause, OBJECT | DENTI FI ER| S PRI MARY KEY. This specifies that the system use
the primary key column(s) as the OIDs of the objects in the table. That way, you can
use existing columns as the OIDs of the objects or use application generated OIDs that
are smaller than the 16-byte globally unique OIDs generated by Oracle.

9-4 Oracle Database Object-Relational Developer's Guide

Performance of Object Comparisons

See Also:

Oracle Database SQL Language Reference for further information on OBJECT
| DENTI FER syntax

You can enforce referential integrity on columns that store references to these row
objects in a way similar to foreign keys in relational tables.

Note:

Each primary-key based OID is locally (but not necessarily globally) unique. If
you require a globally unique identifier, you must ensure that the primary key
is globally unique or use system-generated OIDs.

9.1.2.3 System-Generated Versus Primary-Key Based OIDs

Primary-key based identifiers make it faster and easier to load data into an object
table. By contrast, system-generated object identifiers need to be remapped using
some user-specified keys, especially when references to them are also stored.

If you use system-generated OIDs for an object table, Oracle maintains an index on the
column that stores these OIDs. A system-generated OID requires extra storage space
for this index and an extra 16 bytes of storage for each row object.

However, if each primary key value requires more than 16 bytes of storage and you
have a large number of REFs, using the primary key might require more space than
system-generated OIDs because each REF is the size of the primary key.

9.2 Performance of Object Comparisons

You can compare objects by invoking either a map or order method.

A map method converts objects into scalar values while preserving the ordering of the
objects. Using a map method is preferable because it allows the system to efficiently
order objects.

Note:

For any one object type, you can implement either a map or an order method,
but not both. Neither are required.

The way objects are mapped has significant performance implications when sorting
the objects using ORDER BY or GROUP BY processes. An object may need to be
compared to other objects many times, and it is much more efficient if the objects can
be mapped to scalar values first (the map method). If the comparison semantics are
extremely complex, or if the objects cannot be mapped to scalar values for comparison,
you can define an order method that, given two objects, returns the ordering
determined by the object implementor. Order methods are not as efficient as map
methods, so performance may suffer if you use order methods.

Consider an object type addr ess consisting of four character attributes: st r eet,
city,state,and zi pcode. Here, the most efficient comparison method is a map
method because each object can be converted easily into scalar values. For example,
you might define a map method that orders all of the objects by state.

Design Considerations for Oracle Objects 9-5

Design Considerations for REFs

On the other hand, suppose you want to compare binary objects, such as images. In
this case, the comparison semantics may be too complex to use a map method; if so,
you can use an order method to perform comparisons. For example, you could create
an order method that compares images according to brightness or the number of
pixels in each image.

If an object type does not have either a map or order method, only equality
comparisons are allowed on objects of that type. In this case, Oracle performs the
comparison by doing a field-by-field comparison of the corresponding object
attributes, in the order they are defined. If the comparison fails at any point, a FALSE
value is returned. If the comparison matches at every point, a TRUE value is returned.
However, if an object has a LOB or ANYDATA attributes, then Oracle does not compare
the object on a field-by-field basis. Such objects must have a map or order method to
perform comparisons.

9.3 Design Considerations for REFs
You need to take various issues into onsideration when working with REFs.
Topics:
e Storage Size of REFs (page 9-6)
¢ Integrity Constraints for REF Columns (page 9-6)
* Performance and Storage Considerations for Scoped REFs (page 9-6)

® Performance Improvement for Object Access Using the WITH ROWID Option
(page 9-8)

9.3.1 Storage Size of REFs

A REF contains the following three logical components:

e OID of the object referenced. A system-generated OID is 16 bytes long. The size of
a primary-key based OID depends on the size of the primary key column(s).

¢ OID of the table or view containing the object referenced, which is 16 bytes long.

e Rowid hint, which is 10 bytes long.

9.3.2 Integrity Constraints for REF Columns

Referential integrity constraints on REF columns ensure that there is a row object for
the REF.

Referential integrity constraints on REFs create the same relationship as specifying a
primary key/foreign key relationship on relational data. In general, you should use
referential integrity constraints wherever possible because they are the only way to
ensure that the row object for the REF exists. However, you cannot specify referential
integrity constraints on REFs that are in nested tables.

9.3.3 Performance and Storage Considerations for Scoped REFs

A scoped REF is constrained to contain only references to a specified object table. You
can specify a scoped REF when you declare a column type, collection element, or
object type attribute to be a REF.

9-6 Oracle Database Object-Relational Developer's Guide

Design Considerations for REFs

In general, you should use scoped REFs instead of unscoped REFs because scoped
REFs are stored more efficiently. Whereas an unscoped REF takes at least 36 bytes to
store (more if it uses rowids), a scoped REF is stored as just the OID of its target object
and can take less than 16 bytes, depending on whether the referenced OID is system-
generated or primary-key based. A system-generated OID requires 16 bytes; a primary
key based (PK-based) OID requires enough space to store the primary key value,
which may be less than 16 bytes. However, a REF to a PK-based OID, which must be
dynamically constructed upon selection, may take more space in memory than a REF
to a system-generated OID.

Besides requiring less storage space, scoped REFs often enable the optimizer to
optimize queries that dereference a scoped REF into more efficient joins. This
optimization is not possible for unscoped REFs because the optimizer cannot
determine the containing table(s) for unscoped REFs at query-optimization time.

Unlike referential integrity constraints, scoped REFs do not ensure that the referenced
row object exists; they only ensure that the referenced object table exists. Therefore, if
you specify a scoped REF to a row object and then delete the row object, the scoped
REF becomes a dangling REF because the referenced object no longer exists.

Note:

Referential integrity constraints are scoped implicitly.

Unscoped REFs are useful if the application design requires that the objects referenced
be scattered in multiple tables. Because rowid hints are ignored for scoped REFs, you
should use unscoped REFs if the performance gain of the rowid hint, as explained in
the "Performance Improvement for Object Access Using the WITH ROWID Option
(page 9-8)", outweighs the benefits of the storage saving and query optimization of
using scoped REFs.

9.3.3.1 Indexing for Scoped REFs

You can build indexes on scoped REF columns using the CREATE | NDEX command.
This allows you to use the index to efficiently evaluate queries that dereference the
scoped REFs. Such queries are turned into joins implicitly. For certain types of queries,
Oracle can use an index on the scoped REF column to evaluate the join efficiently.

For example, suppose the object type addr ess_obj t yp is used to create an object
table named addr ess_obj t ab:

CREATE TABLE address_objtab OF address_objtyp ;

A peopl e_r el t ab2 table can be created that has the same definition as the
peopl e_r el t ab table shown in Example 9-2 (page 9-3), except that a REF is used for
the address. Next, an index can be created on the addr ess_r ef column.

Example 9-3 Creating an Index on Scoped REF Columns

CREATE TABLE peopl e_reltab2 (
id NUMBER(4) CONSTRAINT pk_peopl e_rel tab2 PRI MARY KEY,
nane_obj nane_obj typ,
address_ref REF address_objtyp SCOPE | S address_objtab,
phones_ntab phone_nt abt yp)
NESTED TABLE phones_ntab STORE AS phone_store_ntab2 ;

CREATE | NDEX address_ref _idx ON people_reltab2 (address_ref) ;

Design Considerations for Oracle Objects 9-7

Design Considerations for Collections

The following query dereferences the addr ess_r ef :

SELECT id FROM peopl e_reltab2 p
VWHERE p. address_ref.state = ' CA

When this query is executed, the addr ess_r ef _i dx index is used to efficiently
evaluate it. Here, addr ess_r ef is a scoped REF column that stores references to
addresses stored in the addr ess_obj t ab object table. Oracle implicitly transforms
the preceding query into a query with a join:

SELECT p.id FROM people_reltab2 p, address_objtab a
VHERE p. address_ref = REF(a) AND a.state = 'CA'

The Oracle query optimizer might create a plan to perform a nested-loops join with
addr ess_obj t ab as the outer table and look up matching addresses using the index
on the addr ess_r ef scoped REF column.

9.3.4 Performance Improvement for Object Access Using the WITH ROWID Option

If the W TH ROW D option is specified for a REF column, Oracle maintains the rowid of
the object referenced in the REF. Then, Oracle can find the object referenced directly
using the rowid contained in the REF, without the need to fetch the rowid from the
OID index. Therefore, you use the W TH RON D option to specify a rowid hint.
Maintaining the rowid requires more storage space because the rowid adds 10 bytes to
the storage requirements of the REF.

Bypassing the OID index search improves the performance of REF traversal
(navigational access) in applications. The actual performance gain may vary from
application to application depending on the following factors:

* How large the OID indexes are.
e Whether the OID indexes are cached in the buffer cache.

* How many REF traversals an application does.

The W TH ROW D option is only a hint because, when you use this option, Oracle
checks the OID of the row object with the OID in the REF. If the two OIDs do not
match, Oracle uses the OID index instead. The rowid hint is not supported for scoped
REFs, for REFs with referential integrity constraints. .

9.4 Design Considerations for Collections
There are certain considerations to think about when you work with collections.
Topics:
* Viewing Object Data in Relational Form with Unnesting Queries (page 9-9)
* Storage Considerations for Varrays (page 9-10)
¢ Performance of Varrays Versus Nested Tables (page 9-11)
* Design Considerations for Nested Tables (page 9-11)

¢ Design Considerations for Multilevel Collections (page 9-14)

9-8 Oracle Database Object-Relational Developer's Guide

Design Considerations for Collections

9.4.1 Viewing Object Data in Relational Form with Unnesting Queries

An unnesting query on a collection allows the data to be viewed in a flat (relational)
form.

You can execute unnesting queries on single-level and multilevel collections of either
nested tables or varrays.

Nested tables can be unnested for queries using the TABLE syntax, as in the following
example:

Example 9-4 Unnesting a Nested Table with the TABLE Function

SELECT p. nane_obj, n.num
FROM peopl e_reltab p, TABLE(p.phones_ntab) n ;

Here, phones_nt ab specifies the attributes of the phones_nt ab nested table. To
retrieve even parent rows that have no child rows (no phone numbers, in this case),
use the outer join syntax, with the +. For example:

SELECT p. nane_obj, n.num
FROM peopl e_reltab p, TABLE(p.phones_ntab) (+) n ;

If the SELECT list of a query does not refer to any columns from the parent table other
than the nested table column, the query is optimized to execute only against the nested
table's storage table.

The unnesting query syntax is the same for varrays as for nested tables. For instance,
suppose the phones_nt ab nested table is instead a varray named phones_var . The
following example shows how to use the TABLE syntax to query the varray:

SELECT p. nane_obj, v.num
FROM peopl e_reltab p, TABLE(p.phones_var) v;

9.4.1.1 Creating Procedures and Functions to Unnest Queries

You can create procedures and functions that you can then execute to perform
unnesting queries. For example, you can create a function called horme_phones() that
returns only the phone numbers where | ocat i on is hone. To create the
honme_phones() function, you enter code like the following:

Example 9-5 Creating the home_phones Function

CREATE OR REPLACE FUNCTI ON hone_phones(al | phones | N phone_nt abt yp)
RETURN phone_ntabtyp IS
honephones phone_ntabtyp : = phone_ntabtyp();
i ndx1 nunber ;
i ndx2 number := 0;
BEG N
FOR indx1 IN 1..allphones. count LOOP
| F
al | phones(indx1).location = 'hong'
THEN
homephones. ext end; -- extend the local collection
indx2 := indx2 + 1;
homephones(i ndx2) : = all phones(indx1);
END | F;
END LOOP;

RETURN honephones;

Design Considerations for Oracle Objects 9-9

Design Considerations for Collections

END;
/
9.4.1.2 Querying the TABLE Function to Unnest Data

You can query for a list of people and their home phone numbers, based on the
honme_phones() function you just created.

Example 9-6 Querying for Phone Numbers
See Example 9-5 (page 9-9)

SELECT p. nane_obj, n.num
FROM peopl e_reltab p, TABLE(
CAST(hone_phones(p. phones_ntab) AS phone_ntabtyp)) n ;

To query for a list of people and their home phone numbers, including those people
who do not have a home phone number listed, enter the following:

SELECT p. nane_obj, n.num
FROM peopl e_rel tab p,
TABLE(CAST(hone_phones(p. phones_nt ab) AS phone_ntabtyp))(+) n ;

See Also:

Oracle Database SQL Language Reference and Oracle Database Data Cartridge
Developer’s Guide for more information about the TABLE function

9.4.2 Storage Considerations for Varrays

The size of a stored varray depends only on the current count of the number of
elements in the varray and not on the maximum number of elements that it can hold.

Because the storage of varrays incurs some overhead, such as null information, the
size of the varray stored may be slightly greater than the size of the elements
multiplied by the count.

Varrays are stored in columns either as raw values or LOBs. Oracle decides how to
store the varray when the varray is defined, based on the maximum possible size of
the varray computed using the LI M T of the declared varray. If the size exceeds
approximately 4000 bytes, then the varray is stored in LOBs. Otherwise, the varray is
stored in the column itself as a raw value. In addition, Oracle supports inline LOBs
which means that elements that fit in the first 4000 bytes of a large varray, with some
bytes reserved for the LOB locator, are stored in the column of the row. See also Oracle
Database SecureFiles and Large Objects Developer’s Guide.

9.4.2.1 About Propagating VARRAY Size Change

When changing the size of a VARRAY type, a new type version is generated for the
dependent types.

It is important to be aware of this when a VARRAY column is not explicitly stored as a
LOB and its maximum size is originally smaller than 4000 bytes. If the size is larger
than or equal to 4000 bytes after the increase, the VARRAY column has to be stored as a
LOB. This requires an extra operation to upgrade the metadata of the VARRAY column
in order to set up the necessary LOB metadata information including the LOB segment
and LOB index.

9-10 Oracle Database Object-Relational Developer's Guide

Design Considerations for Collections

The CASCADE option in the ALTER TYPE statement propagates the VARRAY size
change to its dependent types and tables. A new version is generated for each valid
dependent type and dependent tables metadata are updated accordingly based on the
different case scenarios described previously. If the VARRAY column is in a cluster
table, an ALTERTYPE statement with the CASCADE option fails because a cluster table
does not support a LOB.

The CASCADE option in the ALTER TYPE statement also provides the [NOT]

| NCLUDI NG TABLE DATA option. The NOT | NCLUDI NG TABLE DATA option only
updates the metadata of the table, but does not convert the data image. In order to
convert the VARRAY image to the latest version format, you can either specify

I NCLUDI NG TABLE DATA explicitly in ALTER TYPE CASCADE statement or issue
ALTER TABLE UPGRADE statement.

9.4.3 Performance of Varrays Versus Nested Tables

If an entire collection is manipulated as a single unit in the application, varrays
perform much better than nested tables. The varray is stored packed and requires no
joins to retrieve the data, unlike nested tables.

Varray Querying

The unnesting syntax can be used to access varray columns similar to the way it is
used to access nested tables. See "Viewing Object Data in Relational Form with
Unnesting Queries (page 9-9)" for more information.

Varray Updates

Piece-wise updates of a varray value are not supported. Thus, when a varray is
updated, the entire old collection is replaced by the new collection.

9.4.4 Design Considerations for Nested Tables
Topics:
There are several design considerations for using nested tables.
¢ Nested Table Storage (page 9-11)
* Nested Table Indexes (page 9-12)
¢ Nested Table Locators (page 9-12)

* Set Membership Query Optimazation (page 9-13)
9.4.4.1 Nested Table Storage

Oracle stores the rows of a nested table in a separate storage table. A system generated
NESTED_TABLE_| D, which is 16 bytes in length, correlates the parent row with the
rows in its corresponding storage table.

Figure 9-2 (page 9-12) shows how the storage table works. The storage table contains
each value for each nested table in a nested table column. Each value occupies one row
in the storage table. The storage table uses the NESTED TABLE_| Dto track the nested
table for each value. So, in Figure 9-2 (page 9-12), all of the values that belong to
nested table A are identified, all of the values that belong to nested table B are
identified, and so on.

Design Considerations for Oracle Objects 9-11

Design Considerations for Collections

Figure 9-2 Nested Table Storage
DATA1 | DATA2 | DATA3 | DATA4 | NT_DATA

m|O|O|W|>

\ Storage Table S
NESTED_TABLE_ID | Values

m|w|O|>|O|m|m|>|m|w|m|>|O|w|m
>
—t
N

9.4.4.2 Nested Table Indexes

When creating nested tables stored in heap tables, Oracle database automatically
creates an index on the NESTED_TABLE_| D column of the storage table and an index
on the corresponding ID column of the parent table.

Creating an index on the NESTED_TABLE_| D column enables the database to access
the child rows of the nested table more efficiently, because the database must perform
a join between the parent table and the nested table using the NESTED_TABLE | D
column.

9.4.4.3 Nested Table Locators

For large child sets, the parent row and a locator to the child set can be returned so
that the child rows can be accessed on demand; the child sets also can be filtered.
Using nested table locators enables you to avoid unnecessarily transporting child rows
for every parent.

You can perform either one of the following actions to access the child rows using the
nested table locator:

e Call the OCI collection functions. This action occurs implicitly when you access
the elements of the collection in the client-side code, such as OCl Col | * functions.
The entire collection is retrieved implicitly on the first access.

9-12 Oracle Database Object-Relational Developer's Guide

Design Considerations for Collections

See Also:

Oracle Call Interface Programmer’s Guide for more information about OCI
collection functions.

e Use SQL to retrieve the rows corresponding to the nested table.

In a multilevel collection, you can use a locator with a specified collection at any level
of nesting.

The following topics specify ways that a collection can be retrieved as a locator:
e At Table Creation Time (page 9-13)
¢ Asa HINT During Retrieval (page 9-13)

9.4.4.3.1 At Table Creation Time

When the collection type is being used as a column type and the NESTED TABLE
storage clause is used, you can use the RETURN AS LOCATOR clause to specify that a
particular collection is to be retrieved as a locator.

For instance, suppose that i nner _t abl e is a collection type consisting of three levels
of nested tables. In the following example, the RETURN AS LOCATOR clause specifies
that the third level of nested tables is always to be retrieved as a locator.

Example 9-7 Using the RETURN AS LOCATOR Clause

CREATE TYPE inner_table AS TABLE OF NUMBER;/
CREATE TYPE ni ddl e_tabl e AS TABLE OF inner_table;/
CREATE TYPE outer _table AS TABLE OF niddle_table;/
CREATE TABLE tabl (

col 1 NUMBER,

col 2 outer_table)

NESTED TABLE col 2 STORE AS col 2_ntab

(NESTED TABLE COLUWMN_VALUE STORE AS cval 1_ntab

(NESTED TABLE COLUWN VALUE STORE AS cval 2_ntab RETURN AS LOCATOR));

9.4.4.3.2 As a HINT During Retrieval

A query can retrieve a collection as a locator by means of the hint
NESTED_TABLE_GET_REFS. Here is an example of retrieving the column col 2 from
the table t ab1l as a locator:

SELECT /*+ NESTED TABLE GET_REFS +*/ col 2
FROM t abl
WHERE col 1 = 2;

Unlike with the RETURN AS LOCATOR clause, however, you cannot specify a particular
inner collection to return as a locator when using the hint.
9.4.4.4 Set Membership Query Optimization

Set membership queries are useful when you want to search for a specific item in a
nested table.

The following query tests the membership in a child-set; specifically, whether the
location hone is in the nested table phones_nt ab, which is in the parent table
peopl e_reltab:

SELECT * FROM peopl e_reltab p
VHERE ' hone' | N (SELECT | ocation FROM TABLE(p. phones_ntab)) ;

Design Considerations for Oracle Objects 9-13

Design Considerations for Collections

Oracle can execute a query that tests the membership in a child-set more efficiently by
transforming it internally into a semijoin. However, this optimization only happens if
the ALWAYS_SEM _JJ Ninitialization parameter is set. If you want to perform
semijoins, the valid values for this parameter are MERGE and HASH; these parameter
values indicate which join method to use.

Note:

In the preceding example, hone and | ocat i on are child set elements. If the
child set elements are object types, they must have a map or order method to
perform a set membership query.

9.4.5 Design Considerations for Multilevel Collections
You can nest collection types to create true multilevel collections.

Support for Collection Data Types (page 5-1) describes how to nest collection types
such as a nested table of nested tables, a nested table of varrays, a varray of nested
tables, or a varray or nested table of an object type that has an attribute of a collection
type. These create true multilevel collections.

You can also nest collections indirectly using REFs. For example, you can create a
nested table of an object type that has an attribute that references an object that has a
nested table or varray attribute. If you do not actually need to access all elements of a
multilevel collection, then nesting a collection with REFs may provide better
performance because only the REFs need to be loaded, not the elements themselves.

True multilevel collections (specifically multilevel nested tables) perform better for
queries that access individual elements of the collection. Using nested table locators
can improve the performance of programmatic access if you do not need to access all
elements.

A series of examples demonstrate this type of design.

Topics:

¢ Creating an Object Table with a Multilevel Collection (page 9-14)
® Creating an Object Table Using REFs (page 9-16)

¢ IInserting Values into Object Tables (page 9-17)

9.4.5.1 Creating an Object Table with a Multilevel Collection
You can create an object table with a multilevel collection.

To create an example of a collection that uses REFs to nest another collection, you
create a new object type called per son_obj t yp using the object types provided:
name_obj t yp, addr ess_obj t yp, and phone_nt abt yp. Remember that the
phone_nt abt yp object type is a nested table because each person may have more
than one phone number.

To create the per son_obj t yp object type and an object table called peopl e_obj t ab
of per son_obj t yp object type, issue the following SQL statement:

Example 9-8 Creating an Object Table with a Multilevel Collection

CREATE TYPE person_objtyp AS OBJECT (
id NUMBER(4) ,
nane_obj nane_obj typ,

9-14 Oracle Database Object-Relational Developer's Guide

Design Considerations for Collections

addr ess_obj address_obj typ,
phones_ntab phone_ntabtyp);
/

CREATE TABLE peopl e_objtab OF person_objtyp (id PR MARY KEY)
NESTED TABLE phones_ntab STORE AS phones_store_ntab ;

The peopl e_obj t ab table has the same attributes as the peopl e_r el t ab table. The
difference is that the peopl e_obj t ab is an object table with row objects, while the
peopl e_r el t ab table is a relational table with column objects, as seen in "Column
Object Storage in Relational Tables (page 9-2)".

Figure 9-3 Object-Relational Representation of the people_objtab Object Table

Object Table PEOPLE_OBJTAB (of PERSON_OBJTYP)

ID NAME_OBJ ADDRESS_OBJ PHONES_NTAB

Number Object Type Object Type Nested Table
NUMBER(4) NAME_OBJTYP | ADDRESS_OBJTYP | PHONE_NTABTYP

PK

| Nested Table PHONES_NTAB (of PHONE_NTABTYP)
LOCATION NUM

Text Number
VARCHAR(15) | VARCHAR(14)

—tColumn Object ADDRESS_OBJ (of ADDRESS_OBJTYP)
STREET cITY STATE ZIPCODE

Text Text Text Text
VARCHAR2(200) | VARCHAR(200) | CHAR(2) VARCHAR2(20)

Column Object NAME_OBJ (of NAME_OBJTYP)
FIRST MIDDLE LAST

Text Text Text
VARCHAR2(15) | VARCHAR2(15) | VARCHAR2(15)

You can reference the row objects in the peopl e_obj t ab object table from other
tables. For example, suppose you want to create a pr oj ect s_obj t ab table that
contains:

¢ A project identification number for each project.
e The title of each project.

¢ The project lead for each project.

Design Considerations for Oracle Objects 9-15

Design Considerations for Collections

® A description of each project.

* Nested table collection of the team of people assigned to each project.

You can use REFs in the peopl e_obj t ab for the project leads, and you can use a
nested table collection of REFs for the team. To begin, create a nested table object type
called per sonr ef _nt abt yp based on the per son_obj t yp object type:

CREATE TYPE personref _ntabtyp AS TABLE OF REF person_objtyp;
/

You are now set up to create to create an object table as shown in Creating an Object
Table Using REFs (page 9-16).

9.4.5.2 Creating an Object Table Using REFs

You can create an object table using REFs

After creating the person object table, in Creating an Object Table with a Multilevel
Collection (page 9-14),, you are ready to create the project object table

proj ect s_obj t ab. First, create the object type pr oj ect s_obj t yp, then create the
object table pr oj ect s_obj t ab based on the pr oj ect s_obj t yp.

Example 9-9 Creating an Object Table Using REFs

CREATE TYPE projects_objtyp AS OBJECT (
id NUMBER(4) ,
title VARCHAR2(15) ,
projl ead_ref REF person_objtyp,
description CLOB,
t eam nt ab personref _ntabtyp);
/
CREATE TABLE projects_objtab OF projects_objtyp (id PRI MARY KEY)
NESTED TABLE team ntab STORE AS team store_ntab ;

Figure 9-4 Object-Relational Representation of the projects_objtab Object Table

Table PROJECTS OBJTAB (of PROJECTS OBJTYP)
ID TITLE PROJLEAD_REF DESCRIPTION TEAM_NTAB
Number Text Reference Text Nested Table Reference
NUMBER(4) | VARCHAR2(15) | PERSON_OBJTYP | CLOB PERSONREF_NTABTYP
PK

| |

|
Refers to multiple rows

Refers to a
row of the of the object table
object table

lZObiect Table PEOPLE_OBJTAB (of PERSON_OBJTYP)

ID NAME_OBJ ADDRESS_OBJ PHONES_NTAB
Number Object Type Object Type Nested Table
NUMBER4) | NAME_OBJTYP | ADDRESS_OBJTYP PHONE_NTABTYP
PK

After the peopl e_obj t ab object table and the pr oj ect s_obj t ab object table are in
place, you indirectly have a nested collection. That is, the pr oj ect s_obj t ab table

9-16 Oracle Database Object-Relational Developer's Guide

Design Considerations for Collections

contains a nested table collection of REFs that point to the people in the
peopl e_obj t ab table, and the people in the peopl e_obj t ab table have a nested
table collection of phone numbers.

You are now set to insert value as shown Inserting Values into Object Tables
(page 9-17).

9.4.5.3 Inserting Values into the PEOPLE_OBJTAB Object Table

After you have created an object table, you can then insert values into it.
You can insert values into the peopl e_obj t ab table as in this example.
Example 9-10 Inserting Values into the people_objtab Object Table

I NSERT | NTO peopl e_obj tab VALUES (
0001,
nane_obj typ(' JOHN , 'JACOB', 'SCHM DT'),
address_objtyp(' 1252 Maple Road', 'Fairfax', 'VA, '22033'),
phone_nt abt yp(
phone_obj typ(' hone', '650.555.0141"),
phone_obj typ('work', '510.555.0122"))) ;

I NSERT | NTO peopl e_obj tab VALUES (
0002,
name_obj typ(' MARY', 'ELLEN, 'MLLER),
address_objtyp(' 33 Spruce Street', 'MKees Rocks', 'PA", '15136'),
phone_nt abt yp(
phone_obj typ(' hone', '415.555.0143"),
phone_obj typ(' work', '650.555.0192"))) ;

I NSERT | NTO peopl e_obj tab VALUES (
0003,
nane_objtyp(' SARAH , "MARIE', 'SINGER),
address_objtyp(' 525 Pine Avenue', 'San Mateo', 'CA', '94403'),
phone_nt abt yp(
phone_obj typ(' honme', '510.555.0101'),
phone_obj typ(' work', '650.555.0178"),
phone_obj typ('cell", '650.555.0143"))) ;

Example 9-11 Inserting Values into the projects_objtab Object Table

Then, you can insert into the pr oj ect s_obj t ab relational table by selecting from the
peopl e_obj t ab object table using a REF operator, as in .

I NSERT | NTO proj ects_objtab VALUES (
1101,
' Deno Product”',
(SELECT REF(p) FROM peopl e_objtab p WHERE id = 0001),
"Deno the product, show all the great features.',
personref _ntabt yp(

(SELECT REF(p) FROM peopl e_objtab p WHERE id = 0001),
(SELECT REF(p) FROM peopl e_objtab p WHERE id = 0002),
(SELECT REF(p) FROM peopl e_objtab p WHERE id = 0003))) ;

I NSERT | NTO proj ects_objtab VALUES (
1102,
"Create PRCDDB',
(SELECT REF(p) FROM peopl e_objtab p WHERE id = 0002),
"Create a database of our products.',
personref _ntabt yp(

Design Considerations for Oracle Objects 9-17

Design Considerations for Methods

(SELECT REF(p) FROM people_objtab p WHERE id
(SELECT REF(p) FROM people_objtab p WHERE id

0002)
0003)

~— -

)

Note:

This example uses nested tables to store REFs, but you also can store REFs in
varrays. That is, you can have a varray of REFs.

9.5 Design Considerations for Methods
There are special considerations to think about when working with methods.
Topics:
® Choice of Language for Method Functions (page 9-18)
¢ Static Methods (page 9-20)
e About Using SELF IN OUT NOCOPY with Member Procedures (page 9-20)

¢ Function-Based Indexes on the Return Values of Type Methods (page 9-21)

9.5.1 Choice of Language for Method Functions

Method functions can be implemented in any of the languages supported by Oracle,
such as PL/SQL, Java, or C.

Consider the following factors when you choose the language for a particular
application:

¢ Ease of use

e SQL calls

* Speed of execution

e Same/different address space

In general, if the application performs intense computations, C is preferable, but if the
application performs a relatively large number of database calls, PL/SQL or Java is
preferable.

A method implemented in C executes in a separate process from the server using
external procedures. In contrast, a method implemented in Java or PL/SQL executes
in the same process as the server.

Example: Implementing a Method

The example described in this section involves an object type whose methods are
implemented in different languages. In the example, the object type | negeType has
an | Dattribute, which is a NUMBER that uniquely identifies it, and an | MGattribute,
which is a BLOB that stores the raw image. The object type | mageType has the
following methods:

e The method get _narre fetches the name of the image by looking it up in the
database. This method is implemented in PL/SQL.

¢ The method r ot at e rotates the image. This method is implemented in C.

9-18 Oracle Database Object-Relational Developer's Guide

Design Considerations for Methods

* The method cl ear returns a new image of the specified color. This method is
implemented in Java.

For implementing a method in C, a LI BRARY object must be defined to point to the
library that contains the external C routines. For implementing a method implemented
in Java, this example assumes that the Java class with the method has been compiled
and uploaded into Oracle.

The object type specification and its methods are shown in Example 9-12 (page 9-19).

Note:

Type methods can be mapped only to static Java methods.

See Also:
® Oracle Database Java Developer’s Guide for more information

* Object Support in Oracle Programming Environments (page 4-1) for more
information about choosing a language

Example 9-12 Creating an Object Type with Methods Implemented in Different
Languages

CREATE LI BRARY nyCfuncs TRUSTED AS STATIC
/

CREATE TYPE | mageType AS OBJECT (
id NUMBER
ing BLOB,
MEMBER FUNCTI ON get _name return VARCHAR?,
MEMBER FUNCTION rotate return BLOB,
STATI C FUNCTI ON cl ear (col or NUMBER) return BLOB);/

CREATE TYPE BODY | nageType AS

MEMBER FUNCTI ON get _name RETURN VARCHAR2

IS

i mgname VARCHAR2(100) ;

sql stmt VARCHAR2(200) ;

BEG N
sql stm := 'SELECT nane I NTO i ngnane FROM ingtab WHERE ingid = id';
EXECUTE | MVEDI ATE sql stnt;
RETURN i ngnane;

END;

MEMBER FUNCTI ON rotate RETURN BLOB
AS LANGUAGE C

NAME "Crotate"

LI BRARY nyCfuncs;

STATI C FUNCTI ON cl ear (col or NUMBER) RETURN BLOB
AS LANGUAGE JAVA
NAME ' nyJavad ass. cl ear (oracl e. sql . NUMBER) return oracle.sql.BLOB' ;

END;
/

Design Considerations for Oracle Objects 9-19

Design Considerations for Methods

9.5.2 Static Methods

Static methods differ from member methods in that the SELF value is not passed in as
the first parameter. Methods in which the value of SELF is not relevant should be
implemented as static methods. Static methods can be used for user-defined
constructors.

Example 9-13 (page 9-20) shows a constructor-like method that constructs an instance
of the type based on the explicit input parameters and inserts the instance into the
specified table:.

Example 9-13 Creating an Object Type with a STATIC Method
CREATE TYPE atype AS OBJECT(

al NUMBER
STATI C PROCEDURE newa (
pl NUMBER,

tabname VARCHAR?,
schname VARCHAR2));
/
CREATE TYPE BODY atype AS
STATI C PROCEDURE newa (pl NUMBER, tabname VARCHAR2, schname VARCHAR2)

IS
sqgl stm VARCHAR2(100);
BEG N
sglstm :="INSERT INTO'||schnane||"'."||tabname|| ' VALUES (atype(:1))';
EXECUTE | MVEDI ATE sql stnt USI NG p1;
END;

END;
/

CREATE TABLE atab OF atype;

BEG N

atype.newa(1, 'atab', 'HR);
END;
/

9.5.3 About Using SELF IN OUT NOCOPY with Member Procedures

In member procedures, if SELF is not declared, its parameter mode defaults to | N CUT.
However, the default behavior does not include the NOCOPY compiler hint. See
"Member Methods (page 2-9)".

Because the value of the | NOUT actual parameter is copied into the corresponding
formal parameter, the copying slows down execution when the parameters hold large
data structures such as instances of large object types.

For performance reasons, you may want to include SELF | N OUT NOCOPY when
passing a large object type as a parameter. For example:

MEMBER PROCEDURE my_proc (SELF | N OUT NOCOPY ny_LOB)

9-20 Oracle Database Object-Relational Developer's Guide

Design Considerations for Methods

See Also:

* Oracle Database PL/SQL Language Reference for information on performance
issues and restrictions on the use of NOCOPY

e Oracle Database SQL Language Reference for information about using
NOCCPY in the CREATE PROCEDURE statement

9.5.4 Function-Based Indexes on the Return Values of Type Methods

A function-based index is an index based on the return values of an expression or
function. The function may be a method function of an object type.

A function-based index built on a method function precomputes the return value of
the function for each object instance in the column or table being indexed and stores
those values in the index. There they can be referenced without having to evaluate the
function again.

Function-based indexes are useful for improving the performance of queries that have
a function in the WHERE clause. For example, the following code contains a query of an
object table enps:

CREATE TYPE enp_t AS OBJECT(
nane VARCHAR2(36),
sal ary NUMBER,
MEMBER FUNCTI ON bonus RETURN NUMBER DETERM NI STI Q) ;
/
CREATE TYPE BODY enp_t IS
MEMBER FUNCTI ON bonus RETURN NUVBER DETERM NISTIC | S
BEG N
RETURN sel f.salary * .1;
END;
END;
/

CREATE TABLE enmps OF enp_t ;

SELECT e. nane
FROM enps e
VHERE e. bonus() > 2000;

To evaluate this query, Oracle must evaluate bonus() for each row object in the table.
If there is a function-based index on the return values of bonus(), then this work has
already been done, and Oracle can simply look up the results in the index. This
enables Oracle to return a result from the query more quickly.

Return values of a function can be usefully indexed only if those values are constant,
that is, only if the function always returns the same value for each object instance. For
this reason, to use a user-written function in a function-based index, the function must
have been declared with the DETERM NI STI Ckeyword, as in the preceding example.
This keyword promises that the function always returns the same value for each object
instance's set of input argument values.

The following example creates a function-based index on the method bonus() in the
table enps:

Example 9-14 Creating a Function-Based Index on a Method

CREATE | NDEX enps_honus_i dx ON enps x (x.bonus()) ;

Design Considerations for Oracle Objects 9-21

Reusable Code Using Invoker Rights

9.6 Reusable Code Using Invoker Rights

To create generic object types that can be used in any schema, you must define the
type to use invoker rights, through the AUTHI D CURRENT_USER option of CREATE CR
REPLACE TYPE.

Note:

For information on controlling invoker's rights privileges, see Oracle Database
Security Guide.

In general, use invoker rights when both of the following conditions are true:
® There are type methods that access and manipulate data.

¢ Users who did not define these type methods must use them.

For example, you can grant user OE execute privileges on type at ype created by HR
in "Static Methods (page 9-20)", and then create table at ab based on the type:

GRANT EXECUTE ON atype TO oe;
CONNECT oe;

Enter password: password
CREATE TABLE atab OF HR atype ;

Now, suppose user OE tries to use at ype in the following statement:

BEGN -- follwing call raises an error, insufficient privileges
HR atype.newa(1, 'atab', 'OF);

END;

/

This statement raises an error because the definer of the type (HR) does not have the
privileges required to perform the insert in the newa procedure. You can avoid this

error by defining at ype using invoker rights. Here, you first drop the at ab table in
both schemas and re-create at ype using invoker rights:

DROP TABLE at ab;
CONNECT hr;
Enter password: password

DROP TABLE at ab;
DROP TYPE atype FORCE;
COWM T,

CREATE TYPE atype AUTH D CURRENT_USER AS OBJECT(

al NUMBER,

STATI C PROCEDURE newa(pl NUMBER, tabname VARCHAR2, schname VARCHAR?));
/
CREATE TYPE BQODY atype AS

STATI C PROCEDURE newa(pl NUMBER, tabname VARCHAR2, schname VARCHAR2)

IS
sqgl stmt VARCHAR2(100);
BEG N
sglstnmt := "INSERT INTO'||schnane||'."||tabname|| '

VALUES (HR atype(:1))";
EXECUTE | MVEDI ATE sql stmt USI NG p1;
END;

9-22 Oracle Database Object-Relational Developer's Guide

Roles with Invoker's Rights Subprograms

END;
/

Now, if user CE tries to use at ype again, the statement executes successfully:

GRANT EXECUTE ON atype TO oe;
CONNECT oe;

Enter password: password
CREATE TABLE atab OF HR atype;

BEG N
HR atype.newa(1l, 'atab', 'OE);
END,
/
DROP TABLE at ab;
CONNECT hr;
Enter password: password

DROP TYPE atype FORCE;

The statement is successful this time because the procedure is executed under the
privileges of the invoker (OE), not the definer (HR).

In a type hierarchy, a subtype has the same rights model as its immediate supertype.
That is, it implicitly inherits the rights model of the supertype and cannot explicitly
specify one. Furthermore, if the supertype was declared with definer rights, the
subtype must reside in the same schema as the supertype. These rules allow invoker-
rights type hierarchies to span schemas. However, type hierarchies that use a definer-
rights model must reside within a single schema. For example:

CREATE TYPE deftypel AS OBJECT (...); --Definer-rights type
CREATE TYPE subtypel UNDER deftypel (...); --subtype in sane schema as supertype
CREATE TYPE schema2. subtype2 UNDER deftypel (...); --ERROR
CREATE TYPE invtypel AUTH D CURRENT_USER AS OBJECT (...); --Invoker-rights type
CREATE TYPE schenm2. subtype2 UNDER invtypel (...); --LEGAL

9.7 Roles with Invoker's Rights Subprograms

The use of roles in a subprogram depends on whether it executes with definer's rights
or invoker's rights. Within a definer's rights subprogram, all roles are disabled. Roles
are not used for privilege checking, and you cannot set roles.

Within an invoker's rights subprogram, roles are enabled (unless the subprogram was
called directly or indirectly by a definer's rights subprogram). Roles are used for
privilege checking, and you can use native dynamic SQL to set roles for the session.
However, you cannot use roles to grant privileges on template objects because roles
apply at run time, not at compile time.

9.8 Replication Support for Objects

¢ Object Replication Using Oracle Golden Gate (page 9-23)

e Active Data Guard and Logical Standby Support for Objects (page 9-24)

9.8.1 Object Replication Using Oracle Golden Gate

Beginning with Oracle Database 12¢ Release 12.1, Oracle supports Oracle Golden Gate
for all object datatypes, except nested tables. Oracle supports object tables and
columns of ADTs, REFs, VARRAYS, and ANYDATA. Oracle also supports type

Design Considerations for Oracle Objects 9-23

Materialized View Support for Objects

evolution and object inheritance. The only exception is nested table columns, object
tables, and columns of ADTs with nested table attributes.

See Also:

Oracle Golden Gate Administration Guide for information about data types
supported by Oracle Golden Gate.

9.8.2 Active Data Guard and Logical Standby Support for Objects

Beginning with Oracle Database release 12¢, release 12.1, Oracle supports Active Data
Guard and Logical Standby for Object Tables and column for all Object datatypes,
including REFs, varrays, ANYDATA and object inheritance. The only exception is that
Active Data Guard and Logical Standby is not supported for tables with top-level
nested tables and ADTs with nested table attributes.

See Also:

Oracle Data Guard Concepts and Administration for information about data
types supported by SQL Apply (logical standby)

9.9 Materialized View Support for Objects

Materialized view support is available for relational tables that contain columns of an
object, collection, or REF type. Such materialized views are called object-relational
materialized views.

All user-defined types required by an object-relational materialized view must exist at
the materialized view site as well as at the master site. They must have the same object
type IDs and versions at both sites.

Topics:
* Object, Collection, or REF Type Columns (page 9-24)
¢ Object Tables (page 9-24)

9.9.1 Object, Collection, or REF Type Columns

To be updatable, a materialized view based on a table that contains an object column
must select the column as an object in the query that defines the view: if the query
selects only certain attributes of the column's object type, then the materialized view is
read-only.

The view-definition query can also select columns of collection or REF type. REFs can
be either primary-key based or have a system-generated key, and they can be either
scoped or unscoped. Scoped REF columns can be rescoped to a different table at the
site of the materialized view—for example, to a local materialized view of the master
table instead of the original, remote table.

9.9.2 Object Tables

A materialized view based on an object table is called an object materialized view.
Such a materialized view is itself an object table. An object materialized view is created

9-24 Oracle Database Object-Relational Developer's Guide

http://docs.oracle.com/cd/E35209_01/doc.1121/e29397.pdf

Constraints on Objects

by adding the OF t ype keyword to the CREATE MATERI ALI ZED VI EWstatement. For
example:

CREATE MATERI ALI ZED VI EW cust omer OF cust_objtyp AS
SELECT * FROM HR Cust oner _obj t ab@lbs1;

As with an ordinary object table, each row of an object materialized view is an object
instance, so the view-definition query that creates the materialized view must select
entire objects from the master table: the query cannot select only a subset of the object
type's attributes. For example, the following materialized view is not allowed:

CREATE MATERI ALI ZED VI EW cust omer OF cust_objtyp AS
SELECT Cust No FROM HR. Cust oner _obj t ab@lbs1;

You can create an object-relational materialized view from an object table by omitting
the OF t ype keyword, but such a view is read-only: you cannot create an updatable
object-relational materialized view from an object table.

For example, the following CREATE MATERI ALl ZED VI EWstatement creates a read-
only object-relational materialized view of an object table. Even though the view-
definition query selects all columns and attributes of the object type, it does not select
them as attributes of an object, so the view created is object-relational and read-only:

CREATE MATERI ALI ZED VI EW cust ormer AS
SELECT * FROM HR Cust oner _obj t ab@lbs1;

For both object-relational and object materialized views that are based on an object
table, if the type of the master object table is not FI NAL, the FROMclause in the
materialized view definition query must include the ONLY keyword. For example:

CREATE MATERI ALI ZED VI EW cust omer OF cust_objtyp AS
SELECT CustNo FROM ONLY HR. Cust oner _objt ab@lbs1;

Otherwise, the FROMclause must omit the ONLY keyword.

9.10 Constraints on Objects

Oracle does not support constraints and defaults in type specifications. However, you
can specify the constraints and defaults when creating the tables:

Example 9-15 Specifying Constraints on an Object Type When Creating a Table

CREATE TYPE cust omer _typ AS OBJECT(
cust _id INTEGER);

/

CREATE TYPE departnent _typ AS OBJECT(
deptno | NTEGER);

/

CREATE TABLE customer _tab OF customer_typ (
cust _id default 1 NOT NULL);

CREATE TABLE departnent _tab OF departnent _typ (
deptno PRI MARY KEY);

CREATE TABLE customer_tabl (
cust custoner_typ DEFAULT customer _typ(1)
CHECK (cust.cust_id I'S NOT NULL),
sone_ot her _col utm VARCHAR2(132)) ;

Design Considerations for Oracle Objects 9-25

Considerations Related to Type Evolution

9.11 Considerations Related to Type Evolution

The following sections contain design considerations relating to type evolution.

This section contains the following topics:

¢ Pushing a Type Change Out to Clients (page 9-26)

* About Changing Default Constructors (page 9-26)

* About Altering the FINAL Property of a Type (page 9-27)

9.11.1 Pushing a Type Change Out to Clients

Once a type has evolved on the server side, all client applications using this type need
to make the necessary changes to structures associated with the type. You can do this
with OTT/JPUB.

You also may need to make programmatic changes associated with the structural
change. After making these changes, you must recompile your application and relink.

Types may be altered between releases of a third-party application. To inform client
applications that they need to recompile to become compatible with the latest release
of the third-party application, you can have the clients call a release-oriented
compatibility initialization function.

This function could take as input a string that tells it which release the client
application is working with. If the release string mismatches with the latest version, an
error is generated. The client application must then change the release string as part of
the changes required to become compatible with the latest release.

For example:

FUNCTI ON conpatibility_init(
rel IN VARCHAR2, errmsg OUT VARCHAR2)
RETURN NUMBER,

where:

* rel isarelease string that is chosen by the product, such as, ' Rel ease 10. 1
e errmsg is any error message that may need to be returned

e The function returns 0 on success and a nonzero value on error

9.11.2 About Changing Default Constructors

When a type is altered, its default, system-defined constructors need to be changed in
order (for example) to include newly added attributes in the parameter list. If you are
using default constructors, you need to modify their invocations in your program in
order for the calls to compile.

You can avoid having to modify constructor calls if you define your own constructor
functions instead of using the system-defined default ones. See "Advantages of User-
Defined Constructors (page 8-16)".

9-26 Oracle Database Object-Relational Developer's Guide

Parallel Queries with Oracle Objects

9.11.3 About Altering the FINAL Property of a Type

When you alter a type T1 from FI NAL to NOT FI NAL, any attribute of type T1 in the
client program changes from being an inlined structure to a pointer to T1. This means
that you need to change the program to use dereferencing when this attribute is
accessed.

Conversely, when you alter a type from NOT Fl NAL to FI NAL, the attributes of that
type change from being pointers to inlined structures.

For example, say that you have the types T1(a i nt) and T2(b T1), where T1's
property is FI NAL. The C/JAVA structure corresponding to T2 is T2(T1 b) . But if
you change T1's property to NOT FI NAL, then T2's structure becomes T2(T1 *b).

9.12 Parallel Queries with Oracle Objects

Oracle lets you perform parallel queries with objects and objects synthesized in views,
when you follow these rules:

* To make queries involving joins and sorts parallel (using the ORDER BY, GROUP
BY, and SET operations), a MAP function is required. In the absence of a MAP
function, the query automatically becomes serial.

¢ Parallel queries on nested tables are not supported. Even if there are parallel hints
or parallel attributes for the table, the query is serial.

e Parallel Insert Direct Load (PIDL) and Parallel Create Table As Select (PCTAS) are
supported on varray and ADT columns. The ADT columns must meet the
following characteristics:

- typeis final

ADT attributes, at any level within the main type is final

lob/varray/xmltype attributes are stored as securefile

all other attributes are simple scalars

Rest of the DML and DDL are always performed in serial.

¢ Parallel DML is not supported on views with | NSTEAD- OF trigger. However, the
individual statements within the trigger may be parallelized.

9.13 Design Consideration Tips and Techniques
There are assorted tips on various aspects of working with Oracle object types.
Topics:
* Whether to Evolve a Type or Create a Subtype (page 9-28)
e How ANYDATA Differs from User-Defined Types (page 9-28)
* Polymorphic Views: An Alternative to an Object View Hierarchy (page 9-29)
e The SQLJ Object Type (page 9-29)

¢ Miscellaneous Design Tips (page 9-31)

Design Considerations for Oracle Objects 9-27

Design Consideration Tips and Techniques

9.13.1 Whether to Evolve a Type or Create a Subtype

As an application goes through its life cycle, the question often arises whether to
change an existing object type or to create a specialized subtype to meet new
requirements. The answer depends on the nature of the new requirements and their
context in the overall application semantics. Here are two examples:

Changing a Widely Used Base Type

Suppose that we have an object type addr ess with attributes St r eet , St at e, and
ZI P:

CREATE TYPE address AS OBJECT (
Street VARCHARZ(80),
State VARCHARZ(20),
ZIP VARCHAR2(10));

/

We later find that we need to extend the addr ess type by adding a Count ry
attribute to support addresses internationally. Is it better to create a subtype of
addr ess or to evolve the addr ess type itself?

With a general base type that has been widely used throughout an application, it is
better to implement the change using type evolution.

Adding Specialization

Suppose that an existing type hierarchy of Graphic types (for example, curve, circle,
square, text) needs to accommodate an additional variation, namely, Bezier curve. To
support a new specialization of this sort that does not reflect a shortcoming of the base
type, we should use inheritance and create a new subtype Bezi er Cur ve under the
Cur ve type.

To sum up, the semantics of the required change dictates whether we should use type
evolution or inheritance. For a change that is more general and affects the base type,
use type evolution. For a more specialized change, implement the change using
inheritance.

9.13.2 How ANYDATA Differs from User-Defined Types

ANYDATA is an Oracle-supplied type that can hold instances of any Oracle data type,
whether built-in or user-defined. ANYDATA is a self-describing type and supports a
reflection-like API that you can use to determine the shape of an instance.

While both inheritance, through the substitutability feature, and ANYDATA provide the
polymorphic ability to store any of a set of possible instances in a placeholder, the two
models give the capability two very different forms.

In the inheritance model, the polymorphic set of possible instances must form part of a
single type hierarchy. A variable can potentially hold instances only of its defined type
or of its subtypes. You can access attributes of the supertype and call methods defined
in the supertype (and potentially overridden by the subtype). You can also test the
specific type of an instance using the IS OF and the TREAT operators.

ANYDATA variables, however, can store heterogeneous instances. You cannot access
attributes or call methods of the actual instance stored in an ANYDATA variable (unless
you extract out the instance). You use the ANYDATA methods to discover and extract
the type of the instance. ANYDATA is a very useful mechanism for parameter passing
when the function/procedure does not care about the specific type of the
parameter(s).

9-28 Oracle Database Object-Relational Developer's Guide

Design Consideration Tips and Techniques

Inheritance provides better modeling, strong typing, specialization, and so on. Use
ANYDATA when you simply want to be able to hold one of any number of possible
instances that do not necessarily have anything in common.

9.13.3 Polymorphic Views: An Alternative to an Object View Hierarchy

Applying an Object Model to Relational Data (page 6-1) describes how to build up a
view hierarchy from a set of object views each of which contains objects of a single
type. Such a view hierarchy enables queries on a view within the hierarchy to see a
polymorphic set of objects contained by the queried view or its subviews.

As an alternative way to support such polymorphic queries, you can define an object
view based on a query that returns a polymorphic set of objects. This approach is
especially useful when you want to define a view over a set of tables or views that
already exists.

For example, an object view of Per son_t can be defined over a query that returns
Per son_t instances, including Enpl oyee_t instances. The following statement
creates a view based on queries that select persons from a per sons table and
employees from an enpl oyees table.

CREATE VI EW Persons_view OF Person_t AS

SELECT Person_t(...) FROM persons

UNION ALL

SELECT TREAT(Enpl oyee_t(...) AS Person_t) FROM enpl oyees;

An | NSTEAD OF trigger defined for this view can use the VALUE function to access
the current object and to take appropriate action based on the object's most specific

type.

Polymorphic views and object view hierarchies have these important differences:

* Addressability: In a view hierarchy, each subview can be referenced
independently in queries and DML statements. Thus, every set of objects of a
particular type has a logical name. However, a polymorphic view is a single view,
so you must use predicates to obtain the set of objects of a particular type.

e Evolution: If a new subtype is added, a subview can be added to a view hierarchy
without changing existing view definitions. With a polymorphic view, the single
view definition must be modified by adding another UNI ONbranch.

¢ DML Statements: In a view hierarchy, each subview can be either inherently
updatable or can have its own | NSTEAD OF trigger. With a polymorphic view,
only one | NSTEAD OF trigger can be defined for a given operation on the view.

9.13.4 The SQLJ Object Type

This section discusses the SQL]J object type.

Topics:

® The Intended Use of SQLJ Object Types (page 9-30)

® Actions Performed When Creating a SQLJ Object Type (page 9-30)

Uses of SQLJ Object Types (page 9-30)

Uses of Custom Object Types (page 9-30)

Differences Between SQLJ and Custom Object Types Through JDBC (page 9-31)

Design Considerations for Oracle Objects 9-29

Design Consideration Tips and Techniques

9.13.4.1 The Intended Use of SQLJ Object Types

According to the Information Technology - SQL] - Part 2 document (SQL]J Standard), a
SQLJ object type is a database object type designed for Java. A SQL]J object type maps
to a Java class. Once the mapping is registered through the extended SQL CREATE
TYPE command (a DDL statement), the Java application can insert or select the Java
objects directly into or from the database through an Oracle JDBC driver. This enables
the user to deploy the same class in the client, through JDBC, and in the server,
through SQL method dispatch.

9.13.4.2 Actions Performed When Creating a SQLJ Object Type
The extended SQL CREATE TYPE command:

* Populates the database catalog with the external names for attributes, functions,
and the Java class. Also, dependencies between the Java class and its
corresponding SQLJ object type are maintained.

e Validates the existence of the Java class and validates that it implements the
interface corresponding to the value of the USI NGclause.

¢ Validates the existence of the Java fields (as specified in the EXTERNAL NANME
clause) and whether these fields are compatible with corresponding SQL
attributes.

* Generates an internal class to support constructors, external variable names, and
external functions that return sel f as a result.

9.13.4.3 Uses of SQLJ Object Types

The SQLJ object type is a special case of SQL object type in which all methods are
implemented in a Java class.

The mapping between a Java class and its corresponding SQL type is managed by the
SQLJ object type specification. That is, the SQL]J Object type specification cannot have
a corresponding type body specification.

Also, the inheritance rules among SQL]J object types specify the legal mapping
between a Java class hierarchy and its corresponding SQLJ object type hierarchy.
These rules ensure that the SQL]J Type hierarchy contains a valid mapping. That is, the
supertype or subtype of a SQL]J object type has to be another SQL]J object type.

9.13.4.4 Uses of Custom Object Types

The custom object type is the Java interface for accessing SQL object types. A SQL
object type may include methods that are implemented in languages such as PLSQL,
Java, and C. Methods implemented in Java in a given SQL object type can belong to
different unrelated classes. That is, the SQL object type does not map to a specific Java
class.

In order for the client to access these objects, JPublisher can be used to generate the
corresponding Java class. Furthermore, the user has to augment the generated classes
with the code of the corresponding methods. Alternatively, the user can create the
class corresponding to the SQL object type.

At runtime, the JDBC user has to register the correspondence between a SQL Type
name and its corresponding Java class in a map.

9-30 Oracle Database Object-Relational Developer's Guide

Design Consideration Tips and Techniques

9.13.4.5 Differences Between SQLJ and Custom Object Types Through JDBC

The following table summarizes the differences between SQL]J object types and custom
object types.

Table 9-1 Differences Between SQLJ and Custom Object Types
___|

Feature SQLJ Object Type Behavior Custom Object Type Behavior

Typecodes Use the Or acl eTypes. JAVA_STRUCT Use the Or acl eTypes. STRUCT typecode to
typecode to register a SQLJ object type as a register a custom object type as a SQL OUT
SQL QUT parameter. The parameter. The Or acl eTypes. STRUCT
Oracl eTypes. JAVA_STRUCT typecode is typecode is also used in the
also used in the _SQL_TYPECODE field of a _SQ._TYPECODE field of a class
class implementing the ORADat a or SQLDat a implementing the ORADat a or SQLDat a
interface. interface.

Creation Create a Java class implementing the SQLDat a Issue the extended SQL CREATE TYPE
or ORADat a and ORADat aFact ory interfaces command for a custom object type and then
first and then load the Java class into the create the SQLDat a or ORADat a Java
database. Next, you issue the extended SQL wrapper class using JPublisher or do this
CREATE TYPE command for SQLJ object type. manually.

Method Supports external names, constructor calls, and There is no default class for implementing

Support calls for member functions with side effects. type methods as Java methods. Some

methods may also be implemented in SQL.

Type Mapping Type mapping is automatically done by the Register the correspondence between SQL
extended SQL CREATE TYPE command. and Java in a type map. Otherwise, the type
However, the SQL]J object type must have a is materialized as or acl e. sql . STRUCT.
defining Java class on the client.

Inheritance There are rules for mapping SQL hierarchy to ~ There are no mapping rules.

a Java class hierarchy. See the Oracle Database
SQL Language Reference for a complete
description of these rules.

9.13.5 Miscellaneous Design Tips

You should know these miscellaneous tips for designing with Oracle objects.

9.13.5.1 Column Substitutability and the Number of Attributes in a Hierarchy

If a column or table is of type T, Oracle adds a hidden column for each attribute of
type T and, if the column or table is substitutable, for each attribute of every subtype
of T, to store attribute data. A hiddent ypei d column is added as well, to keep track
of the type of the object instance in a row.

The number of columns in a table is limited to 1,000. A type hierarchy with a number
of total attributes approaching 1,000 puts you at risk of running up against this limit
when using substitutable columns of a type in the hierarchy. To avoid problems as a
result of this, consider one of the following options for dealing with a hierarchy that
has a large number of total attributes:

e Use views
e Use REFs

® Break up the hierarchy

Design Considerations for Oracle Objects 9-31

Design Consideration Tips and Techniques

9.13.5.2 Circular Dependencies Among Types

Avoid creating circular dependencies among types. In other words, do not create
situations in which a method of type T returns a type T1, which has a method that
returns a type T.

9-32 Oracle Database Object-Relational Developer's Guide

Glossary

atomically null object

An object whose value is NULL is called atomically null. An atomically null object is
different from an object that has null values for all its attributes.

Binary Large Object (BLOB)

A large object data type whose value consists of raw binary data.

character large object (CLOB)

The large object (LOB) data type whose value is composed of character data
corresponding to the database character set.

column object

An object that is stored as a column of a relational database table (as opposed to an
object table). A column object can also be an attribute of another object. A column
object is also known as a stored inline object or an embedded object.

embedded object attribute

An attribute of a column object.

dynamic method dispatch

A method call that is dispatched at run-time to the nearest method implementation
when there are multiple implementations of the same method using overriding.

leaf-level scalar object

An object that is not a collection and is not composed of other types.

leaf-level scalar attribute

An attribute of a leaf-level scalar object.

literal invocation

An invocation where all arguments are literals or invocations of literal methods.
Arguments cannot be variables.

Glossary-1

materialized view

materialized view

A view that contains both the query and its results.

multilevel collection type

Collection types whose elements are collection types, either directly or indirectly.

multiset operators

An operator that combines elements of two nested tables into a single nested table.

nested table

An unordered set of data elements of the same data type.

normalize

The process of removing redundancy in data by separating the data into multiple
tables.

object column
A column of user-defined types or abstract data types (ADT)s .

object identifier

Identifier for a row object which can be either system-generated (default) or based on a
primary key using the CREATE TABLE statement.

object instance

An instance of an object type. Also referred to as an object.

object table

A table in which each row represents an object. See row object.

object type

The type of the object instance. It is similar to a record that has methods. Object types
are user-defined.

outer table

A table that contains a nested table.

pinning
Fetching.

Glossary-2

VARRAY

PL/SQL

The Oracle procedural language extension to SQL.

polymorphism

Allows handling data types and methods generically using the same interface. In
polymorphic overriding, subtypes redefine a method they have inherited. In
polymorphic overloading, there may be several versions of the same method, with
different parameters.

primary key

The column or set of columns specified in the PRIMARY KEY constraint of a table.

REF

An Oracle built-in data type that encapsulates references to row objects of a specified
object type.

row object

An object that is stored in a complete row in an object table.

specializing

Adding new attributes or methods to a subtype that the parent supertype does not
have, or changing the implementation of a method or methods.

stored procedure

A PL/SQL block that is stored in the database and can be executed from an
application.

substitutability

A supertype is substitutable if one of its subtypes can substitute or stand in for it in a
variable or column whose declared type is the supertype.

type evolution
The modification of a subtype of a type, typically using an ALTER statement.

VARRAY

An ordered set of data elements, that are of the same data type or a subtype of the
declared data type.

Glossary-3

Symbols

.NET object extensions, 1-13
NET stored procedures, 1-13

A

ADMIN OPTION
with EXECUTE ANY TYPE, 7-2
aggregate functions
See user-defined aggregate functions
aliases
required for tables, 2-6
ALTER ANY TYPE privilege, 7-1
See also privileges
ALTER TABLE
storing XMLTypes and LOBs, 8-15
See also object types, evolving
ALTER TYPE statement, 8-14
See also object types, evolving
ANYDATA column
Storing XMLTypes and LOBs in, 8-15
ANYDATA data type, 8-20
ANYDATA types, 8-15
ANYDATASET data type, 8-20
ANYTYPE data type, 8-20
arrays
size of VARRAYS, 5-3
assignment narrowing, 2-34
assignments
across object types, 2-33
collections, 2-35
objects and REFs to objects, 2-33
atomic nulls
object types in PL/SQL, 3-3
attribute value constructor, 2-13
attributes
leaf-level, 2-4, 8-1
modifying, 8-11
of object types, 1-3

B

bind variables

bind variables (continued)
object types, 4-2
BULK COLLECT clause, 5-20

C

Index

caches
object cache, 4-2, 4-6, 6-3, 7-4
object views, 6-3
capture avoidance rule, 2-6
CARDINALITY function, 5-23
CAST function, 2-36
character length semantics
object types, 2-3
COLLECT function, 5-23
collections
assigning, 2-35
assignments, 5-8
constructing, 1-11
constructor methods, 5-2
creating, 5-2
data types, 5-1
DML on, 5-17
multilevel
constructing, 5-12
creating, 5-12
creating with REFs, 9-14, 9-16
object views containing, 6-7
nested tables, 5-5
querying, 5-13, 9-9
substitutable elements, 2-29
substituting, 2-26
supported data types, 1-11
variable arrays (VARRAYsS), 5-3
See also varrays, nested tables
column objects
indexes on, 2-4
versus row objects, 9-1
COLUMN_VALUE keyword, 5-8
columns
column objects, 1-6
hidden, 8-2, 8-5
qualifying in queries, 2-6

Index-1

comparisons
methods, 2-10
nested tables, 5-20
compilation
of object types, 7-6
constraints
object tables, 2-3
on Oracle objects, 9-25
REFs, 9-6
constructor methods, 5-2
constructors
attribute values, 8-16
calling user-defined, 8-18
literal invocation, 2-13
literal invocation of, 2-13
methods, 2-13
overloading, 8-17
overriding, 8-17
system defined, 8-16
type evolution, 8-16
user-defined, 8-16, 8-17
with NEW keyword, 8-16
CREATE INDEX statement
object types, 2-4
CREATE OR REPLACE TYPE Table Dependencies,
7-7
CREATE OR REPLACE TYPE with FORCE option, 7-7
CREATE OR REPLACE TYPE with Type
Dependencies, 7-7
CREATE TABLE statement
column object example, 1-5
object table example, 1-6, 2-3
CREATE TRIGGER statement
object table example, 2-5
CREATE TYPE privilege, 7-1
See also privileges
CREATE TYPE statement
collection types, 1-11
dependent types, 7-6
example, 5-5
nested tables, 5-5
object types, 1-3
varrays, 5-3
creating object types, 1-3
creating VARRAYs
containing references to LOBs, 5-8
CURSOR expression, 2-36

D

dangling REFs, 1-10
data types
array types, 5-3
generic, 8-20
nested tables, 5-5
object types, 2-8
opaque, 8-20

Index-2

data types (continued)
transient, 8-20
database administrators (DBAs)
DBA role, 7-1
database links
and object types, 2-8
DBA role
user-defined types, 7-1
declarations
object in a PL/SQL block, 3-2
declaring objects in PL/SQL, 3-1
DEFAULT clause, 5-2
default values
collections, 5-2
object types, 5-2
DELETE privilege
for object tables, 7-4
DEREF
dereferencing a ref with, 1-10
DEREF function, 2-36, 3-5
dereferencing
implicit, 1-10
dot notation
for object attributes in PL/SQL, 3-3
for object methods in PL/SQL, 3-4
using with methods, 2-9
DROP ANY TYPE privilege, 7-1
See also privileges
DROP TYPE statement
FORCE option, 7-9
dump files
Export and Import, 4-16
dynamic method dispatch, 2-25, 3-6
dynamic SQL, 3-8

E

editions
views, 1-1
equal and not equal conditions
nested tables, 5-20
equipartitioning
nested tables
partitioning, 5-26
evolution
object types, 1-13
versus inheritance, 9-28
EXECUTE ANY TYPE privilege, 7-1, 7-2
See also privileges
EXECUTE privilege
object types, 7-2
See also privileges
executing SQL statements at run time, 3-8
export object types, 4-16
Export utility
object types, 4-16

F

files

Export and Import dump file, 4-16

FINAL keyword

modifying finality, §-11
FORCE keyword, 6-16
function-based indexes

on type methods, 9-21

G

generalized expression, 2-20
generalized method invocation, 2-20
generic data type, 8-20
generic programming, 8-20
guidelines

comparison methods, 2-12

implicit dereferencing, 1-10
import object types, 4-16
Import utility

object types, 4-16
importing object tables, 4-16
IN condition, 5-21
incomplete object types, 7-6
index-organized tables

storing nested tables as, 5-10
indexes

nested table, 5-5

object types, 2-4

on REFs, 2-4

type-discriminant column, 8-5
inheritance

and overloading, 3-6

multiple, 2-14

single, 2-14

versus evolution, 9-28

See also type inheritance

inheriting methods, 2-23
initializing objects in PL/SQL, 3-1
inner capture, 2-6
INSERT privilege

for object tables, 7-4
instances

object type, 1-3

objects, 1-5
INSTANTIABLE keyword

CREATE TYPE, 2-22

modifying instantiability, 8-11
INSTEAD OF triggers

nested tables, 6-12
invoker-rights

object types, 9-22
invoking constructors, 2-13

10Ts

ISA

See index-based tables
SET condition, 5-22

IS EMPTY condition, 5-22
IS NOT A SET condition, 5-22
IS OF type predicate, 2-37

J

Java

object storage, 4-12
Oracle JDBC and Oracle objects, 4-9
with Oracle objects, 4-9

JDBC

L

See Oracle JDBC

leaf-

level attributes
scalar, 8-1

left correlation, 5-14
literal invocation of a method, 2-14
locators

returning nested tables as, 8-24, 9-12, 9-13

using a hint, 9-13

locks

M

object level locking, 4-3

managing

object types, 7-1

map methods

comparing collections, 5-21
for comparing objects, 2-10

materialized views, 1-12, 9-24
MEMBER condition, 5-22
member methods, 1-6, 2-9
member procedures

with SELF IN OUT NOCOPY, 9-20

methods

choosing a language for, 9-18
comparison methods

in a type hierarchy, 2-13
constructor, 1-6
constructors, 1-6, 2-13, 8-2
creating maps, 2-11
dot notation, 2-9
dropping, 8-11
dynamic method dispatch, 2-25
execution privilege for, 7-2
final, 2-17
function-based indexes, 9-21
guidelines for comparison, 2-12
inheriting, 2-23
instantiability, 2-22
invoking, 2-9

Index-3

methods (continued)

map, 2-10, 9-5

map for comparing objects, 2-10

map required for collections, 5-21

member, 1-6, 2-9

object types, 1-6, 2-8

order, 2-11, 9-5

overloading, 2-18, 2-23, 2-24

overriding, 2-17, 2-18, 2-23, 2-24

PL/SQL, 4-2

redefining, 2-24

restrictions on overriding, 2-25

SELF parameter, 2-9

static, 1-6, 2-13, 9-20
modify_opaque_type clause, 8§-15
multilevel collections

varray storage, 5-11

See also collections, multilevel

multiple inheritance, 2-14
multiple subtypes, 2-21
MULTISET EXCEPT operator, 5-23
MULTISET INTERSECT operator, 5-24
multiset operations

with nested tables, 5-22
MULTISET UNION operator, 5-24

N

name resolution
object types, 2-6
narrowing, 2-40
nested tables
adding to an object, 8-10
comparing, 5-20
creating, 5-2
creating indexes on, 9-12
equal and not equal conditions, 5-20
in an index-organized table, 5-10
indexes, 5-5
INSTEAD OF triggers, 6-12
locators, 8-24, 9-12
multiset operations, 5-22
piecewise operations, 5-18
querying
unnesting results, 5-14
returning as locators, 9-12, 9-13
specifying a storage name, 8-10
specifying storage in a tablespace, 5-6
storage, 5-8, 9-11
updating in views, 6-12
NESTED_TABLE_GET_REFS hint, 9-13
NESTED_TABLE_ID, 5-8
NESTED_TABLE_ID keyword, 9-12
NEW keyword, 2-13
NLS_LENGTH_SEMANTICS initialization parameter,
2-3

Index-4

NOCOPY compiler hint
methods, 2-9
performance issues, 9-20
use with member procedures, 9-20
use with SELF, 2-9, 9-20
NOT FINAL keyword, 2-17
NOT MEMBER condition, 5-22
nulls
atomic, 2-2
object types, 2-2

o

object cache
object views, 6-3
oCI, 4-2
privileges, 7-4
Pro*C, 4-6
object constructors
calling in PL/SQL, 3-4
passing parameters to in PL/SQL, 3-4
object identifier, 1-8, 6-2
object identifiers
column and index, 9-4
for object types, 8-2
primary-key based, 9-4
REFs, 9-4
storage, 9-4
system-generated, 9-4
object instances, 1-3, 1-5
object methods
calling in PL/SQL, 3-4
object replication
using logical standby, 9-24
object tables
constraints, 2-3
importing, 4-16
indexes, 2-4
row objects, 1-6
triggers, 2-5
virtual object tables, 6-1
object types
adding a nested table attribute, 8-10
advantages, 1-1
altering a type, 8-8, 8-10
assignments across, 2-33
attributes of, 1-3
character length semantics, 2-3
collection objects, 6-6
collections
nested tables, 5-5
variable arrays (VARRAYsS), 5-3
column objects, 1-6
column objects versus row objects, 9-1
comparison methods for, 2-10
constructor methods, 1-6, 8-2

object types (continued)

constructor methods for, 2-13
creating, 1-3
creating subtypes of, 2-19
database key features, 1-2
declaring in a PL/SQL block, 3-2
dependencies, 7-5
dependents, 7-6, §-6
evolution, 1-13
evolving

design considerations, 9-26
example of privileges, 7-2
Export and Import, 4-16
FINAL or NOT FINAL, 2-17
in columns, 6-4
incomplete, 7-5-7-7
indexes on column objects, 2-4
indexing, 8-5
inheritance, 1-12, 2-14
initializing in PL/SQL, 3-3
instances, 1-3
instantiable, 2-22
invoker-rights, 9-22
key features, 1-2
locking in cache, 4-3
managing, 7-1
methods, 2-8, 2-9
methods in PL/SQL, 4-2
mutually dependent, 7-6
name resolution, 2-6
nested tables, 5-5
not instantiable, 2-22
nulls, 2-2
object references, 6-9
Oracle type translator, 4-8
performance tuning, 7-13
privileges, 7-1
recompiling, 7-7
remote access to, 2-8, 6-13

row objects and object identifiers, 6-6

schema privileges, 7-2
specializing, 1-12
SQLJ types, 4-12
storage, 8-1
substituting, 2-26
subtypes, 2-15
synonyms, 7-10
table aliases, 2-6
triggers, 2-5
use of table aliases, 2-6
utilities, 4-16
variable arrays (VARRAYsS), 5-3
views, 1-12
See also type inheritance

object views

advantages of, 6-1

object views (continued)

circular references, 6-15
defining REFs

for rows of object views, 6-2
hierarchies

privileges, 6-26

querying in, 6-25
modeling relationships, 6-10, 6-14
multilevel collections in, 6-7
nested tables, 6-12
null objects in, 6-5
OIDs with, 6-8
REFs to, 6-9

updating through INSTEAD OF triggers, 6-11

OBJECT_ID pseudocolumn, 2-28
OBJECT_VALUE pseudocolumn, 2-28
object-relational model

advantages, 1-1

comparing objects, 9-5

constraints, 9-25

database key features, 1-2

design considerations, 9-1

key features, 1-2

methods, 1-6, 2-8

programmatic environments for, 4-1, 4-9

0C(I, 4-8

OCI
associative access, 4-3
for Oracle objects

building a program, 4-5

navigational access, 4-4
object cache, 4-4
OCIObjectFlush, 6-3
OCIObjectPin, 6-3

ODP.NET, Oracle Developer Tools for Visual Studio,

1-13

ODT, Microsoft common language, 1-13
OIDs, 9-4
opaque data type, 8-20
opaque types and ANYDATA, 8-15
Oracle C++ Call Interface, 4-8
Oracle Data Provider for .NET, 1-13
Oracle JDBC

accessing Oracle object data, 4-9
Oracle objects

See object-relational model
Oracle SQL]J

creating custom Java classes, 4-11

data mapping for Oracle objects, 4-10

JPublisher, 4-11
Oracle type translator (OTT), 4-8
order methods, 2-11, 9-5
ORGANIZATION INDEX clause, 5-8
OTT, 4-8
outer-join syntax, 5-14, 5-16
overloading

and inheritance, 3-6

Index-5

overloading (continued)

methods, 2-18, 2-24

user-defined constructors, 8-17
overriding

methods, 2-18

user-defined constructors, 8-17
overriding methods, 2-23

P

parallel query
objects, 9-27
restrictions for Oracle objects, 9-27
view objects, 9-27
partitioning
tables containing Oracle object, 5-26
piecewise operations on multilevel nested tables, 5-18
PkREFs, 8-4
PL/SQL
bind variables
object types, 4-2
object views, 6-3
using with objects, 1-6
polymorphism, 1-12, 2-26, 9-28, 9-29
See also substitutability
POWERMULTISET function, 5-25
POWERMULTISET_BY_CARDINALITY function,
5-25
primary-key-based REFs, 8-4
privileges
acquired by role on object types, 7-1
ALTER ANY TYPE on object types, 7-1
checked when pinning object types, 7-4
column level for object tables, 7-4
DELETE on object types, 7-4
DROP ANY TYPE on object types, 7-1
EXECUTE ANY TYPE on object types, 7-1, 7-2
EXECUTE ANY TYPE on object types with
ADMIN OPTION, 7-2
EXECUTE on object types, 7-2
INSERT on object types, 7-4
object types in types or tables, 7-2
object types with CREATE TYPE, 7-1
object types with INSERT, 7-4
on object types, 7-1
SELECT on object types, 7-4
system on object types, 7-1
UNDER ANY TYPE on object types, 7-1
UNDER ANY VIEW on object types, 7-1
UPDATE on object types, 7-4
Pro*C
embedded SQL with user-defined data types, 4-6
object cache, 4-6
Pro*C/C++
associative access, 4-6
converting between Oracle and C types, 4-7
navigational access, 4-7

Index-6

Pro*C/C++ (continued)
user-defined data types, 4-2
programmatic environments
for Oracle objects, 4-1, 4-9

Q

queries
set membership, 9-13
unnesting, 9-9
varrays, 9-11

R

recompilation
object types, 7-7
redefining
methods, 2-24
REF attributes, 2-5
REF columns, 2-5
REF function
manipulating objects in PL/SQL, 3-5
references, 1-8
references See REFs, 1-8
REFs
comparing, 1-11
constraints on, 2-5, 9-6
constructing from object identifiers, §-2
dangling, 1-10, 2-5
dereferencing, 3-5
dereferencing of, 1-10
implicit dereferencing of, 1-10
indexes on, 2-4
indexing, 9-7
obtaining, 1-11
pinning, 6-3, 7-4
scoped, 1-9, 2-5, 8-4, 9-6
size of, 8-4
storage, 9-6
substitutability, 2-29
substitutability in, 2-26
use of table aliases, 2-6
WITH ROWID option, 9-8
remote databases
using with object types, 2-8
RESOURCE role
user-defined types, 7-1
return entire result sets
BULK COLLECT, 5-20
roles
DBA role, 7-1
RESOURCE role, 7-1
row objects
storage, 9-4

S

sample schemas, hr schema, xvi
schemas
object data types, 4-2
object types, 1-3
qualifying column names, 2-6
scoped REFs, 1-9, 8-4
See also dereferencing, 2-36, 3-5
SELECT privilege
for object tables, 7-4
SELF parameter
methods, 2-9
SET function, 5-25
single inheritance, 2-14
SQL
support for object types, 4-1
user-defined data types
0CI, 4-3
SQLJ
See Oracle SQL
SQLJ object types
creating, 4-12
mapping Java classes, 4-13

See also object types, Oracle SQLJ

static dispatch, 2-20
static methods, 1-6, 2-13
storage
column objects, 9-2
nested tables, 8-4
object tables, §-1
REFs, 8-4
storing nested tables, 5-5

Storing XMLTypes and LOBs in an ANYDATA

column, 8-15
SUBMULTISET condition, 5-21
subprograms

overloading and inheritance, 3-6
roles with invoker’s rights, 9-23

substitutability
attributes, 2-26
collections, 2-26
column and row, 2-26, 8-5
constraining, 2-31
dependencies, 7-8
modifying, 2-32
narrowing, 2-34
OBJECT_ID, 2-28
OBJECT_VALUE, 2-28
restrictions on modifying, 2-32
turning off, 2-30
views, 2-26
views and, 9-29
widening
assignment widening, 2-33
substitutability of object types
with overloading, 3-6

substitutable columns
dropping subtypes, 2-30
subtypes
creating, 2-18

dropping in substitutable columns, 2-30

hierarchy, 2-14

indexing attributes of, 8-6

multiple, 2-21

object types, 2-15

specializing, 9-28

with supertype attribute, 2-28
supertypes

attribute of subtype, 2-28

base in hierarchy, 2-14
synonyms

object types, 7-10
SYS_TYPEID function, 2-38, 8-5
system privileges

ADMIN OPTION, 7-2

object types, 7-1

See also privileges

T

TABLE
function, 2-39
Table Dependencies, 7-7
TABLE expression, 5-5, 5-15
TABLE expression subqueries
restrictions, 5-14
TABLE expressions, 5-14, 9-9
tables
aliases, 2-6

constraints on object tables, 2-3

functions, 2-39
indexes on nested tables, 2-4
nested tables, 5-5
object tables
virtual, 6-1
qualifying column names, 2-6
transient data type, 8-20

TREAT function, 2-26, 2-34, 2-37, 2-40, §-6

triggers
INSTEAD OF triggers
object views and, 6-11
object types, 2-5
type dependencies, 7-8
Type Dependencies, 7-7
type evolution, 1-13
See also object types
type hierarchies
methods in, 2-13
type inheritance
finality, 2-17
instantiability, 2-22
methods, 2-23
object types, 2-14

Index-7

type inheritance (continued)
specializing subtypes, 2-15
See also inheritance
typeids, 2-38, 8-5

types
See data types, object types

U

UNDER ANY TYPE privilege, 7-1
See also privileges
UNDER ANY VIEW privilege, 7-1
See also privileges
UNDER keyword
CREATE TYPE, 2-18
uninitialized object
how treated in PL/SQL, 3-3
unnesting queries, 9-9
unnesting queries to collections, 5-15
unnesting queries with multilevel collections, 5-16
UPDATE privilege
for object tables, 7-4
updates
object views, 6-11
UPGRADE..STORE AS, 8-10
user-defined aggregate functions, 8-23
user-defined constructors, 8-16, 8-17
user-defined data types, 1-1
See also object types
user-defined types
and remote databases, 2-8
utilities supporting objects, 4-16

Vv

validation

Index-8

validation (continued)
object types, 8-11
VALUE function, 2-41, 3-4
variables
bind variables
object types, 4-2
object variables, 6-3
varrays
accessing, 9-11
creating, 5-2
creating VARRAYs, 5-8
increasing the number of elements, 5-7
querying, 9-11
storage, 5-11, 9-10
updating, 9-11
views
object, 1-12
substitutability, 2-26
updatability, 6-11
See also object views

W

widening
and substitutability, 2-33

X

XML, 4-16
XMLType, 5-3
XMLType views, 4-16

XMLTypes and LOBs in an ANYDATA column, 8-15

	Contents
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle Database Object-Relational Developer's Guide
	Changes in Oracle Database 12c Release 2 (12.2.0.1)
	New Features
	Deprecated Features
	Desupported Features

	1 Introduction to Oracle Objects
	1.1 About Oracle Objects
	1.2 Advantages of Objects
	1.3 Key Features of the Object-Relational Model
	1.3.1 Database Features of Oracle Objects
	1.3.1.1 About Object Types
	1.3.1.2 About Object Instances
	1.3.1.3 About Object Methods
	1.3.1.4 How Objects are Stored in Tables
	1.3.1.4.1 Creating and Using Object Tables
	1.3.1.4.2 Performing Operations on Object Tables

	1.3.1.5 Object Identifiers Used to Identify Row Objects
	1.3.1.6 References to Row Objects
	1.3.1.6.1 Using Scoped REFs
	1.3.1.6.2 Checking for Dangling REFs

	1.3.1.7 Dereferencing REFs
	1.3.1.7.1 Dereferencing a REF with the DEREF Command
	1.3.1.7.2 Dereferencing a Dangling REF
	1.3.1.7.3 Dereferencing a REF Implicilty

	1.3.1.8 Obtaining a REF to a Row Object
	1.3.1.9 REF Variables Compared
	1.3.1.10 Oracle Collections Data Types
	1.3.1.11 Object Views Used to Access Relational Data
	1.3.1.12 Use of Type Inheritance
	1.3.1.13 Type Evolution Used to Change an Existing Object Type

	1.3.2 Language Binding Features of Oracle Objects

	2 Basic Components of Oracle Objects
	2.1 SQL Object Types and References
	2.1.1 Null Objects and Attributes
	2.1.2 Character Length Semantics
	2.1.3 Defining Object Tables with Single Constraints
	2.1.4 Defining Object Tables with Multiple Constraints
	2.1.5 Defining Indexes for Object Tables
	2.1.6 Defining Triggers for Object Tables
	2.1.7 Rules for REF Columns and Attributes
	2.1.8 Name Resolution
	2.1.8.1 When Table Aliases Are Required

	2.1.9 Restriction on Using User-Defined Types with a Remote Database

	2.2 Object Methods
	2.2.1 About Object Methods
	2.2.2 Member Methods
	2.2.2.1 Declaring SELF Parameters in Member Methods
	2.2.2.2 Member Methods for Comparing Objects
	2.2.2.2.1 About Map Methods
	2.2.2.2.2 Creating a Map Method
	2.2.2.2.3 Invoking a Map Method
	2.2.2.2.4 Order Methods
	2.2.2.2.5 Guidelines for Comparison Methods
	2.2.2.2.6 Comparison Methods in Type Hierarchies

	2.2.3 Declaring and Invoking Static Methods
	2.2.4 Constructor Methods
	2.2.4.1 System-Defined Constructors
	2.2.4.2 Defining User-Defined Constructors
	2.2.4.3 Literal Invocation of a Constructor Method

	2.2.5 External Implemented Methods

	2.3 Inheritance in SQL Object Types
	2.3.1 About Inheritance in SQL Object Types
	2.3.2 Supertypes and Subtypes
	2.3.3 FINAL and NOT FINAL Types and Methods for Inheritance
	2.3.3.1 Creating an Object Type as NOT FINAL with a FINAL Member Function
	2.3.3.2 Creating a NOT FINAL Object Type

	2.3.4 Changing a FINAL TYPE to NOT FINAL
	2.3.5 Subtype Creation
	2.3.5.1 Creating a Parent or Supertype Object
	2.3.5.2 Creating a Subtype Object
	2.3.5.3 Generalized Invocation
	2.3.5.4 Using Generalized Invocation
	2.3.5.5 Using Generalized Expression
	2.3.5.6 Creating Multiple Subtypes
	2.3.5.7 Creating a Subtype Under Another Subtype
	2.3.5.8 Creating Tables that Contain Supertype and Subtype Objects

	2.3.6 NOT INSTANTIABLE Types and Methods
	2.3.7 Creating a Non-INSTANTIABLE Object Type
	2.3.8 Changing an Object Type to INSTANTIABLE
	2.3.9 Overloaded and Overridden Methods
	2.3.9.1 Overloading Methods
	2.3.9.2 Overriding and Hiding Methods
	2.3.9.3 Restrictions on Overriding Methods

	2.3.10 Dynamic Method Dispatch
	2.3.11 Type Substitution in a Type Hierarchy
	2.3.12 Column and Row Substitutability
	2.3.12.1 About Column and Row Substitutability
	2.3.12.2 Using OBJECT_VALUE and OBJECT_ID with Substitutable Rows
	2.3.12.3 Subtypes with Attributes of a Supertype
	2.3.12.4 Substitution of REF Columns and Attributes
	2.3.12.5 Substitution of Collection Elements

	2.3.13 Newly Created Subtypes Stored in Substitutable Columns
	2.3.14 Dropping Subtypes After Creating Substitutable Columns
	2.3.15 Turning Off Substitutability in a New Table
	2.3.16 Constraining Substitutability
	2.3.17 Modifying Substitutability on a Table
	2.3.18 Restrictions on Modifying Substitutability
	2.3.19 Assignments Across Types
	2.3.19.1 Typical Object to Object Assignment
	2.3.19.2 Widening Assignment
	2.3.19.3 Narrowing Assignment
	2.3.19.4 Collection Assignments

	2.4 Functions and Operators Useful with Objects
	2.4.1 CAST
	2.4.2 CURSOR
	2.4.3 DEREF
	2.4.4 IS OF type
	2.4.5 REF
	2.4.6 SYS_TYPEID
	2.4.7 TABLE()
	2.4.8 TREAT
	2.4.8.1 Using TREAT for Narrowing Assignments
	2.4.8.2 Using the TREAT Function to Access Subtype Attributes or Methods

	2.4.9 VALUE

	3 Using PL/SQL With Object Types
	3.1 Declaring and Initializing Objects in PL/SQL
	3.1.1 Defining Object Types
	3.1.2 Declaring Objects in a PL/SQL Block
	3.1.3 How PL/SQL Treats Uninitialized Objects

	3.2 Object Manipulation in PL/SQL
	3.2.1 Accessing Object Attributes With Dot Notation
	3.2.2 Calling Object Constructors and Methods
	3.2.3 Accessing Object Methods
	3.2.4 Updating and Deleting Objects
	3.2.5 Manipulating Object Manipulation with Ref Modifiers

	3.3 Use of Overloading in PL/SQL with Inheritance
	3.3.1 Resolving PL/SQL Functions with Inheritance
	3.3.2 Resolving PL/SQL Functions with Inheritance Dynamically

	3.4 Using Dynamic SQL With Objects
	3.4.1 Using Dynamic SQL with Object Types and Collections
	3.4.2 Calling Package Procedures with Object Types and Collections

	4 Object Support in Oracle Programming Environments
	4.1 SQL and Object Types
	4.2 SQL Developer
	4.3 PL/SQL
	4.4 Oracle Call Interface (OCI)
	4.4.1 About Oracle Call Interface (OCI)
	4.4.2 Associative Access in OCI Programs
	4.4.3 Navigational Access in OCI Programs
	4.4.4 Object Cache
	4.4.5 Building an OCI Program That Manipulates Objects
	4.4.6 Defining User-Defined Constructors in C

	4.5 Pro*C/C++
	4.5.1 About Pro*C/C++
	4.5.2 Associative Access in Pro*C/C++
	4.5.3 Navigational Access in Pro*C/C++
	4.5.4 Conversion Between Oracle Types and C Types
	4.5.5 Oracle Type Translator (OTT)

	4.6 Oracle C++ Call Interface (OCCI)
	4.6.1 About Oracle C++ Call Interface (OCCI)
	4.6.2 OCCI Associative Relational and Object Interfaces
	4.6.3 The OCCI Navigational Interface

	4.7 Java Tools for Accessing Oracle Objects
	4.7.1 JDBC Access to Oracle Object Data
	4.7.2 Data Mapping Strategies
	4.7.3 JPublisher
	4.7.3.1 JPublisher Used to Create Java Classes for JDBC and SQLJ Programs
	4.7.3.2 What JPublisher Produces for a User-Defined Object Type

	4.7.4 Java Object Storage
	4.7.4.1 Creating SQLJ Object Types
	4.7.4.2 Additional Notes About Mapping
	4.7.4.3 SQLJ Type Evolution
	4.7.4.4 Constraints
	4.7.4.5 Querying SQLJ Objects
	4.7.4.6 Inserting Java Objects
	4.7.4.7 Updating SQLJ Objects

	4.7.5 Defining User-Defined Constructors in Java
	4.7.6 JDeveloper
	4.7.6.1 Application Development Framework (ADF)
	4.7.6.2 TopLink

	4.8 XML
	4.9 Utilities Providing Support for Objects
	4.9.1 Import/Export of Object Types
	4.9.1.1 Types
	4.9.1.2 Object View Hierarchies

	4.9.2 SQL*Loader

	5 Support for Collection Data Types
	5.1 Collection Data Types
	5.1.1 Creating a Collection Type
	5.1.2 Creating an Instance of a VARRAY or Nested Table
	5.1.3 Using the Constructor Method to Insert Values into a Nested Table
	5.1.4 Invoking Constructors Literally to Specify Defaults
	5.1.5 About Varrays
	5.1.6 Creating and Populating a VARRAY
	5.1.7 Nested Tables
	5.1.7.1 Creating Nested Tables
	5.1.7.2 Storing Elements of Nested Tables
	5.1.7.3 Specifying a Tablespace When Storing a Nested Table

	5.1.8 Increasing the Size and Precision of VARRAY and Nested Table Elements
	5.1.9 Increasing VARRAY Limit Size
	5.1.10 Creating a Varray Containing LOB References

	5.2 Multilevel Collection Types
	5.2.1 Nested Table Storage Tables for Multilevel Collection Types
	5.2.1.1 Creating Multilevel Nested Table Storage
	5.2.1.2 Creating Multilevel Nested Table Storage Using the COLUMN_VALUE Keyword
	5.2.1.3 Specifying Physical Attributes for Nested Table Storage

	5.2.2 Varray Storage for Multilevel Collections
	5.2.3 Specifying LOB Storage for VARRAY of VARRAY Type
	5.2.4 Specifying LOB Storage for a Nested Table of VARRAYs
	5.2.5 Constructors for Multilevel Collections

	5.3 Operations on Collection Data Types
	5.3.1 Collection Querying
	5.3.1.1 Nesting Results of Collection Queries
	5.3.1.2 Unnesting Results of Collection Queries
	5.3.1.3 Unnesting Queries Containing Table Expression Subqueries
	5.3.1.4 Using a Table Expression in a CURSOR Expression
	5.3.1.5 Unnesting Queries with Multilevel Collections

	5.3.2 DML Operations on Collections
	5.3.2.1 Performing Piecewise Operations on Nested Tables
	5.3.2.1.1 Updating a Nested Table

	5.3.2.2 Performing Piecewise Operations on Multilevel Nested Tables
	5.3.2.2.1 Performing Piecewise INSERT to Inner Nested Table

	5.3.2.3 Performing Atomical Changes on VARRAYs and Nested Tables
	5.3.2.4 Updating Collections as Atomic Data Items

	5.3.3 Using BULK COLLECT to Return Entire Result Sets
	5.3.4 Conditions that Compare Nested Tables
	5.3.4.1 Comparing Equal and Not Equal Conditions
	5.3.4.2 Comparing the IN Condition
	5.3.4.3 Comparing Subset of Multiset Conditions
	5.3.4.4 Determing Members of a Nested Table
	5.3.4.5 Determining Empty Conditions
	5.3.4.6 Determining Set Conditions

	5.3.5 Multiset Operations for Nested Tables
	5.3.5.1 CARDINALITY
	5.3.5.2 COLLECT
	5.3.5.3 MULTISET EXCEPT
	5.3.5.4 MULTISET INTERSECT
	5.3.5.5 MULTISET UNION
	5.3.5.6 POWERMULTISET
	5.3.5.7 POWERMULTISET_BY_CARDINALITY
	5.3.5.8 SET

	5.4 Partitioning Tables That Contain Oracle Objects

	6 Applying an Object Model to Relational Data
	6.1 Why Use Object Views
	6.2 Defining Object Views
	6.3 Object Views Used in Applications
	6.4 Objects Nested in Object Views
	6.5 Identifying Null Objects in Object Views
	6.6 Nested Tables and Varrays Used in Object Views
	6.6.1 Single-Level Collections in Object Views
	6.6.2 Multilevel Collections in Object Views

	6.7 Object Identifiers for Object Views
	6.8 References Created to View Objects
	6.9 Creating References to Objects with REF
	6.10 Inverse Relationships Modelled with Object Views
	6.11 Object View Manipulations
	6.11.1 Nested Table Columns Updated in Views
	6.11.2 INSTEAD OF Triggers to Control Mutating and Validation

	6.12 Applying the Object Model to Remote Tables
	6.13 Defining Complex Relationships in Object Views
	6.13.1 Tables and Types to Demonstrate Circular View References
	6.13.2 Creating Object Views with Circular References
	6.13.2.1 Method 1: Re-create First View After Creating Second View
	6.13.2.2 Method 2: Create First View Using FORCE Keyword

	6.14 Object View Hierarchies
	6.14.1 Creating an Object View Hierarchy
	6.14.1.1 The Flat Model
	6.14.1.2 The Horizontal Model
	6.14.1.3 The Vertical Model

	6.14.2 About Querying a View in a Hierarchy
	6.14.3 Privileges for Operations on View Hierarchies

	7 Managing Oracle Objects
	7.1 Privileges on Object Types and Their Methods
	7.1.1 System Privileges for Object Types
	7.1.2 Schema Object Privileges
	7.1.3 Types Used in New Types or Tables
	7.1.4 Example: Privileges on Object Types
	7.1.5 Access Privileges on Objects, Types, and Tables

	7.2 Type Dependencies
	7.2.1 Creating Incomplete Types
	7.2.2 Completing Incomplete Types
	7.2.3 Recompiling a Type Manually
	7.2.4 Using CREATE OR REPLACE TYPE with Type and Table Dependencies
	7.2.5 Creating or Replacing Type with Force
	7.2.6 Type Dependencies of Substitutable Tables and Columns
	7.2.7 The DROP TYPE FORCE Option

	7.3 Synonyms for Object Types
	7.3.1 Creating a Type Synonym
	7.3.2 Using a Type Synonym
	7.3.2.1 Describing Schema Objects That Use Synonyms
	7.3.2.2 Dependents of Type Synonyms
	7.3.2.3 Restriction on Replacing a Type Synonym
	7.3.2.4 Dropping Type Synonyms
	7.3.2.5 Renaming Type Synonyms
	7.3.2.6 Public Type Synonyms and Local Schema Objects

	7.4 Performance Tuning

	8 Advanced Topics for Oracle Objects
	8.1 Storage of Objects
	8.1.1 Leaf-Level Attributes
	8.1.2 How Row Objects Are Split Across Columns
	8.1.3 Hidden Columns for Tables with Column Objects
	8.1.4 Hidden Columns for Substitutable Columns and Object Tables
	8.1.5 Querying for Typeids of Objects Stored in Tables
	8.1.6 Storage of REFs
	8.1.7 Internal Layout of Nested Tables
	8.1.8 Internal Layout of VARRAYs

	8.2 Creating Indexes on Typeids or Attributes
	8.2.1 Indexing a Type-Discriminant Column
	8.2.2 Indexing Subtype Attributes of a Substitutable Column

	8.3 Type Evolution
	8.3.1 About Type Evolution
	8.3.2 Type Evolution and Dependent Schema Objects
	8.3.3 Options for Updating Data
	8.3.4 Effects of Structural Changes to Types
	8.3.5 Altering a Type by Adding and Dropping Attributes
	8.3.6 Altering a Type by Adding a Nested Table Attribute
	8.3.7 About Validating Types That Have Been Altered
	8.3.8 ALTER TYPE Statement for Type Evolution
	8.3.9 ALTER TABLE Statement for Type Evolution

	8.4 Storing XMLTypes and LOBs in an ANYDATA Column
	8.5 System-Defined and User-Defined Constructors
	8.5.1 The Attribute-Value Constructor
	8.5.2 Constructors and Type Evolution
	8.5.3 Advantages of User-Defined Constructors
	8.5.4 Defining and Implementing User-Defined Constructors
	8.5.5 Overloaded and Hidden Constructors
	8.5.6 Calling User-Defined Constructors
	8.5.7 Constructors for SQLJ Object Types

	8.6 Transient and Generic Types
	8.7 User-Defined Aggregate Functions
	8.8 How Locators Improve the Performance of Nested Tables

	9 Design Considerations for Oracle Objects
	9.1 General Storage Considerations for Objects
	9.1.1 About Storing Objects as Columns or Rows
	9.1.1.1 Column Object Storage in Relational Tables
	9.1.1.2 Row Object Storage in Object Tables

	9.1.2 Storage Considerations for Object Identifiers (OIDs)
	9.1.2.1 System-Generated Object Identifiers (OIDs)
	9.1.2.2 Primary-Key Based Object Identifiers (OIDs)
	9.1.2.3 System-Generated Versus Primary-Key Based OIDs

	9.2 Performance of Object Comparisons
	9.3 Design Considerations for REFs
	9.3.1 Storage Size of REFs
	9.3.2 Integrity Constraints for REF Columns
	9.3.3 Performance and Storage Considerations for Scoped REFs
	9.3.3.1 Indexing for Scoped REFs

	9.3.4 Performance Improvement for Object Access Using the WITH ROWID Option

	9.4 Design Considerations for Collections
	9.4.1 Viewing Object Data in Relational Form with Unnesting Queries
	9.4.1.1 Creating Procedures and Functions to Unnest Queries
	9.4.1.2 Querying the TABLE Function to Unnest Data

	9.4.2 Storage Considerations for Varrays
	9.4.2.1 About Propagating VARRAY Size Change

	9.4.3 Performance of Varrays Versus Nested Tables
	9.4.4 Design Considerations for Nested Tables
	9.4.4.1 Nested Table Storage
	9.4.4.2 Nested Table Indexes
	9.4.4.3 Nested Table Locators
	9.4.4.3.1 At Table Creation Time
	9.4.4.3.2 As a HINT During Retrieval

	9.4.4.4 Set Membership Query Optimization

	9.4.5 Design Considerations for Multilevel Collections
	9.4.5.1 Creating an Object Table with a Multilevel Collection
	9.4.5.2 Creating an Object Table Using REFs
	9.4.5.3 Inserting Values into the PEOPLE_OBJTAB Object Table

	9.5 Design Considerations for Methods
	9.5.1 Choice of Language for Method Functions
	9.5.2 Static Methods
	9.5.3 About Using SELF IN OUT NOCOPY with Member Procedures
	9.5.4 Function-Based Indexes on the Return Values of Type Methods

	9.6 Reusable Code Using Invoker Rights
	9.7 Roles with Invoker's Rights Subprograms
	9.8 Replication Support for Objects
	9.8.1 Object Replication Using Oracle Golden Gate
	9.8.2 Active Data Guard and Logical Standby Support for Objects

	9.9 Materialized View Support for Objects
	9.9.1 Object, Collection, or REF Type Columns
	9.9.2 Object Tables

	9.10 Constraints on Objects
	9.11 Considerations Related to Type Evolution
	9.11.1 Pushing a Type Change Out to Clients
	9.11.2 About Changing Default Constructors
	9.11.3 About Altering the FINAL Property of a Type

	9.12 Parallel Queries with Oracle Objects
	9.13 Design Consideration Tips and Techniques
	9.13.1 Whether to Evolve a Type or Create a Subtype
	9.13.2 How ANYDATA Differs from User-Defined Types
	9.13.3 Polymorphic Views: An Alternative to an Object View Hierarchy
	9.13.4 The SQLJ Object Type
	9.13.4.1 The Intended Use of SQLJ Object Types
	9.13.4.2 Actions Performed When Creating a SQLJ Object Type
	9.13.4.3 Uses of SQLJ Object Types
	9.13.4.4 Uses of Custom Object Types
	9.13.4.5 Differences Between SQLJ and Custom Object Types Through JDBC

	9.13.5 Miscellaneous Design Tips
	9.13.5.1 Column Substitutability and the Number of Attributes in a Hierarchy
	9.13.5.2 Circular Dependencies Among Types

	Glossary
	atomically null object
	Binary Large Object (BLOB)
	character large object (CLOB)
	column object
	embedded object attribute
	dynamic method dispatch
	leaf-level scalar object
	leaf-level scalar attribute
	literal invocation
	materialized view
	multilevel collection type
	multiset operators
	nested table
	normalize
	object column
	object identifier
	object instance
	object table
	object type
	outer table
	pinning
	PL/SQL
	polymorphism
	primary key
	REF
	row object
	specializing
	stored procedure
	substitutability
	type evolution
	VARRAY

	Index

