ORACLE"

Oracle® OLAP
User's Guide

12c Release 2 (12.2)
E49953-06

January 2017

Oracle OLAP User's Guide, 12c Release 2 (12.2)

E49953-06

Copyright © 2003, 2017, Oracle and/or its affiliates. All rights reserved.
Primary Author: David McDermid

Contributors: David Bardwell, Donna Carver, Ken Chen, Sandeep Desai, Dave DeDonato, Bud Endress, Scott
Feinstein, David Greenfield, Marty Gubar, AA Hopeman, Christopher Kearney, Pam Montalto, Anne
Murphy, Zhiqgi Qiu, Marty Roth

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

PIEIAICE ... ix
ATUAIEIICE ...ttt ettt bttt et e st e st e a e e bt e bt e bt s bt e b e b e st et et et et entent et e bt ebeebesaea iX
Documentation AcCeSSIDILILYcccvvviimiiiiiiiiiiiiiic s iX
Related DOCUIMENTS.co.eiiiiieiiieiirieirte ettt ettt b ettt ettt ettt b et b et ebe e ebe e ebeneene iX
COMVEINTIONS ... ettt ettt ettt ettt ettt e be st b e beea e e bt eate bt et e sae e eeeatenaesate s e eateseente st entesstenteeseenseentenseensenas X

Changes in This Release for Oracle OLAP UsSer's GUIE.......c.ccoomnrnrirneeneenerinsineeenenes Xi
Changes in Oracle Database 12c Release 2 (12.2)c.ccccciuiuiuiiuiiiiiieeecceeeeeeeeneeeieneseneeesenenenes Xi
Changes in Oracle Database 12c Release 1 (12.1)c.ccccuiuiiiiiiiiiiiiiiiiiciicccieieeeeneieeeieereene e Xi

INEW FEALUTES ...ttt ettt b et b et et e b et esae et e sbeebesaeeseeneenbesnnens Xi
Desupported FEatures ... Xii
Other Changes ..ot Xii

1 Overview

1.1 OLAP Technology in the Oracle Database............ccccooiriiiiiiiiiiiiic 1-1
1.1.1 Full Integration of Multidimensional Technologycccccoceeueiiciiciicceecceenenes 11
1.1.2 Ease of Application Developmentc.cccccciuiiiiiiiiiiiiiiicccceeceeeeeenenes 1-2
1.1.3 Ease of AdmMiniStrationcceeerieieiieieiecee sttt ettt es e be e eae e eas 1-2
114 SECUTIEY weoeeiieee e 1-2
1.1.5 Unmatched Performance and Scalability...........cccccoiiiviiininiiiiiie, 1-2
1.1.6 REAUCEA COSES....vimiiiiiiiieiiieiiieteete ettt ettt ettt ettt bt be e 1-3

1.2 Developing Reports and Dashboards Using SQL Tools and Application Builders 1-3

1.3 Overview of the Dimensional Data Modelccccceieiririninineieeeeeeeeeeee e 1-5
T.3.1 CUDES .ttt sttt sttt ettt ae bbbt bbb e ean 1-6
T.3.2 IMIBASUTES ...ttt ettt b e s b e bt sttt ettt et et et et e st et e bt eb e e bt sbesbeebesbesaeneen 1-6
1.3.3 DIMENSIONS ..c.uviiiereiieieniieteeitete ettt ettt et s e se st e ne st e st ese e st emeesstenne st enaesaeennesaeennesueen 1-7
1.3.4 Hierarchies and LevVelscoceeiiieieieieieeeieeeste ettt ettt see s 1-7
T.3.5 ARITIDULES .ottt sttt ettt ettt eae bt be e aeeb e besbeeeeean 1-8

2 Getting Started with Oracle OLAP

2.1 Installing the Sample Schema ... 2-1

2.2 Database Management Tasks...........cccoooiiiiiiiiiiiiii e 2-1

2.3 Granting Privileges to DBAs and Application Developers..........c.cccovvrvrvvirnnnnnernene 2-1
2.4 Getting Started with Analytic Workspace Manager............cccccoeevvvivininnnnnnnnnccceeeenes 2-2
2.4.1 Installing Analytic Workspace Manager ... 2-3
2.4.2 Opening Analytic Workspace Manager.............cccooceueiiirieiniiniciecci e 2-3
2.4.3 Defining a Database CONNECiON..........ccoevieiiciiiciniicc e 2-4
2.44 Opening a Database CONNECHON..........ccccciuiiiiiiiiiiicciiecee e 2-5
2.4.5 Showing the Analytic Workspace Attachment Modes...........cccooevviiniininicinincnnnnn, 2-5
2.4.6 Installing PIUG-INSccoiiimiiiiiiiiiiiiicccc s 2-5
2.5 Upgrading Metadata From Oracle OLAP 10g........c.cccooiriiiiiiiiiiiiiine e 2-6

Creating Dimensions and Cubes

3.1 Designing a Dimensional Model for Your Data.........ccccocoovoriimniiniicniccee 3-1
3.2 Introduction to Analytic Workspace Manager ..o 3-2
3.3 Creating a Dimensional Data Store Using Analytic Workspace Manager...........cccccccevuvuence. 3-3
3.3.1 Adding Functionality to Dimensional Objects...........cccccoiiiiiiiiiniiiiiiine, 3-4
3.3.2 When Does Analytic Workspace Manager Save Changes?ccccoouvicniiiiiinnnnn. 3-4
3.4 Creating DIMEeNSIONS.........ccocrieiiiiiieieiicecie ettt 3-4
3.4.1 Requirements of @ DIMENSIONcccouiuimiiiiiiiiiiiicccccrcccc e 3-5
3.4.2 Creating a DImMeNSioNcccvuiiiiiiiiiiiiiiiiii s 3-6
3.4.3 Creating Levels ... 3-6
3.4.4 Creating Hierarchies ..o 3-7
3.45 Creating Attributes.......cooiiiiiiii 3-9
3.4.6 Creating Measure DImMenSioNns ... 3-10
3.4.7 Mapping DIMEeNSIONScccccoviiiiiiiiiiiiiiiicicc s 3-12
3.4.8 Loading Data Into DImensions ... 3-15
3.49 Displaying the DIMension VIEW ... 3-16
3.4.10 Displaying the Default Hierarchycccccoooioiiiiiiiiiiiicc e, 3-17
3.5 Creating CUDES........c.couiiiiiciiicceec e 3-17
3.5.1 Creating MeEaSUTIES..........cccceiiiiiiiiiiiiiiiiic s 3-19
3.5.2 Mapping CUDES.........ccciiiiiiiiiiiiii s 3-19
3.5.3 Partitioning @ Cubeccoooiiiiiii 3-24
3.5.4 Loading Data INto CUDEScccoriiiiiiiiii e 3-28
3.5.5 Displaying the Data in a Cube........ccccooooiiiiiiiiiiiiiccec e 3-31
3.5.6 Displaying the Cube View Descriptions. ..., 3-32
3.6 Choosing a Data Maintenance Method ..o 3-32
3.6.1 Creating and Executing Custom Cube Scripts.......ccccoeuiiiiiiiieiiiiiiic 3-33
3.6.2 Creating and Executing Maintenance Scriptsccooovviiiiiiiiiiniiiicnns 3-35
3.6.3 Adding Materialized View Capability to a Cube ..o, 3-36
3.7 Supporting Multiple Languages...........ccccccvueuviriiiiiiiiininiiiiiiiiirs s 3-38
3.8 Defining Measure FOIAersccoouiiiiiiiiii e 3-39
3.9 Saving and Re-Creating Dimensional Objects with Object Definitions.........c..cccccoooevrrrnnen. 3-40
3.9.1 Creating Dimensional Objects From XML Templatesccccoveurieieininininnencncncneneenee. 3-40

4

3.9.2 Saving Object Definitions to XML Templatesc...ccccoueurimiririiininicccececeee, 3-41

3.9.3 Creating Analytic Workspaces from EIF Filescccccoiinnicceene, 3-41
3.9.4 Saving Analytic Workspaces to EIF Files..........cccooioiiiiiiiiiiiiiicccccce, 3-42
3.10 Copying and Pasting Dimensional Objectsccccccvvvviniiiiiiininiiiiic 3-42

Querying Dimensional Objects

4.1 Exploring the OLAP VIEWS ... 4-1
411 CUDE VIEWS...oiiiiiiiiiii s 4-2
4.1.2 Dimension and Hierarchy VIews.........cccccooiicc, 4-3

4.2 Creating Basic QUETIESccccuviiiiiiiiiiiiiiiicc e 4-6
42.1 Applying a Filter to Every DIMension ... 4-7
4.2.2 Allowing the Cube to Aggregate the Dataccocoooeiiiiiiiiii 4-9
4.2.3 QUETY PrOCESSING......coieieeiiiiicietectc e s 4-10

4.3 Creating Hierarchical QUETIESccoovviiiiiiiiiiiiiiiiiicc s 4-11
4.3.1 Drilling Down t0 Children..........ccccooiiiiiiiiiiiiiicicicceee e 4-11
4.3.2 Drilling Up t0 Parents..........ccocoiiiiiiiiiiiiiiiiccccc s 4-12
4.3.3 Dirilling Down to Descendants...............cooceueiiieieiniiciciecce i 4-12
4.3.4 Drilling Up t0 ANCESTOLSooviiiiiiiciicci s 4-12

4.4 Using Calculations in QUETIES ..ot 4-13

4.5 Using Attributes for AZEregation ... 4-14
4.5.1 Aggregating Measures Over Attributes..........cccoooveieiiiiiiiiic 4-14
4.5.2 Aggregating Calculated Measures Over Attributes...........ccooooooiiiiiii 4-15

4.6 Joining Cubes to Tables and VIeWs..........cccocoiiiiiiiiiiii 4-16

4.7 Viewing EXxecution PIans ... 4-17
4.7.1 Generating Execttion PIans............cccooiiiiiiiiiiiiiiiiiccccccccccc e 4-17
4.7.2 Types of Execution PIans ... 4-19

4.8 Querying the Data DiCtiONary........ccoocueieiiiiiiieieicci e 4-20

Enhancing Your Database with Analytic Content

5.1 WhatIs a Calculated Measure?...........cccccoiiiiiiiiiiiiiiiiicciiicece e 5-1
5.2 Functions for Defining Calculationscccoueueiiiniiiciiiiicccc s 5-1
52.1 Arithmetic OPerators. ..ot 5-2
5.2.2 Analytic FUNCLONSc.oimiiiiiiiiiiiiii e 5-2
5.2.3 Single-ROW FUNCHONScurviiiiiiic 5-2
5.3 Creating Calculated MeasUIes............cooeuiieiiiiiiiiiiic e 5-3
5.3.1 Modifying a Template ..o 5-5
5.3.2 Choosing a Range of Time Periods........ccccouiiiiiiiiiiiiiicicccccccccccceeene 5-6
5.4 Using Calculation Templatescccccovuriiiiiiiiiiiiiiiiiiiiiiiiirncs 5-6
5.4.1 Arithmetic Calculations. ... 5-7
5.4.2 INAEX ittt 5-7
5.4.3 Prior and FUture Periods...........ccoiiiiiiiiiiiicccccrcccec e 5-8
544 Period t0 Date ... 5-9
545 SRATE ... 5-10

7

Vi

546 RANK. ..ttt ettt sttt e 5-10

5.4.7 Parallel Period ... 5-11
5.4.8 Moving Calculations..........ccciiiiiiiiiiiiiii e 5-12
5.4.9 Cumulative Calculations.......cocociiviiiiiiiiiniiiiiiccce s 5-13
5.4.10 Nested Calculations ... 5-14
5.5 Creating User-Defined EXPIeSSions.........ccccocueiiueiiieiiiciniiciieisee i 5-14
5.5.1 Using the OLAP EXPression SYNtax ... eeecceseeenens 5-15
5.5.2 Expression Syntax Example Using an Arithmetic Operator..........ccccccovoiviniiiininnnnce. 5-15
5.5.3 Free-Form Calculation Example Using an Analytic Function.........c.cccccooeiininnnne. 5-16
5.5.4 Expression Syntax Analytic FUNCHONSccoeiiiiiiiiiic 5-16
5.6 Creating Calculated Measures Using the OLAP DMLcccccoooiiiiiiiiiiicece 5-18
5.6.1 Selecting an OLAP DML Calculation TYPe........ccccooiiiiiiiniiiiiiiccccecccceeenene 5-18
5.6.2 OLAP DML Expression EXamples...........cccooiiiiiiiiiiiiiiicccecccccens 5-19
5.6.3 OLAP DML Function EXamplecccooiiiiiiiiiiicc e 5-20

Developing Reports and Dashboards

6.1 Developing OLAP APPLCAtioNS.........coccuiieiiiiiieieiicct e 6-1
6.2 Developing a Report Using Bl PUbLiSherccooiiiiiiiiie 6-3
6.2.1 Creating an OLAP Report in BI Publisher.........cccccooiiiiiiiniinrrcccccreeeeee 6-3
6.2.2 Creating a Template in Microsoft Wordcccccevvvviviiininiiinirrccicceceecnes 6-5
6.2.3 Generating a Formatted Report.........cccocviviiiiiiiiiiiiiiiiiiiicncns 6-8
6.2.4 Adding Dimension Choice Lists in BI Publisherccccooooiiii, 6-9
6.3 Developing a Dashboard Using Application EXpress..........cccccouoeueieiiiinieiiiiicecceee 6-12
6.3.1 Creating an OLAP Application in Application EXpress........cccccocevvvvevevrnnvrernenenns 6-13
6.3.2 Adding Dimension Choice Lists in Application EXpress.........ccccocevvivivvvvnicinnnnnes 6-14
6.3.3 Dirilling on Dimension COIUMNScccccoviviviiiiiiiiiiiiiiis 6-19

Administering Oracle OLAP

7.1 Setting Database Initialization Parametersccocovvviniiiniiiiinniiics 7-1
7.2 Storage Management............coocurueiiiiiiciiiiiceee ettt 7-2
7.2.1 Creating an Undo Tablespace...........cccoououiiiiiiiiiiiiiii 7-3
7.2.2 Creating Permanent Tablespaces for OLAP USe.........cccccocevuvvvierrrnncenrnrcceeeene 7-3
7.2.3 Creating Temporary Tablespaces for OLAP Use..........cccccoeuvivvivinninnninninnniiineene 7-3
7.2.4 Spreading Data Across Storage ReSOUICESccocueveiicicieiiiicieieicccce e 7-3
7.3 Dictionary Views and System Tablesccooiiiiiii 7-4
7.3.1 Static Data Dictionary VIEWSccccoevviviiiiiiiiiiiniiiiccccc s 7-4
7.3.2 SYStEM TaDIES......cvoiiiiii s 7-4
7.3.3 Analytic Workspace Tables............cccccovviiiiiiiinniiiniiiiiiiiinccnnsess 7-5
7.3.4 Maintenance LOgS........cccoeuiiiiiiiiiiiiiiiiiii s 7-6
7.4 Partitioned Cubes and Parallelism...........cccccovviiviiiiinininiiiis 7-6
7.4.1 Querying Metadata for Cube Partitioning.........c.c.cocevevevererererrerenenenrrseseresreeeeeeeenes 7-7
742 Creating and Dropping Partitionsc.cccecvvvvviiiniriniininiricncrrcccseeeeeeeeeas 7-7
7.4.3 ParalleliSIN ..ot 7-7

7.5 Analyzing Cubes and Dimensions..........ccocceueiiirieiiiiiiicieeec s 7-10

7.6 Monitoring Analytic WOTKSPACES.........ccciiiiiiiiiiiiiiicccccccciee e enenenes 7-11
7.6.1 Dynamic Performance VIEWSccccocoviiiiiiiiriniiiiiiiiiciicreecseeeeeeeeeeee s 7-11
7.6.2 Basic Queries for Monitoring the OLAP Optioncccccovviviivniiiiniiiine, 7-12
7.6.3 OLAP DBA SCIIPES ..ot 7-14
7.6.4 Scripts for Monitoring Performance............cccoooeuiiiiiiinini 7-15
7.6.5 Monitoring Disk SPaCecouveviviiiiiriririiicree s 7-15

7.7 About Backing Up and Recovering Analytic Workspaces...........ccccccoveueiciiiicciciccnenas 7-15

7.8 About Copying Analytic WOIKSPaces ... 7-16

7.9 About Saving Dimensional Object Definitionscccooriiiiiiiic 7-16
7.9.1 About XML Templatescccccoviiiiiiiiiiiiiiiiiiiiccccccc s 7-17
7.9.2 ABOUL EIF FIESoviiiiiiiiiic 7-17

7.10 Cube Materialized VIEWSccccooiiiiiiiiiiiiiicccccccee e 7-18
7.10.1 Acquiring Information From the Data Dictionaryc.cocococeieieinieiiicnieiicce, 7-18
7.10.2 Initiating a Data Refresh...........ccooooiiiiiiiii s 7-19
7.10.3 Refresh Methods........ccoouiiiiiiiiiiiiiiiiiii s 7-20
7.10.4 Using QUery REWTItecccoiiiiiiiiiiiiiiiiccc s 7-22
7.10.5 Acquiring Additional Information About Cube Materialized Views 7-22

Security

8.1 Security of Multidimensional Data in Oracle Database.............ccccccovvivivinniniinniniinne, 8-1
8.1.1 Security Managementcoccueioiiiieieiiice et 8-1
8.1.2 TYPeS Of SECUIILYouviieiiiiiiciici s 8-2
8.1.3 About the PriviIeges.......cocoviiiiiririiiireccere s 8-2
8.1.4 Layered SECUTILYcccovviiiiiiiiiiiiiiirrcc s 8-2

8.2 Setting ObJECct SECUTILYc.cveviviiiiiiiiiiiiiiiiiiciirc s 8-3
8.2.1 Using SQL to Set Object SeCuritycooiiriioiiiiieecc 8-3
8.2.2 Using Analytic Workspace Manager to Set Object Securitycocoeueveiviicieiniinnnnnn. 8-5

8.3 Creating Data Security Policies on Dimensions and Cubes...........cccccoevuvvvvvrinnvnnnneenes 8-7

8.4 Creating OLAP Data Security Rolesccoovimiiniiiiiiiiiie s 8-10

Advanced Aggregations

9.1 What Is AgEregation?..........cccceuviiiiiiiiiiiriiiiiiiicirc s 9-1
9.2 Aggregation OPEerators ..ottt 9-3
9.2.1 BasiC OPErators.........cceuiiiiuiieiiicie ettt 9-3
9.2.2 Scaled and Weighted Operators.........ccccovviiiiiiiniiiiiiiiiiiae 9-3
9.2.3 Hierarchical OPerators ... 9-4
9.3 When Does Aggregation Order Matter?ccccovviiiiiiiniiiiniinnsses 9-4
9.3.1 Using the Same Operator for All Dimensions of a Cube...........ccooviiiiiiinnnn. 9-5
9.3.2 Example: Mixing Aggregation Operators............ccocoeueueiirieiiiiiinieicicieecc 9-6
9.4 Example: Aggregating the Units Cube.........cccoouiiiiiiiriiiiiiiccccceecreeee s 9-6
9.4.1 Selecting the Aggregation Operators and Hierarchies...........cccccoeoiiiiiiiniiiinnnnnne. 9-6
9.4.2 Choosing the Percentage of Precomputed Values..........cccocoooorininiiiininiciicc, 9-7

Vii

A Designing a Dimensional Model

Al

A2
A3

Case StUAY SCENATIOc.cviiiiecieieic e e A-1
A.1.1 Reporting ReqUIirements ..o A-2
AL2 BUSINESS GOAISooouviiiiiici s A-2
A.1.3 Information REQUITEMENLS.ccccoiuimimimiiiiiiiiiiiiiccccc e A-3
Identifying Required Business Facts..........ccoooiiiiiiiiiiiiiiicccs A-5
Designing a Dimensional Model for Global Computing............cccoeueveiiiiiiiiiiiiccicce e A-6
A3.1 Identifying DiMeNnSIiONS.........cccoeiiuiiiueiiiieiiieiieiei e A-6
A3.2 Identifying Levels........ooiiiccccc e A-6
A.3.3 Identifying Hierarchies...........ccoooiiiiiiiiiiiiiiccccccee A-6
A.3.4 Identifying Stored MeEaSUIeScccoceueiiimrieieiiiciciee e A-7

B Keyboard Shortcuts

Bl MeENU Barcooiiiiiiiii e B-1
B.2 Navigation TIeeccccoeiiiiiiiiiiiiiiii s B-1
B.3 Property SReets ... B-1
B4 SRULIE KEYS.. .o s B-2
B.5 Mapping Canvas ...t B-2
Glossary
Index

viii

Audience

Preface

Oracle OLAP User’s Guide explains how SQL applications can extend their analytic
processing capabilities and manage summary data by using the OLAP option of
Oracle Database. It also provides information about managing resources for OLAP.

The preface contains these topics:

* Audience (page ix)

¢ Documentation Accessibility (page ix)
¢ Related Documents (page ix)

¢ Conventions (page x)

This manual is intended for DBAs who perform these tasks:
¢ Develop and manage a data warehouse
* Create and maintain dimensional data objects

® Administer Oracle Database with the OLAP option

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: / / www. or acl e. conl pl s/ t opi ¢/ | ookup?
ct x=acc& d=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support
through My Oracle Support. For information, visit ht t p: / / www. or acl e. coni pl s/
t opi ¢/ | ookup?ct x=acc& d=i nfo orvisithttp://ww. oracl e. conl pl s/

t opi ¢/ | ookup?ct x=acc&i d=t r s if you are hearing impaired.

Related Documents

For more information about the OLAP option, see the following manuals in the Oracle
Database 12¢ documentation set:

e Oracle Database SQL Language Reference

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Conventions

Contains complete syntax descriptions of the SQL CREATE, ALTER, and DELETE
syntax for managing cubes, cube dimensions, and other dimensional database
objects.

Oracle Database Reference

Contains full descriptions of the data dictionary views for cubes, cube dimensions,
and other dimensional database objects.

Oracle Database PL/SQL Packages and Types Reference

Contains full descriptions of DBMS_CUBE and several other PL/SQL packages for
managing cubes.

Oracle OLAP DML Reference

Contains a complete description of the OLAP Data Manipulation Language (OLAP
DML).

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated

with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for

which you supply particular values.

nmonospace Monospace type indicates commands within a paragraph, URLs, code

in examples, text that appears on the screen, or text that you enter.

Changes in This Release for Oracle OLAP
User's Guide

This preface lists changes in Oracle OLAP User’s Guide.

Changes in Oracle Database 12c Release 2 (12.2)

This release contains no changes in Analytic Workspace Manager since the previous
release.

Changes in Oracle Database 12c Release 1 (12.1)

The following are changes in Oracle Database 12¢ Release 1 (12.1) and for Analytic
Workspace Manager in that release. Analytic Workspace Manager is the primary tool
for creating, developing, and managing dimensional objects in Oracle Database.

New Features

The following Analytic Workspace Manager features are new in this release:

¢ Connecting to a database using a service name.

See "Defining a Database Connection (page 2-4)".

® Specifying an attachment mode when connecting an analytic workspace to an
Oracle Database.

"

See "Showing the Analytic Workspace Attachment Modes (page 2-5)

* Creating calculated measures that are based on OBIEE-compatible SQL function
expressions.

If this feature is enabled, then Analytic Workspace Manager automatically creates
additional calculated measures as needed for processing a calculated measure that
you create. The cube that contains the calculated measures is suitable for exporting
to Oracle Business Intelligence Enterprise Edition (OBIEE). You can export a cube
to OBIEE by using the Export to OBIEE Administrator plug-in.

See "Creating Cubes (page 3-17)" and "Creating Calculated Measures (page 5-3)".
* Creating a fact view with a measure dimension table.

The fact view pivots a fact table so that the measures identify rows instead of
columns.

See "Creating Measure Dimensions (page 3-10)".

Xi

Creating a measure dimension.

You can now create a measure dimension, which has measures as dimension
members. Dimensions now have a Class type, which is either None or Measure.

See "Creating Measure Dimensions (page 3-10)".

Saving the SQL of a mapping to the clipboard or to a file.
See "Mapping Cubes (page 3-19)"

Specifying the aggregate functions SUM MAX, M N, AVG, and COUNT when mapping
a cube to data sources.

See "Aggregate Functions (page 3-21)".

Partitioning a cube on multiple levels of a dimension hierarchy.
See "Partitioning a Cube (page 3-24)".
Saving an object definition to, or create an object from, a table.

Previously, you could save an object definition as an XML template in a file. You
can now save an XML template in a database table. You can use the XML template
to re-create the dimensional objects.

See "Saving and Re-Creating Dimensional Objects with Object Definitions
(page 3-40)".
Copying and pasting objects.

You can now copy objects such as an analytic workspace, a cube, a dimension, or a
measure and paste that object in an appropriate location.

See "Copying and Pasting Dimensional Objects (page 3-42)".

Joining cubes to tables and views.

Oracle Database 12¢ introduces the CUBE JOIN operation. This operation improves
the performance of joining a cube to a table or a view.

See "Joining Cubes to Tables and Views (page 4-16)".

Desupported Features

Other Changes

The following are additional changes in the release:

Xii

The following features are no longer supported by Oracle. See Oracle Database Upgrade
Guide for a complete list of desupported features in this release.

® Desupport of Common Warehouse Metamodel (CWM) for Oracle OLAP

¢ Data security policies use Oracle Real Application Security.

When you create data security policies for cubes or dimensions, Oracle OLAP uses
Oracle Real Application Security (ORAS) instead of Extensible Data Security (XDS),
which it used in Oracle Database 11¢ releases. When you upgrade Oracle Database
from an 11g release to 12c, then your XDS data security policies are automatically
converted to ORAS.

Note:

Data security roles defined in an 11g Oracle Database instance are not
automatically converted to ORAS. Before you upgrade an 11¢ database to 12c,
you must delete any data security roles that are defined in the 11g database.
After the upgrade, you may use Analytic Workspace Manager 12¢ to define
the data security roles again.

If you upgrade an 11g database to 12c without deleting the 11¢ data security
roles, then any data security policies that include a data security role are
invalid in the 12c database.

Some differences in the data security implementation in 12¢ are the following;:

— Only the owner of an object can create a data security policy or OLAP data
security role. In 11g, the owner and anyone who had write privileges for the
object could create a data security policy or OLAP data security role.

— You can disable the data security policy for a dimension or a cube and then
enable it again.

— You can have create more than one OLAP data security role; however, you can
only add one data security role to a dimension or a cube. In 11g, you could add
more than one.

See Also:

— "Creating Data Security Policies on Dimensions and Cubes (page 8-7)" for
information on creating data security policies in Analytic Workspace
Manager

— "Disabling and Enabling Data Security (page 8-9)"

— Oracle Database Real Application Security Administrator's and Developer’s
Guide for information on configuring data security in Oracle Database

Viewing information about the partitions of a cube.

The Partition Member Analysis subtab of the Partitioning properties of a cube
displays information about the partitioning of the cube. This information replaces
the Cube Partitioning Advisor of previous releases.

See Also:

— "Analyzing Partition Members (page 3-27)"

Oracle Enterprise Manager Cloud Control (Cloud Control)

In previous releases of Oracle Database, you used Oracle Enterprise Manager
Database Control (Database Control) to manage database performance tuning from
a graphical user interface. In this release, you can use the Cloud Control graphical
user interface.

You must install Cloud Control separately from Oracle Database.

Xiii

See Also:

— Oracle Enterprise Manager Cloud Control Basic Installation Guide for
information on installing Cloud Control

"Monitoring Analytic Workspaces (page 7-11)"

Xiv

1

Overview

This chapter introduces the powerful analytic resources available in the Oracle
Database with the OLAP option. It consists of the following topics:

* OLAP Technology in the Oracle Database (page 1-1)

¢ Developing Reports and Dashboards Using SQL Tools and Application Builders
(page 1-3)

* Overview of the Dimensional Data Model (page 1-5)

1.1 OLAP Technology in the Oracle Database

Oracle Database offers the industry's first and only embedded OLAP server. Oracle
OLAP provides native multidimensional storage and speed-of-thought response times
when analyzing data across multiple dimensions. The database provides rich support
for analytics such as time series calculations, forecasting, advanced aggregation with
additive and nonadditive operators, and allocation operators. These capabilities make
the Oracle database a complete analytical platform, capable of supporting the entire
spectrum of business intelligence and advanced analytical applications.

1.1.1 Full Integration of Multidimensional Technology

By integrating multidimensional objects and analytics into the database, Oracle
provides the best of both worlds: the power of multidimensional analysis along with
the reliability, availability, security, and scalability of the Oracle database.

Oracle OLAP is fully integrated into Oracle Database. At a technical level, this means:

¢ Cubes and other dimensional objects are first class data objects represented in the
Oracle data dictionary.

® Cubes and other dimensional objects are supported by standard SQL syntax in the
CREATE, ALTER, DROP, and SELECT statements.

* The OLAP engine runs within the kernel of Oracle Database.

¢ Dimensional objects are stored in Oracle Database in their native multidimensional
format.

¢ Data security is administered in the standard way, by granting and revoking
privileges to Oracle Database users and roles.

The benefits to your organization are significant. Oracle OLAP offers the power of
simplicity: One database, standard administration and security, standard interfaces
and development tools.

Overview 1-1

OLAP Technology in the Oracle Database

1.1.2 Ease of Application Development

Oracle OLAP makes it easy to enrich your database and your applications with
interesting analytic content. Native SQL access to Oracle multidimensional objects and
calculations greatly eases the task of developing dashboards, reports, business
intelligence (BI) and analytical applications of any type compared to systems that offer
proprietary interfaces. Moreover, SQL access means that the power of Oracle OLAP
analytics can be used by any database application, not just by the traditional, limited
collection of OLAP applications.

1.1.3 Ease of Administration

1.1.4 Security

Because Oracle OLAP is completely embedded in the Oracle database, there is no
administration learning curve as is typically associated with standalone OLAP servers.
You can leverage your existing DBA staff, rather than invest in specialized
administration skills.

A major administrative advantage of Oracle's embedded OLAP technology is
automated cube maintenance. With standalone OLAP servers, the burden of
refreshing the cube is entirely the responsibility of the administrator. This can be a
complex and potentially error-prone job. You must create procedures to extract the
changed data from the relational source, move the data from the source system to the
system running the standalone OLAP server, load and rebuild the cube. You must
take responsibility for the security of the deltas (changed values) during this process
as well.

With Oracle OLAP, in contrast, cube refresh is handled entirely by the Oracle
database. The database tracks the staleness of the dimensional objects, automatically
keeps track of the deltas in the source tables, and automatically applies only the
changed values during the refresh process. You simply schedule the refresh at
appropriate intervals, and Oracle Database takes care of everything else.

With Oracle OLAP, standard Oracle Database security features are used to secure your
multidimensional data.

In contrast, with a standalone OLAP server, administrators must manage security
twice: once on the relational source system and again on the OLAP server system.
Additionally, they must manage the security of data in transit from the relational

system to the standalone OLAP system.

1.1.5 Unmatched Performance and Scalability

1-2 User's Guide

Business intelligence and analytical applications are dominated by actions such as
drilling up and down hierarchies and comparing aggregate values such as period-
over-period, share of parent, projections onto future time periods, and a myriad of
similar calculations. Often these actions are essentially random across the entire space
of potential hierarchical aggregations. Because Oracle OLAP precomputes or
efficiently computes as needed all aggregates in the defined multidimensional space, it
delivers unmatched performance for typical business intelligence applications.

Oracle OLAP queries take advantage of Oracle shared cursors, dramatically reducing
memory requirements and increasing performance.

Developing Reports and Dashboards Using SQL Tools and Application Builders

When Oracle Database is installed with Real Application Clusters (Oracle RAC),
OLAP applications receive the same benefits in performance, scalability, fail over, and
load balancing as any other application.

1.1.6 Reduced Costs

All these features add up to reduced costs. Administrative costs are reduced because
existing personnel skills can be leveraged. Moreover, the Oracle database can manage
the refresh of dimensional objects, a complex task left to administrators in other
systems. Standard security reduces administration costs as well. Application
development costs are reduced because the availability of a large pool of application
developers who are SQL knowledgeable, and a large collection of SQL-based
development tools means applications can be developed and deployed more quickly.
Any SQL-based development tool can take advantage of Oracle OLAP. Hardware
costs are reduced by Oracle OLAP's efficient management of aggregations, use of
shared cursors, and Oracle RAC, which enables highly scalable systems to be built
from low-cost commodity components.

1.2 Developing Reports and Dashboards Using SQL Tools and
Application Builders

Analysts can choose any SQL query and analysis tool for selecting, viewing, and
analyzing the data. You can use your favorite tool or application, or use a tool
supplied with Oracle Database.

Figure 1-1 (page 1-4) displays a portion of a dashboard created in Oracle

Application Express, which is distributed with Oracle Database. Application Express
generates HTML reports that display the results of SQL queries. It only understands
SQL; it has no special knowledge of dimensional objects.

This dashboard demonstrates information-rich calculations such as ratio, share, prior
period, and cumulative total. Separate tabs on the dashboard present Profitability
Analysis, Sales Analysis, and Product Analysis. Each tab presents the data in dials, bar
charts, horizontal bar charts, pie charts, and cross-tabular reports. A drop-down list in
the upper left corner provides a choice of Customers.

The dial displays the quarterly profit margin. To the right is a bar chart that compares
current profits with year-ago profits.

Overview 1-3

Developing Reports and Dashboards Using SQL Tools and Application Builders

Figure 1-1 Dashboard Created in Oracle Application Express

Select Reglon to Analyze

Sebect Cirstomer | Al Customers | (D)

Profit Margin Last Quarter Profit Trend

4000000

W Profit
W Pricr Yaar

3000000

2000000

1009000

0L0S Q205 QX085 o405 QLO06 Q106 Q306 Q408

Profit by Product Family Last Quarter Profit by Product Last Quarter

Share of Parent

¥TO Change From Year

™
meniemgonIT™

Portable PCs, 9%
Csktop Pos, 40%

Multimadie sgaaker

Enbamal 48X COOROM USR

Multimadie ipaakar- 37 coras

The pie chart in Figure 1-2 (page 1-4) displays the percent share that each product
family contributed to the total profits in the last quarter.

Figure 1-2 Contributions of Product Families to Total Profits

Profit by Product Family Last Quarter

Share of Parent

Modemsﬂ;!@ﬂtc&% 1%
Mermary, 7

Portable PCs, 2% -

Desktop PCs, 40%

CD/DVD, 38%

The horizontal bar chart in Figure 1-3 (page 1-5) displays ranked results for locations
with the largest gains in profitability from a year ago. Decision makers can see at a
glance how each location improved by the last quarter.

1-4 User's Guide

Overview of the Dimensional Data Model

Figure 1-3 Ranking of Percent Change in Year-to-Date Profits From Year Ago

Profit by Location Last Quarter

¥TD Change From Year Ago

US Marine Svcs Washington
Dept. of Labor Mew Crlzans
Roval Air Force Bligh

US Dept. of Research Truro
Jeffrey May Atlanta

IBS Cormputers Mew Orleans
SHG Sacramento

Businessz World Mew vork
Bavarian Indust, GrbH Munich
Tar Heel Cormputing Mayodan
Computer Services Athens
Computer Services Toronto
Cormputer Wareshouse San Diego
UK Env Dept Glasgow

Bavarian Indust, GmbH Bonn

0% 20% 40% 60% 50% 100%

Figure 1-4 (page 1-5) compares current profits with year-to-date, year-to-date year
ago, the change between year-to-date and year-to-date year ago, and percent change
between year-to-date and year-to-date year-ago profits. The cross-tabular report
features interactive drilling, so that decision makers can easily see the detailed data
that contributed to a parent value of interest.

Figure 1-4 Year-to-Date Profits Compared to Year Ago

Profit Reporting
Product | Customer Profit YTD AT UL A
| = ¥r Ago ¥r Ago
Total Total
1geg 188 08 7049206 | 7,249,206
1ngg | lotal el 91002827 | 9190287 | 7245206 | 1,940,986 2677
e FProduct Customer
apgg | Lotal dtal 5,880360 | G8E0,364 | 0160282 | -300.813 337
= | Product | Customer | | | |
2007 | 1ot el 8,658,271 | £658,271 | 0860369 | -222,008 -250
= Froduct | Customer | | | |
2ppz | Lot LiE] BA54225 | 5,854326 | BES8271 | -1,.803.045 -2083
== | Product_ | _Customer_ | | | |
s0p3 | 10l Lotal B730685 | 8,730,605 | 6384325 | 1876370 2737
Product Customer ! : ! ! ! ! ! !
004 | 1081 otal 111765647 | 11175647 | 8,730,605 | 2444052 2300
Product Custormer ! ! ! ! ! ! ! !
zops | Lot fibta) 10,544,532 | 10544532 | 11175647 | 531115 565
e Product Customer
apgp | Lotal Lotal 11,024,547 | 11,024547 | 10544532 | 480015 455
= | Product Customer

1.3 Overview of the Dimensional Data Model

Dimensional objects are an integral part of OLAP. Because OLAP is on-line, it must
provide answers quickly; analysts pose iterative queries during interactive sessions,
not in batch jobs that run overnight. And because OLAP is also analytic, the queries
are complex. The dimensional objects and the OLAP engine are designed to solve
complex queries in real time.

The dimensional objects include cubes, measures, dimensions, attributes, levels, and
hierarchies. The simplicity of the model is inherent because it defines objects that
represent real-world business entities. Analysts know which business measures they
are interested in examining, which dimensions and attributes make the data

Overview 1-5

Overview of the Dimensional Data Model

1.3.1 Cubes

meaningful, and how the dimensions of their business are organized into levels and
hierarchies.

Figure 1-5 (page 1-6) shows the general relationships among dimensional objects.

Figure 1-5 Diagram of the OLAP Dimensional Model

Cube

Dimensions

Levels Hierarchies Afttributes

Measures

The dimensional data model is highly structured. Structure implies rules that govern
the relationships among the data and control how the data can be queried. Cubes are
the physical implementation of the dimensional model, and thus are highly optimized
for dimensional queries. The OLAP engine leverages this innate dimensionality in
performing highly efficient cross-cube joins for inter-row calculations, outer joins for
time series analysis, and indexing. Dimensions are pre-joined to the measures. The
technology that underlies cubes is based on an indexed multidimensional array model,
which provides direct cell access.

The OLAP engine manipulates dimensional objects in the same way that the SQL
engine manipulates relational objects. However, because the OLAP engine is
optimized to calculate analytic functions, and dimensional objects are optimized for
analysis, analytic and row functions can be calculated much faster in OLAP than in
SQL.

The dimensional model enables Oracle OLAP to support high-end business
intelligence tools and applications such as OracleBI Discoverer Plus OLAP, OracleBI
Spreadsheet Add-In, OracleBI Suite Enterprise Edition, BusinessObjects Enterprise,
and Cognos ReportNet.

Cubes provide a means of organizing measures that have the same shape, that is, they
have the exact same dimensions. Measures in the same cube can easily be analyzed
and displayed together.

A cube usually corresponds to a single fact table or view.

1.3.2 Measures

1-6 User's Guide

Measures populate the cells of a cube with the facts collected about business
operations. Measures are organized by dimensions, which typically include a Time
dimension.

An analytic database contains snapshots of historical data, derived from data in a
transactional database, legacy system, syndicated sources, or other data sources. Three
years of historical data is generally considered to be appropriate for analytic
applications.

Overview of the Dimensional Data Model

Measures are static and consistent while analysts are using them to inform their
decisions. They are updated in a batch window at regular intervals: weekly, daily, or
periodically throughout the day. Some administrators refresh their data by adding
periods to the time dimension of a measure, and may also roll off an equal number of
the oldest time periods. Each update provides a fixed historical record of a particular
business activity for that interval. Other administrators do a full rebuild of their data
rather than performing incremental updates.

A critical decision in defining a measure is the lowest level of detail. Users may never
view this detail data, but it determines the types of analysis that can be performed. For
example, market analysts (unlike order entry personnel) do not need to know that
Beth Miller in Ann Arbor, Michigan, placed an order for a size 10 blue polka-dot dress
on July 6, 2006, at 2:34 p.m. But they might want to find out which color of dress was
most popular in the summer of 2006 in the Midwestern United States.

The base level determines whether analysts can get an answer to this question. For this
particular question, Time could be rolled up into months, the Customer dimension
could be rolled up into regions, and the Product dimension could be rolled up into
items (such as dresses) with an attribute of color. However, this level of aggregate data
could not answer the question: At what time of day are women most likely to place an
order? An important decision is the extent to which the data has been aggregated
before being loaded into a data warehouse.

Calculated measures return values that are computed at run time from data stored in
one or more measures. Like relational views, calculated measures store queries against
data stored in other objects. Because calculated measures do not store data, you can
create dozens of them without increasing the size of the database. You can use them as
the basis for defining other calculated measures, which adds depth to the types of
calculations you can create.

1.3.3 Dimensions

Dimensions contain a set of unique values that identify and categorize data. They form
the edges of a cube, and thus of the measures within the cube. Because measures are
typically multidimensional, a single value in a measure must be qualified by a
member of each dimension to be meaningful. For example, the Sales measure has four
dimensions: Time, Customer, Product, and Channel. A particular Sales value
(43,613.50) only has meaning when it is qualified by a specific time period (Feb-06), a
customer (Warren Systems), a product (Portable PCs), and a channel (Catalog).

Base-level dimension values correspond to the unique keys of a fact table.

A measure dimension is a dimension that has measures as dimension members. With
a measure dimension, you can generate calculated measures for all of the measures in
the cube simultaneously. Also, you do not have to create a new set of calculated
measures for each measure that you add to the cube. The existing calculated measures
apply to the new measure in the measure dimension. This is especially useful if you
create new measures frequently.

1.3.4 Hierarchies and Levels

A hierarchy is a way to organize data at different levels of aggregation. In viewing
data, analysts use dimension hierarchies to recognize trends at one level, drill down to
lower levels to identify reasons for these trends, and roll up to higher levels to see
what affect these trends have on a larger sector of the business.

Overview 1-7

Overview of the Dimensional Data Model

1.3.4.1 Level-Based Hierarchies

Each level represents a position in the hierarchy. Each level above the base (or most
detailed) level contains aggregate values for the levels below it. The members at
different levels have a one-to-many parent-child relation. For example, QL- 05 and
Q- 05 are the children of 2005, thus 2005 is the parent of Ql- 05 and (2- 05.

Suppose a data warehouse contains snapshots of data taken three times a day, that is,
every 8 hours. Analysts might normally prefer to view the data that has been
aggregated into days, weeks, quarters, or years. Thus, the Time dimension needs a
hierarchy with at least five levels.

Similarly, a sales manager with a particular target for the upcoming year might want
to allocate that target amount among the sales representatives in his territory; the
allocation requires a dimension hierarchy in which individual sales representatives are
the child values of a particular territory.

Hierarchies and levels have a many-to-many relationship. A hierarchy typically
contains several levels, and a single level can be included in multiple hierarchies.

Each level typically corresponds to a column in a dimension table or view. The base
level is the primary key.

1.3.4.2 Value-Based Hierarchies

Although hierarchies are typically composed of named levels, they do not have to be.
The parent-child relations among dimension members may not define meaningful
levels. For example, in an employee dimension, each manager has one or more
reports, which forms a parent-child relation. Creating levels based on these relations
(such as individual contributors, first-level managers, second-level managers, and so
forth) may not be meaningful for analysis. Likewise, the line item dimension of
financial data does not have levels. This type of hierarchy is called a value-based
hierarchy.

1.3.5 Attributes

1-8 User's Guide

An attribute provides additional information about the data. Some attributes are used
for display. For example, you might have a product dimension that uses Stock
Keeping Units (SKUs) for dimension members. The SKUs are an excellent way of
uniquely identifying thousands of products, but are meaningless to most people if
they are used to label the data in a report or a graph. You would define attributes for
the descriptive labels.

You might also have attributes like colors, flavors, or sizes. This type of attribute can
be used for data selection and answering questions such as: Which colors were the
most popular in women's dresses in the summer of 2005? How does this compare with
the previous summer?

Time attributes can provide information about the Time dimension that may be useful
in some types of analysis, such as identifying the last day or the number of days in
each time period.

Each attribute typically corresponds to a column in dimension table or view.

2

Getting Started with Oracle OLAP

This chapter describes the preliminary steps you should take to use Oracle OLAP. It
assumes that you have installed Oracle Database 12c Enterprise Edition. The OLAP
option is installed automatically as part of a Basic installation of Oracle Database.

Note:

To start querying dimensional objects immediately, install the Global analytic
workspace, as described in "Installing the Sample Schema (page 2-1)". Then
follow the instructions in Querying Dimensional Objects (page 4-1).

This chapter includes the following topics:

* Installing the Sample Schema (page 2-1)

Database Management Tasks (page 2-1)

Granting Privileges to DBAs and Application Developers (page 2-1)

Getting Started with Analytic Workspace Manager (page 2-2)

Upgrading Metadata From Oracle OLAP 10g (page 2-6)

2.1 Installing the Sample Schema

You can download and install the sample Global schema from the Oracle website and
use it to try the examples shown throughout this guide:

http: //ww. oracl e. com t echnet wor k/ dat abase/ ent er pri se-edi ti on/
downl oads/ gl obal - 11g- schena- 1- 128202. zi p

Instructions for installing the schema are provided in the READVE file.

2.2 Database Management Tasks

You should create undo, permanent, and temporary tablespaces that are appropriate
for use by dimensional objects. Follow the recommendations in "Storage Management

(page 7-2)".

2.3 Granting Privileges to DBAs and Application Developers

Anyone who must create or manage dimensional objects in Oracle Database needs the
necessary privileges. These privileges are different from those needed just to query the
data stored in dimensional objects. The security system is discussed in Security

(page 8-1).

DBAs and application developers need the following roles and privileges.

Getting Started with Oracle OLAP 2-1

http://www.oracle.com/technetwork/database/enterprise-edition/downloads/global-11g-schema-1-128202.zip
http://www.oracle.com/technetwork/database/enterprise-edition/downloads/global-11g-schema-1-128202.zip

Getting Started with Analytic Workspace Manager

To create dimensional objects in the user's own schema:
e OLAP_USERToOle

e CREATE SESSI ONprivilege

To create dimensional objects in different schemas:
e OLAP_DBATrole
* CREATE SESSI ONprivilege

To administer data security:

e OLAP_XS_ADM Nrole

To create cube materialized views in the user's own schema:
e CREATE MATERI ALI ZED VI EWprivilege
e CREATE DI MENSI ON privilege

* ADVI SORprivilege

To create cube materialized views in different schemas:
e CREATE ANY MATERI ALl ZED VI EWprivilege

e CREATE ANY DI MENS| ONprivilege

e ADVI SORprivilege

Users also need an unlimited quota on the tablespace in which the dimensional objects
are stored. The tablespaces should be defined specifically for OLAP use, as described
in Administering Oracle OLAP (page 7-1).

If the source tables are in a different schema, then the owner of the dimensional objects
must have READ or SELECT object privileges on those tables.

Example 2-1 (page 2-2) shows the SQL statements for creating the GLOBAL user.
Example 2-1 SQL Statements for Creating the GLOBAL User

CREATE USER "GLOBAL" | DENTI FI ED BY password
DEFAULT TABLESPACE gl 0
TEMPORARY TABLESPACE gl ot np
QUOTA UNLIM TED ON gl o
PASSWORD EXPI RE;

GRANT CLAP_USER TO GLOBAL;

GRANT CREATE SESSI ON TO GLOBAL,;
GRANT CLAP_XS_ADM N TO GLOBAL;

2.4 Getting Started with Analytic Workspace Manager

In this section, you learn how to install Analytic Workspace Manager software and
make a connection to Oracle Database.

2-2 User's Guide

Getting Started with Analytic Workspace Manager

2.4.1 Installing Analytic Workspace Manager

Analytic Workspace Manager is distributed on the Oracle Database Client installation
disk.

If you are installing on the same system as the database, then select a Custom
installation and install into the same Oracle home directory as the database. Select
OLAP Analytic Workspace Manager and Worksheet from the list of components.

If you are installing on a remote system, then select either an Administrator or a
Custom installation. The Administrator choice automatically installs Analytic
Workspace Manager on the client.

See Also:

The installation guide for your client platform.

2.4.2 Opening Analytic Workspace Manager

Use the appropriate procedure for your platform.

On Windows, to open Analytic Workspace Manager:

e From the Start menu, select Oracle - Oracle_home, then Integrated Management
Tools, and then OLAP Analytic Workspace Manager and Worksheet.

On Linux, to open Analytic Workspace Manager:

e From the shell command line, enter this command:
$ORACLE_HOME/ ol ap/ awn awm sh

Figure 2-1 (page 2-4) shows the initial display.

Getting Started with Oracle OLAP 2-3

Getting Started with Analytic Workspace Manager

Figure 2-1 Opening Analytic Workspace Manager

B! Analytic Workspace Manager !E u
Eile Tools Help
=53 a

1 ORACLE OLAP Option

]
3‘-’ Cetting Started With Tutorfals, Demos and Yideos

[@ Documentation

= OLAP Discussion Forurm on OTM

Download Samples, Anakdic Workspace Manager Updates and Helpful Add-ins

L 1

Display the live OLAP Home Page in a browser

L

Display the live OLAP Home Page here in this window for the latest OLAP tips,
news, add-ins and morel

To display the live OLAP Home Page in this window you need an internet connection. Your
network might require the use of a proxy server. To specifiy a proxy server, choose the
Configuration command from the Tools menu and enter a proxy server and port. Obtain
information about your proxy Server Trorm your network adminstrator or by examining
connection settings in your internet browser, L

s, 2

Exception: EI

If Analytic Workspace Manager does not have access to the Internet, the property
viewer shows links to several useful sites. It also shows an exception, because Analytic
Workspace Manager cannot display the OLAP home page. To connect to the Internet,
you typically need to identify the proxy server.

To identify the proxy server:

1. From the Tools menu, select Configuration to display the Configuration dialog
box.

2. Under OLAP Home Page Settings, enter the address of the proxy server.
3. Enter the port number for the proxy server, if it is not default port 80.

4. Click OK to save these settings. The OLAP Home page appears the next time you
start Analytic Workspace Manager.

2.4.3 Defining a Database Connection

2-4 User's Guide

You can define a connection to each database that you use for OLAP. After you define
a connection, the database instance is listed in the navigation tree for you to access at
any time.

To define a database connection:

1. Right-click the top Databases folder in the navigation tree, then select New
Database Connection from the shortcut menu.

2. Complete the New Database Connection dialog box.

Figure 2-2 (page 2-5) shows the connection information on the General tab of the
New Database Connection dialog box.

Getting Started with Analytic Workspace Manager

Figure 2-2 Defining a Database Connection

Ceneral

Enter description and connection information

Description: [relzc |

Connection Infarmation: |I0calhost:1521:rell2c |

Database THS Alias, hosthame:port:sid or hostname:port fservice_name

2.4.4 Opening a Database Connection

To connect to a database:
1. Click the plus icon (+) next to a database connection in the navigation tree.

2. Supply your database user name and password in the Connect to Database dialog
box.

2.4.5 Showing the Analytic Workspace Attachment Modes

You can specify an analytic workspace attachment mode when you open an analytic
workspace. The modes are the following:

e Read only

In this mode a user can view the analytic workspace objects and data but cannot
create or change objects. The user can export an object by copying it or saving it as
a template. Any number of users can open an analytic workspace in Read Only
mode.

e Read Write

In this mode a user can view the analytic workspace objects and data and create or
change objects. The user can export or import an object. Only one user can open an
analytic workspace in Read Write mode but any number of other users can open it
in Read Only mode. This is the default mode.

e Read Write Exclusive

In this mode a user has the same access rights as in Read Write mode but no one
else can open the analytic workspace. This mode is not available if another user has
the analytic workspace open.

To specify showing attachment modes:
1. From the Tools menu, select Configuration.
The Configuration dialog box opens.

2. Select Show Analytic Workspace Attachment Options. Click OK.

2.4.6 Installing Plug-ins

Plug-ins extend the functionality of Analytic Workspace Manager. Plug-ins are
distributed as JAR files. Any Java developer can create a plug-in. The developer
should provide information about what the plug-in does and how to use it.

If you have one or more plug-ins, then you must identify their location to Analytic
Workspace Manager.

Getting Started with Oracle OLAP 2-5

Upgrading Metadata From Oracle OLAP 10g

To use plug-ins:

1. Create alocal directory for storing the plug-ins.
2. Copy the JAR files to that directory.

3. Open Analytic Workspace Manager.

4. Select Configuration from the Tools menu.

The Configuration dialog box opens.
5. Select Enable Plugins and identify the plug-in directory. Click OK.

6. Close and reopen Analytic Workspace Manager.

The functionality provided by the plug-ins is available in the navigator.

To see alist of the currently installed plug-ins:

® On the Help menu, click About and then click Plugins.
Some Analytic Workspace Manager plug-ins are available for download from the
Oracle Technology Network (OTN).

To download plug-ins from OTN:

* Ina web browser, go the Oracle OLAP Downloads page at

htt p: // ww. or acl e. com t echnet wor k/ dat abase/ opti ons/ ol ap/ ol ap-
downl oads- 098860. ht

2.5 Upgrading Metadata From Oracle OLAP 10g

2-6 User's Guide

You can upgrade an Oracle OLAP 10g analytic workspace to OLAP 11g or 12c by
saving the objects as an XML template and importing the XML into a different schema.
The original analytic workspace remains accessible and unchanged by the upgrade
process.

Prerequisites:
¢ The OLAP 10g analytic workspace can use OLAP standard form metadata.

* The original relational source data must be available to load into the new analytic
workspace. If the data is in a different schema or the table names are different, then
you must remap the dimensional objects to the new relational sources after the
upgrade.

* You can create the OLAP 12c¢ analytic workspace in the same schema as the OLAP
10g analytic workspace. However, if you choose to create the OLAP 12¢ analytic
workspace in a different schema, you must grant the new user the appropriate
privileges as described in "Granting Privileges to DBAs and Application
Developers (page 2-1)".

To upgrade an OLAP 11g analytic workspace:

1. Open Analytic Workspace Manager for Oracle Database 12¢ Release 1.

http://www.oracle.com/technetwork/database/options/olap/olap-downloads-098860.html
http://www.oracle.com/technetwork/database/options/olap/olap-downloads-098860.html

Upgrading Metadata From Oracle OLAP 10g

10.

11.

12.

13.

14.

If necessary, create a new database connection to the database instance with the
analytic workspace. See "Defining a Database Connection (page 2-4)".

Open the database connection. On the Connect to Database dialog box, select
OLAP 11g/12c for the Cube Type. See "Opening a Database Connection

(page 2-5)".
Expand the navigation tree until the name of the analytic workspace appears.

Right-click the analytic workspace and select Create 12¢ Upgrade Template for
11g Analytic Workspace. Save the XML template to a file.

The Create 12c Upgrade Template for 12c Analytic Workspace dialog box appears
if any subobjects, such as a level and a hierarchy, have the same name.

Duplicate object names are changed automatically for the upgrade. You cannot
edit the names now, but you can change them later.

Click Close to close the dialog box.
Right-click the connection in the tree and select Disconnect Database.
Right-click the connection again and select Connect Database.

On the Connect to Database dialog box, log in with the new user name and select
OLAP 11g/12c¢ for the Cube Type.

Expand the tree, right-click Analytic Workspaces under the new schema, and
select Create Analytic Workspace From Template.

Open the upgrade template that you created previously.

The Correct Duplicate Names From Analytic Workspace Template Import dialog
box appears if any objects, such as a cube, dimensions, or the analytic workspace,
duplicate object names that already exist in the schema.

Enter new names to resolve any conflicts, then click OK.

Before loading the data, you may want to browse the dimensional objects and
make any changes to the object names, cube partitioning, or aggregation strategy.

Load data into the new analytic workspace as described in "Loading Data Into
Cubes (page 3-28)". Select all objects for maintenance.

See Also:

DBMS_CUBE in the Oracle Database PL/SQL Packages and Types Reference for
upgrading in PL/SQL.

Getting Started with Oracle OLAP 2-7

Upgrading Metadata From Oracle OLAP 10g

2-8 User's Guide

3

Creating Dimensions and Cubes

This chapter explains how to design a data model and create dimensions and cubes
using Analytic Workspace Manager. It contains the following topics:

¢ Designing a Dimensional Model for Your Data (page 3-1)
® Introduction to Analytic Workspace Manager (page 3-2)

* Creating a Dimensional Data Store Using Analytic Workspace Manager
(page 3-3)

¢ Creating Dimensions (page 3-4)

* Creating Cubes (page 3-17)

¢ Choosing a Data Maintenance Method (page 3-32)

* Supporting Multiple Languages (page 3-38)

* Defining Measure Folders (page 3-39)

¢ Saving and Re-Creating Dimensional Objects with Object Definitions (page 3-40)

¢ Copying and Pasting Dimensional Objects (page 3-42)

3.1 Designing a Dimensional Model for Your Data

Chapter 1 introduced the dimensional objects: Cubes, measures, dimensions, levels,
hierarchies, and attributes. In this chapter, you learn how to define them in Oracle
Database, but first you should decide upon the dimensional model you want to create.
What are your measures? What are your dimensions? How can you distinguish
between a dimension and an attribute in your data? You can design a dimensional
model using pencil and paper, a database design software package, or any other
method that suits you.

If your source data is in a star or snowflake schema, then you have the elements of a
dimensional model:

¢ Fact tables correspond to cubes.

® Data columns in the fact tables correspond to measures.

* Foreign key constraints in the fact tables identify the dimension tables.

¢ Dimension tables identify the dimensions.

* Primary keys in the dimension tables identify the base-level dimension members.

¢ Parent columns in the dimension tables identify the higher level dimension
members.

Creating Dimensions and Cubes 3-1

Introduction to Analytic Workspace Manager

® Columns in the dimension tables containing descriptions and characteristics of the
dimension members identify the attributes.

You can also get insights into the dimensional model by looking at the reports
currently being generated from the source data. The reports identify the levels of
aggregation that interest the report consumers and the attributes used to qualify the
data.

While investigating your source data, you may decide to create relational views that
more closely match the dimensional model that you plan to create.

See Also:
"Overview of the Dimensional Data Model (page 1-5)" for an introduction to
dimensional objects

Designing a Dimensional Model (page A-1) for a case study of developing a
dimensional model for the Global analytic workspace

3.2 Introduction to Analytic Workspace Manager

3-2 User's Guide

Analytic Workspace Manager is the primary tool for creating, developing, and
managing dimensional objects in Oracle Database. Your goal in using Analytic
Workspace Manager is to create a dimensional data store that supports business
analysis. This data store can stand alone or store summary data as part of a relational
data warehouse.

Populating dimensional objects involves a physical transformation of the data. The
first step in that transformation is defining the cubes, measures, dimensions, levels,
hierarchies, and attributes. Afterward, you can map these dimensional objects to their
relational data sources. The data loading process transforms the data from a relational
format into a dimensional format.

Using Analytic Workspace Manager, you can:

¢ Develop a dimensional model of your data.

* Instantiate that model as dimensional objects.

¢ Load data from relational tables into those objects.

* Define information-rich calculations.

¢ Create materialized views that can be used by the database refresh system.

¢ Automatically generate relational views of the dimensional objects.

You can load data from these sources in the database:
e Tables

* Views

¢ Synonyms

You must have SELECT privileges on the relational data sources so you can load the
data into the dimensions and cubes. This chapter assumes that you have a star,
snowflake, or other relational schema that supports dimensional objects.

Creating a Dimensional Data Store Using Analytic Workspace Manager

Figure 3-1 (page 3-3) shows the main window of Analytic Workspace Manager. It
contains menus, a toolbar, a navigation tree, and property sheets. When you select an
object in the navigation tree, the property sheet to the right provides detailed
information about that object. When you right-click an object, you get a choice of
menu items with appropriate actions for that object.

Analytic Workspace Manager has a full online Help system, which includes context-
sensitive Help.

Figure 3-1 Analytic Workspace Manager Main Window

B Analytic Workspace Manager

File Tools Help

Erz_ﬁ Databases

: Dimensions
ErEp rellzc (alobal - OLAP 11g

Name Long Description Type
Dp‘;‘_ :h;'f;;“ CHANMEL Channel User
am CUSTOMER Custamer User
2 Anaytic Workspaces PRODUCT Product User
SR GLoBaL anached rw) [l IR Time Time
[Dimensions
. 3 Cubes
p_[] Meazure Folders
% Languages
- OLAP DML Pragrams Cubes:
- Maintenance Scripts Mame Long Description Cimensions
[0 Maintenance Reports PRICE_CLIBE Price Cute TIME, PRODUCT
B{g Data Security Roles UNIT5_CUBE Units Cube TIME, CHANKEL, CUSTOME. ..
F-LD Reports
Measures:
Name Cube Lang Description
UMIT _FRICE PEICE_CUBE Unit Price
UMIT _COST PEICE_CUBE Unit Cost
LNITS UNITS_CUBE Units
SALES UMITS_CUBE Sales
COsT UNITS_CUBE Cost

3.3 Creating a Dimensional Data Store Using Analytic Workspace

Manager

An analytic workspace is a container for storing related cubes. You create dimensions,
cubes, and other dimensional objects within an analytic workspace.

To create an analytic workspace:

1. Open Analytic Workspace Manager and connect to your database instance as the
user defined for this purpose.

2. Create an analytic workspace in the database:

a. Inthe navigation tree, expand the folders until you see the schema where you
want to create the analytic workspace.

b. Right-click Analytic Workspaces, then click Create Analytic Workspace.

c. Complete the Create Analytic Workspace dialog box, then select Create.

If the Attach Workspace dialog box appears, select the Read Write or Read
Write Exclusive attachment mode.

The analytic workspace appears in the Analytic Workspaces folder for the
schema.

3. Define the dimensions for the data.

Creating Dimensions and Cubes 3-3

Creating Dimensions

See "Creating Dimensions (page 3-4)".
Define the cubes for the data.
See "Creating Cubes (page 3-17)".

Load data into the cubes and dimensions.

See "Loading Data Into Cubes (page 3-28)".

When you have finished, you have an analytic workspace populated with the detail
data fetched from relational tables or views. You may also have summarized data and
calculated measures.

3.3.1 Adding Functionality to Dimensional Objects

In addition to the basic steps, you can add functionality to the cubes in these ways:

¢ Develop custom cube scripts to customize the builds.

See "Creating and Executing Custom Cube Scripts (page 3-33)".
Generate materialized views that support automatic refresh and query rewrite.

See "Adding Materialized View Capability to a Cube (page 3-36)".

Support multiple languages by adding translations of metadata and attribute
values.

See "Supporting Multiple Languages (page 3-38)".
Define measure folders to simplify access for end users.

See "Defining Measure Folders (page 3-39)".

3.3.2 When Does Analytic Workspace Manager Save Changes?

Analytic Workspace Manager saves changes automatically that you make to the
analytic workspace. You do not explicitly save your changes.

Saves occur when you take an action such as these:

¢ C(lick OK or the equivalent button in a dialog box.

For example, when you click Create in the Create Dimension dialog box, the
dimension is committed to the database.

Click Apply in a property sheet.

For example, when you change the labels on the General property page for an
object, the change takes effect when you click Apply.

3.4 Creating Dimensions

3-4 User's Guide

Dimensions are lists of unique values that identify and categorize data. They form the
edges of a cube, and thus of the measures within the cube. In a report, the dimension
values (or their descriptive attributes) provide labels for the rows and columns.

You can define dimensions that have any of these common forms:

¢ Level-based dimensions that use parent-child relationships to group members into

levels. Most dimensions are level-based.

Creating Dimensions

¢ Value-based dimensions that have parent-child relationships among their
members, but these relationships do not form meaningful levels.

e List or flat dimensions that have no levels or hierarchies.

You define a dimension as a User, Time, or Measure dimension. Detail-level
dimension values typically correspond to the unique keys of a fact table. A measure
dimension has measures as dimension members.

This section has the following topics:

* Requirements of a Dimension (page 3-5)

¢ Creating a Dimension (page 3-6)

* Creating Levels (page 3-6)

¢ Creating Hierarchies (page 3-7)

¢ Creating Attributes (page 3-9)

* Creating Measure Dimensions (page 3-10)

* Mapping Dimensions (page 3-12)

¢ Loading Data Into Dimensions (page 3-15)
¢ Displaying the Dimension View (page 3-16)

¢ Displaying the Default Hierarchy (page 3-17)

3.4.1 Requirements of a Dimension

Dimensions must meet the following requirements:
¢ Dimension Members Must Be Unique (page 3-5)

¢ Time Dimensions Have Special Requirements (page 3-6)

3.4.1.1 Dimension Members Must Be Unique

Every dimension member must be a unique value. Depending on your data, you can
create a dimension that uses either natural keys or surrogate keys from the relational
sources for its members. If you have any doubt that the values are unique across all
levels, then keep the default choice of surrogate keys.

* Source keys are read from the relational sources without modification. To use the
same exact keys as the source data, the values must be unique across levels.
Because each level may be mapped to a different relational column, this uniqueness
may not be enforced in the source data. For example, a dimension table might have
a Day column with values of 1 to 366 and a Week column with values of 1 to 52.
Unless you take steps to assure uniqueness, the values from the Week column
overwrite the first 52 Day values.

* Surrogate keys ensure uniqueness by adding a level prefix to the members while
loading them into the analytic workspace. For the previous example, surrogate
keys create two dimension members named DAY_1 and VEEK_1, instead of a single
member named 1. A dimension that has surrogate keys must be defined with at
least one level-based hierarchy.

Analytic Workspace Manager creates surrogate keys unless you specify otherwise.

Creating Dimensions and Cubes 3-5

Creating Dimensions

3.4.1.2 Time Dimensions Have Special Requirements

You can define dimensions as either User or Time dimensions. Business analysis is
performed on historical data, so fully defined time periods are vital. A time dimension
table must have columns for period end dates and time span. These required attributes
support comparisons with earlier or later time periods. If this information is not
available, then you can define Time as a User dimension, but it cannot support time-
based analysis.

You must define a Time dimension with at least one level to support time-based
analysis, such as a custom measure that calculates the difference from the prior period.

3.4.2 Creating a Dimension

3.4.3 Creating

3-6 User's Guide

This section describes how to create a standard User or Time dimension. See "Creating
Measure Dimensions (page 3-10)" for information on creating a measure dimension.

To create a dimension:
1. Expand the folder for the analytic workspace.

2. Right-click Dimensions, then select Create Dimension.
The Create Dimension dialog box appears.

3. Complete the General tab.

4. If the keys in the source table are unique across levels, you can change the default
setting on the Implementation Details tab.

5. Click Create.
The dimension appears as a subfolder under Dimensions.

Figure 3-2 (page 3-6) shows the creation of the Product dimension.

Figure 3-2 Creation of the Product Dimension

["General | Levels | Materialized Wiews | Implementation Details |

Specify General Dimension Information

Mame: [PRoDUCT
Shart Label: |pmd
Long Label |Product

Description: |Product Description

Dimension Type: | User Dimension

[] $hort Description Attribute

Long Crescription Attribute

Levels

For business analysis, data is typically summarized by level. For example, your
database may contain daily snapshots of a transactional database. Days are the base
level. You might summarize this data at the weekly, quarterly, and yearly levels.

Levels have parent-child or one-to-many relationships, which form a level-based
hierarchy. For example, each week summarizes seven days, each quarter summarizes
13 weeks, and each year summarizes four quarters. This hierarchical structure enables

Creating Dimensions

analysts to detect trends at the higher levels, then drill down to the lower levels to
identify factors that contributed to a trend.

For each level that you define, you must identify a data source for dimension members
at that level. Members at all levels are stored in the same dimension. In the previous
example, the Time dimension contains members for weeks, quarters, and years.
To create a level:
1. Expand the folder for the dimension.
2. Right-click Levels, then select Create Level.

The Create Level dialog box appears.
3. Complete the General tab of the Create Level dialog box.
4. Click Create.

The level appears as an item in the Levels folder.

Tip:

Alternatively, you can create levels in the Create Dimension dialog box Levels
tab.

Figure 3-3 (page 3-7) shows the creation of the Class level for the Product
dimension.

Figure 3-3 Creation of the Class Level

GCeneral |

Specify Ceneral Level Information

Name: [cLass

Long Label: | Class

|
Short Label: |C|ass |
|
|

Description: | Class Level

3.4.4 Creating Hierarchies

Dimensions can have one or more hierarchies. They can be level based or value based.

Level-Based Hierarchies

Most hierarchies are level based. Analytic Workspace Manager supports these
common types of level-based hierarchies:

* Normal hierarchies consist of one or more levels of aggregation. Members roll up
into the next higher level in a many-to-one relationship, and these members roll up
into the next higher level, and so forth to the top level.

* Ragged hierarchies contain at least one member with a different base, creating a
"ragged" base level for the hierarchy. Ragged hierarchies are not supported for
cube materialized views.

Creating Dimensions and Cubes 3-7

Creating Dimensions

e Skip-level hierarchies contain at least one member whose parents are multiple
levels above it, creating a hole in the hierarchy. An example of a skip-level
hierarchy is City-State-Country, where at least one city has a country as its parent
(for example, Washington D.C. in the United States).

In relational source tables, a skip-level hierarchy may contain nulls in the level
columns. Skip-level hierarchies are not supported for cube materialized views.

Multiple hierarchies for a dimension typically share the base-level dimension
members and then branch into separate hierarchies. They can share the top level if
they use all the same base members and use the same aggregation operators.
Otherwise, they need different top levels to store different aggregate values. For
example, a Customer dimension may have multiple hierarchies that include all base-
level customers and are summed to a shared top level. However, a Time dimension
with calendar and fiscal hierarchies must aggregate to separate Calendar Year
(January to December) and Fiscal Year (July to June) levels, because they use different
selections of base-level members.

Value-Based Hierarchies

You may also have dimensions with parent-child relations that do not support levels.
For example, an employee dimension might have a parent-child relation that identifies
each employee's supervisor. However, levels that group first-, second-, and third-level
supervisors and so forth may not be meaningful for analysis. Similarly, you might
have a line-item dimension with members that cannot be grouped into meaningful
levels. In this situation, you can create a value-based hierarchy defined by the parent-
child relations, which does not have named levels. You can create value-based
hierarchies only for dimensions that use the source keys, because surrogate keys are
formed with the names of the levels.

To create a hierarchy:

1. Expand the folder for the dimension.

2. Right-click Hierarchies, then select Create Hierarchy.
The Create Hierarchy dialog box appears.

3. Complete the General tab of the Create Hierarchy dialog box.
Click Help for information about these choices.

4. Click Create.
The hierarchy appears as an item in the Hierarchies folder.

Figure 3-4 (page 3-9) shows the creation of the Primary hierarchy for the Product
dimension.

3-8 User's Guide

Creating Dimensions

Figure 3-4 Creation of the Product Primary Hierarchy

r General r Implementation Cetails |

Specify General Hierarchy Information

Hame: [PRIMARY

Short Label: |Prod Primary

|
|
Long Label: |Pruduct Primary |
|

Description: |Pr0duct Frimary Hierarchy

Set as Default Hierarchy

(2) Level Based Hierarchy () Walue Based Hierarchy

Crefine the levels for this hierarchy by moving levels from the Awailable list to the selected list. The order of
levels inthe Selected list reflect the order of the levels thighest to lowest) in the hierarchy.

Available Levels: Selected Levels {Highest to Lowest):

e || |uh|

3.4.5 Creating Attributes

Attributes provide information about the individual members of a dimension. They
are used for labeling crosstabular and graphical data displays, selecting data,
organizing dimension members, and so forth.

3.4.5.1 Automatically Defined Attributes

Analytic Workspace Manager creates some attributes automatically when creating a
dimension. These attributes have a unique type, such as "Long Description."

All dimensions can be created with long and short description attributes. If your
source tables include long and short descriptions, then you can map the attributes to
the appropriate columns. However, if your source tables include only one set of
descriptions, then you can create and map just one description attribute. If you map
both the long and short description attributes to the same column, the data is loaded
twice.

Time dimensions are created with time-span and end-date attributes. This information
must be provided for all Time dimension members.

3.4.5.2 User-Defined Attributes

You can create additional "User" attributes that provide supplementary information
about the dimension members, such as the addresses and telephone numbers of
customers, or the color and sizes of products.

To create an attribute:
1. Expand the folder for the dimension.

2. Right-click Attributes, then select Create Attribute.

The Create Attribute dialog box appears.

3. Complete the General tab of the Create Attribute dialog box.

Creating Dimensions and Cubes 3-9

Creating Dimensions

Some attributes apply to all dimension members, and others apply to only one
level. Your selection in the Apply Attributes To box controls the mapping of the
attribute to one column or to multiple columns.

Click Help for information about these choices.

4. To change the data type from the default choice of VARCHAR2, complete the
Implementation Details tab.

5. Click Create.
The attribute appears as an item in the Attributes folder.

Figure 3-5 (page 3-10) shows the creation of the Marketing Manager attribute for the
Product dimension. Notice that this attribute applies only to the Item level.

Figure 3-5 Creation of the Product Marketing Manager Attribute

r General |/ Implementation Details |

Specify Ceneral Attribute Information

Name: | MARKETING_MANACER |
Short Label: ‘ Mktg Mar |
Long Label: ‘ Marketing Manager |
Description: ‘Prnduct Marketing Manager |
Attribute Type: ‘User 'l

Create level attribute columns in views

[¥] Index

|:| Attribute Yalues are multi lingual

Apply Attributes To:

B & PRODUCT
BT A PRIMARY
LI & ToTAL
é--l‘gﬁ;cuss
- FAMILY] [setectan |

[»

| Deselect All |

q

3.4.5.3 Unique Key Attributes

Materialized views require that each dimension of the cube have unique key
attributes. These attributes store the original key values of the source dimensions,
which may have been changed when creating the embedded total dimensions of the
cubes.

Analytic Workspace Manager automatically creates unique key attributes for the
dimensions of a cube materialized view. You do not create or manage them manually.

3.4.6 Creating Measure Dimensions

3-10 User's Guide

A measure dimension enables you to generate calculated measures for all of the
measures in the cube simultaneously. Before creating a measure dimension you must
first create a fact view. The fact view pivots a fact table so that the measures identify
rows instead of columns.

To create a measure dimension:

1. From the Tools menu, select Create Fact View with Measure Dimension.

The Create Fact View with Measure Dimension dialog box appears.

Creating Dimensions

2. Complete the Create Fact View with Measure Dimension dialog box.
a. From the Schema list, select a schema.
b. From the Object list, select a fact table.
c. Inthe Fact View Name field, keep the default name or enter a different name.

d. In the table of the columns of the fact table, select the columns for the
measures that you want the measure dimension to have.

e. Optional: To automatically create a table for the measure dimension, select the
Create Measure Dimension Table option.

f. Click Create.

3. Expand the folder for the analytic workspace.

4. Right-click Dimensions, then select Create Dimension.
The Create Dimension dialog box appears.

5. Complete the General tab. For the Dimension Class Type, be sure to select
Measure Dimension.

A measure dimension is a flat dimension, with no levels or hierarchies.
6. Click Create.
The dimension appears as a subfolder under Dimensions.

After creating the measure dimension, create a cube and add the dimension to it.

Note:

If you create a new column in the fact table and you want to add it to the
measure dimension, then must create the fact view for the fact table again and
maintain the measure dimension and the cube.

To add a measure to the measure dimension:

1. From the Tools menu, select Create Fact View with Measure Dimension.

The Create Fact View with Measure Dimension dialog box appears.
2. Complete the Create Fact View with Measure Dimension dialog box.
a. From the Schema list, select a schema.

b. From the Object list, select the fact table that you used to create the measure
dimension.

c. In the Fact View Name field, keep the default name or enter a different name.

d. In the table of the columns of the fact table, select the columns for the
measures that you want the measure dimension to have.

e. Optional: To automatically create a table for the measure dimension, select the
Create Measure Dimension Table option.

Creating Dimensions and Cubes 3-11

Creating Dimensions

3.4.7 Mapping

3-12 User's Guide

f. Click Create.
3. Right-click the measure dimension and then select Maintain Dimension.

4. Right-click the cube that has the measure dimension and then select Maintain
Cube.

See Also:

¢ "Creating Cubes (page 3-17)"

Dimensions

Mapping identifies the relational data source for each dimensional object. After
mapping a dimension to a column of a relational table or view, you can load the data.
You can create, map, and load each dimension individually, or perform each step for
all dimensions before proceeding to the next step.

SQL Data Types for Dimensions

You can map dimensions and levels to columns having these SQL data types, which
are converted to text during a data load:

e VARCHAR2

¢ NVARCHAR2

e NUMBER

e INTEGER

e DECIMAL

e CHAR

e NCHAR

e DATE

e TIMESTAMP

e TIMESTAMP WITH TIMEZONE
e TIMESTAMP WITH LOCAL TIMEZONE

You can map attributes to the same data types as cubes and measures, as described in
"Data Types (page 3-20)".
3.4.7.1 Dimension Mapping Window

The mapping window has a tabular view and a graphical view. You can switch
between the two views, using the icons at the top of the canvas.

¢ Tabular view: Drag-and-drop the names of individual columns from the schema
navigation tree to the rows for the dimensional objects.

Creating Dimensions

¢ Graphical view: Drag-and-drop icons, which represent tables and views, from the

schema navigation tree onto the mapping canvas. Then draw lines from the
columns to the dimensional objects.

You can use the OLAP expression syntax when mapping dimensions in the tabular
view. This capability enables you to create the top level of a dimension without having
a source column in the dimension table.

You can also map attributes from different tables. OLAP automatically joins the tables
on columns with the same name.

Click Help on the Mapping window for more information.

To map a dimension:

1.

6.

7.

In the navigation tree, expand the dimension folder and click Mappings.

The Mapping window contains a schema navigation tree on the left and a
mapping table for the dimension with rows for the levels and their attributes. This
is the tabular view.

For normalized dimension tables, select Snowflake Schema for the Type of
Dimension Table.

To enlarge the Mapping Window, drag the divider to the left.

In the schema tree, expand the tables, views, or synonyms that contain the
dimension members and attributes.

Drag-and-drop the source columns onto the appropriate cells in the mapping
table for the dimension.

Map a measure dimension to the measure dimension table. Specify measur e_i d
as the member value.

After you have mapped all levels and attributes, click Apply.

Drag the divider back to the right to reveal the navigation tree.

Figure 3-6 (page 3-14) shows the Product dimension mapped in the tabular view. The
arrow highlights how the PRODUCT_DI M | TEM_BUYER column maps to the
PRODUCT. | TEM BUYER attribute.

Creating Dimensions and Cubes 3-13

Creating Dimensions

3-14 User's Guide

Figure 3-6 Product Dimension Mapped in Tabular View

g

LA BB Eﬂ ST;'- rlﬁ Type of Dimension Table{s): |Star Schema v‘
FH PRODUCT_DIM [~ proDUCT |Source T
|-t cLass_psc "| DHIERARCHIES
%, CLASS_DSC_DUTCH EIPRIMARY
I, CLASS_DSC_FREMCH EITOTAL
Memkber GLOBAL PRODUCT _DIM. TOTAL_ID

b, CLASSID
3% FAMILY_DSC
b FAMILY_DSC_DUTCH ||

LOMNG_DESCRIPTION
SHORT _DESCRIPTION

GLOBAL PRODUCT _DIM.TOTAL_DSC
GLOBAL PRODUCT _DIM.TOTAL_DSC

. EICLASS
[e FAMILY_ID Member GLOBAL PRODUCT _DIM. CLASS_ID
e LOMG_DESCRIPTION | GLOBAL PRODUCT _DIM. CLASS_DSC

Hah, TEM_D SHORT_DESCRIFTION | GLOBAL PRODUCT _DIM. CLASS_DSC
%he ITEM_DSC_D EIFAMILY
Member GLOBAL PRODUCT _DIM. FAMILY _ID

% ITEM_DSC_FREMCH
b, ITEM_ID

b ITEM_MAREETING_MA
2b, [TEM_PACKAGE
2, TOTAL_DSC

3 TOTAL_DSC_DUTCH
by TOTAL_DSC_FREMCH
L2, TOTALID

B TIME_DIM

g 7

LOMNG_DESCRIPTION
SHORT _DESCRIPTION
il

GLOBAL PRODUCT _DIM.FAMILY_DSC
GLOBAL PRODUCT _DIM.FAMILY_DSC

Babier
LOMC RESCRIFTION
SHORT _DESERIFTION
PACKAGE
BLYER

[]

To map atop level without a relational source:

1. Create the dimension and its levels (including the top level), hierarchies, and
attributes.

2. Map the dimension as described previously for all but the top level.

3. Enter an expression in the OLAP expression syntax for the top level.

Example 3-1 Creating a Top Level for the Global Time Dimension

This example shows a top level for all years in the Time dimension. The mapping
expressions used for a Total level (that is, all years) in the Time dimension might look
like this:

Member: ' TOTAL'

LONG _DESCRI PTION: ' Total

SHORT_DESCRI PTION: ' Total '

END DATE: TO DATE(' 31-Dec-2007', 'dd-nmon-yyyy')
TI ME_SPAN: 3646

Menmber , LONG_DESCRI PTI ON, and SHORT_DESCRI PTI ONare set to literal strings,
END_DATE uses the TO_DATE function, and Tl ME_SPAN s set to a number.

3.4.7.2 Source Data Query

You can view the contents of a particular source column without leaving the mapping
window. The information is readily available, eliminating the guesswork when the
names are not adequately descriptive.

To see the values in a particular source table or view:

1. Right-click the source object in either the schema tree or the graphical view of the
mapping canvas.
2. Select View Data from the shortcut menu.

Figure 3-7 (page 3-15) shows the data stored in the PRODUCT_DI Mtable.

Creating Dimensions

Figure 3-7 Data in the PRODUCT_DIM Table

Fetched 36 rows

ITEM _ID [TEM _DSC ITEM _DSC_FREMCH ITEM _DSC_DUTCH

ENWY STD Envoy Standard Envoy Standard Envoy Standaard |~
ENWY EXE Envoy Executiwve Envoy Executive Envoy Executiwve

ENWY ABM Envoy Ambassador Envoy Ambassadeur Envoy Ambassadeur

SENT STD Sentinel Standard Sentinel Standard Sentinel Standaard
SENT FIN Sentinel Financial Sentinel Financier Sentinel Financieel
SENT MM Sentinel Multimedia Sentinel Multimedia Sentinel Multimedia

LT CASE Laptop carrying case Laptop Draagtas

17 SWiA Honitor- 17"Super WOA Ecran - 17"Super WG4 17"Super WGA Scherm .
10 SWiA Honitor- 19"Super WVOA Ecran - 19"Super WG4 19"Super WGA Scherm
ENWVY EXT KBD |Envaoy External Kewboard Envoy Clavier Externe Envoy Extern Toet...
EXT KBD External 101-key kew... Clawvier Externe 101-... Extern 101-Toetse...
SEKPS MODEM | S6Khps V.90 Type II ... S6Kbps V.90 Type II ... S6Kbps V.90 Tvpe ...
512 USB DRV 512MB USE Drive S12MB USE Drive 512MB USB Driwve

1GE USE DRV 1B USE Drive 1GB USE Drive 1GE USE Drive

MM SPER 3 Hultimedia speakers-... Haut-parleurs Multim... Multimedia Luidsp...

05 1 USER UnixAhndows 1-user ... UnixAindows paguet ... Unixindows 1-ge...| |
05 5 USER UnixAindows S-user ... Unixdindows paguet ... UnixAindows S-ge...
MOUSE PAD Wouse Pad Mouse Pad Mouse Pad

144MB DISK 1.44MB External 3.5"... 1.44MB, 3.5" Diskett... 1.44ME Externe 3....

MM SPKR S Hultimedia speakers-... Haut-parleurs Multim... Multimedia Luidsp...
FaX,/MODEM S6Kbps V.92 Twpe II ... S6Kbps W.92 Twpe IT ... S&khps V.92 Type ...
INT €D ROM Internal 48X CD-ROM 48 ¥ CD-ROW Interne Interne 48X CD-ROM

INT 83X WD Internal - DWD-RW - 8X DWVD-RW - 8X Interne Interne - DVD-RW ...}
?rl'r N_EOM Tarnal A‘ (T-EMM ARY (N_ROM__Futarna Extornal d rn_m|“>|7

3.4.8 Loading Data Into Dimensions

Analytic Workspace Manager provides several ways to load data into dimensional
objects. The quickest way when developing a data model is using the default choices
of the Maintenance Wizard. Other methods may be more appropriate in a production
environment than the one shown here. They are discussed in "Choosing a Data
Maintenance Method (page 3-32)".

To load data into the dimensions:

1.

In the navigation tree, right-click the Dimensions folder or the folder for a

particular dimension.

Select Maintain Dimension.

The Maintenance Wizard opens on the Select Objects page.

Select one or more dimensions from Available Target Objects and use the shuttle
buttons to move them to Selected Target Objects.

Click Finish to load the dimension values immediately.

The additional pages of the wizard enable you to create a SQL script or submit the
load to the Oracle job queue. To use these options, click Next instead.

Review the build log, which appears when the build is complete. If the log shows
that errors occurred, then fix them and run the Maintenance Wizard again.

Errors are typically caused by problems in the mapping. Check for incomplete
mappings or changes to the source objects.

Figure 3-8 (page 3-16) shows the first page of the Maintenance Wizard. Only the
Product dimension has been selected for maintenance. All the Product dimension
members and attributes are fetched from the mapped relational sources.

Creating Dimensions and Cubes 3-15

Creating Dimensions

Figure 3-8 Loading Dimension Values into the Product Dimension

Avallable Target Ohjects

Choose dimensions to be maintained for analytic workspace GLOBAL GLOBAL

Selected Target Ohjects

E[ET Dimensions
&I CHANMEL

= Dimensions
L5 PRODUCT

= CUSTOMER

B
B
&)
&

[] Add the Dimensions of the Cubes

Figure 3-9 (page 3-16) shows the Maintenance log for a dimension displayed by
Analytic Workspace Manager. It refreshes throughout the build to provide you with
the most up-to-date information.

Figure 3-9 Maintenance Log for the Product Dimension

* Maintenance Log E

Maintenance Steps I 17 of 17 Completed _‘ Maintenance Load Summary
Object [Pantition | Status Object | ObjectType | Partition | Rows Added | Rows Deleted |
@ Maintenance |d 102 Succeeded | & TIME DIMENSION 0 | =
5T TIME [|CHANMEL DIMENS G 4 i
______ @ LORD NO SYNCH Succeeded CUSTOMER DIMENSION 105 0
______ B COMPILE Succeeded FRODUCT DIMENSION 48 0
______ B UPDATE Succeeded UNITS_CUBE CUBE PLO:CYZO07 i 0
5T CHANNEL UMITS_CUBE CUBE Pa:CTZ006 33968 i
______ @ LORD NO SYNCH Succeeded [|UNT5_CUBE CUBE Pa:CT2005 34607 0
______ B COMPILE Succeeded UNITS_CUBE CUBE P7.CYZ004 37962 0
______ B UPDATE Succeeded UNITS_CUBE CUBE P6:CYZ003 40650 0
=51 CUSTOMER UMITS_CUBE CUBE PS:CT2002 42072 ol
______ @ LOAD NO SYNCH Succeeded UNITS_CUBE CUBE P4:CT2001 43001 0
| |UMITS_CUBE CUUBE P3:Cvz000 30195 [-
...... g counLe Succeeded | |nprs coee CLIRE B2l 88% AZ10 o™
] [Tl |« []

r Summary Log r Dretailed Log r Rejected Record Log rDimension e i | e |

Maint Id‘ Chject | Ohject Type ‘ Partition | Cperation Start Date Start Time | End Time | Elaps
102 UMITS_CUBE CUBE Pa:Cv2006 LOAD - CEMERATED SQL 26-MAY-10 09:00:28 AM =
102 UMITS_CUBE CUBE Po:CY2006 SOLVE 26-MAY-10 09:00:29 AM 09:00:29 AM
102 UMITS_CUBE CUBE P2:CY2006 UPDATE 26-MAY-10 09:00:29 AM 09:00:30 AM
102 UMITS_CUBE CUBE PE:CY2005 LOAD 26-MAY-10 09:00:30 AM 09:00:30 AM
102 UMITS_CUBE CUBE PE:Cv2005 LOAD - CEMERATED SQL 26-MAY-10 09:00:30 AM
102 UMITS_CUBE CUBE Pa:CY2005 SOLVE 26-MAY-10 09:00:30 AM 09:00:31 AM
102 UMITS_CUBE CUBE PE:Cv2005 UPDATE 26-MAY-10 09:00:31 AM 09:00:31 AM
102 UMITS_CUBE CUBE P7:CY2004 LOAD 26-MAY-10 09:00:31 AM 09:00:32 AM =
102 UMITS_CUBE CUBE P7:Cv2004 LOAD - CEMERATED SQL 26-MAY-10 09:00:31 AM =
102 UMITS_CUBE CUBE P7:CY2004 SOLVE 26-MAY-10 09:00:32 AM 09:00:32 AM
102 UMITS_CUBE CUBE P7:Cv2004 UPDATE 26-MAY-10 09:00:32 AM 09:00:33 AM
102 UMITS_CUBE CUBE P&:CY2003 LOAD 26-MAY-10 09:00:33 AM 09:00:33 AM Z

4] | [ib]

‘ Help | | Close |

3.4.9 Displaying the Dimension View

The Maintenance Wizard automatically generates relational views of dimensions and
hierarchies. Querying Dimensional Objects (page 4-1) describes these views and
explains how to query them.

Figure 3-10 (page 3-17) shows the description of the relational view of the Product
Primary hierarchy. You can view the data on the Data tab.

3-16 User's Guide

Creating Cubes

Figure 3-10 Product Primary Hierarchy View

General Data |
Specify Wiew Infarmation

Dimenzion Name: proDUCT

Hierarchy Mame: pRimaRy

Wiew Name PRODUCT_PRIMARY_VIEW

Column MName Data Tyoe Ohject Type
DM _KEY WARCHARZ ey
LEVEL_NAME WARCHARZ Lewel Mame
PARENT WARCHARZ Parent

TOTAL WARCHARZ Hierarchy Lewel
CLASS WARCHARZ Hierarchy Lewel
FAMILY WARCHARZ Hierarchy Lewel
ITEM WARCHARZ Hierarchy Lewel
PACKAGE WARCHARZ Adtribute
BUYER WARCHARZ Adtribute
MARKETING_MAMNAGER WARCHARZ Adtribute
LOMG_DESCRIFTION WARCHARZ Adtribute
SHORT _DESCRIFTION WARCHARZ Adtribute

[1»]

Drefault system-generated dimension member view. Returns one row for each dimension member.

To display the default hierarchy:

1. Inthe navigation tree, right-click the name of a dimension.

2. Select View Data.

3.4.10 Displaying the Default Hierarchy

After loading a dimension, you can display the default hierarchy.

Figure 3-11 (page 3-17) shows the Primary hierarchy of the Product dimension.

Figure 3-11 Displaying the Product Primary Hierarchy

'Product' Dimension Members:

1of 12 Selected

[= Ly Total Product
= Lg Hardware
B % CD/DVD
[= L Desktop PCs
@ Sentinel Financial
@ sentinel Multimedia

@ Sentinel standard
[Portable PCs
_‘Z Memory
[} Modems Fax

@|@|ﬁ| TOTAL

3.5 Creating Cubes

Cubes are informational objects that identify measures with the exact same
dimensions and thus are candidates for being processed together at all stages: data
loading, aggregation, storage, and querying.

Cubes define the shape of your business measures. They are defined by a set of
ordered dimensions. The dimensions form the edges of a cube, and the measures are
the cells in the body of the cube.

Creating Dimensions and Cubes 3-17

Creating Cubes

3-18 User's Guide

To create a cube:
1. Expand the folder for the analytic workspace.

2. Right-click Cubes, then select Create Cube.
The Create Cube dialog box appears.

3. On the General tab, enter a name for the cube and select its dimensions.

Select Enable SQL Expressions to allow Analytic Workspace Manager to create
additional calculated measures as needed in processing a calculated measure.
Enabling SQL expressions is especially useful if you are using the Oracle Business
Intelligence Enterprise Edition (OBIEE) Plug-in for Analytic Workspace Manager
to export the cube to OBIEE.

4. On the Aggregation tab, click the Rules subtab and select an aggregation method
for each dimension. If the cube uses multiple methods, then you may need to
specify the order in which the dimensions are aggregated to get the desired
results.

You can ignore the bottom of the tab, unless you want to exclude a hierarchy from
the aggregation.

For a measure dimension, the aggregation operator is non-additive.

5. If you run the advisors after mapping the cube, Oracle OLAP can determine the
best partitioning and storage options. Alternatively, to define these options
yourself, complete the Partitioning and Storage tabs before creating the cube.

6. Click Create. The cube appears as a subfolder under Cubes.

Figure 3-12 (page 3-18) shows the Rules subtab for the Units cube with the list of
operators displayed.

See Also:

"Aggregation Operators (page 9-3)" for descriptions of the aggregation
operators.

Figure 3-12 Selecting an Aggregation Operator

rCeneraI rAggregatinn rPanitinning rStnrage rMateria\izedViem |

Specify the aggregation rules of the cube

Rules Precompute

Order and Method
Choose an aperator for each dimension.

Aggregation Order and Method:

Orcer |D|mensmn Operator |Based an |Aggregate From Lewvel

1 ~ITIME SUM ot | Default

2 ST CHAMMEL [Average = Default Y
3 SICUSTOMER First Mon-Ma Data Value Default -
4 &IPRODUCT Hierarchical Average Default L&

Hierarchical First Member —
4] Hierarchical Last Member [Tr]
P — Hierarchical Weighted Average
= Hierarchical Weighted First

Aggregate the cube using selected hiergHierarchical Weighted Last E2

Creating Cubes

3.5.1 Creating Measures

Measures store the facts collected about your business. Each measure belongs to a
particular cube, and thus shares particular characteristics with other measures in the
cube, such as the same dimensions. The default characteristics of a measure are
inherited from the cube.

Note:

The cube for a measure dimension has only one measure, which Analytic
Workspace Manager creates automatically.

To create a measure:
1. Expand the folder for the cube that has the dimensions of the measure.

2. Right-click Measures, then select Create Measure.

The Create Measure dialog box appears.
3. On the General tab, enter a name for the measure.

4. Click Create.
The measure appears in the navigation tree as an item in the Measures folder.

Figure 3-13 (page 3-19) shows the General tab of the Create Measure dialog box.

Figure 3-13 Creating the Sales Measure

r Ceneral rAggregation |/ Implementation Dretails |

Specify Ceneral Measure Information

Mame: [saLEs

Short Label: | cales

Long Lahel: |Unit Sales

Description: |Unit Sales Measure

3.5.2 Mapping Cubes

You use the same interface to map cubes as you did to map dimensions, as described
in "Mapping Dimensions (page 3-12)". You can map a cube directly to a single fact
table, or you can create more complex mappings using the OLAP expression syntax,
which supports expressions, join conditions, and filters.

Although the dimension columns in a fact table typically contain only key values at
the detail level, you can also map cubes to summary tables that contain the values
from multiple levels. For example, a Time column might contain days, months,
quarters, and years; a Geography column might contain cities, states, and countries.
When a build rolls up the data in the cube from the detail level, the calculated values
overwrite the loaded summary values, thereby correcting any inconsistencies.

Creating Dimensions and Cubes 3-19

Creating Cubes

3-20 User's Guide

Data Types

You can map cubes and measures to columns having these SQL data types:

NUMBER

INTEGER

DECIMAL

BINARY_FLOAT
BINARY_DOUBLE

VARCHAR?2

NVARCHAR?2

CHAR

NCHAR

DATE

TIMESTAMP

TIMESTAMP WITH TIMEZONE
TIMESTAMP WITH LOCAL TIMEZONE
INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND

Expressions

You can use the OLAP expression syntax when mapping cubes in the tabular view.
This capability enables you to perform tasks like these as part of data maintenance,
without any intermediate staging of the data:

Perform calculations on the relational data using any combination of functions and
operators available in the OLAP expression syntax.

Create measures that are more aggregate than their relational sources. For example,
suppose the Time dimension has columns for Day, Month, Quarter, and Year, and
the fact table for Sales is related to Time by the Day foreign key column. In a basic
mapping, you would store data in the cube at the Day level. However, you could
aggregate it to the Month level during the data refresh. Using a technique called
one-up mapping, you would map the cube to the Month column for Time, and
specify a join between the dimension table and the fact table on the Day columns.

Note:

You cannot map a measure dimension to an expression. You must map it to a
column.

Creating Cubes

Join Conditions

In the tabular view, the mapping for each dimension includes a join condition. In the
basic case where you are mapping the foreign keys in a fact table to the primary keys
in the related dimension tables, you can leave the join condition blank. Analytic
Workspace Manager derives this information from the relational source tables when
you save the mapping.

For example, Analytic Workspace Manager provides this join condition for the TI ME
dimension in the UNI TS_CUBE mapping:

GLOBAL. TI ME_DIM MONTH_I D = GLOBAL. UNI TS_FACT. MONTH_I D

Note:

The join condition for a measure dimension must be a simple equijoin.

Filters

A filter applies a WHERE clause to the query that loads data from the relational source
into the cube. You can use a filter to limit the rows to those matching a certain
condition. This filter restricts the data to the year 2007:

GLOBAL. UNI TS_FACT. MONTH_I D LI KE ' 2007%

You can also use a filter to join two or more tables containing the measures. This filter
joins the UNI TS_FACT and PRI CE_FACT tables in the Global schema on the Time
(MONTH_I D) and Product (I TEM_ | D) dimensions:

GLOBAL. PRI CE_FACT. MONTH_I D=GLOBAL. UNI TS_FACT. MONTH_I| D AND
GLOBAL. PRI CE_FACT. | TEM | D=GLOBAL. UNI TS_FACT. | TEM | D

Aggregate Functions

The aggregate function specifies how the fact table data is loaded into the cube. You
select an aggregate function from the Group By list. The aggregate functions are the
following:

e SUM

e AVG

¢ MAX

e MIN

e COUNT

To map a cube:

1. Inthe navigation tree, expand the cube folder and click Mappings.

The Mapping window contains a schema navigation tree on the left and a
mapping table for the cube and its dimensions. This is the tabular view.

The level of a dimension from which values are aggregated is indicated by the

symbol Eﬁ? You specify the level in the Aggregate From Level column on the
Rules subtab of the Aggregation tab of the property sheet of a cube.

Creating Dimensions and Cubes 3-21

Creating Cubes

3-22 User's Guide

6.

7.

To enlarge the Mapping window, drag the divider to the left.

In the schema tree, expand the tables, views, or synonyms that contain the data
for the measures.

Drag-and-drop the source columns onto the appropriate cells in the mapping
table for the cube.

Map a measure dimension to the measure dimension fact view. See "Creating
Measure Dimensions (page 3-10)" for information on creating the measure
dimension fact view. From the measure dimension fact view columns, specify
MEASURE_ VAL UE as the source column for the measure of the cube and specify
MEASURE_DI Mas the source column for the measure dimension of the cube.

Optional: To see the SQL statements for the mapping, click Show SQL. You can
save the SQL to a file or to the clipboard.

After you have mapped all dimensions and measures, click Apply.

Drag the divider back to the right to reduce the size of the Mapping window.

Figure 3-14 (page 3-22) shows the mapping canvas with the Units cube mapped to
columns in the UNI TS_FACT table. After you save the mappings, Analytic Workspace
Manager provides the join conditions for base-level mappings such as the ones shown
here.

Figure 3-14 Units Cube Mapped in the Tabular View

ad
LB

il B 9 W GrowpBy [sum vl

B

UNITS_CUBE | Source Column

"| EMeasures

UNITS GLOBAL.UNITS_FACT.UNITS
SALES GLOBAL.UNITS_FACT.SALES
COST GLOBAL.UNITS_FACT.COST
= Dimensions
EITIME
TOTAL
FISCAL_YEAR
FISCAL_QUARTER
CALENDAR_YEAR
CALENDAR_QUARTER
MONTH =T GLOBAL.UNITS_FACT.MOMNTH_ID
Join Condition GLOBAL TIME_DIM.MONTH_ID = GLOBAL.UNITS_FACT.MONTH_ID
= CHAMNEL
TOTAL
CHANNEL 37 GLOBAL.UNITS_FACT.CHANMEL_ID
Join Condition GLOBAL.CHANMEL_DIM.CHAMNEL_ID = GLOBAL UNITS_FACT.CHANNEL_ID
ECUSTOMER
TOTAL
MARKET_SEGMENT
ACCOUNT
REGION
WAREHOUSE
SHIP_TO =T GLOBAL.UNITS_FACT.SHIP_TO_ID
Join Condition GLOBAL.CUSTOMER_DIM.SHIP_TO_ID = GLOBAL UNITS_FACT.SHIP_TO_ID
EPRODUCT
TOTAL
CLASS
FAMILY
ITEM =T GLOBAL.UNITS_FACTITEM_ID
Join Condition GLOBAL.PRODUCT_DIM.ITEM_ID = GLOBAL UNITS_FACT.ITEM_ID

Filter

miEn

Help Show SQL | | Apply || Revert

Creating Cubes

To calculate the facts of a measure as they are loaded into a cube:
1. Create the cube.
2. Map all dimensions and measures to the source tables.

3. Edit the mapping of the measure to include a calculation in the OLAP expression
syntax.

For example, you might change UNI TS_FACT. SALES to
UNI TS _FACT. SALES* 1. 06.

You can use row expressions, column expressions, and conditions, but not nested

SQL queries.

To map a cube above the detail level:

1. Create the cube dimensions with the desired levels and map them to the source
dimension table.

2. Create the cube and its measures.
3. Map each measure to its source column in the fact table.

4. For dimensions that are not being consolidated, map the detail level to its source
column in the fact table, the same as you would in a basic cube mapping.

5. For dimensions being consolidated:

a. Map the dimension to the appropriate column in the dimension table, not to
the fact table. In the previous scenario, you would map the Month level of the
Time dimension to the Month column of the Time dimension table. For
example, you would map Month to time_dim.month_column.

b. Enter ajoin condition between the fact table and the dimension table at the
detail level. For example, t i me_di m day_key =
fact _tbl.day foreign key.

To map measures to different tables:

1. Create the cube dimensions with the desired levels and map them to the source
dimension table.

2. Create the cube and its measures.
3. Map each measure to its source column in the appropriate table.

4. Map the detail level of each of the dimensions to its source column in each of the
tables. When you drop the additional source column names, you are asked
whether to add or replace the existing mapping. Select Add.

Example 3-2 Mapping Measures to Different Tables

This example maps the two measures of a cube to columns in two different fact tables.
The data for UNI T_PRI CE is in the UNI TS_FACT table, and the data for UNI TS_SCOLD
is in the PRI CE_FACT table. The following mapping identifies the dimension keys in
both tables for MONTH and PRODUCT.

UNI T_PRICE: GLOBAL. PRI CE_FACT. UNI T_PRI CE
UNI TS _SOLD: GLOBAL. UNI TS_FACT. UNI TS
MONTH; GLOBAL. PRI CE_FACT. MONTH_| D

Creating Dimensions and Cubes 3-23

Creating Cubes

GLOBAL. UNI TS_FACT. MONTH_| D
PRODUCT: GLOBAL. PRI CE_FACT. I TEM I D
GLOBAL. UNI TS_FACT. | TEM | D

The next example maps one measure of a cube to columns in two different fact tables.
The data for North America is in the AMERI CA table, and the data for Europe is in the
EMEA table. The following mapping for the UNI TS_SCOLD measure of UNI ON_CUBE
creates a union of the two fact columns.

UNI TS_SOLD: GLOBAL. AVERI CA. UNI TS
GLOBAL. EMEA. UNI TS

TI VE: GLOBAL. AVERI CA. MONTH_| D
GLOBAL. ENEA. MONTH_| D

CHANNEL: GLOBAL. AVERI CA. CHANNEL | D
GLOBAL. EMEA. CHANNEL_| D

CUSTOMER ~ GLOBAL. AVERI CA. SHIP_TO I D
GLOBAL. EMEA. SHP_TO I D

PRODUCT: GLOBAL. AVERI CA I TEM I D
GLOBAL. EMEA. | TEM | D

3.5.3 Partitioning a Cube

Partitioning is a method of physically storing the measures in a cube. It improves the
performance of large measures in the following ways:

e Improves scalability by keeping data structures small. Each partition functions like
a smaller measure.

* Keeps the working set of data smaller both for queries and maintenance, since the
relevant data is stored together.

* Enables parallel aggregation during data maintenance. Each partition can be
aggregated by a separate process.

¢ Simplifies removal of old data from storage. Old partitions can be dropped, and
new partitions can be added.

The number of partitions affects the database resources that can be allocated to
loading and aggregating the data in a cube. Partitions can be aggregated
simultaneously when sufficient resources have been allocated.

You can select multiple hierarchies and multiple levels of a hierarchy for partitioning.

You select partitions and specify properties of them on the Partitioning tab of the
property sheet for a cube. You can also view information about the partitions to help
you decide on a partitioning strategy.

Note:

Cubes are partitioned by default.

To select partitions:
1. Inthe navigation tree, select a cube.

2. Inthe property sheet, select the Partitioning tab.
The Partitioning tab appears, as shown in Figure 3-15 (page 3-25).

3-24 User's Guide

Creating Cubes

3. Select Partition Cube and the Select Partitions subtab.
4. Complete the Select Partitions subtab.

5. Optional: To view information about the partitions, select the Partition Member
Analysis subtab.

6. To apply the partitioning to the cube, click Apply.

Figure 3-15 Selecting Partitions

rCeneraI rAggregation rPanitioning rStorage rMateriaIized Wies

Specify Cube Partition Information

[¥] Partition cube

r Select Partitions r Partition Member Analysis

Select one dimension and one or more levels to use for partitioning. Each dimension member at the selected
lewel iz stored in a separate partition with its descendants. Click Help for more information.

Dimension: |TIME '|
Aggregation Hierarchies: Order Hierarchies | | Clear Selections |
CALEMDAR FISCAL -
[TOTAL: 1 members [TOTAL: 1 members
[[] CALEMDAR_YEAR : 10 members [C]FISCAL_YEAR : 11 members

|: CALEMDAR_QUARTER : 40 members| [| FISCAL_QUARTER : 40 members

[IMONTH : 120 members [IMONTH : 120 members .

l

Edit the precompute wvalues to customize howthe cube is solved.

Partition Order | Partition Mame Partition Includes Precompute
1 CALEMDAR.CALEMDAR_QUARTER CALEMDAR_CQUARTER, MOMTH 40

Automatically Manage Partition Order

| Help | Apply || Revert

See Also:

® Selecting Partitions (page 3-25)

¢ Analyzing Partition Members (page 3-27)

3.5.3.1 Selecting Partitions

You select the dimension and levels to be used for partitioning on the Select Partitions
subtab. This section describes the following choices you can make on the subtab.

Dimension

A dimension for partitioning the cube. The dimension must have at least one level-
based hierarchy. In developing a partitioning strategy, you typically want the
members to be distributed evenly, such that each partition has about the same amount
of data as the others, to support the best performance. You can switch among
dimensions without losing your selections in Aggregation Hierarchies, and so you can
freely explore your data. By default, partitions are created on a time dimension.

Aggregation Hierarchies

From the hierarchies and their levels for the selected dimension, you select the levels
for partitioning. If the dimension has multiple hierarchies and you are partitioning on

Creating Dimensions and Cubes 3-25

Creating Cubes

3-26 User's Guide

only one of them, choose the one that has the most members; it should be defined as
the default hierarchy. After you make a selection, brackets enclose the levels that will
be stored in the same partition.

Each dimension member at the selected level is stored in a separate partition, along
with its descendants. Any dimension members that are at higher levels or are not in
the hierarchy are stored together, unless you select multiple levels for partitioning.

Choose the levels with care to distribute the data evenly across the partitions. For
example, if the time dimension has 10 years of data at the year, quarter, month, and
day levels, then you might partition at the quarter level. This choice creates 40
partitions, one for each quarter and its descendants (months and days). The 10
members at the year level are stored together in a separate partition. If the data is very
sparse, then you might partition by year instead of quarter.

Another example is a time dimension with two hierarchies, calendar and fiscal, with
month and day levels in both hierarchies. In this scenario, you might partition on the
month, calendar year, and fiscal year levels.

The goal is to create partitions that fit in memory, which optimizes performance. The
more memory your computer has, the larger the partitions can be and still achieve this
goal.

Order Hierarchies
You can change the aggregation order of the hierarchies for the selected dimension.
Clear Selections

You can delete all hierarchy selections from the current display. Any selected
hierarchies in other dimensions are unaffected.

Edit the Precompute Values

You can edit the percentage of values that are calculated and stored during data
maintenance. The remaining members are calculated on demand in response to a
query. In general, you should precompute the values that are queried most frequently.

A value of 0 does not create any aggregate values; they are calculated at run-time to
provide the answer sets to queries. The result of 0% pre-aggregation is the fastest
maintenance, the least storage space, but the slowest query response time. A value of
100 creates all of the aggregate values, which are simply fetched in response to
queries. The result of 100% pre-aggregation is the longest maintenance, the most
storage space, but the fastest query response time. Most DBAs choose values between
these two extremes to balance the performance requirements for queries with the
limitations of a data maintenance window.

A value of 1 only creates 1% of the aggregate values, but also creates the data
structures for storing and tracking the aggregates. Thus, the amount of time to
calculate this small percentage is correspondingly longer.

You may want to adjust the percentages over time to balance runtime performance
with maintenance restrictions on time and disk space.

* Partition Order: The order in which the partitions are aggregated.
¢ Partition Name: Name assigned to the partition.

¢ Partition Includes: Levels included in the partition.

Creating Cubes

e Precompute: The percentage of precomputed values in this partition. You can edit
this value unless Disable Editing of Cube Precompute Values is selected in the
Configuration dialog box.

Automatically Manage Partition Order

You can enable Oracle OLAP to determine the optimal aggregation order. Do not
select this option when the aggregation order changes the results. Order is important
for some aggregation operators, such as Average, and when a cube uses multiple
aggregation methods, such as Hierarchical Last Member for Time and Sum for all
other dimensions.

This option appears only when the Show Automatic Partitioning Order Check Box is
selected in the Analytic Workspace Manager Configuration dialog box.

See Also:

¢ "When Does Aggregation Order Matter? (page 9-4)"

3.5.3.2 Analyzing Partition Members

The Partition Member Analysis subtab shows how the members of the selected
dimension are distributed among the partitions. Use this information to create a
partitioning strategy with approximately an even number of dimension members in
each partition.

The information appears in tabular and graphic formats.
Table

The table provides this information about the specified partitions:
¢ Partition Name: Name of the partition, as shown in the Select Partitions subtab.

* Number Partitions: Number of partitions created by partitioning on the selected
level.

* Total Members: Total number of dimension members being distributed across the
partitions. This number includes the members at the level selected for partitioning
and their children at levels included in the partition.

¢ Minimum Members: Minimum number of dimension members assigned to a
partition.

¢ Maximum Members: Maximum number of dimension members assigned to a
partition.

* Average Members: Average number of dimension members assigned to a
partition.

¢ Standard Deviation: Amount of variation among the partitions from the average.
A lower standard deviation is better than a high standard deviation.

Graph

The graph illustrates the partition selected in the table. It provides a visual
representation of the number of members in each partition and their level in the
dimension hierarchy.

Creating Dimensions and Cubes 3-27

Creating Cubes

A tool bar enables you to make temporary changes to the graph. The text tools are
disabled. You can use these tools:

¢ Fill Color: Changes the background color surrounding the graph.

® Graph Type: Provides a variety of standard graph types, as described in Table 3-1
(page 3-28).

¢ Legend: Controls whether the legend is displayed.

¢ Grid Lines: Controls whether horizontal grid lines are displayed on graphs with an
X/Y axis.

* Gradient Effect: Controls whether colored areas appear solid or with a slight
variation in color.

¢ 3-D Effect: Controls whether the graph appears flat or three-dimensional.

Table 3-1 Partitioning Graph Types
__|

Graph Type Usage

Bar Comparisons (default)

Horizontal Bar Comparisons

Pie Percentage or comparisons of percentages; relationship between the parts

and the whole

Line Trends over time; rate of data change

Area Trends over time; rate of data change
Combination Trends over time; effect of one variable on another
Scatter Correlations of two or three measures

Stock Stock prices over time

Circular Cyclical or directional patterns

Pareto Highest and lowest contributors to a total; ranking
3-D Three-dimensional comparison

3.5.4 Loading Data Into Cubes

3-28 User's Guide

You load data into cubes using the same methods as dimensions. However, loading
and aggregating the data for your business measures typically takes more time to
complete. Unless you are developing a dimensional model using a small sample of
data, you may prefer to run the build in one or more background processes.

To load data into a cube:

1. Inthe navigation tree, right-click the Cubes folder or the name of a particular
cube.

2. Select Maintain Cube.

Creating Cubes

The Maintenance Wizard opens on the Select Objects page.

3. Select one or more cubes from Available Target Objects and use the shuttle
buttons to move them to Selected Target Objects. If the dimensions are loaded,
you can omit them from Selected Target Objects.

If you click Next, the Data Refresh Methods page appears.

4. The Data Refresh Methods page identifies the cubes and dimensions included in
the build, the load options, sort order, refresh methods, and the cube script that
defines the steps of the build.

Click Help for information about these choices.

Figure 3-16 (page 3-29) shows the Data Refresh Methods page.

Figure 3-16 Selecting Build Options

(71 Maintenance Wizard: Data Refresh Methods (GLOBAL.GLOBAL) =5

Data Refresh Methods

*fou can change the load option for each dimension, and the refresh method and cube script for each cube. You can also change the
processing order. The available options depend on whether the cube is compressed or is enabled as a cube materialized view.

Object Name Object Type Load Option |Sort |Refresh Method | Cube Script

TIME Dimension MY | Synchronize Yes Complete

CHAMMEL Dimension MY | Synchronize Yes Complete

CUSTOMER Dimension MY | Synchronize Yes Complete

PRODUCT Dimension MY | Synchronize Yes Complete

UNITS_CUBE Cube MV Force SYS_DEFAULT
T+
+

Automatic Order

| Hep | | <Back | Mext || Fimish || cancel

If you click Next, the Processing Options page appears.

5. On the Processing Options page, you can keep the default values.
If you click Next, the Scheduling page appears.

6. On the Scheduling page, you can specify task processing options. You can submit
the build to the Oracle job queue or create a SQL script that you can run outside of
Analytic Workspace Manager.

You can also select the number of processes to dedicate to this build. The number
of parallel processes is limited by the smallest of these numbers: the number of
partitions in the cube, the number of processes dedicated to the build, and the
setting of the JOB_QUEUE_PROCESSES initialization parameter.

Click Help for information about these choices.
7. Click Finish.

Figure 3-17 (page 3-30) shows the build submitted immediately to the Oracle job
queue.

Creating Dimensions and Cubes 3-29

Creating Cubes

3-30 User's Guide

Figure 3-17 Selecting the Scheduling Options

|:§ Maintenance Wizard: Scheduling (GLOBALGLOBAL)

Analytic Workspace task processing options

Choose how and when the maintainence task is processed

|:| Run maintenance task immediately in thiz session
Submit the maintenance task to the Oracle Job Queue

() Run jmmediately
{_) Run at a future time

[01/03/2013 12:14:25

Maximum number of parallel processes: |21

|:| Save maintenance task to script

| e |

| < Back |

| Fnish | | cancel |

(page 3-30).

Figure 3-18 Maintenance Log for the Units Cube

Figure 3-18 (page 3-30) shows the maintenance log displayed by Analytic Workspace
Manager for a cube. The log refreshes throughout the build to provide you with the
most up-to-date information. The maintenance log appears automatically for
maintenance tasks that run immediately in the session. When you submit a job to the
Oracle job queue, you can track its progress through the various reports in the
Maintenance Reports folder: Jobs Scheduled, Jobs Running, and Jobs History. The
reports in Jobs Running and Jobs History are the same as the one shown in Figure 3-18

Maintenance steps I 17 of 17 Completed |1 Maintenance Load Summary
Object [Partition | Staws Object | ObjectType | Partition | Rows Added | Rows Deleted
B Maintenance Id 102 succeeded || [TME DIMENSION 22z g
iy | |CHANMEL DIMEMSION 4 0
succeeded CUSTOMER DIMEMSION 105 0
succeeded PRODUCT DIMEMSION 48 0
succeeded UMITS_CUEE CUBE PLO:CY2007 0 o
UMITS_CUEE CUBE PB:CY2006 33980 o
succeeded — [UMITS_CUEE CUBE PB:CY2005 34607 0
succeeded UMITS_CUEE CUBE PFCY2004 37962 0
succeeded UMITS_CUEE CUBE P&:CY2003 40650 0
UMITS_CUEE CUBE PS:CY2002 42072 0
succeeded UMITS_CUEE CUBE P4:CY2001 43001 0
@ COMPILE succeeded || [JMTS-CUBE CUBE P3:CY2000 30195 0l
HEp— L JLIBITS CLIRFE I“LIEE P27 4499 471N nl 4
4] i [T 4] | [»
. 4
["summary Log | Detailed Log || Rejected Record Log | Difmefision Compile Lon, |
Maint Ial| Object | ObjectType | Partition | Operation | st pae stanTime | EnaTime | Elaps
102 UNITS_CUBE CUBE POCT2006 LOAD - GENERATED SOL 26-MAY-10 DZ:00:28 AM
102 UNITS_CUBE CUBE POCY2006 SOLVE 26-MAT-10 090029 AM 030029 AM
102 UNITS_CUBE CUBE POCY2006 UPDATE 26-MAT-10 090029 AM 05:00:50 AM
102 UNITS_CUBE CUBE PECT2005 LOAD 26-MAT-10 09:00:30AM 050050 AM
102 UNITS_CUBE CUBE PECT2005 LOAD - GEMERATED SOL 26-MAY-10 DZ:00:30 AM
102 UNITS_CUBE CUBE PE:CT2005 SOLVE 26-MAT-10 09:00:30AM 030051 AM
102 UNITS_CUBE CUBE PE.CT2005 UPDATE 26-MAT-10 09:00:3LAM 030051 AM
102 UNITS_CUBE CUBE PFCT2004 LOAD 26-MAT-10 09:00:3LAM 030052 AM
102 UNITS_CUBE CUBE PFCT2004 LOAD - GEMERATED SOL 26-MAY-10 DZ:00:31 AM
102 UNITS_CUBE CUBE PFCT2004 SOLVE 26-MAT-10 090032 AM 030052 AM
102 UNITS_CUBE CUBE PFCT2004 UPDATE 26-MAT-10 090032 AM 030053 AM
102 UNITS_CUBE CUBE PEICT2003 LOAD 26-MAT-10 090033 AM 030053 AM
1 | P ‘

Creating Cubes

3.5.5 Displaying the Data in a Cube
After loading a cube, you can display the data for your business measures in Analytic

Workspace Manager.

To display the data in a cube:
1. Inthe navigation tree, right-click the cube.
2. Select View Data from the shortcut menu.

The Measure Data Viewer displays the selected measure in a crosstab at the top of the
page and a graph at the bottom of the page. On the crosstab, you can expand and
collapse the dimension hierarchies that label the rows and columns. You can also
change the location of a dimension by pivoting or swapping it. If you want, you can
use multiple dimensions to label the columns and rows, by nesting one dimension
under another.

To change the default display:

e To pivot, drag a dimension from one location and drop it at another location,
usually above or below another dimension.

* To swap dimensions, drag and drop one dimension directly over another
dimension, so they exchange locations.

To make extensive changes to the selection of data, select Query Builder from the File
menu.

Figure 3-19 (page 3-31) shows the Units cube in the Measure Viewer.

Figure 3-19 Displaying the Units Cube

Page Item5||E| Product Total Product v||_| Channel Total Channel v|

Elr 2006
Units | sales | Cost
R | |
+ Tatal Customer 584,929.00 140,138,317.39 129,11Z,769.97
» North America 338,222.00 71,893,281.76 65,575,453.41
y Asia Pacific 143,532.00 52,736,294.71 49,160,305.22
» Europe 103,174.00 15,508,740.92 14,378,011.24
—
B: ul===63 B/ nEE b

160N
140M
120m

100 [Total Customer
[[Morth America
[E Asia Pacific

[Europe

80M

BOM

40M

20m

2006 Units 2006

2006

Creating Dimensions and Cubes 3-31

Choosing a Data Maintenance Method

3.5.6 Displaying the Cube View Descriptions

The Maintenance Wizard automatically generates relational views of a cube. Querying
Dimensional Objects (page 4-1) describes these views and explains how to query
them.

Figure 3-20 (page 3-32) shows the description of the relational view of the Units cube.

Figure 3-20 Description of the Units Cube View

General Data |
Specify Wiew Infarmation

Cube Mame: UNITS_CUBE

Wiew Name: | Ts_CUBE_VIEW

Column Name Data Type Ohject Type Dimension
TIME WARCHARZ DIMEMNSION TIME
CHAMMEL WARCHARZ DIMEMNSION CHAMMEL
CUSTOMER WARCHARZ DIMEMNSION CUSTOMER
FRODUCT WARCHARZ DIMEMNSION FRODUCT
UMNITS MUMBER. MEASURE

SALES MUMBER. MEASURE

COST MUMBER. MEASURE

[T [»]

Default system-generated cube member view. Returns one rowfor each cube member.

3.6 Choosing a Data Maintenance Method

While developing a dimensional model of your data, mapping and loading each object
immediately after you create it is a good idea. That way, you can detect and correct
any errors that you made to the object definition or the mapping.

However, in a production environment, you want to perform routine maintenance as
quickly and easily as possible. For this stage, you can choose among data maintenance
methods.

You can refresh all cubes using the Maintenance Wizard. This wizard enables you to
refresh a cube immediately, or submit the refresh as a job to the Oracle job queue, or
generate a PL/SQL script. You can run the script manually or using a scheduling
utility, such as Oracle Enterprise Manager Scheduler or the DBMS_SCHEDULER
PL/SQL package.

The generated script calls the BUI LD procedure of the DBMS_CUBE PL/SQL package.
You can modify this script or develop one from the start using this package.

The data for a partitioned cube is loaded and aggregated in parallel when multiple
processes have been allocated to the build. You are able to see this in the build log.

In addition, each cube can support these data maintenance methods:
¢ Custom cube scripts
* Maintenance scripts

e Cube materialized views

If you are defining cubes to replace existing materialized views, then you use the
materialized views as an integral part of data maintenance. Materialized view

3-32 User's Guide

Choosing a Data Maintenance Method

capabilities restrict the types of analytics that can be performed by a custom cube
script.

See Also:

¢ "Maintenance Logs (page 7-6)"

¢ 'Parallelism (page 7-7)"

3.6.1 Creating and Executing Custom Cube Scripts

A cube script is an ordered list of steps that prepare a cube for querying. Each step
represents a particular data transformation. By specifying the order in which these
steps are performed, you can allow for interdependencies.

You can choose from these step types:

e (Clear Data: Clears the data from the entire cube, from selected measures, or from
selected portions of the cube. You can clear just the detail data (called leaves) for a
fast refresh, just the aggregate data, or both for a complete refresh. Clearing old
data values is typically done before loading new values.

e Load: Loads the data from the source tables into the cube. You can load all
measures in the cube or just selected measures.

e Aggregation: Generates aggregate values using the rules defined for the cube. You
can aggregate the entire cube, selected measures, or selected portions of the cube.

* Analyze: Generates optimizer statistics, which can improve the performance of
some types of queries. For more information, see "Analyzing Cubes and
Dimensions (page 7-10)". Generating statistics is typically done immediately after
data maintenance.

¢ OLAP DML: Executes a command or program in the OLAP DML.

e PL/SQL: Executes a PL/SQL command or script. You can run a PL/SQL script, for
example, at the beginning of data maintenance to initiate a refresh of the relational
source tables.

If a cube is used to support advanced analytics in a cube script, then it cannot be
enhanced as a cube materialized view, as described in "Adding Materialized View
Capability to a Cube (page 3-36)". In this case, you are responsible for detecting when
the data in the cube is stale and must be refreshed.

3.6.1.1 Creating Cube Scripts
To create a cube script:
1. Expand the folder for a cube that is not defined as a cube materialized view.

2. Right-click Cube Scripts, then select Create Cube Script.
The Create Cube Script dialog box appears.

3. On the General tab, enter a name for the cube script.

4. To create a step, click New Step.

Creating Dimensions and Cubes 3-33

Choosing a Data Maintenance Method

3-34 User's Guide

5. Select the type of step.
The New Step dialog box appears for that type of step.

6. Complete the tabs, then click OK.
The step is listed on the Cube Script General tab.
7. Click Create.
The cube script appears as an item in the Cube Script folder.
8. To run the cube script:
a. Right-click the cube script on the navigation tree, and select Run Cube Script.
The Maintenance Wizard opens.
b. Follow the steps of the wizard.
c. To view the results, right-click the cube and select View Data.

Figure 3-21 (page 3-34) shows the Create Cube Script dialog box, in which several
steps have been defined.

Figure 3-21 Creating a Cube Script
General |

Specify General Cube Script Information for UNITS _CLUEE

Hame: [CUSTOM_MAINTENANCE_SCRIPT

Default Script for this cube
Define the Cube Script by creating and ordering processing steps:

LCube Script:

2 Load E—
H Analyze |L|

| ¥ MewsStep || Edit Step... || Delete Step

3.6.1.2 Running a Cube Script

Each cube automatically has a default cube script named LOAD_AND_AGGREGATE that
loads the data and aggregates it using the rules defined on the cube. You can define
any number of additional scripts and designate one as the default cube script. All
methods of refreshing a cube execute the default cube script. You can execute other
cube scripts manually using the Maintenance Wizard.

To manually run a custom cube script:
1. Expand the Cube Scripts folder for the cube.

2. Right-click the cube script and select Run Cube Script to open the Maintenance
Wizard.

3. Follow the steps of the Maintenance Wizard.

Choosing a Data Maintenance Method

To run a custom cube script as the default script:

1. Expand the Cube Scripts folder for the cube.

2. Select the cube script so the General tab appears.

3. Select Default Script For This Cube and click Apply.

4. Open the Maintenance Wizard anywhere on the navigation tree and select the
cube.

5. Follow the steps of the Maintenance Wizard.

To run a cube script as a step in a maintenance script:
1. Create a maintenance script.
2. Add the cube script as a step.

3. Run the maintenance script.

3.6.2 Creating and Executing Maintenance Scripts

A maintenance script is an ordered list of steps for maintaining multiple cubes in a
schema. By using a maintenance script, you can manage interdependencies among the
cubes.

To load and aggregate a cube or a dimension, add it as a step. For more control over
the maintenance of a particular cube or dimension, either create a cube script or enter
the individual steps directly into the maintenance script:

® C(lear Data

¢ Load

* Aggregation
* Analyze

e OLAP DML
e PL/SQL

These are the same steps described in "Creating and Executing Custom Cube Scripts
(page 3-33)".

3.6.2.1 Creating Maintenance Scripts
To create a maintenance script:

1. Inthe navigation tree, right-click Maintenance Scripts, then select Create
Maintenance Script to display the Create Maintenance Script dialog box.

2. Enter the name, labels, and description on the General tab.
3. To create a new step, click Add, then select the type of step from the list.

4. Create additional steps as desired. You can edit, delete, or re-order the steps at
any time.

Creating Dimensions and Cubes 3-35

Choosing a Data Maintenance Method

5. Click Create. The new maintenance script appears as an object in the Maintenance
Scripts folder.

Figure 3-22 (page 3-36) shows the General tab of the Create Maintenance Script
dialog box.

Figure 3-22 Creating a Maintenance Script

Lescription: |G|obalMaintenance

General |

Specify General Maintenance Script Information

Name: [GLOBAL_MAINTENANCE |
Short Label: | Global Maintenance ‘
Long Label: |GIUbaIMainlenancE ‘

Define the Maintenance Script by adding dimensions, cubes, cube scripts and processing commands:

Maintenance Script:

Step ‘Ol:uect Description Type |
1 ~JGLOBAL TIME Time Dimension
2 S GLOBAL CHAMMEL Channel Dimension
3 ~JGLOBAL CUSTOMER. Customer Dimension b
< ~JGLOBAL PRODUCT Product Dimension +
5 (FPCLOBAL UNITS_CUBE Units Cube Cube
3 (FPCLOBAL PRICE_CUBE Price Cube Cube
| #ada. |

3.6.2.2 Running Maintenance Scripts

To run a maintenance script:

1. Expand the Maintenance Scripts folder.

2. Right-click the script, then select Run Maintenance Script.
3. The Maintenance Wizard opens.

4. Follow the steps of the Maintenance Wizard.

3.6.3 Adding Materialized View Capability to a Cube

3-36 User's Guide

Oracle OLAP cubes can be enhanced with materialized view capabilities. Cubes can be
incrementally refreshed through the Oracle Database materialized view subsystem,
and they can serve as targets for transparent rewrite of queries against the source
tables. A cube that has been enhanced in this way is called a cube materialized view.

The OLAP dimensions associated with a cube materialized view are also defined with
materialized view capabilities.

A cube must conform to these requirements, before it can be designated as a cube
materialized view:

¢ All dimensions of the cube have at least one level and one level-based hierarchy.

Ragged and skip-level hierarchies are not supported. The dimensions must be
mapped.

All dimensions of the cube use the same aggregation operator, which is either SUM
M N, or MAX.

e The cube has one or more dimensions and one or more measures.

Choosing a Data Maintenance Method

¢ The cube is fully defined and mapped. For example, if the cube has five measures,
then all five are mapped to the source tables.

* The data type of the cube is NUMBER, VARCHAR2, NVARCHAR2, or DATE.

* The source detail tables support dimension and rely constraints. If they have not
been defined, then use the Relational Schema Advisor on the Materialized Views
tab of the cube property sheet to generate a script that defines them on the detail
tables.

® The cube is compressed.

* The cube can be enriched with calculated measures, but it cannot support more
advanced analytics in a cube script.

See Also:

"Cube Materialized Views (page 7-18)"

To add materialized view capabilities:

1. Inthe navigation tree, select a cube.

The property sheets for the cube are displayed.
2. Select the Materialized Views tab.

3. Review the checklist and, if some tests failed, fix the cause of the problem.

You cannot define a cube materialized view until the cube is valid.

4. For automatic refresh, complete just the top half page. For query rewrite, complete
the entire page.

Click Help for information about the choices on this page.

5. Click Apply.

The cube materialized views appear in the same schema as the analytic workspace. A
materialized view is created for the cube and each of its dimensions. Unlike traditional
materialized views, cube materialized views do not use relational tables to store data;
the data is stored in the backing cube. A CB$ prefix identifies the tables as cube
materialized views.

The initial state of a new materialized view is invalid, so it does not support query
rewrite until after it is refreshed. You can specify the first refresh time on the
Materialized View tab of the cube, or you can run the Maintenance Wizard.

Figure 3-23 (page 3-38) shows the Materialized View tab of the Units Cube.

Creating Dimensions and Cubes 3-37

Supporting Multiple Languages

Figure 3-23 Defining a Materialized View

rGeneraI rAggregat\on rPanitioning rStor’age rMateriaIized\u‘iews |

[»

Choose this option to manage refresh of the Cube with the Materialized View refresh system
Enable Materialized Wiew Refresh of the Cube
Choose howand when to refresh of the Cube with the Materialized Yiew refresh system
Refresh Method Forcei' Refresh Mode: ©n Demand
Canstraints: (2) Trusted () Enfarced
Choose this option to allow queries on the source tables of the Cube 1o be automatically rewritten to use
summary data in the Cube
[Enable Query Rewrite

Choose Relational Schema Advisor to learn howto alter the relational schema for best support o | Relational Schema Advisar... |
the cube and query rewrite to the cube organized materialized wiew:

[«]

4]

[»]

-

r Compatibility Check list r Materialized Yiew details |

Status ‘ Required for|Object |Check

Rewrite UMITS_CUEE User must have create Materialized Wiew privilege
Refresh TIME Dimension Materialized View has already been created
Refresh CHAMMEL Dimension Materialized View has already been created
Refresh CUSTOMER Dimension Materialized View has already been created
Refresh PRODUCT Dimension Materialized Wiew has already been created
Refresh UNITS_CUBE Cube must be compressed

L4

3.7 Supporting Multiple Languages

A single analytic workspace can support multiple languages. This support enables
users of OLAP applications and tools to view the metadata in their native languages.
For example, you can provide translations for the display names of measures, cubes,
and dimensions. You can also map attributes to multiple columns, one for each
language.

3-38 User's Guide

The number and choice of languages is restricted only by the database character set
and your ability to provide translated text. Languages can be added or removed at any
time.

To add support for multiple languages:

1.

2.

In the navigation tree, expand the folder for the analytic workspace.
Select Languages to display its property page.
On the General tab, click Modify Languages.

On the Modify Languages dialog box, select the languages that the analytic
workspace must support. Use the shuttle keys to move them to the Selected
Languages box.

Click OK to return to the Languages property page.

Enter the translations of the various labels and descriptions. Each language has a
column where you can enter this information.

For each dimension, open the Mappings window. Map the attributes to the source
columns for each language.

Figure 3-24 (page 3-39) shows the addition of French to the analytic workspace.

Defining Measure Folders

Figure 3-24 Adding a Language

&.Description
E%._SHORT_DBCRIPTION
@:Long Label
@5hort Label
&.Description
E%LCHANNEL_TOTAL_\D
@:Long Label
@short Label

Long Description
Shaort Description
Shaort Description
Shaort Description

Total
Total

| Modify Languages...

General |
| AMERICAN FREMCH
EI@Dimensions:
B 5T CHAMNMEL
%‘Long Label Channel La Manche De Yentes
%\Short Label Channel La Manche De Yentes
%‘Descriplion Channel La Manche De Yentes
Bl [@Levels:
= &% CHANMNEL
%‘Long Label Channel La Manche De Yentes
%\Shun Label Channel La Manche De Yentes
%Descr\ption Channel La Manche De Yentes
E&TOTAL
@.Long Label Total Totale
@.5hort Label Total Totale
&.Description Total Totale
=IEgHierarchies:
£ & PRIMARY
%Long Label Primary Primaire
@5hort Label Primary Primaire
%Descr\ption Primary Primaire
EllEtarributes:
S & LONG_DESCRIPTION
%Long Label Long Description Description Longue
%\Shun Label Long Description Description Longue

Description Longue
Description Courte
Description Courte
Description Courte

Totale

3.8 Defining Measure Folders

Measure folders organize and label groups of measures. Users may have access to
several analytic workspaces or relational schemas with measures named Sales or

Costs, and measure folders provide a way for applications to differentiate among
them.

To create a measure folder:

1.

2.

Expand the folder for the analytic workspace.

Right-click Measure Folders, then select Create Measure Folder from the shortcut

menu.

Complete the General tab of the Create Measure Folder dialog box.

Click Help for specific information about these choices.

The measure folder appears in the navigation tree under Measure Folders. You can
also create subfolders.

Figure 3-25 (page 3-40) shows creation of a measure folder.

Creating Dimensions and Cubes 3-39

Saving and Re-Creating Dimensional Objects with Object Definitions

Figure 3-25 Creating a Measure Folder

General

Specity General Measure Folder Information

Dame: | GLOBAL _MEASURES

Long Label |Glubal Measures

|
Shart Label: |Global Measures |
|
|

Description: |Global Messures

Available Measures: Selected Measures:

PRICE_COST_CUBE.COST
PRICE_COST_CLEBE PRICE
UNITE_CUBE COST
LIMITS_CLUBE SALES

|?| UNITS _CUBE UNTS

3.9 Saving and Re-Creating Dimensional Objects with Object Definitions

Analytic Workspace Manager enables you to save all or part of the data model as a
template. You can save a template to a file or to a table. The template contains the
XML definitions of the dimensional objects, such as dimensions, levels, hierarchies,
attributes, and measures. Only the metadata is saved, not the data.

Template files are small, so you can easily distribute them by email or on a website,
just as the templates for Global and Sales History are distributed on the Oracle

website. A template saved to a table is available to any user of the database who has
permission to see it. Oracle OLAP saves templates to the CUBE_TEMPLATES table.

To re-create the dimensional objects, you simply identify the templates in Analytic
Workspace Manager.

You can also save an analytic workspace to, or create one from, an EIF file. EIF files are
specially formatted files for copying analytic workspaces. They save the definitions of
OLAP DML objects and optionally save the data also.

This section has the following topics:

* Creating Dimensional Objects From XML Templates (page 3-40)
¢ Saving Object Definitions to XML Templates (page 3-41)

* Creating Analytic Workspaces from EIF Files (page 3-41)

* Saving Analytic Workspaces to EIF Files (page 3-42)

See Also:

* "Mapping Cubes (page 3-19)" for information on saving the SQL statements
for a mapping.

3.9.1 Creating Dimensional Objects From XML Templates

You can create all or part of an analytic workspace from a template.

To create dimensional objects from a template:

3-40 User's Guide

Saving and Re-Creating Dimensional Objects with Object Definitions

In the navigation tree, right-click Analytic Workspaces, Dimensions, Cubes, or
Measure Folders.

Select Create Object from Template to display the Create Object from Template
dialog box.

Select the schema in which to create the objects and click OK.
Complete the Create Object from Template dialog box.

To overwrite the metadata for an existing object select Modify Existing Objects on
the Options tab.

See Also:

e "About XML Templates (page 7-17)"

3.9.2 Saving Object Definitions to XML Templates

You can save the XML descriptions of all the objects in an analytic workspace, or just
selected objects, and re-create them later in the same database or in a database on
another computer or platform.

To save object definitions in an XML template:

1.

In the navigation tree, right-click an analytic workspace, dimension, cube, or
measure folder.

Select Save Object to Template to display the Save Object to Template dialog box.
Select Save to File or Save to Table.

Verify the selection of objects in the Object Selection tab.

To modify the use of the schema name in the template, use the Options tab.

Complete the remaining fields to identify the name and location of the saved
template. You can overwrite an existing template.

See Also:

¢ "About XML Templates (page 7-17)"

3.9.3 Creating Analytic Workspaces from EIF Files

EIF files are specially formatted files for transferring dimensional objects and data.

To create an analytic workspace from an EIF file:

1.

2.

In the navigation tree, right-click Analytic Workspaces and select Create Analytic
Workspace From EIF File.

The Create Analytic Workspace From EIF File dialog box appears.

Specify the directory that contains the EIF file and the name of the file, a name for
the new analytic workspace and the tablespace for it, and then click OK.

Creating Dimensions and Cubes 3-41

Copying and Pasting Dimensional Objects

See Also:

* "About EIF Files (page 7-17)"

3.9.4 Saving Analytic Workspaces to EIF Files
You can save, or export, an analytic workspace to an EIF file.
To save analytic workspace objects to an EIF file:
1. In the navigation tree, right-click the analytic workspace.

2. Select Export Analytic Workspace ObjectTo EIF File to display the Export
Analytic Workspace Object to EIF File dialog box.

3. Specify the directory and file name for the EIF file, then click OK.

See Also:

* "About EIF Files (page 7-17)"

3.10 Copying and Pasting Dimensional Objects

You can copy a dimensional object and paste it in an appropriate location. The analytic
workspace objects that you can copy are the following.

* Analytic workspace

¢ Dimension

e Cube

* Measure

e Calculated measure

To copy a dimensional object:

¢ In the navigation tree, right-click an analytic workspace, dimension, cubes,
measure, or calculated measure.

e Select Copy.
To paste a dimensional object:

* In the navigation tree, right-click Analytic Workspaces, Dimensions, Cubes,
Measures, or Calculated Measures.

* Select Paste.

3-42 User's Guide

A

Querying Dimensional Objects

Oracle OLAP adds power to your SQL applications by providing extensive analytic
content and fast query response times. A SQL query interface enables any application
to query cubes and dimensions without any knowledge of OLAP.

The OLAP option automatically generates a set of relational views on cubes,
dimensions, and hierarchies. SQL applications query these views to display the
information-rich contents of these objects to analysts and decision makers. You can
also create custom views that follow the structure expected by your applications,
using the system-generated views like base tables.

In this chapter, you learn the basic methods for querying dimensional objects in SQL.
It contains the following topics:

* Exploring the OLAP Views (page 4-1)

* Creating Basic Queries (page 4-6)

* Creating Hierarchical Queries (page 4-11)

¢ Using Calculations in Queries (page 4-13)

e Using Attributes for Aggregation (page 4-14)
¢ Joining Cubes to Tables and Views (page 4-16)
* Viewing Execution Plans (page 4-17)

* Querying the Data Dictionary (page 4-20)

See Also:

¢ "Developing Reports and Dashboards Using SQL Tools and
Application Builders (page 1-3)" for a sample dashboard created using
Oracle Application Express

¢ "Overview of the Dimensional Data Model (page 1-5)" for a discussion of
cubes, dimensions, and hierarchies

4.1 Exploring the OLAP Views

The system-generated views are created in the same schema as the analytic workspace.
Oracle OLAP provides three types of views:

e Cube views

¢ Dimension views

Querying Dimensional Objects 4-1

Exploring the OLAP Views

® Hierarchy views

These views are related in the same way as fact and dimension tables are in a star
schema. Cube views serve the same function as fact tables, and hierarchy views and
dimension views serve the same function as dimension tables. Typical queries join a
cube view with either a hierarchy view or a dimension view.

4.1.1 Cube Views

4-2 User's Guide

Each cube has a cube view that presents the data for all the measures and calculated
measures in the cube. You can use a cube view like a fact table in a star or snowflake
schema. However, the cube view contains all the summary data in addition to the
detail level data.

4.1.1.1 Discovering the Names of the Cube Views

The default name for a cube view is cube_VI EW To find the view for UNI TS_CUBE in
your schema, you might issue a query like this one:

SELECT vi ew_nanme FROM user_vi ews WHERE vi ew_name LIKE ' UNI TS_CUBE% ;

UNI TS_CUBE_VI EW

The next query returns the names of all the cube views in your schema from
USER_CUBE_VI EV&:

SELECT vi ew_nanme FROM user _cube_vi ews;

UNI TS_CUBE_VI EW
PRI CE_CUBE_VI EW

4.1.1.2 Discovering the Columns of a Cube View

Like a fact table, a cube view contains a column for each measure, calculated measure,
and dimension in the cube. In the following example, UNI TS_CUBE_VI EWhas
columns for the SALES, UNI TS, and COST measures, for several calculated measures
on SALES, and for the Tl ME, CUSTOVER, PRODUCT, and CHANNEL dimensions.

DESCRI BE uni ts_cube_vi ew

Narme Nul | ? Type

SALES NUMBER

UNI TS NUMBER

CCsT NUMBER

SALES PP NUMBER

SALES CHG PP NUMBER

SALES PCTCHG PP NUMBER
SALES_PROD_SHARE_PARENT NUMBER

SALES PROD SHARE TOTAL NUMBER

SALES PROD RANK_PARENT PP NUMBER

TIME VARCHAR2(100)
CUSTOMER VARCHAR2(100)
PRODUCT VARCHAR2(100)
CHANNEL VARCHAR2(100)

The USER_CUBE_VI EW COLUMNS data dictionary view describes the columns of a
cube view, as shown by the following query.

Exploring the OLAP Views

SELECT col um_nane, colum_type FROM user _cube_vi ew_col umms
VWHERE vi ew name = ' UNI TS _CUBE VI EW;

COLUWN_NAME COLUWN_TYPE
SALES MEASURE
UNITS MEASURE
CosT MEASURE
SALES PP MEASURE
SALES CHG PP MEASURE
SALES_PCTCHG PP MEASURE
SALES PROD_SHARE_PARENT MEASURE
SALES PROD_SHARE TOTAL MEASURE
SALES PROD_RANK_PARENT PP VEASURE
TI NE KEY
CUSTOMER KEY
PRODUCT KEY
CHANNEL KEY

13 rows sel ected.

4.1.1.3 Displaying the Contents of a Cube View

You can display the contents of a cube view quickly with a query like this one. All
levels of the data are contained in the cube, from the detail level to the top.

SELECT sal es, units, time, custonmer, product, channel
FROM units_cube_vi ew WHERE ROMUM < 15;

SALES UNITS TI ME CUSTOMER PRCDUCT CHANNEL

1120292752 4000968 TOTAL TOTAL TOTAL TOTAL
134109248 330425 CY1999 TOTAL TOTAL TOTAL
130276514 534069 CY2003 TOTAL TOTAL TOTAL
100870877 253816 CY1998 TOTAL TOTAL TOTAL
136986572 565718 CY2005 TOTAL TOTAL TOTAL
140138317 584929 CY2006 TOTAL TOTAL TOTAL
144290686 587419 Cy2004 TOTAL TOTAL TOTAL
124173522 364233 CY2000 TOTAL TOTAL TOTAL

92515295 364965 CY2002 TOTAL TOTAL TOTAL
116931722 415394 CY2001 TOTAL TOTAL TOTAL
31522409. 5 88484 Cy2000. Q1 TOTAL TOTAL TOTAL
27798426. 6 97346 Cy2001. 2 TOTAL TOTAL TOTAL
29691668. 2 105704 CY2001. @B TOTAL TOTAL TOTAL
32617248. 6 138953 CY2005. @B TOTAL TOTAL TOTAL

14 rows sel ected.

4.1.2 Dimension and Hierarchy Views

Each dimension has one dimension view plus a hierarchy view for each hierarchy
associated with the dimension. For example, a Time dimension might have these three
views:

¢ Time dimension view
* Calendar hierarchy view

¢ Fiscal hierarchy view

Querying Dimensional Objects 4-3

Exploring the OLAP Views

4-4 User's Guide

You can use dimension views and hierarchy views like dimension tables in a star
schema.
4.1.2.1 Discovering the Names of Dimension and Hierarchy Views

USER _CUBE DI M VI EWS identifies the dimension views for all dimensions. The
default name for a dimension view is di nensi on_VI EW

SELECT * FROM user_cube_di m vi ews;

DI MENSI ON_NAVE VI EW NAME
PRODUCT PRODUCT VI EW
CUSTOMER CUSTOMER VI EW
CHANNEL CHANNEL_VI EW
TI VE TI ME_VI EW

USER_CUBE_HI ER VI EW6 identifies the hierarchy views for all the dimensions. For a
hierarchy view, the default name is di mensi on_hi er ar chy_VI EW The following
query returns the dimension, hierarchy, and view names.

SELECT * FROM user_cube_hi er _vi ews ORDER BY di nensi on_nane;

DI MENSI ON_NAVE HI ERARCHY_NAME VI EW NAVE

CHANNEL PRI MARY CHANNEL _PRI MARY_VI EW
CUSTOVER MARKET CUSTOVER_MARKET_VI EW
CUSTOMVER SHI PMENTS CUSTOVER_SHI PMENTS_VI EW
PRODUCT PRI MARY PRODUCT_PRI MARY_VI EW
TIME FI SCAL TI ME_FI SCAL_VI EW

TIME CALENDAR TI ME_CALENDAR VI EW

4.1.2.2 Discovering the Columns of a Dimension View

Like a dimension table, a dimension view contains a key column, level name, level
keys for every level of every hierarchy associated with the dimension, and attribute
columns. In the following example, TI ME_VI EWhas a column for the dimension keys,
the level name, and the dimension attributes.

DESCRI BE tine_vi ew

Nare Nul I 2 Type

DI M_KEY VARCHAR2('100)
LEVEL_NAME VARCHAR2(30)
DI M_ORDER NUMBER
END_DATE DATE
LONG_DESCRI PTI ON VARCHAR2('100)
SHORT_DESCRI PTI ON VARCHAR2('100)
TI ME_SPAN NUMBER

USER_CUBE_DI M VI EW COLUMNS describes the information in each column, as
shown in this query.

SELECT col um_nane, col um_type FROM user_cube_di m vi ew_col ums
VHERE vi ew nane =TI ME_VIEW;

COLUMN_NAME COLUMN_TYPE
DI M KEY KEY
LEVEL_NAME LEVEL_NAMVE
DI M ORDER DI M ORDER

Exploring the OLAP Views

END_DATE
TI ME_SPAN

LONG_DESCR! PTI ON
SHORT_DESCRI PTI ON

ATTRI BUTE
ATTRI BUTE
ATTRI BUTE
ATTRI BUTE

4.1.2.3 Displaying the Contents of a Dimension View

The following query displays the level and attributes of each dimension key.

SELECT di m key, |evel nane, |ong_description description, time_span, end_date

FROM time_vi ew WHERE di m key LI KE ' %2005% ;

DESCRI PTI ON

TI ME_SPAN END_DATE

CY2005
CY2005. @
CY2005. Q4
CY2005. (B
CY2005. QL
2005. 01
2005. 05
2005. 07
2005. 03
2005. 04
2005. 08
2005. 09
2005. 02
2005. 11
2005. 06
2005. 10
2005. 12
FY2005
FY2005. Q4
FY2005. QL
FY2005. @
FY2005. (8

CALENDAR_YEAR
CALENDAR_QUARTER
CALENDAR_QUARTER
CALENDAR_QUARTER
CALENDAR_QUARTER
MONTH

MONTH

MONTH

MONTH

MONTH

MONTH

MONTH

MONTH

MONTH

MONTH

MONTH

MONTH

FI SCAL_YEAR

FI SCAL_QUARTER

FI SCAL_QUARTER

FI SCAL_QUARTER

FI SCAL_QUARTER

22 rows sel ected.

FY2005
Q4 FY-05
QL FY-05
Q@ FY-05
@ FY-05

365 31- DEC- 05
91 30- JUN-05
92 31-DEC- 05
92 30- SEP- 05
90 31- MAR- 05
31 31-JAN-05
31 31- MAY-05
31 31-JUL- 05
31 31- MAR- 05
30 30- APR- 05
31 31- AUG 05
30 30- SEP- 05
28 28-FEB- 05
30 30- NOv- 05
30 30- JUN-05
31 31-CCT- 05
31 31-DEC 05

365 30- JUN-05
91 30- JUN-05
92 30- SEP- 04
92 31-DEC- 04
90 31- MAR- 05

4.1.2.4 Discovering the Columns of a Hierarchy View

Like the dimension views, the hierarchy views also contain columns for the dimension
key, level name, and level keys. However, all of the rows and columns are associated
with the dimension keys that belong to the hierarchy.

DESCRI BE time_cal endar _vi ew

Name

DI M KEY
LEVEL_NAVE
DI M_ORDER
HI ER ORDER

LONG_DESCR! PTI ON
SHORT_DESCRI PTI ON

END_DATE
TI ME_SPAN
PARENT
TOTAL

CALENDAR YEAR
CALENDAR QUARTER

MONTH

Querying Dimensional Objects 4-5

Creating Basic Queries

4.1.2.5 Displaying the Contents of a Hierarchy View

The following query displays the dimension keys, parent key, and the full ancestry for
calendar year 2005.

SELECT di m key, |ong_description description, parent, cal endar_year year,
cal endar _quarter quarter, nmonth FROMtine_cal endar_view
VHERE cal endar _year ="' CY2005'
ORDER BY | evel _name, end_date;

DI M_KEY DESCRI PTI ON PARENT YEAR QUARTER MONTH
Cy2005. Q1 QL. 05 Cy2005 Cy2005 Cy2005. Q1

Cy2005. @2 Q. 05 Cy2005 Cy2005 Cy2005. @2

CY2005. B @. 05 Cy2005 Cy2005 Cy2005. B

CY2005. (4 Q4. 05 Cy2005 Cy2005 CY2005. (4

Cy2005 2005 TOTAL Cv2005

2005. 01 JAN- 05 Cy2005. Q1 Cy2005 Cy2005. Q1 2005.01
2005. 02 FEB- 05 Cy2005. Q1 Cy2005 Cy2005. Q1 2005. 02
2005. 03 MAR- 05 Cy2005. Q1 Cv2005 Cy2005. Q1 2005. 03
2005. 04 APR- 05 Cy2005. @2 Cv2005 Cy2005. @2 2005. 04
2005. 05 MAY- 05 Cy2005. @2 Cv2005 Cy2005. @2 2005. 05
2005. 06 JUN- 05 Cy2005. @2 Cy2005 Cy2005. @2 2005. 06
2005. 07 JUL-05 Cy2005. B Cy2005 Cy2005. B 2005. 07
2005. 08 AUG 05 Cy2005. B Cy2005 Cy2005. B 2005. 08
2005. 09 SEP- 05 Cy2005. B Cy2005 Cy2005. B 2005. 09
2005. 10 OCT-05 Cv2005. (4 Cy2005 CY2005. (4 2005. 10
2005. 11 NOV- 05 Cv2005. (4 Cy2005 CY2005. (4 2005. 11
2005. 12 DEC- 05 Cv2005. (4 Cy2005 CY2005. (4 2005. 12

17 rows sel ected.

4.2 Creating Basic Queries

Querying a cube is similar to querying a star schema. In a star schema, you join a fact
table to a dimension table. The fact table provides the numeric business measures, and
the dimension table provides descriptive attributes that give meaning to the data.
Similarly, you join a cube view with either a dimension view or a hierarchy view to
provide fully identified and meaningful data to your users.

For dimensions with no hierarchies, use the dimension views in your queries. For
dimensions with hierarchies, use the hierarchy views, because they contain more
information than the dimension views.

When querying a cube, remember these guidelines:

¢ Apply a filter to every dimension.

The cube contains both detail level and aggregated data. A query with an
unfiltered dimension typically returns more data than users need, which negatively
impacts performance.

¢ Let the cube aggregate the data.

Because the aggregations are calculated in the cube, a typical query does not need a
GROUP BY clause. Simply select the aggregations you want by using the
appropriate filters on the dimension keys or attributes.

4-6 User's Guide

Creating Basic Queries

4.2.1 Applying a Filter to Every Dimension

To create a level filter, you must know the names of the dimension levels. You can
easily acquire them by querying the dimension or hierarchy views:

SELECT DI STINCT | evel name FROMtime_cal endar view;

LEVEL_NAME
CALENDAR YEAR
CALENDAR_QUARTER

NONTH

TOTAL

Several data dictionary views list the names of the levels. The following example
queries USER_CUBE_HI ER_LEVELS.

SELECT | evel _nane FROM user _cube_hier |evels
VHERE di nensi on_nanme = 'TIME AND hi erarchy_name =' CALENDAR ;

LEVEL_NAME
TOTAL

CALENDAR YEAR
CALENDAR_QUARTER
NONTH

Example 4-1 Displaying Aggregates at All Levels of Time

To see the importance of applying a filter to every dimension, consider the query in
this example, which has no filter on the time dimension.

/* Select key descriptions and facts */
SELECT t.long_description tineg,
ROUND(f . sal es) sal es
/* From di mension views and cube view */
FROM tine_cal endar_view t,
product _primary_view p,
cust oner _shi pnent s_vi ew cu,
channel _primary_view ch,
units_cube view f
/* No filter on Time */
VHERE p. | evel _name = ' TOTAL'
AND cu. | evel _name = ' TOTAL'
AND ch. | evel name = ' TOTAL'
[* Join dinmension views to cube view */
AND t.dimkey = f.tinme
AND p. di m key = f. product
AND cu. di m key = f.customer
AND ch. di m key = f.channel
ORDER BY t.end date;

Without a filter on the Time dimension, the query returns values for every level of
time. This is more data than users typically want to see, and the volume of data
returned can negatively impact performance.

TIME SALES
JAN- 98 8338545
FEB- 98 7972132
QL. 98 24538588

Querying Dimensional Objects 4-7

Creating Basic Queries

VAR- 98 8227911
APR- 98 8470315
NAY- 98 8160573
JUN- 98 8362386
Q@. 98 24993273
JUL-98 8296226
AUG 98 8377587
SEP- 98 8406728
. 98 25080541
OCT- 98 8316169
NOV- 98 8984156
. 98 26258474
1998 100870877

Example 4-2 Basic Cube View Query

Now consider the results when a filter restricts Time to yearly data. This example
shows a basic query. It selects the Sales measure from UNI TS_CUBE_VI EW and joins
the keys from the cube view to the hierarchy views to get descriptions of the keys.

/* Select key descriptions and facts */
SELECT t.long_description tine,
ROUND(f . sal es) sal es
/* From di mension views and cube view */
FROM tine_cal endar _view t,
product _prinary_view p,
cust oner _shi pnents_vi ew cu,
channel _primary_view ch,
units_cube_view f
/* Create level filters */
VHERE t. | evel _name = ' CALENDAR_YEAR
AND p. | evel _name = ' TOTAL'
AND cu. | evel _name = ' TOTAL'
AND ch. | evel _name = ' TOTAL'
/* Join dinension views to cube view */
AND t.dimkey = f.tinme
AND p. di mkey = f.product
AND cu. di m key = f.customer
AND ch. dimkey = f.channel
ORDER BY t.end_date;

The example selects the following rows. For CUSTOMVER, PRODUCT, and CHANNEL, only
one value is at the top level. TI ME has a value for each calendar year.

TI ME SALES
1998 100870877
1999 134109248
2000 124173522
2001 116931722
2002 92515295
2003 130276514
2004 144290686
2005 136986572
2006 140138317

4-8 User's Guide

Creating Basic Queries

Example 4-3 Selecting Data with Attribute Filters

Dimension attributes also provide a useful way to select the data for a query. The
WHERE clause in this example uses attributes values to filter all of the dimensions.

/* Select key descriptions and facts */
SELECT t.long_description tine,
p. 1 ong_description product,
cu. long_description custoner,
ch.long_description channel,
ROUND(f . sal es) sal es
/* From di nension views and cube view */
FROM ti ne_cal endar_view t,
product _pri mary_view p,
cust oner _shi pnents_vi ew cu,
channel _primary_view ch,
units_cube_view f
/* Create attribute filters */
WHERE t .| ong_description in ('2005', '2006")
AND p. package = 'Laptop Val ue Pack'
AND cu. | ong_description LI KE ' %Bost on%

AND ch. | ong_description = "'Internet’
/* Join dinmension views to cube view */

AND t.dimkey = f.tinme

AND p. di m key = f.product

AND cu. di m key = f.custoner
AND ch. di m key = f.channel
ORDER BY tine, custoner;

The query selects two calendar years, the products in the Laptop Value Pack, the
customers in Boston, and the Internet channel.

TIME PRODUCT CUSTOMER CHANNEL SALES
2005 Laptop carrying case KOSH Entrpr Boston I nt er net 5936
2005 56Kbps V.92 Type Il Fax/Mdem KOSH Entrpr Boston I nt er net 45285
2005 Internal 48X CD-ROM KOSH Entrpr Boston I nternet 2828
2005 Standard Mbuse KCOSH Entrpr Boston I nt er net 638
2005 Envoy Standard Warren Systens Boston |nternet 19359
2005 Laptop carrying case Varren Systenms Boston Internet 13434
2005 Standard Mbuse VWarren Systens Boston Internet 130
2006 Standard Mbuse KOSH Entrpr Boston I nt er net 555
2006 Laptop carrying case KOSH Entrpr Boston I nt er net 6357
2006 56Kbps V.92 Type Il Fax/Mdem KOSH Entrpr Boston I nt ernet 38042
2006 Internal 48X CD-ROM KOSH Entrpr Boston I nt ernet 3343
2006 Envoy Standard Warren Systens Boston |nternet 24198
2006 Laptop carrying case VWarren Systens Boston Internet 13153
2006 Standard Mbuse Warren Systens Boston Internet 83

14 rows sel ected.

4.2.2 Allowing the Cube to Aggregate the Data

A cube contains all of the aggregate data. As shown in this chapter, a query against a
cube just selects the aggregate data. It does not calculate the values.

The following is a basic query against a fact table:

/* Querying a fact table */
SELECT t.cal endar _year _dsc tineg,
SUM f. sal es) sales
FROMtine _dimt, units fact f

Querying Dimensional Objects 4-9

Creating Basic Queries

VHERE t. cal endar _year _dsc IN ('2005', '2006')
AND t.month_id = f.nonth_id
GROUP BY t.cal endar_year _dsc;

The next query fetches the exact same results from a cube using filters:

/* Querying a cube */
SELECT t.long_description time, f.sales sales
FROM tine_cal endar _view t,
product _pri mary_view p,
cust oner _shi pnents_vi ew cu,
channel _primary_view ch,
units_cube_view f
[* Apply filters to every dimension */
VWHERE t. | ong_description IN ('2005', '2006")
AND p. | evel _name = ' TOTAL'
AND cu. | evel _name = ' TOTAL'
AND ch. | evel _name = ' TOTAL'
/* Join dinension views to cube view */
AND t.dimkey = f.TIME
AND p. di mkey = f.product
AND cu. di m key = f.customer
AND ch. dimkey = f.channel
ORDER BY tineg;

Both queries return these results:

2005 136986572
2006 140138317

The query against the cube does not compute the aggregate values with a SUM
operator and GROUP BY clause. Because the aggregates exist in the cube, this would
re-aggregate previously aggregated data. Instead, the query selects the aggregates
directly from the cube and specifies the desired aggregates by applying the
appropriate filter to each dimension.

4.2.3 Query Processing

4-10 User's Guide

The most efficient queries allow the OLAP engine to filter the data, so that the
minimum number of rows required by the query are returned to SQL.

The following are among the WHERE clause operations that are pushed into the OLAP
engine for processing:

e NOT IN

Creating Hierarchical Queries

e |S NULL
e LIKE
e NOT LI KE

The OLAP engine also processes nested character functions, including | NSTR,
LENGTH, NVL, LOWER, UPPER, LTRI M RTRI M TRI M LPAD, RPAD, and SUBSTR.

SQL processes other operations and functions in the WHERE clause, and all operations
in other parts of the SELECT syntax.

4.3 Creating Hierarchical Queries

Drilling is an important capability in business analysis. In a dashboard or an
application, users click a dimension key to change the selection of data. Decision
makers frequently want to drill down to see the contributors to a data value, or drill
up to see how a particular data value contributes to the whole. For example, the
Boston regional sales manager might start at total Boston sales, drill down to see the
contributions of each sales representative, then drill up to see how the Boston region
contributes to the New England sales total.

The hierarchy views include a PARENT column that identifies the parent of every
dimension key. This column encapsulates all of the hierarchical information of the
dimension: If you know the parent of every key, then you can derive the ancestors, the
children, and the descendants.

For level-based hierarchies, the LEVEL_NAME column supplements this information by
providing a convenient way to identify all the keys at the same depth in the hierarchy,
from the top to the base. For value-based hierarchies, the PARENT column provides all
the information about the hierarchy.

See Also:

Developing Reports and Dashboards (page 6-1) about using bind variables
to support drilling

4.3.1 Drilling Down to Children

You can use the PARENT column of a hierarchy view to select only the children of a
particular value. The following WHERE clause selects the children of calendar year
2005.

/* Select children of cal endar year 2005 */
WHERE t.parent = 'CY2005'

AND p. di m key = ' TOTAL'

AND cu. di mkey = ' TOTAL'

AND ch. di m key = ' TOTAL'

The query drills down from Year to Quarter. The four quarters QL- 05 to Q4- 05 are
the children of year CY2005 in the Calendar hierarchy.

TI VE SALES
QL. 05 31381338
Q@. 05 37642741
@. 05 32617249
Q. 05 35345244

Querying Dimensional Objects 4-11

Creating Hierarchical Queries

4.3.2 Drilling Up to Parents

The PARENT column of a hierarchy view identifies the parent of each dimension key.
Columns of level keys identify the full heritage. The following WHERE clause selects
the parent of a Time key based on its LONG_DESCRI PTI ONattribute.

/* Select the parent of a Time key*/
VHERE t.dimkey =
(SELECT DI STINCT par ent
FROM ti ne_cal endar _vi ew
VHERE | ong_descri ption="JAN-05")
AND p. di m key= " TOTAL'
AND cu. di m key = ' TOTAL'
AND ch. di m key = ' TOTAL'

The query drills up from Month to Quarter. The parent of month JAN- 05 is the
quarter QL- 05 in the Calendar hierarchy.

QL. 05 31381338

4.3.3 Drilling Down to Descendants

The following WHERE clause selects the descendants of calendar year 2005 by selecting
the rows with a LEVEL_NAME of MONTH and a CALENDAR_YEAR of CY2005.

/* Select Time |level and ancestor */
WHERE t. | evel _nanme = ' MONTH
AND t.cal endar _year = 'CY2005'
AND p. di mkey = ' TOTAL'
AND cu. dimkey = ' TOTAL'
AND ch. dimkey = ' TOTAL'

The query drills down two levels, from year to quarter to month. The 12 months
Jan- 05 to Dec- 05 are the descendants of year 2005 in the Calendar hierarchy.

JAN- 05 12093518
FEB- 05 10103162
MAR- 05 9184658
APR- 05 9185964
MAY- 05 11640216
JUN- 05 16816561
JUL- 05 11110903
AUG 05 9475807
SEP- 05 12030538
OCT- 05 11135032
NOV- 05 11067754
DEC- 05 13142459

4.3.4 Drilling Up to Ancestors

4-12 User's Guide

The hierarchy views provide the full ancestry of each dimension key, as shown in
"Displaying the Contents of a Hierarchy View (page 4-6)". The following WHERE clause
uses the CALENDAR_YEAR level key column to identify the ancestor of a MONTH
dimension key.

Using Calculations in Queries

/* Select the ancestor of a Time key based on its Long Description attribute */
VWHERE t . di mkey =
(SELECT cal endar _year
FROM ti me_cal endar _vi ew
VWHERE | ong_description = ' JAN-05")
AND p. di mkey = ' TOTAL'
AND cu. di mkey = ' TOTAL'
AND ch. di m key = ' TOTAL'
The query drills up two levels from month to quarter to year. The ancestor of month
Jan- 05 is the year 2005 in the Calendar hierarchy.

2005 136986572

4.4 Using Calculations in Queries

A DBA can create calculated measures in Analytic Workspace Manager, so they are
available to all applications. This not only simplifies application development, but
ensures that all applications use the same name for the same calculation.

Nonetheless, you may want to develop queries that include your own calculations. In
this case, you can use an inner query to select aggregate data from the cube, then
perform calculations in an outer query. You can select data from cubes that use any
type of aggregation operators, and you can use any functions or operators in the
query. You must ensure only that you select the data from the cube at the appropriate
levels for the calculation, and that the combination of operators in the cube and in the
query create the calculation you want.

Example 4-4 Calculating Average Sales Across Customers

This example shows a query that answers the question, What was the average sales of
Sentinel Standard computers to Government customers for the third quarter of fiscal
year 2005. UNI TS_CUBE is summed over all dimensions, so that FY2005. (B is a total
for July, August, and September. The inner query extracts the data for these months,
and the outer query uses the M N, MAX, and AVGoperators and a GROUP BY clause to
calculate the averages.

SELECT cust omer, ROUND(M N(sal es)) mininum ROUND(MAX(sal es)) maxi num
ROUND(AVG sal es)) average
FROM
(SELECT cu. | ong_description custoner,
t.nont h_| ong_description tinme
f.sales sales
FROM tine_fiscal viewt,
product _prinary_view p,
cust oner _nmar ket _vi ew cu,
channel _primary_view ch,
units_cube_view f
VWHERE t. parent = 'FY2005. 3’
AND p. di m key = ' SENT STD
AND cu. parent = ' GOV
AND ch. | evel _name = ' TOTAL'
AND t.dimkey = f.tinme
AND p. di m key = f.product
AND cu. dimkey = f.customer
AND ch. di m key = f.channel
)
GROUP BY cust omer
ORDER BY cust oner;

Querying Dimensional Objects 4-13

Using Attributes for Aggregation

This is the data extracted from the cube by the inner query:

CUSTOVER TI ME SALES
Dept. of Labor JAN- 05 1553. 26
Dept. of Labor MAR- 05 1555. 6
Mnistry of Intl Trade JAN 05 1553. 26
Mnistry of Intl Trade FEB- 05 1554. 56
Mnistry of Intl Trade MAR- 05 1555. 6
Royal Air Force JAN- 05 1553. 26
Royal Air Force FEB- 05 6218. 23
UK Environmental Departnent JAN- 05 4659. 78
UK Environnental Departnent FEB- 05 3109. 12

The outer query calculates the minimum, maximum, and average sales for each

customer:

CUSTOVER M NI MUM MAXI MUM AVERACE
Dept. of Labor 1553 1556 1554
Mnistry of Intl Trade 1553 1556 1554
Royal Air Force 1553 6218 3886
UK Environmental Departnent 3109 4660 3884

4.5 Using Attributes for Aggregation

An OLAP cube aggregates the data within its hierarchies, using the parent-child
relationships revealed in the hierarchy views. The OLAP engine does not calculate
aggregates over dimension attribute values.

Nonetheless, you may want to aggregate products over color or size, or customers by
age, zip code, or population density. This is the situation when you can use a GROUP
BY clause when querying a cube. Your query can extract data from the cube, then use
SQL to aggregate by attribute value.

The cube must use the same aggregation operator for all dimensions, and the
aggregation operator in the SELECT list of the query must match the aggregation
operator of the cube. You can use a GROUP BY clause to query cubes that use these
operators:

¢ First Non-NA Value
e Last Non-NA Value
¢ Maximum
¢ Minimum

e Sum

4.5.1 Aggregating Measures Over Attributes

Example 4-5 (page 4-15) shows a query that aggregates over an attribute named
Package. It returns these results:

TIME PACKAGE SALES
2005 Al 1809157. 64
2005 Miltinedia 18083256. 3
2005 Executive 19836977

2005 Laptop Value Pack 9547494.81

4-14 User's Guide

Using Attributes for Aggregation

Units Cube uses the SUMoperator for all dimensions, and the query uses the SUM
operator to aggregate over Sales. The Package attribute applies only to the Item level
of the Product dimension, so the query selects the Item level of Product. It also
eliminates nulls for Package, so that only products that belong to a package are
included in the calculation. The GROUP BY clause breaks out Total Sales by Time and

Package.
Example 4-5 Aggregating Over an Attribute

SELECT t.long_description tine,
p. package package,
SUM f. sal es) sal es
FROM tine_cal endar _view t,
product _pri mary_view p,
cust oner _shi pnents_vi ew cu,
channel _primary_view ch,
units_cube_view f
/* Select Product by level and attribute */
VWHERE p. | evel _name = ' I TEM
AND p. package 1S NOT NULL
AND t.|ong_description = "'2005'
AND cu. | evel _name = ' TOTAL'
AND ch. | evel _name = ' TOTAL'
/* Join dinensions and cube */
AND t.dimkey = f.tinme
AND p. di mkey = f.product
AND cu. di m key = f.customer
AND ch. dimkey = f.channel
GROUP BY t.long_description, p.package;

4.5.2 Aggregating Calculated Measures Over Attributes

Before using the technique described in "Aggregating Measures Over Attributes
(page 4-14)", ensure that the calculation is meaningful. For example, the common
calculation Percent Change might be defined as a calculated measure in a cube.
Summing over Percent Change would produce unexpected results, because the
calculation for Percent Change ((a- b) / b,) is not additive.

Consider the following rows of data. The correct Total Percent Change is . 33, whereas
the sum of the percent change for the first two rows is . 75.

Row Sales Sales Prior Period Percent Change
1 15 10 .50
2 25 20 .25
Total 40 30 .33

Example 4-6 (page 4-16) shows a query that aggregates over the Package attribute
and calculates Percent Change From Prior Period. The inner query aggregates Sales
and Sales Prior Period over the attributes, and the outer query uses the results to
compute the percent change. These are the results of the query, which show the

expected results for PCT_CHG_PP:

TIME PACKAGE SALES PRI OR_PERI OD PCT_CHG PP
2005 Al 1809157.64 1853928. 06 -.02414895
2006 Al 1720399. 03 1809157.64 -.04906074
2005 Executive 19836977 20603879. 8 -. 03722128

Querying Dimensional Objects 4-15

Joining Cubes to Tables and Views

2006 Executive 19580638. 4 19836977 -.01292226
2005 Laptop Value Pack 9547494.81 10047298.6 -.04974509
2006 Laptop Value Pack 9091450.58 9547494.81 -.04776585
2005 Miltinedia 18083256.3 19607675.5 -.07774604
2006 Ml tinedia 18328678.7 18083256.3 . 013571806

8 rows sel ected.

Example 4-6 Querying Over Attributes Using Calculated Measures

/* Calcul ate Percent Change */
SELECT TIME, package, sales, prior_period,
((sales - prior_period) / prior_period) pct_chg_pp
FROM
/* Fetch data fromthe cube and aggregate over Package */
(SELECT t.long_description tinme,
p. package package,
SUM f. sal es) sal es,
SUM f. sal es_pp) prior_period
FROM ti ne_cal endar_view t,
product _pri mary_view p,
cust oner _shi pnents_vi ew cu,
channel _primary_view ch,
units_cube_view f
/* Create filters */
VWHERE p. | evel _name = 'I TEM
AND p. package 1S NOT NULL
AND t.long_description IN ('2005, '2006")
AND cu. | evel _name = ' TOTAL'
AND ch. | evel _name = ' TOTAL'
/* Join dinmension views to cube view */
AND t.dimkey = f.tine
AND p. di mkey = f.product
AND cu. di m key = f.customer
AND ch. di mkey = f.channel
GROUP BY t.long_description, p.package
ORDER BY p. package);

4.6 Joining Cubes to Tables and Views

4-16 User's Guide

You can join cubes to other cubes and to relational objects such as:

e Tables
* Views including external tables and PL/SQL table functions

¢ Other row source types, like other joins

Typically, you do not need a fully aggregated cube when joining it to a table or view,
and a CUBE JO Noperation limits the number of fetched values to improve
performance automatically. The cube must be on the right side of the equation. If the
query does not support CUBE JO N, then the more expensive HASH JO N, MERGE
JA N, or NESTED LOOPS are commonly used.

You can use hints in the query to influence the use of CUBE JO N
e USE_CUBE forces a CUBE JO Nif possible.

* NO_USE_CUBE prevents a CUBE JO N.

See "Viewing Execution Plans (page 4-17)" for more information about CUBE JO N.

Viewing Execution Plans

Example 4-7 (page 4-17) joins a table that contains French descriptions of the
Customer dimension to a cube that supports only English. The query returns these

results:

CUSTOVER SALES
La Marine des USA Washington 600. 34
Monolith Mtor Co. Chattanooga 17946. 51
Pi ednont, Inc. San Jose 24874. 41
Mnistere du Conmmerce Int. Nagano 27595. 97
Depart. des comun. - Stuttgart 30706. 10
Mn. Env. Brit. Londres 38125. 77
Departenent de travail Nouvelle-Oleans 42507. 50
M nistere des Finances Sorbonne 43607. 58
Monolith Motor Co. Knoxville 50874. 53
Serv. des USA de recherche Wo 54497. 19

Depart. des commun. - Bonn 58944. 97

Example 4-7 Joining a Cube and a Table

SELECT cu. ship_to_dsc_french custoner,
f.sales sales
FROM ti ne_cal endar _view t,
product _prinary_view p,
cust oner _di m cu,
channel _primary_view ch,
units_cube_view f
WHERE t . di m key = ' CY2006'
AND p. | evel _name = ' TOTAL'
AND ch. | evel _name = ' TOTAL'
AND t.dimkey = f.TIME
AND p. di m key = f.product
AND cu. ship_to_id = f.customer
AND ch. di m key = f.channel
ORDER BY f. sal es;

4.7 Viewing Execution Plans

You can generate and view execution plans for queries against cubes and dimensions
the same as for those against relational tables.

The SQL EXPLAI N PLAN command creates a table with the content of the explain
plan. The default table name is PLAN_TABLE.

See Also:

Oracle Database SQL Tuning Guide for a complete discussion of execution plans

4.7.1 Generating Execution Plans
The following command creates an execution plan for a basic query on a cube:

EXPLAIN PLAN FOR
SELECT t.|ong_description tinme,
p. 1 ong_description product,
cu. long_description custoner,

Querying Dimensional Objects 4-17

Viewing Execution Plans

ch.long_description channel,
f.sales sales

FROM tine_cal endar _view t,
product _prinary_view p,
cust oner _shi pnents_vi ew cu,
channel _primary_view ch,
units_cube_view f

VHERE t. | evel _name = ' CALENDAR_YEAR
AND p. | evel _name = ' TOTAL'
AND cu. | evel _name = ' TOTAL'
AND ch. | evel _name = ' TOTAL'
AND t.dimkey = f.TIME
AND p. di mkey = f.product
AND cu. di m key = f.customer
AND ch. dimkey = f.channel

ORDER BY t.end_date;

Example 4-8 Execution Plan for a Cube Query

The DI SPLAY table function of the DBM5_XPLANPL/SQL package formats and
displays information from an execution plan, as shown in this example.

SQ.> SELECT pl an_tabl e_out put FROM TABLE(dbrs_xpl an. di spl ay());

PLAN_TABLE_OUTPUT

1d	Operation	Name	Rows	Bytes	Cost (%CPU)	Tine
0	SELECT STATEMENT		1] 100	104 (3)] 00:00:02		
1	SORT ORDER BY		1] 100	104 (3)] 00:00:02		
2	JONED CUBE SCAN PARTI AL OUTER					
3] CUBE ACCESS	UNITS_CUBE					
4 CUBE ACCESS	CHANNEL					
5] CUBE ACCESS	CUSTOMER					
6] CUBE ACCESS	PRODUCT					
[* 7| CUBE ACCESS | TIME | 1] 100 | 103 (2)] 00:00:02 |

7 - filter(SYS OP_ATG(VALUE(KOKBFS), 12, 13, 2) = CALENDAR_YEAR AND
SYS_OP_ATG(VALUE(KOKBF$) , 43, 44, 2) = TOTAL' AND
SYS_OP_ATQ(VALUE(KOKBF$) , 33, 34, 2) = TOTAL' AND
SYS_OP_ATQ(VALUE(KOKBF$) , 23, 24, 2) =" TOTAL')

22 rows sel ected.

Example 4-9 Execution Plan for a Cube Join

This example shows an execution plan for a query that joins a cube and a table. See
"Joining Cubes to Tables and Views (page 4-16)" for the query.

PLAN_TABLE_QUTPUT

4-18 User's Guide

Viewing Execution Plans

SELECT STATEMENT
SORT ORDER BY
CUBE JON

CUBE ACCESS
CUBE ACCESS
CUBE ACCESS
CUBE ACCESS

0

1]

2 |

3| TABLE ACCESS FULL

4| JONED CUBE SCAN PARTIAL QUTER|
5

6

7

8 |

| UNITS_CUBE |
| CHANNEL |
| PRODUCT |

I

|1464 | 128K| | 1524 (94)| 00:00: 19|
|1464 | 128K 152K| 1524 (94)| 00:00: 19

|1464 | 128K| | 1422 (100)| 00:00: 18|
[CUSTOMER DIM 61 | 2379 | | 4 (0)] 00:00:01]
I | | | | I

| | | | I

| | | | I

| | | | I

2520 | 125K | 1417 (100)| 00:00: 18|

2 - access("CU'."SH P_TO | D' =SYS_OP_ATG(VALUE(KOKBFS) , 76, 77, 2))

8 - filter(SYS OP_ATG VALUE(KOKBF$), 32, 33, 2) =' CY2006' AND
SYS_OP_ATG(VALUE(KOKBF$) , 85, 86, 2) =' TOTAL' AND
SYS_OP_ATG(VALUE(KOKBFS$) , 65, 66, 2) = TOTAL')

22 rows sel ected.

4.7.2 Types of Execution Plans
Table 4-1 (page 4-19) describes the types of execution plans for cubes.

Table 4-1 Descriptions of Execution Plans for Cubes and Dimensions

Operation Option Description
CUBE - Joins a table or view on the left and a cube on the right.
JON
CUBE ANTI Uses an antijoin for a table or view on the left and a cube on
JAN the right.
CUBE ANTI SNA Uses an antijoin (Single-sided Null Aware) for a table or
JAON view on the left and a cube on the right. The join column on
the right (cube side) is NOT NULL. For example:
SELECT cols FROM tabl e
WHERE table.cl NOT IN
(SELECT col FROM cube
VWHERE cube. col 1S NOT NULL)
CUBE OUTER Uses an outer join for a table or view on the left and a cube
JON on the right.
CUBE Rl GHT SEM Uses a right semijoin for a table or view on the left and a
JON cube on the right.
CUBE - Uses inner joins for all cube access.
SCAN
CUBE PARTI AL Uses an outer join for least one dimension, and inner joins
SCAN OUTER for the other dimensions.
CUBE OUTER Uses outer joins for all cube access.
SCAN

Querying Dimensional Objects 4-19

Querying the Data Dictionary

See Also:

Oracle Database SQL Language Reference for descriptions of these join types.

4.8 Querying the Data Dictionary

4-20 User's Guide

If you are developing a generic application -- that is, one where the names of the
dimensional objects are not known -- then your application can retrieve this
information from the data dictionary.

Among the static views of the database data dictionary are those that provide
information about dimensional objects. All OLAP metadata is stored in the data
dictionary. A few of the data dictionary views were introduced previously in this
chapter.

Table 4-2 (page 4-20) provides brief descriptions of the ALL views. There are
corresponding DBA and USER views.

Table 4-2 Static Data Dictionary Views for OLAP

View

Description

ALL_CUBE_ATTR VI SI BI LI TY

ALL_CUBE_ATTRI BUTES

ALL_CUBE_BUI LD_PROCESSES

ALL_CUBE_CALCULATED_MEMBERS

ALL_CUBE_DI M LEVELS
ALL_CUBE_DI M MODELS

ALL_CUBE_DI M_VI EW COLUWNS

ALL_CUBE_DI M VI EV8

ALL_CUBE_DI MENSI ONALI TY
ALL_CUBE_DI MENSI ONS
ALL_CUBE_H ER LEVELS

ALL_CUBE_HI ER VI EW COLUWNS

ALL_CUBE_HI ER VI EWS
ALL_CUBE_HI ERARCH ES
ALL_CUBE_MEASURES

ALL_CUBE_VI EW COLUMNS

Describes the visibility of the attributes for cube
dimensions.

Describes the attributes for cube dimensions.

Describes the cube build processes and maintenance
scripts.

Describes the calculated members (keys) for cube
dimensions.

Describes the cube dimension levels.
Describes the models for cube dimensions.

Describes the columns of the system-generated
relational views of cube dimensions.

Describes the system-generated relational views of
OLAP dimensions.

Describes the dimension order of the OLAP cubes.
Describes the cube dimensions.
Describes the hierarchy levels for cube dimensions.

Describes the columns of relational hierarchy views of
cube dimensions.

Describes the hierarchies for cube dimensions.
Describes the OLAP dimension hierarchies.
Describes the measures in the OLAP cubes.

Describes the columns of the relational views of
OLAP cubes.

Querying the Data Dictionary

Table 4-2 (Cont.) Static Data Dictionary Views for OLAP

View Description

ALL_CUBE_VI EW& Describes the system-generated relational views of
OLAP cubes.

ALL_CUBES Describes the OLAP cubes.

ALL_MEASURE_FOLDER _CONTENTS Describes the contents of OLAP measure folders.

ALL_MEASURE FOLDERS Describes the OLAP measure folders.

See Also:

Oracle Database Reference for full descriptions of data dictionary views.

Querying Dimensional Objects 4-21

Querying the Data Dictionary

4-22 User's Guide

5

Enhancing Your Database with
Analytic Content

Oracle OLAP provides an extensive set of analytic functions for enhancing your
database with information-rich content. This chapter explains how you can use
Analytic Workspace Manager to create calculated measures using templates and free-
form calculations.

This chapter contains the following topics:

¢ What Is a Calculated Measure? (page 5-1)

¢ Functions for Defining Calculations (page 5-1)
* Creating Calculated Measures (page 5-3)

¢ Using Calculation Templates (page 5-6)

* Creating User-Defined Expressions (page 5-14)

¢ Creating Calculated Measures Using the OLAP DML (page 5-18)

5.1 What Is a Calculated Measure?

Calculated measures return values that are computed at run time from data stored in
one or more measures. Like relational views, calculated measures store queries against
data stored in other objects. Because calculated measures do not store data, you can
create dozens of them without increasing the size of the database. You can use them as
the basis for defining other calculated measures, which adds depth to the types of
calculations you can create using the templates in Analytic Workspace Manager.

As soon as you create a calculated measure, it appears as a column in a cube view.
Because calculated measures do not contain data, they are not associated with a build
process. You can create a calculated measure at any time, and it is available
immediately for querying by SQL applications.

5.2 Functions for Defining Calculations

The library of functions for defining calculated measures contains these basic
categories:

e Arithmetic Operators (page 5-2): Perform calculations on the values of two
measures.

¢ Analytic Functions (page 5-2): Perform calculations on an ordered series or a
range of values in a single measure or column.

¢ Single-Row Functions (page 5-2): Perform calculations on a value in a single row.

Enhancing Your Database with Analytic Content 5-1

Functions for Defining Calculations

5.2.1 Arithmetic Operators

You can perform the following arithmetic operations using two measures. The
calculations in the cube are performed on a cell-by-cell basis at all levels of the
dimension hierarchies.

e Addition: Adds the values of two measures.

e Subtraction: Subtracts the values of one measure from the values of another
measure.

® Multiplication: Multiplies the values of two measures.

¢ Division or Ratio: Divides the values of one measure by the values of another
measure.

¢ Percent Difference: Calculates the percent difference between the values of two
measures.

The arithmetic operations are available in Analytic Workspace Manager as templates.
as described in "Using Calculation Templates (page 5-6)".

5.2.2 Analytic Functions

The analytic functions provide the most powerful computations and fuel the most
useful queries for business intelligence and similar applications. They include a
variety of rank, share, time series, and other single-column functions. The analytic
functions enable analysts and decision makers to make comparisons and identify
trends.

Analytic functions provided by Oracle OLAP leverage the knowledge associated with
the dimensions about levels and family relationships. Time dimensions have
additional information that enables them to support time series methods such as lags,
leads, moving and cumulative calculations. Because the knowledge is stored with the
dimension, you do not need to specify these relationships when creating a calculated
measure.

The analytic functions are available in Analytic Workspace Manager as templates.
They are described in "Using Calculation Templates (page 5-6)".

5.2.3 Single-Row Functions

5-2 User's Guide

Oracle OLAP supports most of the SQL single-row functions including;:
¢ Numeric functions such as ABS, CEl L, FLOOR, PONER, ROUND, and TRUNC.

e Character functions such as CONCAT, LPAD, RPAD, LTRI M RTRI M REPLACE, and
SUBSTR.

e Datetime functions such as CURRENT _DAY, MONTHS _BETWEEN, NEXT_DAY, and
SYSTI MESTAMP.

* Comparison functions GREATEST and LEAST.

e Conversion functions such as TO_CHAR, TO_DATE, TO_NUMBER, and
TO_TI MESTAMP.

You can use these functions to manipulate the data values in a measure, typically as
part of a more complex calculation. These functions are not available as templates, but

Creating Calculated Measures

you can use them in free-form calculations, as described in "Creating User-Defined
Expressions (page 5-14)".

5.3 Creating Calculated Measures

Analytic Workspace Manager provides easy-to-use templates for creating calculated
measures. You can create them in the same cube with the source measures, or you can
create them in a separate cube.

Calculated measures are available for querying as additional columns in a cube view
(such as UNI TS_CUBE_VI EW. They are not available through cube materialized views
(such as CBSUNI TS_CUBE).

The calculated measure generator quickly generates the standard calculated measures
for one or more measures of a cube, including rank, share, prior and future periods,
period-to-date, parallel period, moving aggregates, and cumulative aggregates. The
generator uses naming rules for formulating the names and descriptions. You can
customize these rules on the Naming Rules tab.

You can also create individual calculated measures, including user-defined
expressions in the OLAP expression syntax or the OLAP DML.

To create multiple calculated measures:

1. Inthe navigation tree, right-click a cube and select Generate Calculated
Measures.

2. On the Calculations tab, select the measures on which to base the calculated
measures.

3. Scroll down the Calculation Details and select each type of calculated measure
you want to create for this selection of measures. Modify the calculations as
desired by altering the templates.

4. Select the Time dimension to use for time series calculations.

5. Review the list of calculated measures. You can change the generated names by
using the Naming Rules tab.

6. Click Generate Calculations to create the calculated measures.

7. Repeat this procedure if you want to generate variations of the same basic types of
calculations, such as another Share calculation for the same measure but on a
different dimension. Change the naming rules to generate new, unique names.

Figure 5-1 (page 5-4) shows the Generate Calculated Measures dialog box.

Enhancing Your Database with Analytic Content 5-3

Creating Calculated Measures

5-4 User's Guide

Figure 5-1 Generating Multiple Calculated Measures

Ceneral Maming Rules |

Select Measures for the calculations:

UNIT_COST
LINIT_PRICE

Specify calculation details:

Prior and Future Periods -3

Prior and Future Periods of measures inthe TIME dimension and CALEMDAR hierarchy 1
period ago.

Frior Period m
Difference Fram Prior Period

Percent Difference From Prior Period
Future Period

Difference From Future Period

[Percent Difference From Future Period

Bosiod To

TIME Dimension Hierarchy: |CALENDAR vl

“fou have specified 14 Calculated Measures

Type ‘Calculated Measure.. Dezcription Shaort Description Long Description |
Share UNIT_COST_SHARE Unit Cost Share Unit Caost Share Unit Cost Share
Rank UMIT_COST_RANME Unit Cost RAME Rank Unit Cost Rank Unit Cast Rank
Prior Period URIT_COST_FP Unit Cost Prior Peri... Unit Cost Prior Peri... Unit Cost Prior Peri..

Differenice From Pri... UMIT_COST_CHG_PP Unit Cost Chg fro... Unit Cost Chg fro.. Unit Cost Change f...
Percent Difference ... UMIT_COST_CHG_PP Unit Cost Pct Chg f... Unit Cost Pct Cha f... Unit Cost Changef..
Future Period UNIT COST NP Unit Cost Mext Peri.. Unit Cost Mext Peri... Unit Cost Mext Peri

To create a single calculated measure:

1.

2.

In the navigation tree, expand a cube folder.

Right-click Calculated Measures, then select Create Calculated Measure from the
context menu.

In the Create Calculated Measure dialog box, Enter a descriptive name.

Select a calculation type.

Your choice of an arithmetic or analytic function dynamically changes the
Calculation template.

Modify the calculation template.

Click Create.

The calculated measure appears in the navigation tree in the Calculated Measures
folder.

Select the Advanced option to display the References, Dependencies, and
Expressions tabs. The tabs have the following information:

¢ The References tab has a table that lists the measures that Analytic Workspace
Manager references as it performs the calculations specified by this calculated
measure. If the Enable SQL Expressions option is selected for the cube, then the
table has a check mark in the Create column for any additional calculated
measure that Analytic Workspace automatically creates.

¢ The Dependencies tab has a table that lists the other calculated measures that
depend on this calculated measure. Analytic Workspace Manager uses this
calculated measure as it performs the calculations for the measures in this
table.

Creating Calculated Measures

¢ The Expressions tab has a table that lists the expressions used by the calculated

measure. This tab appears only if the Enable SQL Expressions option is

selected for the cube.

Figure 5-2 (page 5-5) displays the Create Calculated Measure dialog box.

Figure 5-2 Creating a Calculated Measure

Ceneral

Specify General Calculated Measure Information

Calcylation Type! | [lo prior Period

Mame: [unITS_PP |
Short Label: ‘Umts PP |
Long Label: ‘Unils FP |
Description: ‘Units PP |

|

Calculation:
Prior period for measure UMITS (.3 in TIME dimension and TIMECALEMDAR hierarchy 1 period ago.

Expression

LAG(UNMITS _CUBE UNITS, 1) OWVER (HIERARCHY TIME CALEMDAR)

Advanced

References rDependencies rExpressmns |

Create | Mame | Short Label | Long Label | Description Expression

UNITS Units Units Units

EEE 3

5.3.1 Modifying a Template

The calculation that you selected is presented as template, which is a description of the

calculation with variable parts that enable you to customize it.

Figure 5-3 (page 5-5) shows the template for calculating the prior period. You can

view the choice lists by clicking the links.

Figure 5-3 Changing the Variable Parts of a Calculation

Calculation:

Prior period for measure UNITS £.3 in TIME dimension and TIMECALEMDAR hierarchy 1 period ago.

TIME.CALEMDAR

You can include all values of a measure in a calculation, or, for some types of
calculations, you can filter the measure to include only a selection of values. To limit
one or more dimensions to a single dimension member, click the ellipses (. . .) next to
the measure. The Qualify Measure dialog box appears, as shown in Figure 5-4

(page 5-6).

Enhancing Your Database with Analytic Content 5-5

Using Calculation Templates

Figure 5-4 Limiting a Dimension to a Single Member

Dimension | Member
Time <hones
Product =<hohe>
Customer |<n0ne> >
Channel Total Customer =

Canhada
Computer Services Taranta |5
United States

Bavarian Indust, CmhbH lrvine
Buziness Warld Mew vork
Business World San Jose -

5.3.2 Choosing a Range of Time Periods

Many calculations are performed over time periods at the same level in the hierarchy.
In some types of calculations, you can control the range of time periods that are used
in the same calculation. For example, you might want to calculate a running total of
months for each fiscal year, not a running total that begins with the first month stored
in the cube.

You can use the following methods for identifying the range of time periods to
calculate together:

Level: Calculates all time periods at the same level, so that all months in the cube
are included in one calculation, all quarters are included in another calculation, and
so forth.

Parent: Calculates all time periods with the same parent, so that all months in
Q1-07 are included in one calculation, all months in Q2-07 are included in another
calculation, and so forth.

Ancestor at level: Calculates all time periods with the same ancestor at a specified
level. For example, if the specified level is Year in a Year-Quarter-Month hierarchy,
then Q1-06 to Q4-06 are included in one calculation, Q1-07 to Q4-07 are included in
another calculation, Jan-06 to Dec-06 are included in a third calculation, and so
forth. Any levels higher in the hierarchy are not calculated.

Gregorian periods: The Gregorian periods -- Year, Quarter, Month, and Week --
impose the Gregorian calendar onto the selected hierarchy. This can be useful for
analyzing data that uses nonstandard calendar hierarchies. For example, if you use
Gregorian Year on a fiscal hierarchy that begins July 1 and ends June 30, then the
last half of one fiscal year and the first half of the next fiscal year are calculated
together. Time periods higher in the hierarchy than the specified Gregorian period
are not calculated.

5.4 Using Calculation Templates

5-6 User's Guide

Analytic Workspace Manager provides templates for all of the calculations typically in
demand for business intelligence applications. The following topics describe the types
of calculations available as calculation templates in Analytic Workspace Manager.

¢ Arithmetic Calculations (page 5-7)

¢ Index (page 5-7)

e Prior and Future Periods (page 5-8)

Using Calculation Templates

® Period to Date (page 5-9)

® Share (page 5-10)

* Rank (page 5-10)

¢ Parallel Period (page 5-11)

¢ Moving Calculations (page 5-12)

¢ Cumulative Calculations (page 5-13)

¢ Nested Calculations (page 5-14)

5.4.1 Arithmetic Calculations

Basic mathematical operations enable you to perform cell-by-cell calculations on two
measures, as described in "Arithmetic Operators (page 5-2)".

Arithmetic Example

This template defines a calculated measure for the Global Price Cube using Percent
Difference:

Percent difference between neasure UNIT_PRICE and neasure UNIT_COST.
A query against this calculated measure returns results like these. The PCT_CHG

column shows the percent change between PRI CE and COST, which is calculated as
PRI CE- COST/ COST.

PRODUCT PRI CE COST PCT_DI FF
Envoy Anbassador 2892 2664 .09
Envoy Executive 2803 2644 .06
Envoy Standard 1662 1737 -.04
Sentinel Financial 1755 1658 .06
Sentinel Miltinedia 1770 1813 -.02
Sentinel Standard 1552 1410 .1

5.4.2 Index

An index is a mathematical operation calculated on a single measure. An index
calculates the percentage difference between the values of a measure and a selected
value that serves as a base number.

An index does not use a calculation template. Instead, it provides a list of dimension
members for each dimension of the cube, from which you can choose one to use as an
index, as shown in Figure 5-5 (page 5-8).

Enhancing Your Database with Analytic Content 5-7

Using Calculation Templates

Figure 5-5 Calculating a Product Index

LCalculation:

Index measure SALES for:

Dimension Member
Time <nonex
Channel <nones
Customer “none
Product Desktop PCs

External - DWD-RW - 83
Internal - DWD-RW - 83X
Internal 48x CO-ROM
Internal 48X CO-ROM USE
Internal - DWYD-RW - &3

<nones
More... -

Index Example

This example creates an index on the Product dimension using Deskt op PCs as the

index.

PRODUCT SALES PROD_| NDEX
Desktop PCs 76682955 100
Portabl e PCs 18072328 24
CD/ DVD 17302122 23
Modens/ Fax 5565552 7
Menor y 5347292 7
Monitors 3926632 5

5.4.3 Prior and Future Periods

5-8 User's Guide

Oracle OLAP provides several calculations for prior or future time periods:

Prior Period: Returns the value of a measure at an earlier time period.

Difference From Prior Period: Calculates the difference between values for the
current time period and an earlier period.

Percent Difference From Prior Period: Calculates the percent difference between
the values for the current time period and an earlier period.

Future Period: Returns the value of a measure at a later time period.

Difference From Future Period: Calculates the difference between the values for
the current time period and a later period.

Percent Difference From Future Period: Calculates the percent difference between
the values for the current time period and a later period.

When creating a calculation for prior or future time periods, you choose the measure,
the time dimension, the hierarchy, and the number of periods from the current period.

Prior Period Example

This template defines a calculated measure using Prior Period:

Prior period for measure SALES in TIME dinension and TI ME. CALENDAR hi erarchy 1
period ago.

Using Calculation Templates

These are the results of a query against the calculated measure. The PRI OR_PERI CD
column shows the value of Sales for the preceding period at the same level in the

Calendar hierarchy.

TI ME TI ME_LEVEL SALES PRI OR_PERI OD
2005 CALENDAR_YEAR 136986572 144290686
2006 CALENDAR_YEAR 140138317 136986572
Q.05 CALENDAR QUARTER 31381338 41988687
@. 05 CALENDAR_QUARTER 37642741 31381338
. 05 CALENDAR_QUARTER 32617249 37642741
&. 05 CALENDAR_QUARTER 35345244 32617249
QL. 06 CALENDAR_QUARTER 36154815 35345244
@. 06 CALENDAR_QUARTER 36815657 36154815
. 06 CALENDAR_QUARTER 32318935 36815657
Q.06 CALENDAR QUARTER 34848911 32318935

5.4.4 Period to Date

Period-to-date functions perform a calculation over time periods with the same parent
up to the current period. These functions calculate period-to-date:

® Period to Date: Calculates the values up to the current time period.
® Period to Date Period Ago: Calculates the data values up to a prior time period.

e Difference From Period to Date Period Ago: Calculates the difference in data
values up to the current time period compared to the same calculation up to a prior
period.

® Percent Difference From Period To Date Period Ago: Calculates the percent
difference in data values up to the current time period compared to the same
calculation up to a prior period.

When creating a period-to-date calculation, you can choose from these aggregation
methods:

e Sum

e Average

e Maximum

e Minimum

You also choose the measure, the time dimension, and the hierarchy.

Period to Date Example
This template defines a calculated measure using Period to Date.

Gegorian Year to date for SALES in the TIME di mension and TI ME. CALENDAR hi erar chy.
Aggregate using M N MM from the beginning of the period.

These are the results of a query against the calculated measure. The M N_TO_DATE
column displays the current minimum SALES value within the current level and year.

TIME TIME_LEVEL SALES M N_TO DATE
QL.06 CALENDAR QUARTER 36154815 36154815
Q.06 CALENDAR QUARTER 36815657 36154815
(B.06 CALENDAR QUARTER 32318935 32318935

Enhancing Your Database with Analytic Content 5-9

Using Calculation Templates

Q.06 CALENDAR QUARTER 34848911 32318935
JAN-06 MONTH 13119235 13119235
FEB-06 MONTH 11441738 11441738
MAR-06 MONTH 11593842 11441738
APR-06 MONTH 11356940 11356940
MAY-06 MONTH 13820218 11356940
JUN-06 MONTH 11638499 11356940
JUL-06 MONTH 9417316 9417316
AUG 06 MONTH 11596052 9417316
SEP-06 ~ MONTH 11305567 9417316
OCT-06 MONTH 11780401 9417316
NOV-06 ~ MONTH 10653184 9417316
DEC-06 MONTH 12415325 9417316
5.4.5 Share
Share calculates the ratio of a measure's value for the current dimension member to
the value for a related member of the same dimension. You can choose whether the
related member is:
¢ Top of hierarchy: Calculates the ratio of each member to the total.
® Member's parent: Calculates the ratio of each member to its parent.
e Member's ancestor at level: Calculates the ratio of each member to its ancestor,
that is, a member at a specified level higher in the hierarchy.
When creating a share calculation, you can choose the measure, dimension, and
hierarchy. You also have the option of multiplying the results by 100 to get
percentages instead of fractions.
Share Example
This template defines a calculated measure using SHARE:
Share of measure SALES in PRODUCT. PRI MARY hi erarchy of the PRODUCT dimension as a
ratio of top of hierarchy.
These are the results of a query against the calculated measure. The TOTAL_SHARE
column displays the percent share of the total for the selected products.
PRODUCT PROD_LEVEL SALES TOTAL_SHARE
Total Product TOTAL 144290686 100
Har dwar e CLASS 130145388 90
Desktop PCs FAM LY 78770152 55
Portabl e PCs FAM LY 19066575 13
CD/ DVD FAM LY 16559860 11
Sof t war e/ Ot her CLASS 14145298 10
Accessori es FAM LY 6475353 4
(perating Systens FAM LY 5738775 4
Menory FAM LY 5430466 4
Modens/ Fax FAM LY 5844185 4
Moni tors FAM LY 4474150 3
Docunent ati on FAM LY 1931170 1
5.4.6 Rank

Rank orders the values of a dimension based on the values of the selected measure.
When defining a rank calculation, you choose the dimension, a hierarchy, and the
measure.

5-10 User's Guide

Using Calculation Templates

You can choose a method for handling identical values:

* Rank: Assigns the same rank to identical values, so there may be fewer ranks than
there are members. For example, it may return 1, 2, 3, 3, 4 for a series of five
dimension members.

* Dense Rank: Assigns the same minimum rank to identical values. For example, it
may return 1, 2, 3, 3, 5 for a series of five dimension members.

¢ Average Rank: Assigns the same average rank to identical values. For example, it
may return 1, 2, 3. 5, 3. 5, 5 for a series of five dimension members.

You can also choose the group in which the dimension members are ranked:
* Member's level: Ranks members at the same level.
* Member's parent: Ranks members with the same parent.

* Member's ancestor at level: Ranks members with the same ancestor at a specified
level higher in the hierarchy.

Rank Example
This template defines a calculated measure using Rank:

Rank menbers of the PRODUCT di mension and PRODUCT. PRI MARY hierarchy based on neasure
SALES. Calcul ate rank using RANK nethod with nenber's parent in order |owest to
hi ghest. Rank NA (null) values nulls |ast.

These are the results of a query against the calculated measure in which the products
are ordered by RANK:

PRODUCT SALES RANK
Monitors 4474150 1
Menory 5430466 2
Modens/ Fax 5844185 3
CD/ DVD 16559860 4
Portabl e PCs 19066575 5
Deskt op PCs 78770152 6

5.4.7 Parallel Period

Parallel periods are at the same level as the current time period, but have different
parents in an earlier period. For example, you may want to compare current sales with
sales for the prior year at the quarter and month levels.

Oracle OLAP provides several functions for parallel periods:
* Parallel Period: Calculates the value of the parallel period.

e Difference From Parallel Period: Calculates the difference in values between the
current period and the parallel period.

* Percent Difference From Parallel Period: Calculates the percent difference in
values between the current period and the parallel period.

To identify the parallel period, you specify a level and the number of periods before
the current period. You can also decide what happens when two periods do not
exactly match, such as comparing daily sales for February (28 days) with January (31
days).

Enhancing Your Database with Analytic Content 5-11

Using Calculation Templates

You also choose the measure, the time dimension, and the hierarchy.
Parallel Period Example
This template defines a calculated measure using Parallel Period.

Parallel period for SALES in the TIME di mension and TI ME. CALENDAR hierarchy 1
TI ME. CALENDAR. QUARTER ago based on position from beginning to ending of period.

These are the results of a query against the calculated measure, which lists the months
for two calendar quarters. The parallel month has the same position within the
previous quarter. The prior period for JUL- 06 is APR- 06, for AUG- 06 is MAY- 06,
and for SEP- 06 is JUN- 06.

TIME PARENT SALES LAST_QIR
APR-06 CY2006. 2 11356940 13119235
MAY-06 CY2006. Q2 13820218 11441738
JUN-06 CY2006. Q2 11638499 11593842
JUL-06 CY2006. 8 9417316 11356940
AUG 06 CY2006. (B 11596052 13820218
SEP-06 CY2006. B 11305567 11638499

5.4.8 Moving Calculations

5-12 User's Guide

Moving calculations are performed over the time periods surrounding the current
period. Oracle OLAP provides several aggregation methods for moving calculations:

* Moving Average: Calculates the average value for a measure over a fixed number
of time periods.

e Moving Maximum: Calculates the maximum value for a measure over a fixed
number of time periods.

e Moving Minimum: Calculates the minimum value for a measure over a fixed
number of time periods.

e Moving Total: Returns the total value for a measure over a fixed number of time
periods.

You can choose the measure, the time dimension, and the hierarchy. You can also
select the range, as described in "Choosing a Range of Time Periods (page 5-6)", and
the number of time periods before and after the current period to include in the
calculation.

Moving Calculation Example
This template defines a calculated measure using Moving Minimum.
Movi ng ni ni mum of SALES in the TIME dimension and TI ME. CALENDAR hi erarchy. Include 1

preceding and 1 follow ng menbers within |evel.

These are the results of a query against the calculated measure, which displays values
for the descendants of calendar year 2004. Each value of Minimum Sales is the smallest
among the current value and the values immediately before and after it. The
calculation is performed over all members of a level in the cube.

TIME TI ME_LEVEL SALES M N_SALES
QL. 04 CALENDAR_QUARTER 32977874 32977874
Q.04 CALENDAR_QUARTER 35797921 32977874
8. 04 CALENDAR_QUARTER 33526203 33526203

Using Calculation Templates

Q.04 CALENDAR QUARTER 41988687 31381338
JAN-04 MONTH 11477898 10982016
FEB-04 MONTH 10982016 10517960
MAR-04 MONTH 10517960 10517960
APR-04 MONTH 11032057 10517960
NAY-04 MONTH 11432616 11032057
JUN-04 MONTH 13333248 11432616
JUL-04 MONTH 12070352 11108893
AUG 04 MONTH 11108893 10346958
SEP-04 MONTH 10346958 10346958
OCT-04 MONTH 14358605 10346958
NOV-04 MONTH 12757560 12757560
DEC-04 MONTH 14872522 12093518

5.4.9 Cumulative Calculations

Cumulative calculations start with the first time period and calculate up to the current
member, or start with the last time period and calculate back to the current member.
Oracle OLAP provides several aggregation methods for cumulative calculations:

¢ Cumulative Average: Calculates a running average across time periods.
¢ Cumulative Maximum: Calculates the maximum value across time periods.
¢ Cumulative Minimum: Calculates the minimum value across time periods.

¢ Cumulative Total: Calculates a running total across time periods.

You can choose the measure, the time dimension, and the hierarchy. You can also
select the range, as described in "Choosing a Range of Time Periods (page 5-6)", and
whether you want to start the calculation with the first period and calculate forward,
or start with the last period and calculate back.

Cumulative Calculation Example
This template defines a calculated measure using Cumulative Minimum.

Curmul ative mninum of SALES in the TIME dinension and Tl ME. CALENDAR hi erarchy within
ancestor at |evel TIME. CALENDAR YEAR Total from beginning to current nenber.

These are the results of a query against the calculated measure, which displays values
for the descendants of calendar year 2004. The minimum value for quarters begins
with Q1-04 and ends with Q4-04, and for months begins with Jan-04 and ends with

Dec-04.

TI ME TI ME_LEVEL SALES M N_SALES
QL. 04 CALENDAR_QUARTER 32977874 32977874
@. 04 CALENDAR_QUARTER 35797921 32977874
.04 CALENDAR_QUARTER 33526203 32977874
.04 CALENDAR_QUARTER 41988687 32977874
JAN- 04 MONTH 11477898 11477898
FEB-04 MONTH 10982016 10982016
MAR-04 MONTH 10517960 10517960
APR-04 MONTH 11032057 10517960
MAY-04 MONTH 11432616 10517960
JUN-04 MONTH 13333248 10517960
JUL-04 MONTH 12070352 10517960
AUG 04 MONTH 11108893 10517960
SEP-04 MONTH 10346958 10346958
OCT-04 MONTH 14358605 10346958

Enhancing Your Database with Analytic Content 5-13

Creating User-Defined Expressions

NOV-04 MONTH 12757560 10346958
DEC-04 MONTH 14872522 10346958

5.4.10 Nested Calculations

5.5 Creating

5-14 User's Guide

You can extend the variety of functions available through the templates by using a
calculated measure as the basis for another calculated measure.

For example, Analytic Workspace Manager has templates for Moving Average and for
Difference From Prior Period. You can create a calculated measure that calculates a
moving average, then calculate the difference between the current and the previous
moving averages.

Nested Calculations Example
This template creates a moving average for Units named UNI TS_MOVI NG_AVG
Moving average of UNITS in the TIME dimension and Tl ME. CALENDAR hi erarchy. Include

1 preceding and 1 following nembers within | evel.

The next template creates a Difference From Prior Period calculation from
UNI TS_MOVI NG_AVG

Difference fromprior period for UNNTS MWI NG AVG in TIME di nension and
TI ME. CALENDAR hi erarchy 1 period ago.

These are the results of a query against the Units measure and the two calculated
measures. The MOVI NG_AVG column shows the moving average, and the DI FF column
shows the difference between the current moving average and the prior period's.

TIME TI ME_LEVEL UNI TS MOVI NG_AVG Dl FF
JAN-06 MONTH 47776 48520 66
FEB-06 MONTH 47695 48940 419
MAR-06 MONTH 51348 48683 257
APR-06 MONTH 47005 50387 1705
MAY-06 MONTH 52809 48411 1976
JUN-06 MONTH 45419 48872 461
JUL-06 MONTH 48388 47546 1326
AUG 06 MONTH 48830 47857 312
SEP-06 MONTH 46354 47532 326
CCT-06 MONTH 47411 46869 663
NOV-06 ~ MONTH 46842 49768 2899
DEC-06 MONTH 55052 50947 1179
2006 CALENDAR_YEAR 584929 575324 -4032
QL.06 CALENDAR QUARTER 146819 145705 2093
.06 CALENDAR QUARTER 145233 145208 - 497
(.06 CALENDAR QUARTER 143572 146037 829
.06 CALENDAR QUARTER 149305 146439 402
User-Defined Expressions

Among the calculation types is a user-defined expression. Typically, you create
calculations using the OLAP expression syntax, which includes the analytic functions,
arithmetic operators, and single-row functions described in this chapter. The OLAP
syntax is an extension of the SQL syntax. If you have used SQL analytic functions or
single-row functions, then this syntax is familiar to you.

Creating User-Defined Expressions

See Also:

For user-defined OLAP DML expressions, see "Creating Calculated Measures
Using the OLAP DML (page 5-18)".

5.5.1 Using the OLAP Expression Syntax

The easiest way to formulate an expression in the OLAP expression syntax is to let
Analytic Workspace Manager do the work for you. You can use the templates to create
a similar calculation, and cut-and-paste the syntax as the basis for a new calculation.

To create a user-defined expression in the OLAP expression syntax:

1. Open the Create Calculated Measure dialog box.

2. Select the calculation type that most closely matches the one you want to define.
3. Modify the template as desired.

4. Cut-and-paste the calculation from the Calculation box into a text editor.

5. Repeat these steps if your calculation uses two or more functions.

6. Modify the calculation as desired in the text editor. You can combine numeric
operators, analytic functions, and single-row functions in a single calculation.

7. From the Calculation Types list, select OLAP Expression Syntax.
8. Cut-and-paste the calculation from the text editor into the Calculation box.

9. C(lick Create.

See Also:

Analytic Workspace Manager Help for detailed information about the OLAP
expression syntax.

5.5.2 Expression Syntax Example Using an Arithmetic Operator

This template for Multiplication generates a calculation using Units Sold and Unit
Cost.

Ml tiply measure UNITS by nmeasure UNIT_COST.

The template generates this calculation using the multiplication operator (*). It appears
in the Calculation box. Notice that UNITS is in the Units Cube and UNIT_COST is in
the Price Cube.

UNI TS_CUBE. UNI TS * PRI CE_CUBE. UNI T_COST

The syntax of this calculation is so simple that you only need the template to obtain
the qualified name of the measure.

Following is a free-form calculation that calculates a 2% increase in units sold:

UNI TS_CUBE. UNI TS * 1.02

Enhancing Your Database with Analytic Content 5-15

Creating User-Defined Expressions

These are the results of a query against this calculated measure:

PRCDUCT UNI TS TARGET
Envoy Anbassador 2116 2158
Envoy Executive 2481 2531
Envoy Standard 3300 3366
Sentinel Financial 30513 31123
Sentinel Miltinedia 7948 8107
Sentinel Standard 7302 7448

5.5.3 Free-Form Calculation Example Using an Analytic Function

This template for Cumulative Average generates a calculation for the average number
of units sold:

Cunul ative average of UNLTS in the TIME dimension and TI ME. CALENDAR hi erarchy within
level . Total frombeginning to follow ng nmenber.

The template generates this calculation using the AVG function.

AVG UNI TS_CUBE. UNI TS) OVER HI ERARCHY (TI ME. CALENDAR BETWEEN UNBOUNDED PRECEDI NG AND
UNBCUNDED FOLLON NG W THI N LEVEL)

Following is a free-form calculation that computes the percent difference between
current units sold and the cumulative average. It uses the AVGfunction and the
subtraction (-), division (/) and multiplication (*) operators.

((UNI'TS_CUBE. UNITS - AV UNI TS_CUBE. UNITS) OVER HI ERARCHY (TI ME. CALENDAR BETVEEN
UNBCUNDED PRECEDI NG AND UNBOUNDED FOLLOW NG W THI N LEVEL)) / AVG UNI TS_CUBE. UNI TS)
OVER H ERARCHY (Tl ME. CALENDAR BETWEEN UNBOUNDED PRECEDI NG AND UNBOUNDED FOLLOW NG
WTH N LEVEL)) * 100

These are the results of a query against this calculated measure.

TIME UNI TS CUM AVG PCT_DI FF
QL. 06 146819 107965 36
Q.06 145233 109062 33
8. 06 143572 110048 30
4. 06 149305 111138 34

You could also create this calculation using templates:

1. Calculate the cumulative average of UNI TS with the Cumulative Average
template.
2. Calculate the percent difference between current UNI TS and the cumulative

average with the Percent Difference template.

5.5.4 Expression Syntax Analytic Functions

5-16 User's Guide

Table 5-1 (page 5-17) describes the analytic functions that you can use to create free-
form calculations using the OLAP expression syntax. For the syntax of these functions,
refer to Analytic Workspace Manager Help.

Creating User-Defined Expressions

Table 5-1 OLAP Expression Syntax Analytic Functions
- - - - |

Function

Description

AVERAGE_RANK

AVG

COUNT

DENSE_RANK

H ER_ANCESTOR

H ER_CHI LD_COUNT

H ER_DEPTH

H ER_LEVEL

H ER_PARENT

H ER TOP

LAG

LAG_VARI ANCE

LAG_VARI ANCE_PERCENT

LEAD

LEAD VARl ANCE

LEAD VAR ANCE_PERCEN

T

MAX

Orders the members of a dimension based on the values of an
expression. The function returns the sequence numbers of the
dimension members, and assigns the same average rank to
identical values.

Returns the average of a selection of values calculated over
time.

Tallies the number of data values identified by a selection of
dimension members.

Orders dimension members based on the values of an
expression. The function returns the sequence numbers of the
dimension members, and assigns the same minimum rank to
identical values.

Returns an ancestor at a particular level of a hierarchy for either
all members in the hierarchy or a particular member.

Returns the number of children of either all dimension
members in a hierarchy or a particular member.

Returns a number representing the level depth of either all
members of a hierarchy or a particular member, where 0 is the

top level.

Returns the level of either all members of a hierarchy or a
particular member.

Returns the parent of either all dimension members in a
hierarchy or a particular member.

Returns the topmost ancestor of either all members of a
hierarchy or a particular member.

Returns the value of an expression at a specified number of
time periods before the current period.

Returns the difference between values for the current time
period and a prior period.

Returns the percent different between values for the current
time period and a prior period.

Returns the value of an expression at a specified number of
time periods after the current period.

Returns the difference between values for the current time
period and a future period.

Returns the percent different between values for the current
time period and a future period.

Returns the largest of a selection of data values calculated over
a particular dimension.

Enhancing Your Database with Analytic Content 5-17

Creating Calculated Measures Using the OLAP DML

5.6 Creating

Table 5-1 (Cont.) OLAP Expression Syntax Analytic Functions
___|

Function Description

M N Returns the smallest of a selection of data values calculated
over a particular dimension.

OLAP_DM._EXPRESSI ON Executes an expression in the OLAP DML language.

RANK Orders the members of a dimension based on the values of an
expression. The function returns the sequence numbers of the
dimension members, and assigns the same rank to identical
values.

ROW NUMBER Orders the members of a dimension based on the values of an
expression. The function returns the sequence numbers of the
dimension members, and assigns a unique and arbitrary rank to
identical values.

SHARE Calculates the ratio of an expression's value for the current
dimension member to the value for a related member of the
same dimension.

SuMm Returns the total of a selection of values calculated over a
particular dimension.

Calculated Measures Using the OLAP DML

The most advanced business calculations, such as forecasts, models, and allocations,
are available through the OLAP DML. The OLAP DML is the internal data definition
and manipulation language for analytic workspaces. Its primary data structures are
dimensions, variables, formulas, and valuesets. These dimensional objects in an
analytic workspace support the high-level dimensional objects in the database, such as
cubes, cube dimensions, measures, attributes, and hierarchies.

Several commands in the OLAP DML support dimensional database objects such as
cubes, levels, and hierarchies. You can use these commands, as well as the other
functions, operators, and so forth in the language.

See Also:

"Cube-Aware OLAP DML Statements" in the Oracle OLAP DML Reference

The OLAP DML is a mature language that was developed specifically for creating and
managing dimensional objects and for manipulating dimensional data. Although
programming in the OLAP DML requires significant skill, the language offers more
power and flexibility than any other language.

5.6.1 Selecting an OLAP DML Calculation Type

5-18 User's Guide

Analytic Workspace Manager supports two types of user-defined expressions using
the OLAP DML:

* OLAP DML Expression: Calculates an OLAP DML expression. Choose this
calculation type to execute an existing program, a built-in function, or a single

Creating Calculated Measures Using the OLAP DML

expression. The expression is stored as the EQ statement of a formula in the
analytic workspace.

OLAP DML Function: Executes an OLAP DML program entered in the Program
Body field that returns values. Choose this calculation type to develop a new

program in the OLAP DML. The name of the program is stored in the EQ

statement of a formula in the analytic workspace.

To create an OLAP DML Expression:

1.

2.

Open the Create Calculated Measure dialog box.

From the Calculation Types list, select OLAP DML Expression.
For Data Type, select the data type of the return value.

Enter the expression in the OLAP DML field.

Click Compile Expression to check for syntax errors and to save a compiled
version of the expression.

Click Create to create the calculated measure.

To create an OLAP DML Function:

1.

2.

Open the Create Calculated Measure dialog box.

From the Calculation Types list, select OLAP DML Function.
For Data Type, select the data type of the return value.

Enter a name for the function.

Enter the program in the Program Body field. Omit the DEFI NE, PROGRAM and
END commands, because they are generated automatically.

Click Compile Expression to check for syntax errors and to save a compiled
version of the program.

Click Create to create the calculated measure.

5.6.2 OLAP DML Expression Examples

The OLAP DML has many built-in functions. This example creates a calculated
measure using the RANDOMfunction. Figure 5-6 (page 5-19) shows the definition of
this simple calculation. The calculated measure generates values in the default range
of 0 to 1.

Figure 5-6 Using an OLAP DML Expression

Calculation Type: | [l oLAP DML Expressian

Data Type: |numBER
Precision: |
Scale: |

OLAP DML

[random

Enhancing Your Database with Analytic Content 5-19

Creating Calculated Measures Using the OLAP DML

The next example uses an arithmetic operator to calculate a 2% increase in units sold.
This example of the OLAP DML is identical to the example in "Expression Syntax
Example Using an Arithmetic Operator (page 5-15)". However, note the difference in
naming convention for the measure.

units_cube_units * 1.02

These are the results of a query against the two calculated measures created as OLAP
DML expressions:

PRCDUCT UNI TS TARGET RANDOM
Envoy Anbassador 2116 2158 . 6467
Envoy Executive 2481 2531 0773
Envoy Standard 3300 3366 2349
Sentinel Financial 30513 31123 . 6027
Sentinel Miltinedia 7948 8107 . 6494
Sentinel Standard 7302 7448 . 5912

5.6.3 OLAP DML Function Example

5-20 User's Guide

An OLAP DML program that returns a value is also function.
Example 5-1 OLAP DML Function

The program in this example returns the value ALERT when current sales are less than
the previous year's. The actual calculation is performed by another calculated
measure, UNITS_CUBE_SALES_PCT_CHG_PY, which is the percent change from the
prior year for Sales. If sales are greater, then the program returns OKAY.

VARl ABLE _alert TEXT
VAR ABLE _product NUVBER

TRAP ON error

_product = product + 0

TEMPSTAT product

DO
LIMT product TO CH LDREN USI NG product _parentrel _product
LIMT product KEEP UNI TS_CUBE _SALES PCT_CHG PY LT 0
| F STATLEN(product) GT 0

THEN _alert = 'ALERT
ELSE _alert ="' COKAY

DOEND
RETURN _al ert

error:
RETURN ' ERROR

This figure shows the definition of the program as a calculated measure.

Creating Calculated Measures Using the OLAP DML

Figure 5-7 Using an OLAP DML Function

Calcylation Type: |l oLAP DML Function

Data Type: [varcHARZ

Size [100

Frogram Mame: |PRODUCT_ALERT_PRG

Program Body:

WARTABLE _alert TEXT
WARTABLE _product NUMBER

TEAP ON error
_product = product + O

TEKPSTAT product
Do

LIMIT product KEEP UNITS_CUTE_SA&LES_PCT_CHG_PY LT O

IF STATLEN(product) GT O

4

LIMIT product TO CHILDREN USING product_parentrel _product

| Compile Program |

|»

3

These are the results of a query against this calculated measure:

CHANNEL TI ME PCTCHG STATUS
Catal og QL. 06 -1 ALERT
Catal og Q.06 -1 ALERT
Catal og .06 -3 ALERT
Catal og .06 -7 ALERT
Direct Sales QL. 06 -3 ALERT
Direct Sales Q. 06 -1 ALERT
Direct Sales 8. 06 10 OKAY

Direct Sales Q. 06 -4 ALERT
I nt ernet QL. 06 29 OKAY

I nt ernet @. 06 3 ALERT
I nternet . 06 0 ALERT
I nternet . 06 16 OKAY

Enhancing Your Database with Analytic Content 5-21

Creating Calculated Measures Using the OLAP DML

5-22 User's Guide

6

Developing Reports and Dashboards

You can use any SQL development tool or application to create reports and
dashboards populated with data from OLAP cubes. This chapter shows the basic steps
for working with the tools provided with Oracle Database: Oracle Business
Intelligence Publisher (BI Publisher) and Oracle Application Express. You can try these
tools, or you can apply the methods shown here to your favorite SQL tool.

This chapter contains the following topics:
¢ Developing OLAP Applications (page 6-1)
¢ Developing a Report Using BI Publisher (page 6-3)

* Developing a Dashboard Using Application Express (page 6-12)

See Also:

Querying Dimensional Objects (page 4-1)

6.1 Developing OLAP Applications

You can use any SQL query against a cube as the content for a report or dashboard.
Both BI Publisher and Application Express contain a Query Builder, which you can
use to develop queries against both relational and dimensional objects. You can also
cut-and-paste queries from a SQL script or another source, which is the method used
in this chapter.

If your goal is to create static reports and dashboards, then you do not need to read
any further. You can start developing OLAP applications immediately using your
favorite tool. This chapter explains how to create applications with dynamic content. It
focuses on ways to leverage the unique capabilities of cubes and dimensions to create
drillable reports and graphs using a single query. You will learn how to create two
types of drillable interfaces:

¢ Choice Lists: You can create a drop-down list for each dimension to drill on the
dimensions in a report or dashboard.

¢ Linked Dimension Columns: In Application Express, you can add links to the
dimension columns of a crosstab to drill down to the bottom of a hierarchy, and
use a Reset button to return to the top level.

These user interfaces set the values of bind variables in the WHERE clause of the source
query. When a user changes the current selection in a choice list or clicks a link in a
crosstab, that action dynamically changes the value of the variable. When the variable

changes, so does the condition of the query and the contents of the report or
dashboard.

Developing Reports and Dashboards 6-1

Developing OLAP Applications

When the variable sets the value of the PARENT column of the hierarchy views, users
can drill on a parent to view its children.

Example 6-1 (page 6-2) shows a basic SQL query against UNI TS_CUBE_VI EWin the
Global sample schema. The query selects the SALES measure and three calculated
measures that use SALES as the basis for the calculations:

* SALES_PP: Sales from the prior period.

e SALES_CHG PP: Difference in sales between the current period and the prior
period.

* SALES_PCTCHG_PP: Percent difference in sales between the current period and the
prior period.

This query is used in the sample applications developed in this chapter. The PARENT
columns for the Product, Customer, and Time dimensions support drilling in these
applications. The Channel dimension remains anchored at the Total level.

Example 6-1 SQL Query Against the Sales Cube

SELECT p. | ong_description "Product”,
cu.long_description "Custoner",
t.long_description "Tinme",

ROUND(f . sal es) "Sal es",

ROUND(f . sal es_pp) "Prior Period",

ROUND(f . sal es_chg_pp) "Change",

ROUND(f . sal es_pctchg_pp * 100) "Percent Change"

/* From di mension views and cube view */

FROM product _pri mary_vi ew p,
cust oner _shi pnent s_vi ew cu,
time_cal endar_viewt,
channel _primary_view ch,
units_cube_view f

[* Use parent colums to inplenent drilling */

VWHERE p. parent = 'TOTAL'

AND cu. parent = ' TOTAL'
AND t.parent = 'CY2006'
AND ch. | evel _name = ' TOTAL'
[* Join dinension views to cube view */
AND p. di m key = f. product
AND cu. dimkey = f.custoner
AND t.dimkey = f.tinme
AND ch. dim key = f.channel
ORDER BY product, custoner, t.end_date;

Product Cust oner Ti me Sales Prior Period Change Percent Change
Har dwar e North Anerica QL. 06 16002175 14493426 1508749 10
Har dwar e North Anerica Q.06 16032643 16002175 30469 0
Har dwar e North Anerica (8.06 15698208 16032643 - 334436 -2
Har dwar e North Anerica (Q4.06 15958791 15698208 260583 2
Har dwar e Asia Pacific QL. 06 13416447 14273900 - 857453 6
Har dwar e Asia Pacific Q. 06 14306431 13416447 889984 7
Software/ Gther Asia Pacific Q. 06 652300 647019 5281 1
Sof t war e/ Ot her Eur ope QL. 06 737523 634293 103230 16
Sof t war e/ Ot her Eur ope Q.06 678391 737523 -59132 -8
Sof t war e/ Ot her Eur ope 8. 06 499008 678391 -179383 -26
Sof t ware/ Ot her Eur ope .06 710796 499008 211788 42

6-2 User's Guide

Developing a Report Using BI Publisher

24 rows sel ected.

6.2 Developing a Report Using Bl Publisher

BI Publisher is an efficient, scalable reporting solution for generating and delivering
information through a variety of distribution methods. It reduces the high costs
associated with the development and maintenance of business documents, while
increasing the efficiency of reports management. BI Publisher generates reports in a
variety of formats, including HTML, PDF, and Excel.

If you have not used BI Publisher, you can download the software, tutorials, and full
documentation from the Oracle Technology Network at

http://ww. oracl e. coni t echnet wor k/ mi ddl ewar e/ bi - publ i sher/
overvi ew i ndex. htm

Example 6-1 (page 6-2) shows a report in PDF format based on the query shown in
Example 6-1 (page 6-2). When generating a report for distribution, you can select any
combination of Products, Customers, and Time Periods from the choice lists. The
selection for this report is Hardware products, customers in Europe, and months in
QQ2-06. This chapter explains how you can create a report like this one using drillable
dimensions.

Figure 6-1 Sales Report in Bl Publisher

W\ Global Enterprises, Inc.

Sales Analysis

Product Customer Time Sales Prior Period Change % Change
CD/IDVD France APR-06 125,401 111,866 13,635 12
CD/DVD France MAY-06 16,301 125,401 -100,010 -47
CD/DVD France JUN-06 170,033 16,391 153,642 937
CD/DVD Germany APR-06 27,727 19,499 8,228 42
CD/DVD Germany MAY-06 27,178 27,727 -549 -2
CD/DVD Germany JUN-08 31,263 27,178 4,085 15
CD/DVD Italy APR-06 22,960 20,814 2,146 10
CD/DVD Italy MAY-06 21,290 22,960 -1,669 -7
CD/DVD Italy JUN-08 15,472 21,200 -5,818 27
CD/DVD Spain APR-06 8,148 6,920 1,227 18
CD/DVD Spain MAY-06 7.323 8,148 -825 -10
CD/DVD Spain JUN-06 10,522 7.323 3,199 44
CD/DVD United Kingdom | APR-08 63,371 50,752 12,619 25
CD/DVD United Kingdom | MAY-06 56,083 63,371 7,288 -12
CD/DVD United Kingdom | JUN-06 62,155 56,083 6,071 11
Desktop PCs France APR-06 38,063 38,182 -119 0
Desktop PCs France MAY-06 45,451 38,083 7,388 19
Desktop PCs France JUN-06 44,759 45 451 -692 -2

6.2.1 Creating an OLAP Report in Bl Publisher

A report consists of a report entry, which you create in BI Publisher, and a layout
template, which you create using an application such as Microsoft Word or Adobe
Acrobat. You can organize your reports in folders.

BI Publisher is a middleware application and can derive data from multiple sources.
These procedures assume that you can access one or more cubes from BI Publisher. If
you cannot, contact your Bl Publisher administrator about defining a data source.

Developing Reports and Dashboards 6-3

http://www.oracle.com/technetwork/middleware/bi-publisher/overview/index.html
http://www.oracle.com/technetwork/middleware/bi-publisher/overview/index.html

Developing a Report Using Bl Publisher

To create a report entry:
1. Open a browser to the BI Publisher home page and log in.
2. Click My Folders.

3. Open an existing folder.
or

To create a folder:
a. Click Create a New Folder.
b. Enter a name for the folder in the text box, such as OLAP Reports.
c. Click Create.
4. Click the folder to open it.
5. Create a report:
a. Click Create a New Report.

b. Enter a report name in the text box.

This example creates a report named Global Sales.

c. Click Create.

The report appears in the folder, as shown in Figure 6-2 (page 6-4).

Figure 6-2 Creating a Report in Bl Publisher
TOIRACLE' Bl Publisher Enterprise

Reports | Schedules
Home = My Folders = OLAP Reports

Search

Global Sales
| o Date Modified 8/21/07 5:27 PM Eastern Time
Search Wiew Schedule History Edit Configure

Folder and Report Tasks
= Create a new folder
Create a new report
=] Upload & report

=] Template Builder

Tip
To copy, delete, rename folder or

repaort, please click on folder ican
of report icon.

To configure the report entry:

1. To define the contents of the report, click Edit.
The Report Editor opens.

2. For General Settings, enter a description and select a default data source.

6-4 User's Guide

Developing a Report Using Bl Publisher

If the list does not include a connection to the database and schema containing
your cubes, contact your BI Publisher administrator.

3. Select Data Model, then click New.
The Data Set page opens.

4. Enter a name for the data set and enter a SQL query like the one shown in
Example 6-1 (page 6-2). Do not use a semicolon.

5. Click Save.

6. Click View.

BI Publisher checks the report definition for errors. If there are none, then it
generates the XML for the report.

Figure 6-3 (page 6-5) shows the Report Editor with the Data Set page displayed.

Figure 6-3 Creating a Data Model in the Bl Publisher Report Editor

Reports |
Hame = My Folders = OLAP Reports = Global Sales
Bl save |#|Generate KLIFF

Report

=l Koekte () (V) Data Set

T T

Wiew Schedule History Edit Configure

Report

General Settings

B = DataModel

= Mame |=ales Quer
= Sales Query bl

.
E7 Listof values voe [soL query v

E‘\: Parameters
Details
EZ] Layouts
Data Source (&) pefault Data Source

O linwz

O cache Resu

27 Bursting

* |Refresh Data Source List

SOL Query Query Builder

SELECT p.long description "Product”, A
o, long_description "Customer™,
t.long description "Time",
ROUML (£.=zales) "Sales"™,
ROUND (f.3ales_pp] "Prior Period”,
ROTND (£.5ales_chyg pp) "Change™,
ROUND i f.sales_pcotchy pp * 100) "Percent Change"™
/% From dimension wiews and cube wiew */
FROM product_primary_wiew b,
custoner_shipments wiew cu,
time_calendar wview t,
channel_primary wiew ch,
units_cube_wview £
/% Use parents for drilling */ v

6.2.2 Creating a Template in Microsoft Word

BI Publisher does not contain formatting tools. Instead, it enables you to design a
report using familiar desktop applications. This example uses Microsoft Word. A
report template can contain:

Static text and graphics that you enter like any other Word document.

Dynamic fields such as the date and time or page numbers, which are processed by
Word.

Codes that identify the XML tags for your data, which are processed by BI

Publisher. When BI Publisher generates a report, it replaces the codes with the data
identified by these tags.

Developing Reports and Dashboards 6-5

Developing a Report Using BI Publisher

6-6 User's Guide

You can format all parts of the report template in Word, selecting the fonts, text and
background colors, table design, and so forth.

Example 6-2 XML for a SQL Query

This example shows the XML for a row of data returned by the sample query. The tags
match the column names in the select list, except that underscores replace the spaces.
The tags are Pr oduct, Cust orrer, Ti e, Sal es, Pri or _Peri od, Change, and

Per cent _Change. XML tags are case-sensitive. You use the HTML tag names as the
codes in the Word document.

<ROW

<Product >Har dwar e</ Pr oduct >

<Cust oner >North Aneri ca</ Cust omer >
<Ti me>QL. 06</ Ti me>

<Sal es>16002175</ Sal es>
<Prior_Peri0d>14493426</ Pri or _Peri od>
<Change>1508749</ Change>

<Per cent _Change>10</ Per cent _Change>
</ ROW

Figure 6-4 (page 6-6) shows the Word document that is used as the template for the
sample report. It contains these elements:

* A table used to format the banner, which consists of a graphic, the company name,
and a horizontal line. (Static)

® The name of the report. (Static)
¢ A table for the query results that contains two rows:
— A heading row. (Static)

— Abody row containing text form fields, which identify the XML tags and the
appropriate formatting for the data. BI Publisher replaces these fields with data
from the query. The first and last columns contain two fields. The first and last
fields identify the range of repeating columns. (Dynamic)

¢ A date field. Word updates this field with the current date. (Dynamic)

This example uses a blank Word template, but you could use a template with, for
example, the banner already defined.

Figure 6-4 Sample Report Template Created in Word for Bl Publisher

\\ Global Enterprises, Inc.

Sales Analysis

Prior %
Product Custormer Tirne Sales Period Change Change
far-each TOTAL 2006 [n} 0] 0 end

TOTAL

June 27, 2007

Developing a Report Using BI Publisher

The following procedure defines the template manually. Alternatively, you can use a
Word plug-in called Oracle BI Publisher Desktop. On the BI Publisher My Folders
page, click Template Builder to download the plug-in.

To create a Bl Publisher template in Word:
1. Open a new document in Word.
2. Compose the page according to your preferences.

3. For the query results, create a table.

The table shown in Figure 6-4 (page 6-6) is very simple. You can use much more
elaborate formatting if you want, including nested columns and tables.

4. From the View menu, select Toolbars, then Forms.

The Forms toolbar opens.
5. Enter a field in the body row of each column:
a. Position the cursor in the appropriate cell.

b. On the Forms toolbar, click the Text Form Field icon.

The Text Form Field Options dialog box opens.

c. Select an appropriate Type, generally Regular Text for dimension labels and
Number for measures.

d. Enter a default value and a format.

e. Click Add Help Text.
The Form Field Help Text dialog box opens.

f. Type the appropriate XML tag in the Type Your Own box, using the format
<?t ag?>.

Enter the tag name exactly as it appears in the XML report. For example, enter
<?Pr oduct ?> for the XML tag <Pr oduct >.

g. Click OK to close the Form Field Help dialog box.
h. Click OK to close the Text Form Field Options dialog box.
6. Insert an additional form field at the beginning of the first column:

a. In the Text Form Field Options dialog box, enter any default value, such as
For - Each.

b. Inthe Form Field Help Text dialog box, enter this text:
<?for-each: ROW>

7. Insert an additional form field at the end of the last column:

a. In the Text Form Field Options dialog box, enter any default value, such as
End.

b. Inthe Form Field Help Text dialog box, enter this text:

<?end for-each?>

Developing Reports and Dashboards 6-7

Developing a Report Using Bl Publisher

8. Make any additional formatting changes in Word, such as the appropriate
justification of the table headings and data columns.

9. Save the document as an RTF file.

6.2.3 Generating a Formatted Report

After creating a report template in Word, you can upload it to BI Publisher and
associate it with your report definition. Then you can generate reports in a variety of
formats.

To create a report layout:
1. Open the report editor in BI Publisher.

2. Select Layouts.
The Create Layouts page opens.

3. Click New.
The Layout page opens.

4. Enter a name and select RTF for the template type.
5. Select Layouts again, and select the layout as the default template for this report.
6. Under Manage Template Files, click Browse. Select the RTF file you created.

7. Click Upload.

The uploaded file is listed under Manage Template Files. Whenever you change
the file in Word, upload it again. Otherwise, BI Publisher continues to use its copy
of the previous version.

8. C(lick Save.

9. Click View.
The report appears.

10. To change the format, select a format from the list and click View.
To see the XML, select Data.

Figure 6-5 (page 6-9) shows the report in HTML format.

6-8 User's Guide

Developing a Report Using Bl Publisher

Figure 6-5 Bl Publisher Report Displayed in HTML Format

Reports Admin
I I o .

Template | Gobal (v || html v |[view | [Export | | | Analyzer | [Analy

Global Enterprises, Inc.

Sales Analysis

Product Customer Time Sales Prior Period Change Ch:ige
Hardware Morth America | Q1.06 | 16,002,175 14,493,426/ 1,508,749 10
Hardware Morth america | Q2.06 16,032,643 16,002,175 30,469 0
Hardware Morth America | Q2.06 15,608,208 16,032,643 -334,4326 -2
Hardware Morth america | Q4.06 15,958,791 15,698,208 260,583 2
Hardware asia Pacific Q1.06 | 13,416,447 14,273,900 -857,453 -6
Hardware Asia Pacific Q2.06 14,306,431 13,416,447 889,954 7
Hardware Asia Pacific Q3.06 | 10,435,666 14,306,431 -3,870,765 -27
Hardware Asia Pacific Q4.06 12,163,457 10,435,666 1,727,831 17
Hardware Europe Q1.06 3,293,269 3,264,459 28,801 1

6.2.4 Adding Dimension Choice Lists in Bl Publisher

You can add choice lists for the dimensions to a report. When generating a report, you
can change the selection of data without changing the query. To add choice lists, take
these steps:

* Create one or more Lists of Values (LOV) to be displayed in the menu.
¢ Create menus for displaying the LOVs.

e Edit the query to use the bind variables created for the menus.

These steps are described in the following topics:

* Creating a List of Values for a BI Publisher Report (page 6-9)
¢ Creating a Menu (page 6-10)

e Editing the Query in BI Publisher (page 6-11)

6.2.4.1 Creating a List of Values for a Bl Publisher Report

For a list of values, use a SQL query that selects the dimension keys to display. Include
the LONG_DESCRI PTI ONand DI M_KEY columns from the hierarchy view. This
example creates a list for the Product Primary hierarchy:

SELECT | ong_description, di mkey
FROM product _primary_vi ew
VHERE parent = ' TOTAL'
OR dimkey = ' TOTAL'
ORDER BY | evel _name, |ong_description

LONG_DESCRI PTI ON DI M_KEY

Har dwar e HRD

Developing Reports and Dashboards 6-9

Developing a Report Using Bl Publisher

6-10 User's Guide

Sof t war e/ & her SFT
Total Product TOTAL

To create a list of values:

1.

2.

4.

Open the Report Editor in BI Publisher.

Select List of Values, then click New.

The List of Values page opens.

Define the list:

a. Enter a name for the list, such as Pr oduct _LOV.

b. For the type, select SQL Query.

c. Enter a query against the dimension hierarchy view, as shown previously.

Click Save.

Repeat these steps for the other dimensions. This example uses lists for Product,
Customer, and Time.

6.2.4.2 Creating a Menu

In BI Publisher, a menu is a type of parameter. Creating a parameter automatically
creates a bind variable that you can use in the query for the report.

To create a menu:

1.

3.

Select Parameters, then click New.

The Parameter page opens.
Define the parameter:

a. For the Identifier, enter a name such as pr oduct .

This is the case-sensitive name of the bind variable that you will use in the
query.

b. Select an appropriate data type, typically String.

c. For the Default Value, enter the dimension key used in the WHERE clause of
the LOV query.

The menu initially displays this key.
d. For the Parameter Type, select Menu.
e. Select the appropriate List of Values.
f. Clear all options.

Click Save.

Repeat these steps for the other dimensions. This example creates menus for Product,
Customer, and Time.

Developing a Report Using BI Publisher

6.2.4.3 Editing the Query in Bl Publisher

To activate the menus, you change the WHERE clause in the query for the report to use
the bind variables. The value of a bind variable is the current menu choice.

This is the format for the conditions of the WHERE clause:

parent _colum = :bind_variable

In this example, the WHERE clause uses the bind variables for Time, Product, and
Customer:

VWHERE p.parent = :product
AND cu. parent = :custoner
AND t.parent = :tine
AND ch. | evel _name = ' TOTAL'

To edit the query:

1. Under Data Model, select the data set you defined for this report.
The Data Set page opens.

2. Inthe SQL Query box, edit the WHERE clause to use the bind variables created by
the parameter definitions.

3. Click Save.

Figure 6-6 (page 6-12) shows a report in HTML format displayed in BI Publisher. The
choice lists for Product, Customer, and Time appear across the top. The crosstab lists
the months in Q3.06, the Hardware products, and the countries in Europe. To see a
different selection of data, you choose a Time Period, Product, and Customer from the
menus, then click View. This report was generated by the same report entry, using the
same query, as the one shown in Figure 6-1 (page 6-3).

You can continue working on this report, adding charts and other tables.

Developing Reports and Dashboards 6-11

Developing a Dashboard Using Application Express

Figure 6-6 Sales Report With Choice Lists in Bl Publisher

Home = hyFolders = OLAP Reports = Global Sales Wiew Schedule History Edit Configure
Product| Total Product & Customer| Asia Pacific hd Time Period| 2006+

Template | Global % || htrnl (» Export | | Analyzer | [Analyzer for Excel |

Sales Analysis

Product Customer Time Sales Prior Period Change % Change
Hardware Australia Q1.06 239,526 259,615 -20,089 -g
Hardware Australia 02.06 238,622 239,526 -904 0
Hardware Australia Q3.06 271,316 238,622 32,695 14
Hardware Australia Q4,06 278,809 271,316 7,493 3
Hardware Hong Kang Q1.06 102,961 130,206 -27,245 -21
Hardware Haong Kang 02.06 142,004 102,961 39,043 38
Hardware Hong Kang 03.06 137,022 142,004 -4,081 -3
Hardware Haong Kang 04.06 199,122 137,922 61,200 44
Hardware Japan 01,06 10,569,508 11,678,213 -1,100,404 -9
Hardware Japan 02.06 12,202,229 10,569,808 1,722,421 16,
Hardware Japan 03,06 7,243,345 12,292,220 -5,048,004 —41]
Hardware Japan 04,06 10,140,041 7,243,345 2,506,696 40

6.3 Developing a Dashboard Using Application Express

6-12 User's Guide

Oracle Application Express is a rapid web application development tool for Oracle
Database. Application Express offers built-in features such as user interface themes,
navigational controls, form handlers, and flexible reports, which simplify the
development process.

Overview (page 1-1) shows a sophisticated dashboard that extracts analytic data from
cubes and presents it in a variety of graphs and reports. You can easily create
dashboards from your cubes that display the rich analytical content generated by
Oracle OLAP.

If you have not used Application Express, you can download the software, tutorials,
and full documentation from the Oracle Technology Network at

htt p: // ww. oracl e. com t echnet wor k/ devel oper -t ool s/ apex/ over vi ew
i ndex. ht m

Figure 6-7 (page 6-13) shows a crosstab with display lists for Product and Customer,
and links in all three dimension columns. Choosing a different Product or Customer
changes the related column to show the children for the selected key. Clicking a
dimension key in any column displays its children. The Reset button refreshes the
page with the initial selection of data.

http://www.oracle.com/technetwork/developer-tools/apex/overview/index.html
http://www.oracle.com/technetwork/developer-tools/apex/overview/index.html

Developing a Dashboard Using Application Express

Figure 6-7 Drillable Dimensions in Application Express

Global Enterprises, Inc.

Sales Analysis
Search
Product & Customer
Hardware Asia Pacific
Europe
Morth America

SoftwareiCther Asia Pacific

Time

G106
G206
Q306
C4.06
G106
G206
G306
24.06
Q1.06
G206
G306
G406
Q1.06
Q206
G306

Display | 15

Sales
13416447
14306431
10435666
121634497

3283269
3285395
3083762
3187583
16002175
16032643
156958208
15958791
563786
551144
647019

Product| Total Product % | Custorner | Total Customer

v (&)
Prior Period
14273900
13416447
14306431
10435666
3264489
3283269
32868399
3083762
14493426
16002175
16032643
14698208
672404
a63786
9511448

Change
-857453
889934
-3870765
1727831
28801
5129
-204637
103832
14808749
30489
-334436
260583
-108619
-12637
95870

row(s) 1 -150f 24 s | Mext(®

Reset

Percent Change
-6

7

=27

1

- R ®m R O O W e O =

1

6.3.1 Creating an OLAP Application in Application Express

In Application Express, the Administrator creates a workspace in which you can
develop your web applications. An application consists of one or more HTML pages,
a page consists of regions that identify specific locations on the page, and a region
contains a report (crosstab), a chart, or some other item.

Application Express runs in Oracle Database. If your dimensional objects are stored in
a different database, then you must use a database link in your queries. The following
procedure assumes that you have a workspace and access to at least one cube. It
creates an application with one page containing a crosstab.

To create a web page from a SQL query:

1. Open abrowser to the Application Express home page and log in.

2. Click the Application Builder icon.

The Application Builder opens.

3. Click Create.

The Create Application wizard opens.

4. Select Create Application, then Next.

5. On the Name page, enter a title for the application such as G obal Dashboard
and select From Scratch.

6. On the Pages page, select the Report page type, then define the page:

a. For Page Source, select SQL Query.

b. For Title, enter a name such as Sal es Anal ysi s.

This title appears on the page.

Developing Reports and Dashboards 6-13

Developing a Dashboard Using Application Express

c. For Query, enter a SQL SELECT statement for your cube, like the one shown
in Example 6-1 (page 6-2). Do not include an ORDER BY clause or a
semicolon.

d. Click Add Page.
The page definition appears in the Create Application Box.

7. Click Next, then complete the Create Application wizard according to your own
preferences.

This example was created with no tabs, no shared components, no authentication,
and Theme 15 (Light Blue).

8. On the Confirm page, click Create.
9. On the Application Builder home page, click the Run Application icon.
Tip:
To continue working on this page, click the Edit Page 1 link at the bottom of

the display.

Figure 6-8 (page 6-14) shows the results of the query displayed in Application
Express. Several items are automatically added to the page: breadcrumbs, Search box,
Display list, Go button, Reset button, and Spread Sheet link. This application only
needs the Reset button, so you can delete the other items if you want.

Figure 6-8 Basic Sales Report in Application Express

Sales Analysis
Sales Analysis Reset |
Search Display 15 s | [Go)

Product & Customer Time Sales Prior Period Change Percent Change
Hardware Asia Pacific Q306 10435666 14306431 -3870765 =27
Hardware Azia Pacific Q206 14306431 13416447 980984 7
Hardware Aszia Pacific Q4,06 12163497 10435666 1727831 17
Hardware Europe Q206 3295399 32932649 5129 0
Hardware Europe Q406 3197593 3093762 103832 £
Hardware Europe Q306 30893762 3288389 204637 B
Hardware Europe Q106 3293269 32644649 28801 1
Hardware Marth America @1.06 16002175 14493426 1508749 10
Hardware Morth America @306 15698208 16032643 -334436 =
Hardware Morth Ametica Q206 16032643 18002174 30469 0
Hardware Marth America Q406 15858791 18698208 260583 2
Hardware Asia Pacific G1.06 13416447 14273900 -8574453 -B
Software/Other Asia Pacific G1.06 S637H6 672404 108619 -18
Software/Other Asia Pacific G306 647019 451148 95870 17
SoftwareiOther Asia Pacific Q2,06 9491149 GE3786 -12637 =
Spread Sheet rowls] 1 - 150f 28 v | Next(s

6.3.2 Adding Dimension Choice Lists in Application Express

6-14 User's Guide

Like BI Publisher, Application Express enables you to drill on the dimensions by
adding choice lists of dimension keys. The dashboard user can choose a particular
item from the list and dynamically change the selection of data displayed in one or
more graphics and crosstabs on the page. To implement a choice list, take these steps:

* Create a region on the page to display the list.

e Create a list of values (LOV).

Developing a Dashboard Using Application Express

¢ Create a list item with a bind variable to display the LOV.
e (Create an unconditional branch for the list.

¢ Edit the query to use the bind variable.

In Application Express, the Page Definition is where you can create and edit pages,
including adding and modifying graphical items. The items are organized in three
columns: Page Rendering, Page Processing, and Shared Components.

To open a Page Definition:

e After running the application, click the Edit Page link at the bottom of the page.

or

¢ On the Application home page, click the icon for the page where the report is
defined.

Figure 6-9 Application Express Page Definition

This figure shows an area of the Page Definition.

ORACLE" Application Express
Haome |4 SaL Workshop |
S0

7 paief (2] view| Definton__ v Los L poerg

Page Commeri

Home > Application Builder > Application 102 > Page 1 Paged| |

Page Rendering Page Processing Shared Components
~ [O = B E g v B @ G = ~ o B Wb = O
%
N
Page Mame: Sales fnalysis Template: Application
default
B v :
Title: Sales Analysis Header Text Static Report Row Per Page
HTML Header: Foater Text: \
HTML Body: Build Option:
Help Text: No help is available for this jon: Ho tegstbnit
X . 10 Feset Feset Pagination Conditional | | Breaderumb
Page Group: Cached: Mo =
Pagination
I0 Fesetreport Clear Cache for fems Conditional
p i zearch (ITEW,ITE, ITEM)
Display Poirt: Page Template Body (3) W
0 Sales fnalysiz Report q
alas fnalysiz Repo P Page Ho Tabs
10 Go To Page 1 Unconditional Region Breadenumh Region
Display Point: Region Position 01 Fegion Reports Region
1 Breaderumbs Breaderumb Ent Label Optional Label with He
Button Button
N Button Button
Breaderumb Breaderumbs
Region: Sales Analysis Report Standard Report
10 Feset Submit as "RESET”
tem Submit as “Go"
\ 15. Light Blue

Region: Sales Analysis ~< [0

10 P _REPORT SEARCH Text Field (@lways submits page when
Ertter pressed)

The steps in implementing a choice list are described in the following topics:
* Creating a Region (page 6-16)

® Creating a List of Values in Application Express (page 6-16)

¢ Creating the Choice List (page 6-17)

¢ Editing the Query in Application Express (page 6-18)

Developing Reports and Dashboards 6-15

Developing a Dashboard Using Application Express

6-16 User's Guide

6.3.2.1 Creating a Region

You can create the choice list in a plain HTML area at the top of the page.

To create an empty HTML region:

1.

On the Page Definition under Regions, click the Create icon.

The Create Region wizard opens.
On the Region pages, select HTML, click Next, then select HTML again.

On the Display Attributes page, enter a descriptive title and select an appropriate
template and location on the page for the lists.

For this example, the name is | ov_r egi on, the template is No Template, and the
location is Page Template Body (1 items below template content). The name can
be displayed on the rendered page, but it is hidden in this example.

Click Create Region.

The region appears on the Page Definition under Regions.

6.3.2.2 Creating a List of Values in Application Express

For a list of values, use a SQL query like the one shown here. Include the
LONG_DESCRI PTI ONand DI M_KEY columns from the hierarchy view. This query
creates a list for the Customer Shipments hierarchy:

SELECT | ong_description, di mkey

FROM cust oner _shi pment s_vi ew

WHERE parent = ' TOTAL'

OR di m key= ' TOTAL'

ORDER BY | evel _nanme, |ong_description;

LONG_DESCRI PTI ON DI M _KEY

Asia Pacific APAC
Eur ope EMEA
North Anerica AMVER
Total Customner TOTAL

To create a List of Values:

1.

On the Page Definition under List of Values, click the Create icon.

The Create List of Values wizard opens.
On the Source page, select From Scratch.

On the Name and Type page, enter a descriptive name and select Dynamic.

This example uses the name CUSTOVER_LOV.

On the Query page, enter a query like the one shown previously. Do not use a
semicolon.

Click Create List of Values.
The list of values (LOV) appears in the Page Definition under List of Values.

Developing a Dashboard Using Application Express

For additional lists of values (LOVs), repeat these steps. This example creates LOVs for
the Product and Customer dimensions.

6.3.2.3 Creating the Choice List
For a choice list, you create a list item that displays the LOV.

To create a list item:

1. On the Page Definition under Items, click the Create icon.

The Create Item wizard opens.
2. On the Item Type page, select Select List.
3. For Control Type, select Select List with Submit.
4. On the Display Position and Name page:

¢ Enter a name that identifies the dimension, such as P1_CUSTOVER for the
name of the Customer bind variable. P1 is the page number, and CUSTOVER
identifies the Customer dimension.

* Select the new HTML region for the location of the list.
5. On the List of Values page, set these values:

e Named LOV to the List Of Values created for this dimension, such as
CUSTOMVER _LOV.

¢ Display Null Option to No.
6. Select the Item attributes according to your own preferences.

7. On the Source page, enter the name of the top dimension key for the default
value.

For the Global Customer dimension, the value is TOTAL.

8. C(lick Create Item.

Repeat these steps for other lists. This example creates lists for the Product and
Customer dimensions.

To activate the list item:

1. On the Page Definition under Branches, click the Create icon.

The Edit Branch wizard opens.
2. On the Point and Type page, accept the default settings.
3. On the Target page:
* Set Target to Page in This Application.
* Set Page to the page with the list item, which is 1 in this example.

* Select Reset Pagination For This Page.

Developing Reports and Dashboards 6-17

Developing a Dashboard Using Application Express

6-18 User's Guide

4. On the Branch Conditions page, accept the default settings to create an
unconditional branch.

5. Click Apply Changes.

The Edit Branch page closes, and you return to the Page Definition. The
unconditional branch is listed under Branches.

6.3.2.4 Editing the Query in Application Express
This is the format for the dynamic conditions in the WHERE clause:

parent _colum = NVL(:bind_variable, 'top dimkey")

The NVL function substitutes the name of the top dimension key in the hierarchy for
null values. The dimension keys at the top have no parent key.

To edit the query:

1. Open the Page Definition.

2. Under Regions, click the Edit Region link. In this example, the region is named
Sales Report.

The Edit Region page opens.
3. Under Source, modify the query:

¢ Change the WHERE clause to use the bind variables.

¢ Delete the outer SELECT added by Application Express.
4. Click Apply Changes.

For this example, the WHERE clause now looks like this:

VHERE p. parent = NVL(:P1_PRODUCT, ' TOTAL")
AND cu. parent = NVL(:P1_CUSTOMVER ' TOTAL')
AND t. parent = 'CY2006'

AND ch. | evel _name = ' TOTAL'

Figure 6-10 (page 6-19) shows the modified page with choice lists for Product and
Customer.

Developing a Dashboard Using Application Express

Figure 6-10 Dashboard With Choice Lists for Drilling

Sales Analysis

Sales Analysis

Search

Product & Customer
Hardware France
Hardware Spain
Hardware Germany
Hardware Italy
Hardware France
Hardware United Kingdom
Hardware Spain
Hardware Germany
Hardware Italy
Hardware France
Spread Sheet

Froduct | Total Product | Customer

Time
@106
0406
04.06
04.06
2406
02.06
02.06
0206
02.06
02.06

Europe

Display[10 v| (5o

Sales
516260
133449
E38662
300803
BOT580

1540785
155819
699964
298935
552886

Prior Period

472307
118218
BE3624
278440
428493
1730746
132341
B44067
260856
516260

towfz)]1-100f 40w | [ext(e

Change
43853

15231
-24862
22363
1749087
-1484951
234749
55847
380749
36E2E

Reset)

Percent Change
]

13
-4
B
42
-
18
3
15
7

6.3.3 Drilling on Dimension Columns

You can enable users to drill down from the top of a hierarchy to the detail level using
a single query. To implement drilling in Application Express, take these steps:

* Create hidden items with bind variables. See Creating Hidden Items (page 6-19).

¢ Edit the query to use the bind variables. See Editing the Query to Use Bind
Variables (page 6-20).

* Add links to the dimension columns of the crosstab. See Adding Links to the
Dimension Columns (page 6-21).

The example in these topics adds drilling to all displayed dimensions.

6.3.3.1 Creating Hidden ltems

You can create various types of items in Application Express that provide bind
variables. They store the session state for a particular element, in this case, the current
selection of a parent dimension key.

Each dimension that supports drilling needs a bind variable. In this example, Product
and Customer have bind variables created with the list items. Time is the only
displayed dimension in the report that does not have a bind variable. Because links in
the Time dimension column provide the user interface for changing the session state,
Time does not need any other graphical user interface. A hidden item serves the

purpose.

To create a hidden item:

1. Open the Page Definition.

2. Under Items, click the Create icon.

The Create Item wizard opens.

3. On the Item Type page, select Hidden.

4. On the Display Position and Name page:

Developing Reports and Dashboards 6-19

Developing a Dashboard Using Application Express

6-20 User's Guide

¢ Enter a name that identifies the dimension, such as P1_TI ME for the name of
the Time bind variable.

* Select the region where the report is defined.

5. On the Source page, enter the dimension key at the top of the hierarchy.

TOTAL is the top of all hierarchies in the Global schema. For this example, Time is
set to CY2006 to restrict the selection to one year.

6. Click Create Item.

7. Repeat these steps for any other dimensions that support drilling only on the
column links.

For this example, a hidden item is defined for Time.

6.3.3.2 Editing the Query to Use Bind Variables

To add column links to a report, you must change two areas of the SELECT statement:

e Select list: Application Express manages only those columns that appear in the
select list. You can choose to display or hide the columns. For defining the column
links, add the DI M_KEY and PARENT columns in the hierarchy views to the query
select list.

* \WHERE clause: Add the bind variables for the hidden items like you did for the
choice lists in "Editing the Query (page 6-11)".

Example 6-3 (page 6-20) shows the modified sample query.
Example 6-3 Revised Query for Column Links in Application Express

SELECT p. | ong_description "Product",
cu. long_description "Custoner",
t.long_description "Tine",
ROUND(f . sal es) "Sal es",
ROUND(f . sal es_pp) "Prior Period",
ROUND(f . sal es_chg_pp) "Change",
ROUND(f . sal es_pctchg_pp * 100) "Percent Change",
/* Add DI M KEY and PARENT col utms for colum links */
p. di m key product _key,
p. parent product _parent,
cu. di m key customer _key,
cu. parent customer_parent,
t.dimkey tine_key,
t.parent time_parent
/* From di mension views and cube view */
FROM product _primary_vi ew p,
cust oner _shi pnents_vi ew cu,
time_cal endar _view t,
channel _primary_view ch,
units_cube_view f
/* Use parent colums and bind variables for drilling */
WHERE p. parent = NVL(:P1_PRODUCT, ' TOTAL")
AND cu. parent = NVL(: P1_CUSTOMER, 'TOTAL")
AND t.parent = NVL(:P1_TIME, 'CY2006")
AND ch. | evel _name = ' TOTAL'
/* Join dinension views to cube view */
AND p. di mkey = f.product
AND cu. di m key = f.custoner

Developing a Dashboard Using Application Express

AND t.dimkey = f.tinme
AND ch. di m key = f.channel

6.3.3.3 Adding Links to the Dimension Columns
When a dashboard user clicks a linked dimension key in the crosstab, the value of the
bind variable changes, causing the crosstab to change also. After drilling down a
hierarchy, the user can restore the display to its original selection of data by pressing
the Reset button. To implement these column links, you must add the column links
and activate the Reset button.
To add a link to a dimension column:
1. Open the Page Definition.
2. Under Regions, click the Report link.

The Report Attributes page opens.
3. Under Column Attributes, modify the report display:

e (lear the Show check boxes for columns to hide, such as the DI M_KEY and
PARENT columns.

* Set the Sort and Sort Sequence check boxes for appropriate sorting for the
report. In this example, the sort order is Pr oduct (1), Cust oner (2), and Ti e

3).
4. Click the Edit icon for a dimension column.

The Column Attributes page opens.

5. Under Column Link, define the link as follows:
* Link Text: Select the dimension name.
e Page: Enter the page number.

¢ Name: List the dimensions in the order they appear in the report. Item is the
name of the bind variable. Value is the DI M_KEY column for the dimension
being defined or the PARENT column for the other dimensions.

Figure 6-11 (page 6-22) shows the link definition for the Time dimension.

6. Click Apply Changes.
The Column Attributes page closes, and you return to the Report Attributes page.

7. Define links on the other dimension columns.

8. Click Apply Changes.
The Report Attributes page closes, and you return to the Page Definition.

Developing Reports and Dashboards 6-21

Developing a Dashboard Using Application Express

6-22 User's Guide

Figure 6-11 Definition of the Time Link

Celumn Link
Link Tesxt |HTime# @
[Time] [lcon1] [con2] [on 3] [eond] [lcon 5]
Link Attributes
Target| Page in this Application Page|1 Oreset Pagination
Request Clear Cache
Marme Yalue
lterm 1 \P1_PRODUCT @ HPRODUCT_PARENTH @
Iterm 2 |F1_CUSTOMER @ HCUSTOMER_PAREMTH @
ttern 3 [F1_TIME <7 [WTIME_KEvE 7
FPage Checksum | - Use default - ~

To activate the Reset button:
1. Open the Page Definition.

2. Under Branches, click the Go to Page conditional link.

The Reset button was created on the page automatically along with its conditional
branch. The Edit Branch page opens.

3. Under Action, set Clear Cache to the page number (in this example, 1).
4. Under Conditions, set When Button Pressed to RESET.
5. Click Apply Changes.
The Edit Branch page closes, and you return to the Page Definition.
6. Click Run to display the page.

Figure 6-12 (page 6-22) shows the finished page displaying months in Q3.06. You can
continue working on this application, adding more reports and charts to the page. For
the SQL queries providing data to those reports and charts, you can reuse the same
bind variables for the dimensions.

Figure 6-12 Sales Analysis Report With Column Links in Application Express

Sales Analysis
Froduct | Total Praduct s | Custormer | Maorth America
Sales Analysis Reset |
Search Display [15 | (5o
Product Customer Time & Sales Prior Period Change Percent Change
Hardware Canada AUG-06 127402 236515 109114 -46
Hardware United States ALUG-06 4897322 JE05106 1292216 36
Softwara/Other Canada AUG-06 52106 77450 -25345 -33
Software/Other United States AUG-06 573693 634373 -1106749 -16
Hardware Canada JUL-06 236515 216709 19806]
Hardware United States JUL-06 3605106 9847615 -2242509 -38
Software/Other Canada JUL-06 77440 46909 30541 G4
Software/Other United States JUL-06 684373 439917 194456 a0
Hardware Canada SEP-06 256923 127402 128522 102
Hardware United States SEP-06 6574940 4887322 1677618 34
Software/Other Canada SEP-06 43855 52106 -8240 -16
Software/Other United States SEP-06 513795 473693 -598949 -10
1-12

v

Administering Oracle OLAP

Because Oracle OLAP is contained in the database and its resources are managed
using the same tools, the management tasks of Oracle OLAP and the database
converge. Nonetheless, you should address tasks such as database tuning in the
specific context of data warehousing.

This chapter contains the following topics:

Setting Database Initialization Parameters (page 7-1)

Storage Management (page 7-2)

Dictionary Views and System Tables (page 7-4)

Partitioned Cubes and Parallelism (page 7-6)

Analyzing Cubes and Dimensions (page 7-10)

Monitoring Analytic Workspaces (page 7-11)

About Backing Up and Recovering Analytic Workspaces (page 7-15)
About Copying Analytic Workspaces (page 7-16)

Cube Materialized Views (page 7-18)

7.1 Setting Database Initialization Parameters

Table 7-1 (page 7-2) identifies the parameters that affect the performance of Oracle
OLAP. Alter your server parameter file ori ni t . or a file to these values, then restart
your database instance. You can monitor the effectiveness of these settings and adjust
them as necessary.

See Also:

® Oracle Database Performance Tuning Guide for information about tuning
parameter settings

® Oracle Database Reference for descriptions of individual parameters

Administering Oracle OLAP 7-1

Storage Management

Table 7-1

Initial Settings for Database Parameters

Parameter Default Value Recommended Setting Description
JOB_QUEUE_P 1000 If you reduce this value to limit the =~ Controls the degree of parallelism
ROCESSES maximum number of job slaves in OLAP builds, as described in
running on an instance, then "Parallelism (page 7-7)"
calculate the following number of
processes for use by OLAP:
Number of CPUs, plus one
additional process for every three
CPUs; in a multi-core CPU, each
core counts as a CPU
For example,
JOB_QUEUE_PROCESSES=5 for a
four-processor computer
PARALLEL_DE MANUAL AUTOor LI M TED Controls how the degree of
GREE_POLI CY parallelism is determined
When set to AUTOor LI M TED,
Oracle determines whether a SQL
statement executes in parallel and,
if so, the degree of parallelism
used
SESSI ONS Derived 2.5 * maximum number of Provides sufficient background
simultaneous OLAP users processes for each user
UNDO_MANAGE AUTO AUTO Specifies use of an undo
MENT (NANUAL in 10g) tablespace
UNDO_TABLES Derived Name of the undo tablespace, Identifies the undo tablespace
PACE which must be defined previously defined for OLAP use, as shown in

"Creating an Undo Tablespace
(page 7-3)"

To set the system parameters:

1. Opentheinit. ora initialization file in a text editor.

2. Add or change the settings in the file, as described in Table 7-1 (page 7-2).

3. Stop and restart the database.

On Windows, use the Services utility to stop and restart Or acl eSer vi ce.

On Linux, use commands like the following. Be sure to identify the initialization
file in the STARTUP command.

SQLPLUS '/ AS SYSDBA'
SHUTDOWN | MVEDI ATE
STARTUP pfil e=$ORACLE_BASE/ admi n/orcl /pfilel/init.ora. 724200516420

7.2 Storage Management

Analytic workspaces are stored in the owner's default tablespace, unless the owner
specifies otherwise. All tablespaces for OLAP use should specify EXTENT
MANAGEMENT LOCAL. Tablespaces created using default parameters may use

7-2 User's Guide

Storage Management

resources inefficiently. You should create undo, permanent, and temporary
tablespaces that are appropriate for storing analytic workspaces.

7.2.1 Creating an Undo Tablespace

Create an undo tablespace with the EXTENT MANAGEMENT LOCAL clause, as shown in
this example:

CREATE UNDO TABLESPACE ol apundo DATAFI LE ' $ORACLE_BASE/ or adat a/ undo. dbf’
Sl ZE 64M REUSE AUTOEXTEND ON NEXT 8M
MAXSI ZE UNLI M TED EXTENT MANAGEMENT LOCAL;

After creating the undo tablespace, change your system parameter file to include the
following settings, then restart the database as described in "Setting Database
Initialization Parameters (page 7-1)".

UNDO_TABLESPACE=t abl espace
UNDO_MANAGEMENT=AUTO

7.2.2 Creating Permanent Tablespaces for OLAP Use

Each dimensional object occupies at least one extent. A fixed extent size may waste
most of the allocated space. For example, if an object is 64K and the extents are set to a
uniform size of 1M (the default), then only a small portion of the extent is used.

Create permanent tablespaces with the EXTENT MANAGEMENT LOCAL and SEGVENT
SPACE MANAGEMENT AUTOclauses, as shown in this example:

CREATE TABLESPACE gl 0 DATAFI LE ' $ORACLE_BASE/ or adat a/ gl 0. dbf "'
SI ZE 64M REUSE AUTOCEXTEND ON NEXT 8M MAXSI ZE UNLI M TED
EXTENT MANAGEMENT LOCAL SEGVENT SPACE MANAGEMENT AUTG,

7.2.3 Creating Temporary Tablespaces for OLAP Use

Oracle OLAP uses the temporary tablespace to store all changes to the data in a cube,
whether the changes are the result of a data load or data analysis. Saving the cube
moves the changes into the permanent tablespace and clears the temporary tablespace.

This usage creates numerous extents within the tablespace. A temporary tablespace
suitable for use by Oracle OLAP should specify the EXTENT MANAGEMENT LOCAL
clause and a UNI FORM SI ZE clause with a small size, as shown in this example:

CREATE TEMPORARY TABLESPACE gl ot np TEMPFI LE ' $ORACLE_BASE/ or adat a/ gl ot np. t np'
SI ZE 50M REUSE AUTCEXTEND ON NEXT 5M MAXSI ZE UNLI M TED
EXTENT MANAGEMENT LOCAL UNI FORM SI ZE 256K;

7.2.4 Spreading Data Across Storage Resources

Oracle Database provides excellent storage management tools to simplify routine
tasks. Automatic Storage Management (ASM) provides a simple storage management
interface that virtualizes database storage into disk groups. You can manage a small
set of disk groups, and ASM automates the placement of the database files within
those disk groups.

ASM spreads data evenly across all available storage resources to optimize
performance and utilization. After you add or drop disks, ASM automatically
rebalances files across the disk group.

Because OLAP is part of Oracle Database, you can use ASM to manage both relational
and dimensional data.

Administering Oracle OLAP 7-3

Dictionary Views and System Tables

ASM is highly recommended for analytic workspaces. A system managed with ASM
is faster than a file system and easier to manage than raw devices. ASM optimizes the
performance of analytic workspaces both on systems with Oracle RAC and those
without Oracle RAC.

However, you do not need ASM to use Oracle OLAP. You can still spread your data
across multiple disks, just by defining the tablespaces like in this example:

CREATE TABLESPACE gl o DATAFI LE
" di sk1/oradata/ gl ol.dbf' SIZE 64M REUSE AUTOEXTEND ON NEXT 8M MAXSI ZE 1024M
EXTENT MANAGEMENT LOCAL SEGVENT SPACE MANAGEMENT AUTO,

ALTER TABLESPACE gl o ADD DATAFI LE
" di sk2/ oradatal/ gl 02. dbf' SIZE 64M REUSE AUTCEXTEND ON NEXT 8M MAXSI ZE 1024M
"di sk3/oradatal/ gl 03. dbf' SIZE 64M REUSE AUTCEXTEND ON NEXT 8M
MAXSI ZE UNLI M TED;

7.3 Dictionary Views and System Tables

Oracle Database data dictionary views and system tables contain extensive
information about analytic workspaces.

7.3.1 Static Data Dictionary Views

Among the static views of the database data dictionary are several that provide
information about analytic workspaces. Table 7-2 (page 7-4) provides brief
descriptions of them. All data dictionary views have corresponding DBA and USER
views.

Table 7-2 Static Data Dictionary Views for OLAP

View Description
ALL_AWS Describes all analytic workspaces accessible to the current user.
ALL_AW CBJ Describes the current objects in all analytic workspaces accessible to the

current user.

ALL_AW PROP Describes the properties defined in all analytic workspaces accessible to
the current user.

ALL_AW PS Describes the page spaces currently in use by all analytic workspaces
accessible to the current user.

See Also:

* "Querying the Data Dictionary (page 4-20)" for a list of data dictionary
views that describe OLAP dimensional objects

® Oracle Database Reference for full descriptions of all data dictionary views

7.3.2 System Tables

The SYS user owns several tables associated with analytic workspaces.

7-4 User's Guide

Dictionary Views and System Tables

Note:

These tables are vital for the operation of Oracle OLAP. Do not delete them or
attempt to modify them directly without being fully aware of the
consequences.

Table 7-3 OLAP Tables Owned By SYS
- - -]

Table

Description

AV

AVBAWCREATE

AW
$AWCREATEL0G

AVEAWVD

AVEAVREPORT

AVBAVWKML

AWBEXPRESS

AW OBJ$
AW PRGS
AW PROP$
AW TRACKS

PS$

Maintains a record of all analytic workspaces in the database, recording
its name, owner, and other information.

Stores the AWCREATE analytic workspace, which contains programs for
using OLAP Catalog metadata in Oracle Database 10¢ Release 10.1.0.2
and earlier releases. It exists only for backward compatibility.

Stores the AWCREATE10Ganalytic workspace, which contains programs
for using OLAP Catalog metadata in Oracle Database 10g Release
10.1.0.3. The OLAP Catalog is not used by later releases. It exists only for
backward compatibility.

Stores the AWVD analytic workspace, which contains programs for
creating metadata catalogs.

Stores the AWREPORT analytic workspace, which contains a program
named AWREPORT for generating a summary space report.

Stores the AWKML analytic workspace, which contains programs for
creating and managing analytic workspaces for Oracle Database 10g
Release 10.1.0.4 and later.

Stores the EXPRESS analytic workspace. It contains objects and programs
that support basic operations. EXPRESS is used any time a session is
open.

Describes the objects stored in analytic workspaces.

Stores program data. Not currently used.

Stores analytic workspace object properties.

Stores tracking data about access to aggregate cells. Not currently used.

Maintains a history of all page spaces. A page space is an ordered series
of bytes equivalent to a file. Oracle OLAP manages a cache of workspace
pages. Pages are read from storage in a table and written into the cache in
response to a query. The same page can be accessed by several sessions.

The information stored in PS$ enables Oracle OLAP to discard pages
that are no longer in use, and to maintain a consistent view of the data for
all users, even when the workspace is being modified during their
sessions. When changes to a workspace are saved, unused pages are
purged and the corresponding rows are deleted from PS$.

7.3.3 Analytic Workspace Tables

Analytic workspaces are stored in tables in the Oracle database. The names of these
tables always begin with AV.

Administering Oracle OLAP 7-5

Partitioned Cubes and Parallelism

For example, if the GLOBAL user creates two analytic workspaces, one named
FI NANCI ALS and the other named MARKETI NG then these tables are created in the
GLOBAL schema:

AVBFI NANCI ALS
AVBMARKETI NG

The tables store all of the object definitions and data.

7.3.4 Maintenance Logs

The first time you load data into a cube or dimension using Analytic Workspace
Manager, it creates several logs. These logs are stored in tables in the same schema as
the analytic workspace:

* Cube Build Log: Contains information about what happened during a build. Use
this log to determine whether the build produced the results you were expecting,
and if not, why not. The log is continually updated whenever a cube or dimension
is refreshed, whether by Analytic Workspace Manager, the database materialized
view refresh subsystem, or a PL/SQL procedure. You can query the log at any time
to evaluate the progress of the build and to estimate the time to completion. The
default table name is CUBE_BUI LD LOG

¢ Cube Dimension Compile Log: Contains errors that occur during the validation of
the dimension hierarchies when OLAP is aggregating a cube. The default table
name is CUBE_DI MENSI ON_COWPI LE.

¢ Cube Operations Log: Contains messages and debugging information for all
OLAP engine events. The default table name is CUBE_OPERATI ONS_LOG

¢ Cube Rejected Records Log: Identifies any records that were rejected because they
did not meet the expected format. The default table name is
CUBE_REJECTED_RECORDS.

These logs enable you to track the progress of long running processes, then use the
results to profile performance characteristics. They provide information to help you
diagnose and remedy problems that may occur during development and maintenance
of a cube. They also help diagnose performance problems in querying cubes.

You can also run the SORACLE_HOME/ olap/admin/utlolaplog.sql script to create
the build log with some useful views.

The Maintenance Wizard in Analytic Workspace Manager displays the relevant rows
from these tables during every build on the Maintenance Log page. You can query the
tables directly in any SQL interface.

See Also:

DBM5_CUBE_LOGin Oracle Database PL/SQL Packages and Types Reference

7.4 Partitioned Cubes and Parallelism

7-6 User's Guide

Cubes are often partitioned to improve build and maintenance times. For information
about creating a partitioned cube, refer to "Partitioning a Cube (page 3-24)".
Partitioning and parallelism are discussed in the following topics:

* Querying Metadata for Cube Partitioning (page 7-7)

Partitioned Cubes and Parallelism

¢ Creating and Dropping Partitions (page 7-7)

¢ Parallelism (page 7-7)

7.4.1 Querying Metadata for Cube Partitioning

To discover the current partitioning, query the ALL_ CUBES data dictionary view. The
PARTI TI ON_DI MENSI ON_NAME, PARTI TI ON_HI ERARCHY_NAME, and

PARTI TI ON_LEVEL_ NAME columns display partitioning information. For example,
the following query shows that the Units Cube is partitioned on the Time dimension,
the Calendar hierarchy, and the Calendar Year level.

SELECT partition_di nension_nane, partition_hierarchy_nane,
partition_|l evel _name FROM all _cubes
VHERE owner =" GLOBAL' AND cube_name=' UNI TS_CUBE';

PARTI TI ON_DI MENSI ON_NAME PARTI TI ON_HI ERARCHY_NAME PARTI TI ON_LEVEL_NAME

TIME CALENDAR CALENDAR_YEAR

7.4.2 Creating and Dropping Partitions

The OLAP engine automatically creates and drops partitions as part of data
maintenance, as members are added and deleted from the partitioning dimension.

For example, assume that in the sample Global analytic workspace, the Units cube is
partitioned on the Time dimension, using the Calendar hierarchy, and at the Calendar
Quarter level. The OLAP engine creates a partition for each Calendar Quarter and its
children. The default top partition contains Calendar Years and all members of the
Fiscal hierarchy. If Global has three years of data, then the Units cube has 13
partitions: Four bottom partitions for each Calendar Year, plus the top partition.

A data refresh typically creates new time periods and deletes old ones. Whenever a
Calendar Quarter value is loaded into the Time dimension, a corresponding partition
is added to the cube. Whenever a Calendar Quarter value is deleted from the Time
dimension, the corresponding empty partition is deleted from the cube.

7.4.3 Parallelism

You can improve the performance of data maintenance by enabling parallel
processing. There are two levels of parallelism:

¢ Parallel job execution: Loading and aggregating the data using multiple processes.

e Parallel update: Moving the data from temporary to permanent tablespaces using
multiple processes.

This number of parallel processes is controlled by these factors:

* The number of objects that can be aggregated in parallel. Each cube and each
partition (including the top partition) can use a separate process.
You can control the number of partitions in a cube on the Partitioning tab of the
cube property sheet in Analytic Workspace Manager.

* The number of simultaneous database processes the user is authorized to run.

This number is controlled by the JOB_QUEUE_PROCESSES parameter. If you have
SYS privileges, you can obtain the current parameter setting with the following
SQL command:

Administering Oracle OLAP 7-7

Partitioned Cubes and Parallelism

7-8 User's Guide

SHOW PARAVETER JOB_QUEUE_PROCESSES

¢ For parallel update, the number of processes you allocate to the job. You can
specify the number of processes in the Maintenance Wizard of Analytic Workspace
Manager when specifying the task processing options, or on the Materialized View
tab of the cube.

® The number of processes allocated to SQL to fetch rows from the relational source
tables. When PARALLEL_DEGREE_POLI| CY is set to AUTOor LI M TED, the
database can allocate additional processes for executing SQL statements.

Suppose that a cube is partitioned on the Quarter level of Time, and the cube contains
three years of data. The cube has 3*4=12 bottom partitions, JOB_QUEUE_PROCESSES
is set to 8, and you set the parallelism option to 4 for the build. Oracle Database
processes the cube in this way when PARALLEL_DEGREE_PCLI CY is set to its default
value of MANUAL:

1. Load and build the dimensions of the cube serially using a single process.

2. Load and build the 12 bottom partitions in parallel using 4 processes. As soon as
one process finishes, another begins until all 12 are complete.
This cube could use the 8 processes allowed by JOB_QUEUE_PROCESSES, but it is
limited to 4 by the build setting.

3. Load and build the top partition.

When PARALLEL_DEGREE PQLI CY is set to AUTOor LI M TED, Oracle Database may
allocate more than the designated processes.

Example 7-1 Build Log for Global Units Cube

This example shows excerpts from CUBE_BUI LD_LOGfor a build of the Units cube
and its dimensions. Partitioning on the Calendar Year level of the Time dimension
created 10 bottom partitions for 1998 to 2007. JOB_QUEUE_PROCESSES is set to 2 and
the parallelism option is set to 2 for the build also. The log shows that Oracle Database
processed the Global in this way:

1. Processed the four dimensions serially.

2. Processed each partition of the Units cube

SLAVE_NUMBER STATUS COVMVAND BU LD_OBJECT PARTI Tl ON
0 STARTED BU LD
0 STARTED ATTACH AW RWWAI T
0 COWPLETED ATTACH AW RWWAIT
0 STARTED FREEZE
0 COWPLETED FREEZE
0 STARTED LOAD NO SYNCH TIMVE
0 S LOAD NO SYNCH TIMVE
0 S LOAD NO SYNCH PRODUCT
0 S LOAD NO SYNCH PRODUCT
0 COWPLETED LOAD NO SYNCH PRODUCT
0 STARTED COWPI LE PRODUCT
0 COWPLETED COWPI LE PRODUCT
0 STARTED COWPI LE AGGWAP UNI TS_CUBE
0 COWPLETED COWPI LE AGGVAP UNI TS_CUBE
0 STARTED COWPI LE AGGWAP PRI CE_CUBE

Partitioned Cubes and Parallelism

[=NeNelNelNeNol

PR R RPRRPRPRPRPREPRRPROO

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

11
11
11
11
11
11
11
11
11
11
11
11

COMPLETED
STARTED
COMPLETED
STARTED
COMPLETED
STARTED

COVPLETED

STARTED
STARTED
STARTED
STARTED
COMPLETED
STARTED
COMPLETED
STARTED
SQL
COMPLETED
STARTED
COMPLETED

STARTED
STARTED
COMPLETED
STARTED
COMPLETED
STARTED
SQL
COMPLETED
STARTED
COMPLETED
STARTED
COMPLETED
STARTED
COMPLETED
COMPLETED
COMPLETED
STARTED

COVPLETED

STARTED
STARTED
STARTED
COMPLETED
STARTED
COMPLETED
STARTED
COMPLETED
STARTED
COMPLETED
STARTED
COMPLETED
STARTED

COWPI LE AGGWAP PRI CE_CUBE
UPDATE/ COWM T PRODUCT
UPDATE/ COWM T PRODUCT
UPDATE/ COWM T

UPDATE/ COWM T

REATTACH AW MULTI TH

AW

REATTACH AW MULTI TH

AW

SLAVE UNI TS_CUBE
SLAVE UNI TS_CUBE
BUI LD

ATTACH AW MULTI THAW UNI TS_CUBE
ATTACH AW MULTI THAW UNI TS_CUBE

ACQUI RE UNI TS_CUBE
ACQUI RE UNI TS_CUBE
LOAD UNI TS_CUBE
LOAD UNI TS_CUBE
LOAD UNI TS_CUBE
UPDATE/ COWM T UNI TS_CUBE
UPDATE/ COWM T UNI TS_CUBE
BUI LD

ATTACH AW MULTI THAW UNI TS_CUBE
ATTACH AW MULTI THAW UNI TS_CUBE

ACQUI RE UNI TS_CUBE
ACQUI RE UNI TS_CUBE
LOAD UNI TS_CUBE
LOAD UNI TS_CUBE
LOAD UNI TS_CUBE
SOLVE UNI TS_CUBE
SOLVE UNI TS_CUBE
UPDATE/ COW T UNI TS_CUBE
UPDATE/ COW T UNI TS_CUBE
DETACH AW UNI TS_CUBE
DETACH AW UNI TS_CUBE
BUI LD

SLAVE UNI TS_CUBE
REATTACH AW MULTI TH

AW

REATTACH AW MULTI TH
AW

SLAVE UNI TS_CUBE
BUI LD

ATTACH AW MULTI THAW UNI TS_CUBE
ATTACH AW MULTI THAW UNI TS_CUBE

ACQUI RE UNI TS_CUBE
ACQUI RE UNI TS_CUBE
LOAD UNI TS_CUBE
LOAD UNI TS_CUBE
SOLVE UNI TS_CUBE
SOLVE UNI TS_CUBE
UPDATE/ COWM T UNI TS_CUBE
UPDATE/ COW T UNI TS_CUBE
DETACH AW UNI TS_CUBE

P10
P9

P10:
P10:
P10:
P10:
P10:
P10:
P10:
P10:
P10:
P10:

P1:
P1:
P1:
P1:
P1:
P1:
P1:
P1:
P1:
P1:
P1:
P1:
P1:
P1:
P1:
P1:

PO
PO
PO
PO
PO
PO
PO
PO
PO
PO
PO
PO
PO

Administering Oracle OLAP 7-9

: Cy2007
Cy2006
CY2007
CY2007
CY2007
CY2007
CY2007
CY2007
CY2007
CY2007
CY2007
CY2007

Cy1998
Cy1998
Cy1998
Cy1998
Cy1998
Cy1998
Cy1998
Cy1998
Cy1998
Cy1998
Cy1998
Cy1998
Cy1998
Cy1998
Cy1998
Cy1998

Analyzing Cubes and Dimensions

[y
[N

COMPLETED DETACH AW UNI TS_CUBE PO
COVPLETED BU LD PO
COVPLETED SLAVE UNI TS_CUBE PO
STARTED REATTACH AW RWWAI T

COVPLETED REATTACH AW RWWAI'T

STARTED ANALYZE UNI TS_CUBE
COVPLETED ANALYZE UNI TS_CUBE

STARTED THAW

COVPLETED THAW

STARTED DETACH AW

COMPLETED DETACH AW

COVPLETED BU LD

[y
o -

eNeNelelNeNelNeNeNe)

268 rows sel ected.

Oracle Database allocates the specified number of processes regardless of whether all
of them can be used simultaneously at any point in the job. For example, if your job
can use up to three processes, but you specity five, then two of the processes allocated
to your job cannot be used by it or by any other job.

If Oracle Database is installed with Real Application Clusters (Oracle RAC), then a
script submitted to the job queue is distributed across all nodes in the cluster. The
performance gains can be significant. For example, a job running on four nodes in a
cluster may run up to four times faster than the same job running on a single
computer.

7.5 Analyzing Cubes and Dimensions

7-10 User's Guide

If your application executes queries directly against a single cube, you do not need to
generate optimizer statistics for the cube. These queries are automatically optimized
within the analytic workspace.

Optimizer statistics are used to create execution plans for queries that join two cube
views or join a cube view to a table or a view of a table. They are also used for cost-
based rewrite to cube materialized views. You must generate the statistics only for
these types of queries.

To generate optimizer statistics, use the DBM5_AW STATS PL/SQL package. You can
run this package in Analytic Workspace Manager as part of a cube script, in SQL*Plus,
or in any other SQL interface. Generating the statistics does not have a significant
performance cost.

DBMS_AW STATS has the following syntax:

DBNMS_AW STATS. ANALYZE
(obj ect I'N VARCHAR?) ;

The argument can be either a cube or a dimension. Example 7-2 (page 7-10) shows a
sample script for generating statistics on the Units cube and its dimensions.

Example 7-2 Generating Statistics for the Units Cube

BEG N
DBMS_AW STATS. ANALYZE(' uni ts_cube');
DBVS_AW STATS. ANALYZE('time');
DBMS_AW STATS. ANALYZE(' cust omer') ;
DBMS_AW STATS. ANALYZE(' product');
DBMS_AW STATS. ANALYZE(' channel ') ;
END,

Monitoring Analytic Workspaces

Although you cannot view the statistics directly, you can examine the execution plans,
as described in "Viewing Execution Plans (page 4-17)".

See Also:

Oracle Database SQL Tuning Guide

7.6 Monitoring Analytic Workspaces

Oracle Database provides various tools to help you diagnose performance problems.
As an Oracle DBA, you may find these tools useful in tuning the database:

* Oracle Enterprise Manager Cloud Control (Cloud Control) is a general database
management and administration tool. In addition to facilitating basic tasks like
adding users and modifying datafiles, Cloud Control presents a graphic overview
of a database's current status. It also provides an interface to troubleshooting and
performance tuning utilities.

¢ Automatic Workload Repository collects database performance statistics and
metrics for analysis and tuning, shows the exact time spent in the database, and
saves session information.

* Automatic Database Diagnostic Monitor watches database performance statistics to
identify bottlenecks, analyze SQL statements, and offer suggestions to improve
performance.

Oracle Database also provides system views to help you diagnose performance
problems. The following topics identify views that are either specific to OLAP or
provide database information that is pertinent to OLAP.

7.6.1 Dynamic Performance Views

Each Oracle Database instance maintains fixed tables that record current database
activity. These tables collect data on internal disk structures and memory structures.
Among them are tables that collect data on Oracle OLAP.

These tables are available to users through a set of dynamic performance views. By
monitoring these views, you can detect usage trends and diagnose system bottlenecks.
Table 7-4 (page 7-11) provides a brief description of each view. Global dynamic
performance views (GV$) are also provided.

See Also:

Oracle Database Reference for full descriptions of the OLAP dynamic
performance views.

Table 7-4 OLAP Dynamic Performance Views
- |

View Description

VSAW AGGREGATE_OP Lists the aggregation operators available in analytic
workspaces.

V$AW ALLOCATE_OP Lists the allocation operators available in analytic workspaces.

Administering Oracle OLAP 7-11

Monitoring Analytic Workspaces

Table 7-4 (Cont.) OLAP Dynamic Performance Views

View Description

VSAW CALC Collects information about the use of cache space and the status
of dynamic aggregation.

V$AW LONGOPS Collects status information about SQL fetches.

V$AW SESSI ON_I NFO Collects information about each active session.

VSAW OLAP Collects information about the status of active analytic
workspaces.

Table 7-5 (page 7-12) describes some other dynamic performance views that are not
specific to OLAP, but which you may want to use when tuning your database for
OLAP.

Table 7-5 Selected Database Performance Views

View Description

VSLOG Displays log file information from the control file.

VSLOGFI LE Contains information about redo log files.

VSPGASTAT Provides PGA memory usage statistics and statistics about the

automatic PGA memory manager when
PGA_AGGREGATE_TARGET is set.

V$ROWCACHE Displays statistics for data dictionary activity. Each row
contains statistics for one data dictionary cache.

V$SYSSTAT Lists system statistics.

7.6.2 Basic Queries for Monitoring the OLAP Option

7-12 User's Guide

The following queries extract OLAP information from the data dictionary. You must
have a privileged account to query the DBA views.

More complex queries are provided in a script that you can download from the Oracle
OLAP website on the Oracle Technology Network. For descriptions of these scripts
and download instructions, refer to "OLAP DBA Scripts (page 7-14)".

7.6.2.1 Is the OLAP Option Installed in the Database?

The OLAP option is provided with Oracle Database Enterprise Edition. To verify that
the OLAP components have been installed, issue this SQL command:

SELECT conmp_nane, version, status FROM DBA REG STRY
VWHERE conp_nanme LIKE ' %0LAP% ;

COVP_NAME VERSI ON STATUS
QOLAP Anal ytic Wrkspace 12.1.0.1.0 VALI D
Oracl e OLAP APl 12.1.0.1.0 VALI D
QLAP Cat al og 12.1.0.1.0 VALI D

Monitoring Analytic Workspaces

7.6.2.2 What Analytic Workspaces Are in the Database?

The DBA_AWS view provides information about all analytic workspaces. Use the
following SQL command to get a list of names, their owners, and the version:

SELECT owner, aw_nane, aw_version FROM DBA AW;

OMER AW NAVE AW VERS| ON
SYS EXPRESS 12.0
GLOBAL GLOBAL 12.0
SYS AWCREATE 12.0
SH SH 12.0
SYS AWWD 12.0
SYS AWKML 12.0
SYS AWREPCRT 12.0
SYS AWCREATE10G 12.0
See Also:

"System Tables (page 7-4)" for descriptions of the analytic workspaces owned
by SYS.

7.6.2.3 How Big Is the Analytic Workspace?

To find out the size in bytes of the tablespace extents for a particular analytic
workspace, use the following SQL statements, replacing GLOBAL with the name of
your analytic workspace.

SELECT extnum SUM dbns_| ob. get| engt h(awl ob)) bytes FROM gl obal . awgl obal
GROUP BY extnum

EXTNUM BYTES

0 191776956

To see the size of the LOB table containing an analytic workspace, use a SQL
command like the following, replacing GLOBAL. AWBGLOBAL with the qualified name
of your analytic workspace.

SELECT ROUND(SUM dbns_| ob. get | engt h(aw ob)) /1024, 0) kb
FROM gl obal . aw$gl obal ;

187282

7.6.2.4 When Were the Analytic Workspaces Created?

The DBA_OBJECTS view provides the creation date of the objects in your database.
The following SQL command generates an easily readable report for analytic
workspaces.

SELECT owner, object_nane, created, status FROM dba_objects
WHERE obj ect _nane LIKE ' AWs% AND obj ect _nane! =" AW’
GROUP BY owner, object_name, created, status
ORDER BY owner, object_nane;

OMNER OBJECT_NAME CREATED STATUS

Administering Oracle OLAP 7-13

Monitoring Analytic Workspaces

GLOBAL AVSGLOBAL

SYS AVWSAWCREATE
SYS AVWSAWCREATEL0G
SYS AVEAWVD

SYS AVWSAVWREPORT
SYS AVBAVKML

SYS AWSEXPRESS

7 rows sel ected.

7.6.3 OLAP DBA Scripts

You can download a file that contains several SQL scripts from the Oracle OLAP
website on the Oracle Technology Network. These scripts typically extract information
from two or more system views and generate a report that may be useful in
monitoring and tuning a database. To download the file, use this URL:

7-14 User's Guide

20-
20-
20-
20-
20-
20-

http://ww. oracl e. com t echnet wor k/ dat abase/ opti ons/ ol ap/ ol ap-
dba-scri pt s- 393636. zi p

Table 7-6 (page 7-14) describes these scripts. For more information, refer to the
READIVE file provided with the scripts.

Table 7-6 OLAP DBA Scripts

SQL Script

Description

aw_obj ects_in_cache

aw reads_writes

aw_si ze

aw_t abl espaces

aw_users

aw_wait_events

buf fer _cache_hits

cursor_paraneters

ol ap_pga_per f or nance

ol ap_pga_use

sessi on_resources

shared_pool _hits

Identifies the objects in the buffer cache that are related to
analytic workspaces.

Tallies the reads from temporary and permanent tablespaces,
the writes to cache, and the rows processed in analytic
workspaces.

Displays the amount of disk space used by each analytic
workspace.

Provides extensive information about the tablespaces used by
analytic workspaces.

Identifies the users of analytic workspaces.

Describes the wait events experienced by users of analytic
workspaces over the previous hour.

Calculates the buffer cache hit ratio.

Indicates whether the database parameters that limit the
number of open cursors are set too low.

Determines how much PGA is in use, the size of the OLAP
page pool, and the hit/miss ratio for OLAP pages for each user.

Determines how much PGA is consumed by the OLAP page
pool to perform operations on analytic workspaces.

Identifies the use of cursors, PGA, and UGA for each open
session.

Calculates the shared pool hit ratio.

http://www.oracle.com/technetwork/database/options/olap/olap-dba-scripts-393636.zip
http://www.oracle.com/technetwork/database/options/olap/olap-dba-scripts-393636.zip

About Backing Up and Recovering Analytic Workspaces

7.6.4 Scripts for Monitoring Performance

Several of the scripts listed in "OLAP DBA Scripts (page 7-14)" provide detailed
information about the use of memory and other database resources by OLAP sessions.
You can use these scripts as is, or you can use them as the starting point for

developing your own scripts.

Example 7-3 (page 7-15) shows the information returned by the
sessi on_r esour ces script. It lists the use of resources such as cursors, PGA, and

UGA.

Example 7-3 Querying Session Resources

@essi on_resour ces

9 rows selected.

7.6.5 Monitoring Disk Space

opened cursors cumul ative
opened cursors current

cursor cache count
cursor cache hits

session
session
session
session
session
session
session

pga Menory max
stored procedure space

uga nenory mx

432
5356368
10468176
0
4230692
7049780

Several of the scripts listed in "OLAP DBA Scripts (page 7-14)" provide detailed
information about the use of disk space by analytic workspaces. Example 7-4

(page 7-15) shows the information returned by the aw_si ze script. It lists all of the
analytic workspaces in the database, the disk space they consume, and the tablespaces
in which they are stored.

Example 7-4 Querying the Use of Disk Space By Analytic Workspaces

@w_si ze

Anal ytic Wrkspace

MB Tabl espace

GLOBAL. GLOBAL
SYS. AWCREATE
SYS. AWCREATE10G
SYS. AWVD

SYS. AWVREPORT
SYS. AWKML

SYS. EXPRESS

Total Disk:

7 rows sel ected.

7.7 About Backing Up and Recovering Analytic Workspaces

You can backup and recover analytic workspaces using the same tools and procedures
as the rest of your database.

Administering Oracle OLAP 7-15

About Copying Analytic Workspaces

Oracle Recovery Manager (RMAN) is a powerful tool that simplifies, automates, and
improves the performance of backup and recovery operations. RMAN enables one
time backup configuration, automatic management of backups, and archived logs
based on a user-specified recovery window, restartable backups and restores, and test
restore/recovery.

RMAN implements a recovery window to control when backups expire. This lets you
establish a period during which it is possible to discover logical errors and fix the
affected objects by doing a database or tablespace point-in-time recovery. RMAN also
automatically expires backups that are no longer required to restore the database to a
point-in-time within the recovery window. Control file auto backup also allows for
restoring or recovering a database, even when an RMAN repository is not available.

7.8 About Copying Analytic Workspaces

You can copy analytic workspaces in several different ways, either to replicate them
on another computer or to back them up.

* Data Pump. Analytic workspaces are copied with the other objects in a schema or
database export. Use the expdp/i npdp database utilities.

Tip:
Verify that the target schema of an import has the OLAP_XS_ADMIN

privilege. Otherwise, the analytic workspace will not be created with the
necessary permissions.

¢ Transportable Tablespaces. Analytic workspaces are copied with the other objects
to a transportable tablespace. However, you can only transport the tablespace to
the same platform (for example, from Linux to Linux, Solaris to Solaris, or
Windows to Windows) because the OLAP DECI MAL data type is hardware
dependent. Use the expdp/i mpdp database utilities. Transportable tablespaces are
much faster than dump files.

The owner of an analytic workspace can export the schema to a dump file. Only users
with the EXP_FULL_DATABASE privilege or a privileged user (such as SYS or a user
with the DBArole) can export the full database or create a transportable tablespace.

See Also:

* "Saving and Re-Creating Dimensional Objects with Object Definitions
(page 3-40)" for information about XML templates

® Oracle Database Utilities for information about Oracle Data Pump and the
expdp/i npdp commands

7.9 About Saving Dimensional Object Definitions

7-16 User's Guide

You can save object definitions in an external file for transferring them to another
database or saving a backup copy. You can also save objects definitions to a table to
make them available in the Oracle Database. You can save the definitions either in an
XML template or in an EIF file. Both files are platform independent.

About Saving Dimensional Object Definitions

7.9.1 About XML Templates

Templates are XML documents that describe dimensional objects. You can save the
XML descriptions of all the objects in an analytic workspace or just selected objects,
and re-create them later in the same database or in a database on another computer or
platform. You can use templates to back up your work while developing a
dimensional model of your data or to distribute the design to other users.

You can save the XML definitions of the following types of objects:

* Analytic workspace: Saves all dimensional objects and all user-defined OLAP
DML programs and objects.

¢ Dimension: Saves the dimension and its levels, hierarchies, attributes, and
mappings.

e Cube: Saves the cube and its measures, calculated measures, dimensions,
mappings, and all user-defined OLAP DML programs and objects associated with
the cube.

e Measure Folder: Saves a list of the measures in the measure folder. It does not save
the objects.

Templates store metadata, not data. You can store templates in a small text file or in a
database table. When re-creating objects from a template, you must have access to the
source data.

See Also:

¢ "Saving and Re-Creating Dimensional Objects with Object Definitions
(page 3-40)"

7.9.2 About EIF Files

You can export objects in an analytic workspace to an EIF file. EIF files are specially
formatted files for copying analytic workspaces. You can use EIF files to:

¢ Backup individual analytic workspaces

e Copy an analytic workspace to another database

EIF files are upwardly compatible among releases of Oracle Database. An EIF file
saves the definitions of OLAP DML objects and optionally saves the data also. When
you create an EIF file, you can save only the data that you have permission to access.

EIF files do not save object security rules.

You can export and import EIF files for analytic workspaces. You can use EIF files at a
more granular level, such as saving just your custom programs, using the OLAP DML.

See Also:

e "Saving and Re-Creating Dimensional Objects with Object Definitions
(page 3-40)"

Administering Oracle OLAP 7-17

Cube Materialized Views

7.10 Cube Materialized Views

A cube materialized view is an Oracle OLAP cube that has been enhanced with the
capabilities of a materialized view at build time. Cube materialized views are
discussed in the following topics:

® Acquiring Information From the Data Dictionary (page 7-18)
® [Initiating a Data Refresh (page 7-19)

* Refresh Methods (page 7-20)

e Using Query Rewrite (page 7-22)

* Acquiring Additional Information About Cube Materialized Views (page 7-22)

See Also:

"Adding Materialized View Capability to a Cube (page 3-36)"

7.10.1 Acquiring Information From the Data Dictionary

7-18 User's Guide

The data dictionary contains numerous static views that provide information about
materialized views. They list cube materialized views along with all other materialized
views.

See Also:

Oracle Database Reference for complete descriptions of the data dictionary views

7.10.1.1 Identifying Cube Materialized Views

USER_MWI EW& contains a row for each materialized view owned by the current user.
The following query lists the materialized views owned by the GLOBAL user. The CB$
prefix identifies a cube materialized view.

SELECT nvi ew_nane, refresh_node "MODE", refresh_nmethod "METHOD',
| ast _refresh_date "DATE", stal eness FROM user_nvi ews;

WI EW NAMVE MCDE METHOD DATE STALENESS
CB$CUSTOMER_NMARKET DEMAND COVPLETE 20- SEP- 12 UNKNOWN
CB$CHANNEL _PRI MARY DEMAND COVPLETE 20- SEP- 12 UNKNOWN
CB$CUSTOMER_SHI PVENTS DEMAND COVPLETE 20- SEP- 12 UNKNOWN
CB$PRODUCT_PRI MARY DEMAND COVPLETE 20- SEP- 12 UNKNOWN
CB$TI ME_CALENDAR DEMAND COVPLETE 20- SEP- 12 UNKNOWN
CB$TI ME_FI SCAL DEMAND COVPLETE 20- SEP- 12 UNKNOWN
CB$UNI TS_CUBE DEMAND FORCE 20- SEP- 12 UNKNOWN

7 rows sel ected.

The example shows the cube materialized views defined by Analytic Workspace
Manager: One for each dimension hierarchy and one for each cube.

Cube Materialized Views

7.10.1.2 Identifying the Refresh Logs

Oracle Database can maintain a set of logs on the master tables for the cube
materialized views. These logs support incremental (fast) refresh of the cube. The
script generated by the Relational Schema Advisor creates a log for each fact and
dimension table to record any changes to the data. The following query lists the
materialized view logs owned by the GLOBAL user:

SELECT nmaster, |og_table FROM user_nview | ogs;

MASTER LOG TABLE
CHANNEL_DI' M M.OGS_CHANNEL_DI M

CUSTOMER DI M M.OGS_CUSTOMER DI M

PRODUCT DI M M.OGS_PRODUCT DI M

TIME_DIM M.OGS_TI ME_DI M

UNI TS_FACT M.OGS_UNI TS_FACT

7.10.2 Initiating a Data Refresh

You can initiate a data refresh of a cube materialized view in several different ways
using Analytic Workspace Manager or a PL/SQL package:

* Automatic Refresh: On the Materialized View tab for a cube, you can create a
regular schedule for the materialized view refresh subsystem, as described in
"Adding Materialized View Capability to a Cube (page 3-36)".

* Maintenance Wizard: The Maintenance Wizard is available for refreshing all cubes
and dimensions, including cube materialized views.

e DBMS_CUBE: The DBMS_CUBE PL/SQL package is available for refreshing all cubes,
cube dimensions, and cube materialized views.

e DBMS_MWI EW The DBMS_MI EWPL/SQL package contains several procedures for
use with cube materialized views.

7.10.2.1 Using DBMS_CUBE

You can use DBMS_CUBE to create and populate an analytic workspace or to maintain
any cube, including cube materialized views.

The following command initiates a complete refresh of UNI TS_CUBE, which is enabled
as a cube materialized view. It automatically refreshes any stale dimensions before
refreshing the cube.

EXECUTE dbns_cube. bui | d(' GLOBAL. UNI TS_CUBE') ;

You can determine the refresh method from USER_MI EW5, as shown in "Identifying
Cube Materialized Views (page 7-18)".

7.10.2.2 Using DBMS_MVIEW

You can use DBMS_MWI EWto refresh all types of materialized views. These refresh
procedures can be used with cube materialized views:

e REFRESHrefreshes a list of one or more materialized views.

e REFRESH_ALL_MVI EWE refreshes all materialized views that meet certain criteria.

Administering Oracle OLAP 7-19

Cube Materialized Views

7.10.3 Refresh

7-20 User's Guide

e REFRESH_DEPENDENT refreshes all materialized views that depend on a particular
master table and meet certain criteria.

Dimensions must be refreshed before the cube. An error is raised during refresh of a
cube materialized view if any of its associated dimension materialized views are stale.
The procedures in DBM5_M/I EWcan refresh multiple materialized views in one call,
but they do not guarantee the refresh order. To control the refresh order, call
DBMS_MWI EW REFRESH for the cube materialized view separately from its dimension
materialized views.

The following command initiates a refresh of the materialized view for the
CHANNEL_PRI MARY hierarchy.

EXECUTE dbns_nvi ew. r ef resh(' CBSCHANNEL_PRI MARY', ' C);

Methods

In Analytic Workspace Manager, you can specify the COVPLETE, FAST, or FORCE
methods for refreshing a cube. Two additional methods, FAST_PCT and FAST_SOLVE,
are invoked by the materialized view subsystem. They are not separate choices.

7.10.3.1 Refresh Method Descriptions

Table 7-7 (page 7-20) describes the refresh methods that are supported on cube
materialized views.

Table 7-7 Refresh Methods For Cube Materialized Views
- - - - - - -~ -

Refresh Method Description

COVPLETE Deletes and recreates the cube.

This option supports arbitrarily complex mappings from the
source tables to the cube.

FAST Loads and re-aggregates only changed values, based on the
materialized view logs or, after direct path loading, on the
ALL_SUMDELTA data dictionary view.

The source for the refresh is the incremental differences that
have been captured in the materialized view logs, rather than
the original mapped sources. These differences are used to
incrementally rebuild the cube. Only cells that are affected by
the changed values are re-aggregated.

This option supports only simple mappings for cube
materialized views, that is, where no expressions (other than
table.column), views, or aggregations occur in the query defining
the mapping.

The materialized view subsystem determines whether to
perform a FAST or a FAST_PCT refresh. See Oracle Database
Data Warehousing Guide for information about the methodology.

FAST_PCT Loads and re-aggregates data only from changed partitions.
This method works best when the source table and the cube are
partitioned on the same dimension.

FAST_PCT does not use change logs. The materialized view
subsystem determines whether to perform a FAST or a
FAST_PCT refresh. See for information about the methodology.

Cube Materialized Views

Table 7-7 (Cont.) Refresh Methods For Cube Materialized Views
___|

Refresh Method

Description

FAST_SOLVE

FORCE

Loads and re-aggregates only changed values, based on the
original mapped data source.

FAST_SOLVE is a type of refresh only for cube materialized
views. It incrementally re-aggregates the cube even when the
refresh source is the original mapped source instead of the
materialized view logs. The aggregation subsystem identifies
the differences and then incrementally re-aggregates the cube.

This option is supported for arbitrarily complex mappings from
the source tables to the cube. To discover whether a
FAST_SOLVE refresh has occurred, review the

CUBE_BUI LD_LQOGtable as shown in "Fast Solve Refreshes
(page 7-21)". Or review the LAST_REFRESH_TYPE column of
ALL_MI EW5; a FAST_SOLVE refresh appears as FAST_CS.

Loads and re-aggregates values using the best method possible.

When a COVPLETE refresh is not necessary, the materialized
view system first attempts a FAST refresh. If it cannot FAST
refresh a cube materialized view, it performs a FAST_SOLVE
refresh.

7.10.3.2 Fast Solve Refreshes

The build log lists the CLEAR LEAVES command when the FAST SCOLVE method was
used. Example 7-5 (page 7-21) shows the rows of CUBE_BUI LD_LOG concerned with

building UNI TS_CUBE.

See Also:

"Maintenance Logs (page 7-6)"

Example 7-5

Identifying a FAST SOLVE Refresh

SELECT bui | d_obj ect, status, conmand FROM cube_buil d_| og
VHERE bui | d_obj ect =" UNI TS_CUBE'
AND bui | d_i d=8;

BU LD_CBJECT STATUS

UNI TS_CUBE
UNI TS_CUBE
UNI TS_CUBE
UNI TS_CUBE
UNI TS_CUBE
UNI TS_CUBE
UNI TS_CUBE
UNI TS_CUBE
UNI TS_CUBE
UNI TS_CUBE
UNI TS_CUBE
UNI TS_CUBE
UNI TS_CUBE
UNI TS_CUBE

STARTED
COWPLETED
STARTED
COVPLETED
STARTED
COVPLETED
STARTED
COWPLETED
STARTED
COVWPLETED
STARTED
COWPLETED
STARTED
COVWPLETED

COWPI LE AGGWAP
COWPI LE AGGWAP
UPDATE

UPDATE

CLEAR LEAVES
CLEAR LEAVES
LOAD

LOAD

SOLVE

SOLVE

UPDATE

UPDATE

ANALYZE
ANALYZE

Administering Oracle OLAP 7-21

Cube Materialized Views

14 rows sel ected.

7.10.4 Using Query Rewrite

Query rewrite changes a query to select data from the materialized views instead of
calculating the result set from the master tables. The transformation is fully
transparent to the client, and requires no mention of the materialized views in the SQL
statement. In the case of cube materialized views, the query is written against the
tables or views of a star or snowflake schema, and it is transformed into a query
against a cube materialized view. This transformation can result in significant
improvements in run-time performance.

Query rewrite requires optimizer statistics on the cubes and dimensions. You can
discover whether a query is rewritten by generating and examining its execution plan.

Oracle Database uses two initialization parameters to control query rewrite:

e QUERY_REWRI TE_ENABLED: Enables or disables query rewrite globally for the
database.

e QUERY_REWRI TE_I NTEGRI TY: Determines the degree to which query rewrite
monitors the consistency of materialized views with the source data. The t r ust ed
orstal e tol erat ed settings are recommended when using rewrite to cube
materialized views.

Administration of cube materialized views is the same as any other materialized view
except that the cube materialized views must be in the same schema as the analytic
workspace. Users require the GLOBAL QUERY REWRI TE privilege to have rewrite to
materialized views that are in schemas other than their own. However, the owner can
access the materialized views from any schema without additional privileges.

See Also:

¢ "Analyzing Cubes and Dimensions (page 7-10)" for information about
optimizer statistics

¢ Viewing Execution Plans (page 4-17) for information about execution plans

® Oracle Database Reference for complete descriptions of the initialization
parameters

7.10.5 Acquiring Additional Information About Cube Materialized Views

7-22 User's Guide

Oracle Database has numerous PL/SQL packages for managing materialized views.
Cube materialized views are optimized to provide the best performance, so you have
no need to use most of these packages. Few design decisions remain for you to make.
For this reason, the TUNE_MVI EWprocedure of DBM5_ADVI SCRis disabled for cube
materialized views.

However, there are a few packages that you may find useful, as shown in Table 7-8
(page 7-23).

Cube Materialized Views

Table 7-8 PL/SQL Packages for Cube Materialized Views
- - - - |

Package Description

DBVS_METADATA Returns the metadata for an object.

DBMS_MWI EW Executes data refreshes. See "Initiating a Data Refresh
(page 7-19)".

You can use the EXPLAI N_REWRI TE and EXPLAI N_WI EW
procedures to obtain information about cube materialized
views. EXPLAI N_MVI EWis particular useful for evaluating and
explaining the FAST refresh capabilities of a cube.

DBVS_XPLAN Displays an execution plan. See "Viewing Execution Plans
(page 4-17)".

Administering Oracle OLAP 7-23

Cube Materialized Views

7-24 User's Guide

8

Security

Oracle OLAP secures your data using the standard security mechanisms of Oracle
Database.

This chapter contains the following topics:

Security of Multidimensional Data in Oracle Database (page 8-1)

Setting Object Security (page 8-3)

Creating Data Security Policies on Dimensions and Cubes (page 8-7)

Creating OLAP Data Security Roles (page 8-10)

8.1 Security of Multidimensional Data in Oracle Database

Your company's data is a valuable asset. The information must be secure, private, and
protected. Analytic data is particularly vulnerable because it is highly organized, easy
to navigate, and summarized into meaningful units of measurement.

When you use Oracle OLAP, your data is stored in the database. It has the security
benefits of Oracle Database, which leads the industry in security. You do not need to
expose the data by transferring it to a standalone database. You do not need to
administer security on a separate system. And you do not need to compromise your
data by storing it in a less secure environment than Oracle Database.

8.1.1 Security Management

Because you have just one system to administer, you do not have to replicate basic
security tasks such as these:

¢ Creating user accounts

* Creating and administering rules for password protection
® Securing network connections

¢ Detecting and eliminating security vulnerabilities

® Safeguarding the system from intruders

The cornerstone of data security is the administration of user accounts and roles. Users
open a connection with Oracle Database with a user name and password, and they
have access to both dimensional and relational objects in the same session.

Security 8-1

Security of Multidimensional Data in Oracle Database

8.1.2 Types of Security

Users by default have no access rights to an analytic workspace or any other data type
in another user's schema. The owner or an administrator must grant them, or a role to
which they belong, any access privileges.

Oracle OLAP provides two types of security: Object security and data security.

Object security provides access to dimensional objects. You must set object
security before other users can access them. Object security is implemented using
SQL GRANT and REVOKE.

Data security provides fine-grained control of the data on a cellular level. This type
of security is optional. You must define data security policies only when you want
to restrict access to specific areas of a cube. Data security is implemented using
Oracle Real Application Security.

Note:

Only the owner of a schema can create data security policies and OLAP data
security roles. The data security policies and OLAP data security roles apply
only to objects in the schema.

You can administer both data security and object security in Analytic Workspace
Manager. For object security, you also have the option of using SQL GRANT and
REVCKE.

8.1.3 About the Privileges

Using both object security and data security, you can grant and revoke the following
privileges:

Alter: Change the definition of a cube or dimension. Users need this privilege to
create and modify a dimensional model.

Delete: Remove old dimension members. Users need this privilege to refresh a
dimension.

Insert: Add new dimension members. Users need this privilege to refresh a
dimension.

Select: Query the cube or dimension. Users need this privilege to query a view of
the cube or dimension or to use the CUBE_TABLE function. CUBE_TABLE is a SQL
function that returns the values of a dimensional object.

Update: Change the data values of a cube or the name of a dimension member.
Users need this privilege to refresh a dimension or cube.

Users exercise these privileges either by using Analytic Workspace Manager to create
and administer dimensional objects, or by using SQL to query them. They do not issue
commands such as SQL | NSERT and UPDATE directly on the cubes and dimensions.

8.1.4 Layered Security

For dimensional objects, you can manage security at these levels:

8-2 User's Guide

Setting Object Security

¢ Dimension member
e Dimension

e Cube

* Analytic workspace
e View

e Materialized view

The privileges are layered so that, for example, a user with SELECT data security on
Software products must also have SELECT object security on the PRODUCT dimension
and the Global analytic workspace. Users also need SELECT privileges on the views of
the dimensional objects.

You administer security on views and materialized views for dimensional objects the
same way as for any other views and materialized views in the database.

8.2 Setting Object Security

You can use either SQL or Analytic Workspace Manager to set object security. The
results are identical. These following topics describe these methods.

e Using SQL to Set Object Security (page 8-3)

¢ Using Analytic Workspace Manager to Set Object Security (page 8-5)

8.2.1 Using SQL to Set Object Security

You can set and revoke object privileges on dimensional objects using the SQL GRANT
and REVOKE commands.

8.2.1.1 Setting Object Security on an Analytic Workspace

Object privileges on an analytic workspace simply open the container. You must grant
object privileges on the cubes and dimensions for users to be able to access them. The
table name is the same as the analytic workspace name, with the addition of an AW}
prefix.

The following command enables Scott to attach the Global analytic workspace, AW
$E.OBAL, to a session:

GRANT SELECT ON aw$gl obal TO scott;

8.2.1.2 Setting Object Security on Dimensions

You can grant privileges on individual dimensions to enable users to query the
dimension members and attributes. For users to query a cube, they must have
privileges on every dimension of the cube.

The privileges apply to the entire dimension. However, you can set fine-grained access
on a dimension to restrict the privileges, as described in "Creating Data Security
Policies on Dimensions and Cubes (page 8-7)".

Example 8-1 (page 8-4) shows the SQL commands that enable Scott to query the
Product dimension. They give Scott SELECT privileges on the Product dimension, on
the Global analytic workspace, and on the Product view.

Security 8-3

Setting Object Security

Example 8-1 Privileges to Query the Product Dimension

GRANT SELECT ON product TO scott;
GRANT SELECT ON aw$gl obal TO scott;
GRANT SELECT ON product _view TO scott;

8.2.1.3 Setting Object Security on Cubes

Privileges on cubes enable users to access business measures and perform analysis.
You must also grant privileges on each of the dimensions of the cube.

The privileges apply to the entire cube. However, you can create a data security policy
on the cube or on its dimensions to restrict the privileges, as described in "Creating
Data Security Policies on Dimensions and Cubes (page 8-7)".

Example 8-2 Privileges to Query the Units Cube

This example shows the SQL commands that enable Scott to query the Units cube.
They give Scott SELECT privileges on the Global analytic workspace, the cube, and all
of its dimensions. Scott also gets privileges on the dimension views so that he can
query the dimension attributes for formatted reports.

[* Grant privileges on the analytic workspace */
GRANT SELECT ON gl obal . aw$gl obal TO scott;

[* Gant privileges on the cube */
GRANT SELECT ON gl obal . units_cube TO scott;

[* Grant privileges on the dinensions */

GRANT SELECT ON gl obal . channel TO scott;

GRANT SELECT ON gl obal . cust oner TO scott;
GRANT SELECT ON gl obal . product TO scott;

GRANT SELECT ON gl obal .time TO scott;

[* Grant privileges on the cube, dinension, and hierarchy views */
GRANT SELECT ON gl obal . units_cube_vi ew TO scott;

GRANT SELECT ON gl obal . channel _vi ew TO scott;

GRANT SELECT ON gl obal . channel _primary_view TO scott;
GRANT SELECT ON gl obal . cust oner _vi ew TO scott;

GRANT SELECT ON gl obal . cust oner _shi pment s_vi ew TO scott;
GRANT SELECT ON gl obal . cust oner _segment s_vi ew TO scott;
GRANT SELECT ON gl obal . product _vi ew TO scott;

GRANT SELECT ON gl obal . product _primary_view TO scott;
GRANT SELECT ON gl obal . time_view TO scott;

GRANT SELECT ON gl obal . time_cal endar _view TO scott;
GRANT SELECT ON gl obal . time_fiscal view TO scott;

Example 8-3 Privileges to Use Cube Materialized Views for Query Rewrite

This example shows the SQL commands that give SCOTT the privileges to query the
relational tables for the detail level data and to use query rewrite to obtain summary
data from the Units cube.

[* Grant privileges on materialized views using query rewite */
GRANT GLOBAL QUERY REWRI TE TO scott;

[* Grant privileges on the relational source tables */
GRANT SELECT ON gl obal . channel _di m TO scott;

GRANT SELECT ON gl obal . cust oner _di m TO scott;

GRANT SELECT ON gl obal . product _di m TO scott;

GRANT SELECT ON gl obal . time_di m TO scott;

GRANT SELECT ON gl obal . units_fact TO scott;

8-4 User's Guide

Setting Object Security

[* Grant privileges

on the anal ytic workspace */

GRANT SELECT ON gl obal . aw$gl obal TO scott;

[* Grant privileges

on the cube */

GRANT SELECT ON gl obal . units_cube TO scott;

[* Grant privileges

on the di mensions */

GRANT SELECT ON gl obal . channel TO scott;
GRANT SELECT ON gl obal . cust oner TO scott;
GRANT SELECT ON gl obal . product TO scott;
GRANT SELECT ON gl obal .time TO scott;

Example 8-4 Privileges to Modify and Refresh GLOBAL

This example shows the SQL commands that give SCOTT the privileges to modify and
update all dimensional objects in G_LOBAL using Analytic Workspace Manager.

Note:
The GRANT

ALL commands encompass more privileges than those discussed

in Security (page 1-2). Be sure to review the list of privileges before using
GRANT ALL.

[* Grant privilege to use Analytic Wrkspace Manager */
GRANT OLAP_USER TO scott;

[* Grant privileges
GRANT ALL ON gl obal .

[* Grant privileges
GRANT ALL ON gl obal .
GRANT ALL ON gl obal .

[* Grant privileges
GRANT ALL ON gl obal
GRANT ALL ON gl obal
GRANT ALL ON gl obal
GRANT ALL ON gl obal

on the anal ytic workspace */
aw$gl obal TO scott;

on the cubes */
units_cube TO scott;
price_cost_cube TO scott;

on the dimensions */

.channel TO scott;
.customer TO scott;
. product TO scott;
.time TO scott;

8.2.2 Using Analytic Workspace Manager to Set Object Security

Analytic Workspace Manager provides a graphical interface for setting object security.
It also displays the SQL commands, so that you can cut-and-paste them into a script.

8.2.2.1 Setting Object Security on an Analytic Workspace

Take these steps to set object security on an analytic workspace in Analytic Workspace

Manager:

1. In the navigation tree, right-click the analytic workspace and select Set Analytic
Workspace Object Security.

The Set Analytic Workspace Object Security dialog box appears.

2. Complete the dialog box, then click OK.

Click Help for specific information about the choices.

Security 8-5

Setting Object Security

3. Grant privileges on one or more cubes and their dimensions.

Privileges on the analytic workspace do not automatically extend to the cubes and
dimensions contained in the analytic workspace.

Figure 8-1 (page 8-6) shows the SELECT privilege on GLOBAL granted to PUBLI C.

Figure 8-1 Setting Object Security on GLOBAL

Schema: GLOBAL
Analytic Workspace Mame: |CLOBAL v|
User or Role: [PuBLIC -

Grant or revoke privileges by moving the available privileges toffrom the selected privileges

[with Grant Option

Avajlable Privileges Selected Privileges:

UPDATE
DELETE
ALTER

all=¥y

$QL Commands:
GRANT SELECT OM GLOBAL AWSCLOBAL TO PLBLIC

sl

8.2.2.2 Setting Object Security on Dimensions

Take these steps to set object security on dimensions in Analytic Workspace Manager:

1. In the navigation tree, right-click any dimension and select Set Dimension Object
Security.

The Set Dimension Object Security dialog box appears.
2. Complete the dialog box, then click OK.

You can set privileges on all of the dimensions simultaneously. You can extend the
privileges to the dimension and hierarchy views and to the analytic workspace.
Click Help for specific information about the choices.

Figure 8-2 (page 8-7) shows the SELECT privilege on all dimensions granted to
PUBLI C.

8-6 User's Guide

Creating Data Security Policies on Dimensions and Cubes

Figure 8-2 Setting Object Security on Dimensions

Schema: GLOBAL
Dimension Name: |<AII Dimensions> b |
User or Role [puBLIC M|

PUBLIC Privieges On Analytic Vorkspace GLOBAL: Mone

|Z| Extend the select priviege to the dimension and hierarchy views

[] Extend all dimension privileges to the analytic workspace GLOBAL

[] with Grant Option

Grant or revoke privieges by moving the available privieges to/from the selected privieges

Available Privileges: Selected Privileges:

UPDATE
DELETE
ALTER

8l]¥lv]

SQL Commands:

GRANT SELECT ON GLOBAL CUSTOMER_MARKET_VIEW TO PUBLIC
GRANT SELECT ON GLOBAL PRODUCT TO PUBLIC

GRANT SELECT ON GLOBAL PRODUCT_VIEW TO PUBLIC

GRANT SELECT ON GLOBAL PRODUCT_PRIMARY_WIEW TO PUBLIC —i
GRANT SELECT ON GLOBAL.TIME TO PUBLIC

GRANT SELECT ON GLOBAL. TIME_VIEW TO PUBLIC

GRANT SELECT ON GLOBAL TIME_CALENDAR_VIEW TO PUBLIC
GRANT SELECT ON GLOBAL TIME_FISCAL_WIEW TO PUBLIC

JT s

8.

2.2.3 Setting Object Security on Cubes

Before setting object security on a cube, set object security on the dimensions that the
cube uses. Take these steps to set object security on cubes in Analytic Workspace
Manager:

1.

In the navigation tree, right-click any cube and select Set Cube Object Security.
The Set Cube Object Security dialog box appears.
Complete the dialog box, then click OK.

You can set privileges on all of the cubes simultaneously. You can extend the
privileges to the cube views and to the analytic workspace. Click Help for specific
information about the choices.

8.3 Creating Data Security Policies on Dimensions and Cubes

Data security policies enable you to grant database users and roles privileges on a
selection of dimension members. For example, you might restrict district sales
managers to the data for just their own districts instead of all geographic areas. You
can create a data security policy on dimensions, cubes, or both:

Only the owner of a schema can create data security policies for dimensions and
cubes in the schema.

When you create a data security policy on a dimension, the policy extends to all
cubes with that dimension. You do not need to re-create the policy for each cube.

When you create a data security policy on a cube, you select the members for each
dimension of the cube. The policy only applies to that cube.

Security 8-7

Creating Data Security Policies on Dimensions and Cubes

8-8 User's Guide

* When you create data security policies on both dimensions and cubes, users have
privileges on the most narrowly defined portion of the data, where the policies
overlap.

Granting Data Privileges

You can apply a policy to one or more database users and roles. You can also apply a
policy to an OLAP data security role. An OLAP data security role is a group of
database users and roles that you can manage in Analytic Workspace Manager just for
use in security policies. You create OLAP data security roles and data security policies
in Analytic Workspace Manager.

Selecting Data By Criteria

When defining a data security policy, you can select specific dimension members or
those that meet certain criteria based on the dimension hierarchy. By using criteria
instead of hard-coding specific dimension members, the selection remains valid after a
data refresh. You do not need to modify the selection after adding members. For
example, a security policy that grants SELECT privileges to all Hardware products
remains valid when old products are rolled off and new products are added to the
PRODUCT dimension.

Note:

You must have the OLAP_XS_ADM Nrole to manage data security policies in
Analytic Workspace Manager.

To create a data security policy:
1. Expand the folder for a dimension or a cube.

2. Right-click Data Security and select Create Data Security Policy.
The Create Data Security Policy dialog box appears.

3. On the General tab, enter a descriptive name in the Data Security Policy Name
field.

4. Optional: Enter a description in the Description field.

5. For a dimension, select the method you want to use to select the viewable
dimension members, either Member Selection or OLAP DML Expression. The
related tab becomes active.

For a cube, the method is Member Selection.

6. Click Add Users or Roles.
The Add Users or Roles dialog box appears.

7. Select the database users and roles and the OLAP data security role to use this
policy. Then click OK to close the dialog box.

The selected database users and roles and OLAP data security role are now listed
in the table on the General tab.

8. Select the permissions you want to grant to each user or role. You cannot assign
permissions to the OLAP data security role because the permissions are part of its
definition.

Creating Data Security Policies on Dimensions and Cubes

9. For a cube, complete the Member Selection tab.

For a dimension, complete the Member Selection tab or the OLAP DML
Expression tab, depending on the previously selected method.

10. Click Create to save the data security policy.

The data security policy appears in the navigation tree in the Data Security folder
for the dimension or cube.

11. Grant these users and roles object privileges on the dimension or cube, and on the
analytic workspace.

See Also:

® "Setting Object Security on an Analytic Workspace (page 8-5)"
* "Setting Object Security on Dimensions (page 8-6)"
¢ '"Setting Object Security on Cubes (page 8-7)"

e "Creating OLAP Data Security Roles (page 8-10)"

Figure 8-3 (page 8-9) shows the Member Selection tab of the data security policy for
PRODUCT. Users who have privileges on the PRODUCT dimension based on this policy
have access to all Hardware products. They do not have access to Software products
or Total Product.

Figure 8-3 Restricting Product to Hardware and Descendants

((General | Member Selection | BLAEGIEEeaa0y |

N} From: |'Primary’ higrarchy "
Awailable: Selected:
Members | Conditions Steps || Members
[EHZ= Hierarchy [1. Start with ¥ Hardware
%7 Descendants of Hardware [2. add S Descendants of Hardwear
T TOTAL
«
] B [T»

Condition Expression:

GLOBAL.PRODUCT DIM_KET IN (HRD') OR *HRD' = HIER_AMCESTORMWITHIN —
GLOBAL.PRODUCT PRIMARY LEVEL GLOBAL PRODUCT.CLASS)

Show Condition

Disabling and Enabling Data Security

When you create a data security policy, Oracle OLAP enables data security for the
dimension or cube. You can disable data security for a dimension or a cube. You can
then enable data security for the object again.

Security 8-9

Creating OLAP Data Security Roles

To disable or enable data security:
1. Expand the folder for a dimension or a cube.

2. Right-click Data Security and select Disable Data for Object or Enable Data for
Object.

The Disable Confirmation dialog box or the Enable Confirmation dialog box
appears.

3. Click Yes.

8.4 Creating OLAP Data Security Roles

8-10 User's Guide

You can create OLAP data security roles to manage a group of users to whom you
want to assign the same data access permissions. You can then use the data security
role when managing your data security policies, instead of defining the privileges of
each individual user. OLAP data security roles are like database roles except they only
function within the context of OLAP data security, and they can be created by a user
with less powerful database privileges. Only the owner of a schema can create data
security roles in the schema.

Note:

You must have the OLAP_XS_ADM Nprivilege to manage data security
policies in Analytic Workspace Manager.

To create an OLAP data security role:

1. In the navigation tree, right-click Data Security Roles and then select Create Data
Security Role.

The Create Data Security Role dialog box appears.
2. On the General tab, enter a descriptive name in the Data Security Role Name field.
3. Optional: Enter a description in the Description field.
4. Click Add Users or Roles.

The Add Users or Roles dialog box appears.

5. Select the users and roles that you want to include in this OLAP data security role.
Then click OK to close this dialog box.

The selected users and roles are now listed in the table on the General tab.
6. Select the permissions you want to grant to each user or role.
7. Click Create to save the OLAP data security role.

The new OLAP data security role appears in the navigation tree in the Data
Security Roles folder.

Creating OLAP Data Security Roles

See Also:

¢ "Creating Data Security Policies on Dimensions and Cubes (page 8-7)"

Security 8-11

Creating OLAP Data Security Roles

8-12 User's Guide

9

Advanced Aggregations

A cube always returns summary data to a query as needed. While the cube may store
data at the day level, for example, it can return a result at the quarter or year level
without requiring a calculation in the query. This chapter explains how to optimize the
unique aggregation subsystem of Oracle OLAP to provide the best performance for
both data maintenance and querying.

This chapter contains the following topics:

e What Is Aggregation? (page 9-1)

¢ Aggregation Operators (page 9-3)

* When Does Aggregation Order Matter? (page 9-4)

¢ Example: Aggregating the Units Cube (page 9-6)

9.1 What Is Aggregation?

Aggregation is the process of consolidating multiple values into a single value. For
example, data can be collected on a daily basis and aggregated into a value for the
week, the weekly data can be aggregated into a value for the month, and so on.
Aggregation allows patterns in the data to emerge, and these patterns are the basis for
analysis and decision making. When you define a data model with hierarchical
dimensions, you are providing the framework in which aggregate data can be
calculated.

Aggregation is frequently called summarization, and aggregate data is called
summary data. While the most frequently used aggregation operator is Sum, there are
many other operators, such as Average, First, Last, Minimum, and Maximum. Oracle
OLAP also supports weighted and hierarchical methods. Following are some simple
diagrams showing how the basic types of operators work. For descriptions of all the
operators, refer to "Aggregation Operators (page 9-3)" .

Figure 9-1 (page 9-2) shows a simple hierarchy with four children and one parent
value. Three of the children have values, while the fourth is empty. This empty cell has
a null or NAvalue. The Sum operator calculates a value of (2 + 4 + 6)=12 for the parent
value.

Advanced Aggregations 9-1

What Is Aggregation?

9-2 User's Guide

Figure 9-1 Summary Aggregation in a Simple Hierarchy

The Average operator calculates the average of all real data, producing an aggregate
value of ((2 + 4 + 6)/3)=4, as shown in Figure 9-2 (page 9-2).

Figure 9-2 Average Aggregation in a Simple Hierarchy

The hierarchical operators include null values in the count of cells. In Figure 9-3
(page 9-2), the Hierarchical Average operator produces an aggregate value of ((2 + 4
+6 +NA)/4)=3.

Figure 9-3 Hierarchical Average Aggregation in a Simple Hierarchy

The weighted operators use the values in another measure to generate weighted
values before performing the aggregation. Figure 9-4 (page 9-3) shows how the
simple sum of 12 in Figure 9-1 (page 9-2) changes to 20 by using weights ((3*2) + (2*4)
+ (NA*6) +(4*"NA)).

Aggregation Operators

Figure 9-4 Weighted Sum Aggregation in a Simple Hierarchy

20

N

2 4 6 NA

Weights

1 11

9.2 Aggregation Operators

Analytic workspaces provide an extensive list of aggregation methods, including
weighted, hierarchical, and weighted hierarchical methods.

9.2.1 Basic Operators

The following are descriptions of the basic aggregation operators:

* Average: Adds non-null data values, then divides the sum by the number of data
values.

¢ First Non-NA Data Value: Returns the first real data value.
e Last Non-NA Data Value: Returns the last real data value.
* Maximum: Returns the largest data value among the children of each parent.

* Minimum: Returns the smallest non-null data value among the children of each
parent.

¢ Nonadditive: Does not aggregate the data.

e Sum: Adds data values.

9.2.2 Scaled and Weighted Operators

These operators require a measure providing the weight or scale values in the same
cube. In a weight measure, an NA (null) is calculated like a 1. In a scale measure, an
NA is calculated like a O.

The weighted operators use outer joins, as described in "When Does Aggregation
Order Matter? (page 9-4)".

These are the scaled and weighted aggregation operators:

® Scaled Sum: Adds the value of a weight object to each data value, then adds the
data values.

Advanced Aggregations 9-3

When Does Aggregation Order Matter?

e Weighted Average: Multiplies each data value by a weight factor, adds the data
values, and then divides that result by the sum of the weight factors.

¢ Weighted First: Multiplies the first non-null data value by its corresponding
weight value.

¢ Weighted Last: Multiplies the last non-null data value by its corresponding weight
value.

¢ Weighted Sum: Multiplies each data value by a weight factor, then adds the data
values.

9.2.3 Hierarchical Operators

The following are descriptions of the hierarchical operators. They include all cells
identified by the hierarchy in the calculations, whether or not the cells contain data.

Hierarchical Average and the Hierarchical Weighted operators use outer joins.

* Hierarchical Average: Adds data values, then divides the sum by the number of
the children in the dimension hierarchy. Unlike Average, which counts only non-
null children, hierarchical average counts all of the children of a parent, regardless
of whether each child does or does not have a value.

* Hierarchical First Member: Returns the first data value in the hierarchy, even
when that value is null.

* Hierarchical Last Member: Returns the last data value in the hierarchy, even when
that value is null.

¢ Hierarchical Weighted Average: Multiplies non-null child data values by their
corresponding weight values, then divides the result by the sum of the weight
values. Unlike Weighted Average, Hierarchical Weighted Average includes weight
values in the denominator sum even when the corresponding child values are null.

¢ Hierarchical Weighted First: Multiplies the first data value in the hierarchy by its
corresponding weight value, even when that value is null.

* Hierarchical Weighted Last: Multiplies the last data value in the hierarchy by its
corresponding weight value, even when that value is null.

9.3 When Does Aggregation Order Matter?

9-4 User's Guide

The OLAP engine aggregates a cube across one dimension at a time. When the
aggregation operators are the same for all dimensions, the order in which they are
aggregated may or may not make a difference in the calculated aggregate values,
depending on the operator.

You should specify the order of aggregation when a cube uses multiple aggregation
methods. The only exceptions are that you can combine Sum and Weighted Sum, or
Average and Weighted Average, when the weight measure is only aggregated over
the same dimension. For example, a weight measure used to calculate weighted
averages across Customer is itself only aggregated across Customer.

The weight operators are incompressible for the specified dimension and all preceding
dimensions. For a compressed cube, you should list the weighted operators as early as
possible to minimize the number of outer joins. For example, suppose that a cube uses
Weighted Sum across Customer, and Sum across all other dimensions. Performance is
best if Customer is aggregated first.

When Does Aggregation Order Matter?

The following topics describe the ordering of aggregation operators.

Using the Same Operator for All Dimensions of a Cube (page 9-5)

Example: Mixing Aggregation Operators (page 9-6)

9.3.1 Using the Same Operator for All Dimensions of a Cube

The following information provides guidelines for when you must specify the order of
the dimensions as part of defining the aggregation rules for a cube.

9.3.1.1 Order Has No Effect

When these operators are used for all dimension of a cube, the order does not affect
the results:

Maximum

Minimum

Sum

Hierarchical First Member
Hierarchical Last Member

Hierarchical Average

9.3.1.2 Order Changes the Aggregation Results

Even when these operators are used for all dimensions of a cube, the order can affect
the results:

Average

First Non-NA Data Value
Last Non-NA Data Value
Weighted First

Weighted Last

Hierarchical Weighted First
Hierarchical Weighted Last

Scaled Sum

9.3.1.3 Order May Be Important

When the following weighted operators are used for all dimensions of a cube, the
order affects the results only if the weight measure is aggregated over multiple
dimensions:

Weighted Average
Weighted Sum

Hierarchical Weighted Average

Advanced Aggregations 9-5

Example: Aggregating the Units Cube

9.3.2 Example: Mixing Aggregation Operators

Even though you can use the Sum and Maximum operators alone without ordering
the dimensions, you cannot use them together without specifying the order. The
following figures show how they calculate different results depending on the order of
aggregation. Figure 9-5 (page 9-6) shows a cube with two dimensions. Sum is
calculated first across one dimension of the cube, then Maximum is calculated down
the other dimension.

Figure 9-5 Sum Method Followed by Maximum Method

Calculate Sum

Then Maximum

2 3 7 12

4 g 7 15

Figure 9-6 (page 9-6) shows the same cube, except Maximum is calculated first
down one dimension of the cube, then Sum is calculated across the other dimension.
The maximum value of the sums in Figure 9-5 (page 9-6) is 15, while the sum of the
maximum values in Figure 9-6 (page 9-6) is 19.

Figure 9-6 Max Method Followed by Sum Method

Then Sum -

£
g 4 4 na 4 4 na 8
B
= 1 8 6 1 8 6 | 15
[as]
I
O
= 2 3 7 2 3 7 12
(o1 }

4 8 T 4 8 T 19

9.4 Example: Aggregating the Units Cube

This example describes changes to the default aggregation of the Units cube in the
GLOBAL analytic workspace. These changes take effect in the next data refresh.

9.4.1 Selecting the Aggregation Operators and Hierarchies

9-6 User's Guide

Analytic Workspace Manager initially sets all dimensions to use the Sum operator and
aggregates all levels of all dimensions. To change these default settings, use the Rules
subtab of the Aggregation tab.

Figure 9-7 (page 9-7) shows the operators for the Units Cube. Time is now set to Last
Non-NA Data Value, and it is aggregated after the other dimensions. For operators
like First and Last, the order in which the dimensions are aggregated can change the
results.

Example: Aggregating the Units Cube

Another change is that only the Shipments hierarchy of the Customer dimension is
aggregated during data maintenance. Because the Market hierarchy is seldom queried,
to save maintenance time and storage space the Global DBA chose not to calculate

those aggregate values. However, response time is slower for queries that request
Market aggregations.

Figure 9-7 Selecting the Aggregation Operators

Rules Precompute

Order and Method
Choose an operator for each dimension

Aggregation Order and Method:

Crder |Dimension |Operator

| Bazed On
1 ST CHAMMEL Sum
2 SICUSTOMER Sum
3 SIPRODUCT SUm
Last Non-NA Data Value —

Aggregation Hierarchies
Agaregate the cube using selected hierarchies:

Y S TIME
A

B 5T CHANNEL
LA

B & CusTOMER
A HIETEN
: A MARKET
BV A PRODUCT
LT A

9.4.2 Choosing the Percentage of Precomputed Values

Analytic Workspace Manager initially chooses cost-based aggregation with 35%
precomputed values for the bottom partitions and 0% for the top partition. An
unpartitioned cube is also set to 35%. This setting means that 35% of the aggregate
values is calculated and stored during data maintenance, and 65% is calculated in
response to a query. These settings optimize data maintenance.

Increasing the materialization of the bottom partitions improves querying of both the
bottom and the top partitions. Increasing the materialization of the top partition

improves querying of the most aggregate data and any other hierarchies of the
partitioned dimension.

Figure 9-8 (page 9-7) shows the settings for the Units Cube. In this case, the Global
DBA chose to keep the top partition at 0%, and to increase the bottom partitions from
35 to 50%. This change increases maintenance costs in time and storage space, but
improves run-time performance of all partitions.

Figure 9-8 Setting Cost-Based Presummarization
rRuIes Precompute

Choose ah aggregation method:

() Cost-based aggregation (recommended for compressed cubes)

Top Fartition: EI
Eottom Partition:

(:) Level-based aggregation (required for uncompressed cubes)

Advanced Aggregations 9-7

Example: Aggregating the Units Cube

9-8 User's Guide

A

Designing a Dimensional Model

This guide uses the Global schema for its examples. This appendix explores the
business requirements of the fictitious Global Computing Company and discusses
how the design of a data model emerges from these requirements.

This appendix contains the following topics:
* (Case Study Scenario (page A-1)
¢ Identifying Required Business Facts (page A-5)

* Designing a Dimensional Model for Global Computing (page A-6)

A.1 Case Study Scenario

The fictional Global Computing Company was established in 1990. Global Computing
distributes computer hardware and software components to customers on a
worldwide basis. The Sales and Marketing department has not been meeting its
budgeted numbers. As a result, this department has been challenged to develop a
successful sales and marketing strategy.

Global Computing operates in an extremely competitive market. Competitors are
numerous, customers are especially price-sensitive, and profit margins tend to be
narrow. In order to grow profitably, Global Computing must increase sales of its most
profitable products.

Various factors in Global Computing's current business point to a decline in sales and
profits:

e Traditionally, Global Computing experiences low third-quarter sales (July through
September). However, recent sales in other quarters have also been lower than
expected. The company has experienced bursts of growth but, for no apparent
reason, has had lower first-quarter sales during the last two years as compared
with prior years.

* Global has been successful with its newest sales channel, the Internet. Although
sales within this channel are growing, overall profits are declining.

® Perhaps the most significant factor is that margins on personal computers -
previously the source of most of Global Computing's profits - are declining rapidly.

Global Computing must understand how each of these factors is affecting its business.

Current reporting is done by the IT department, which produces certain standard
reports on a monthly basis. Any ad hoc reports are handled on an as-needed basis and
are subject to the time constraints of the limited IT staff. Complaints have been
widespread within the Sales and Marketing department regarding the delayed
response to report requests. Complaints have also been numerous in the IT

Designing a Dimensional Model A-1

Case Study Scenario

department regarding analysts who change their minds frequently or ask for further
information.

The Sales and Marketing department has been struggling with a lack of timely
information about what it is selling, who is buying, and how they are buying. In a
meeting with the CIO, the VP of Sales and Marketing states, "By the time I get the
information, it is no longer useful. I am only able to get information at the end of each
month, and it does not have the details I need to do my job."

A.1.1 Reporting Requirements

When asked to be more specific about what she needs, the Vice President of Sales and
Marketing identifies the following requirements:

¢ Trended sales data for specific customers, regions, and segments.

¢ The ability to provide information and some analysis capabilities to the field sales
force. A web interface would be preferred, since the sales force is distributed
throughout the world.

® Detail regarding mail-order, phone, and email sales on a monthly and quarterly
basis, and a comparison to past time periods. Information must identify when,
how, and what is being sold by each channel.

* Margin information on products to understand the dollar contribution for each
sale.

¢ Knowledge of percent change versus the prior and year-ago period for sales, units,
and margin.

¢ The ability to perform analysis of the data by ad hoc groupings.

The CIO has discussed these requirements with his team and has concluded that a
standard reporting solution against the production order entry system would not be
flexible enough to provide the required analysis capabilities. The reporting
requirements for business analysis are so diverse that the projected cost of
development, along with the expected turnaround time for requests, would make this
solution unacceptable.

The CIO's team recommends using an analytic workspace to support analysis. The
team suggests that the Sales and Marketing department's IT group work with
Corporate IT to build an analytic workspace that meets their needs for information
analysis.

A.1.2 Business Goals

A-2 User's Guide

The development team identifies the following high-level business goals that the
project must meet:

¢ Global Computing's strategic goal is to increase company profits by increasing
sales of higher margin products and by increasing sales volume overall.

* The Sales and Marketing department objectives are to:
— Analyze industry trends and target specific market segments.

— Analyze sales channels and increase profits.

Case Study Scenario

— Identify product trends and create a strategy for developing the appropriate
channels.
A.1.3 Information Requirements

Once you have established business goals, you can determine the type of information
that helps achieve these goals. To understand how end users examine the data in the
analytic workspace, it is important to conduct extensive interviews. From interviews
with key end users, you can determine how they look at the business, and what types
of business analysis questions they want to answer.

A.1.3.1 Business Analysis Questions

Interviews with the VP of Sales and Marketing, salespeople, and market analysts at
Global Computing reveal the following business analysis questions:

e What products are profitable?
¢ Who are our customers, and what and how are they buying?

¢ What accounts are most profitable? What is the performance of each distribution
channel?

e Js there still a seasonal variance to the business?

We can examine each of these business analysis questions in detail.

What products are profitable?

This business analysis question consists of the following questions:

e What is the percent of total sales for any item, product family, or product class in
any month, quarter or year, and in any distribution channel? How does this
percent of sales differ from a year ago?

¢ What is the unit price, unit cost, and margin for each unit for any item in any
particular month? What are the price, cost, and margin trends for any item in any
month?

e What items were most profitable in any month, quarter, or year, in any distribution
channel, and in any geographic area or market segment? How did profitability
change from the prior period? What was the percent change in profitability from
the prior period?

¢ What items experienced the greatest change in profitability from the prior period?

e What items contributed the most to total profitability in any month, quarter, or
year, in any distribution channel, and in any geographic area or market segment?

¢ What items have the highest per unit margin for any particular month?

* Insummary, what are the trends?

Who are our customers, and what and how are they buying?

This business analysis question consists of the following questions:

e What were sales for any item, product family, or product class in any month,
quarter, or year?

Designing a Dimensional Model A-3

Case Study Scenario

A-4 User's Guide

What were sales for any item, product family, or product class in any distribution
channel, geographic area, or market segment?

How did sales change from the prior period? What was the percent change in sales
from the prior period?

How did sales change from a year ago? What was the percent change in sales from
a year ago?

In summary, what are the trends?

Which accounts are most profitable?

This business analysis question consists of the following questions:

Which accounts are most profitable in any month, quarter, or year, in any
distribution channel, by any item, product family, or product class?

What were sales and extended margin (gross profit) by account for any month,
quarter, or year, for any distribution channel, and for any product?

How does account profitability compare to the prior time period?

Which accounts experienced the greatest increase in sales as compared to the prior
period?

What is the percent change in sales from the prior period? Did the percent change
in profitability increase at the same rate as the percent change in sales?

In summary, what are the trends?

What is the performance of each distribution channel?

This business analysis question consists of the following questions:

What is the percent of sales to total sales for each distribution channel for any item,
product family, or product class, or for any geographic area or market segment?

What is the profitability of each distribution channel: direct sales, catalog sales, and
the Internet?

Is the newest distribution channel, the Internet, "cannibalizing" catalog sales? Are
customers simply switching ordering methods, or is the Internet distribution
channel reaching additional customers?

In summary, what are the trends?

Is there still a seasonal variance to the business?

This business analysis question consists of the following questions:

Are there identifiable seasonal sales patterns for particular items or product
families?

How do seasonal sales patterns vary by geographic location?
How do seasonal sales patterns vary by market segment?

Are there differences in seasonal sales patterns as compared to last year?

Identifying Required Business Facts

A.1.3.2 Summary of Information Requirements

By examining the types of analyses that users want to perform, we can identify the
following key requirements for analysis:

Global Computing has a strong need for profitability analysis. The company must
understand profitability by product, account, market segment, and distribution
channel. It also must understand profitability trends.

Global Computing must understand how sales vary by time of year. The company
must understand these seasonal trends by product, geographic area, market
segment, and distribution channel.

Global Computing has a need for ad hoc sales analysis. Analysis must identify
what products are sold to whom, when these products are sold, and how
customers buy these products.

The ability to perform trend analysis is important to Global Computing.

A.2 Identifying Required Business Facts

The key analysis requirements reveal the business facts that are required to support
analysis requirements at Global Computing.

These facts are ordered by time, product, customer shipment or market segment, and
distribution channel:

Sales

Units

Change in sales from prior period

Percent change in sales from prior period
Change in sales from prior year

Percent change in sales from prior year
Product share

Channel share

Market share

Extended cost

Extended margin

Extended margin change from prior period
Extended margin percent change from prior period
Units sold, change from prior period

Units sold, percent change from prior period
Units sold, change from prior year

Units sold, percent change from prior year

These facts are ordered by item and month:

Unit price
Unit cost
Margin per unit

Designing a Dimensional Model A-5

Designing a Dimensional Model for Global Computing

A.3 Designing a Dimensional Model for Global Computing

"Business Goals (page A-2)" identifies the business facts that support analysis
requirements at Global Computing. Next, we identify the dimensions, levels, and
attributes in a data model. We also identify the relationships within each dimension.
The resulting data model is used to design the Global schema, the dimensional model,
and the analytic workspace.

A.3.1 Identifying Dimensions

Four dimensions are used to organize the facts in the database:

Product shows how data varies by product.
Customer shows how data varies by customer or geographic area.
Channel shows how data varies according to each distribution channel.

Time shows how data varies over time.

A.3.2 Identifying Levels

Now that we have identified dimensions, we can identify the levels of summarization
within each dimension. Analysis requirements at Global Computing reveal that:

There are three distribution channels: Sales, Catalog, and Internet. These three
values are the lowest level of detail in the data warehouse and are grouped in the
Channel level. From the order of highest level of summarization to the lowest level
of detail, the levels are Total and Channel.

Global performs customer and geographic analysis along the line of shipments to
customers and by market segmentation. Shipments and Market are two hierarchies
in the Customer dimension. In each case, the lowest level of detail in the data
model is the Ship To location.

— When analyzing along the line of customer shipments, the levels of
summarization are (highest to lowest): Total, Region, Warehouse, and Ship To.

— When analyzing by market segmentation, the levels of summarization are
(highest to lowest): Total, Market Segment, Account, and Ship To.

The Product dimension has four levels (highest to lowest): Total, Class, Family, and
Item.

The Time dimension has four levels (highest to lowest): Total, Year, Quarter, and
Month. The dimension has two hierarchies: Calendar and Fiscal.

All dimensions have a Total level as the highest level of summarization. Adding this
highest level provides additional flexibility as application users analyze data.

A.3.3 Identifying Hierarchies

A-6 User's Guide

We can identify the hierarchies that organize the levels within each dimension. To
identify hierarchies, we group the levels in the correct order of summarization and in a
way that supports the identified types of analysis.

For the Channel and Product dimensions, Global Computing requires only one
hierarchy for each dimension. For the Customer dimension, Global Computing

Designing a Dimensional Model for Global Computing

requires two hierarchies. Analysis within the Customer dimension tends to be either
by geographic area or market segment. Therefore, we organize levels into two
hierarchies, Shipments and Segment. Analysis over time also requires two hierarchies,
a Calendar hierarchy and a Fiscal hierarchy.

A.3.4 Identifying Stored Measures

"Identifying Required Business Facts (page A-5)" lists 21 business facts that are
required to support the analysis requirements of Global Computing. Of this number,
only four facts must be acquired from the transactional database:

e Units

e Sales

Unit Price

e Unit Cost

All of the other facts can be derived from these basic facts. The derived facts can be
calculated in the analytic workspace on demand. If experience shows that some of
these derived facts are being used heavily and the calculations are putting a noticeable
load on the system, then some of these facts can be calculated and stored in the
analytic workspace as a data maintenance procedure.

Designing a Dimensional Model A-7

Designing a Dimensional Model for Global Computing

A-8 User's Guide

B

Keyboard Shortcuts

Keyboard shortcuts support accessibility in Analytic Workspace Manager. Most
shortcuts work on all platforms, but Windows provides the most reliable results for all
of them. If you use keyboard shortcuts for accessibility, then install Analytic
Workspace Manager on a Windows platform.

The keyboard shortcuts are active within particular areas of the user interface:
* Menu Bar (page B-1)

¢ Navigation Tree (page B-1)

* Property Sheets (page B-1)

* Shuttle Keys (page B-2)

* Mapping Canvas (page B-2)

B.1 Menu Bar

File menu: Alt+F
Tools menu: Alt+T

Help menu: Alt+H

B.2 Navigation Tree

To display a menu for the selected object, press Shift+F10. This is equivalent to
clicking the right mouse button.

To close the menu for a selected object, press Esc.

To expand a folder, press the Right Arrow key.

To collapse a folder, press the Left Arrow key.

To move the cursor down the tree, press the Down Arrow key.

To move the cursor up the tree, press the Up Arrow key.

To move the cursor from the navigation tree to a property sheet, press Tab.

To move the cursor from a property sheet to the navigation tree, press Shift+Tab.

B.3 Property Sheets

To move the cursor from the navigation tree to a property sheet, press Tab.
To move the cursor to the next tab, press the Right Arrow key.

To move the cursor to the previous tab, press the Left Arrow key.

Keyboard Shortcuts B-1

Shuttle Keys

To move the cursor from a property sheet to the navigation tree, press Shift+Tab.

To move the splitter between the navigation tree and a property sheet, press F8 Right
Arrow or Left Arrow.

To change a menu choice in a table, press F2 Down Arrow.

B.4 Shuttle Keys

Move all: Alt+L

Move selected: Alt+D
Remove selected: Alt+R
Remove all: Alt+O

To select multiple items, press Ctrl+Arrow, then press the spacebar.

B.5 Mapping Canvas

B-2 User's Guide

Table mapping view: Ctrl+T

Graphical mapping view: Ctrl+G
Automatically arrange mappings: Ctrl+Alt+K
Automatically map star schema: Ctrl+M

Remove all mappings: Ctrl+D

Schema Viewer Navigator:

All keyboard shortcuts for the navigation tree are available, plus the following
additions for the table view:

To copy the name of the selected column from the tree: Ctrl+C. To paste a column
name into the selected field: Ctrl+V.

To expand the width of a column: Select the header and press Alt+Right Arrow.

To reduce the width of a column: Select the header and press Alt+Left Arrow.

Glossary

additive
Describes a measure or fact that can be summarized through addition, such as a SUM
function. An additive measure is the most common type. Examples include sales, cost,
and profit.
Contrast with nonadditive.

aggregation
The process of consolidating data values into a single value. For example, sales data
could be collected on a daily basis and then be aggregated to the week level, the week
data could be aggregated to the month level, and so on. The data can then be referred
to as aggregate data.
The term aggregation is often used interchangeably with summarization, and
aggregate data is used interchangeably with summary data. However, there are a
wide range of aggregation methods available in addition to SUM

analytic workspace
A container for storing related dimensional objects, such as dimensions and cubes. An
analytic workspace is stored in a relational table.
See also cube, cube dimension.

ancestor
A dimension member at a higher level of aggregation than a particular member. For
example, in a Time dimension, the year 2007 is the ancestor of the day 06-July-07. The
member immediately above is the parent. In a dimension hierarchy, the data value of
the ancestor is the aggregated value of the data values of its descendants.
Contrast with descendant. See also hierarchy, level, parent.

attribute

A database object related to an OLAP cube dimension. An attribute stores descriptive
characteristics for all dimension members, or members of a particular hierarchy, or
only members at a particular level of a hierarchy.

When the values of an attribute are unique, they provide supplementary information
that can be used for display (such as a descriptive name) or in analysis (such as the
number of days in a time period). When the values of an attribute apply to a group of

Glossary-1

base level data

dimension members, they enable users to select data based on like characteristics. For
example, in a database representing footwear, you might use a color attribute to select
all boots, sneakers, and slippers of the same color.

See also cube dimension.

base level data

See detail data.

base measure

See measure.

calculated measure

cell

child

composite

A stored expression that executes in response to a query. For example, a calculated
measure might generate the difference in costs from the prior period by using the
LAG_VARI ANCE function on the COSTS measure. Another calculated measure might
calculate profits by subtracting the COSTS measure from the SALES measure. The
expression resolves only the values requested by the query.

See also expression, measure.

A single data value of an expression. In a dimensioned expression, a cell is identified
by one value from each of the dimensions of the expression. For example, if you have a
measure with the dimensions MONTH and CUSTOMER, then each combination of a
month and a customer identifies a separate cell of that measure.

See also cube dimension.

A dimension member that is part of a more aggregate member in a hierarchy. For
example, in a Time dimension, the month Jan-06 might be the child of the quarter
Q1-2006. A dimension member can be the child of a different parent in each hierarchy.

Contrast with parent. See also descendant, hierarchy.

A compact format for storing sparse multidimensional data. Oracle OLAP provides
two types of composites: a compressed composite for extremely sparse data, and a
regular composite for moderately sparse data.

See also dimension, sparsity.

compressed cube

Glossary-2

A cube with very sparse data that is stored in a compressed composite.

See also composite.

custom member

compression

See compressed cube.

consistent solve specification

cube

See solve specification.

An organization of measures with identical dimensions and other shared
characteristics. The edges of the cube contain the dimension members, and the body of
the cube contains the data values. For example, sales data can be organized into a cube
whose edges contain values from the Time, Product, and Customer dimensions and
whose body contains Volume Sales and Dollar Sales data.

cube dimension

A cube dimension is a dimensional object that stores a list of values. It is an index for
identifying the values of a measure. For example, if Sales data has a separate sales
figure for each month, then the data has a Time dimension that contains month values,
which organize the data by month.

In the context of multidimensional analysis, a cube dimension is called a dimension.

See also dimension.

cube materialized view

cube script

cube view

A cube that has been enhanced with materialized view capabilities. A cube
materialized view can be incrementally refreshed through the Oracle Database
materialized view subsystem, and it can serve as a target for transparent rewrite of
queries against the source tables.

Also called a cube-organized materialized view.

A sequence of steps that prepare the data for querying, such as loading and
aggregating data.

A relational view of the data stored in a cube, which can be queried by SQL. It
contains columns for the dimensions, measures, and calculated measures of the cube.

custom measure

See calculated measure.

custom member

A dimension member whose data is calculated from the values of other members of
the same dimension using the rules defined in a model.

Glossary-3

data security role

See model.

data security role

A group of users and database roles that is defined just for use in managing OLAP
security policies.

data source

A relational table, view, synonym, or other database object that provides detail data
for cubes and cube dimensions.

data warehouse

A database designed for query and analysis rather than transaction processing. A data
warehouse usually contains historical data that is derived from transaction data, but it
can include data from other sources. It separates analysis workload from transaction
workload and enables a business to consolidate data from several sources.

denormalized

Permit redundancy in a table. Contrast with normalize.

derived measure

See calculated measure.

descendant

A dimension member at a lower level of aggregation than a particular member. For
example, in a Time dimension, the day 06-July-07 is the descendant of year 2007. The
member immediately below is the child. In a dimension hierarchy, the data values of
the descendants roll up into the data values of the ancestors.

Contrast with ancestor. See also aggregation, child, hierarchy, level.

detail data

Data at the lowest level, which is acquired from another source.

Contrast with aggregation.

dimension

A structure that categorizes data. Among the most common dimensions for sales-
oriented data are Time, Geography, and Product. Most dimensions have hierarchies
and levels.

In a cube, a dimension is a list of values at all levels of aggregation.

In a relational table, a dimension is a type of object that defines hierarchical (parent-
child) relationships between pairs of column sets.

See also cube dimension, hierarchy, measure dimension.

Glossary-4

expression

dimension key

See dimension member.

dimension member

One element in the list that composes a cube dimension. For example, a Time
dimension might have dimension members for days, months, quarters, and years.

dimension table

A relational table that stores all or part of the values for a dimension in a star or
snowflake schema. Dimension tables typically contain columns for the dimension
keys, levels, and attributes.

dimension value

See dimension member.

dimension view

A relational view of a cube dimension that provides information about all members of
all hierarchies. It includes columns for the dimension keys, level, and attributes.

See also cube dimension, hierarchy view.

drill

To navigate from one item to a set of related items. Drilling typically involves
navigating up and down through the levels in a hierarchy.

Drilling down expands the view to include child values that are associated with parent
values in the hierarchy.

Drilling up collapses the list of descendant values that are associated with a parent
value in the hierarchy.

EIF file

A specially formatted file for transferring data between analytic workspaces, or for
storing versions of an analytic workspace (all of it or selected objects) outside the
database.

embedded total

A list of dimension members at all levels of a hierarchy, such that the aggregate
members (totals and subtotals) are interspersed with the detail members. For example,
a Time dimension might contain dimension members for days, months, quarters, and
years.

expression

A combination of one or more values (typically provided by a measure or a calculated
measure), operators, and functions that evaluates to a value. An expression generally
assumes the data type of its components.

Glossary-5

fact

fact

fact table

hierarchy

The following are examples of expressions, where SALES is a measure: SALES,
SALES* 1. 05, TRUNC(SALES) .

See measure.

A table in a star schema that contains factual data. A fact table typically has two types
of columns: those that contain facts and those that are foreign keys to dimension
tables. The primary key of a fact table is usually a composite key that is made up of all
of its foreign keys.

A fact table might contain either detail facts or aggregated facts. Fact tables that
contain aggregated facts are typically called summary tables or materialized views. A
fact table usually contains facts with the same level of aggregation.

See also materialized view.

A way to organize data at different levels of aggregation. Hierarchies are used to
define data aggregation; for example, in a Time dimension, a hierarchy might be used
to aggregate data from days to months to quarters to years. Hierarchies are also used
to define a navigational drill path.

In a relational table, hierarchies can be defined as part of a dimension object.

See also level-based hierarchy, ragged hierarchy, skip-level hierarchy, value-based
hierarchy.

hierarchy view

key

leaf data

level

Glossary-6

A relational view of a cube dimension that provides information about the members
that belong to a particular hierarchy. It includes columns for the dimension keys,
parents, levels of the hierarchy, and attributes.

See also cube dimension, dimension view.

A column or set of columns included in the definition of certain types of integrity
constraints. Keys describe the relationships between the different tables and columns
of a relational database.

See also dimension member.

See detail data.

A named position in a hierarchy. For example, a Time dimension might have a
hierarchy that represents data at the month, quarter, and year levels. The levels might

NA value

be named Month, Quarter, and Year. The names provide an easy way to reference a

group of dimension members at the same distance from the base.

level-based hierarchy

mapping

A hierarchy composed of levels. For example, Time is always level based with levels
such as Month, Quarter, and Year. Most hierarchies are level based.

See also value-based hierarchy.

The definition of the relationship and data flow between source and target objects. For
example, the metadata for a cube includes the mappings between each measure and
the columns of a fact table or view.

materialized view

measure

A database object that provides access to aggregate data and can be recognized by the
automatic refresh and the query rewrite subsystems.

See also cube materialized view.

Data that represents a business measure, such as sales or cost data. You can select,
display, and analyze the data in a measure. The terms measure and fact are
synonymous; measure is more commonly used in a multidimensional environment
and fact is more commonly used in a relational environment.

Measures are dimensional objects that store data, such as Volume Sales and Dollar
Sales. Measures belong to a cube.

See also calculated measure, fact, cube.

measure dimension

A dimension that has measures as dimension members.

measure folder

model

NA value

A database object that organizes and label groups of measures. Users may have access
to several schemas with measures named Sales or Costs, and measure folders provide
a way to differentiate among them.

A set of interrelated equations specified using the members of a particular dimension.
Line item dimensions often use models to calculate the values of dimension members.

See also custom member. Contrast with calculated measure.

A special data value that indicates that data is "not available” (NA) or null. It is the
value of any cell to which a specific data value has not been assigned or for which data
cannot be calculated.

Glossary-7

nonadditive

nonadditive

normalize

OLAP

OLAP DML

See also cell, sparsity.

Describes a measure or fact that cannot be summarized through addition, such as Unit
Price. Maximum is an example of a nonadditive aggregation method.

Contrast with additive.

In a relational database, the process of removing redundancy in data by separating the
data into multiple tables. Contrast with denormalized.

Online Analytical Processing. OLAP functionality is characterized by dynamic,
dimensional analysis of historical data, which supports activities such as the
following:

* Calculating across dimensions and through hierarchies
* Analyzing trends
¢ Drilling up and down through hierarchies

* Rotating to change the dimensional orientation

Contrast with OLTP.

A set of commands, functions, and options used to manage dimensional data stored in
analytic workspaces within Oracle Database.

Analytic Workspace Manager, the OLAP expression syntax, the OLAP Java API, and
various applications and PL/SQL packages enable users to access dimensional data
without using the OLAP DML directly, but those tools use the OLAP DML to
accomplish the desired tasks.

The OLAP Data Manipulation Language (DML) operates exclusively within analytic
workspaces, whose primary data structures are dimensions, variables, formulas,
relations, and valuesets. These dimensional objects in analytic workspaces support the
high-level dimensional objects in the database, such as cubes, cube dimensions,
measures, attributes, and hierarchies.

Contrast with OLAP expression syntax.

OLAP expression syntax

Glossary-8

An extension of the SQL syntax that is used to manipulate the data stored in
dimensional database objects such as cubes, cube dimensions, attributes, and
measures.

Contrast with OLAP DML.

precompute

OLTP

on the fly

Online Transaction Processing. OLTP systems are optimized for fast and reliable
transaction handling. Compared to data analysis systems, most OLTP interactions
involve a relatively small number of rows, but a larger group of tables.

Contrast with OLAP.

Calculated at run time as needed in response to a specific query. In a cube, calculated
measures and custom members are typically calculated as needed. Aggregate data can
be precomputed, calculated as needed, or a combination of the two methods.

Contrast with precompute.

override solve specification

page

page space

parent

See solve specification.

A unit for swapping data in and out of memory.

Also called a block.

A grouping of related data pages.

A dimension member immediately above a particular member in a hierarchy. In a
dimension hierarchy, the data value of the parent is the aggregated total of the data
values of its children.

Contrast with child. See also hierarchy, level.

parent-child relation

precalculate

precompute

A one-to-many relationship between one parent and one or more children in a
hierarchical dimension. For example, New York (at the state level) might be the parent
of Albany, Buffalo, Poughkeepsie, and Rochester (at the city level).

See also child, parent.

See precompute.

Calculate and store as a data maintenance procedure. In a cube, aggregate data can be
precomputed, calculated as needed, or a combination of the two methods.

Contrast with on the fly.

Glossary-9

ragged hierarchy

ragged hierarchy

A hierarchy that contains at least one member with a different base level, creating a
"ragged" base level for the hierarchy. Organization dimensions are frequently ragged.

refresh

Load new and changed values from the source tables and recompute the aggregate
values.

security role

See data security role.

skip-level hierarchy

A hierarchy that contains at least one member whose parents are multiple levels above
it, creating a hole in the hierarchy. For example, in a Geography dimension with levels
for City, State, and Country, Washington D.C. is a city that does not have a State value;
its parent is United States at the Country level.

snhowflake schema

A type of star schema in which the dimension tables are partly or fully normalized.

See also normalize, star schema.

solve specification

The aggregation method for each dimension of the cube.

solved data

A result set in which all derived data has been calculated. Data fetched from a cube is
always fully solved, because all of the data in the result set is calculated before it is
returned to the SQL-based application. The result set from the cube is the same
whether the data was precomputed or calculated as needed.

See also on the fly, precompute.

source

See data source.

sparsity

A concept that refers to multidimensional data in which a relatively high percentage of
the combinations of dimension values do not contain actual data.

There are two types of sparsity:
¢ Controlled sparsity occurs when a range of values of one or more dimensions has
no data; for example, a new measure dimensioned by Month for which you do not

have data for past months. The cells exist because you have past months in the
Month dimension, but the cells are empty.

Glossary-10

value-based hierarchy

star query

star schema

status

summary

* Random sparsity occurs when nulls are scattered throughout a measure, usually
because some combinations of dimension members never have any data. For
example, a district might only sell certain products and never have sales data for
the other products.

Some dimensions may be sparse while others are dense. For example, every time
period may have at least one data value across the other dimensions, making Time a
dense dimension. However, some products may not be sold in some cities, and may
not be available anywhere for some time periods; both Product and Geography may
be sparse dimensions.

See also composite.

A join between a fact table and several dimension tables. Each dimension table is
joined to the fact table using a primary key to foreign key join, but the dimension
tables are not joined to each other.

A relational schema whose design represents a dimensional data model. The star
schema consists of one or more fact tables and one or more dimension tables that are
related through foreign keys.

See also snowflake schema.

The list of currently accessible values for a given dimension. The status of a dimension
persists within a particular session, and does not change until it is changed
deliberately. When an analytic workspace is first attached to a session, all members are
in status.

See also cube dimension, dimension member.

See aggregation.

update window

The length of time available for loading data into a database.

value-based hierarchy

A hierarchy defined only by the parent-child relationships among dimension
members. The dimension members at a particular distance from the base level do not
form a meaningful group for analysis, so the levels are not named. For example, an
employee dimension might have a parent-child relation that identifies each
employee's supervisor. However, levels that group first-, second-, and third-level
supervisors and so forth may not be meaningful for analysis.

See also hierarchy, level-based hierarchy.

Glossary-11

A

ADVISOR privilege, 2-2
aggregate functions, 3-21
aggregation
average operator, 9-2
calculated measures, 4-15
definition, 9-1
hierarchical average operator, 9-2
over attributes, 4-14
sum operator, 9-1
weighted operators, 9-2
aggregation operators, 3-18, 4-14, 9-3
aggregation order, 9-4
aggregation percentages, 9-7
aggregation step (cube scripts), 3-33
ALL_AW_OBJ view, 7-4
ALL_AW_PROP view, 7-4
ALL_AW_PS view, 7-4
analysis tools, 1-3
analytic functions, 5-2, 5-16
Analytic Workspace Manager
configuring, 2-3, 2-5, 3-27
installing, 2-3
opening, 2-3
using, 3-2
analytic workspace security, 8-3, §-5
analytic workspaces
backing up and recovering, 7-16
creating, 3-3
database storage, 7-5
disk space consumption, 7-15
enhancing functionality, 3-4
identifying owners, 7-13
listing, 7-13
saving and re-creating, 3-40
size, 7-13
analyze step (cube scripts), 3-33
Application Express, 1-3, 6-12
arithmetic operations, 5-2
attachment modes
configuring, 2-5
selecting, 3-3

Index

attachment modes (continued)
showing, 2-5
attribute aggregation, 4-14
attributes
creating, 3-9
defined, 1-8, 3-9
authentication, 2-1
Automatic Database Diagnostic Monitor, 7-11
Automatic Storage Management, 7-3
Automatic Workload Repository, 7-11
average
cumulative, 5-13
moving, 5-12
average operator (aggregation), 9-2
average rank, 5-10
AVERAGE_RANK function, 5-17
AVG function, 3-21

B

backup and recovery, 7-16

backup options, 7-16

batch processing, 7-7

BI Publisher, 6-3

BI Suite, 1-6

bind variables, 6-1, 6-11, 6-18, 6-20
branches (Application Express), 6-17
build logs, 3-15

BusinessObjects Enterprise, 1-6

C

calculated measures
and measure dimensions, 1-7
copying and pasting, 3-42
creating, 5-3
defined, 5-1
generator, 5-3
calculation templates, 5-5, 5-6
calculations
free-form, 5-14
in queries, 4-13

nested, 5-14

Index-1

calculations (continued) Data Pump, 7-16

time ranges, 5-6 data security
changes, saving, 3-4 disabling and enabling, 8-7
character functions, 4-11 implementation, xii
clear data step (cube scripts), 3-33 policies, 8-7
CLEAR LEAVES command, 7-21 roles, 8-10
Cloud Control, 7-11 data sources
Cognos ReportNet, 1-6 database objects, 3-2
column links, 6-21 mapping, 3-12, 3-19
configuring database connections, defining, 2-4
partitioning options, 3-27 database integration, 1-1
configuring Analytic Workspace Manager database security, 2-1
for a proxy server, 2-3 DBA scripts download, 7-14
for partitioning options, 3-27 DBA_AW_OB]J view, 7-4
for plug-ins, 2-5 DBA_AW_PROP view, 7-4
for showing attachment modes, 2-5 DBA_AW_PS view, 7-4
connect string, for Analytic Workspace Manager, 2-5 DBA_AWS view, 7-13
connections, defining, 2-4 DBA_OBJECTS view, 7-13
COUNT function, 3-21 DBA_REGISTRY view, 7-12
CREATE ANY DIMENSION privilege, 2-2 DBMS_AW_STATS PL/SQL package, 7-10
CREATE ANY MATERIALIZED VIEW privilege, 2-2 DBMS_CUBE PL/SQL package, 3-32
CREATE DIMENSION privilege, 2-2 DBMS_LOB PL/SQL package, 7-13
CREATE MATERIALIZED VIEW privilege, 2-2 DBMS_METADATA PL/SQL package, 7-23
CREATE SESSION privilege, 2-2 DBMS_MVIEW PL/SQL package, 7-23
creation dates of analytic workspaces, 7-13 DBMS_SCHEDULER PL/SQL package., 3-32
CUBEJOIN, 4-16 DBMS_XPLAN PL/SQL package, 7-23
cube materialized views, 3-36, 7-18 dense rank, 5-11
CUBE SCAN operation, 4-19 dimension hierarchies
cube scripts, 3-33 See hierarchies, 1-7
cube security, 8-4 dimension object security, 8-6
cube views, 3-32,4-2 dimension order, affecting aggregation, 9-5
CUBE_TABLE function, §-2 dimension security, 8-3
CUBE_TEMPLATES table, 3-40 dimension views, 4-3
cubes dimensions
copying and pasting, 3-42 copying and pasting, 3-42
creating, 3-17 creating, 3-6
defined, 1-6, 3-17 defined, 1-7, 3-4
joining, 4-16 saving and re-creating, 3-40
mapping, 3-19 viewing members, 3-17
partitioning, 3-24 Discoverer Plus OLAP, 1-6
requirements for materialized views, 3-36 disk space consumption, 7-15
saving and re-creating, 3-40 disks, spreading data across, 7-3
cumulative calculations, 5-13 displaying data, 3-31
cursors, 1-2 drillable reports, 6-3
drilling, 4-11, 6-21
D drilling (Application Express), 6-19
dump files, 7-16
dashboard, 1-3 dynamic performance tables, 7-11
data dictionary views, 4-20, 7-4
data display, 3-17, 3-31 E
data loads, 3-15, 3-28
data maintenance, 3-32 edits, saving, 3-4
data model EIF files
description of dimensional, 1-6 about, 7-17
designing, 3-1 creating analytic workspaces from, 3-41
saving, 3-40 saving analytic workspaces to, 3-42

Index-2

end date attributes, 3-9

Enterprise Manager Cloud Control, 7-11
execution plans, 4-17
EXP_FULL_DATABASE privilege, 7-16
EXPLAIN PLAN command, 4-17
extensibility using plug-ins, 2-5
EXTENT MANAGEMENT LOCAL, 7-2

F

FAST SOLVE method, 7-21
filtering queries, 4-7
free-form calculations, 5-14
future periods, 5-8

G

generator, calculated measures, 5-3
Global Computing Company
data requirements, A-2
GLOBAL QUERY REWRITE privilege, 7-22
Global schema download, 2-1
Gregorian calendar, 5-6

H

hidden items (Application Express), 6-19
HIER_PARENT function, 5-17
hierarchical average operator (aggregation), 9-2
hierarchical operators, 9-4
hierarchical queries, 4-11
hierarchies

creating, 3-7

defined, 1-7, 3-7

level-based, 3-6

supported types, 3-7
hierarchy views, 4-4

index, 5-7

init.ora file, 7-1

initialization parameters, 7-1

installing Analytic Workspace Manager, 2-3
installing OLAP option, validation, 7-12
integration in database, 1-1

J

JOB_QUEUE_PROCESSES parameter, 7-7
joining cubes, 4-16

L

LAG function, 5-8
language support, 3-38

layout template (BI Publisher), 6-3

LEAD function, 5-8
level-based dimensions, 3-4
level-based hierarchy, 3-6
levels

creating, 3-6

defined, 1-8
load step (cube scripts), 3-33
loading data, 3-15, 3-28
localization, 3-38
login names, 2-1
LOVs (list of values), 6-9, 6-16

M

maintenance alternatives, 3-32
maintenance scripts, 3-35
Maintenance Wizard, 3-15, 3-28
mappings

cube, 3-19

dimension, 3-12
materialized views

access privileges, 7-22

creating cube, 3-36

refresh logs, 7-19
MAX function, 3-21
maximum

cumulative, 5-13

moving, 5-12
measure dimension table

mapping dimension to, 3-13
measure dimensions

aggregation method of cube, 3-18

and calculated measures, 1-7
mapping, 3-13
measure folders
creating, 3-39
saving and re-creating, 3-40
measures
copying and pasting, 3-42
creating, 3-19
defined, 1-6
MIN function, 3-21
minimum
cumulative, 5-13
moving, 5-12

moving calculations, 5-12

N

natural keys, 3-5

nested calculations, 5-14
NO_USE_CUBE hint, 4-16
normal hierarchies, 3-7

Index-3

O

object security, 8-2, 8-3, 8-5
objects

copying and pasting, 3-42

mapping, 3-12, 3-19

saving and re-creating, 3-40
OLAP data security roles, 8-10
OLAP DML

calculated measures, 5-18

expressions for data security policies, 8-8
OLAP DML step (cube scripts), 3-33
OLAP option, verifying installation, 7-12
OLAP_DBA role, 2-2
OLAP_USER role, 2-2
OLAP_XS_ADMIN role, 2-2, 8-8
optimizer statistics, 7-10
Oracle Application Express, 1-3
Oracle Business Intelligence, 1-6
Oracle Real Application Clusters, 1-3, 7-10
Oracle Real Application Security, xii, 8-2
Oracle Recovery Manager, 7-16
OracleBI Discoverer Plus OLAP, 1-6
OracleBI Spreadsheet Add-In, 1-6
OracleBI Suite Enterprise Edition, 1-6
owners of analytic workspaces, identifying, 7-13

P

page definition (Application Express), 6-15
parallel periods, 5-11
parallel processing, 7-7
parameter file, 7-2
parent-child relations, 1-8
partitioning
analyzing partition members, 3-27
benefits, 3-24
cubes, 3-24
discussed, 7-7
selecting partitions, 3-24
performance counters, 7-11
period to date, 5-9
pfile settings, 7-2
PL/SQL step (cube scripts), 3-33
plug-ins
configuring, 2-5
installing, 2-5
prior periods, 5-8
privileges, 8-2
proxy server
configuring, 2-3

Q

queries, filtering, 4-7
query rewrite, 7-22

Index-4

query tools, 1-3
QUERY_REWRITE_ENABLED parameter, 7-22
querying dimensions and cubes, 4-1

R

RAC
See Oracle Real Application Clusters
ragged hierarchies, 3-7
rank, 5-10
Real Application Clusters
See Oracle Real Application Clusters
refresh logs, 7-19
refresh methods, 7-19, 7-20
Relational Schema Advisor, 3-37, 7-19
report entry (BI Publisher), 6-3
report layout (BI Publisher), 6-8
reports, 6-3
RMAN, 7-16

S

sample schema download, 2-1
saving

analytic workspaces to EIF files, 3-42

objects

to XML Templates, 3-41

scaled operators, 9-3
scheduling maintenance, 7-7
security

about, 8-1

data, 8-2

materialized views, 7-22

object, 8-5

See also data security

server parameter file, 7-2
SESSIONS parameter, 7-2
share, 5-10
single-row functions, 5-2
size of analytic workspace, 7-13
skip-level hierarchies, 3-7
source data, 3-2
Spreadsheet Add-In, 1-6
static data dictionary views, 4-20, 7-4
step types, 3-33
SUM function, 3-21
sum operator (aggregation), 9-1
surrogate keys, 3-5
system tables, 7-4

T

tablespaces, 7-2
templates
BI Publisher, 6-5

calculation, 5-5

templates (continued)
creating XML, 3-40
saving object definitions to, 3-41
time dimensions, 3-6
time ranges in calculations, 5-6
time span attributes, 3-9
total
cumulative, 5-13
moving, 5-12
transportable tablespaces, 7-16

U

unique key attributes, 3-10
upgrading metadata, 2-6

USE_CUBE hint, 4-16

user names, 2-1

USER_AW_OB]J view, 7-4
USER_AW_PROP view, 7-4
USER_AW_PS view, 7-4
USER_CUBE_DIM_VIEWS view, 4-4

USER_CUBE_VIEW_COLUMNS view, 4-2

USER_MVIEWS view, 7-18

\%

value-based dimensions, 3-4
value-based hierarchies, 3-8

w

weighted operators, 9-3
weighted sum (aggregation), 9-2
WHERE clause operations, 4-10

X

XML templates
about, 7-17
creating objects from, 3-40
saving object definitions to, 3-41

Index-5

Index-6

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle OLAP User's Guide
	Changes in Oracle Database 12c Release 2 (12.2)
	Changes in Oracle Database 12c Release 1 (12.1)
	New Features
	Desupported Features
	Other Changes

	1 Overview
	1.1 OLAP Technology in the Oracle Database
	1.1.1 Full Integration of Multidimensional Technology
	1.1.2 Ease of Application Development
	1.1.3 Ease of Administration
	1.1.4 Security
	1.1.5 Unmatched Performance and Scalability
	1.1.6 Reduced Costs

	1.2 Developing Reports and Dashboards Using SQL Tools and Application Builders
	1.3 Overview of the Dimensional Data Model
	1.3.1 Cubes
	1.3.2 Measures
	1.3.3 Dimensions
	1.3.4 Hierarchies and Levels
	1.3.4.1 Level-Based Hierarchies
	1.3.4.2 Value-Based Hierarchies

	1.3.5 Attributes

	2 Getting Started with Oracle OLAP
	2.1 Installing the Sample Schema
	2.2 Database Management Tasks
	2.3 Granting Privileges to DBAs and Application Developers
	2.4 Getting Started with Analytic Workspace Manager
	2.4.1 Installing Analytic Workspace Manager
	2.4.2 Opening Analytic Workspace Manager
	2.4.3 Defining a Database Connection
	2.4.4 Opening a Database Connection
	2.4.5 Showing the Analytic Workspace Attachment Modes
	2.4.6 Installing Plug-ins

	2.5 Upgrading Metadata From Oracle OLAP 10g

	3 Creating Dimensions and Cubes
	3.1 Designing a Dimensional Model for Your Data
	3.2 Introduction to Analytic Workspace Manager
	3.3 Creating a Dimensional Data Store Using Analytic Workspace Manager
	3.3.1 Adding Functionality to Dimensional Objects
	3.3.2 When Does Analytic Workspace Manager Save Changes?

	3.4 Creating Dimensions
	3.4.1 Requirements of a Dimension
	3.4.1.1 Dimension Members Must Be Unique
	3.4.1.2 Time Dimensions Have Special Requirements

	3.4.2 Creating a Dimension
	3.4.3 Creating Levels
	3.4.4 Creating Hierarchies
	3.4.5 Creating Attributes
	3.4.5.1 Automatically Defined Attributes
	3.4.5.2 User-Defined Attributes
	3.4.5.3 Unique Key Attributes

	3.4.6 Creating Measure Dimensions
	3.4.7 Mapping Dimensions
	3.4.7.1 Dimension Mapping Window
	3.4.7.2 Source Data Query

	3.4.8 Loading Data Into Dimensions
	3.4.9 Displaying the Dimension View
	3.4.10 Displaying the Default Hierarchy

	3.5 Creating Cubes
	3.5.1 Creating Measures
	3.5.2 Mapping Cubes
	3.5.3 Partitioning a Cube
	3.5.3.1 Selecting Partitions
	3.5.3.2 Analyzing Partition Members

	3.5.4 Loading Data Into Cubes
	3.5.5 Displaying the Data in a Cube
	3.5.6 Displaying the Cube View Descriptions

	3.6 Choosing a Data Maintenance Method
	3.6.1 Creating and Executing Custom Cube Scripts
	3.6.1.1 Creating Cube Scripts
	3.6.1.2 Running a Cube Script

	3.6.2 Creating and Executing Maintenance Scripts
	3.6.2.1 Creating Maintenance Scripts
	3.6.2.2 Running Maintenance Scripts

	3.6.3 Adding Materialized View Capability to a Cube

	3.7 Supporting Multiple Languages
	3.8 Defining Measure Folders
	3.9 Saving and Re-Creating Dimensional Objects with Object Definitions
	3.9.1 Creating Dimensional Objects From XML Templates
	3.9.2 Saving Object Definitions to XML Templates
	3.9.3 Creating Analytic Workspaces from EIF Files
	3.9.4 Saving Analytic Workspaces to EIF Files

	3.10 Copying and Pasting Dimensional Objects

	4 Querying Dimensional Objects
	4.1 Exploring the OLAP Views
	4.1.1 Cube Views
	4.1.1.1 Discovering the Names of the Cube Views
	4.1.1.2 Discovering the Columns of a Cube View
	4.1.1.3 Displaying the Contents of a Cube View

	4.1.2 Dimension and Hierarchy Views
	4.1.2.1 Discovering the Names of Dimension and Hierarchy Views
	4.1.2.2 Discovering the Columns of a Dimension View
	4.1.2.3 Displaying the Contents of a Dimension View
	4.1.2.4 Discovering the Columns of a Hierarchy View
	4.1.2.5 Displaying the Contents of a Hierarchy View

	4.2 Creating Basic Queries
	4.2.1 Applying a Filter to Every Dimension
	4.2.2 Allowing the Cube to Aggregate the Data
	4.2.3 Query Processing

	4.3 Creating Hierarchical Queries
	4.3.1 Drilling Down to Children
	4.3.2 Drilling Up to Parents
	4.3.3 Drilling Down to Descendants
	4.3.4 Drilling Up to Ancestors

	4.4 Using Calculations in Queries
	4.5 Using Attributes for Aggregation
	4.5.1 Aggregating Measures Over Attributes
	4.5.2 Aggregating Calculated Measures Over Attributes

	4.6 Joining Cubes to Tables and Views
	4.7 Viewing Execution Plans
	4.7.1 Generating Execution Plans
	4.7.2 Types of Execution Plans

	4.8 Querying the Data Dictionary

	5 Enhancing Your Database with Analytic Content
	5.1 What Is a Calculated Measure?
	5.2 Functions for Defining Calculations
	5.2.1 Arithmetic Operators
	5.2.2 Analytic Functions
	5.2.3 Single-Row Functions

	5.3 Creating Calculated Measures
	5.3.1 Modifying a Template
	5.3.2 Choosing a Range of Time Periods

	5.4 Using Calculation Templates
	5.4.1 Arithmetic Calculations
	5.4.2 Index
	5.4.3 Prior and Future Periods
	5.4.4 Period to Date
	5.4.5 Share
	5.4.6 Rank
	5.4.7 Parallel Period
	5.4.8 Moving Calculations
	5.4.9 Cumulative Calculations
	5.4.10 Nested Calculations

	5.5 Creating User-Defined Expressions
	5.5.1 Using the OLAP Expression Syntax
	5.5.2 Expression Syntax Example Using an Arithmetic Operator
	5.5.3 Free-Form Calculation Example Using an Analytic Function
	5.5.4 Expression Syntax Analytic Functions

	5.6 Creating Calculated Measures Using the OLAP DML
	5.6.1 Selecting an OLAP DML Calculation Type
	5.6.2 OLAP DML Expression Examples
	5.6.3 OLAP DML Function Example

	6 Developing Reports and Dashboards
	6.1 Developing OLAP Applications
	6.2 Developing a Report Using BI Publisher
	6.2.1 Creating an OLAP Report in BI Publisher
	6.2.2 Creating a Template in Microsoft Word
	6.2.3 Generating a Formatted Report
	6.2.4 Adding Dimension Choice Lists in BI Publisher
	6.2.4.1 Creating a List of Values for a BI Publisher Report
	6.2.4.2 Creating a Menu
	6.2.4.3 Editing the Query in BI Publisher

	6.3 Developing a Dashboard Using Application Express
	6.3.1 Creating an OLAP Application in Application Express
	6.3.2 Adding Dimension Choice Lists in Application Express
	6.3.2.1 Creating a Region
	6.3.2.2 Creating a List of Values in Application Express
	6.3.2.3 Creating the Choice List
	6.3.2.4 Editing the Query in Application Express

	6.3.3 Drilling on Dimension Columns
	6.3.3.1 Creating Hidden Items
	6.3.3.2 Editing the Query to Use Bind Variables
	6.3.3.3 Adding Links to the Dimension Columns

	7 Administering Oracle OLAP
	7.1 Setting Database Initialization Parameters
	7.2 Storage Management
	7.2.1 Creating an Undo Tablespace
	7.2.2 Creating Permanent Tablespaces for OLAP Use
	7.2.3 Creating Temporary Tablespaces for OLAP Use
	7.2.4 Spreading Data Across Storage Resources

	7.3 Dictionary Views and System Tables
	7.3.1 Static Data Dictionary Views
	7.3.2 System Tables
	7.3.3 Analytic Workspace Tables
	7.3.4 Maintenance Logs

	7.4 Partitioned Cubes and Parallelism
	7.4.1 Querying Metadata for Cube Partitioning
	7.4.2 Creating and Dropping Partitions
	7.4.3 Parallelism

	7.5 Analyzing Cubes and Dimensions
	7.6 Monitoring Analytic Workspaces
	7.6.1 Dynamic Performance Views
	7.6.2 Basic Queries for Monitoring the OLAP Option
	7.6.2.1 Is the OLAP Option Installed in the Database?
	7.6.2.2 What Analytic Workspaces Are in the Database?
	7.6.2.3 How Big Is the Analytic Workspace?
	7.6.2.4 When Were the Analytic Workspaces Created?

	7.6.3 OLAP DBA Scripts
	7.6.4 Scripts for Monitoring Performance
	7.6.5 Monitoring Disk Space

	7.7 About Backing Up and Recovering Analytic Workspaces
	7.8 About Copying Analytic Workspaces
	7.9 About Saving Dimensional Object Definitions
	7.9.1 About XML Templates
	7.9.2 About EIF Files

	7.10 Cube Materialized Views
	7.10.1 Acquiring Information From the Data Dictionary
	7.10.1.1 Identifying Cube Materialized Views
	7.10.1.2 Identifying the Refresh Logs

	7.10.2 Initiating a Data Refresh
	7.10.2.1 Using DBMS_CUBE
	7.10.2.2 Using DBMS_MVIEW

	7.10.3 Refresh Methods
	7.10.3.1 Refresh Method Descriptions
	7.10.3.2 Fast Solve Refreshes

	7.10.4 Using Query Rewrite
	7.10.5 Acquiring Additional Information About Cube Materialized Views

	8 Security
	8.1 Security of Multidimensional Data in Oracle Database
	8.1.1 Security Management
	8.1.2 Types of Security
	8.1.3 About the Privileges
	8.1.4 Layered Security

	8.2 Setting Object Security
	8.2.1 Using SQL to Set Object Security
	8.2.1.1 Setting Object Security on an Analytic Workspace
	8.2.1.2 Setting Object Security on Dimensions
	8.2.1.3 Setting Object Security on Cubes

	8.2.2 Using Analytic Workspace Manager to Set Object Security
	8.2.2.1 Setting Object Security on an Analytic Workspace
	8.2.2.2 Setting Object Security on Dimensions
	8.2.2.3 Setting Object Security on Cubes

	8.3 Creating Data Security Policies on Dimensions and Cubes
	8.4 Creating OLAP Data Security Roles

	9 Advanced Aggregations
	9.1 What Is Aggregation?
	9.2 Aggregation Operators
	9.2.1 Basic Operators
	9.2.2 Scaled and Weighted Operators
	9.2.3 Hierarchical Operators

	9.3 When Does Aggregation Order Matter?
	9.3.1 Using the Same Operator for All Dimensions of a Cube
	9.3.1.1 Order Has No Effect
	9.3.1.2 Order Changes the Aggregation Results
	9.3.1.3 Order May Be Important

	9.3.2 Example: Mixing Aggregation Operators

	9.4 Example: Aggregating the Units Cube
	9.4.1 Selecting the Aggregation Operators and Hierarchies
	9.4.2 Choosing the Percentage of Precomputed Values

	A Designing a Dimensional Model
	A.1 Case Study Scenario
	A.1.1 Reporting Requirements
	A.1.2 Business Goals
	A.1.3 Information Requirements
	A.1.3.1 Business Analysis Questions
	A.1.3.2 Summary of Information Requirements

	A.2 Identifying Required Business Facts
	A.3 Designing a Dimensional Model for Global Computing
	A.3.1 Identifying Dimensions
	A.3.2 Identifying Levels
	A.3.3 Identifying Hierarchies
	A.3.4 Identifying Stored Measures

	B Keyboard Shortcuts
	B.1 Menu Bar
	B.2 Navigation Tree
	B.3 Property Sheets
	B.4 Shuttle Keys
	B.5 Mapping Canvas

	Glossary
	additive
	aggregation
	analytic workspace
	ancestor
	attribute
	base level data
	base measure
	calculated measure
	cell
	child
	composite
	compressed cube
	compression
	consistent solve specification
	cube
	cube dimension
	cube materialized view
	cube script
	cube view
	custom measure
	custom member
	data security role
	data source
	data warehouse
	denormalized
	derived measure
	descendant
	detail data
	dimension
	dimension key
	dimension member
	dimension table
	dimension value
	dimension view
	drill
	EIF file
	embedded total
	expression
	fact
	fact table
	hierarchy
	hierarchy view
	key
	leaf data
	level
	level-based hierarchy
	mapping
	materialized view
	measure
	measure dimension
	measure folder
	model
	NA value
	nonadditive
	normalize
	OLAP
	OLAP DML
	OLAP expression syntax
	OLTP
	on the fly
	override solve specification
	page
	page space
	parent
	parent-child relation
	precalculate
	precompute
	ragged hierarchy
	refresh
	security role
	skip-level hierarchy
	snowflake schema
	solve specification
	solved data
	source
	sparsity
	star query
	star schema
	status
	summary
	update window
	value-based hierarchy

	Index

