Oracle® Database
JDBC Developer's Guide

12c¢ Release 2 (12.2)
E50043-16
November 2017

ORACLE"

Oracle Database JDBC Developer's Guide, 12c Release 2 (12.2)
E50043-16

Copyright © 1999, 2017, Oracle and/or its affiliates. All rights reserved.
Primary Author: Tulika Das

Contributing Authors: Brian Martin, Venkatasubramaniam lyer, Elizabeth Hanes Perry, Brian Wright,
Thomas Pfaeffle

Contributors: Kuassi Mensah, Douglas Surber, Paul Lo, Ed Shirk, Tong Zhou, Jean de Lavarene, Rajkumar
Irudayaraj, Ashok Shivarudraiah, Angela Barone, Rosie Chen, Sunil Kunisetty, Joyce Yang, Mehul
Bastawala, Luxi Chidambaran, Vidya Nayak, Srinath Krishnaswamy, Swati Rao, Pankaj Chand, Aman
Manglik, Longxing Deng, Magdi Morsi, Ron Peterson, Ekkehard Rohwedder, Catherine Wong, Scott Urman,
Jerry Schwarz, Steve Ding, Soulaiman Htite, Anthony Lai, Prabha Krishna, Ellen Siegal, Susan Kraft, Sheryl
Maring

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience XXIV
Documentation Accessibility XXiv
Related Documents XXiV
Conventions XXV

Changes in This Release for Oracle Database JDBC Developer's
Guide

Changes in Oracle Database 12c Release 2 (12.2) XXX

Part | Overview

1 Introducing JDBC

1.1 Overview of Oracle JDBC Drivers 1-1
1.2 Choosing the Appropriate Driver 1-3
1.3 Feature Differences Between JDBC OCI and Thin Drivers 1-4
1.4 Environments and Support 1-4
1.4.1 Supported JDK and JDBC Versions 1-5
1.4.2 JINI and Java Environments 1-5
1.4.3 JDBC and IDEs 1-5
1.5 Feature List 1-5
2 Getting Started
2.1 Version Compatibility for Oracle JDBC Drivers 2-1
2.2 Verifying a JDBC Client Installation 2-2
2.2.1 Checking the Installed Directories and Files 2-2
2.2.2 Checking the Environment Variables 2-3
2.2.3 Ensuring that the Java Code Can Be Compiled and Run 2-5
2.2.4 Determining the Version of the JDBC Driver 2-5

ORACLE"

2.2.5 Testing the JDBC and Database Connection 2-5

2.3 Basic Steps in JDBC 2-7

2.3.1 Importing Packages 2-8

2.3.2 Opening a Connection to a Database 2-8

2.3.3 Creating a Statement Object 2-9

2.3.4 Running a Query and Retrieving a Result Set Object 2-10

2.3.5 Processing the Result Set Object 2-10

2.3.6 Closing the Result Set and Statement Objects 2-11

2.3.7 Making Changes to the Database 2-11

2.3.8 About Committing Changes 2-13

2.3.8.1 Changing Commit Behavior 2-14

2.3.9 Closing the Connection 2-15

2.4 Sample: Connecting, Querying, and Processing the Results 2-15

2.5 Support for Invisible Columns 2-16

2.6 Support for Implicit Results 2-18

2.7 Support for Deprioritization of Database Nodes 2-20

2.8 Stored Procedure Calls in JDBC Programs 2-21

2.8.1 PL/SQL Stored Procedures 2-21

2.8.2 Java Stored Procedures 2-21

2.9 About Processing SQL Exceptions 2-22

Part Il Oracle JDBC

3 JDBC Standards Support

3.1 Support for JIDBC 2.0 Standard 3-1

3.1.1 Data Type Support 3-2

3.1.2 Standard Feature Support 3-2

3.1.3 Extended Feature Support 3-2

3.1.4 Standard versus Oracle Performance Enhancement APIs 3-2

3.2 Support for JIDBC 3.0 Standard 3-2

3.2.1 Overview of Transaction Savepoints 3-3

3.2.1.1 About Creating a Savepoint 3-3

3.2.1.2 About Rolling Back to a Savepoint 3-4

3.2.1.3 About Releasing a Savepoint 3-4

3.2.1.4 About Checking Savepoint Support 3-4

3.2.1.5 Savepoint Notes 3-4

3.2.2 Retrieval of Auto-Generated Keys 3-4

3.2.2.1 java.sql.Statement 3-5

3.2.2.2 Sample Code 3-5

3.2.2.3 Limitations of Auto-Generated Keys 3-5

ORACLE v

3.2.3 JDBC 3.0 LOB Interface Methods 3-6
3.2.4 Result Set Holdability 3-6

3.3 Support for JIDBC 4.0 Standard 3-6
3.3.1 Wrapper Pattern Support 3-7
3.3.2 SQLXML Type 3-8
3.3.3 Enhanced Exception Hierarchy and SQLException 3-10
3.3.4 The Rowld Data Type 3-10
3.3.5 LOB Creation 3-11
3.3.6 National Language Character Set Support 3-12

3.4 Support for JDBC 4.1 Standard 3-12
3.4.1 setClientinfo Method 3-12
3.4.2 getObject Method 3-13

3.5 Support for JIDBC 4.2 Standard 3-14

4 Oracle Extensions

4.1 Overview of Oracle Extensions 4-1
4.2 Features of the Oracle Extensions 4-1
4.2.1 Database Management Using JDBC 4-2
4.2.2 Support for Oracle Data Types 4-2
4.2.3 Support for Oracle Objects 4-3
4.2.4 Support for Schema Naming 4-4
4.2.5 DML Returning 4-4
4.2.6 About Accessing PL/SQL Associative Arrays 4-5

4.3 Oracle JDBC Packages 4-5
4.3.1 Package oracle.sql 4-5
4.3.2 Package oracle.jdbc 4-10

4.4 Oracle Character Data Types Support 4-10
4.4.1 SQL CHAR Data Types 4-10
4.4.2 SQL NCHAR Data Types 4-10
4.4.3 Class oracle.sql.CHAR 4-11

4.5 Additional Oracle Type Extensions 4-14
45.1 Oracle ROWID Type 4-14
4.5.2 Oracle REF CURSOR Type Category 4-15
4.5.3 Oracle BINARY_FLOAT and BINARY_DOUBLE Types 4-17
454 Oracle SYS.ANYTYPE and SYS.ANYDATA Types 4-18
45,5 The oracle.jdbc Package 4-20
45.5.1 Interface oracle.jdbc.OracleConnection 4-22
4.5.5.2 Interface oracle.jdbc.OracleStatement 4-23
4.5.5.3 Interface oracle.jdbc.OraclePreparedStatement 4-23
4.5.5.4 Interface oracle.jdbc.OracleCallableStatement 4-24

ORACLE

4.5.5.5 Interface oracle.jdbc.OracleResultSet 4-24
45.5.6 Interface oracle.jdbc.OracleResultSetMetaData 4-24
4.55.7 Class oracle.jdbc.OracleTypes 4-25

4.6 DML Returning 4-27
4.6.1 Oracle-Specific APIs 4-27
4.6.2 About Running DML Returning Statements 4-28
4.6.3 Example of DML Returning 4-28
4.6.4 Limitations of DML Returning 4-29

4.7 Accessing PL/SQL Associative Arrays 4-30
4.7.1 Overview of PL/SQL Associative Arrays 4-30
4.7.2 Binding IN Parameters in PL/SQL Associative Arrays 4-31
4.7.3 Receiving OUT Parameters in PL/SQL Associative Arrays 4-32
4.7.4 Type Mappings in PL/SQL Associative Arrays 4-33

5 Features Specific to JDBC Thin

5.1 Overview of JDBC Thin Client 5-1
5.2 Additional Features Supported 5-1
5.2.1 Default Support for Native XA 5-1
5.2.2 Support for Transaction Guard 5-2
5.2.3 Support for Application Continuity 5-2
5.2.4 Support for Applets 5-2

5.3 JDBC in Applets 5-3
5.3.1 About Connecting to the Database Through the Applet 5-3
5.3.2 Connecting to a Database on a Different Host Than the Web Server 5-4
5.3.2.1 Using the Oracle Connection Manager 5-4

5.3.2.2 Using Signed Applets 5-7

5.3.3 Overview of Using Applets with Firewalls 5-7
5.3.3.1 Configuring a Firewall for Applets that use the JDBC Thin Driver 5-8

5.3.3.2 Writing a URL to Connect Through a Firewall 5-8

5.3.4 Packaging Applets 5-9
5.3.5 Overview of Specifying an Applet in an HTML Page 5-10
5.3.5.1 CODE, HEIGHT, and WIDTH 5-10

5.3.5.2 CODEBASE 5-11

5.3.5.3 ARCHIVE 5-11

6 Features Specific to JDBC OCI Driver

6.1 OCI Connection Pooling 6-1
6.2 Client Result Cache 6-1
6.2.1 Benefits of Client Result Cache 6-2

ORACLE

Vi

6.2.2 Usage Guidelines in JDBC 6-2
6.2.2.1 RESULT_CACHE_MODE Parameter 6-3
6.2.2.2 Table Annotations 6-3
6.2.2.3 SQL Hints 6-3
6.3 Transparent Application Failover 6-4
6.4 OCI Native XA 6-5
6.5 OCI Instant Client 6-5
6.5.1 Overview of Instant Client 6-5
6.5.2 OCI Instant Client Shared Libraries 6-5
6.5.3 Benefits of Instant Client 6-6
6.5.4 JDBC OCI Instant Client Installation Process 6-6
6.5.5 Usage of Instant Client 6-8
6.5.6 About Patching Instant Client Shared Libraries 6-8
6.5.7 Regeneration of Data Shared Library and ZIP files 6-9
6.5.8 Database Connection Names for OCI Instant Client 6-9
6.5.9 Environment Variables for OCI Instant Client 6-12
6.6 About Instant Client Light (English) 6-12
6.6.1 Data Shared Library for Instant Client Light (English) 6-13
6.6.2 Globalization Settings 6-13
6.6.3 Operation 6-14
6.6.4 Installing Instant Client Light (English) 6-14
7 Server-Side Internal Driver
7.1 Overview of the Server-Side Internal Driver 7-1
7.2 Connecting to the Database 7-1
7.3 About Session and Transaction Context 7-3
7.4 Testing JDBC on the Server 7-4
7.5 Loading an Application into the Server 7-4
7.5.1 Using the Loadjava Utility 7-4
7.5.2 Using the JVM Command Line 7-6
Part Il Connection and Security
8 Data Sources and URLs
8.1 About Data Sources 8-1
8.1.1 Overview of Oracle Data Source Support for INDI 8-1
8.1.2 Features and Properties of Data Sources 8-2
8.1.3 Creating a Data Source Instance and Connecting 8-5
ORACLE Vii

8.1.4 Creating a Data Source Instance, Registering with JNDI, and
Connecting 8-6
8.1.5 Supported Connection Properties 8-7
8.1.6 About Using Roles for SYS Login 8-7
8.1.7 Configuring Database Remote Login 8-7
8.1.8 Using Bequeath Connection and SYS Logon 8-9
8.1.9 Setting Properties for Oracle Performance Extensions 8-9
8.1.10 Support for Network Data Compression 8-10
8.2 Database URLs and Database Specifiers 8-11
8.2.1 Support for Internet Protocol Version 6 8-11
8.2.2 Database Specifiers 8-12
8.2.3 Thin-style Service Name Syntax 8-13
8.2.4 Support for Delay in Connection Retries 8-13
8.2.5 TNSNames Alias Syntax 8-14
8.2.6 LDAP Syntax 8-14
9 JDBC Client-Side Security Features

9.1 Support for Oracle Advanced Security 9-2
9.1.1 Overview of Oracle Advanced Security 9-2
9.1.2 JDBC OCI Driver Support for Oracle Advanced Security 9-3
9.1.3 JDBC Thin Driver Support for Oracle Advanced Security 9-4
9.2 Support for Login Authentication 9-4
9.3 Support for Strong Authentication 9-5
9.4 Support for Data Encryption and Integrity 9-5
9.4.1 Overview of IDBC Support for Data Encryption and Integrity 9-5
9.4.2 JDBC OCI Driver Support for Encryption and Integrity 9-6
9.4.3 JDBC Thin Driver Support for Encryption and Integrity 9-7
9.4.4 Setting Encryption and Integrity Parameters in Java 9-8
9.5 Support for SSL 9-10
9.5.1 Overview of IDBC Support for SSL 9-10
9.5.2 About Managing Certificates and Wallets 9-12
9.5.3 About Keys and certificates containers 9-12

9.5.4 Database Connectivity Over TLS Version 1.2 Using JDBC Thin and JKS
9-12
9.6 Support for Kerberos 9-14
9.6.1 Overview of JDBC Support for Kerberos 9-14
9.6.2 Configuring Windows to Use Kerberos 9-14
9.6.3 Configuring Oracle Database to Use Kerberos 9-15
9.6.4 Code Example for Using Kerberos 9-16
9.7 Support for RADIUS 9-20
9.7.1 Overview of JIDBC Support for RADIUS 9-20
ORACLE viii

9.7.2 Configuring Oracle Database to Use RADIUS 9-20
9.7.3 Code Example for Using RADIUS 9-21
9.8 About Secure External Password Store 9-23
10 Proxy Authentication
10.1 About Proxy Authentication 10-1
10.2 Types of Proxy Connections 10-2
10.3 Creating Proxy Connections 10-3
10.4 Closing a Proxy Session 10-5
10.5 Caching Proxy Connections 10-5
10.6 Limitations of Proxy Connections 10-5
Part IV Data Access and Manipulation
11 Accessing and Manipulating Oracle Data
11.1 Data Type Mappings 11-1
11.1.1 Table of Mappings 11-1
11.1.2 Notes Regarding Mappings 11-3
11.2 Data Conversion Considerations 11-4
11.2.1 Standard Types Versus Oracle Types 11-4
11.2.2 About Converting SQL NULL Data 11-5
11.2.3 About Testing for NULLs 11-5
11.3 Result Set and Statement Extensions 11-6
11.4 Comparison of Oracle get and set Methods to Standard JDBC 11-6
11.4.1 Standard getObject Method 11-7
11.4.2 Oracle getOracleObject Method 11-7
11.4.3 Summary of getObject and getOracleObject Return Types 11-8
11.4.4 Other getXXX Methods 11-10
11.4.4.1 Return Types of getXXX Methods 11-10
11.4.4.2 Special Notes about getXXX Methods 11-11
11.4.5 Data Types For Returned Objects from getObject and getXXX 11-11
11.4.6 The setObject and setOracleObject Methods 11-12
11.4.7 Other setXXX Methods 11-12
11.4.7.1 Input Data Binding 11-13
11.4.7.2 Method setFixedCHAR for Binding CHAR Data into WHERE
Clauses 11-14
11.5 Using Result Set Metadata Extensions 11-15
11.6 About Using SQL CALL and CALL INTO Statements 11-16
ORACLE ix

12 Java Streams in JDBC

12.1 Overview of Java Streams 12-1
12.2 About Streaming LONG or LONG RAW Columns 12-2
12.2.1 Overview of Streaming LONG or LONG RAW Columns 12-2
12.2.2 LONG RAW Data Conversions 12-3
12.2.3 LONG Data Conversions 12-3
12.2.4 Examples:Streaming LONG RAW Data 12-4
12.2.5 About Avoiding Streaming for LONG or LONG RAW 12-6
12.3 About Streaming CHAR, VARCHAR, or RAW Columns 12-7
12.4 About Streaming LOBs and External Files 12-7
12.5 Relation Between Data Streaming and Multiple Columns 12-8
12.6 Closing a Stream 12-10
12.7 Notes and Precautions on Streams 12-10
12.7.1 About Streaming Data Precautions 12-10
12.7.2 About Using Streams to Avoid Limits on setBytes and setString 12-11
12.7.3 Relation Between Streaming and Row Prefetching 12-11
13 Working with Oracle Object Types
13.1 About Mapping Oracle Objects 13-1
13.2 About Using the Default STRUCT Class for Oracle Objects 13-2
13.2.1 Overview of Using the Struct Class 13-3
13.2.2 Retrieving STRUCT Objects and Attributes 13-3
13.2.3 About Creating STRUCT Objects 13-4
13.2.4 Binding STRUCT Obijects into Statements 13-4
13.2.5 STRUCT Automatic Attribute Buffering 13-4
13.3 About Creating and Using Custom Object Classes for Oracle Objects 13-5
13.3.1 Overview of Creating and Using Custom Object Classes 13-6
13.3.2 Relative Advantages of OracleData versus SQLData 13-6
13.3.3 About Type Maps for SQLData Implementations 13-7
13.3.4 About Creating Type Map and Defining Mappings for a SQLData
Implementation 13-7
13.3.4.1 Overview of Creating a Type Map and Defining Mappings 13-8
13.3.4.2 Adding Entries to an Existing Type Map 13-8
13.3.4.3 Creating a New Type Map 13-9
13.3.4.4 About Materializing Object Types not Specified in the Type Map 13-9
13.3.5 About Reading and Writing Data with a SQLData Implementation 13-10
13.3.6 About the OracleData Interface 13-12
13.3.7 About Reading and Writing Data with an OracleData Implementation 13-14
13.3.8 Additional Uses of OracleData 13-16
13.4 Object-Type Inheritance 13-17

ORACLE

13.4.1 About Creating Subtypes 13-17

13.4.2 About Implementing Customized Classes for Subtypes 13-18
13.4.2.1 About Using OracleData for Type Inheritance Hierarchy 13-19
13.4.2.2 About UsingSQLData for Type Inheritance Hierarchy 13-21

13.4.3 About Retrieving Subtype Objects 13-23

13.4.4 Creating Subtype Objects 13-26

13.4.5 Sending Subtype Objects 13-26

13.4.6 Accessing Subtype Data Fields 13-26

13.4.7 Inheritance Metadata Methods 13-28

13.5 About Describing an Object Type 13-28

13.5.1 Functionality for Getting Object Metadata 13-28

13.5.2 Retrieving Object Metadata 13-29

14 Working with LOBs and BFILEs

14.1 The LOB Data Types 14-1
14.2 Oracle SecureFiles 14-2
14.3 Data Interface for LOBs 14-3
14.3.1 Streamlined Mechanism 14-3
14.3.2 Input 14-3
14.3.3 Output 14-6
14.3.4 CallableSatement and IN OUT Parameter 14-6
14.3.5 Size Limitations 14-7
14.4 LOB Locator Interface 14-7
14.5 About Working With Temporary LOBs 14-9
14.6 About Opening Persistent LOBs with the Open and Close Methods 14-10
14.7 About Working with BFILES 14-11

15 Using Oracle Object References

15.1 Oracle Extensions for Object References 15-1
15.2 Retrieving and Passing an Object Reference 15-2
15.2.1 Retrieving an Object Reference from a Result Set 15-2
15.2.2 Retrieving an Object Reference from a Callable Statement 15-3
15.2.3 Passing an Object Reference to a Prepared Statement 15-3
15.3 Accessing and Updating Object Values Through an Object Reference 15-4

16 Working with Oracle Collections

16.1 Oracle Extensions for Collections 16-1
16.1.1 Overview of Oracle Collections 16-1
16.1.2 Choices in Materializing Collections 16-2

ORACLE Xi

16.1.3 Creating Collections 16-2
16.1.4 Creating Multilevel Collection Types 16-3
16.2 Overview of Collection Functionality 16-3
16.3 ARRAY Performance Extension Methods 16-4
16.3.1 About Accessing oracle.sql.ARRAY Elements as Arrays of Java
Primitive Types 16-5
16.3.2 ARRAY Automatic Element Buffering 16-5
16.3.3 ARRAY Automatic Indexing 16-5
16.4 Creating and Using Arrays 16-6
16.4.1 Creating ARRAY Objects 16-6
16.4.2 Retrieving an Array and Its Elements 16-8
16.4.2.1 About Retrieving the Array 16-8
16.4.2.2 Data Retrieval Methods 16-8
16.4.2.3 Comparing the Data Retrieval Methods 16-9
16.4.2.4 Retrieving Elements of a Structured Object Array According to a
Type Map 16-10
16.4.2.5 Retrieving a Subset of Array Elements 16-10
16.4.2.6 Retrieving Array Elements into an oracle.sgl.Datum Array 16-11
16.4.2.7 About Accessing Multilevel Collection Elements 16-12
16.4.3 Passing Arrays to Statement Objects 16-13
16.5 Using a Type Map to Map Array Elements 16-14
17 Result Set
17.1 Oracle JDBC Implementation Overview for Result Set Support 17-1
17.2 Resultset Limitations and Downgrade Rules 17-2
17.3 About Avoiding Update Conflicts 17-4
17.4 Row Fetch Size 17-4
17.4.1 Setting the Fetch Size 17-5
17.4.2 Presetting the Fetch Direction 17-5
17.5 About Refetching Rows 17-5
17.6 About Viewing Database Changes Made Internally and Externally 17-6
17.6.1 Visibility versus Detection of External Changes 17-7
17.6.2 Summary of Visibility of Internal and External Changes 17-7
17.6.3 Oracle Implementation of Scroll-Sensitive Result Sets 17-8
18 JDBC RowSets
18.1 Overview of JIDBC RowSets 18-1
18.1.1 RowSet Properties 18-2
18.1.2 Events and Event Listeners 18-3
18.1.3 Command Parameters and Command Execution 18-4
ORACLE Xii

18.1.4 About Traversing RowSets 18-4
18.2 About CachedRowSet 18-6
18.3 About JdbcRowSet 18-9
18.4 About WebRowSet 18-10
18.5 About FilteredRowSet 18-12
18.6 About JoinRowSet 18-14
19 Globalization Support
19.1 About Providing Globalization Support 19-1
19.2 NCHAR, NVARCHAR2, NCLOB and the defaultNChar Property 19-3
19.3 New Methods for National Character Set Type Data in JDK 6 19-5
Part V Performance and Scalability
20 Statement and Result Set Caching
20.1 About Statement Caching 20-1
20.1.1 Basics of Statement Caching 20-2
20.1.2 Implicit Statement Caching 20-2
20.1.3 Explicit Statement Caching 20-3
20.2 About Using Statement Caching 20-4
20.2.1 About Enabling and Disabling Statement Caching 20-4
20.2.2 About Closing a Cached Statement 20-6
20.2.3 About Using Implicit Statement Caching 20-7
20.2.3.1 Methods Used in Statement Allocation and Implicit Statement
Caching 20-8
20.2.4 About Using Explicit Statement Caching 20-10
20.2.4.1 Methods Used to Retrieve Explicitly Cached Statements 20-11
20.3 About Reusing Statements Objects 20-11
20.3.1 About Using a Pooled Statement 20-11
20.3.2 About Closing a Pooled Statement 20-12
20.4 About Result Set Caching 20-13
20.4.1 Server-Side Result Set Cache 20-13
20.4.2 Client Result Set Cache 20-14
21 Performance Extensions
21.1 Update Batching 21-1
21.1.1 Overview of Update Batching 21-1
21.1.2 Standard Update Batching 21-2
ORACLE Xiii

21.1.2.1 Limitations in the Oracle Implementation of Standard Batching 21-2

21.1.2.2 About Adding Operations to the Batch 21-2
21.1.2.3 About Processing the Batch 21-3
21.1.2.4 Row Count per Iteration for Array DMLs 21-4
21.1.2.5 About Committing the Changes in the Oracle Implementation of
Standard Batching 21-4
21.1.2.6 About Clearing the Batch 21-5
21.1.2.7 Update Counts in the Oracle Implementation of Standard
Batching 21-5
21.1.2.8 Error Handling in the Oracle Implementation of Standard
Batching 21-7
21.1.2.9 About Intermixing Batched Statements and Nonbatched
Statements 21-7
21.1.3 Premature Batch Flush 21-8
21.2 Additional Oracle Performance Extensions 21-9
21.2.1 About Prefetching LOB Data 21-10
21.2.2 Oracle Row-Prefetching Limitations 21-11
21.2.3 About Defining Column Types 21-12
21.2.4 About Reporting DatabaseMetaData TABLE_REMARKS 21-15

22 OCI Connection Pooling

22.1 Background of OCI Driver Connection Pooling 22-1
22.2 Comparison Between OCI Driver Connection Pooling and Shared Servers 22-2
22.3 About Defining an OCI Connection Pool 22-2
22.3.1 Overview of Creating an OCI Connection Pool 22-2
22.3.2 Importing the oracle.jdbc.pool and oracle.jdbc.oci Packages 22-3
22.3.3 Creating an OCI Connection Pool 22-4
22.3.4 Setting the OCI Connection Pool Parameters 22-4
22.3.5 Checking the OCI Connection Pool Status 22-5
22.4 About Connecting to an OCI Connection Pool 22-6
22.5 Sample Code for OCI Connection Pooling 22-7
22.6 Statement Handling and Caching 22-9
22.7 JNDI and the OCI Connection Pool 22-10

23 Database Resident Connection Pooling

23.1 Overview of Database Resident Connection Pooling 23-1
23.2 Enabling Database Resident Connection Pooling 23-2
23.2.1 Enabling DRCP on the Server Side 23-2
23.2.2 Enabling DRCP on the Client Side 23-3
23.3 About Sharing Pooled Servers Across Multiple Connection Pools 23-4

ORACLE Xiv

23.4 DRCP Tagging 23-4
23.5 PL/SQL Session State Fix-Up Callback 23-5
23.6 APIs for Using DRCP 23-7

24 JDBC Support for Database Sharding

24.1 Overview of Database Sharding for JDBC Users 24-1
24.2 About Building the Sharding Key 24-3
24.3 APIs for Database Sharding Support 24-5
24.3.1 The OracleShardingKey Interface 24-5
24.3.2 The OracleShardingKeyBuilder Interface 24-6
24.3.3 The OracleConnectionBuilder Interface 24-6
24.3.4 Other New Classes and Methods for Database Sharding Support 24-6
24.4 JDBC Sharding Example 24-7

25 Oracle Advanced Queuing

25.1 Functionality and Framework of Oracle Advanced Queuing 25-1
25.2 Making Changes to the Database 25-3
25.3 AQ Asynchronous Event Notification 25-3
25.4 About Creating Messages 25-5

25.4.1 Creating Messages 25-5

25.4.2 AQ Message Properties 25-6

25.4.3 AQ Message Payload 25-7
25.5 Example: Creating a Message and Setting a Payload 25-7
25.6 Enqueuing Messages 25-7
25.7 Dequeuing Messages 25-8
25.8 Examples: Enqueuing and Dequeuing 25-10

26 Continuous Query Notification

26.1 Overview of Continuos Query Notification 26-1
26.2 Creating a Registration 26-2

26.2.1 Continuous Query Notification Registration Options 26-3
26.3 Associating a Query with a Registration 26-4
26.4 Notifying Database Change Events 26-4
26.5 Deleting a Registration 26-5

Part VI High Availability

ORACLE" XV

27 Transaction Guard for Java

27.1 Overview of Transaction Guard for Java 27-1
27.2 Transaction Guard Support for XA Transactions 27-2
27.3 How to Use Transaction Guard with XA 27-2
27.4 Transaction Guard for Java APIs 27-3
27.4.1 Retrieving the Logical Transaction Identifiers 27-3
27.4.2 Retrieving the Updated Logical Transaction Identifiers 27-4
27.4.2.1 Registering Event Listeners 27-4
27.4.2.2 Unregistering Event Listeners 27-4

27.5 Complete Example:Using Transaction Guard APIs 27-4
27.6 About Using Server-Side Transaction Guard APIs 27-5

28 Application Continuity for Java

28.1 About Configuring Oracle JDBC for Application Continuity for Java 28-2
28.2 About Configuring Oracle Database for Application Continuity for Java 28-5
28.3 Application Continuity Support for XA Data Source 28-6
28.4 About Identifying Request Boundaries in Application Continuity for Java 28-7
28.5 Establishing the Initial State Before Application Continuity Replays 28-8
28.5.1 No Callback 28-8
28.5.2 Connection Labeling 28-9
28.5.3 Connection Initialization Callback 28-9
28.5.3.1 Creating an Initialization Callback 28-9
28.5.3.2 Registering an Initialization Callback 28-10
28.5.3.3 Removing or Unregistering an Initialization Callback 28-10

28.5.4 About Enabling FAILOVER_RESTORE 28-11
28.6 About Delaying the Reconnection in Application Continuity for Java 28-11
28.6.1 Configuration Examples Related to Application Continuity for Java 28-12
28.6.1.1 Creating Services on Oracle RAC 28-12
28.6.1.2 Modifying Services on Single-Instance Databases 28-12

28.7 About Retaining Mutable Values in Application Continuity for Java 28-13
28.7.1 Grant and Revoke Interface 28-13
28.7.1.1 Dates and SYS_GUID Syntax 28-13
28.7.1.2 Sequence Syntax 28-13
28.7.1.3 GRANT ALL Statement 28-14
28.7.1.4 Rules for Grants on Mutable Values 28-14

28.8 Application Continuity Statistics 28-14
28.9 About Disabling Replay in Application Continuity for Java 28-16
28.9.1 How to Disable Replay 28-16
28.9.2 When to Disable Replay 28-16

ORACLE XVi

28.9.2.1 Application Calls External PL/SQL Actions that Should not Be

Repeated 28-17
28.9.2.2 Application Synchronizes Independent Sessions 28-17
28.9.2.3 Application Uses Time at the Middle-tier in the Execution Logic 28-18
28.9.2.4 Application assumes that ROWIds do not change 28-18
28.9.2.5 Application Assumes that Side Effects Execute Once 28-18
28.9.2.6 Application Assumes that Location Values Do not Change 28-18
28.9.3 Diagnostics and Tracing 28-19
28.9.3.1 Writing Replay Trace to Console 28-19
28.9.3.2 Writing Replay Trace to a File 28-19
29 Oracle JDBC Support for FAN Events
29.1 Overview of Oracle JDBC Support for FAN events 29-1
29.2 Safe Draining APIs for Planned Maintenance 29-2
29.3 Installation and Configuration of Oracle JDBC Driver for FAN Events Support
29-3
29.4 Example of Oracle JDBC Driver FAN support for Planned Maintenance 29-4
30 Transparent Application Failover
30.1 Overview of Transparent Application Failover 30-1
30.2 Failover Type Events 30-1
30.3 TAF Callbacks 30-2
30.4 Java TAF Callback Interface 30-2
30.5 Comparison of TAF and Fast Connection Failover 30-3
31 Single Client Access Name
31.1 Overview of Single Client Access Name 31-1
31.2 About Configuring the Database Using the SCAN 31-1
31.3 How Connection Load Balancing Works Using the SCAN 31-2
31.4 Version and Backward Compatibility 31-3
31.5 Using the SCAN in a Maximum Availability Architecture Environment 31-5
31.6 Using the SCAN With Oracle Connection Manager 31-5
Part VIl Transaction Management
32 Distributed Transactions
32.1 About Distributed Transactions 32-1

ORACLE"

XVii

32.1.1 Overview of Distributed Transaction 32-1
32.1.2 Distributed Transaction Components and Scenarios 32-2
32.1.3 Distributed Transaction Concepts 32-2
32.1.4 About Switching Between Global and Local Transactions 32-4
32.1.5 Oracle XA Packages 32-5
32.2 XA Components 32-6
32.2.1 XAbDatasource Interface and Oracle Implementation 32-6
32.2.2 XAConnection Interface and Oracle Implementation 32-7
32.2.3 XAResource Interface and Oracle Implementation 32-8
32.2.4 OracleXAResource Method Functionality and Input Parameters 32-9
32.2.5 Xid Interface and Oracle Implementation 32-13
32.3 Error Handling and Optimizations 32-14
32.3.1 XAException Classes and Methods 32-14
32.3.2 Mapping Between Oracle Errors and XA Errors 32-15
32.3.3 XA Error Handling 32-15
32.3.4 Oracle XA Optimizations 32-16
32.4 About Implementing a Distributed Transaction 32-16
32.4.1 Summary of Imports for Oracle XA 32-16
32.4.2 Oracle XA Code Sample 32-17
32.5 Native-XA in Oracle JDBC Drivers 32-21
32.5.1 OCI Native XA 32-21
32.5.2 Thin Native XA 32-22
Part VIII Manageability
33 Database Administration
33.1 Using the Database Administration Methods 33-1
33.2 Using the startup Method 33-2
33.2.1 Database Startup Options 33-2
33.3 Using the shutdown Method 33-3
33.3.1 Database Shutdown Options 33-3
33.3.2 Standard Database Shutdown Process 33-4
33.4 A Complete Example 33-4
34 Diagnosability in JDBC
34.1 About Logging Feature of Oracle JDBC Drivers 34-1
34.1.1 Overview of Logging Feature of Oracle JDBC Drivers 34-1
34.1.2 Enabling and Using JDBC Logging 34-2
34.1.2.1 About Configuring the CLASSPATH 34-2

ORACLE

XViii

34.1.2.2 Enabling Logging 34-2
34.1.2.3 Configuring Logging 34-4
34.1.2.4 Redirecting the Log Output to a File 34-5
34.1.2.5 Using Loggers 34-6
34.1.2.6 Logging Example 34-7
34.1.3 Enabling or Disabling Feature-Specific Logging at Run Time 34-8
34.1.4 Using the Logging Configuration File for Feature-Specific Logging 34-9
34.1.5 Performance, Scalability, and Security Issues 34-10
34.2 Diagnosability Management 34-11
35 JDBC DMS Metrics
35.1 Overview of JIDBC DMS Metrics 35-2
35.2 About Determining the Type of Metric to Be Generated 35-2
35.3 About Generating the SQLText Metric 35-3
35.4 About Accessing DMS Metrics Using JMX 35-3
Part IX Appendixes
A JDBC Reference Information
A.1 Supported SQL-JDBC Data Type Mappings A-1
A.2 Supported SQL and PL/SQL Data Types A-3
A.3 About Using PL/SQL Types A-7
A.4 Using Embedded JDBC Escape Syntax A-9
A.4.1 Time and Date Literals A-10
A.4.1.1 Date Literals A-10
A.4.1.2 Time Literals A-11
A.4.1.3 Timestamp Literals A-11
A.4.2 Scalar Functions A-12
A.4.3 LIKE Escape Characters A-13
A4.4 MATCH_RECOGNIZE Clause A-13
A.4.5 Outer Joins A-14
A.4.6 Function Call Syntax A-14
A.4.7 JDBC Escape Syntax to Oracle SQL Syntax Example A-14
A.5 Oracle JDBC Notes and Limitations A-15
A.5.1 CursorName A-15
A.5.2 JDBC Outer Join Escapes A-15
A.5.3 IEEE 754 Floating Point Compliance A-15
A.5.4 Catalog Arguments to DatabaseMetaData Calls A-16
A.5.5 SQLWarning Class A-16

ORACLE

XiX

A.5.6 Executing DDL Statements

A-16

A.5.7 Binding Named Parameters A-16
B Oracle RAC Fast Application Notification
B.1 Overview of Oracle RAC Fast Application Notification B-1
B.2 Installing and Configuring Oracle RAC Fast Application Notification B-3
B.3 Using Oracle RAC Fast Application Notification B-3
B.4 Implementing a Connection Pool B-5
C JDBC Coding Tips
C.1 JDBC and Multithreading C-1
C.2 Performance Optimization of JDBC Programs C-1
C.2.1 Disabling Auto-Commit Mode C-2
C.2.2 Standard Fetch Size and Oracle Row Prefetching C-3
C.2.3 About Setting the Session Data Unit Size C-3
C.2.3.1 About Setting the SDU Size for the Database Server C-3
C.2.3.2 About Setting the SDU Size for JDBC OCI Client C-4
C.2.3.3 About Setting the SDU Size for JDBC Thin Client Cc-4
C.2.4 JDBC Update Batching C-4
C.2.5 Statement Caching C-4
C.2.6 Mapping Between Built-in SQL and Java Types C-5
C.3 Transaction Isolation Levels and Access Modes in JDBC C-6
D JDBC Error Messages
D.1 General Structure of JDBC Error Messages D-1
D.2 General JDBC Messages D-1
D.2.1 JDBC Messages Sorted by ORA Number D-2
D.2.2 JDBC Messages Sorted in Alphabetic Order D-7
D.3 Native XA Messages D-12
D.3.1 Native XA Messages Sorted by ORA Number D-12
D.3.2 Native XA Messages Sorted in Alphabetic Order D-13
D.4 TTC Messages D-13
D.4.1 TTC Messages Sorted by ORA Number D-13
D.4.2 TTC Messages Sorted in Alphabetic Order D-15
E Troubleshooting
E.1 Common Problems E-1
XX

ORACLE

E.1.1 Memory Consumption for CHAR Columns Defined as OUT or IN/OUT

Variables E-1
E.1.2 Memory Leaks and Running Out of Cursors E-2
E.1.3 Opening More than 16 OCI Connections for a Process E-2
E.1.4 Using statement.cancel E-2
E.1.5 Using JDBC with Firewalls E-4
E.1.6 Frequent Abrupt Disconnection from Server E-4
E.1.7 Network Adapter Cannot Establish Connection E-4
E.1.7.1 Oracle Instance Configured with MTS Server Uses Shared Server
E-5
E.1.7.2 JDBC Thin Driver with NIC Card Supporting Both IPv4 and IPv6 E-6
E.1.7.3 Sample Application E-6
E.2 Basic Debugging Procedures E-7
E.2.1 Oracle Net Tracing to Trap Network Events E-8
E.2.1.1 Client-Side Tracing E-8
E.2.1.2 Server-Side Tracing E-10
E.2.2 Third Party Debugging Tools E-11

Index

ORACLE XXi

List of Tables

1-1 Feature Differences Between JDBC OCI and JDBC Thin Drivers 1-4
1-2 Feature List 1-5
2-1 Import Statements for JDBC Driver 2-8
2-2 Error Messages for Operations Performed When Auto-Commit Mode is ON 2-13
3-1 Key Areas of JDBC 3.0 Functionality 3-2
3-2 BLOB Method Equivalents 3-6
3-3 CLOB Method Equivalents 3-6
4-1 Key Interfaces and Classes of the oracle.jdbc Package 4-20
4-2 Arguments of the setPIsqglindexTable Method 4-31
4-3 Arguments of the registerindexTableOutParameter Method 4-33
4-4 Argument of the getPlIsqlindexTable Method 4-34
4-5 Argument of the getOraclePlsglindexTable Method 4-34
4-6 Arguments of the getPlsglindexTable Method 4-35
6-1 OCI Instant Client Shared Libraries 6-6
6-2 Data Shared Library for Instant Client and Instant Client Light (English) 6-13
8-1 Standard Data Source Properties 8-3
8-2 Oracle Extended Data Source Properties 8-3
8-3 Supported Database Specifiers 8-12
9-1 Client/Server Negotiations for Encryption or Integrity 9-6
9-2 OCI Driver Client Parameters for Encryption and Integrity 9-7
9-3 Thin Driver Client Parameters for Encryption and Integrity 9-8
11-1 Default Mappings Between SQL Types and Java Types 11-2
11-2 getObject and getOracleObject Return Types 11-8
12-1 LONG and LONG RAW Data Conversions 12-4
17-1 Visibility of Internal and External Changes for Oracle JDBC 17-7
18-1 The JDBC and Cached Row Sets Compared 18-9
20-1 Comparing Methods Used in Statement Caching 20-4
20-2 Methods Used in Statement Allocation and Implicit Statement Caching 20-8
20-3 Methods Used to Retrieve Explicitly Cached Statements 20-11
21-1 Valid Column Type Specifications 21-14
26-1 Continuous Query Notification Registration Options 26-3
31-1 Oracle Client and Oracle Database Version Compatibility for the SCAN 31-4
32-1 Connection Mode Transitions 32-4
32-2 Oracle-XA Error Mapping 32-15
33-1 Supported Database Startup Options 33-2

ORACLE XXii

33-2 Supported Database Shutdown Options

A-1 Valid SQL Data Type-Java Class Mappings

A-2 Support for SQL Data Types

A-3 Support for ANSI-92 SQL Data Types

A-4 Support for SQL User-Defined Types

A-5 Support for PL/SQL Data Types

C-1 Mapping of SQL Data Types to Java Classes that Represent SQL Data Types
D-1 JDBC Messages Sorted by ORA Number

D-2 JDBC Messages Sorted in Alphabetic Order
D-3 Native XA Messages Sorted by ORA Number
D-4 Native XA Messages Sorted in Alphabetic Order
D-5 TTC Messages Sorted by ORA Number

D-6 TTC Messages Sorted in Alphabetic Order
ORACLE

33-3
A-1
A-3
A-4
A-4
A-5
C-5
D-2
D-7

D-12

D-13

D-13

D-15

XXiii

Preface

Preface

Audience

This preface introduces you to the Oracle Database JDBC Developer's Guide
discussing the intended audience, structure, and conventions of this document. A list
of related Oracle documents is also provided.

The Oracle Database JDBC Developer's Guide is intended for developers of Java
Database Connectivity (JDBC)-based applications and applets. This book can be read
by anyone with an interest in JDBC programming, but assumes at least some prior
knowledge of the following:

e Java
e Oracle PL/SQL

* Oracle databases

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

ORACLE

The following books are available from the Oracle Java Platform group:

* Oracle Database Java Developer's Guide

This book introduces the basic concepts of Java and provides general information
about server-side configuration and functionality. Information that pertains to the
Oracle Java platform as a whole, rather than to a particular product (such as
JDBC) is in this book. This book also discusses Java stored procedures, which
were formerly discussed in a standalone book.

* Oracle Database SQLJ Developer's Guide

This book covers the use of SQLJ to embed static SQL operations directly into
Java code, covering SQLJ language syntax and SQLJ translator options and

XXIV

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

features. Both standard SQLJ features and Oracle-specific SQLJ features are
described.

The following documents are from the Oracle Server Technologies group:
* Oracle Database Development Guide

e Oracle Database PL/SQL Packages and Types Reference

e Oracle Database PL/SQL Language Reference

e Oracle Database SQL Language Reference

Printed documentation is available for sale in the Oracle Store at:

http://shop. oracl e. cont

To download free release notes, installation documentation, white papers, or other
collateral, visit the Oracle Technology Network (OTN). You must register online before
using OTN; registration is free and can be done at

http:// ww. oracl e. coni t echnet wor k/ conmruni ty/ j oi n/ why-j oi n/i ndex. ht n

If you already have a user name and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http:// ww. oracl e. coni t echnet wor k/ docunent ati on/ i ndex. ht m
The following resources are available:

* Web site for JDBC, including the latest specifications:

http:// ww. oracl e. conl t echnet wor k/ j ava/ j avase/ j dbc/ i ndex. ht m

Conventions

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

» Conventions in Text (page xxv)
» Conventions in Code Examples (page xxvi)

» Conventions for Windows Operating Systems (page xxvii)

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example
Bold Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appear in a index-organized table.
glossary, or both.
Italics Italic typeface indicates book titles or Oracle Database Concepts
emphasis. Ensure that the recovery catalog and target
database do not reside on the same disk.
ORACLE

XXV

http://shop.oracle.com/
http://www.oracle.com/technetwork/community/join/why-join/index.html
http://www.oracle.com/technetwork/documentation/index.html
http://www.oracle.com/technetwork/java/javase/jdbc/index.htm

Preface

Convention Meaning Example

UPPERCASE Uppercase monospace typeface indicates You can specify this clause only for a NUMBER
nmonospace elements supplied by the system. Such column.

(fixed-w dth) elements include parameters, privileges, You can back up the database by using the

f ont data types, RMAN keywords, SQL BACKUP command.

| ower case
nonospace
(fixed-wi dth)
font

| owercase italic
monospace
(fixed-wdth)
font

keywords, SQL*Plus or utility commands, .

packages and methods, as well as system- Query_thg TABLE._NANE column in the USER_TABLES
supplied column names, database objects ~dat@ dictionary view.

and structures, user names, and roles. Use the DBMS_STATS.GENERATE_STATS procedure.

Lowercase monospace typeface indicates Enter sql pl us to start SQL*Plus.
executables, filenames, directory names,
2{;%21?5:2555; igfnp;ftdere fnn;edn;fétil;h Bgck up the datafileg and control files in the /
names, net service names, and connect i Sk1/ oracl e/ dbs directory.

identifiers, as well as user-supplied The depart nent _i d, depar t ment _nane, and
database objects and structures, column I ocation_i d columns are in the hr. departnents
names, packages and classes, user names table.

and roles, program units, and parameter get the QUERY_REVRI TE_ENABLED initialization
values. parameter to t r ue.

The password is specified in the or apwd file.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Connect as oe user.
The JRepUti | class implements these methods.

Lowercase italic monospace font You can specify the par al | el _cl ause.

represents placeholders or variables. Run ol d_rel ease. SQL where ol d_r el ease refers
to the release you installed prior to upgrading.

Conventions in Code Examples

Code examples illustrate Java, SQL, and command-line statements. Examples are
displayed in a monospace (fixed-width) font and separated from normal text as shown
in this example:

SELECT username FROM dba_users WHERE username = 'M GRATE';

The following table describes typographic conventions used in code examples and
provides examples of their use.

Convention Meaning Example
Brackets enclose one or more optional o o
L] items. Do not enter the brackets. DEGMAL (digits [, precision])
Braces enclose two or more items, one of
. which is required. Do not enter the braces. {ENABLE | DI SABLE}
| et b epeseria s chce of WOO" (et | v
Enter one of the options. Do not enter the [RESS | RESS]
vertical bar.
Horizontal ellipsis points indicate either:
¢ That we have omitted parts of the code CREATE TABLE ... AS subquery;
that are not directly related to the
example SELECT col1, col2, ... , coln FROM
* That you can repeat a portion of the enpl oyees;
code
ORACLE XXVi

Preface

Convention

Meaning

Example

Other notation

Vertical ellipsis points indicate that we have
omitted several lines of code not directly
related to the example.

You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

Italicized text indicates placeholders or

SQ> SELECT NAME FROM V$DATAFI LE;
NAVE

/fsl/dbs/tbs_01. dbf
/fs1/dbs/tbs_02. dbf

Itsl/dbs/ tbs_09. dbf
9 rows selected.

acct bal
acct

NUMBER(11, 2) ;
CONSTANT NUMBER(4) : = 3;

Italics . - CONNECT SYSTEM syst em passwor d
variables for which you must supply DB NAME = dat abase name
particular values. - -
UPPERCASE Uppercase typeface indicates elements SELECT | ast _nane, enpl oyee_id FROM
supplied by the system. We show these enpl oyees: - -
terms in uppercase in order to distinguish SELECT * FRG\/I USER TABLES:
them from terms you define. Unless terms - '
. . DROP TABLE hr. | ;
appear in brackets, enter them in the order r enployees
and with the spelling shown. However,
because these terms are not case
sensitive, you can enter them in lowercase.
| ower case Lowercase typeface indicates SELECT | ast _nane, enpl oyee_id FROM
programmatic elements that you supply. enpl oyees;
For example, lowercase indicates names of sql pl us HlR/ hr
tables, columns, or files. CREATE USER nj ones | DENTI FI ED BY ty3MJ9;
Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.
Conventions for Windows Operating Systems
The following table describes conventions for Windows operating systems and
provides examples of their use.
Convention Meaning Example

Choose Start >

ORACLE

How to start a program.

To start the Database Configuration Assistant,
choose Start > Programs > Oracle -
HOME_NAME > Configuration and Migration
Tools > Database Configuration Assistant.

XXVii

Preface

Convention

Meaning

Example

File and directory
names

C\>

Special characters

HOVE_NAME

ORACLE

File and directory names are not case
sensitive. The following special characters

are not allowed: left angle bracket (<), right

angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (]), and
dash (-). The special character backslash

(\) is treated as an element separator, even

when it appears in quotes. If the file name
begins with \\, then Windows assumes it
uses the Universal Naming Convention.

Represents the Windows command prompt

of the current hard disk drive. The escape

character in a command prompt is the caret
(™). Your prompt reflects the subdirectory in

which you are working. Referred to as the
command prompt in this manual.

The backslash (\) special character is
sometimes required as an escape
character for the double quotation mark (")
special character at the Windows
command prompt. Parentheses and the
single quotation mark (') do not require an
escape character. Refer to your Windows
operating system documentation for more
information on escape and special
characters.

Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

c:\winnt"\"systenB2 is the same as C:\WNNT
\ SYSTEMB2

C:\oracl e\ oradat a>

C.\>exp HR/ hr TABLES=enpl oyees QUERY=
\"WHERE j ob_i d=" SALESMAN and sal ary<1600\"
C:\>i np SYSTEM password FROM USER=HR
TABLES=(enpl oyees, dept)

C\> net start Oracl eHOVE NAMETNSLI st ener

XXVIIi

Preface

Convention Meaning Example
ORACLE_HOME and In releases prior to Oracle8i release 8.1.3, Go to the ORACLE_BASE\ ORACLE_HOME\ r dbns
ORACLE_BASE when you installed Oracle components, all \ adni n directory.

subdirectories were located under a top
level ORACLE_HOVE directory that by default
used one of the following names:

e C\orant for Windows NT
e C\oraw n98 for Windows 98

This release complies with Optimal Flexible
Architecture (OFA) guidelines. All
subdirectories are not under a top level
ORACLE_HOME directory. There is a top level
directory called ORACLE_BASE that by default
is C:\ oracl e. If you install the latest Oracle
release on a computer with no other Oracle
software installed, then the default setting
for the first Oracle home directory is C.
\oracl e\ or ann, where nn is the latest
release number. The Oracle home
directory is located directly under
ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle Database Platform Guide
for Microsoft Windows for additional
information about OFA compliances and for
information about installing Oracle products
in non-OFA compliant directories.

ORACLE XXIiX

Changes in This Release for Oracle Database JDBC Developer's Guide

Changes in This Release for Oracle
Database JDBC Developer's Guide

This preface contains:

e Changes in Oracle Database 12c Release 2 (12.2.0.1) (page xxx)

Changes in Oracle Database 12c Release 2 (12.2)

The following are changes in Oracle Database JDBC Developer's Guide for Oracle
Database 12c¢ Release 2 (12.2).

New Features

The following features are new in this release:

e Support for database sharding
See JDBC Support for Database Sharding (page 24-1)
* DRCP support for multiple tagging and proxy session sharing
See DRCP Tagging (page 23-4)
e Support for IDK 8 and JDBC 4.2
See Support for JDBC 4.2 Standard (page 3-14)
» JDBC Driver Support for Fast Application Notification (FAN)
See Oracle JDBC Support for FAN Events (page 29-1)
* Support for Deprioritization of Database Nodes
See Support for Deprioritization of Database Node (page 2-20)
e Support for FAN up events
See Overview of Oracle RAC Fast Application Notification (page B-1)
* Application Continuity Support for XA Data Source
See Application Continuity Support for XA Data Sources (page 28-6)
* Support for specifying think timeout

See “Configuring the Default Connection Pool” section in Enabling DRCP on the
Server Side (page 23-2)

e Support for PL/SQL fix up callback on the server
See PL/SQL Session State Fix-Up Callback (page 23-5)

e Support for network compression

ORACLE XXX

Changes in This Release for Oracle Database JDBC Developer's Guide

See Support for Network Data Compression (page 8-10)
Support for feature-specific logging at runtime

See Support for feature-specific logging at runtime (page 34-8)
Switch Service Enhancement

Starting from Oracle Database 12c¢ Release 2 (12.2.0.1), you can use the SET
CONTAI NER statement in the following way, if you want to switch amongst pluggable
databases, while continuing to use user services with full service functionality:

ALTER SESSI ON SET CONTAI NER=<cont ai ner nane> SERVI CE=<servi ce nane>;
JDBC Support for Binding PL/SQL BOOLEAN type

Starting from Oracle Database 12c¢ Release 2 (12.2.0.1), Oracle JDBC drivers
support binding PL/SQL BOOLEAN type, which is a true BOOLEAN type.
PLSQL_BOOLEAN binds BOOLEAN type for input or output parameters when
executing a PL/SQL function or procedure. With this feature, now JDBC supports
the ability to bind PLSQL_BOOLEAN type into any PL/SQL block from Java.

See Also:
JDBC Reference Information (page A-1)

Deprecated Features

The following features are deprecated in this release, and may be desupported in a
future release:

ORACLE

Concrete classes in the oracl e. sqgl package

The concrete classes in the oracl e. sql package are deprecated. Use the new
JDBC interfaces instead of these classes.

See MoS Note 1364193.1 for more information about these interfaces.

Starting in Oracle Database 12c release 2 (12.2), the oracl e. j dbc. rowset package
is deprecated. Oracle recommends that you use the Standard JDBC RowSet
package to replace this feature.

See Also:

http://docs.oracle.com/javase/8/docs/api/javax/sql/rowset/package-
summary.htmi

def i neCol umType method

Most of the variants of the def i neCol umType method are deprecated. The
supported variants are for:

— LOB to LONG conversions
— Configure the LOB prefetch size

See the JDBC Javadoc for more information.

XXXi

http://docs.oracle.com/javase/8/docs/api/javax/sql/rowset/package-summary.html
http://docs.oracle.com/javase/8/docs/api/javax/sql/rowset/package-summary.html

Changes in This Release for Oracle Database JDBC Developer's Guide

CONNECTI ON_PROPERTY_STREAM CHUNK_SI ZE property
See the JDBC Javadoc for more information.
Oracle Update Batching

Oracle update batching was deprecated in Oracle Database 12¢ Release 1 (12.1).
Starting in Oracle Database 12c¢ Release 2 (12.2), Oracle update batching is a no
operation code (no-op). This means that if you implement Oracle update batching
in your application, using the Oracle Database 12c¢ Release 2 (12.2) JDBC driver,
then the specified batch size is not set and results in a batch size of 1. With this
batch setting, your application processes one row at a time. Oracle strongly
recommends that you use the standard JDBC batching if you are using the Oracle
Database 12c¢ Release 2 (12.2) JDBC driver.

See Standard Update Batching (page 21-2) section for more information.
EndToEndMet ri cs related APIs
EndToEndMet ri cs related APIs are deprecated in this release.

See JDBC DMS Metrics (page 35-1) for more information.

Desupported Features

The following features are no longer supported by Oracle:

ORACLE

Desupport of JPublisher

All Oracle JPublisher features are desupported and unavailable in Oracle Database
12c Release 2 (12.2.0.1). Oracle recommends that you use the alternatives listed
here:

To continue to use Web service callouts, Oracle recommends that you use the
Oracle JVM Web Services Callout utility, which is a replacement for the Web
Services Callout utility.

To replace other JPublisher automation capabilities, including mapping user-
defined SQL types or SQL types, wrapping PL/SQL packages and similar
capabilities, Oracle recommends that developers use explicit steps, such as
precompiling code with SQLJ precompiler, building Java STRUCT classes, or
using other prestructured options.

See Also:

My Oracle Support Note 1937939.1 for more information about JDeveloper
deprecation and desupport:

https://support.oracle.com/CSP/main/article?
cmd=show&type=NOT&id=1937939.1

See Also:

Oracle Database Upgrade Guide to see a list of all desupported features in
this release of Oracle Database

XXXIi

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1937939.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1937939.1

Overview

The chapters in this part introduce the concept of Java Database Connectivity (JDBC)
and provide an overview of the Oracle implementation of JDBC. This part provides
basic information about installation and configuration of the Oracle client with
reference to JDBC drivers. This part also covers the basic steps in creating and
running any JDBC application.

Part | contains the following chapters:

e Introducing JDBC (page 1-1)
* Getting Started (page 2-1)

ORACLE

Introducing JDBC

Java Database Connectivity (JDBC) is a Java standard that provides the interface for
connecting from Java to relational databases. The JDBC standard is defined and
implemented through the standard j ava. sql interfaces. This enables individual
providers to implement and extend the standard with their own JDBC drivers. JDBC is
based on the X/Open SQL Call Level Interface (CLI). JDBC 4.0 complies with the SQL
2003 standard.

This chapter provides an overview of the Oracle implementation of JDBC, covering the
following topics:

e Overview of Oracle JDBC Drivers (page 1-1)

e Choosing the Appropriate Driver (page 1-3)

* Feature Differences Between JDBC OCI and Thin Drivers (page 1-4)
e Environments and Support (page 1-4)

* Feature List (page 1-5)

1.1 Overview of Oracle JDBC Drivers

ORACLE

In addition to supporting the standard JDBC application programming interfaces
(APIs), Oracle drivers have extensions to support Oracle-specific data types and to
enhance performance.

Oracle provides the following JDBC drivers:

e Thin driver

The JDBC Thin driver is a pure Java, Type IV driver that can be used in
applications and applets. It is platform-independent and does not require any
additional Oracle software on the client-side. The JDBC Thin driver communicates
with the server using Oracle Net Services to access Oracle Database.

The JDBC Thin driver enables a direct connection to the database by providing an
implementation of Oracle Net Services on top of Java sockets. The driver supports
the TCP/IP protocol and requires a TNS listener on the TCP/IP sockets on the
database server.

Note:

Oracle recommends you to use the Thin driver unless you have a feature that
is supported only by a specific driver.

* Oracle Call Interface (OCI) driver

It is used on the client-side with an Oracle client installation. It can be used only
with applications.

1-1

Chapter 1
Overview of Oracle JDBC Drivers

The JDBC OCI driver is a Type Il driver used with Java applications. It requires
platform-specific OCI libraries. It supports all installed Oracle Net adapters,
including interprocess communication (IPC), named pipes, TCP/IP, and
Internetwork Packet Exchange/Sequenced Packet Exchange (IPX/SPX).

The JDBC OCI driver, written in a combination of Java and C, converts JDBC
invocations to calls to OCI, using native methods to call C-entry points. These calls
communicate with the database using Oracle Net Services.

The JDBC OCI driver uses the OCI libraries, C-entry points, Oracle Net, core
libraries, and other necessary files on the client computer where it is installed.

OCl is an API that enables you to create applications that use the native
procedures or function calls of a third-generation language to access Oracle
Database and control all phases of the SQL statement processing.

e Server-side Thin driver

It is functionally similar to the client-side Thin driver. However, it is used for code
that runs on the database server and needs to access another session either on
the same server or on a remote server on any tier.

The JDBC server-side Thin driver offers the same functionality as the JDBC Thin
driver that runs on the client-side. However, the JDBC server-side Thin driver runs
inside Oracle Database and accesses a remote database or a different session on
the same database for use with Java in the database.

This driver is useful in the following scenarios:

— Accessing a remote database server from an Oracle Database instance acting
as a middle tier

— Accessing an Oracle Database session from inside another, such as from a
Java stored procedure

The use of JDBC Thin driver from a client application or from inside a server does
not affect the code.

e Server-side internal driver

It is used for code that runs on the database server and accesses the same
session. That is, the code runs and accesses data from a single Oracle session.

The JDBC server-side internal driver supports any Java code that runs inside
Oracle Database, such as in a Java stored procedure, and accesses the same
database. It lets the Oracle Java Virtual Machine (Oracle JVM) to communicate
directly with the SQL engine for use with Java in the database.

The JDBC server-side internal driver, the Oracle JVM, the database, and the SQL
engine all run within the same address space, and therefore, the issue of network
round-trips is irrelevant. The programs access the SQL engine by using function
calls.

Note:

The server-side internal driver does not support the cancel and
set Quer yTi neout methods of the St at ement class.

The JDBC server-side internal driver is fully consistent with the client-side drivers
and supports the same features and extensions.

ORACLE 1-2

Chapter 1
Choosing the Appropriate Driver

The following figure illustrates the architecture of Oracle JDBC drivers and Oracle
Database.

Figure 1-1 Architecture of Oracle JDBC Drivers and Oracle Database

Oracle Database

JDBC Thin Driver Java Engine
Java Sockets Server-Side Thin Driver
JDBC Server-Side
JDBC OCI Driver SOL Engine Imerne:l Driver
OCI C Library PL/SQL Engine |
I{ KPRB C Library |

Related Topics:

Features Specific to JDBC Thin (page 5-1)
Features Specific to JDBC OCI Driver (page 6-1)

Server-Side Internal Driver (page 7-1)

1.2 Choosing the Appropriate Driver

Consider the following when choosing a JDBC driver for your application or applet:

ORACLE

In general, unless you need OCI-specific features, such as support for non-TCP/IP
networks, use the JDBC Thin driver.

If you want maximum portability and performance, then use the JDBC Thin driver.
You can connect to Oracle Database from either an application or an applet using
the JDBC Thin driver.

If you want to use Lightweight Directory Access Protocol (LDAP) over Secure
Sockets Layer (SSL), then use the JDBC Thin driver.

If you are writing a client application for an Oracle client environment and need
OCl-driver-specific features, such as support for non-TCP/IP networks, then use
the JDBC OCI driver.

If you are writing an applet, then you must use the JDBC Thin driver.

1-3

Chapter 1

Feature Differences Between JDBC OCI and Thin Drivers

* For code that runs in the database server and needs to access a remote database
or another session within the same database instance, use the JDBC server-side

Thin driver.

» If your code runs inside the database server and needs to access data locally
within the session, then use the JDBC server-side internal driver to access that

server.

1.3 Feature Differences Between JDBC OCI and Thin

Drivers

Table 1-1 (page 1-4) lists the features that are specific either to the JDBC OCI or
JDBC Thin driver in Oracle Database 12c¢ Release 2 (12.2.0.1).

Table 1-1 Feature Differences Between JDBC OCI and JDBC Thin Drivers

JDBC OCI Driver

JDBC Thin Driver

OCI connection pooling

NA

Transparent Application Failover (TAF)
OCI Client Result Cache

NA
Default support for Native XA
NA
NA

NA Application Continuity

NA Transaction Guard

NA Support for row count per iteration for array
DML

NA SHA-2 Support in Oracle Advanced Security

oraaccess. xn configuration file settings NA

NA Oracle Advanced Queuing

NA Continuous Query Notification

NA Support for the O7L_MR client ability

NA Support for promoting a local transaction to a
global transaction

Note:

1.4 Environments and Support

* The OCI optimized fetch and client-side object cache features are internal
to the JDBC OCI driver and are not applicable to the JDBC Thin driver.

* Some JDBC OCI driver features, inherited from the OCI library, are not
available in the Thin JDBC driver.

This section provides a brief discussion of the following topics:

e Supported JDK and JDBC Versions (page 1-5)

ORACLE

1-4

Chapter 1
Feature List

e JNI and Java Environments (page 1-5)

 JDBC and IDEs (page 1-5)

1.4.1 Supported JDK and JDBC Versions

In Oracle Database 12c Release 2 (12.2.0.1), all the JDBC drivers are compatible with
JDK 8. Support for JDK 8 is provided through the oj dbc8. j ar file.

Related Topics:
* Version Compatibility for Oracle JDBC Drivers (page 2-1)
* Version Compatibility for Oracle JDBC Drivers (page 2-1)

1.4.2 NI and Java Environments

The JDBC OCI driver uses the standard Java Native Interface (JNI) to call OCI C
libraries. You can use the JDBC OCI driver with Java Virtual Machines (JVMs), in
particular, with Microsoft and IBM JVMs.

1.4.3 JDBC and IDEs

The Oracle JDeveloper Suite provides developers with a single, integrated set of
products to build, debug, and deploy component-based database applications for the
Internet. The Oracle JDeveloper environment contains integrated support for JDBC,
including the JDBC Thin driver and the native OCI driver. The database component of
Oracle JDeveloper uses the JDBC drivers to manage the connection between the
application running on the client and the server.

1.5 Feature List

Table 1-2 (page 1-5) lists the features and the versions in which they were first
supported for each of the three Oracle JDBC drivers: server-side internal driver, JDBC
OCI driver, and JDBC Thin driver.

Table 1-2 Feature List

Feature Server-Side JDBC OCI JDBC Thin
Internal

JDK 1.0 7.2.2 7.2.2

JDBC 1.0.2 7.2.2 7.2.2

JDK 1.1.1 8.0.6 8.0.6

JDBC 1.22 (No new features; just minor 8.0.6 8.0.6

revisions)

defineColumnTypel 8.0.6 8.0.6

Row Prefetch 8.0.6 8.0.6

Java Native Interface 8.1.6

JDK 1.2 9.0.1 8.1.6 8.1.6

JDBC 2.0 SQL3 Types (BLOB, CLOB, Struct, 8.1.5 8.15 8.15

Array, REF)

ORACLE 1-5

Chapter 1
Feature List

Table 1-2 (Cont.) Feature List

Feature Server-Side JDBC OCI JDBC Thin
Internal
Native LOB 8.1.6 9.2.0
Associative Arrays? 10.2.0 8.1.6 10.1.0
JDBC 2.0 Scrollable Result Sets 8.1.6 8.1.6 8.1.6
JDBC 2.0 Updatable Result Sets 8.1.6 8.1.6 8.1.6
JDBC 2.0 Standard Batching 8.1.6 8.1.6 8.1.6
JDBC 2.0 Connection Pooling NA 8.1.6 8.1.6
JDBC 2.0 XA 8.1.6 8.1.6 8.1.6
Server-side Thin driver 8.1.6 NA NA
JDBC 2.0 RowSets 9.0.1 9.0.1
Implicit Statement Caching 8.1.7 8.1.7 8.1.7
Explicit Statement Caching 8.1.7 8.1.7 8.1.7
Temporary LOBs 9.0.1 9.0.1 9.0.1
Object Type Inheritance 9.0.1 9.0.1 9.0.1
Multilevel Collections 9.0.1 9.0.1 9.0.1
oracl e. j dbc Interfaces 9.0.1 9.0.1 9.0.1
Native XA 9.0.1 10.1.0
OCI Connection Pooling NA 9.0.1 NA
TAF NA 9.0.1 NA
NLS Support 9.0.1 9.0.1 9.0.1
JDK 1.3 9.2.0 9.2.0 9.2.0
JDK 1.4 10.1.0 9.2.0 9.2.0
JDBC 3.0 Savepoints 9.2.0 9.2.0 9.2.0
New Statement Caching API 9.2.0 9.2.0 9.2.0
ConnectionCachelmpl connection cache NA 8.1.7 8.1.7
Implicit Connection Cache NA 10.1.0 10.1.0
Fast Connection Failover 10.1.0.3 10.1.0.3
Connection Wrapping 9.2.0 9.2.0
DMS 9.2.0 9.2.0
Service Names in URLs 9.2.0 10.2.0
JDBC 3.0 Connection Pooling Properties NA 10.1.0 10.1.0
JDBC 3.0 Updatable BLOB, CLOB, REF 10.1.0 10.1.0 10.1.0
JDBC 3.0 Multiple Open Result Sets 10.1.0 10.1.0 10.1.0
JDBC 3.0 Parameter Metadata 10.1.0 10.1.0 10.1.0
JDBC 3.0 Set/Get Stored Procedures Parameters 10.1.0 10.1.0 10.1.0
by Name
JDBC 3.0 Statement Pooling 10.1.0 10.1.0 10.1.0
Set Statement Parameters by Name 10.1.0 10.1.0 10.1.0
End-to-End Tracing 10.1.0 10.1.0

ORACLE 1-6

Chapter 1
Feature List

Table 1-2 (Cont.) Feature List

Feature Server-Side JDBC OCI JDBC Thin
Internal
Web RowSet 11.1 10.1.0 10.1.0
Proxy Authentication 10.2.0 10.1.0
JDBC 3.0 Auto Generated Keys 10.2.0 10.2.0
JDBC 3.0 Holdable Cursors 10.2.0 10.2.0 10.2.0
JDBC 3.0 Local/Global Transaction Switching 9.2.0 9.2.0 9.2.0
Run-time Connection Load Balancing NA 10.2.0 10.2.0
Extended set XXX and get XXX for LOBs 10.2.0 10.2.0
XA Connection Cache NA 10.2.0 10.2.0
DML Returning 10.2.0 10.2.0
JSR 114 RowSets 10.2.0 10.2.0
SSL Encryption 9.2.0 10.2.0
SSL Authentication 9.2.0 11.1
JDK 5.0 11.1 111 11.1
JDK 6 111 111
JDBC 4.0 111 11.1
AES Encryption 111
SHA1 Hash 11.1
Radius Authentication 10.2.0 11.1
Kerberos Authentication 11.1
ANYDATA and ANYTYPE types 111 111
Native AQ 11.1
Query Change Notification 111
Database startup and shutdown NA 111 111
Factory methods for data types 111 111 111
Buffer Cache 11.1 11.1 11.1
Secure Files 111 11.1 111
Diagnosability 111 111 111
OCI Client Result Cache 11.1.0
Server Result Cache 11.1 11.1.0 11.1.0
Universal Connection Pool 11.1.0.7.0 11.1.0.7.0
TimeZone Patching 11.2 11.2
Secure Lob Support 11.2 11.2
Lob prefetch Support 11.2 11.2
Network Connection Pool 11.2
Column Security Suppor 11.2
XMLType Queue Support (AQ) 11.2
Notification Grouping (AQ and DCN) 11.2

ORACLE r

Chapter 1
Feature List

Table 1-2 (Cont.) Feature List

Feature Server-Side JDBC OCI JDBC Thin
Internal
SimpleFAN 11.2 11.2
Application Continuity 12.1
Transaction Guard 12.1
SQL Statement Translation 12.1
Database Resident Connection Pooling 121 121
Latest JDBC Standard Support 121 121
SHA-2 Support in Oracle Advanced Security 12.1
Invisible Columns Support 12.1 12.1
Support for PL/SQL Package Types as 12.1 12.1
Parameters
Support for Monitoring of Database Operations 121 121
Support for Increased Length Limit for Various 121 121
Data Types
Implicit Results Support 121 121
Support for row count per iteration for array DML 12.1
oraaccess. xnl configuration file settings 12.1

1 Starting from Oracle Database 12c¢ Release 1 (12.1), most of the variants of this method have been
deprecated. The current versions only enable to perform LOB to LONG conversions and configure the
LOB prefetch size.

2 Associative Arrays were previously known as index-by tables.

Note:
* Inthe table, NA means that the feature is not applicable for the

corresponding Oracle JDBC driver.

* The ConnectionCachel npl connection cache feature is deprecated since
Oracle Database 10g.

* The Implicit Connection Cache feature is desupported from this release.

ORACLE 1-8

Getting Started

This chapter discusses the compatibility of Oracle Java Database Connectivity (JDBC)
driver versions, database versions, and Java Development Kit (JDK) versions. It also
describes the basics of testing a client installation and configuration and running a
simple application. This chapter contains the following sections:

* Version Compatibility for Oracle JDBC Drivers (page 2-1)

» Verifying a JDBC Client Installation (page 2-2)

e Basic Steps in JDBC (page 2-7)

e Sample: Connecting_ Querying_ and Processing the Results (page 2-15)
e Support for Invisible Columns (page 2-16)

e Support for Implicit Results (page 2-18)

e Support for Deprioritization of Database Nodes (page 2-20)

e Stored Procedure Calls in JDBC Programs (page 2-21)

e About Processing SQL Exceptions (page 2-22)

2.1 Version Compatibility for Oracle JDBC Drivers

ORACLE

This section discusses the general JDBC version compatibility issues.

Backward Compatibility

Oracle Database 12c Release 2 (12.2.0.1) JDBC drivers are certified with supported
Oracle Database releases (11.x.0.x). However, they are not certified to work with
older, unsupported database releases, such as 10.2.x, 10.1.x, 9.2.x, and 9.0.1.x.

Note:

If you want to use Fast Connection Failover mechanism, then use the 10.2
JDBC driver with Oracle database 10.2. If the database is 10.1, then use 10.1
JDBC driver.

Forward Compatibility

Existing and supported JDBC drivers are certified to work with Oracle Database 12¢
Release 2 (12.2).

2-1

Chapter 2
Verifying a JDBC Client Installation

Note:

In Oracle Database 12c Release 2 (12.2.0.1), Oracle JDBC drivers no longer
support JDK 6 or earlier versions.

Related Topics:
e Oracle Universal Connection Pool Developer’s Guide

e http://lwww.oracle.com/technetwork/database/enterprise-edition/jdbc-
fag-090281.html

2.2 Verifying a JDBC Client Installation

To verify a JDBC client installation, you must do all of the following:

* Checking the Installed Directories and Files (page 2-2)

e Checking the Environment Variables (page 2-3)

» Ensuring that the Java Code Can Be Compiled and Run (page 2-5)
* Determining the Version of the JDBC Driver (page 2-5)

* Testing the JDBC and Database Connection (page 2-5)

This section describes the steps for verifying an Oracle client installation of the JDBC
drivers, assuming that you have already installed the driver of your choice. Installation
of an Oracle JDBC driver is platform-specific. You must follow the installation
instructions for the driver you want to install in your platform-specific documentation.

If you use the JDBC Thin driver, then there is no additional installation on the client
computer. If you use the JDBC Oracle Call Interface (OCI) driver, then you must also
install the Oracle client software. This includes Oracle Net and the OCI libraries.

Note:

The JDBC Thin driver requires a TCP/IP listener to be running on the
computer where the database is installed.

2.2.1 Checking the Installed Directories and Files

ORACLE

Installing the Oracle Java products creates, among other things, the following
directories:

« ORACLE_HOME/j dbc
« ORACLE HOME/jlib

Check whether or not the following directories and files have been created and
populated in the ORACLE_HOME/ j dbc directory:

e denp

2-2

http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-faq-090281.html
http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-faq-090281.html

Chapter 2
Verifying a JDBC Client Installation

This directory contains a compressed file, deno. zi p or deno. t ar. When you
uncompress this compressed file, the sanpl es directory and the Sanpl es- Readne. t xt
file are created. The sanpl es directory contains sample programs, including
examples of how to use JDBC escape syntax and Oracle SQL syntax, PL/SQL
blocks, streams, user-defined types, additional Oracle type extensions, and Oracle
performance extensions.

doc

This directory contains the j avadoc. zi p file, which is the Oracle JDBC application
programming interface (API) documentation.

lib
The i b directory contains the following required Java classes:
— orai18n.jar and orai 18n- mappi ng. j ar
Contain classes for globalization and multibyte character sets support
— ojdbc8.jar and oj dbc8_g.jar
Contain the JDBC driver classes for use with JDK 8
Readne. t xt

This file contains late-breaking and release-specific information about the drivers,
which may not have been included in other documentation on the product.

Check whether or not the following directories have been created and populated in the
ORACLE_HOME /j 1i b directory:

jta.jar andjndi.jar

These files contain classes for the Java Transaction API (JTA) and the Java
Naming and Directory Interface (JNDI). These are required only if you are using
JTA features for distributed transaction management or JNDI features for naming
services.

ons.jar

This JAR file contains classes for Oracle RAC Fast Application Natification. It is
also required for Universal Connection Pool (UCP) features like Fast Connection
Failover, Run-time Load Balancing, Web Session Affinity, and Transaction Affinity.

Related Topics:

Oracle RAC Fast Application Notification (page B-1)
jta.jar
jndi.jar

Oracle Universal Connection Pool Developer’s Guide

2.2.2 Checking the Environment Variables

ORACLE

This section describes the environment variables that must be set for the JDBC OCI

driver and the JDBC Thin driver, focusing on Solaris, Linux, and Microsoft Windows
platforms.

You must set the CLASSPATH environment variable for JDBC OCI or Thin driver. Include
the following in the CLASSPATH environment variable:

2-3

http://www.oracle.com/technetwork/java/javaee/jta/
http://www.oracle.com/technetwork/java/jndi/index.html

ORACLE

Chapter 2
Verifying a JDBC Client Installation

ORACLE_HOVE/ j dbc/ 1i b/ oj dbc8. j ar
ORACLE_HOVE/j l'i b/ orai 18n.jar

Note:

If you use the JTA features and the JNDI features, then you must specify
jta.jar andjndi.jar in your CLASSPATH environment variable.

JDBC OCI Driver

To use the JDBC OCI driver, you must also set the following value for the library path
environment variable:

e On Solaris or Linux, set the LD_LI BRARY_PATH environment variable as follows:

ORACLE_HOWE/ i b

This directory contains the | i boci j dbc11. so shared object library.
* On Microsoft Windows, set the PATH environment variable as follows:

ORACLE_HOME\ bi n

This directory contains the oci j dbc11. dl I dynamic link library.

All of the JDBC OCI demonstration programs can be run in the Instant Client mode by
including the JDBC OCI Instant Client data shared library on the library path
environment variable.

JDBC Thin Driver

To use the JDBC Thin driver, you do not have to set any other environment variables.
However, to use the JDBC server-side Thin driver, you need to set permission.

Setting Permission for the Server-Side Thin Driver

The JDBC server-side Thin driver opens a socket for its connection to the database.
Because Oracle Database enforces the Java security model, a check is performed for
a Socket Per i ssi on object.

To use the JDBC server-side Thin driver, the connecting user must be granted the
appropriate permission. The following is an example of how the permission can be
granted for the user HR:

CREATE ROLE j dbct hi n;

CALL dbns_j ava. grant _pernission(' JDBCTH N, 'java.net. SocketPerm ssion', '*',
‘connect');

GRANT jdbcthin TO HR;

Note that JDBCTH Nin the grant _per ni ssi on call must be in uppercase. The asterisk (*)
is a pattern. You can restrict the user by granting permission to connect to only
specific computers or ports.

Related Topics:
* Features Specific to JDBC OCI Driver (page 6-1)

* Oracle Database Java Developer’s Guide

2-4

Chapter 2
Verifying a JDBC Client Installation

2.2.3 Ensuring that the Java Code Can Be Compiled and Run

To further ensure that Java is set up properly on your client system, go to the sanpl es
directory under the ORACLE_HOME/ j dbc/ demo directory. Now, type the following
commands on the command line, one after the other, to see if the Java compiler and
the Java interpreter run without error:

j avac
java

Each of the preceding commands should display a list of options and parameters and
then exit. Ideally, verify that you can compile and run a simple test program, such as
j dbc/ demo/ sanpl es/ generi ¢/ Sel ect Exanpl e.

2.2.4 Determining the Version of the JDBC Driver

To determine the version of the JDBC driver, call the get Dri ver Ver si on method of the
Or acl eDat abaseMet aDat a class as shown in the following sample code:

import java.sql.*;
import oracle.jdbc.*;
i mport oracle.jdbc. pool . Oracl eDat aSour ce;

class JDBCVersion

{
public static void main (String args[]) throws SQLException

{

Oracl eDat aSour ce ods = new Oracl eDat aSour ce();
ods. set URL("j dbc: oracl e: t hi n: HR/ hr @host >: <port >: <servi ce>");
Connection conn = ods. get Connection();

/1 Create Oracle DatabaseMetaData obj ect
Dat abaseMet aData neta = conn. get Met aDat a() ;

/1 gets driver info:
Systemout. println("JDBC driver version is " + neta.getDriverVersion());
}
}

You can also determine the version of the JDBC driver by executing the following
commands:

° java -jar ojdbc8.jar

2.2.5 Testing the JDBC and Database Connection

ORACLE

The sanpl es directory contains sample programs for a particular Oracle JDBC driver.
One of the programs, JdbcCheckup. j ava, is designed to test JDBC and the database
connection. The program queries for the user name, password, and the name of the
database to which you want to connect. The program connects to the database,
queries for the string "Hel 1 o Wrl d", and prints it to the screen.

Go to the sanpl es directory, and compile and run the JdbcCheckup. j ava program. If the
results of the query print without error, then your Java and JDBC installations are
correct.

2-5

ORACLE

Chapter 2
Verifying a JDBC Client Installation

Although JdbcCheckup. j ava is a simple program, it demonstrates several important
functions by performing the following:

* Imports the necessary Java classes, including JDBC classes

* Creates a Dat aSour ce instance

» Connects to the database

* Runs a simple query

» Prints the query results to your screen

The JdbcCheckup. j ava program, which uses the JDBC OCI driver, is as follows:

/*

* This sanple can be used to check the JDBC installation.

* Just run it and provide the connect information. It will select
* "Hello Wrld" fromthe database.

*/

/1 You need to inport the java.sql and JDBC packages to use JDBC
inport java.sql.*;

inmport oracle.jdbc.*;

import oracle.jdbc. pool . Oracl eDat aSour ce;

/1 W inport java.io to be able to read fromthe conmand Iine
inport java.io.*;

class JdbcCheckup
{
public static void main(String args[]) throws SQ.Exception, |CException

{

[l Pronpt the user for connect information

Systemout.println("Please enter information to test connection to
the database");

String user;

String password;

String dat abase;

user = readEntry("user: ");
int slash_index = user.indexOf('/');
if (slash_index != -1)
{
password = user.substring(slash_index + 1);
user = user.substring(0, slash_index);
1
el se
password = readEntry("password: ");
dat abase = readEntry("database(a TNSNAME entry): ");

System out. print("Connecting to the database...");
System out . fl ush();

Systemout. println("Connecting...");

/1 Open an O acl eDat aSource and get a connection
Oracl eDat aSour ce ods = new Oracl eDat aSour ce();
ods. set URL("j dbc: oracl e:oci: @ + database);

ods. set User (user);

ods. set Passwor d(passwor d) ;

Connection conn = ods. get Connection();

Systemout. println("connected.");

2-6

}

Chapter 2
Basic Steps in JDBC

Il Create a statenent
Statenent stnt = conn.createStatenent();

/1 Do the SQ "Hello Wrld" thing
Result Set rset = stnt.executeQuery("select 'Hello World fromdual");

while (rset.next())
Systemout. printIn(rset.getString(1));
/1 close the result set, the statement and the connection
rset.close();
stnt.close();
conn. cl ose();
Systemout. println("Your JDBC installation is correct.");

}

[/ Wility function to read a line fromstandard input
static String readEntry(String pronpt)
{
try
{
StringBuffer buffer = new StringBuffer();
Systemout. print(pronpt);
Systemout. flush();
int ¢ = Systemin.read();
while (¢ !'="\n" & ¢ !=-1)
buf f er. append((char)c);
c = Systemin.read();

return buffer.toString().trin();
}
catch(| CException e)

{

return "

}
}

2.3 Basic Steps in JDBC

After verifying the JDBC client installation, you can start creating your JDBC
applications. When using Oracle JDBC drivers, you must include certain driver-specific
information in your programs. This section describes, in the form of a tutorial, where
and how to add the information. The tutorial guides you through the steps to create
code that connects to and queries a database from the client.

ORACLE

You must write code to perform the following tasks:

N o g p @ Db P

Importing Packages (page 2-8)

Opening a Connection to a Database (page 2-8)

Creating a Statement Object (page 2-9)

Running a Query and Retrieving a Result Set Object (page 2-10)
Processing the Result Set Object (page 2-10)

Closing the Result Set and Statement Objects (page 2-11)
Making Changes to the Database (page 2-11)

2-7

Chapter 2
Basic Steps in JDBC

8. About Committing Changes (page 2-13)
9. Closing the Connection (page 2-15)

Note:

You must supply Oracle driver-specific information for the first three tasks that
enable your program to use the JDBC application programming interface (API)
to access a database. For the other tasks, you can use standard JDBC Java
code, as you would for any Java application.

2.3.1 Importing Packages

Regardless of which Oracle JDBC driver you use, include the i nport statements
shown in Table 2-1 (page 2-8) at the beginning of your program using the following
syntax:

i mport <package_nane>;

Table 2-1 Import Statements for JDBC Driver
|

Import statement Provides
inport java.sql.*; Standard JDBC packages.
inport java.math.*; The Bi gDeci mal and Bi gl nt eger classes. You can omit

this package if you are not going to use these classes in
your application.

inport oracle.jdbc.*; Oracle extensions to JDBC. This is optional.
i mport oracle.jdbc. pool . *; O acl eDat aSour ce.
inport oracle.sql.*; Oracle type extensions. This is optional.

The Oracle packages listed as optional provide access to the extended functionality
provided by Oracle JDBC drivers, but are not required for the example presented in
this section.

Note:

It is better to import only the classes your application needs, rather than using
the wildcard asterisk (*). This guide uses the asterisk (*) for simplicity, but this
is not the recommended way of importing classes and interfaces.

2.3.2 Opening a Connection to a Database

ORACLE

First, you must create an O acl eDat aSour ce instance. Then, open a connection to the
database using the O acl eDat aSour ce. get Connect i on method. The properties of the
retrieved connection are derived from the O acl eDat aSour ce instance. If you set the
URL connection property, then all other properties, including TNSEnt r yNane,

Dat abaseNane, Servi ceName, Ser ver Nane, Port Number , Net work Prot ocol , and driver type
are ignored.

2-8

Chapter 2
Basic Steps in JDBC

Specifying a Database URL, User Name, and Password

The following code sets the URL, user name, and password for a data source:

Oracl eDat aSour ce ods = new Oracl eDat aSour ce();
ods. set URL(url);

ods. set User (user);

ods. set Passwor d(passwor d) ;

The following example connects user HR with password hr to a database with service
orcl through port 5221 of the host nyhost , using the JDBC Thin driver:

Oracl eDat aSour ce ods = new Oracl eDat aSour ce();
String url = "jdbc:oracle:thin: @/ nyhost:5221/orcl";
ods. set URL(url);

ods. set User ("HR") ;

ods. set Password("hr");

Connection conn = ods. get Connection();

Note:

The user name and password specified in the arguments override any user
name and password specified in the URL.

Specifying a Database URL that Includes User Name and Password

The following example connects user HR with password hr to a database host whose
Transparent Network Substrate (TNS) entry is nyTNSEnt ry, using the JDBC Oracle Call
Interface (OCI) driver. In this case, the URL includes the user name and password and
is the only input parameter.

String url = "jdbc:oracle:oci:HR hr @yTNSEntry");
ods. set URL(url);
Connection conn = ods. get Connection();

If you want to connect using the Thin driver, then you must specify the port number.
For example, if you want to connect to the database on the host nyhost that has a
TCP/IP listener on port 5221 and the service identifier is or cl , then provide the
following code:

String URL = "jdbc:oracl e:thin: HR hr @/ nyhost: 5221/ orcl");
ods. set URL(URL) ;
Connection conn = ods. get Connection();

Related Topics:
» Data Sources and URLs (page 8-1)
» Data Sources and URLs (page 8-1)

2.3.3 Creating a Statement Object

Once you connect to the database and, in the process, create a Connect i on object, the
next step is to create a Stat ement object. The creat eSt at enent method of the JDBC
Connect i on object returns an object of the JDBC St at enent type. To continue the

ORACLE 2-9

Chapter 2
Basic Steps in JDBC

example from the previous section, where the Connect i on object conn was created,
here is an example of how to create the St at enent object:

Statement stnt = conn.createStatenent();

2.3.4 Running a Query and Retrieving a Result Set Object

To query the database, use the execut eQuery method of the St at ement object. This
method takes a SQL statement as input and returns a JDBC Resul t Set object.

Note:

* The method used to execute a St at enent object depends on the type of
SQL statement being executed. If the St at ement object represents a SQL
query returning a Resul t Set object, the execut eQuery method should be
used. If the SQL is known to be a DDL statement or a DML statement
returning an update count, the execut eUpdat e method should be used. If
the type of the SQL statement is not known, the execut e method should be
used.

e In case of a standard JDBC driver, if the SQL string being executed does
not return a Resul t Set object, then the execut eQuery method throws a
SQLExcept i on exception. In case of an Oracle JDBC driver, the
execut eQuery method does not throw a SQLExcept i on exception even if the
SQL string being executed does not return a Resul t Set object.

To continue the example, once you create the St at enent object st nt, the next step is to
run a query that returns a Resul t Set object with the contents of the first_nane column
of a table of employees named EMPLOYEES:

Resul t Set rset = stnt.executeQuery ("SELECT first_name FROM enpl oyees");

2.3.5 Processing the Result Set Object

Once you run your query, use the next () method of the Resul t Set object to iterate
through the results. This method steps through the result set row by row, detecting the
end of the result set when it is reached.

To pull data out of the result set as you iterate through it, use the appropriate get XXX
methods of the Resul t Set object, where XXX corresponds to a Java data type.

For example, the following code will iterate through the Resul t Set object, rset, from the
previous section and will retrieve and print each employee name:

while (rset.next())
Systemout.println (rset.getString(1));

The next () method returns f al se when it reaches the end of the result set. The
employee names are materialized as Java Stri ng values.

ORACLE 2-10

Chapter 2
Basic Steps in JDBC

2.3.6 Closing the Result Set and Statement Objects

You must explicitly close the Resul t Set and St at enent objects after you finish using
them. This applies to all Resul t Set and St at enent objects you create when using Oracle
JDBC drivers. The drivers do not have finalizer methods. The cleanup routines are
performed by the cl ose method of the Resul t Set and St at enent classes. If you do not
explicitly close the Resul t Set and St at ement objects, serious memory leaks could occur.
You could also run out of cursors in the database. Closing both the result set and the
statement releases the corresponding cursor in the database. If you close only the
result set, then the cursor is not released.

For example, if your Resul t Set object is rset and your St at enent object is st nt, then
close the result set and statement with the following lines of code:

rset.close();
stnt.close();

When you close a St at enent object that a given Connecti on object creates, the
connection itself remains open.

Note:

Typically, you should put cl ose statements in a final | y clause.

2.3.7 Making Changes to the Database

ORACLE

DML Operations

To perform DML (Data Manipulation Language) operations, such as INSERT or
UPDATE operations, you can create either a St at ement object or a Prepar edSt at enent
object. Prepar edSt at enent objects enable you to run a statement with varying sets of
input parameters. The prepar eSt at enent method of the JDBC Connect i on object lets you
define a statement that takes variable bind parameters and returns a JDBC

Prepar edSt at enent object with your statement definition.

Use the set XXX methods on the Prepar edSt at ement object to bind data to the prepared
statement to be sent to the database.

The following example shows how to use a prepared statement to run | NSERT
operations that add two rows to the EVPLOYEES table.

/| Prepare to insert new nanmes in the EMPLOYEES table
PreparedStatement pstnt = null;
try{

pstnt = conn.prepareStatenent ("insert into EMPLOYEES (EMPLOYEE | D, FIRST_NAME)
values (?, 7)");

/1 Add LESLIE as enpl oyee nunber 1500

pstnt.setint (1, 1500); [l The first ? is for EMPLOYEE_ID
pstnt.setString (2, "LESLIE"); // The second ? is for FIRST_NAME
/1 Do the insertion

pstnt.execute();

/1 Add MARSHA as enpl oyee nunber 507

2-11

ORACLE

Chapter 2
Basic Steps in JDBC

pstnt.setlnt (1, 507); [l The first ? is for EMPLOYEE_ID
pstnt.setString (2, "MARSHA"); // The second ? is for FIRST_NAME
/1 Do the insertion

pstnt.execute();

}
finally{
if(pstnt!=null)
/1 Oose the statenent
pstnt.close();
}

DDL Operations

To perform data definition language (DDL) operations, you must create a St at ement
object. The following example shows how to create a table in the database:

/lcreate table EMPLOYEES with col ums EMPLOYEE_|I D and FI RST_NAME
String query;
Statenment stnt=null;

try{
query="create tabl e EMPLOYEES " +
"(EMPLOYEE_ID int, " +
“FI RST_NAME var char (50))";
stm = conn.createStatenent();
stnt . execut eUpdat e(query);
}
finally{
I1close the Statenent object
stnt.close();
}
Note:

You can also use a Prepar edSt at enent object to perform DDL operations.
However, you should not use a Prepar edSt at enent object because the useful
part of such an object is that it can have parameters and a DDL operation
does not have any parameters.

Also, due to a Database limitation, if you use a Prepar edSt at ement object for a
DDL operation, then it only works for the first time it is executed. So, you
should use only St at enent objects for DDL operations.

The following example shows how to prepare your DDL statements before any
reexecution:

1
Statenent stnmt = null;
PreparedSt atement pstnt = null;

try{
pstnt = conn.prepareStatenment ("insert into EMPLOYEES (EMPLOYEE_|D, FI RST_NAME)

values (?, 7)");
stm = conn.createStatenent ("truncate table EMPLOYEES');

[/ Add LESLIE as enpl oyee number 1500

2-12

Chapter 2
Basic Steps in JDBC

pstnt.setlnt (1, 1500); [l The first ? is for EMPLOYEE_ID
pstnt.setString (2, "LESLIE"); // The second ? is for FIRST_NAME
pstnt.execute();

stnt. execut eUpdat e();

/] Add MARSHA as enpl oyee number 507

pstnt.setlnt (1, 507); /1 The first ? is for EMPLOYEE_ID
pstnt.setString (2, "MARSHA"); // The second ? is for FIRST_NAME
pstnt.execute();

stnt. execut eUpdat e();

}
finally{

if(pstnt!=null)

/1 dose the statement
pstnt.close();
}

Related Topics:
* The setObject and setOracleObject Methods (page 11-12)
* Other setXXX Methods (page 11-12)

2.3.8 About Committing Changes

ORACLE

By default, data manipulation language (DML) operations are committed automatically
as soon as they are run. This is known as the auto-commit mode. If auto-commit mode
is on and you perform a COW T or ROLLBACK operation using the commi t or rol | back
method on a connection object, then you get the following error messages:

Table 2-2 Error Messages for Operations Performed When Auto-Commit Mode
is ON
|

Operation Error Messages
coOWm T Could not commit with auto-comit set on
ROLLBACK Coul d not rollback with auto-commt set on

If a SQLException is raised during a COWM T or ROLLBACK operation with the error
messages as mentioned in the preceding table, then check the auto-commit status of
the connection because you get an exception when these operations are performed on
a connection that has auto-commit value set to t rue.

This exception is raised for any one of the following cases:

* When auto-commit status is set to true and commi t or rol | back method is called

* When the default status of auto-commit is not changed and commi t or rol | back
method is called

e When the value of the COW T_ON_ACCEPT_CHANGES property is true and conmit or
rol | back method is called after calling the accept Changes method on a rowset

However, you can disable auto-commit mode with the following method call on the
Connecti on object:

conn. set Aut oCommi t (f al se);

2-13

Chapter 2
Basic Steps in JDBC

If you disable the auto-commit mode, then you must manually commit or roll back
changes with the appropriate method call on the Connecti on object:

conn. conmi t () ;

or:

conn. rol | back();

A COW T or ROLLBACK operation affects all DML statements run since the last COW T or
ROLLBACK.

Note:

e If the auto-commit mode is disabled and you close the connection without
explicitly committing or rolling back your last changes, then an implicit
COW T operation is run.

* Any data definition language (DDL) operation always causes an implicit
COW T. If the auto-commit mode is disabled, then this implicit COM T will
commit any pending DML operations that had not yet been explicitly
committed or rolled back.

Related Topics:
» Disabling Auto-Commit Mode (page C-2)

2.3.8.1 Changing Commit Behavior

ORACLE

When a transaction updates the database, it generates a redo entry corresponding to
this update. Oracle Database buffers this redo in memory until the completion of the
transaction. When you commit the transaction, the Log Writer (LGWR) process writes
the redo entry for the commit to disk, along with the accumulated redo entries of all
changes in the transaction. By default, Oracle Database writes the redo to disk before
the call returns to the client. This behavior introduces latency in the commit because
the application must wait for the redo entry to be persisted on disk.

If your application requires very high transaction throughput and you are willing to
trade commit durability for lower commit latency, then you can change the behavior of
the default COW T operation, depending on the needs of your application. You can
change the behavior of the COW T operation with the following options:

e WAIT

e NOWAIT

* \RI TEBATCH
* VR TEI MED

These options let you control two different aspects of the commit phase:

* Whether the COWM T call should wait for the server to process it or not. This is
achieved by using the WAI T or NOMI T option.

* Whether the Log Writer should batch the call or not. This is achieved by using the
WRI TEI MVED or WRI TEBATCH option.

2-14

Chapter 2
Sample: Connecting, Querying, and Processing the Results

You can also combine different options together. For example, if you want the COM T
call to return without waiting for the server to process it and also the log writer to
process the commits in batch, then you can use the NOWI T and WRI TEBATCH options
together. For example:

((Oracl eConnection)conn). commit (
Enuntet . of (
Oracl eConnect i on. Conmi t Opt i on. WRI TEBATCH,
Oracl eConnecti on. Conmi t Opti on. NOMAIT)) ;

Note:

you cannot use the WAI T and NOMI T options together because they have
opposite meanings. If you do so, then the JDBC driver will throw an exception.
The same applies to the WRI TEI MVED and WRI TEBATCH options.

2.3.9 Closing the Connection

You must close the connection to the database after you have performed all the
required operations and no longer require the connection. You can close the
connection by using the cl ose method of the Connect i on object, as follows:

conn. cl ose();

Note:

Typically, you should put cl ose statements in a final | y clause.

2.4 Sample: Connecting, Querying, and Processing the

Results

ORACLE

The steps in the preceding sections are illustrated in the following example, which
uses the Oracle JDBC Thin driver to create a data source, connects to the database,
creates a Stat ement object, runs a query, and processes the result set.

Note that the code for creating the St at ement object, running the query, returning and
processing the Resul t Set object, and closing the statement and connection uses the
standard JDBC API.

import java.sql.Connection;

inport java.sql.ResultSet;

i mport java.sql.Statenent;

import java.sql.SQ.Exception;

i mport oracle.jdbc. pool . Oracl eDat aSour ce;

class JdbcTest

{
public static void main (String args []) throws SQLException

{

2-15

Chapter 2
Support for Invisible Columns

Oracl eDat aSource ods = nul |
Connection conn = null;
Statement stnt null;
Resul t Set rset null;

Il Create DataSource and connect to the |ocal database
ods = new Oracl eDat aSource();

ods. set URL("j dbc: oracl e:thin: @/ ocal host: 5221/ orcl");
ods. set User ("HR");

ods. set Password("hr");

conn = ods. get Connection();

try
{
/1 Query the enpl oyee names
stnmt = conn.createStatenent ();
rset = stnt.executeQuery ("SELECT first_name FROM enpl oyees");
[l Print the name out
while (rset.next ())
Systemout.printIn (rset.getString (1));
}
//Close the result set, statenent, and the connection
finally{
if(rset!=null) rset.close();
if(stmt!=null) stnt.close();
i f(connl'=null) conn.close();
}
}
}

If you want to adapt the code for the OCI driver, then replace the call to the
Or acl eDat aSour ce. set URL method with the following:

ods. set URL("j dbc: oracl e: oci : @¥Host String");

where, MyHost St ri ng is an entry in the TNSNAVES. ORA file.

2.5 Support for Invisible Columns

ORACLE

Starting from this release, Oracle Database supports invisible columns. Using this
feature, you can add a column to the table in hidden mode and make it visible later.
JDBC provides APIs to retrieve information about invisible columns. To get information
about whether a column is invisible or not, you can use the i sCol uml nvi si bl e method
available in the oracl e. j dbc. Oracl eResul t Set Met aDat a interface in the following way:

Example

Connection conn = DriverManager. get Connection(j dbcURL, user, password);

Statement stnt = conn.createStatenment ();

stnt. executeQuery ("create table hiddenCol sTable (a varchar(20), b int invisible)");
stnt. executeUpdat e("insert into hiddenCol sTable (a,b) values('sonedata',1)");

stnt. executeUpdat e("insert into hiddenCol sTable (a,b) values('newdata',2)");

Systemout.println ("Invisible colums informtion");
try

2-16

Chapter 2
Support for Invisible Columns

{
Resul t Set rset = stnt.executeQuery("SELECT a, b FROM hi ddenCol sTabl e");
Oracl eResul t Set Met aData rsnmd = (Oracl eResul t Set Met aDat a) r set . get Met aDat a() ;
while (rset.next())
{
Systemout. printIn("columl value:" + rset.getString(1));
Systemout.printIn("Visibility:" + rsmd.isCol umlnvisible(1));
Systemout. printIn("colum2 value:" + rset.getInt(2));
Systemout.printIn("Visibility:" + rsmd.isCol umlnvisible(2));
1
}
catch (Exception ex)
{
Systemout. println("Exception :" + ex);
ex.printStackTrace();
}

Alternatively, you can also use the get Col ums method available in the
oracl e. jdbc. Oracl eDat abaseMet aDat a class to retrieve information about invisible
columns.

Example

Connection conn = DriverManager. get Connection(j dbcURL, user, password);

Statement stnt = conn.createStatenent ();

stnt.executeQuery ("create table hiddenCol sTable (a varchar(20), b int invisible)");
stnt.executeUpdate("insert into hiddenCol sTable (a,b) values('sonedata',1)");
stnt.executeUpdate("insert into hiddenCol sTable (a,b) val ues(' newdata',2)");

Systemout.println ("getColums for table with invisible colums");

try
{
Dat abaseMet aDat a dbnd = conn. get Met aDat a();
Resul t Set rs = dbnd. get Col unmms(nul I, "HR', "hi ddenCol sTabl e", null);
Oracl eResul t Set MetaData rsmd = (Oracl eResul t Set Met aDat a) rs. get Met abDat a();
int col Count = rsnd. get Col umCount ();
Systemout. printin("col Count: " + col Count);
String[] columNames = new String [col Count];
for (int i =0; i < colCount; ++i)
col umNanes[i] = rsnd. get Col umName (i + 1);
1
while (rs.next())
{
for (int i =0; i <colCount; ++)
Systemout. println(col umNanes[i] +":" +rs.getString (col umNanes[i]));
1
}
catch (Exception ex)
{
Systemout. println("Exception: " + ex);
ex.printStackTrace();
}

ORACLE 2-17

Chapter 2
Support for Implicit Results

Note:

The server-side internal driver, kpr b does not support fetching information
about invisible columns.

2.6 Support for Implicit Results

ORACLE

Starting from this release, Oracle Database supports results of SQL statements
executed in a stored procedure to be returned implicitly to the client applications
without the need to explicitly use a REF CURSCR. You can use the following methods to
retrieve and process the implicit results returned by PL/SQL procedures or blocks:

Method Description
get MoreResul t's Checks if there are more results available in the result set
get MoreResul ts(int) Checks if there are more results available in the result set,

like the overloaded method. This method accepts an i nt
parameter that can have one of the following values:

e KEEP_CURRENT_RESULT

o CLOSE_ALL_RESULTS

e CLOSE_CURRENT_RESULT

get Resul t Set Iteratively retrieves each implicit result from an executed
PL/SQL statement

Note:

* The server-side internal driver, kprb does not support fetching information
about implicit results.

e Only SELECT queries can be returned implicitly.

e Applications retrieve each result set sequentially, but can fetch rows from
any result set independent of the sequence.

Suppose you have a procedure called f oo as the following:

create procedure foo as
cl sys_refcursor;
c2 sys_refcursor;

begin
open cl1 for select * from hr.enployees;
dbns_sql .return_result(cl); --return to client

- open 1 nore cursor

open c2 for select * from hr.departnents;

dbnms_sql .return_result (c2); --return to client
end;

The following code snippet demonstrates how to retrieve the implicit results returned
by PL/SQL procedures using the get MoreResul t s methods:

2-18

ORACLE

Chapter 2
Support for Implicit Results

Example 1
String sql = "begin foo; end;";

Connection conn = DriverManager. get Connection(j dbcURL, user, password);
try {

Statement stnt = conn.createStatenent ();

stnt. executeQuery (sql);

while (stnt.getMreResults())

{
ResultSet rs = stnt.getResultSet();

Systemout. println("ResultSet");
while (rs.next())

{
}

/* get results */

}

Suppose you have another procedure called f oo as the following:

create or replace procedure foo ascl sys_refcursor; c2 sys_refcursor; c¢3
sys_refcursor; begin open cl for 'select * fromhr.enployees';

dbns_sql .return_result (cl);-- cursor 2open c2 for 'select * fromhr.departnents';
dbns_sql .return_result (c2);-- cursor 3open ¢3 for 'select first_name from

hr. enpl oyees';

dbns_sql .return_result (c3); end;

The following code snippet demonstrates how to retrieve the implicit results returned
by PL/SQL procedures using the get MreResul t s(i nt) methods:

Example 2
String sql = "begin foo; end;";

Connection conn = DriverManager. get Connection(j dbcURL, user, password);

try {
Statement stnt = conn.createStatenment ();

stnt. executeQuery (sql);
ResultSet rs = null;

bool ean retval = stnt.getMreResul ts(Statenment. KEEP_CURRENT_RESULT))
if (retval)
{

rs = stnt.getResultSet();

Systemout. println("ResultSet");

while (rs.next())

{
}

[* get results */

}

/* closes open results */
retval = stnt.getMreResults(Statement. CLOSE_ ALL_RESULTS);

if (retval)

{
Systemout. println("Mre ResultSet available");

2-19

Chapter 2
Support for Deprioritization of Database Nodes

rs = stnt.getResultSet();
Systemout. println("ResultSet");
while (rs.next())

{
}

/* get results */

}

/* close current result set */
retval = stnt.getMreResults(Statement. CLOSE_CURRENT_RESULT);

if(retval)

{
Systemout. printIn("Mre ResultSet available");
rs = stnt.getResultSet();
while (rs.next())

{
/* get Results */

}

2.7 Support for Deprioritization of Database Nodes

ORACLE

Starting from Oracle Database 12c¢ Release 2 (12.2.0.1), JDBC drivers support
deprioritization of database nodes. When a node fails, JDBC deprioritizes it for the
next 10 minutes, which is the default expiry time. For example, if there are three nodes
A, B, C, and node A is down, then connections are allocated first from nodes B and C,
and then from node A. After the default expiry time, node A is no longer deprioritized,
that is, connections are allocated from all the three nodes on availability basis. Also,
during the default expiry time, if a connection attempt to node A succeeds, then node
A is no longer considered to be a deprioritized node. You can specify the default expiry
time for deprioritization using the or acl e. net. DOAN_HOSTS_TI MEQUT system property.

For example, in the following URL, scan_l i stener0 hasipl,ip2, andip3 IP addresses
configured, after retrieving its IP addresses. Now, if i p1 is deprioritized, then the order
of trying IP addresses will be i p2, i p3, and then i p1. If all IP addresses are unavailable,
then the whole host is tried last, after trying node_1 and node_2.

(DESCRI PTI ON_LI ST=
(DESCRI PTI ON=
(ADDRESS_LI ST=
(ADDRESS=(PROTOCOL=t cp) (HOST=scan_| i st ener 0) (PORT=1521))
(ADDRESS=(PROTOCOL=t cp) (HOST=node_1) (PORT=1528))
(ADDRESS=(PROTOCOL=sdp) (HOST=node_2) (PORT=1527))
)
(ADDRESS_LI ST=
(ADDRESS=(PROTOCOL=t cp) (HOST=node_3) (PORT=1528))
)
(CONNECT_DATA=(SERVI CE_NAME=cdb3))
)
(DESCRI PTI ON=
(ADDRESS=(PROTOCOL=t cp) (HOST=node_0) (PORT=1528))
(CONNECT_DATA=(SERVI CE_NAME=cdb3))

2-20

Chapter 2
Stored Procedure Calls in JDBC Programs

2.8 Stored Procedure Calls in JDBC Programs

This section describes how Oracle JDBC drivers support the following kinds of stored
procedures:

* PL/SQL Stored Procedures (page 2-21)
» Java Stored Procedures (page 2-21)

2.8.1 PL/SQL Stored Procedures

JDBC supports the invocation of PL/SQL procedures/functions and anonymous
blocks, using either JDBC escape syntax or PL/SQL block syntax. The following
PL/SQL calls would work with any Oracle JDBC driver:

/1 JDBC escape syntax
Cal | abl eSt at ement c¢s1 = conn. prepareCal |
("{call proc (?,?)}") ; I/ stored proc
Cal | abl eSt at ement ¢s2 = conn. prepar eCal |
("{? =call func (?,?)}") ; // stored func
[l PLI'SQL bl ock syntax
Cal | abl eSt at ement ¢s3 = conn. prepar eCal |
("begin proc (?,?); end;") ; // stored proc
Cal | abl eSt at enent c¢s4 = conn. prepar eCal |
("begin ? :=func(?,?); end;") ; // stored func

As an example of using the Oracle syntax, here is a PL/SQL code snippet that creates
a stored function. The PL/SQL function gets a character sequence and concatenates a
suffix to it:

create or replace function foo (vall char)
return char as
begin
return vall || 'suffix';
end;

The function invocation in your JDBC program should look like the following:

O acl eDat aSource ods = new Oracl eDat aSour ce();
ods. set URL("j dbc: oracl e: oci : @hoststring>");
ods. set User ("HR") ;

ods. set Password("hr");

Connection conn = ods. get Connection();

Cal | abl eStat enent cs = conn. prepareCall ("begin ? := foo(?); end;");
cs. registerQutParameter (1, Types. CHAR) ;

cs.setString(2, "aa");

cs. execute();

String result = cs.getString(1l);

2.8.2 Java Stored Procedures

ORACLE

You can use JDBC to call Java stored procedures through the SQL interface. The
syntax for calling Java stored procedures is the same as the syntax for calling PL/SQL
stored procedures, presuming they have been properly published. That is, you have
written call specifications to publish them to the Oracle data dictionary. Applications

2-21

Chapter 2
About Processing SQL Exceptions

can call Java stored procedures using the Native Java Interface for direct invocation of
stati ¢ Java methods.

2.9 About Processing SQL Exceptions

ORACLE

To handle error conditions, Oracle JDBC drivers throw SQL exceptions, producing
instances of the j ava. sql . SQLExcept i on class or its subclass. Errors can originate either
in the JDBC driver or in the database itself. Resulting messages describe the error and
identify the method that threw the error. Additional run-time information can also be
appended.

JDBC 3.0 defines only a single exception, SQLExcept i on. However, there are large
categories of errors and it is useful to distinguish them. Therefore, in JDBC 4.0, a set
of subclasses of the SQLExcept i on exception is introduced to identify the different
categories of errors.

Basic exception handling can include retrieving the error message, retrieving the error
code, retrieving the SQL state, and printing the stack trace. The SQLExcept i on class
includes functionality to retrieve all of this information, when available.

Retrieving Error Information

You can retrieve basic error information with the following methods of the SQLExcepti on
class:

* get Message class includes functionality to retrieve all of this information, when
available.

e getErrorCode class includes functionality to retrieve all of this information, when
available.

* getSQState class includes functionality to retrieve all of this information, when
available.

The following example prints output from a get Message method call:

cat ch(SQLException e)
{

}

Systemout. println("exception: " + e.getMessage());

This would print the output, such as the following, for an error originating in the JDBC
driver:

exception: Invalid colum type

Note:

Error message text is available in alternative languages and character sets
supported by Oracle.

Printing the Stack Trace

The SQLExcept i on class provides the print St ackTrace() method for printing a stack
trace. This method prints the stack trace of the Thr owabl e object to the standard error

2-22

ORACLE

Chapter 2
About Processing SQL Exceptions

stream. You can also specify a java.io. Print Streamobject orjava.io.PrintWiter
object for output.

The following code fragment illustrates how you can catch SQL exceptions and print
the stack trace.

try { <sonme code> }
catch(SQ.Exception e) { e.printStackTrace (); }

To illustrate how the JDBC drivers handle errors, assume the following code uses an
incorrect column index:

[l lterate through the result and print the enpl oyee nanes
/1 of the code

try {
while (rset.next ())

Systemout.printin (rset.getString (5)); // incorrect colum index
}

cat ch(SQLException e) { e.printStackTrace (); }

Assuming the column index is incorrect, running the program would produce the
following error text:

java.sql . SQLException: Invalid col um index

at oracle.jdbc. OracleDriver. Oracl eResul t Set I npl . get Dat e(Or acl eResul t Set | npl . j ava
1556)

at Enpl oyee. mai n(Enpl oyee. j ava: 41)

Related Topics:
e JDBC Error Messages (page D-1)

e Oracle Database Error Messages Reference

2-23

Oracle JDBC

This part includes chapters that discuss the different Java Database Connectivity
(JDBC) versions that Oracle Database 12¢ supports. It also includes chapters that
cover features specific to JDBC Thin driver, JDBC Oracle Call Interface (OCI) driver,
and the server-side internal driver.

Part Il contains the following chapters:

« JDBC Standards Support (page 3-1)

* Oracle Extensions (page 4-1)

* Features Specific to JDBC Thin (page 5-1)

* Features Specific to JDBC OCI Driver (page 6-1)

e Server-Side Internal Driver (page 7-1)

ORACLE

JDBC Standards Support

Oracle Java Database Connectivity (JDBC) drivers support different versions of the
JDBC standard features. In Oracle Database 12c Release 2 (12.2.0.1), Oracle JDBC
drivers have been enhanced to provide support for the JDBC 4.1 standards. These
features are provided through the oracl e. j dbc and oracl e. sql packages. These
packages support Java Development Kit (JDK) release 8. This chapter discusses the
JDBC standards support in Oracle JDBC drivers. It contains the following sections:

e Support for JIDBC 2.0 Standard (page 3-1)
e Support for IDBC 3.0 Standard (page 3-2)
e Support for JIDBC 4.0 Standard (page 3-6)
e Support for IDBC 4.1 Standard (page 3-12)
e Support for IDBC 4.2 Standard (page 3-14)

3.1 Support for IDBC 2.0 Standard

This release of Oracle JDBC drivers provide support for JDBC 2.0 features through
JDK 1.2 and later versions. There are three areas to consider:

» Support for data types, such as objects, arrays, and large objects (LOBSs), which is
handled through the j ava. sql package.

» Support for standard features, such as result set enhancements and update
batching, which is handled through standard objects, such as Connecti on,
Resul t Set, and Prepar edSt at enent , under JDK 1.2.x and later.

» Support for extended features, such as features of the JDBC 2.0 optional package,
also known as the standard extension application programming interface (API),
including data sources, connection pooling, and distributed transactions.

This section covers the following topics:

» Data Type Support (page 3-2)

e Standard Feature Support (page 3-2)
- Extended Feature Support (page 3-2)

» Standard versus Oracle Performance Enhancement APIs (page 3-2)

Note:

Versions of JDK earlier than 5.0 are no longer supported. The package
oracl e. jdbc2 has been removed.

ORACLE 3-1

Chapter 3
Support for JDBC 3.0 Standard

3.1.1 Data Type Support

Oracle JDBC fully supports JDK 6 and JDK 7, which includes standard JDBC 2.0
functionality through implementation of interfaces in the standard j ava. sql package.
These interfaces are implemented as appropriate by classes in the oracl e. sql and
oracl e. j dbc packages.

3.1.2 Standard Feature Support

In a JDK 6.0 environment, using the JDBC classes in oj dbcé. j ar, JDBC 2.0 features,
such as scrollable result sets, updatable result sets, and update batching, are
supported through methods specified by standard JDBC 2.0 interfaces.

3.1.3 Extended Feature Support

Features of the JDBC 2.0 optional package, including data sources, connection
pooling, and distributed transactions, are supported in a JDK 1.2.x or later
environment.

The standard j avax. sql package and classes that implement its interfaces are
included in the Java Archive (JAR) files packaged with Oracle Database.

3.1.4 Standard versus Oracle Performance Enhancement APIs

Fetch size or row prefetching is available under JDBC 2.0, which had previously been
available only as an Oracle extension. You have the option of using the standard
model or the Oracle model. Oracle recommends that you use the JDBC standard
model whenever possible. Do not, however, try to mix usage of the standard model
and Oracle model within a single application for this feature.

Related Topics:
* Row Fetch Size (page 17-4)

3.2 Support for IDBC 3.0 Standard

Oracle Database 12c Release 1 JDBC drivers provide support for Standard JDBC 3.0
features through JDK 1.4 and later versions. The following table lists the JDBC 3.0
features supported by this release of Oracle JDBC drivers and gives references to a
detailed discussion of each feature.

Table 3-1 Key Areas of JDBC 3.0 Functionality
|

Feature Comments and References
Transaction savepoints See "Overview of Transaction Savepoints (page 3-3)" for information.
Statement caching Reuse of prepared statements by connection pools. See Statement and Result Set

Caching (page 20-1).

Switching between local and See "About Switching Between Global and Local Transactions (page 32-4)".
global transactions

LOB modification See "JDBC 3.0 LOB Interface Methods (page 3-6)" JDBC 3.0 LOB Interface
Methods (page 3-6).

ORACLE 3-2

Chapter 3
Support for JDBC 3.0 Standard

Table 3-1 (Cont.) Key Areas of JDBC 3.0 Functionality

|
Feature Comments and References

Named SQL parameters See "Interface oracle.jdbc.OracleCallableStatement (page 4-24)" and "Interface
oracle.jdbc.OraclePreparedStatement (page 4-23)" Interface
oracle.jdbc.OraclePreparedStatement (page 4-23).

RowSets See JDBC RowSets (page 18-1)

Retrieving auto-generated See "Retrieval of Auto-Generated Keys (page 3-4)" Retrieval of Auto-Generated
keys Keys (page 3-4)

Result set holdability See "Result Set Holdability (page 3-6)" Result Set Holdability (page 3-6)

The following JDBC 3.0 features supported by Oracle JDBC drivers are covered in this
section:

e Overview of Transaction Savepoints (page 3-3)
» Retrieval of Auto-Generated Keys (page 3-4)
 JDBC 3.0 LOB Interface Methods (page 3-6)

* Result Set Holdability (page 3-6)

3.2.1 Overview of Transaction Savepoints

The JDBC 3.0 specification supports savepoints, which offer finer demarcation within
transactions. Applications can set a savepoint within a transaction and then roll back
all work done after the savepoint. Savepoints relax the atomicity property of
transactions. A transaction with a savepoint is atomic in the sense that it appears to be
a single unit outside the context of the transaction, but code operating within the
transaction can preserve partial states.

Note:

Savepoints are supported for local transactions only. Specifying a savepoint
within a global transaction causes a SQ.Except i on exception to be thrown.

3.2.1.1 About Creating a Savepoint

You create a savepoint using the Connect i on. set Savepoi nt method, which returns a
java. sgl . Savepoi nt instance.

A savepoint is either named or unnamed. You specify the name of a savepoint by
supplying a string to the set Savepoi nt method. If you do not specify a name, then the
savepoint is assigned an integer ID. You retrieve a name using the get Savepoi nt Nane
method. You retrieve an ID using the get Savepoi nt 1 d method.

ORACLE 3-3

Chapter 3
Support for JDBC 3.0 Standard

Note:

Attempting to retrieve a name from an unnamed savepoint or attempting to
retrieve an ID from a named savepoint throws a SQLExcept i on exception.

3.2.1.2 About Rolling Back to a Savepoint

You roll back to a savepoint using the Connecti on. rol | back(Savepoi nt svpt) method. If
you try to roll back to a savepoint that has been released, then a SQLExcept i on
exception is thrown.

3.2.1.3 About Releasing a Savepoint

You remove a savepoint using the Connecti on. r el easeSavepoi nt (Savepoi nt svpt)
method.

3.2.1.4 About Checking Savepoint Support

You query if savepoints are supported by your database by calling the
oracl e.jdbc. Oracl eDat abaseMet aDat a. suppor t sSavepoi nt s method, which returns true if
savepoints are available, f al se otherwise.

3.2.1.5 Savepoint Notes

When using savepoints, you must consider the following:

e After a savepoint has been released, attempting to reference it in a rollback
operation will cause a SQLExcept i on exception to be thrown.

* When a transaction is committed or rolled back, all savepoints created in that
transaction are automatically released and become invalid.

* Rolling a transaction back to a savepoint automatically releases and makes invalid
any savepoints created after the savepoint in question.

3.2.2 Retrieval of Auto-Generated Keys

Many database systems automatically generate a unique key field when a row is
inserted. Oracle Database provides the same functionality with the help of sequences
and triggers. JDBC 3.0 introduces the retrieval of auto-generated keys feature that
enables you to retrieve such generated values. In JDBC 3.0, the following interfaces
are enhanced to support the retrieval of auto-generated keys feature:

* java.sql.DatabaseMet aDat a
* java.sql.Connection
° java.sgl.Statenent

These interfaces provide methods that support retrieval of auto-generated keys.
However, this feature is supported only when | NSERT statements are processed. Other
data manipulation language (DML) statements are processed, but without retrieving
auto-generated keys.

ORACLE 3-4

Chapter 3
Support for JDBC 3.0 Standard

Note:

The Oracle server-side internal driver does not support the retrieval of auto-
generated keys feature.

3.2.2.1 java.sqgl.Statement

If key columns are not explicitly indicated, then Oracle JDBC drivers cannot identify
which columns need to be retrieved. When a column name or column index array is
used, Oracle JDBC drivers can identify which columns contain auto-generated keys
that you want to retrieve. However, when the St at enent . RETURN_GENERATED KEYS integer
flag is used, Oracle JDBC drivers cannot identify these columns. When the integer flag
is used to indicate that auto-generated keys are to be returned, the ROW D pseudo
column is returned as key. The RON D can be then fetched from the Resul t Set object
and can be used to retrieve other columns.

3.2.2.2 Sample Code

The following code illustrates retrieval of auto-generated keys:

[** SQL statenents for creating an ORDERS table and a sequence for generating the
* ORDER_I D.

CREATE TABLE ORDERS (ORDER | D NUMBER, CUSTOMER | D NUMBER | SBN NUMBER
DESCR! PTI ON NCHAR(5))

R

CREATE SEQUENCE SEQO1 | NCREMENT BY 1 START WTH 1000
*|

String cols[] = {"ORDER D', "DESCR PTION'};

/] Create a PreparedStatenent for inserting a rowinto the ORDERS table.
Oracl ePreparedStatenent pstnt = (Oracl ePreparedSt at enent)

conn. prepareStat ement ("1 NSERT | NTO ORDERS (ORDER_| D, CUSTOMER_ID, | SBN,
DESCRI PTI ON) VALUES (SEQU1. NEXTVAL, 101,

966431502, ?)", cols);

char ¢[] ={"a', "\u5185', 'b'};

String s = new String(c);

pstnt.setNString(l, s);
pstnt. execut eUpdat e();
Resul t Set rset = pstnt.get GeneratedKeys();

In the preceding example, a sequence, SEQ1, is created to generate values for the
ORDER | D column starting from 1000 and incrementing by 1 each time the sequence is
processed to generate the next value. An O acl ePr epar edSt at enent object is created to
insert a row in to the ORDERS table.

3.2.2.3 Limitations of Auto-Generated Keys

Auto-generated keys are implemented using the DML returning clause. So, you need
to access the Resul t Set object returned from get Gener at edkeys method by position only
and no bind variable names should be used as columns in the Resul t Set object.

ORACLE 3-5

Chapter 3
Support for JDBC 4.0 Standard

3.2.3 JDBC 3.0 LOB Interface Methods

The following tables show the conversions between Oracle proprietary methods and
JDBC 3.0 standard methods.

Table 3-2 BLOB Method Equivalents

___|
Oracle Proprietary Method JDBC 3.0 Standard Method

put Byt es(l ong pos, byte [] bytes) setBytes(l ong pos, byte[] bytes)
put Bytes(long pos, byte [] bytes, setBytes(long pos, byte[] bytes, int offset,

int length) int |en)
get Bi nar yQut put Strean{| ong pos) set Bi narySt rean(| ong pos)
trim(long |en) truncate(long |en)

Table 3-3 CLOB Method Equivalents
|

Oracle Proprietary Method JDBC 3.0 Standard Method

put String(long pos, String str) set String(long pos, String str)

not applicable set String(long pos, String str, int
of fset, int len)

get Asci i Qut put St rean(| ong pos) set Ascii Strean(l ong pos)

get Char act er Qut put St rean(| ong pos) set Character Strean(| ong pos)

trim(long |en) truncate(long |en)

3.2.4 Result Set Holdability

Result set holdability was introduced since JDBC 3.0. This feature enables
applications to decide whether the Resul t Set objects should be open or closed, when a
commit operation is performed. The commit operation could be either implicit or
explicit.

Oracle Database supports only HOLD_CURSORS_OVER COW T. Therefore, it is the default
value for Oracle JDBC drivers. Any attempt to change holdability will throw a
SQLFeat ur eNot Suppor t edExcept i on exception.

3.3 Support for JDBC 4.0 Standard

Oracle Database 12c Release 1 (12.1) JDBC drivers provide support for the JDBC 4.0
standard through JDK 6 and later versions.

ORACLE 3-6

Chapter 3
Support for JDBC 4.0 Standard

Note:

* You need to have the oj dbc6. j ar and oj dbc7.jar in your cl asspat h
environment variable in order to have JDBC 4.0 standard support with
JDK 6 and JDK 7 respectively.

e The JDBC 4.0 specification defines the j ava. sgl . Connecti on. creat eArr ayf
factory method to create j ava. sql . Array objects. The creat eArrayCf
method accepts the name of the array element type as one of the
arguments, where the array type is anonymous. Oracle database supports
only named array types, not anonymous array types. So, the current
release of Oracle JDBC drivers do not and cannot support the
creat eArrayd method. You must use the Oracle specific cr eat eARRAY
method to create an array type.

See Also:

e "Creating ARRAY Objects (page 16-6)" for more information about the
creat eArraydf method.

* The following page for detailed information about these features as this
document provides only an overview of these new features

http://docs.oracle.com/javase/6/docs/

Some of the features available in Oracle Database 12c Release 1 (12.1) JDBC drivers
are the following:

* Wrapper Pattern Support (page 3-7)

* SQLXML Type (page 3-8)

* Enhanced Exception Hierarchy and SQLException (page 3-10)
* The Rowld Data Type (page 3-10)

* LOB Creation (page 3-11)

* National Language Character Set Support (page 3-12)

3.3.1 Wrapper Pattern Support

ORACLE

Wrapper pattern is a common coding pattern used in Java applications to provide
extensions beyond the traditional JDBC API that are specific to a data source. You
may need to use these extensions to access the resources that are wrapped as proxy
class instances representing the actual resources. JDBC 4.0 introduces the W apper
interface that describes a standard mechanism to access these wrapped resources
represented by their proxy, to permit direct access to the resource delegates.

The W apper interface provides the following two methods:

* public bool ean i sWapperFor(C ass<?> iface) throws SQLException;

e public <T> T unwrap(C ass<T> iface) throws SQLExcepti on;

3-7

http://docs.oracle.com/javase/6/docs/

Chapter 3
Support for JDBC 4.0 Standard

The other JDBC 4.0 interfaces, except those that represent SQL data, all implement
this interface. These include Connecti on, Statenent and its subtypes, Resul t Set, and the
metadata interfaces.

See Also:

http://docs. oracl e. com j avase/ 7/ docs/ api / j aval sql / W apper . ht ni

3.3.2 SQLXML Type

ORACLE

One of the most important updates in JDBC 4.0 standard is the support for the XML
data type, defined by the SQL 2003 standard. Now JDBC offers a mapping interface to
support the SQL/XML database data type, that is, j ava. sql . SQLXM.. This new JDBC
interface defines Java native bindings for XML, thus making handling of any database
XML data easier and more efficient.

Note:

* You also need to include the xdb6. j ar and xmi parserv2.j ar files in the
cl asspat h environment variable to use SQLXM. type data, if they are not
already present in the cl asspat h.

* SQLXML is not supported in CachedRowset objects.

You can create an instance of XML by calling the creat eSQLXM. method in
java. sgl . Connecti on interface. This method returns an empty XML object.

The PreparedSt at enent, Cal | abl eSt at enent, and Resul t Set interfaces have been
extended with the appropriate getter and setter methods in the following way:

e PreparedStat ement : The method set SQLXM. have been added
e Callabl eStatenment: The methods get SQLXM. and set SQLXM. have been added
* Resul t Set: The method get SQLXM. have been added

3-8

http://docs.oracle.com/javase/7/docs/api/java/sql/Wrapper.html

ORACLE

Chapter 3
Support for JDBC 4.0 Standard

Note:

In Oracle Database 10g and earlier versions of Oracle Database 11g, Oracle
JDBC drivers supported the Oracle SQL XML type (XMLType) through an
Oracle proprietary extension, which did not conform to the JDBC standard.

The 11.2.0.2 Oracle JDBC drivers conformed to the JDBC standard with the
introduction of a new connection property,

oracl e. j dbc. get Obj ect Ret ur nsXM.Type. If you set this property to f al se, then the
get Obj ect method returns an instance of j ava. sql . SQLXM. type and if you
depend on the existing Oracle proprietary support for SQL XMLType using
oracl e. xdb. XM_Type, then you can change the value of this property back to
true.

However, setting of the get Obj ect Ret ur nsXM_Type property is not required for
the current version of Oracle JDBC drivers.

Example
Example 3-1 Accessing SQLXML Data

The following example shows how to create an instance of XML from a Stri ng, write
the XML data into the Database, and then retrieve the XML data from the Database.

import java.sql.*;
inmport java.util.Properties;
i mport oracle.jdbc. pool . Oracl eDat aSour ce;

public class SQLXM.Test
{

public static void main(String[] args)

{

Connection conn = null;
Statenent stnt = null;
ResultSet rs = null;
PreparedSt at ement ps = nul l;

String xm = "<?xm version=\"1.0\"?>\n" +
"<ol dj oke>\n" +
"<burns>Say <quot e>goodni ght </ quote>, G acie.</burns>\n" +
"<al | en><quot e>Goodni ght, G acie. </quote></allen>\n" +
"<appl ause/>\n" +
"</ ol dj oke>";

try

Oracl eDat aSour ce ods = new Oracl eDat aSour ce();

ods. set URL("j dbc: oracl e:thin: @/ ocal host: 5221/ orcl");
ods. set User ("HR");

ods. set Password("hr");

conn = ods. get Connection();

ps = conn. prepareStatement ("insert into x values (?, ?2)");

ps.setString(l, "string to string");
SQLXML x = conn. creat eSQLXM.();

3-9

Chapter 3
Support for JDBC 4.0 Standard

x.setString(xm);

ps. set SQLXM.(2, x);

ps. execute();

stm = conn.createStatenent();

rs = stnt.executeQuery("select * fromx");
while (rs.next())

X = rs.get SQLXM.(2);
Systemout. printin(rs.getString(1) + "\n" + rs.get SQLXM.(2).getString());
x.free();

}

rs.close();
ps. close();

}

catch (SQLException e){e.printStackTrace ();}

}
}

Note:

Calling a setter method with an empty XML throws SQLExcept i on. The getter
methods never return an empty XML.

3.3.3 Enhanced Exception Hierarchy and SQLEXxception

JDBC 3.0 defines only a single exception, SQLExcept i on. However, there are large
categories of errors and it is useful to distinguish them. This feature provides
subclasses of the SQLExcept i on class to identify the different categories of errors. The
primary distinction is between permanent errors and transient errors. Permanent errors
are a result of the correct operation of the system and will always occur. Transient
errors are the result of failures, including timeouts, of some part of the system and may
not reoccur.

JDBC 4.0 adds additional exceptions to represent transient and permanent errors and
the different categories of these errors.

Also, the SQLExcepti on class and its subclasses are enhanced to provide support for
the J2SE chained exception functionality.

3.3.4 The Rowld Data Type

ORACLE

JDBC 4.0 provides the j ava. sqgl . Rowl d data type to represent SQL ROW D values. You
can retrieve a Row d value using the getter methods defined in the Resul t Set and

Cal | abl eSt at enent interfaces. You can also use a Row d value in a parameterized
Prepar edSt at enent to set a parameter with a Rowl d object or in an updatable result set
to update a column with a specific Rowi d value.

A Rowl d object is valid until the identified row is not deleted. A Rowi d object may also be
valid for the following:

» The duration of the transaction in which it is created

3-10

Chapter 3
Support for JDBC 4.0 Standard

* The duration of the session in which it is created
* Anundefined duration where by it is valid forever

The lifetime of the Rowld object can be determined by calling the
Dat abaseMet aDat a. get Rowl dLi f et i me method.

3.3.5 LOB Creation

In JDBC 4.0, the Connecti on interface has been enhanced to provide support for the
creation of BLOB, CLOB, and NCLOB objects. The interface provides the creat eBl ob,
created ob, and creat eNCl ob methods that enable you to create Bl ob, C ob, and NG ob
objects.

The created large objects (LOBs) do not contain any data. You can add or retrieve
data to or from these objects by calling the APIs available in the j ava. sql . Bl ob,
java.sgl.Cob, and j ava. sgl . NO ob interfaces. You can either retrieve the entire content
or a part of the content from these objects. The following code snippet illustrates how
to retrieve 100 bytes of data from a BLOB object starting at offset 200:

Connection con = DriverManager. get Connection(url, props);
Bl ob aBl ob = con. createBl ob();

/1 Add data to the BLOB object.

aBl ob. setBytes(...);

/1 Retrieve part of the data fromthe BLOB object.
InputStreamis = aBl ob. get Bi naryStrean(200, 100);

You can also pass LOBs as input parameters to a Prepar edSt at enent object by using
the set Bl ob, set C ob, and set Nd ob methods. You can use the updat eBl ob, updat eCl ob,
and updat eNCl ob methods to update a column value in an updatable result set.

These LOBs are temporary LOBs and can be used for any purpose for which
temporary LOBs should be used. To make the storage permanent in the database,
these LOBs must be written to a table.

¢ See Also:
"About Working With Temporary LOBs (page 14-9)"

Temporary LOBs remain valid for at least the duration of the transaction in which they
are created. This may result in unwarranted use of memory during a long running
transaction. You can release LOBs by calling their free method, as follows:

dbb aCd ob = con.created ob();
int nuMMitten = ad ob.setString(1, val);
ad ob.free();

ORACLE 3-11

Chapter 3
Support for JDBC 4.1 Standard

3.3.6 National Language Character Set Support

JDBC 4.0 introduces the NCHAR, NVARCHAR, LONGNVARCHAR, and NCLOB JDBC types to
access the national character set types. These types are similar to the CHAR, VARCHAR,
LONGVARCHAR, and CLOB types, except that the values are encoded using the national
character set.

3.4 Support for IDBC 4.1 Standard

Oracle Database 12c Release 1 JDBC drivers provide support for JDBC 4.1 standard
through JDK 7. This section describes the following important methods from JDBC 4.1
specification:

e setClientinfo Method (page 3-12)
* getObject Method (page 3-13)

3.4.1 setClientinfo Method

ORACLE

For monitoring the consumption of the Database resources, you can use the

set O i ent I nf o method to identify the various application tasks using the Database at a
given point of time. The set d i ent | nf o method sets the value of the properties
providing various application information. This method accepts keys of the form
<nanespace>. <keynane>. For example, you can use the ACTI ON, MODULE, and CLI ENTI D
keys (that are found in the V$SESSI ON view and in many performance views and can be
reported in trace files) with the set d i ent | nf o method, as shown in the following code
shippet:

/1 "conn" is an instance of java.sql.Connection:
conn.setClientInfo("OCSID. CLIENTID', "Alice_HR Payroll");
conn. setClientlnfo("OCSID. MODULE", "APP_HR PAYROLL");
conn. setClientlnfo("OCSID. ACTION', "PAYROLL_REPORT");

The set d i ent | nf o method checks the Java permission oracl e. j dbc. client I nfo and if
the security check fails, then it throws a Securi t yExcepti on. It supports permission
name patterns of the form <nanespace>. *. The set d i ent | nf o method either sets or
clears all pairs, so it requires that the permission name must be set to an asterisk (*).

The JDBC driver supports any <nanespace>. <keyname> combination. The set Clientlnfo
method supports the OCSI D namespace among other namespaces. But, there are
differences between using the OCSI D namespace and any other namespace. With the
OCSI D namespace, the set d i ent | nf o method supports only the following keys:

e ACTION

e CLIENTID
e ECD

e MODULE

* SEQUENCE_NUMBER
. DBOP

Also, the information associated with any other namespace is communicated through
the network using a single protocol, while information associated with the OCSID

3-12

Chapter 3
Support for JDBC 4.1 Standard

namespace is communicated using a different protocol. The protocol used for the
OCSID namespace is also used by the OCI C Library and the 10g JDBC thin driver
and the later thin drivers to send end-to-end metrics values.

Note:

e The setdientlnfo method is backward compatible with the
set EndToEndMetri cs and the set Qi entldentifier methods, and can use
DMS to set client tags.

e The set EndToEndMet ri cs method was deprecated in Oracle Database 12¢
Release 1 (12.1).

About Monitoring Database Operations

Many Java applications do not have a database connection, but they need to track
database activities on behalf of their functionalities. For such applications, Oracle
Database 12c¢ Release 1 (12.1) introduced the DBCP tag that can be associated with a
thread in the application when the application does not have explicit access to a
database. The DBOP tag is associated with a thread through the invocation of DMS
APIs, without requiring an active connection to the database. When the thread sends
the next database call, then DMS propagates these tags through the connection along
with the database call, without requiring an extra round trip. In this way, applications
can associate their activity with database operations while factorizing the code in the
Application layer. The DBOP tag composes of the following:

» Database operation name
e The execution ID
* Operation attributes

The set d i ent | nf o method supports the DBOP tag. The set d i ent | nf o method sets the
value of the tag to monitor the database operations. When the JDBC application
connects to the database and a database round-trip is made, the database activities
can be tracked. For example, you can set the value of the DBOP tag to f oo in the
following way:

Connection conn = DriverMnager. get Connection(nmyUrl, nyUsernanme, nmyPassword);
conn. set Gl i ent | nf o("E2E_CONTEXT. DBOP", "fo00");

Statement stnt = conn.createStatenent();

stnt.execute("select 1 fromdual"); // DBOPtag is set after this

3.4.2 getObject Method

ORACLE

The get Obj ect method retrieves an object, based on the parameters passed. Oracle
Database 12c Release 2 (12.2.0.1) supports the following two get Obj ect methods:

Method 1

<T> T get Ovj ect (int paraneterlndex,
java.lang. d ass<T> type)
throws SQLException

3-13

Chapter 3
Support for JDBC 4.2 Standard

Method 2

<T> T get Ovj ect(java.lang. String paranet er Nang,
java.lang. O ass<T> type)
throws SQLException

These methods support the conversions listed in the JDBC specification and also the
additional conversions listed in Table A-1 (page A-1). The Oracle Database 12¢
Release 2 (12.2.0.1) drivers also support conversions to some additional classes,
which implement one or more static val uedf methods, if any of the following criteria is
met:

* No other conversion is specified in JDBC specification or Table A-1 (page A-1)

* The type argument defines one or more public static single argument methods
named val uett

* One or more of the val uedf methods take an argument that is a value of a type
supported because of JDBC specification or Table A-1 (page A-1)

This release of JDBC drivers convert the value to a type specified in the JDBC
specification, or in Table A-1 (page A-1) and then call the corresponding val ueC
method with the converted value as the argument. If there is more than one
appropriate val ue& method, then the JDBC driver chooses one val ued method in an
unspecified way.

Example

ResultSet rs =. . . ;
Character ¢ = rs.getCbject(1, java.lang.Character.class);

The Character class defines the following val ue& method:

public static Character valueO (char c);

Table A-1 (page A-1) specifies that NUMBER can be converted to char. So, if the first
column of the Resul t Set is a NUMBER, then the get (bj ect method converts that NUVBER
value to a char and passes the char value to the val ueX (char) method and returns the
resulting Char act er object.

3.5 Support for IDBC 4.2 Standard

ORACLE

Oracle Database 12c Release 2 (12.2.0.1) JDBC drivers provide support for JDBC 4.2
standard through JDK 8. This section describes some of the important methods added
in this release.

The %Large% Methods

This release of Oracle JDBC drivers support the following methods introduced in
JDBC 4.2 standard, which deal with | ong values:

° executelargeBatch()

* executelargeUpdate(String sql)

° executelargeUpdate(String sql, int autoGeneratedKeys)
° executelLargeUpdate(String sql, int[] columl ndexes)

* executelLargeUpdate(String sql, String[] columNanes)

3-14

Chapter 3
Support for JDBC 4.2 Standard

* getLargeMaxRows()
° getLargeUpdat eCount ()
* setlargeMaxRows(|ong max)

These new methods are available as part of the j ava. sgl . Stat enent interface. The
%.ar ge%methods are identical to the corresponding non-large methods, except that
they work with | ong values instead of i nt values. For example, the execut eUpdat e
method returns the number of rows updated as an i nt value, whereas, the

execut eLar geUpdat e method returns the number of rows updated as a | ong value. If the
number of rows is greater than the value of | nt eger . MAX_VALUE, then your application
must use the execut eLar geUpdat e method.

The following code snippet shows how to use the execut eLar geUpdat e(String sql)
method:

Statement stnt = conn.createStatenent();

stnt. executeQuery(“create table Bl oggersData (FI RST_NAME varchar(100), IDint)");

| ong updat eCount = stnt.executelLargeUpdate("insert into Bl oggersData (FlI RST_NAME, | D)
val ues(' John',1)");

The SQLType Methods

This release of Oracle JDBC drivers support the following methods introduced in
JDBC 4.2 standard, which take SQL.Type parameters:

° set(nject

The set Obj ect method sets the value of the designated parameter for the specified
object. This method is similar to the set Cbj ect (i nt paranet erl ndex, Object X,
SQ.Type target Sql Type, int scal eOrLength) method, except that it assumes a
scale of zero. The default implementation of this method throws

SQLFeat ur eNot Support edExcept i on.

voi d set Obj ect(int paraneterlndex, java.lang.Cbject x, SQLType target Sql Type)
throws SQLException

Where,

par anet er | ndex is the index of the designated parameter, where the first parameter
is 1, the second is 2, and so on

x is the object containing the input parameter value
target Sql Type is the SQL type to be sent to the database
* updatebj ect

The updat etbj ect method takes the column index as a parameter and updates the
designated column with an Object value.

* registerQutParaneter

The regi st er Qut Par anet er method registers a specified parameter to be of JDBC
type SQ.Type.
The following code snippet shows how to use the set Gbj ect method:

int enpld = 100;

ORACLE 3-15

Chapter 3
Support for JDBC 4.2 Standard

connection. prepareStat enent (" SELECT FI RST_NAME, LAST_NAME FROM EMPLOYEES WHERE EMPNO
= ?");

preparedSt at ement . set Gbj ect (1, Integer.val ueO (enpld), OracleType. NUMBER);

Related Topics:

* https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/jdbc_42.html

ORACLE 3-16

https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/jdbc_42.html

Oracle Extensions

Oracle provides Java classes and interfaces that extend the Java Database
Connectivity (JDBC) standard implementation, enabling you to access and manipulate
Oracle data types and use Oracle performance extensions. This chapter provides an
overview of the classes and interfaces provided by Oracle that extend the JDBC
standard implementation. It also describes some of the key support features of the
extensions.

This chapter contains the following sections:

* Overview of Oracle Extensions (page 4-1)

* Features of the Oracle Extensions (page 4-1)

* Oracle JDBC Packages (page 4-5)

e Oracle Character Data Types Support (page 4-10)
* Additional Oracle Type Extensions (page 4-14)
DML Returning (page 4-27)

* Accessing PL/SQL Associative Arrays (page 4-30)
Related Topics:

* Performance Extensions (page 21-1)

4.1 Overview of Oracle Extensions

Beyond standard features, Oracle JDBC drivers provide Oracle-specific type
extensions and performance extensions. These extensions are provided through the
following Java packages:

* oracle.sql
Provides classes that represent SQL data in Oracle format
e oracle.jdbc

Provides interfaces to support database access and updates in Oracle type
formats

Related Topics:
* Oracle JDBC Packages (page 4-5)

4.2 Features of the Oracle Extensions

The Oracle extensions to JDBC include a number of features that enhance your ability
to work with Oracle Databases. These include the following:

o Database Management Using JDBC (page 4-2)
e Support for Oracle Data Types (page 4-2)

ORACLE 4-1

Chapter 4
Features of the Oracle Extensions

Support for Oracle Objects (page 4-3)

Support for Schema Naming (page 4-4)

DML Returning (page 4-4)

About Accessing PL/SQL Associative Arrays (page 4-5)

4.2.1 Database Management Using JDBC

Starting from Oracle Database 11g Release 1, the oracl e. j dbc. Or acl eConnect i on
interface has two JDBC methods, st art up and shut down, which enable you to start up
and shut down an Oracle Database instance.

Note:

My Oracle Support Note 335754.1 announces the desupport of the
oracle.jdbc.driver.* package in Oracle Database 11g JDBC drivers. In other
words, Oracle Database 10g Release 2 was the last database to support this
package and any APl depending on the oracl e. j dbc. dri ver. * package will fail
to compile in the current release of the Database. You must remove such APIs
and migrate to the standard APls. For example, if your code uses the

oracl e. j dbc. Cust onDat umand or acl e. j dbc. Cust onDat unFact ory interfaces, then
you must replace them with the j ava. sql . Struct or java. sql . SQLDat a
interfaces.

Related Topics:

Database Administration (page 33-1)

4.2.2 Support for Oracle Data Types

One of the features of the Oracle JDBC extensions is the type support in the

oracl e. sql package. This package includes classes that are an exact representation of
the data in Oracle format. Keep the following important points in mind, when you use
oracl e. sql types in your program:

ORACLE

For numeric type of data, the conversion to standard Java types does not
guarantee to retain full precision due to limitations of the data conversion process.
Use the Bi gDeci nal type to minimize any data loss issues.

For certain data types, the conversion to standard Java types can be dependent
on the system settings and your program may not run as expected. This is a
known limitation while converting data from or acl e. sgl types to standard Java
types.

If the functionalities of your program is limited to reading data from one table and
writing the same to another table, then for numeric and date data, or acl e. sql types
are slightly faster as compared to standard Java types. But, if your program
involves even a simple data manipulation operation like compare or print, then
standard Java types are faster.

oracl e. sgl . CHAR is not an exact representation of the data in Oracle format.
oracl e. sql . CHAR is constructed from j ava. | ang. String. There is no advantage of

4-2

Chapter 4
Features of the Oracle Extensions

using oracl e. sql . CHAR because j ava. | ang. Stri ng is always faster and represents
the same character sets, excluding a couple of desupported character sets.

Note:

Oracle strongly recommends you to use standard Java types and convert any
existing oracl e. sgl type of data to standard Java types. Internally, the Oracle
JDBC drivers strive to maximize the performance of Java standard types.

oracl e. sql types are supported only for backward compatibility and their use is
discouraged.

Related Topics:

e Package oracle.sql (page 4-5)

e Oracle Character Data Types Support (page 4-10)
e Additional Oracle Type Extensions (page 4-14)

4.2.3 Support for Oracle Objects

Oracle JDBC supports the use of structured objects in the database, where an object
data type is a user-defined type with nested attributes. For example, a user application
could define an Enpl oyee object type, where each Enpl oyee object has a fi r st name
attribute (character string), a | ast nane attribute (character string), and an

enpl oyeenunber attribute (integer).

Oracle JDBC supports Oracle object data types. When you work with Oracle object
data types in a Java application, you must consider the following:

* How to map between Oracle object data types and Java classes

* How to store Oracle object attributes in corresponding Java objects
* How to convert attribute data between SQL and Java formats

* How to access data

Oracle objects can be mapped either to the weak j ava. sql . Struct type or to strongly
typed customized classes. These strong types are referred to as custom Java classes,
which must implement either the standard j ava. sql . SQLDat a interface or the Oracle
extension oracl e. j dbc. Or acl eDat a interface. Each interface specifies methods to
convert data between SQL and Java.

Note:

Starting from Oracle Database 12c Release 1 (12.1), the Oracl eDat a interface
has replaced the ORADat a interface.

Oracle recommends the use of the Oracle JVM Web Service Call-Out Utility to create
custom Java classes to correspond to your Oracle objects.

ORACLE 4.3

Chapter 4
Features of the Oracle Extensions

Related Topics:
* Working with Oracle Object Types (page 13-1)

* Oracle Database Java Developer’s Guide

4.2.4 Support for Schema Naming

Oracle object data type classes have the ability to accept and return fully qualified
schema names. A fully qualified schema name has this syntax:

{[schema_nane].}[sql _type_name]

Where, schema_nane is the name of the schema and sql _t ype_nane is the SQL type
name of the object. schena_nane and sqgl _t ype_nane are separated by a period (.).

To specify an object type in JDBC, use its fully qualified name. It is not necessary to
enter a schema name if the type name is in the current naming space, that is, the
current schema. Schema naming follows these rules:

* Both the schema name and the type name may or may not be within quotation
marks. However, if the SQL type name has a period in it, such as
CORPORATE. EMPLOYEE, the type name must be quoted.

e The JDBC driver looks for the first period in the object name that is not within
guotation marks and uses the string before the period as the schema name and
the string following the period as the type name. If no period is found, then the
JDBC driver takes the current schema as default. That is, you can specify only the
type name, without indicating a schema, instead of specifying the fully qualified
name if the object type name belongs to the current schema. This also explains
why you must put the type name within quotation marks if the type name has a dot
in it.

For example, assume that user HR creates a type called per son. addr ess and then
wants to use it in his session. HR may want to skip the schema name and pass in
per son. addr ess to the JDBC driver. In this case, if per son. addr ess is not within
guotation marks, then the period is detected and the JDBC driver mistakenly
interprets per son as the schema name and addr ess as the type name.

» JDBC passes the object type name string to the database unchanged. That is, the
JDBC driver does not change the character case even if the object type name is
within quotation marks.

For example, if HR Per sonType is passed to the JDBC driver as an object type
name, then the JDBC driver passes the string to the database unchanged. As
another example, if there is white space between characters in the type name
string, then the JDBC driver will not remove the white space.

4.2.5 DML Returning

ORACLE

Oracle Database supports the use of the RETURNI NG clause with data manipulation
language (DML) statements. This enables you to combine two SQL statements into
one. Both the Oracle JDBC Oracle Call Interface (OCI) driver and the Oracle JDBC
Thin driver support DML returning.

4-4

Chapter 4
Oracle JDBC Packages

See Also:
"DML Returning (page 4-27)"

4.2.6 About Accessing PL/SQL Associative Arrays

Oracle JDBC drivers enable JDBC applications to make PL/SQL calls with Associative
Array parameters. Oracle JDBC drivers support PL/SQL Associative Arrays of scalar
data types

See Also:

"Accessing PL/SQL Associative Arrays (page 4-30)"

4.3 Oracle JDBC Packages

This section describes the following Java packages, which support the Oracle JDBC
extensions:

e Package oracle.sql (page 4-5)
e Package oracle.jdbc (page 4-10)

4.3.1 Package oracle.sq|

ORACLE

The oracl e. sql package supports direct access to data in SQL format. This package
consists primarily of classes that provide Java mappings to SQL data types and their
support classes. Essentially, the classes act as Java containers for SQL data.

Each of the oracl e. sql . * data type classes extends or acl e. sql . Dat um a superclass
that encapsulates functionality common to all the data types. Some of the classes are
for JDBC 2.0-compliant data types. These classes, implement standard JDBC 2.0
interfaces in the j ava. sql package, as well as extending the oracl e. sql . Dat umclass.

The LONG and LONG RAWSQL types and REF CURSCR type category have no oracl e. sgl . *
classes. Use standard JDBC functionality for these types. For example, retrieve LONG
or LONG RAWdata as input streams using the standard JDBC result set and callable
statement methods get Bi nar ySt reamand get Char act er St ream Use the get Cur sor
method for REF CURSCR types.

Note:

Oracle recommends the use of standard JDBC types or Java types whenever
possible. The types in the package oracl e. sgl . * are provided primarily for
backward compatibility or for support of a few Oracle specific features such as
OPAQUE, Oracl eDat a, TI MESTAMPTZ, and So on.

4-5

Chapter 4
Oracle JDBC Packages

General oracle.sql.* Data Type Support
Each of the Oracle data type classes provides, among other things, the following:

» Data storage as Java byte arrays for SQL data
» AgetBytes() method, which returns the SQL data as a byte array

* AtoJdbc() method that converts the data into an object of a corresponding Java
class as defined in the JDBC specification

The JDBC driver does not convert Oracle-specific data types that are not part of
the JDBC specification, such as BFI LE. The driver returns the object in the
corresponding or acl e. sgl . * format.

e Appropriate xxxVal ue methods to convert SQL data to Java type. For example,
stringVal ue, i nt Val ue, bool eanVal ue, dat eVal ue, and bi gDeci nal Val ue

e Additional conversion methods, get XXX and set XXX, as appropriate, for the
functionality of the data type, such as methods in the large object (LOB) classes
that get the data as a stream and methods in the REF class that get and set object
data through the object reference.

Overview of Class oracle.sql.STRUCT

oracl e. sql . STRUCT class is the Oracle implementation of j ava. sql . Struct interface. This
class is a value class and you should not change the contents of the class after
construction. This class, as with all oracl e. sql . * data type classes, is a subclass of the
oracl e. sql . Dat umclass.

Note:

Starting from Oracle Database 12c Release 1 (12.1), the oracl e. sgl . STRUCT
class is deprecated and replaced with the oracl e. j doc. Oracl eStruct interface,
which is a part of the oracl e. j dbc package. Oracle strongly recommends you
to use the methods available in the j ava. sql package, where possible, for
standard compatibility and methods available in the or acl e. j dbc package for
Oracle specific extensions. Refer to MoS Note 1364193.1 for more information
about the oracl e. j dbc. Oracl eSt ruct interface.

Overview of Class oracle.sql.REF

The oracl e. sql . REF class is the generic class that supports Oracle object references.
This class, as with all oracl e. sql . * data type classes, is a subclass of the
oracl e. sql . Dat umclass.

ORACLE 4-6

ORACLE

Chapter 4
Oracle JDBC Packages

Note:

Starting from Oracle Database 12c Release 1 (12.1), the oracl e. sql . REF class
is deprecated and replaced with the or acl e. j dbc. Oracl eRef interface, which is
a part of the oracl e. j doc package. Oracle strongly recommends you to use the
methods available in the j ava. sql package, where possible, for standard
compatibility and methods available in the or acl e. j dbc package for Oracle
specific extensions. Refer to MoS Note 1364193.1 for more information about
the oracl e. j dbc. Oracl eRef interface.

The REF class has methods to retrieve and pass object references. However, selecting
an object reference retrieves only a pointer to an object. This does not materialize the
object itself. But the REF class also includes methods to retrieve and pass the object
data. You cannot create REF objects in your JDBC application. You can only retrieve
existing REF objects from the database.

You should use the JDBC standard type, j ava. sql . Ref, and the JDBC standard
methods in preference to using or acl e. sql . REF. If you want your code to be more
portable, then you must use the standard type because only the Oracle JDBC drivers
will use instances of oracl e. sql . REF type.

Overview of Classes oracle.sql.BLOB, oracle.sql.CLOB, oracle.sql.BFILE

Binary large objects (BLOBS), character large objects (CLOBs), and binary files
(BFILES) are for data items that are too large to store directly in a database table.
Instead, the database table stores a locator that points to the location of the actual
data.

Note:

e Starting from Oracle Database 12c Release 1 (12.1), the oracl e. sql . BLOB
and Oracl e. sgl . CLOB classes are deprecated and replaced with the
oracle. jdbc. Oracl eBl ob and oracl e. j dbc. Oracl ed ob interfaces
respectively, which are a part of the oracl e. j dbc package. Oracle strongly
recommends you to use the methods available in the j ava. sql package,
where possible, for standard compatibility and methods available in the
oracl e. j dbc package for Oracle specific extensions. Refer to MoS Note
1364193.1 for more information about the oracl e. j dbc. Oracl eBl ob and
oracl e.jdbc. Oracl eC ob interfaces.

* oracle.sql.BFILEis an Oracle proprietary extension and there is no JDBC
standard equivalent.

The oracl e. sql package supports these data types in several ways:

e BLOBSs point to large unstructured binary data items and are supported by the
oracl e. sql . BLOB class.

« CLOBs point to large character data items and are supported by the
oracl e. sql . CLOB class.

4-7

ORACLE

Chapter 4
Oracle JDBC Packages

» BFILEs point to the content of external files (operating system files) and are
supported by the oracl e. sgl . BFI LE class. BFiles are read-only.

You can select a BLOB, CLOB, or BFILE locator from the database using a standard
SELECT statement. However, you receive only the locator, and not the data. Additional
steps are necessary to retrieve the data.

Overview of Classes oracle.sql.DATE, oracle.sql.NUMBER, and oracle.sql.RAW

These classes hold primitive SQL data types in Oracle native representation. In most
cases, these types are not used internally by the drivers and you should use the
standard JDBC types instead.

Java Doubl e and Fl oat NaN values do not have an equivalent Oracle NUMBER
representation. For example, for Oracle Bl NARY_FLOAT and Bl NARY_DOUBLE data types,
negative zero is coerced to positive zero and all NaNs are coerced to the canonical
one. So, a Nul | Poi nt er Excepti on is thrown whenever a Doubl e. NaN value or a Fl oat . NaN
value is converted into an Oracle NUMBER using the or acl e. sql . NUMBER class. For
instance, the following code throws a Nul | Poi nt er Except i on:

oracl e.sql . NUMBER n = new oracl e. sql . NUMBER(Doubl e. NaN) ;
Systemout. println(n.doubl eValue()); // throws Nul | PointerException

Overview of Classes oracle.sql.TIMESTAMP, oracle.sql.TIMESTAMPTZ, and
oracle.sql.TIMESTAMPLTZ

The JDBC drivers support the following date/time data types:

e TI MESTAWP (TI MESTAWP)
e TIMESTAMP W TH TI ME ZONE (TI MESTAMPTZ)
° TIMESTAMWP WTH LOCAL TI ME ZONE (TI MESTAMPLTZ)

The JDBC drivers allow conversions between DATE and date/time data types. For
example, you can access a TI MESTAMP W TH TI ME ZONE column as a DATE value.

The JDBC drivers support the most popular time zone names used in the industry as
well as most of the time zone names defined in the JDK. Time zones are specified by
using the java. util . Ti meZone class.

Note:

* Do not use Ti neZone. get Ti neZone to create time zone objects. The Oracle
time zone data types support more time zone names than JDK.

e If aresult set contains a TI MESTAMPLTZ column followed by a LONG column,
then reading the LONG column results in an error.

The following code shows how the Ti neZone and Cal endar objects are created for
US_PAC! FI C, which is a time zone name not defined in JDK:

Ti meZone tz = Ti meZone. get Defaul t();
tz.set!D("US_PACIFIC');
G egorianCal endar gcal = new GregorianCal endar(tz);

The following Java classes represent the SQL date/time types:

4-8

Chapter 4
Oracle JDBC Packages

e oracle.sql. Tl MESTAMP
* oracle.sql. Tl MESTAMPTZ
e oracle.sqgl.TI MESTAMPLTZ

Before accessing TI MESTAMP W TH LOCAL TI ME ZONE data, call the

O acl eConnect i on. set Sessi onTi meZone(String regi onNane) method to set the session
time zone. When this method is called, the JDBC driver sets the session time zone of
the connection and saves the session time zone so that any TI MESTAMP W TH LOCAL TI ME
ZONE data accessed through JDBC can be adjusted using the session time zone.

Note:

TI MESTAMP W TH TI ME ZONE and Tl MESTAMP W TH LOCAL TI ME ZONE types can be
represented as standard j ava. sgl . Ti mest anp type. The byte representation of
TI MESTAMP W TH TI ME ZONE and Tl MESTAMP W TH LOCAL TI ME ZONE types to

java. sgl . Ti nest anp is straight forward. This is because the internal format of
TI MESTAMP W TH TI ME ZONE and Tl MESTAMP W TH LOCAL TI ME ZONE data types is
GMT, and j ava. sql . Ti nest anp type objects internally use a milliseconds time
value that is the number of milliseconds since EPOCH. However, the String
representation of these data types requires time zone information that is
obtained dynamically from the server and cached on the client side.

In earlier versions of JDBC drivers, the cache of time zone was shared across
different connections. This used to cause problems sometimes due to
incompatibility in various time zones. Starting from Oracle Database 11
Release 2 version of JDBC drivers, the time zone cache is based on the time
zone version supplied by the database. This newly designed cache avoids any
issues related to version incompatibility of time zones.

Overview of Class oracle.sql.OPAQUE

The oracl e. sql . OPAQUE class provides the name and characteristics of the OPAQUE type
and any attributes. The OPAQUE type provides access only to the uninterrupted bytes of
the instance.

Note:

Starting from Oracle Database 12c¢ Release 1 (12.1), the oracl e. sql . OPAQUE
class is deprecated and replaced with the oracl e. j dbc. Or acl eQpaque interface,
which is a part of the oracl e. j dbc package. Oracle recommends you to use the
methods available in the j ava. sql package, where possible, for standard
compatibility and methods available in the oracl e. j dbc package for Oracle
specific extensions. Refer to MoS Note 1364193.1 for more information about
the oracl e. j dbc. Oracl eQpaque interface.

Related Topics:
e Oracle Database SQL Language Reference
» JDBC Java API Reference

ORACLE 4.9

http://docs.oracle.com/database/122/JAJDB/

Chapter 4
Oracle Character Data Types Support

* Working with LOBs and BFILEs (page 14-1)

4.3.2 Package oracle.jdbc

The interfaces of the oracl e. j dbc package define the Oracle extensions to the
interfaces in j ava. sql . These extensions provide access to Oracle SQL-format data
and other Oracle-specific functionality, including Oracle performance enhancements.

See Also:
"The oracle.jdbc Package (page 4-20)"

4.4 Oracle Character Data Types Support

Oracle character data types include the SQL CHAR and NCHAR data types. The
following sections describe how these data types can be accessed using the
oracle. sql.* classes:

* SQL CHAR Data Types (page 4-10)
¢ SQL NCHAR Data Types (page 4-10)
* Class oracle.sgl.CHAR (page 4-11)

4.4.1 SQL CHAR Data Types

The SQL CHAR data types include CHAR, VARCHAR2, and CLOB. These data types let you
store character data in the database character set encoding scheme. The character
set of the database is established when you create the database.

4.4.2 SQL NCHAR Data Types

The SQL NCHAR data types were created for Globalization Support. The SQL NCHAR data
types include NCHAR, NVARCHAR?2, and NCLOB. These data types enable you to store
Unicode data in the database NCHAR character set encoding. The NCHAR character set,
which never changes, is established when you create the database.

Note:

Because the Uni codeSt reamclass is deprecated in favor of the Char act er Stream
class, the set Uni codeSt reamand get Uni codeSt reammethods are not supported
for NCHAR data type access. Use the set Char act er Streammethod and the

get Char act er St reammethod if you want to use stream access.

The usage of SQL NCHAR data types is similar to that of the SQL CHAR data types. JDBC
uses the same classes and methods to access SQL NCHAR data types that are used for
the corresponding SQL CHAR data types. Therefore, there are no separate,
corresponding classes defined in the oracl e. sql package for SQL NCHAR data types.

ORACLE 4-10

Chapter 4
Oracle Character Data Types Support

Similarly, there is no separate, corresponding constant defined in the
oracl e.jdbc. Oracl eTypes class for SQL NCHAR data types.

See Also:

"NCHAR_ NVARCHAR2_ NCLOB and the defaultNChar Property
(page 19-3)"

Note:

The set For m0f Use method must be called before the regi st er Qut Par anet er
method is called in order to avoid unpredictable results.

The following code shows how to access SQL NCHAR data:

/1 Table TEST has the follow ng col ums:

/1 - NUMBER
11 - NVARCHAR2
Il - NCHAR

oracle.jdbc. Oracl ePreparedStatenment pstnt =
(oracle.jdbc. Oracl ePreparedSt at enent)
conn. prepareStatenment ("insert into TEST values(?, ?, ?)");

11

/'l oracle.jdbc. Oracl ePreparedSt at ement . FORM NCHAR shoul d be used for all NCHAR,
/1 NVARCHAR2 and NCLOB data types.

11

pstnt.setint(1, 1); /1 NUMBER col um
pstnt.setNString(2, nyUnicodeStringl); // NVARCHAR2 col um
pstnt.setNString(3, myUnicodeString2); // NCHAR col um
pstnt. execute();

4.4.3 Class oracle.sql.CHAR

The oracl e. sqgl . CHAR class is used by Oracle JDBC in handling and converting
character data. This class provides the Globalization Support functionality to convert
character data. This class has two key attributes: Globalization Support character set
and the character data. The Globalization Support character set defines the encoding
of the character data. It is a parameter that is always passed when a CHAR object is
constructed. Without the Globalization Support character set information, the data
bytes in the CHAR object are meaningless. The oracl e. sgl . CHAR class is used for both
SQL CHAR and SQL NCHAR data types.

ORACLE 4-11

ORACLE

Chapter 4
Oracle Character Data Types Support

Note:

In versions of Oracle JDBC drivers prior to 10g Release 1, there were
performance advantages to using the oracl e. SQL. CHAR. Starting from Oracle
Database 10g, there are no longer any such advantages. In fact, optimum
performance is achieved using the j ava. | ang. Stri ng. All Oracle JDBC drivers
handle all character data in the Java UCS2 character set. Using the

oracl e. sql . CHAR does not prevent conversions between the database
character set and UCS2 character set.

The only remaining use of the oracl e. sql . CHAR class is to handle character data in the
form of raw bytes encoded in an Oracle Globalization Support character set. All
character data retrieved from Oracle Database should be accessed using the
java.lang. String class. When processing byte data from another source, you can use
an oracl e. sql . CHAR to convert the bytes to j ava. | ang. Stri ng.

To convert an oracl e. sql . CHAR, you must provide the data bytes and an
oracl e. sql . Charact er Set instance that represents the Globalization Support character
set used to encode the data bytes.

The CHAR objects that are Oracle object attributes are returned in the database
character set.

JDBC application code rarely needs to construct CHAR objects directly, because the
JDBC driver automatically creates CHAR objects, when it is needed to create them on
those rare occasions.

To construct a CHAR object, you must provide character set information to the CHAR
object by way of an instance of the Charact er Set class. Each instance of this class
represents one of the Globalization Support character sets that Oracle supports. A
Char act er Set instance encapsulates methods and attributes of the character set,
mainly involving functionality to convert to or from other character sets.

Constructing an oracle.sql.CHAR Object
Follow these general steps to construct a CHAR object:

1. Create a Character Set object by calling the stati c Charact er Set . make method.

This method is a factory for the character set instance. The make method takes an
integer as input, which corresponds to a character set ID that Oracle supports. For
example:

int oracleld = CharacterSet.JAL6SJIS CHARSET; // this is character set ID,
Il 832

Character Set mycharset = Character Set. make(oracl el d);

Each character set that Oracle supports has a unique, predefined Oracle ID.
2. Construct a CHAR object.

Pass a string, or the bytes that represent the string, to the constructor along with
the Char act er Set object that indicates how to interpret the bytes based on the
character set. For example:

4-12

Chapter 4
Oracle Character Data Types Support

String nystring = "teststring";
CHAR mychar = new CHAR(teststring, nycharset);

There are multiple constructors for CHAR, which can take a String, a byt e array, or
an object as input along with the Char act er Set object. In the case of a String, the
string is converted to the character set indicated by the Char act er Set object before
being placed into the CHAR object.

Note:

e The Character Set object cannot be a null value.

e The CharacterSet class is an abstract class, therefore it has no
constructor. The only way to create instances is to use the nake method.

* The server recognizes the special value Char act er Set . DEFAULT_CHARSET as
the database character set. For the client, this value is not meaningful.

e Oracle does not intend or recommend that users extend the Char act er Set
class.

oracle.sql.CHAR Conversion Methods
The CHAR class provides the following methods for translating character data to strings:

e getString

This method converts the sequence of characters represented by the CHAR object
to a string, returning a Java Stri ng object. If you enter an invalid O acl el D, then the
character set will not be recognized and the get Stri ng method will throw a
SQLExcept i on exception.

e toString

This method is identical to the get Stri ng method. But if you enter an invalid

O acl el D, then the character set will not be recognized and the t oSt ri ng method
will return a hexadecimal representation of the CHAR data and will not throw a
SQLExcept i on exception.

° getStringWthRepl acement

This method is identical to the get Stri ng method, except a default replacement
character replaces characters that have no unicode representation in the CHAR
object character set. This default character varies from character set to character
set, but is often a question mark (?).

The database server and the client, or application running on the client, can use
different character sets. When you use the methods of the CHAR class to transfer data
between the server and the client, the JDBC drivers must convert the data from the
server character set to the client character set or vice versa. To convert the data, the
drivers use Globalization Support.

ORACLE 4-13

Chapter 4
Additional Oracle Type Extensions

See Also:

Globalization Support (page 19-1)

4.5 Additional Oracle Type Extensions

Oracle JDBC drivers support the Oracle-specific BFl LE and RON D data types and REF
CURSCR types, which are not part of the standard JDBC specification. This section
describes the ROW D and REF CURSCR type extensions. The RON D is supported as a Java
string, and REF CURSOR types are supported as JDBC result sets.

This section covers the following topics:

e Oracle ROWID Type (page 4-14)

* Oracle REF CURSOR Type Category (page 4-15)

* Oracle BINARY_FLOAT and BINARY_DOUBLE Types (page 4-17)
e Oracle SYS.ANYTYPE and SYS.ANYDATA Types (page 4-18)

* The oracle.jdbc Package (page 4-20)

4.5.1 Oracle ROWID Type

A ROWID is an identification tag unique for each row of an Oracle Database table. The
ROWID can be thought of as a virtual column, containing the ID for each row.

The oracl e. sql . RON D class is supplied as a container for RON D SQL data type.

ROWIDs provide functionality similar to the get Cur sor Name method specified in the
java. sgl . Resul t Set interface and the set Cur sor Name method specified in the
java.sgl. Statenent interface.

If you include the ROWID pseudo-column in a query, then you can retrieve the
ROWIDs with the result set get Stri ng method. You can also bind a ROWID to a
Prepar edSt at enent parameter with the set St ri ng method. This enables in-place
updating, as in the example that follows.

Note:

Use the oracl e. sql . RON D class, only when you are using J2SE 5.0. For JSE 6,
you should use the standard j ava. sql . Rowl d interface instead.

Example

The following example shows how to access and manipulate ROWID data:

ORACLE 4-14

Chapter 4
Additional Oracle Type Extensions

Note:

The following example works only with JSE 6.

Statenent stnt = conn.createStatenent();

/1 Query the enployee names with "FOR UPDATE" to | ock the rows.
/1 Select the ROND to identify the rows to be updated.

Resul t Set rset =
stnt. executeQuery ("SELECT first_nane, rowi d FROM enpl oyees FOR UPDATE");

/1 Prepare a statenent to update the first_nanme colum at a given ROND

PreparedSt at ement pstnt =
conn. prepareStat ement (" UPDATE enpl oyees SET first_name = ? WHERE rowid = ?");

/1 Loop through the results of the query
while (rset.next ())

{
String ename = rset.getString (1);

Rowd rowid = rset.getROND(2); // Get the ROND as a String
pstnt.setString (1, enane.tolLowerCase ());
pstnt.setROND (2, rowid); // Pass ROND to the update statenent
pst nt. execut eUpdate (); [/ Do the update

}

4.5.2 Oracle REF CURSOR Type Category

ORACLE

A cursor variable holds the memory location of a query work area, rather than the
contents of the area. Declaring a cursor variable creates a pointer. In SQL, a pointer
has the data type REF x, where REF is short for REFERENCE and x represents the entity
being referenced. A REF CURSCR, then, identifies a reference to a cursor variable.
Because many cursor variables might exist to point to many work areas, REF CURSOR
can be thought of as a category or data type specifier that identifies many different
types of cursor variables.

Note:

REF CURSCR instances are not scrollable.

To create a cursor variable, begin by identifying a type that belongs to the REF CURSCR
category. For example:

DECLARE TYPE Dept Cursor Typ | S REF CURSCR

Then, create the cursor variable by declaring it to be of the type Dept Cur sor Typ:

dept _cv DeptCursorTyp - - declare cursor variable

REF CURSCR, then, is a category of data types, rather than a particular data type.

4-15

ORACLE

Chapter 4
Additional Oracle Type Extensions

Stored procedures can return cursor variables of the REF CURSOR category. This output
is equivalent to a database cursor or a JDBC result set. A REF CURSOR essentially
encapsulates the results of a query.

In JDBC, a REF CURSOR is materialized as a Resul t Set object and can be accessed as
follows:

1. Use a JDBC callable statement to call a stored procedure. It must be a callable
statement, as opposed to a prepared statement, because there is an output
parameter.

2. The stored procedure returns a REF CURSCR.

3. The Java application casts the callable statement to an Oracle callable statement
and uses the get Cursor method of the Oracl eCal | abl eSt at enent class to materialize
the REF CURSOR as a JDBC Resul t Set object.

4. The result set is processed as requested.

Note:

The cursor associated with a REF CURSCR is closed whenever the statement
object that produced the REF CURSCR is closed.

Unlike in past releases, the cursor associated with a REF CURSCR is not closed
when the result set object in which the REF CURSCOR was materialized is closed.

Example
This example shows how to access REF CURSCR data.

import oracle.jdbc.*;

Cal | abl eStatenent cstnt;
Resul t Set cursor;

/1 Use a PL/SQL block to open the cursor
cstmt = conn. prepareCal |
("begin open ? for select first_name from enpl oyees; end;");

cstnt.registerCQutParameter(1, OracleTypes. CURSOR);
cstnt. execute();
cursor = ((OracleCallabl eStatement)cstnt). getCursor(1);

/1 Use the cursor like a standard Result Set
while (cursor.next ())
{Systemout.println (cursor.getString(1));}

In the preceding example:

e AcallableStatenment objectis created by using the prepareCal | method of the
connection class.

e The callable statement implements a PL/SQL procedure that returns a REF CURSCR.

* As always, the output parameter of the callable statement must be registered to
define its type. Use the type code O acl eTypes. CURSCR for a REF CURSOR.

* The callable statement is run, returning the REF CURSCR.

4-16

Chapter 4
Additional Oracle Type Extensions

* The Cal |l abl eSt at enent object is cast to Or acl eCal | abl eSt at enent to use the
get Cur sor method, which is an Oracle extension to the standard JDBC API, and
returns the REF CURSCR into a Resul t Set object.

4.5.3 Oracle BINARY_FLOAT and BINARY_DOUBLE Types

The Oracle BI NARY_FLOAT and BI NARY_DOUBLE types are used to store IEEE 574 float and
double data. These correspond to the Java fl oat and doubl e scalar types with the
exception of negative zero and NaN.

See Also:

Oracle Database SQL Language Reference

If you include a BI NARY_DOUBLE column in a query, then the data is retrieved from the
database in the binary format. Also, the get Doubl e method will return the data in the
binary format. In contrast, for a NUMBER data type column, the number bits are returned
and converted to the Java doubl e data type.

Note:

The Oracle representation for the SQL FLOAT, DOUBLE PRECI SI ON, and REAL data
types use the Oracle NUVMBER representation. The Bl NARY_FLOAT and
BI NARY_DOUBLE data types can be regarded as proprietary types.

A call to the JDBC standard set Doubl e(i nt, doubl e) method of the Prepar edSt at enent
interface converts the Java doubl e argument to Oracle NUMBER style bits and send them
to the database. In contrast, the set Bi naryDoubl e(i nt, doubl e¢) method of the

oracl e.jdbc. Oracl ePrepar edSt at ement interface converts the data to the internal binary
bits and sends them to the database.

You must ensure that the data format used matches the type of the target parameter
of the PreparedSt at enent interface. This will result in correct data and least use of CPU.
If you use set Bi naryDoubl e for a NUMBER parameter, then the binary bits are sent to the
server and converted to NUMBER format. The data will be correct, but server CPU load
will be increased. If you use set Doubl e for a Bl NARY_DOUBLE parameter, then the data will
first be converted to NUMBER bits on the client and sent to the server, where it will be
converted back to binary format. This will increase the CPU load on both client and
server and can result in data corruption as well.

The Set Fl oat AndDoubl eUseBi nary connection property when set to t rue causes the
JDBC standard APIs, set Fl oat (int, float), set Doubl e(int, double), and all the
variations, to send internal binary bits instead of NUBMVER bits.

ORACLE 4-17

Chapter 4
Additional Oracle Type Extensions

Note:

Although this section largely discusses Bl NARY_DOUBLE, the same is true for
BI NARY_FLOAT as well.

4.5.4 Oracle SYS.ANYTYPE and SYS.ANYDATA Types

Oracle Database 12¢ Release 1 (12.1) provides a Java interface to access the
SYS. ANYTYPE and SYS. ANYDATA Oracle types.

¢ See Also:

For information about these Oracle types, refer Oracle Database PL/SQL
Packages and Types Reference

An instance of the SYS. ANYTYPE type contains a type description of any SQL type,
persistent or transient, named or unnamed, including object types and collection types.
You can use the oracl e. sql . TypeDescri ptor class to access the SYS. ANYTYPE type. An
ANYTYPE instance can be retrieved from a PL/SQL procedure or a SQL SELECT statement
where SYS. ANYTYPE is used as a column type. To retrieve an ANYTYPE instance from the
database, use the get oj ect method. This method returns an instance of the

TypeDescri ptor.

The retrieved ANYTYPE instance could be any of the following:

e Transient object type

* Transient predefined type

» Persistent object type

* Persistent predefined type

Example 4-1 Accessing SYS.ANYTYPE Type

The following code snippet illustrates how to retrieve an instance of ANYTYPE from the
database:

Resul tSet rs = stnt.executeQuery("select anytype _colum frommy_table");
TypeDescriptor td = (TypeDescriptor)rs.getChject(1);
short typeCode = td.getlnternal TypeCode();
i f(typeCode == TypeDescri pt or. TYPECODE_OBJECT)
{
Il check if it's a transient type
if(td.isTransientType())
{
AttributeDescriptor[] attributes =
((StructDescriptor)td).getAttributesDescriptor();
for(int i=0; i<attributes.length; i++)
Systemout.printin(attributes[i].getAttributeName());
1

el se

ORACLE 4-18

ORACLE

Chapter 4
Additional Oracle Type Extensions

{ Systemout. println(td. get TypeNane()); }}

Example 4-2 Creating a Transient Object Type Through PL/SQL and Retrieving
Through JDBC

This example provides a code snippet illustrating how to retrieve a transient object
type through JDBC.

Oracl eCal | abl eStatenment cstnmt = (Oracl eCal | abl eSt at enent) conn. prepar eCal |
("BEGN ? := transient_obj type (); END;"):

cstnt.registerCQutParanmeter (1, Oacl eTypes. OPAQUE, " SYS. ANYTYPE") ;

cstnt. execute();

TypeDescriptor obj = (TypeDescriptor)cstnt.getQbject(1);

if(lobj.isTransient())
Systemout. printIn("This must be a JDBC bug");

cstnt. close();

return obj;

Example 4-3 Calling a PLISQL Stored Procedure That Takes an ANYTPE as IN
Parameter

The following code snippet illustrates how to call a PL/SQL stored procedure that
takes an ANYTYPE as | N parameter:

Cal | abl eSt atenent cstnt = conn. prepareCal | ("BEG N ? : = dunpanytype(?); END;");
cstnt.regi sterQut Paraneter (1, Oracl eTypes. VARCHAR) ;

/1 obj is the instance of TypeDescriptor that you have retrieved

cstnt. set oj ect(2,0bj);

cstnt. execute();

String str = (String)cstnt.getChject(1);

The oracl e. sql . ANYDATA class enables you to access SYS. ANYDATA instances from the
database. An instance of this class can be obtained from any valid instance of

oracl e. sql . Dat umclass. The convert Dat umfactory method takes an instance of Dat um
and returns an instance of ANYDATA. The syntax for this factory method is as follows:

public static ANYDATA convert Dat un(Datum datum) throws SQLException

The following is sample code for creating an instance of oracl e. sql . ANYDATA:

/1 struct is a valid instance of oracle.sql.STRUCT that either comes fromthe
/1 database or has been constructed in Java.
ANYDATA nyAnyDat a = ANYDATA. convert Dat un{struct);

Example 4-4 Accessing an Instance of ANYDATA from the Database

/] anydata_table has been created as:

/| CREATE TABLE anydata_tab (data SYS. ANYDATA)

Statenment stnt = conn.createStatement();

Result Set rs = stnt.executeQuery("select data fromny_anydata_tab");
whi l e(rs.next())

ANYDATA anydata = (ANYDATA)rs. get hj ect (1) ;

if(lanydata.isNull())
{

4-19

Chapter 4
Additional Oracle Type Extensions

TypeDescriptor td = anydata. get TypeDescriptor();
i f(td.get TypeCode() == Oracl eType. TYPECODE_OBJECT)
STRUCT struct = (STRUCT) anydat a. accessDat um();

Example 4-5 Inserting an Object as ANYDATA in a Database Table
Consider the following table and object type definition:

CREATE TABLE anydata_tab (id NUVBER, data SYS. ANYDATA)

CREATE OR REPLACE TYPE enpl oyee AS OBJECT (enpl oyee_id NUMBER, first_name
VARCHAR2('10))

You can create an instance of the EMPLOYEE SQL object type and to insert it into
anydat a_t able in the following way:

PreparedSt at ement pstnmt = conn. prepareStatenent("insert into anydata_table val ues
(2.9)");

Struct nyEnpl oyeeStr = conn. createStruct ("EMPLOYEE", new Object[]{1120, "Papageno"});
ANYDATA anyda = ANYDATA. convert Dat un{ myEnpl oyeeStr);

pstnt.setlnt(1,123);

pstnt. set Obj ect (2, anyda);

pstnt. execut eUpdat e();

Example 4-6 Selecting an ANYDATA Column from a Database Table

Statenent stnt = conn.createStatenent();
Resul tSet rs = stnt.executeQuery("select data fromanydata_table");
whi l e(rs.next())

ANYDATA obj = (ANYDATA)rs. get Obj ect (1);
TypeDescriptor td = obj.get TypeDescriptor();

rs.close();
stnt.close();

4.5.5 The oracle.jdbc Package

The interfaces of the oracl e. j doc package define the Oracle extensions to the
interfaces in j ava. sql . These extensions provide access to SQL-format data as
described in this chapter. They also provide access to other Oracle-specific
functionality, including Oracle performance enhancements.

For the oracl e. j dbc package, Table 4-1 (page 4-20) lists key interfaces and classes
used for connections, statements, and result sets.

Table 4-1 Key Interfaces and Classes of the oracle.jdbc Package
|

Name Interface Key Functionality
or Class
Oracl eDriver Class Implements j ava. sql . Dri ver

ORACLE 4-20

Chapter 4
Additional Oracle Type Extensions

Table 4-1 (Cont.) Key Interfaces and Classes of the oracle.jdbc Package

Name

Interface
or Class

Key Functionality

Oracl eConnection

Oracl eSt at ement

O acl ePrepar edSt at ement

Oracl eCal | abl eSt at emrent

Oracl eResul t Set

Oracl eResul t Set Met aDat a

O acl eDat abaselMet aDat a

ORACLE

Interface

Interface

Interface

Interface

Interface

Interface

Class

Provides methods to start and stop an
Oracle Database instance and to return
Oracle statement objects and methods to
set Oracle performance extensions for any
statement run in the current connection.

Implements j ava. sql . Connecti on.
Provides methods to set Oracle

performance extensions for individual
statement.

Is a supertype of
O acl ePrepar edSt at ement and
Oracl eCal | abl eSt at ement .

Implements j ava. sql . St at ement .
Provides set XXX methods to bind

oracl e. sql . * types into a prepared
statement.

Provides get Met aDat a method to get the
metadata from the prepared statements
without executing the SELECT statements.

Implements j ava. sql . Prepar edSt at enent .
Extends Or acl eSt at enent .

Is a supertype of

Oracl eCal | abl eSt at ement .

Provides get XXX methods to retrieve data in
oracl e. sql format and set XXX methods to
bind oracl e. sql . * types into a callable
statement.

Implements j ava. sql . Cal | abl eSt at enent .

Extends O acl ePr epar edSt at ement .
Provides get XXX methods to retrieve data in
oracl e. sql format.

Implements j ava. sql . Resul t Set .

Provides methods to get metadata

information about Oracle result sets, such
as column names and data types.

Implements j ava. sql . Resul t Set Met aDat a.
Provides methods to get metadata
information about the database, such as
database product name and version, table

information, and default transaction
isolation level.

Implements j ava. sql . Dat abaseMet aDat a).

4-21

Chapter 4
Additional Oracle Type Extensions

Table 4-1 (Cont.) Key Interfaces and Classes of the oracle.jdbc Package

Name Interface Key Functionality
or Class
O acl eTypes Class Defines integer constants used to identify
SQL types.

For standard types, it uses the same values
as the standard j ava. sql . Types class. In
addition, it adds constants for Oracle
extended types.

O acl eArray Interface Includes functionality to retrieve the array

as a whole, retrieve a subset of the array
elements, and retrieve the SQL base type
name of the array elements.

Oracl eStruct Interface
Oracl eC ob Interface
Oracl eBl ob Interface
O acl eRef Interface
O acl eCpaque Interface

This section covers the following topics:

Interface oracle.jdbc.OracleConnection (page 4-22)
Interface oracle.jdbc.OracleStatement (page 4-23)
Interface oracle.jdbc.OraclePreparedStatement (page 4-23)
Interface oracle.jdbc.OracleCallableStatement (page 4-24)
Interface oracle.jdbc.OracleResultSet (page 4-24)

Interface oracle.jdbc.OracleResultSetMetaData (page 4-24)
Class oracle.jdbc.OracleTypes (page 4-25)

4.5.5.1 Interface oracle.jdbc.OracleConnection

ORACLE

This interface extends standard JDBC connection functionality to create and return
Oracle statement objects, set flags and options for Oracle performance extensions,
support type maps for Oracle objects, and support client identifiers.

In Oracle Database 11g Release 1, new methods were added to this interface that
enable the starting up and shutting down of an Oracle Database instance. Also, for
better visibility and clarity, all connection properties are defined as constants in the
Oracl eConnect i on interface.

This interface also defines factory methods for constructing oracl e. sql data values like
DATE and NUMBER. Remember the following points while using factory methods:

All code that constructs instances of the oracl e. sql types should use the Oracle
extension factory methods. For example, ARRAY, BFI LE, DATE, | NTERVALDS, NUMBER,
STRUCT, TI ME, TI MESTAMP, and so on.

All code that constructs instances of the standard types should use the JDBC 4.0
standard factory methods. For example, CLOB, BLOB, NCLOB, and so on.

4-22

Chapter 4
Additional Oracle Type Extensions

* There are no factory methods for CHAR, JAVA_STRUCT, ArrayDescri ptor, and
Struct Descriptor. These types are for internal driver use only.

Note:

Prior to Oracle Database 11g Release 1, you had to construct
ArrayDescriptors and Struct Descri pt ors for passing as arguments to the ARRAY
and STRUCT class constructors. The new ARRAY and St ruct factory methods do
not have any descriptor arguments. The driver still uses descriptors internally,
but you do not need to create them.

Client Identifiers

In a connection pooling environment, the client identifier can be used to identify the
lightweight user using the database session currently. A client identifier can also be
used to share the Globally Accessed Application Context between different database
sessions. The client identifier set in a database session is audited when database
auditing is turned on.

¢ See Also:

Oracle Database JDBC Java APl Reference for more information

4.5.5.2 Interface oracle.jdbc.OracleStatement

This interface extends standard JDBC statement functionality and is the superinterface
of the Or acl ePrepar edSt at ement and O acl eCal | abl eSt at ement classes. Extended
functionality includes support for setting flags and options for Oracle performance
extensions on a statement-by-statement basis, as opposed to the O acl eConnect i on
interface that sets these on a connectionwide basis.

4.5.5.3 Interface oracle.jdbc.OraclePreparedStatement

This interface extends the Oracl eSt at enent interface and extends standard JDBC
prepared statement functionality. Also, the oracl e. j dbc. Or acl ePr epar edSt at ement
interface is extended by the Oracl eCal | abl eSt at enent interface. Extended functionality
consists of the following:

* set XXX methods for binding oracl e. sql . * types and objects to prepared statements

e get Met aDat a method to get the metadata from the prepared statements without
executing the SELECT statements

* Methods to support Oracle performance extensions on a statement-by-statement
basis

ORACLE 4-23

Chapter 4
Additional Oracle Type Extensions

Note:

Do not use the Prepar edSt at ement interface to create a trigger that refers to
a: NEwor : LD column. Use Stat enent instead. Using Pr epar edSt at enent will
cause execution to fail with the message j ava. sql . SQLException: M ssing IN
or QUT paraneter at index:: 1.

4.5.5.4 Interface oracle.jdbc.OracleCallableStatement

This interface extends the Oracl ePreparedSt at enent interface, which extends the
Oracl eStat enent interface and incorporates standard JDBC callable statement
functionality.

Note:

Do not use the Cal | abl eSt at enent interface to create a trigger that refers to
a: NEwor : LD column. Use Stat ement instead; using Cal | abl eSt at enent will
cause execution to fail with the message j ava. sql . SQLException: M ssing IN
or QUT paraneter at index::1

Note:

e ThesetXXX(String,...) and regi sterQutParaneter(String,...) methods
can be used only if all binds are procedure or function parameters only.
The statement can contain no other binds and the parameter binds must
be indicated with a question mark (?) and not : XX.

e Ifyou are using set XXX(int,...) or set XXXAt Name(String,...) method,
then any output parameter is bound with regi st er Qut Paramet er (int, . ..)
and not regi st er Qut Paraneter (String, ...), which is for named parameter
notation.

4.5.5.5 Interface oracle.jdbc.OracleResultSet

This interface extends standard JDBC result set functionality, implementing get XXX
methods for retrieving data into oracl e. sgl . * objects.

4.5.5.6 Interface oracle.jdbc.OracleResultSetMetaData

This interface extends standard JDBC result set metadata functionality to retrieve
information about Oracle result set objects.

ORACLE 4-24

Chapter 4
Additional Oracle Type Extensions

¢ See Also:

"Using Result Set Metadata Extensions (page 11-15)"

4.5.5.7 Class oracle.jdbc.OracleTypes

ORACLE

The O acl eTypes class defines constants that JDBC uses to identify SQL types. Each
variable in this class has a constant integer value. The oracl e. j dbc. Or acl eTypes class
duplicates the type code definitions of the standard Java j ava. sgl . Types class and
contains these additional type codes for Oracle extensions:

e Oacl eTypes. BFI LE
° OacleTypes. ROND
* Oacl eTypes. CURSCR (for REF CURSCR types)

e Oacl eTypes. CHAR BYTES (for calling set Nul | and set CHAR methods on the same
column)

As injava. sql . Types, all the variable names are in uppercase text.

JDBC uses the SQL types identified by the elements of the Or acl eTypes class in two
main areas: registering output parameters and in the set \ul | method of the
Prepar edSt at enent class.

OracleTypes and Registering Output Parameters

The type codes in j ava. sql . Types or oracl e. j dbc. Or acl eTypes identify the SQL types of
the output parameters in the regi st er Qut Par amet er method of the
java.sqgl.Call abl eStatenent and oracl e. j dbc. Oracl eCal | abl eSt at enent interfaces.

These are the forms that the regi st er Qut put Par anet er method can take for the
Cal | abl eSt at enent and Oracl eCal | abl eSt at enent interfaces

cs.registerQutParaneter(int index, int sql Type);
cs.registerQutParaneter(int index, int sql Type, String sql _nane);
cs.registerQutParaneter(int index, int sql Type, int scale);

In these signatures, i ndex represents the parameter index, sql Type is the type code for
the SQL data type, sql _nane is the name given to the data type, for user-defined types,
when sql Type is a STRUCT, REF, or ARRAY type code, and scal e represents the number of
digits to the right of the decimal point, when sql Type is a NUVERI C or DECI MAL type code.

The following example uses a Cal | abl eSt at ement interface to call a procedure named
charout , which returns a CHAR data type. Note the use of the Oracl eTypes. CHAR type
code in the regi st er Qut Par anet er method.

Cal | abl eSt atement cs = conn. prepareCal | ("BEG N charout (?); END;");
cs.registerCQutParaneter (1, OracleTypes. CHAR);

cs. execute ();

Systemout.println ("Cut argument is: " + cs.getString (1));

4-25

ORACLE

Chapter 4
Additional Oracle Type Extensions

The next example uses a Cal | abl eSt at ement interface to call st ruct out , which returns a
STRUCT data type. The form of r egi st er Qut Par anet er requires you to specify the type
code, Types. STRUCT or Or acl eTypes. STRUCT, as well as the SQL name, EMPLOYEE.

The example assumes that no type mapping has been declared for the EMPLOYEE type,
S0 it is retrieved into a STRUCT data type. To retrieve the value of EMPLOYEE as an

oracl e. sql . STRUCT object, the statement object cs is cast to Oracl eCal | abl eSt at enent
and the Oracle extension get STRUCT method is invoked.

Cal | abl eSt at ement cs = conn. prepareCall ("BEG N structout (?); END,");
cs.registerQutParaneter (1, O acleTypes. STRUCT, "EMPLOYEE");
cs. execute ();

/1 get the value into a STRUCT because it
/1 is assumed that no type map has been defined
STRUCT enp = ((Oracl eCal | abl eSt at ement) cs) . get STRUCT (1);

OracleTypes and the setNull Method

The type codes in Types and O acl eTypes identify the SQL type of the data item, which
the set Nul | method sets to NULL. The set Nul | method can be found in the
java. sql . PreparedStat enent and oracl e. j dbc. Oracl ePr epar edSt at enent interfaces.

These are the forms that the set Nul | method can take for the Prepar edSt at enent and
Or acl ePrepar edSt at ement objects:

ps.setNul | (int index, int sql Type);
ps.setNul | (int index, int sql Type, String sgl_name);

In these signatures, i ndex represents the parameter index, sql Type is the type code for
the SQL data type, and sql _nane is the name given to the data type, for user-defined
types, when sql Type is a STRUCT, REF, or ARRAY type code. If you enter an invalid sgl Type,
a Par anet er TypeConf | i ct exception is thrown.

The following example uses a prepared statement to insert a null value into the
database. Note the use of Oracl eTypes. NUMERI C to identify the numeric object set to
NULL. Alternatively, Types. NUMERI C can be used.

PreparedSt at ement pstnt =
conn. prepareStatement ("I NSERT | NTO num table VALUES (?)");

pstnt.setNull (1, OracleTypes. NUVMERI O);
pstnt.execute ();

In this example, the prepared statement inserts a NULL STRUCT object of type EMPLOYEE
into the database.

PreparedSt at ement pstnmt = conn. prepar eSt at enent
("I NSERT | NTO enpl oyees VALUES (?)");

pstnt.setNull (1, OracleTypes. STRUCT, "EMPLOYEE");
pstnt.execute ();

You can also use the Oracl eTypes. CHAR BYTES type with the set Nul | method, if you also
want to call the set CHAR method on the same column. For example:

ps. set CHAR(n, aCHAR);

ps. addBat ch();

ps.setNul | (n, Oracl eTypes. CHAR BYTES);
ps. addBat ch();

4-26

Chapter 4
DML Returning

In this preceding example, any other type, apart from the Oracl eTypes. CHAR BYTES type,
will cause extra round trips to the Database. Alternatively, you can also write your
code without using the set Nul | method. For example, you can also write your code as
shown in the following example:

ps. set CHAR(n, null);

4.6 DML Returning

The DML returning feature provides more functionality compared to retrieval of auto-
generated keys. It can be used to retrieve not only auto-generated keys, but also other
columns or values that the application may use.

Note:
* The server-side internal driver does not support DML returning and
retrieval of auto-generated keys.

* You cannot use both DML returning and retrieval of auto-generated keys
in the same statement.

The following sections explain the support for DML returning:
e Oracle-Specific APIs (page 4-27)

e About Running DML Returning Statements (page 4-28)
e Example of DML Returning (page 4-28)

e Limitations of DML Returning (page 4-29)

See Also:

"Retrieval of Auto-Generated Keys (page 3-4)"

4.6.1 Oracle-Specific APIs

ORACLE

The O acl ePrepar edSt at ement interface is enhanced with Oracle-specific application
programming interfaces (APIs) to support DML returning. The regi st er Ret ur nPar anet er
and get Ret urnResul t Set methods have been added to the

oracl e.jdbc. Oracl ePrepar edSt at ement interface, to register parameters that are returned
and data retrieved by DML returning.

The regi st er Ret urnPar anet er method is used to register the return parameter for DML
returning. The method throws a SQLExcept i on instance if an error occurs. You must
pass a positive integer specifying the index of the return parameter. You also must
specify the type of the return parameter. You can also specify the maximum bytes or
characters of the return parameter. This method can be used only with char or RAW
types. You can also specify the fully qualified name of a SQL structure type.

4-27

Chapter 4
DML Returning

Note:

If you do not know the maximum size of the return parameters, then you
should use regi st er Ret urnPar anet er (i nt parani ndex, int external Type), which
picks the default maximum size. If you know the maximum size of return
parameters, using regi st er Ret urnParanet er (i nt paran ndex, int external Type,
int maxSize) can reduce memory consumption.

The get Ret ur nResul t Set method fetches the data returned from DML returning and
returns it as a Resul t Set object. The method throws a SQLExcept i on exception if an error
occurs.

Note:

The Oracle-specific APIs for the DML returning feature are in oj dbcé. j ar for
Java Development Kit (JDK) 6.0 and in oj dbc7. j ar for JDK 7.

4.6.2 About Running DML Returning Statements

Before running a DML returning statement, the JDBC application must call one or
more of the regi st er Ret ur nPar anet er methods. The method provides the JDBC drivers
with information, such as type and size, of the return parameters. The DML returning
statement is then processed using one of the standard JDBC APIs, execut eUpdat e or
execut e. You can then fetch the returned parameters as a Resul t Set object using the
get Ret ur nResul t Set method of the oracl e. j dbc. Or acl ePr epar edSt at enent interface.

In order to read the values in the Resul t Set object, the underlying St at enent object
must be open. When the underlying St at ement object is closed, the returned Resul t Set
object is also closed. This is consistent with Resul t Set objects that are retrieved by
processing SQL query statements.

When a DML returning statement is run, the concurrency of the Resul t Set object
returned by the get Ret ur nResul t Set method must be CONCUR_READ_ONLY and the type of
the Resul t Set object must be TYPE_FORWARD ONLY or TYPE_SCROLL_| NSENSI Tl VE.

4.6.3 Example of DML Returning

ORACLE

This section provides two code examples of DML returning.

The following code example illustrates the use of DML returning. In this example,
assume that the maximum size of the nane column is 100 characters. Because the
maximum size of the nanme column is known, the regi st er Ret ur nPar anet er (i nt
parani ndex, int external Type, int naxSize) method is used.

Oracl ePreparedStatenent pstnt = (Oracl ePreparedSt at enent) conn. prepar eSt at enent (
"delete fromtabl where age < ? returning name into ?");
pstnt.setlnt(1,18);

[** register returned paraneter
* in this case the maxi mumsize of nane is 100 chars

4-28

Chapter 4
DML Returning

*|
pstnt.registerReturnParaneter(2, OacleTypes. VARCHAR 100);

/'l process the DML returning statenent

count = pstnt.executeUpdate();

if (count>0)

{
Resul t Set rset = pstnt.getReturnResultSet(); //rest is not null and not enpty
whi | e(rset.next())

{
String name = rset.getString(1);

The following code example also illustrates the use of DML returning. However, in this
case, the maximum size of the return parameters is not known. Therefore, the
regi sterReturnParaneter(int parani ndex, int external Type) method is used.

Oracl ePreparedStatenent pstnt = (Oracl ePreparedSt at enent) conn. prepar eSt at enent (
"insert into |obtab values (100, enpty _clob()) returning coll, col2 into ?, ?");

Il register return parameters
pstnt.registerReturnParaneter (1, OracleTypes.|NTECGER);
pstnt.registerReturnParaneter(2, O acleTypes.CLOB);

/] process the DML returning SQL statenent
pst nt. execut eUpdat e();
Resul t Set rset = pstnt.getReturnResultSet();
int r;
CLOB cl ob;
if (rset.next())
{
r =rset.getlnt(1);
Systemout. printin(r);
clob = (CLOB)rset.getC ob(2);

4.6.4 Limitations of DML Returning

ORACLE

When using DML returning, be aware of the following:

e Itis unspecified what the get Ret ur nResul t Set method returns when it is invoked
more than once. You should not rely on any specific action in this regard.

e The Resul t Set objects returned from the execution of DML returning statements do
not support the Resul t Set Met aDat a type. Therefore, the applications must know the
information of return parameters before running DML returning statements.

» Streams are not supported with DML returning.
e DML returning cannot be combined with batch update.

* You cannot use both the auto-generated key feature and the DML returning
feature in a single SQL DML statement. For example, the following is not allowed:

4-29

Chapter 4
Accessing PL/SQL Associative Arrays

PreparedSt at ement pstnt = conn. prepareStatement ('insert into orders (?, ?, ?)
returning order_id into ?");

pstnt.setlnt(1, seq0l. NEXTVAL);

pstnt.setlnt(2, 100);

pstnt.setlnt(3, 966431502);

pstnt.registerReturnParan(4, OacleTypes. | NTEGER);

pst nt . execut eUpdat e;

Resul t Set rset = pstnt.get Generat edKeys;

4.7 Accessing PL/SQL Associative Arrays

Oracle JDBC drivers enable JDBC applications to make PL/SQL calls with Associative
Arrays parameters. In PL/SQL, an Associative Array is a set of key-value pairs, where
the keys may be PLS_| NTEGERs or Strings. The keys may have any value and need not
be dense. From a client application, you can work only with PLS_| NTEGER keys that must
be positive and dense.

Note:

Associative Arrays were previously known as index-by tables.

This section covers the following topics:

e Overview of PL/SQL Associative Arrays (page 4-30)

e Binding IN Parameters in PL/SQL Associative Arrays (page 4-31)

* Receiving OUT Parameters in PL/SQL Associative Arrays (page 4-32)
e Type Mappings in PL/SQL Associative Arrays (page 4-33)

4.7.1 Overview of PL/SQL Associative Arrays

ORACLE

Oracle JDBC drivers support PL/SQL Associative Arrays of VARCHAR and NUMBER types.
Typical Oracle JDBC input binding, output registration, and data access methods do
not support PL/SQL Associative Arrays. This section discusses the additional methods
to support these types.

The O acl ePrepar edSt at ement and Oracl eCal | abl eSt at enent classes define the
additional methods. These methods include the following:

* setPlsqllndexTabl e

* registerlndexTabl eCut Paranet er
e getOracl ePlsgl I ndexTabl e

e getPlsqgllndexTabl e

These methods handle PL/SQL Associative Arrays as I N, OUT, or I N OUT parameters,
including function return values.

4-30

Note:

Chapter 4
Accessing PL/SQL Associative Arrays

When you use String data types, the size is limited to the size in PL/SQL that
is 32767 characters. For the server-side internal driver, the limits are lower.
Refer to the Javadoc for more information about these methods.

See Also:

e Oracle Database JDBC Java APl Reference

e Oracle Database PL/SQL Language Reference

for more information about Associative Arrays

4.7.2 Binding IN Parameters in PL/SQL Associative Arrays

To bind a PL/SQL Associative Array parameter in the | N parameter mode, use the
set Pl sql I ndexTabl e method defined in the Or acl ePr epar edSt at enent and
Oracl eCal | abl eSt at enent classes.

ORACLE

synchroni zed public void setPlsqllndexTable (int param ndex, Object arrayData, int
maxLen, int curlLen, int elenSgl Type,
int el emvlxLen) throws SQLException

Table 4-2 (page 4-31) describes the arguments of the set Pl sql | ndexTabl e method.

Table 4-2 Arguments of the setPlsqlindexTable Method

__|
Argument

Description

i nt

(hj ect arrayData

int

int

i nt

int

par am ndex

maxLen

curlLen

el enSqgl Type

el emvaxLen

Indicates the parameter position within the statement.

Is an array of values to be bound to the PL/SQL Associative Array
parameter. The value is of type j ava. | ang. Obj ect . The value can
be a Java primitive type array, such asint[], or a Java object
array, such as Bi gDeci nal [].

Specifies the maximum table length of the Associative Array bind
value that defines the maximum possible cur Len for batch updates.
For standalone binds, maxLen should use the same value as

cur Len. This argument is required.

Specifies the actual size of the Associative Array bind value in
arrayDat a. If the cur Len value is smaller than the size of

ar rayDat a, then only the cur Len number of table elements is
passed to the database. If the cur Len value is larger than the size
of arrayDat a, then the entire ar r ayDat a is sent to the database.

Specifies the Associative Array element type based on the values
defined in the Or acl eTypes class.

Specifies the Associative Array element maximum length in case
the element type is CHAR, VARCHAR, or RAW This value is ignored for
other types.

4-31

Chapter 4
Accessing PL/SQL Associative Arrays

The following code example uses the set Pl sgl | ndexTabl e method to bind an
Associative Array as an | N parameter:

/'l Prepare the statenent
Oracl eCal | abl eStatenment procin = (Oracl eCal | abl eSt at enent)
conn. prepareCal |l ("begin procin (?); end;");

/1 Associative Array bind val ue
int[] values ={ 1, 2, 3};

/1 maximum | ength of the Associative Array bind value. This
/1 val ue defines the maxi mum possible "currentLen" for batch
/1 updates. For standal one binds, "maxLen" should be the

/'l same as "currentlen".

int maxLen = val ues. | ength;

/1 actual size of the Associative Array bind val ue
int currentLen = val ues.|ength;

/1 Associative Array el ement type
int el enBqgl Type = O acl eTypes. NUVBER;

/1 Associative Array element length in case the elenent type
/1 is CHAR VARCHAR or RAW This value is ignored for other
/'l types.

int el emvaxLen = 0;

/1 set the value
procin. setPl sql I ndexTabl e (1, val ues,
maxLen, currentLen,
el enfSgl Type, el emvaxLen);

/1 execute the call
procin. execute ();

4.7.3 Receiving OUT Parameters in PL/SQL Associative Arrays

ORACLE

This section describes how to register a PL/SQL Associative Array as an OUT
parameter. In addition, it describes how to access the OUT bind values in various
mapping styles.

Note:

The methods described in this section apply to function return values and the
IN oUT parameter mode as well.

Registering the OUT Parameters

To register a PL/SQL Associative Array as an OUT parameter, use the
regi st erl ndexTabl eCut Par amet er method defined in the Oracl eCal | abl eSt at enent class.

synchroni zed public void registerlndexTabl eQut Par anet er
(int param ndex, int maxLen, int elenSqgl Type,
int el emvaxLen) throws SQLException

4-32

Chapter 4
Accessing PL/SQL Associative Arrays

Table 4-3 (page 4-33) describes the arguments of the
regi st erl ndexTabl eCut Par amet er method.

Table 4-3 Arguments of the registerindexTableOutParameter Method
|

Argument Description
i nt parant ndex Indicates the parameter position within the statement.
int maxLen Specifies the maximum table length of the Associative Array bind

value to be returned.

int el entSql Type Specifies the Associative Array element type based on the values
defined in the Or acl eTypes class.

int el enmvaxLen Specifies the Associative Array element maximum length in case the
element type is CHAR, VARCHAR, or FI XED_CHAR. This value is ignored
for other types.

The following code example uses the regi st er I ndexTabl eQut Par anet er method to
register an Associative Array as an OUT parameter:

/1 maximum | ength of the Associative Array value. This
/1 value defines the maximumtable size to be returned.
int maxLen = 10;

/1 Associative Array el ement type
int el enBqgl Type = Oracl eTypes. NUVBER;

/1 Associative Array element length in case the elenent type

/1 is CHAR VARCHAR or FIXED CHAR This value is ignored for other
Il types

int el emvaxLen = 0;

Il register the return value
funcnone. regi st er I ndexTabl eCut Par anet er
(1, maxLen, elenfqgl Type, el emvaxLen);

Accessing the OUT Parameter Values

To access the OUT bind value, the Oracl eCal | abl eSt at enent class defines multiple
methods that return the Associative Array values in different mapping styles. There are
three mapping choices available in JDBC drivers:

Mappings Methods to Use
JDBC default mappings get Pl sql | ndexTabl e(i nt)
Oracle mappings get O acl ePl sgl I ndexTabl e(i nt)

Java primitive type mappings get Pl sqgl I ndexTabl e(int, O ass)

4.7.4 Type Mappings in PL/SQL Associative Arrays

This section covers the following topics:

* JDBC Default Mappings (page 4-34)

* Oracle Mappings (page 4-34)

» Java Primitive Type Mappings (page 4-35)

ORACLE 4-33

ORACLE

Chapter 4
Accessing PL/SQL Associative Arrays

JDBC Default Mappings

The get Pl sgl I ndexTabl e(i nt) method returns Associative Array elements using the
JDBC default mappings. The syntax for this method is the following:

public Object getPlsqllndexTable (int param ndex)
throws SQLException

Table 4-4 (page 4-34) describes the argument of the get Pl sgl | ndexTabl e method.

Table 4-4 Argument of the getPlsqlindexTable Method
|

Argument Description
i nt paran ndex This argument indicates the parameter position within the
statement.

The return value is a Java array. The elements of this array are of the default Java
type corresponding to the SQL type of the elements. For example, for an Associative
Array with elements of NUMERI C type code, the element values are mapped to

Bi gDeci mal by Oracle JDBC driver, and the get Pl sgl I ndexTabl e method returns a

Bi gDeci mal [] array. For a JDBC application, you must cast the return value to

Bi gDeci mal [] to access the table element values.

The following code example uses the get Pl sql I ndexTabl e method to return Associative
Array elements with JDBC default mapping:

/1 access the value using JDBC default mapping
Bi gDeci mal [] val ues =
(BigDecimal []) procout.getPlsqgllndexTable (1);

[l print the elenents
for (int i=0; i<values.length; i++)
Systemout. println (values[i].intValue());

Oracle Mappings
The get Oracl ePl sgl | ndexTabl e method returns Associative Array elements using Oracle
mapping.

public Datun|{] getOraclePlsqgllndexTable (int paranindex)
throws SQLException

Table 4-5 (page 4-34) describes the argument of the get Or acl ePl sgl | ndexTabl e
method.

Table 4-5 Argument of the getOraclePlsqlindexTable Method

]
Argument Description

i nt parani ndex Indicates the parameter position within the statement.

The return value is an oracl e. sql . Dat umarray, and the elements in the array are of the
default Dat umtype corresponding to the SQL type of the element. For example, the
element values of an Associative Array of numeric elements are mapped to the

oracl e. sql . NUMBER type in Oracle mapping, and the get O acl ePl sgl | ndexTabl e method
returns an or acl e. sgl . Dat umarray that contains or acl e. sql . NUVBER elements.

4-34

ORACLE

Chapter 4
Accessing PL/SQL Associative Arrays

The following code example uses the get Oracl ePl sqgl | ndexTabl e method to access the
elements of a PL/SQL Associative Array OUT parameter, using Oracle mapping:

/'l Prepare the statenent
Oracl eCal | abl eStat enent procout = (Oracl eCal | abl eSt at enent)
conn. prepareCal | ("begin procout (?); end;");

[l run the call
procout . execute ();

/1 access the value using Oracle JDBC mapping
Datunf] outval ues = procout.get Oracl ePl sgl I ndexTable (1);

[l print the elenents

for (int i=0; i<outvalues.length; i++)
Systemout. printIn (outval ues[i].intValue());

Java Primitive Type Mappings

The get Pl sgl I ndexTabl e(int, C ass) method returns Associative Array elements in
Java primitive types. The return value is a Java array. The syntax for this method is
the following:

synchroni zed public bject getPlsqgllndexTable
(int param ndex, Class primtiveType) throws SQLException

Table 4-6 (page 4-35) describes the arguments of the get Pl sql | ndexTabl e method.

Table 4-6 Arguments of the getPlsqlindexTable Method
|

Argument Description
i nt parani ndex Indicates the parameter position within the statement.
Cass primtiveType Specifies a Java primitive type to which the Associative Array

elements are to be converted. For example, if you specify
java.l ang. I nteger. TYPE, the return value is an i nt array.

The following are the possible values of this parameter:
java.lang. I nteger. TYPE

java.lang. Long. TYPE

java.lang. Fl oat. TYPE

java. | ang. Doubl e. TYPE

java.lang. Short. TYPE

The following code example uses the get Pl sgl | ndexTabl e method to access the
elements of a PL/SQL Associative Array of numbers. In the example, the second
parameter specifies j ava. | ang. | nt eger. TYPE and the return value of the

get Pl sgl I ndexTabl e method is an i nt array.

Oracl eCal | abl eStat enent funcnone = (Oracl eCal | abl eSt at enent)
conn. prepareCal | ("begin ? := funcnone; end;");

/1 maximum | ength of the Associative Array value. This
/1 value defines the maxinumtable size to be returned.
int maxLen = 10;

/] Associative Array el ement type

4-35

ORACLE

Chapter 4
Accessing PL/SQL Associative Arrays

int el enBqgl Type = Oracl eTypes. NUVBER;

Il Associative Array el ement length in case the elenent type
/1 is CHAR, VARCHAR or RAW This value is ignored for other
Il types

int elemvaxLen = 0;

Il register the return val ue
funcnone. regi st erl ndexTabl eCut Paraneter (1, maxLen,
el enSql Type, el emvaxLen);
/'l execute the call
funcnone. execute ();

/1 access the value as a Java primtive array.
int[] values = (int[])
funcnone. get Pl sgl I ndexTabl e (1, java.lang.|nteger. TYPE);

[l print the elenents

for (int i=0; i<values.length; i++)
Systemout. println (values[i]);

4-36

Features Specific to JDBC Thin

This chapter introduces the Java Database Connectivity (JDBC) Thin client and covers
the features supported only by the JDBC Thin driver. It also provides basic information
about working with Oracle JDBC applets. This following topics are covered in this
chapter:

e Overview of JDBC Thin Client (page 5-1)
e Additional Features Supported (page 5-1)
e JDBC in Applets (page 5-3)

5.1 Overview of JDBC Thin Client

The JDBC Thin client is a pure Java, Type IV driver. It is lightweight and easy to
install. It provides high performance, comparable to the performance provided by the
JDBC Oracle Call Interface (OCI) driver. The JDBC Thin driver is written entirely in
Java, and therefore, it is platform-independent. Also, this driver does not require any
additional Oracle software on the client-side.

The JDBC Thin driver communicates with the server using TTC, a protocol developed
by Oracle to access data from Oracle Database. It can be used for application servers
as well as for applets. The driver allows a direct connection to the database by
providing an implementation of TCP/IP that implements Oracle Net and TTC on top of
Java sockets. Both of these protocols are lightweight implementation versions of their
counterparts on the server. The Oracle Net protocol runs over TCP/IP only.

The JDBC Thin driver can be used on both the client-side and the server-side. On the
client-side, drivers can be used in Java applications or Java applets that run either on
the client or in the middle tier of a three-tier configuration. On the server-side, this
driver is used to access a remote Oracle Database instance or another session on the
same database.

5.2 Additional Features Supported

The JDBC Thin driver supports all standard JDBC features. The JDBC Thin driver also
provides support for the following additional features:

e Default Support for Native XA (page 5-1)

e Support for Transaction Guard (page 5-2)

e Support for Application Continuity (page 5-2)
e Support for Applets (page 5-2)

5.2.1 Default Support for Native XA

ORACLE

Similar to the JDBC OCI driver, the JDBC Thin driver also provides support for Native
XA. However, the JDBC Thin driver provides support for Native XA by default. This is

5-1

Chapter 5
Additional Features Supported

unlike the case of the JDBC OCI driver, in which the support for Native XA is not
enabled by default.

See Also:

“Native-XA in Oracle JDBC Drivers (page 32-21)"

5.2.2 Support for Transaction Guard

Transaction Guard feature provides a generic infrastructure for at-most-once execution
during planned and unplanned outages and duplicate submissions. Transaction Guard
feature (along with Application Continuity feature) provides transparent session
recovery and replay of SQL statements (queries and DMLS) since the beginning of the
in-flight transaction.

¢ See Also:

Transaction Guard for Java (page 27-1)

5.2.3 Support for Application Continuity

Application Continuity provides a general purpose, application-independent
infrastructure that enables recovery of work from an application perspective, after the
occurrence of a planned or unplanned outage. It provides the following benefits:

* Masking of outages from the end user
* Recovery of user environments, in-flight transactions, and lost outcome
* Asingle, easy, and foolproof method for applications to recover

* A definite target response time for applications, regardless of outages

See Also:

Application Continuity for Java (page 28-1)

5.2.4 Support for Applets

The JDBC Thin driver is the only Oracle JDBC driver that provides support for applets.
This driver can be downloaded along with the Java applet that is being run in a
browser.

ORACLE 5-2

Chapter 5
JDBC in Applets

Note:

When the JDBC Thin driver is used with an applet, the browser used on the
client-side must have the capability to support Java sockets.

The HTTP protocol, which is usually used for communication over a network, is
stateless. However, the JDBC Thin driver is not stateless. Therefore, the initial HTTP
request to download the applet and the JDBC Thin driver is stateless. After the JDBC
Thin driver establishes the database connection, the communication between the
browser and the database is stateful and in a two-tier configuration.

See Also:
"JDBC in Applets (page 5-3)"

5.3 JDBC in Applets

You can use only the Oracle JDBC Thin driver for an applet. This section describes
what you must do to connect an applet to a database. This description includes how to
use the Connection Manager feature of Oracle Database, or signed applets if you are
connecting to a database that is running on a different host from the Web server. It
also describes how your applet can connect to a database through a firewall. The
section concludes with how to package and deploy the applet.

The following topics are covered:

e About Connecting to the Database Through the Applet (page 5-3)

e Connecting to a Database on a Different Host Than the Web Server (page 5-4)
e Overview of Using Applets with Firewalls (page 5-7)

e Packaging Applets (page 5-9)

e Overview of Specifying an Applet in an HTML Page (page 5-10)

5.3.1 About Connecting to the Database Through the Applet

ORACLE

The most common task of an applet using the JDBC driver is to connect to and query
a database. Because of applet security restrictions, unless particular steps are taken,
an applet can open TCP/IP sockets only to the host from which it was downloaded.
This is the host on which the Web server is running. This means that without these
steps, your applet can connect only to a database that is running on the same host as
the Web server.

If your database and Web server are running on the same host, then there is no issue
and no special steps are required. You can connect to the database as you would from
an application.

As with connecting from an application, there are two ways in which you can specify
the connection information to the driver. You can provide it in the form of
host : port: servi ce_nane or in the form of TNS keyword-value syntax.

5-3

Chapter 5
JDBC in Applets

For example, if the database to which you want to connect resides on the | ocal ost, at
port 5221, and service name orcl, and you want to connect with user name HR and
password hr, then use either of the two following connection strings:

» Using host: port: servi ce_nanme syntax:

String connString="jdbc: oracle:thin: @ocal host:5221: orcl";

Oracl eDat aSour ce ods = new Oracl eDat aSour ce();
ods. set URL(connString);

ods. set User ("HR") ;

ods. set Password("hr");

Connection conn = ods. get Connection();

e Using TNS keyword-value syntax:

String connString =

"jdbc:oracl e:thin: @description=(address_|ist=(address=(protocol =tcp)
(port=5221) (host =l ocal Host))) (connect _dat a=(1 NSTANCE_NAME=orcl)))";
Oracl eDat aSour ce ods = new Oracl eDat aSour ce();

ods. set URL(connString);

ods. set User ("HR") ;

ods. set Password("hr");

Connection conn = ods. get Connection();

If you use the TNS keyword-value pair to specify the connection information to the
JDBC Thin driver, then you must declare the protocol as TCP.

However, a Web server and database server both require many resources. You
seldom find both servers running on the same computer. Usually, your applet connects
to a database on a host other than the one on which the Web server runs. If you want
your applet to connect to a database running on a different computer, then you have
the following options:

* Use the Oracle Connection Manager on the host computer. The applet can
connect to the Connection Manager, which connects to a database on another
computer.

» Use signed applets, which can request socket connection privileges to other
computers.

Your applet can also take advantage of the data encryption and integrity checksum
features of the Advanced Security option of Oracle Database.

5.3.2 Connecting to a Database on a Different Host Than the Web
Server

If you are connecting to a database on a host other than the one on which the Web
server is running, then you must overcome applet security restrictions. You can do this
in the following ways:

» Using the Oracle Connection Manager (page 5-4)

e Using Signed Applets (page 5-7)

5.3.2.1 Using the Oracle Connection Manager

This section describes the following concepts:

ORACLE 5-4

Chapter 5
JDBC in Applets

* Overview of Using the Connection Manager (page 5-5)

» Installing and Running the Oracle Connection Manager (page 5-5)
* Writing the URL that Targets the Connection Manager (page 5-6)
e Connecting Through Multiple Connection Managers (page 5-7)

5.3.2.1.1 Overview of Using the Connection Manager

The Oracle Connection Manager is a lightweight, highly scalable program that can
receive Oracle Net packets and retransmit them to a different server. To a client
running Oracle Net, the Connection Manager looks exactly like a database server. An
applet that uses the JDBC Thin driver can connect to a Connection Manager running
on the Web server host and have the Connection Manager redirect the Oracle Net
packets to an Oracle server running on a different host.

Figure 5-1 (page 5-5) illustrates the relationship between the applet, the Oracle
Connection Manager, and the database.

Figure 5-1 Applet, Connection Manager, and Database Relationship

any Oracle Net Listener
Applet TCP/IP CMAN Oracle Net
in Browser (only) protocol

Web Server

webHost oraHost

Using the Oracle Connection Manager requires two steps:

* Installing and Running the Oracle Connection Manager (page 5-5)

* Writing the URL that Targets the Connection Manager (page 5-6)

5.3.2.1.2 Installing and Running the Oracle Connection Manager

ORACLE

You must install the Connection Manager, available on the Oracle distribution media,
onto the Web server host.

On the Web server host, create a CMAN. ORA file in the ORACLE_HOME/ NET8/ ADM N directory.
The options you can declare in a CMAN. ORA file include firewall and connection pooling
support.

Here is an example of a very simple CMAN. ORA file. Replace web- ser ver - host with the
name of your Web server host. The fourth line in the file indicates that the Connection
Manager is listening on port 1610. You must use the same port number in your
connection string for JDBC.

cman = (ADDRESS LI ST =

(ADDRESS = (PROTOCOL=TCP)
(HOST=web- ser ver - host)
(

PORT=1610)))

cman_profile = (parameter_list =

5-5

Chapter 5
JDBC in Applets

(MAXI MUM RELAYS=512)
(LOG _LEVEL=1)

(TRACI NG=YES)
(RELAY_STATI STI CS=YES)
(SHOW TNS_I NFO=YES)
(USE_ASYNC_CALL=YES)
(AUTHENTI CATI ON_LEVEL=0)
)

After you create the file, start the Connection Manager at the operating system prompt
with the following command:

cnectl start

Note:

While installing Oracle Connection Manager, if you choose to run Oracle
Connection Manager services as an authenticated user, then the cnct |
command asks for a password. But, if you choose to run Oracle Connection
Manager services as a local service account, then the cnct| command does
not ask for a password.

To use your applet, you must now write the connection string for it.

5.3.2.1.3 Writing the URL that Targets the Connection Manager

ORACLE

The following text describes how to write the URL in your applet, so that the applet
connects to the Connection Manager and the Connection Manager connects with the
database. In the URL, you specify an address list that lists the protocol, port, and
name of the Web server host on which the Connection Manager is running, followed
by the protocol, port, and name of the host on which the database is running.

The following example describes the configuration illustrated in Figure 5-1. The Web
server on which the Connection Manager is running is on host webHost and is listening
on port 1610. The database to which you want to connect is running on host or aHost ,
listening on port 5221, and service name orcl . You write the URL in TNS keyword-
value format:

String nyURL =

"jdbc:oracle:thin: @description=(address_|ist=
(address=(protocol =t cp) (port=1610) (host =webHost))
(address=(protocol =t cp) (port=5221) (host =oraHost)))
(connect _dat a=(| NSTANCE_NAME=or cl))
(source_route=yes))";

O acl eDat aSour ce ods = new Oracl eDat aSour ce();

ods. set URL(myURL) ;

ods. set User ("HR");

ods. set Password("hr");

Connection conn = ods. get Connection();

The first element in the address_| i st entry represents the connection to the
Connection Manager. The second element represents the database to which you want
to connect. The order in which you list the addresses is important.

When your applet uses a URL, such as the preceding one, it will function exactly as if
it were connected directly to the database on the host or aHost .

5-6

Chapter 5
JDBC in Applets

5.3.2.1.4 Connecting Through Multiple Connection Managers

Your applet can reach its target database even if it first has to go through multiple
Connection Managers. For example, if the Connection Managers form a proxy chain.
To do this, add the addresses of the Connection Managers to the address list, in the
order that you plan to access them. The database listener should be the last address
on this list.

5.3.2.2 Using Signed Applets

In a Java Development Kit (JDK) 1.2.x-based or later browser, an applet can request
socket connection privileges and connect to a database running on a different host
than the Web server host. Starting from Netscape 4.0, you perform this by signing your
applet, that is, writing a signed applet. You must follow these steps:

1. Sign the applet. For information about the steps you must follow to sign an applet,
refer to

http://wwmv. oracl e. com't echnetwork/j aval/ i ndex. ht m
2. Include applet code that asks for appropriate privileges before opening a socket.
If you are using Netscape, then your code would include a statement like this:

net scape. security. Privil egeManager. enabl ePrivi | ege(" Uni ver sal Connect");
O acl eDat aSour ce ods = new Oracl eDat aSour ce();

ods. set URL("j dbc: oracl e: t hi n: HR hr @ ocal host : 5221: orcl");

Connection conn = ods. get Connection();

3. You must obtain an object-signing certificate. Refer to a site that provides
information about obtaining and installing a certificate.

For information about the Java Security API, including signed applet examples, see
the following site:

http:// ww. oracl e. conftechnetwork/javalj avase/tech/index-jsp-136007. ht n

5.3.3 Overview of Using Applets with Firewalls

ORACLE

Under standard circumstances, an applet that uses the JDBC Thin driver cannot
access the database through a firewall. In general, the purpose of a firewall is to
prevent unauthorized clients from reaching the server. In the case of applets trying to
connect to the database, the firewall prevents the opening of a TCP/IP socket to the
database.

In general, firewalls are rule-based. They have a list of rules that define which clients
can connect, and which cannot. Firewalls compare the host name of the client with the
rules and, based on this comparison, either grant the client access or deny access. If
the host name lookup fails, then the firewall tries again. This time, the firewall extracts
the IP address of the client and compares it to the rules. The firewall is designed to do
this so that users can specify rules that include host names as well as IP addresses.

You can solve the firewall issue by using an Oracle Net-compliant firewall and
connection strings that comply with the firewall configuration. Oracle Net-compliant
firewalls are available from many leading vendors.

An unsigned applet can access only the same host from which it is downloaded. In this
case, the Oracle Net-compliant firewall must be installed on that host. In contrast, a

5-7

http://www.oracle.com/technetwork/java/index.htm
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html

Chapter 5
JDBC in Applets

signed applet can connect to any host. In this case, the firewall on the target host
controls the access.

Connecting through a firewall requires two steps, as described in the following
sections:

e Configuring a Firewall for Applets that use the JDBC Thin Driver (page 5-8)
e Writing a URL to Connect Through a Firewall (page 5-8)

5.3.3.1 Configuring a Firewall for Applets that use the JDBC Thin Driver

The instructions in this section assume that you are running an Oracle Net-compliant
firewall.

Java applets do not have access to the local system. Because of the security
limitations, applets cannot access the host name or environment variables on the local
system. As a result, the JDBC Thin driver cannot access the host name on which it is
running. The firewall cannot be provided with the host name. To allow requests from
JDBC Thin clients to go through the firewall, you must do the following to the list of
firewall rules:

* Add the IP address, and not the host name, of the host on which the JDBC applet
iS running.

» Ensure that the host name, "__jdbc__", never appears in the firewall rules. This
host name has been hard-coded as a false host name inside the driver to force an
IP address lookup. If you do enter this host name in the list of rules, then every
applet using the JDBC Thin driver will be able to go through your firewall.

5.3.3.2 Writing a URL to Connect Through a Firewall

To write a URL that enables you to connect through a firewall, you must specify the
name of the firewall host and the name of the database host to which you want to
connect.

For example, if you want to connect to a database on host or aHost , listening on port
5221, with service name orcl , and you are going though a firewall on host fireval | Host,
listening on port 1610, then use the following URL:

Oracl eDat aSour ce ods = new Oracl eDat aSour ce();

ods. set URL("jdbc: oracle:thin:" +
"@description=(address_list=" +
(address=(protocol =t cp) (host=<firewal | -host>)(port=1610))" +
"(address=(protocol =t cp) (host =oraHost) (port=5221)))" +
"(source_route=yes)" +
"(connect _dat a=(service_nanme=orcl)))");

);

ods. set User ("HR") ;

ods. set Password("hr");

Connection conn = ods. get Connection();

ORACLE 5-8

Chapter 5
JDBC in Applets

Note:

To connect through a firewall, you cannot specify the URL in
host : port: servi ce_nane syntax. For example, a URL specified as follows will
not work:

String connString =
"jdbc: oracl e: thin: @xanpl e. us. oracl e.com 5221: orcl ";

Oracl eDat aSour ce ods = new Oracl eDat aSour ce();
ods. set URL(connString);

ods. set User ("HR") ;

ods. set Password("hr");

Connection conn = ods. get Connection();

The first element in the address_| i st represents the connection to the firewall. The
second element represents the database to which you want to connect. Note that the
order in which you specify the addresses is important.

You can also write the preceding URL in the following format:

String connString =
"jdbc:oracl e:thin: @description=(address_list=
(address=(protocol =t cp) (port=1600) (host =fireWal | Host))
(address=(protocol =t cp) (port=5221) (host =or aHost)))
(connect _dat a=(| NSTANCE_NAME=or cl))
(source_route=yes))";

Oracl eDat aSour ce ods = new Oracl eDat aSour ce();

ods. set URL(connString);

ods. set User ("HR") ;

ods. set Password("hr");

Connection conn = ods. get Connection();

When your applet uses a URL similar to the preceding URL, it will act as if it were
connected to the database on host or aHost .

Note:

All the parameters shown in the preceding example are required. In
address_l i st, the firewall address must precede the database server address.

5.3.4 Packaging Applets

After you have coded your applet, you must package it and make it available to users.
To package an applet, you will need your applet class files and the JDBC driver class
files contained in the oj dbc6. jar or oj dbc7. j ar files.

Follow these steps:

1. Move the JDBC driver classes file oj dbc6. j ar or oj dbc7.j ar to an empty directory.

ORACLE 5-9

Chapter 5
JDBC in Applets

If your applet connects to a database with a non-US7ASCI | and non-WE8| S08859P1
character set and uses Oracle object types, then also move the orai 18n. j ar file to
the same directory.

2. Add your applet classes files to the directory and any other files that the applet
may require.

3. Zip the applet classes and driver classes together into a single ZIP or Java Archive
(JAR) file. The single ZIP file should contain the following:

» Class files from the oj dbc6. j ar or oj dbc7. j ar files and required class files from
the orai 18n. j ar files, if the applet requires Globalization Support

* Your applet classes
4. Ensure that the ZIP or JAR file is not compressed.

You can now make the applet available to users. One way to do this is to add the
APPLET tag to the HTML page from which the applet will be run. For example:

<APPLET W DTH=500 HEI GHT=200 CCODE=JdbcAppl et ARCHI VE=JdbcAppl et. zi p
CODEBASE=Appl et _Sanpl es
</ APPLET>

5.3.5 Overview of Specifying an Applet in an HTML Page

The APPLET tag specifies an applet that runs in the context of an HTML page. The
APPLET tag can have the following attributes: CODE, ARCHI VE, CODEBASE, W DTH, and HEl GHT.
These attributes are described in the following sections:

e CODE_HEIGHT_and WIDTH (page 5-10)
e CODEBASE (page 5-11)
 ARCHIVE (page 5-11)

5.3.5.1 CODE, HEIGHT, and WIDTH

The HTML page that runs the applet must have an APPLET tag with an initial width and
height to specify the size of the applet display area. You use the HEl GHT and W DTH
attributes to specify the size, measured in pixels. This size should not count any
windows or dialog boxes that the applet opens.

The APPLET tag must also specify the name of the file that contains the compiled applet.
Specify the file name with the CODE attribute. Any path specified must be relative to the
base URL of the applet. The path cannot be absolute.

In the following example, JdbcAppl et . cl ass is the name of the compiled applet:

<APPLET CODE="JdbcAppl et" WDTH=500 HEl GHT=200>
</ APPLET>

If you use this form of the CODE attribute, then the classes for the applet and the JDBC
Thin driver must be in the same directory as the HTML page.

Note:

Do not include the file name extension, . cl ass, in the CODE attribute.

ORACLE 5-10

Chapter 5
JDBC in Applets

5.3.5.2 CODEBASE

The CODEBASE attribute is optional. It specifies the base URL of the applet, that is, the
name of the directory that contains the code of the applet. If it is not specified, then the
URL of the document is used. This means that the classes for the applet and the
JDBC Thin driver must be in the same directory as the HTML page. For example, if the
current directory isny_Dir:

<APPLET W DTH=500 HElI GHT=200 CODE=JdbcAppl et CODEBASE="."
</ APPLET>

The attribute, CODEBASE=". ", indicates that the applet resides in the current directory,
nmy_Dir.
Now, consider that the value of CODEBASE is set to Appl et _Sanpl es, as follows:

<APPLET W DTH=500 HEl GHT=200 CODE=JdbcAppl et CODEBASE="Appl et _Sanpl es”
</ APPLET>

This would indicate that the applet resides in the ny_Di r/Appl et _Sanpl es directory.

5.3.5.3 ARCHIVE

ORACLE

The ARCHI VE attribute is optional. It specifies the name of the archive file that contains
the applet classes and resources the applet needs. Oracle recommends using an
archive file, which saves many extra round-trips to the server.

The archive file will be preloaded. If you have more than one archive file in the list,
separate them with commas. In the following example, the class files are stored in the
archive file, JdbcAppl et . zi p:

<APPLET CODE="JdbcAppl et" ARCHI VE="JdbcAppl et . zi p" W DTH=500 HEl GHT=200>
</ APPLET>

Note:

Version 3.0 browsers do not support the ARCH VE attribute.

5-11

Features Specific to JDBC OCI Driver

This chapter introduces the features specific to the Java Database Connectivity
(JDBC) Oracle Call Interface (OCI) driver. It also describes the OCI Instant Client. This
chapter contains the following sections:

e OCI Connection Pooling (page 6-1)

e Client Result Cache (page 6-1)

e Transparent Application Failover (page 6-4)

e OCI Native XA (page 6-5)

e OCl Instant Client (page 6-5)

e About Instant Client Light (English) (page 6-12)

6.1 OCI Connection Pooling

The OCI connection pooling feature is an Oracle-designed extension. The connection
pooling provided by the JDBC OCI driver enables applications to have multiple logical
connections, all of which are using a small set of physical connections. Each call on a
logical connection is routed on to the physical connection that is available at the given
time.

See Also:

OCI Connection Pooling (page 22-1)

6.2 Client Result Cache

ORACLE

Client result cache feature enables client-side caching of SQL query result sets in
client memory. In this way, OCI applications can use client memory to take advantage
of the client result cache to improve response times of repetitive queries.

See Also:

Oracle Call Interface Programmer's Guide

This section covers the following topics:

* Benefits of Client Result Cache (page 6-2)
* Usage Guidelines in JDBC (page 6-2)

6-1

Chapter 6
Client Result Cache

6.2.1 Benefits of Client Result Cache

The benefits of the OCI client-side result set cache are the following:

The JDBC OCI client-side result set cache is completely transparent to OCI
applications and its cache of result set data is kept consistent with any session or
database changes that affect its result set.

Table annotation makes client-side result set work transparently to the JDBC
applications. Otherwise, you must use a hint to enable it. The cache hit avoids the
execution of the query and roundtrip to the server to get the result sets. This can
result in huge performance savings for server resources, for example, server CPU
and server |/O.

¢ See Also:
Table Annotations (page 6-3) and SQL Hints (page 6-3)

The result cache on JDBC OCI client is per-process, so multiple client sessions
can simultaneously use matching cached result sets.

The result cache