
Oracle® Database
Testing Guide

12c Release 2 (12.2)

E49646-12

May 2017

Oracle Database Testing Guide, 12c Release 2 (12.2)

E49646-12

Copyright © 2008, 2017, Oracle and/or its affiliates. All rights reserved.

Primary Author: Roopesh Ashok Kumar

Contributing Authors: Immanuel Chan

Contributors: Ashish Agrawal, Waleed Ahmed, Helen Altmar, Lance Ashdown, Pete Belknap, Supiti
Buranawatanachoke, Romain Colle, Karl Dias, Kurt Engeleiter, Leonidas Galanis, Veeranjaneyulu Goli,
Prabhaker Gongloor, Prakash Gupta, Shantanu Joshi, Prathiba Kalirengan, Karen McKeen, Mughees Minhas,
Konstantinos Morfonios, Valarie Moore, Ravi Pattabhi, Bert Rich, Yujun Wang, Keith Wong, Qinyi Wu,
Khaled Yagoub, Hailing Yu

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface .. xi

Audience ... xi

Documentation Accessibility ... xi

Related Documents.. xi

Conventions... xii

Changes in This Release for Oracle Database Testing Guide.. xiii

Changes in Oracle Database 12c Release 2 (12.2.0.1) .. xiii

New Features in Oracle Database 12c Release 2 (12.2.0.1) .. xiii

Other Changes in Oracle Database 12c Release 2 (12.2.0.1) .. xiv

Changes in Oracle Database 12c Release 1 (12.1) .. xiv

New Features ... xiv

Other Changes .. xv

1 Introduction to Oracle Database Testing

1.1 SQL Performance Analyzer ... 1-1

1.2 Database Replay .. 1-2

Part I SQL Performance Analyzer

2 Introduction to SQL Performance Analyzer

2.1 Capturing the SQL Workload ... 2-3

2.2 Setting Up the Test System.. 2-4

2.3 Creating a SQL Performance Analyzer Task .. 2-5

2.4 Measuring the Pre-Change SQL Performance.. 2-5

2.5 Making a System Change .. 2-7

2.6 Measuring the Post-Change SQL Performance.. 2-7

2.7 Comparing Performance Measurements .. 2-7

2.8 Fixing Regressed SQL Statements .. 2-8

iii

3 Creating an Analysis Task

3.1 Creating an Analysis Task Using Enterprise Manager ... 3-1

3.1.1 Using the Parameter Change Workflow.. 3-3

3.1.2 Using the Optimizer Statistics Workflow .. 3-7

3.1.3 Using the Exadata Simulation Workflow .. 3-10

3.1.4 Using the Guided Workflow ... 3-13

3.2 Creating an Analysis Task Using APIs.. 3-14

3.3 Configuring an Analysis Task Using APIs ... 3-15

3.3.1 Configuring the Execution Plan Comparison Method of an Analysis Task Using

APIs... 3-16

3.3.2 Configuring an Analysis Task for Exadata Simulation Using APIs 3-16

3.3.3 Remapping Multitenant Container Database Identifiers in an Analysis Task Using

APIs... 3-17

3.3.4 Configuring Trigger Execution in an Analysis Task.. 3-18

3.3.5 Configuring a Date to be Returned by Calls in an Analysis Task................................ 3-19

3.3.6 Configuring the Number of Rows to Fetch for an Analysis Task 3-20

4 Creating a Pre-Change SQL Trial

4.1 Creating a Pre-Change SQL Trial Using Enterprise Manager ... 4-2

4.2 Creating a Pre-Change SQL Trial Using APIs .. 4-4

5 Creating a Post-Change SQL Trial

5.1 Creating a Post-Change SQL Trial Using Oracle Enterprise Manager 5-2

5.2 Creating a Post-Change SQL Trial Using APIs .. 5-3

6 Comparing SQL Trials

6.1 Comparing SQL Trials Using Oracle Enterprise Manager ... 6-1

6.1.1 Analyzing SQL Performance Using Oracle Enterprise Manager................................... 6-2

6.1.2 Reviewing the SQL Performance Analyzer Report Using Oracle Enterprise

Manager ... 6-3

6.1.3 Tuning Regressed SQL Statements Using Oracle Enterprise Manager......................... 6-8

6.2 Comparing SQL Trials Using APIs .. 6-10

6.2.1 Analyzing SQL Performance Using APIs .. 6-10

6.2.2 Reviewing the SQL Performance Analyzer Report in Command-Line 6-13

6.2.3 Comparing SQL Tuning Sets Using APIs .. 6-18

6.2.4 Tuning Regressed SQL Statements Using APIs.. 6-23

6.2.5 Tuning Regressed SQL Statements From a Remote SQL Trial Using APIs................ 6-25

6.2.6 Creating SQL Plan Baselines Using APIs... 6-27

6.2.7 Using SQL Performance Analyzer Views.. 6-27

7 Using SPA Quick Check

7.1 About Configuring SPA Quick Check... 7-1

iv

7.2 Specifying Default Values for SPA Quick Check... 7-2

7.3 Validating the Impact of an Initialization Parameter Change ... 7-2

7.4 Validating the Impact of Pending Optimizer Statistics... 7-3

7.5 Validating the Impact of Implementing Key SQL Profiles... 7-5

7.6 Validating Statistics Findings from Automatic SQL Tuning Advisor 7-6

8 Testing a Database Upgrade

8.1 Upgrading from Oracle9i Database and Oracle Database 10g Release 1 8-1

8.1.1 Enabling SQL Trace on the Production System.. 8-3

8.1.2 Creating a Mapping Table ... 8-4

8.1.3 Building a SQL Tuning Set... 8-5

8.1.4 Testing Database Upgrades from Oracle9i Database and Oracle Database 10g

Release 1 ... 8-6

8.2 Upgrading from Oracle Database 10g Release 2 and Newer Releases 8-11

8.2.1 Testing Database Upgrades from Oracle Database 10g Release 2 and Newer

Releases .. 8-12

8.3 Tuning Regressed SQL Statements After Testing a Database Upgrade 8-17

Part II Database Replay

9 Introduction to Database Replay

9.1 Workload Capture .. 9-2

9.2 Workload Preprocessing.. 9-3

9.3 Workload Replay .. 9-3

9.4 Analysis and Reporting ... 9-4

10 Capturing a Database Workload

10.1 Prerequisites for Capturing a Database Workload.. 10-1

10.2 Setting Up the Capture Directory... 10-2

10.3 Workload Capture Options... 10-2

10.3.1 Restarting the Database .. 10-3

10.3.2 Using Filters with Workload Capture .. 10-4

10.4 Workload Capture Restrictions .. 10-4

10.5 Enabling and Disabling the Workload Capture Feature .. 10-5

10.6 Enterprise Manager Privileges and Roles ... 10-6

10.6.1 Database Replay Viewer Role.. 10-6

10.6.2 Database Replay Operator Role .. 10-6

10.7 Capturing a Database Workload Using Enterprise Manager .. 10-7

10.8 Capturing Workloads from Multiple Databases Concurrently ... 10-12

10.9 Monitoring a Workload Capture Using Enterprise Manager .. 10-15

10.9.1 Monitoring an Active Workload Capture.. 10-15

10.9.2 Stopping an Active Workload Capture.. 10-16

10.9.3 Viewing a Completed Workload Capture ... 10-16

v

10.10 Importing a Workload External to Enterprise Manager ... 10-17

10.11 Creating Subsets from an Existing Workload .. 10-19

10.12 Copying or Moving a Workload to a New Location ... 10-21

10.13 Capturing a Database Workload Using APIs ... 10-22

10.13.1 Defining Workload Capture Filters .. 10-22

10.13.2 Starting a Workload Capture... 10-23

10.13.3 Stopping a Workload Capture... 10-25

10.13.4 Exporting AWR Data for Workload Capture.. 10-25

10.13.5 Importing AWR Data for Workload Capture ... 10-26

10.14 Monitoring Workload Capture Using Views ... 10-26

11 Preprocessing a Database Workload

11.1 Preparing a Single Database Workload Using Enterprise Manager 11-1

11.1.1 Creating a Database Replay Task.. 11-2

11.1.2 Creating a Replay from a Replay Task... 11-3

11.1.3 Preparing the Test Database .. 11-4

11.1.4 Preprocessing the Workload and Deploying the Replay Clients............................... 11-6

11.2 Preprocessing a Database Workload Using APIs .. 11-9

11.2.1 Running the Workload Analyzer Command-Line Interface 11-10

12 Replaying a Database Workload

12.1 Steps for Replaying a Database Workload.. 12-1

12.1.1 Setting Up the Replay Directory ... 12-2

12.1.2 Restoring the Database ... 12-2

12.1.3 Resolving References to External Systems .. 12-2

12.1.4 Connection Remapping.. 12-3

12.1.5 User Remapping.. 12-3

12.1.6 Specifying Replay Options... 12-3

12.1.7 Using Filters with Workload Replay .. 12-4

12.1.8 Setting Up Replay Clients .. 12-5

12.2 Replaying a Database Workload Using Enterprise Manager... 12-8

12.3 Setting Up the Replay Schedule and Parameters Using Enterprise Manager 12-15

12.4 Monitoring Workload Replay Using Enterprise Manager ... 12-16

12.4.1 Monitoring an Active Workload Replay.. 12-17

12.4.2 Viewing a Completed Workload Replay ... 12-17

12.5 Importing a Replay External to Enterprise Manager .. 12-19

12.6 Replaying a Database Workload Using APIs ... 12-20

12.6.1 Initializing Replay Data.. 12-21

12.6.2 Remapping Connections .. 12-22

12.6.3 Remapping Users .. 12-22

12.6.4 Setting Workload Replay Options .. 12-23

12.6.5 Defining Workload Replay Filters and Replay Filter Sets... 12-25

12.6.6 Setting the Replay Timeout Action... 12-27

vi

12.6.7 Starting a Workload Replay... 12-28

12.6.8 Pausing a Workload Replay... 12-29

12.6.9 Resuming a Workload Replay... 12-29

12.6.10 Cancelling a Workload Replay.. 12-30

12.6.11 Retrieving Information About Workload Replays ... 12-30

12.6.12 Loading Divergence Data for Workload Replay .. 12-31

12.6.13 Deleting Information About Workload Replays .. 12-31

12.6.14 Exporting AWR Data for Workload Replay.. 12-32

12.6.15 Importing AWR Data for Workload Replay ... 12-32

12.7 Monitoring Workload Replay Using APIs.. 12-33

12.7.1 Retrieving Information About Diverged Calls ... 12-33

12.7.2 Monitoring Workload Replay Using Views .. 12-34

13 Analyzing Captured and Replayed Workloads

13.1 Using Workload Capture Reports.. 13-1

13.1.1 Accessing Workload Capture Reports Using Enterprise Manager............................ 13-1

13.1.2 Generating Workload Capture Reports Using APIs .. 13-2

13.1.3 Reviewing Workload Capture Reports .. 13-3

13.2 Using Workload Replay Reports.. 13-4

13.2.1 Accessing Workload Replay Reports Using Enterprise Manager.............................. 13-4

13.2.2 Generating Workload Replay Reports Using APIs .. 13-8

13.2.3 Reviewing Workload Replay Reports .. 13-9

13.3 Using Replay Compare Period Reports .. 13-10

13.3.1 Generating Replay Compare Period Reports Using APIs... 13-10

13.3.2 Reviewing Replay Compare Period Reports... 13-11

13.4 Using SQL Performance Analyzer Reports .. 13-15

13.4.1 Generating SQL Performance Analyzer Reports Using APIs................................... 13-15

14 Using Workload Intelligence

14.1 Overview of Workload Intelligence... 14-1

14.1.1 About Workload Intelligence .. 14-1

14.1.2 Use Case for Workload Intelligence ... 14-2

14.1.3 Requirements for Using Workload Intelligence ... 14-2

14.2 Analyzing Captured Workloads Using Workload Intelligence... 14-3

14.2.1 Creating a Database User for Workload Intelligence... 14-3

14.2.2 Creating a Workload Intelligence Job .. 14-3

14.2.3 Generating a Workload Model.. 14-4

14.2.4 Identifying Patterns in a Workload .. 14-5

14.2.5 Generating a Workload Intelligence Report.. 14-6

14.3 Example: Workload Intelligence Results... 14-7

15 Using Consolidated Database Replay

15.1 Use Cases for Consolidated Database Replay .. 15-1

vii

15.1.1 Database Consolidation Using Pluggable Databases... 15-2

15.1.2 Stress Testing.. 15-2

15.1.3 Scale-Up Testing .. 15-2

15.2 Steps for Using Consolidated Database Replay ... 15-3

15.2.1 Capturing Database Workloads for Consolidated Database Replay......................... 15-3

15.2.2 Setting Up the Test System for Consolidated Database Replay 15-4

15.2.3 Preprocessing Database Workloads for Consolidated Database Replay 15-5

15.2.4 Replaying Database Workloads for Consolidated Database Replay......................... 15-6

15.2.5 Reporting and Analysis for Consolidated Database Replay....................................... 15-8

15.3 Using Consolidated Database Replay with Enterprise Manager .. 15-9

15.4 Using Consolidated Database Replay with APIs... 15-9

15.4.1 Generating Capture Subsets Using APIs ... 15-10

15.4.2 Setting the Consolidated Replay Directory Using APIs .. 15-11

15.4.3 Defining Replay Schedules Using APIs ... 15-12

15.4.4 Running Consolidated Database Replay Using APIs .. 15-17

15.5 About Query-Only Database Replay ... 15-21

15.5.1 Use Cases for Query-Only Database Replay... 15-22

15.5.2 Performing a Query-Only Database Replay.. 15-22

15.6 Example: Replaying a Consolidated Workload with APIs... 15-22

16 Using Workload Scale-Up

16.1 Overview of Workload Scale-Up.. 16-1

16.1.1 About Time Shifting.. 16-1

16.1.2 About Workload Folding ... 16-2

16.1.3 About Schema Remapping .. 16-2

16.2 Using Time Shifting.. 16-2

16.3 Using Workload Folding ... 16-5

16.4 Using Schema Remapping .. 16-7

Index

viii

List of Tables

3-1 SQL Performance Analyzer Task Execution Plan Methods.. 3-16
3-2 Valid Values for the EXECUTE_TRIGGERS Parameter.. 3-18
3-3 Valid Values for the REPLACE_SYSDATE_WITH Parameter... 3-19
3-4 Valid Values for the NUM_ROWS_TO_FETCH Parameter... 3-20
6-1 CREATE_TUNING_TASK Function SQL Performance Analyzer Parameters................ 6-24
8-1 DBMS_SQLTUNE.SELECT_SQL_TRACE Function Parameters... 8-6

ix

x

Preface

This preface contains the following topics:

• Audience (page xi)

• Documentation Accessibility (page xi)

• Related Documents (page xi)

• Conventions (page xii)

Audience
This document provides information about how to assure the integrity of database
changes and manage test data using Oracle Real Application Testing. This document
is intended for database administrators, application designers, and programmers who
are responsible for performing real-world testing of Oracle Database.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information about some of the topics discussed in this document, see the
following documents in the Oracle Database Release 12.1 documentation set:

• Oracle Database 2 Day DBA

• Oracle Database 2 Day + Performance Tuning Guide

• Oracle Database Administrator’s Guide

• Oracle Database Concepts

• Oracle Database Performance Tuning Guide

xi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• Oracle Database SQL Tuning Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xii

Changes in This Release for Oracle
Database Testing Guide

This preface lists changes in Oracle Database Testing Guide.

Changes in Oracle Database 12c Release 2 (12.2.0.1)
The following are changes in Oracle Database Testing Guide for Oracle Database 12c
Release 2 (12.2.0.1).

New Features in Oracle Database 12c Release 2 (12.2.0.1)
This section describes the new SQL Performance Analyzer and DB Replay features in
Oracle Database 12c Release 2 (12.2.0.1).

• You can enable or disable the execution of triggers in a SQL Performance
Analyzer analysis task.

See Configuring Trigger Execution in an Analysis Task (page 3-18).

• You can configure the date to be returned by calls in a SQL Performance Analyzer
analysis task.

See Configuring a Date to be Returned by Calls in an Analysis Task (page 3-19).

• You can configure the number of rows to fetch in a SQL Performance Analyzer
analysis task.

See Configuring the Number of Rows to Fetch for an Analysis Task (page 3-20)

• You can specify how user PL/SQL calls are handled during workload capture and
workload replay with DB Replay.

See the following sections for more information:

– Starting a Workload Capture (page 10-23)

– Preprocessing a Database Workload Using APIs (page 11-9)

– Initializing Replay Data (page 12-21)

The plsql_mode parameter can also be used with the
INITIALIZE_CONSOLIDATED_REPLAY procedure, which is described in
Initializing Consolidated Database Replay Using APIs (page 15-17).

xiii

Other Changes in Oracle Database 12c Release 2 (12.2.0.1)
This topic describes additional changes in Oracle Database Testing Guide for Oracle
Database 12c Release 2 (12.2.0.1).

The following change was also made in Oracle Database Testing Guide for Oracle
Database 12c Release 2 (12.2.0.1).:

• The Test Data Management features that were documented in Part III of this
manual in Oracle Database 12c Release 1 have been removed. These features are
now documented in a separate manual: Oracle Data Masking and Subsetting Guide.

Changes in Oracle Database 12c Release 1 (12.1)
The following are changes in Oracle Database Testing Guide for Oracle Database 12c
Release 1 (12.1).

New Features
The following features are new in this release:

• SQL Performance Analyzer Quick Check (SPA Quick Check)

On some Oracle Enterprise Manager Cloud Control database management pages,
SPA Quick Check can validate the impact of a system change to the database
workload before you make the change.

See Using SPA Quick Check (page 7-1).

• SQL Performance Analyzer support for the multitenant architecture

You can use a SQL tuning set that was transported from a non-CDB to a
multitenant container database (CDB) as the input source to SQL Performance
Analyzer by remapping its CDB identifiers.

See Remapping Multitenant Container Database Identifiers in an Analysis Task
Using APIs (page 3-17).

• Workload Intelligence

Workload Intelligence comprises a suite of Java programs that enable you to
analyze the data stored in a captured workload.

See Using Workload Intelligence (page 14-1).

• Consolidated Database Replay

Consolidated Database Replay enables you to consolidate multiple workloads
captured from one or multiple systems and replay them concurrently on a single
test system, such as a single Oracle Exadata Machine.

See Using Consolidated Database Replay (page 15-1).

• Workload Scale-up

Database Replay enables you to perform scale-up testing and stress testing in
various use cases and scenarios.

See Using Workload Scale-Up (page 16-1).

xiv

Other Changes
The following are additional changes in the release:

• New book

Oracle Database Real Application Testing User's Guide is now part of Oracle Database
Testing Guide.

• New part

Part III “Test Data Management” was added to Oracle Database Testing Guide to
describe the test data management features of Oracle Database.

xv

1
Introduction to Oracle Database Testing

The Oracle Real Application Testing option of Oracle Database help you to securely
assure the integrity of database changes and to manage test data.

Oracle Real Application Testing option enables you to perform real-world testing of
Oracle Database. By capturing production workloads and assessing the impact of
system changes on these workloads before production deployment, Oracle Real
Application Testing minimizes the risk of instabilities associated with system changes.
SQL Performance Analyzer and Database Replay are key components of Oracle Real
Application Testing. Depending on the nature and impact of the system change being
tested, and on the type of system the test will be performed, you can use either or both
components to perform your testing.

This chapter contains the following sections:

• SQL Performance Analyzer (page 1-1)

• Database Replay (page 1-2)

Note:

The use of SQL Performance Analyzer and Database Replay requires the
Oracle Real Application Testing licensing option. For more information, see
Oracle Database Licensing Information.

1.1 SQL Performance Analyzer
System changes—such as a upgrading a database or adding an index—may cause
changes to execution plans of SQL statements, resulting in a significant impact on SQL
performance. In some cases, the system changes may cause SQL statements to regress,
resulting in performance degradation. In other cases, the system changes may improve
SQL performance. Being able to accurately forecast the potential impact of system
changes on SQL performance enables you to tune the system beforehand, in cases
where the SQL statements regress, or to validate and measure the performance gain in
cases where the performance of the SQL statements improves.

SQL Performance Analyzer automates the process of assessing the overall effect of a
change on the full SQL workload by identifying performance divergence for each SQL
statement. A report that shows the net impact on the workload performance due to the
change is provided. For regressed SQL statements, SQL Performance Analyzer also
provides appropriate execution plan details along with tuning recommendations. As a
result, you can remedy any negative outcome before the end users are affected.
Furthermore, you can validate—with significant time and cost savings—that the
system change to the production environment will result in net improvement.

You can use the SQL Performance Analyzer to analyze the impact on SQL
performance of any type of system changes, including:

Introduction to Oracle Database Testing 1-1

• Database upgrade

• Database consolidation testing for pluggable databases (PDBs) and manual
schema consolidation

• Configuration changes to the operating system or hardware

• Schema changes

• Changes to database initialization parameters

• Refreshing optimizer statistics

• Validating SQL tuning actions

See Also:

• Introduction to SQL Performance Analyzer (page 2-1) for information
about using SQL Performance Analyzer

1.2 Database Replay
Before system changes are made, such as hardware and software upgrades, extensive
testing is usually performed in a test environment to validate the changes. However,
despite the testing, the new system often experiences unexpected behavior when it
enters production because the testing was not performed using a realistic workload.
The inability to simulate a realistic workload during testing is one of the biggest
challenges when validating system changes.

Database Replay enables realistic testing of system changes by essentially re-creating
the production workload environment on a test system. Using Database Replay, you
can capture a workload on the production system and replay it on a test system with
the exact timing, concurrency, and transaction characteristics of the original workload.
This enables you to fully assess the impact of the change, including undesired results,
new contention points, or plan regressions. Extensive analysis and reporting is
provided to help identify any potential problems, such as new errors encountered and
performance divergence.

Database Replay captures the workload of external database clients at the database
level and has negligible performance overhead. Capturing the production workload
eliminates the need to develop simulation workloads or scripts, resulting in significant
cost reduction and time savings. By using Database Replay, realistic testing of complex
applications that previously took months using load simulation tools can now be
completed in days. This enables you to rapidly test changes and adopt new
technologies with a higher degree of confidence and at lower risk.

You can use Database Replay to test any significant system changes, including:

• Database and operating system upgrades

• Database consolidation testing for PDBs and manual schema consolidation

• Authoring and experimenting with various scenarios using workload scale-up

• Configuration changes, such as conversion of a database from a single instance to
an Oracle Real Application Clusters (Oracle RAC) environment

• Storage, network, and interconnect changes

Database Replay

1-2 Oracle Database Testing Guide

• Operating system and hardware migrations

See Also:

• Introduction to Database Replay (page 9-1) for information about using
Database Replay

Database Replay

Introduction to Oracle Database Testing 1-3

Database Replay

1-4 Testing Guide

Part I
SQL Performance Analyzer

SQL Performance Analyzer enables you to assess the impact of system changes on the
response time of SQL statements.

Part I covers SQL Performance Analyzer and contains the following chapters:

• Introduction to SQL Performance Analyzer (page 2-1)

• Creating an Analysis Task (page 3-1)

• Creating a Pre-Change SQL Trial (page 4-1)

• Creating a Post-Change SQL Trial (page 5-1)

• Comparing SQL Trials (page 6-1)

• Using SPA Quick Check (page 7-1)

• Testing a Database Upgrade (page 8-1)

2
Introduction to SQL Performance Analyzer

You can run SQL Performance Analyzer on a production system or a test system that
closely resembles the production system. Testing a system change on a production
system will impact the system's throughput because SQL Performance Analyzer must
execute the SQL statements that you are testing. Any global changes made on the
system to test the performance effect may also affect other users of the system. If the
system change does not impact many sessions or SQL statements, then running SQL
Performance Analyzer on the production system may be acceptable. However, for
systemwide changes—such as a database upgrade—using a production system is not
recommended. Instead, consider running SQL Performance Analyzer on a separate
test system so that you can test the effects of the system change without affecting the
production system. Using a test system also ensures that other workloads running on
the production system will not affect the analysis performed by SQL Performance
Analyzer. Running SQL Performance Analyzer on a test system is the recommended
approach and the methodology described here. If you choose to run the SQL
Performance Analyzer on the production system, then substitute the production
system for the test system where applicable.

Analyzing the SQL performance effect of system changes using SQL Performance
Analyzer involves the following steps, as illustrated in Figure 2-1 (page 2-2):

Introduction to SQL Performance Analyzer 2-1

Figure 2-1 SQL Performance Analyzer Workflow

Oracle�
Database

Storage
Oracle�

Database

Storage

Client

TestProduction

ClientClient

Middle Tier

Capture�
SQL

Make�
Change

Execute�
SQL

Compare�
Perf

Fix

Regressed

SQL

Execute�
SQL

1. Capture the SQL workload that you intend to analyze and store it in a SQL tuning
set, as described in "Capturing the SQL Workload (page 2-3)".

2. If you plan to use a test system separate from your production system, then
perform the following steps:

a. Set up the test system to match the production environment as closely as
possible.

b. Transport the SQL tuning set to the test system.

3. On the test system, create a SQL Performance Analyzer task, as described in
"Creating a SQL Performance Analyzer Task (page 2-5)".

4. Build the pre-change SQL trial by test executing or generating execution plans for
the SQL statements stored in the SQL tuning set, as described in "Measuring the
Pre-Change SQL Performance (page 2-5)"

5. Perform the system change, as described in "Making a System Change
(page 2-7)"

6. Build the post-change SQL trial by re-executing the SQL statements in the SQL
tuning set on the post-change test system, as described in "Measuring the Post-
Change SQL Performance (page 2-7)"

2-2 Oracle Database Testing Guide

7. Compare and analyze the pre-change and post-change versions of performance
data, and generate a report to identify the SQL statements that have improved,
remained unchanged, or regressed after the system change, as described in
"Comparing Performance Measurements (page 2-7)"

8. Tune any regressed SQL statements that are identified, as described in "Fixing
Regressed SQL Statements (page 2-8)".

9. Ensure that the performance of the tuned SQL statements is acceptable by
repeating steps 6 (page 2-2) through 8 (page 2-3) until your performance goals are
met.

For each comparison, you can use any previous SQL trial as the pre-change SQL
trial and the current SQL trial as the post-change SQL trial. For example, you may
want to compare the first SQL trial to the current SQL trial to assess the total
change, or you can compare the most recent SQL trial to the current SQL trial to
assess just the most recent change.

Note:

Oracle Enterprise Manager provides automated workflows for steps 3
(page 2-2) through 9 (page 2-3) to simplify this process.

Note:

Data visibility and privilege requirements may differ when using SQL
Performance Analyzer with pluggable databases (PDBs).

See Also:

• "Setting Up the Test System (page 2-4)"

• For information about how manageability features—including SQL
Performance Analyzer—work in a multitenant container database (CDB),
see Oracle Database Administrator’s Guide

2.1 Capturing the SQL Workload
Before running SQL Performance Analyzer, capture a set of SQL statements on the
production system that represents the SQL workload which you intend to analyze.

The captured SQL statements should include the following information:

• SQL text

• Execution environment

– SQL binds, which are bind values needed to execute a SQL statement and
generate accurate execution statistics

– Parsing schema under which a SQL statement can be compiled

– Compilation environment, including initialization parameters under which a
SQL statement is executed

Capturing the SQL Workload

Introduction to SQL Performance Analyzer 2-3

• Number of times a SQL statement was executed

Capturing a SQL workload has a negligible performance impact on your production
system and should not affect throughput. A SQL workload that contains more SQL
statements will better represent the state of the application or database. This will
enable SQL Performance Analyzer to more accurately forecast the potential impact of
system changes on the SQL workload. Therefore, you should capture as many SQL
statements as possible. Ideally, you should capture all SQL statements that are either
called by the application or are running on the database.

You can store captured SQL statements in a SQL tuning set and use it as an input
source for SQL Performance Analyzer. A SQL tuning set is a database object that
includes one or more SQL statements, along with their execution statistics and
execution context. SQL statements can be loaded into a SQL tuning set from different
sources, including the cursor cache, Automatic Workload Repository (AWR), SQL
trace files, and existing SQL tuning sets. Capturing a SQL workload using a SQL
tuning set enables you to:

• Store the SQL text and any necessary auxiliary information in a single, persistent
database object

• Populate, update, delete, and select captured SQL statements in the SQL tuning
set

• Load and merge content from various data sources, such as the Automatic
Workload Repository (AWR) or the cursor cache

• Export the SQL tuning set from the system where the SQL workload is captured
and import it into another system

• Reuse the SQL workload as an input source for other advisors, such as the SQL
Tuning Advisor and the SQL Access Advisor

See Also:

• Oracle Database 2 Day + Performance Tuning Guide for information about
creating SQL tuning sets using Oracle Enterprise Manager

• Oracle Database SQL Tuning Guide for information about creating SQL
tuning sets using APIs

2.2 Setting Up the Test System
After you have captured the SQL workload into a SQL tuning set on the production
system, you can conduct SQL Performance Analyzer analysis on the same database
where the workload was captured or on a different database. Because the analysis is
resource-intensive, it is recommended that you capture the workload on a production
database and transport it to a separate test database where the analysis can be
performed. To do so, export the SQL tuning set from the production system and
import it into a separate system where the system change will be tested.

There are many ways to create a test database. For example, you can use the
DUPLICATE command of Recovery Manager (RMAN), Oracle Data Pump, or
transportable tablespaces. Oracle recommends using RMAN because it can create the
test database from pre-existing backups or from the active production datafiles. The
production and test databases can reside on the same host or on different hosts.

Setting Up the Test System

2-4 Oracle Database Testing Guide

You should configure the test database environment to match the database
environment of the production system as closely as possible. In this way, SQL
Performance Analyzer can more accurately forecast the effect of the system change on
SQL performance.

After the test system is properly configured, export the SQL tuning set from the
production system to a staging table, then import it from the staging table into the test
system.

See Also:

• Oracle Database Backup and Recovery User’s Guide for information about
duplicating databases using RMAN

• Oracle Database 2 Day + Performance Tuning Guide for information about
transporting SQL tuning sets using Oracle Enterprise Manager

• Oracle Database SQL Tuning Guide for information about transporting SQL
tuning sets using APIs

2.3 Creating a SQL Performance Analyzer Task
After the SQL workload is captured and transported to the test system, and the initial
database environment is properly configured, you can run SQL Performance Analyzer
to analyze the effects of a system change on SQL performance.

To run SQL Performance Analyzer, you must first create a SQL Performance Analyzer
task. A task is a container that encapsulates all of the data about a complete SQL
Performance Analyzer analysis. A SQL Performance Analyzer analysis comprises of at
least two SQL trials and a comparison. A SQL trial encapsulates the execution
performance of a SQL tuning set under specific environmental conditions. When
creating a SQL Performance Analyzer task, you will need to select a SQL tuning set as
its input source. When building SQL trials using the test execute or explain plan
methods, the SQL tuning set will be used as the source for SQL statements. The SQL
Performance Analyzer analysis will show the impact of the environmental differences
between the two trials.

See Also:

• Creating an Analysis Task (page 3-1) for information about how to
create a SQL Performance Analyzer task

2.4 Measuring the Pre-Change SQL Performance
Create a pre-change SQL trial before making the system change. You can use the
following methods to generate the performance data needed for a SQL trial with SQL
Performance Analyzer:

• Test execute

This method test executes SQL statements through SQL Performance Analyzer.
This can be done on the database running SPA Performance Analyzer or on a
remote database.

• Explain plan

Creating a SQL Performance Analyzer Task

Introduction to SQL Performance Analyzer 2-5

This method generates execution plans only for SQL statements through SQL
Performance Analyzer. This can be done on the database running SPA
Performance Analyzer or on a remote database. Unlike the EXPLAIN PLAN
statement, SQL trials using the explain plan method take bind values into account
and generate the actual execution plan.

• Convert SQL tuning set

This method converts the execution statistics and plans stored in a SQL tuning set.
This is only supported for APIs.

The test execute method runs each of the SQL statements contained in the workload to
completion. During execution, SQL Performance Analyzer generates execution plans
and computes execution statistics for each SQL statement in the workload. Each SQL
statement in the SQL tuning set is executed separately from other SQL statements,
without preserving their initial order of execution or concurrency. This is done at least
twice for each SQL statement, for as many times as possible until the execution times
out (up to a maximum of 10 times). The first execution is used to warm the buffer
cache. All subsequent executions are then used to calculate the run-time execution
statistics for the SQL statement based on their averages. The actual number of times
that the SQL statement is executed depends on how long it takes to execute the SQL
statement. Long-running SQL statement will only be executed a second time, and the
execution statistics from this execution will be used. Other (faster-running) SQL
statements are executed multiple times, and their execution statistics are averaged
over these executions (statistics from the first execution are not used in the
calculation). By averaging statistics over multiple executions, SQL Performance
Analyzer can calculate more accurate execution statistics for each SQL statement. To
avoid a potential impact to the database, DDLs are not supported. By default, only the
query portion of DMLs is executed. Using APIs, you can execute the full DML by
using the EXECUTE_FULLDML task parameter. Parallel DMLs are not supported and
the query portion is not executed unless the parallel hints are removed.

Depending on its size, executing a SQL workload can be time and resource intensive.
With the explain plan method, you can choose to generate execution plans only,
without collecting execution statistics. This technique shortens the time to run the trial
and lessens the effect on system resources, but a comprehensive performance analysis
is not possible because only the execution plans will be available during the analysis.
However, unlike generating a plan with the EXPLAIN PLAN command, SQL
Performance Analyzer provides bind values to the optimizer when generating
execution plans, which provides a more reliable prediction of what the plan will be
when the SQL statement is executed.

In both cases, you can execute the SQL workload remotely on a separate database
using a database link. SQL Performance Analyzer will establish a connection to the
remote database using the database link, execute the SQL statements on that database,
collect the execution plans and run-time statistics for each SQL statement, and store
the results in a SQL trial on the local database that can be used for later analysis. This
method is useful in cases where you want to:

• Test a database upgrade

• Execute the SQL workload on a system running another version of Oracle
Database

• Store the results from the SQL Performance Analyzer analysis on a separate test
system

• Perform testing on multiple systems with different hardware configurations

Measuring the Pre-Change SQL Performance

2-6 Oracle Database Testing Guide

• Use the newest features in SQL Performance Analyzer even if you are using an
older version of Oracle Database on your production system

Once the SQL workload is executed, the resulting execution plans and run-time
statistics are stored in a SQL trial.

You can also build a SQL trial using the execution statistics and plan stored in a SQL
tuning set. While this method is only supported for APIs, it may be useful in cases
where you have another method to run your workload (such as Database Replay or
another application testing tool), and you do not need SQL Performance Analyzer to
drive the workload on the test system. In such cases, if you capture a SQL tuning set
during your test runs, you can build SQL trials from these SQL tuning sets using SQL
Performance Analyzer to view a more comprehensive analysis report. Unlike a
standard SQL Performance Analyzer report—which has only one execution plan in
each trial and one set of execution statistics generated by executing the SQL statement
with one set of binds—you can generate a report that compares SQL trials built from
SQL tuning sets that show all execution plans from both trials with potentially many
different sets of binds across multiple executions.

See Also:

• Creating a Pre-Change SQL Trial (page 4-1) for information about how
to measure the pre-change performance

• Testing a Database Upgrade (page 8-1) for information about executing
a SQL workload on a remote system to test a database upgrade

2.5 Making a System Change
Make the change whose effect on SQL performance you intend to measure. SQL
Performance Analyzer can analyze the effect of many types of system changes. For
example, you can test a database upgrade, new index creation, initialization parameter
changes, or optimizer statistics refresh. If you are running SQL Performance Analyzer
on the production system, then consider making a change using a private session to
avoid affecting the rest of the system.

2.6 Measuring the Post-Change SQL Performance
After performing the system change, create a post-change SQL trial. It is highly
recommended that you create the post-change SQL trial using the same method as the
pre-change SQL trial. Once built, the post-change SQL trial represents a new set of
performance data that can be used to compare to the pre-change version. The results
are stored in a new, or post-change, SQL trial.

See Also:

• Creating a Post-Change SQL Trial (page 5-1) for information about how
to measure the post-change performance

2.7 Comparing Performance Measurements
SQL Performance Analyzer compares the performance of SQL statements before and
after the change and produces a report identifying any changes in execution plans or
performance of the SQL statements.

Making a System Change

Introduction to SQL Performance Analyzer 2-7

SQL Performance Analyzer measures the impact of system changes both on the overall
execution time of the SQL workload and on the response time of every individual SQL
statement in the workload. By default, SQL Performance Analyzer uses elapsed time
as a metric for comparison. Alternatively, you can choose the metric for comparison
from a variety of available SQL run-time statistics, including:

• CPU time

• User I/O time

• Buffer gets

• Physical I/O

• Optimizer cost

• I/O interconnect bytes

• Any combination of these metrics in the form of an expression

If you chose to generate explain plans only in the SQL trials, then SQL Performance
Analyzer will use the optimizer cost stored in the SQL execution plans.

Once the comparison is complete, the resulting data is generated into a SQL
Performance Analyzer report that compares the pre-change and post-change SQL
performance. The SQL Performance Analyzer report can be viewed as an HTML, text,
or active report. Active reports provides in-depth reporting using an interactive user
interface that enables you to perform detailed analysis even when disconnected from
the database or Oracle Enterprise Manager.

See Also:

• Comparing SQL Trials (page 6-1) for information about comparing
performance measurements and reporting

2.8 Fixing Regressed SQL Statements
If the performance analysis performed by SQL Performance Analyzer reveals
regressed SQL statements, then you can make changes to remedy the problem. For
example, you can fix regressed SQL by running SQL Tuning Advisor or using SQL
plan baselines. You can then repeat the process of executing the SQL statements and
comparing its performance to the first execution. Repeat these steps until you are
satisfied with the outcome of the analysis.

See Also:

• Comparing SQL Trials (page 6-1) for information about fixing regressed
SQL statements

Fixing Regressed SQL Statements

2-8 Oracle Database Testing Guide

3
Creating an Analysis Task

Once you have captured a SQL workload that you want to analyze into a SQL tuning
set (STS), you can run SQL Performance Analyzer to analyze the effects of a system
change on SQL performance. To run SQL Performance Analyzer, you must first create
a SQL Performance Analyzer task. A task is a container that encapsulates all of the
data about a complete SQL Performance Analyzer analysis. A SQL Performance
Analyzer analysis comprises of at least two SQL trials and a comparison. A SQL trial
captures the execution performance of a SQL tuning set under specific environmental
conditions and can be generated automatically using SQL Performance Analyzer by
one of the following methods:

• Test executing SQL statements

• Generating execution plans for SQL statements

• Referring to execution statistics and plans captured in a SQL tuning set

When creating a SQL Performance Analyzer task, you will need to select a SQL tuning
set as its input source. The SQL tuning set will be used as the source for test executing
or generating execution plans for SQL trials. Thus, performance differences between
trials are caused by environmental differences.

This chapter describes how to create a SQL Performance Analyzer task and contains
the following topics:

• Creating an Analysis Task Using Enterprise Manager (page 3-1)

• Creating an Analysis Task Using APIs (page 3-14)

• Configuring an Analysis Task Using APIs (page 3-15)

Note:

The primary interface for running SQL Performance Analyzer is Oracle
Enterprise Manager. If for some reason Oracle Enterprise Manager is
unavailable, you can run SQL Performance Analyzer using the DBMS_SQLPA
PL/SQL package.

See Also:

"Creating a SQL Performance Analyzer Task (page 2-5)"

3.1 Creating an Analysis Task Using Enterprise Manager
There are several workflows available in Oracle Enterprise Manager for creating a SQL
Performance Analyzer task.

Creating an Analysis Task 3-1

Before running SQL Performance Analyzer, capture the SQL workload to be used in
the performance analysis into a SQL tuning set on the production system, then
transport it to the test system where the performance analysis will be performed, as
described in "Capturing the SQL Workload (page 2-3)".

To create an analysis task using Enterprise Manager:

1. From the Performance menu, select SQL, then SQL Performance Analyzer.

If the Database Login page appears, then log in as a user with administrator
privileges.

The SQL Performance Analyzer Home page appears.

2. Under SQL Performance Analyzer Workflows, select the workflow for creating the
desired type of analysis task:

• Upgrade from 9i or 10.1

Use the upgrade from 9i or 10.1 workflow to test a database upgrade from
Oracle9i Database or Oracle Database 10g Release 1 to Oracle Database 10g
Release 2 and newer releases, as described in "Upgrading from Oracle9i
Database and Oracle Database 10g Release 1 (page 8-1)".

• Upgrade from 10.2 or 11g

Use the upgrade from 10.2 or 11g workflow to test a database upgrade from
Oracle Database 10g Release 2 or Oracle Database 11g to a later release, as
described in "Upgrading from Oracle Database 10g Release 2 and Newer
Releases (page 8-11)".

• Parameter Change

Use the parameter change workflow to determine how a database initialization
parameter change will affect SQL performance, as described in "Using the
Parameter Change Workflow (page 3-3)".

• Optimizer Statistics

Use the optimizer statistics workflow to analyze how changes to optimizer
statistics will affect SQL performance, as described in "Using the Optimizer
Statistics Workflow (page 3-7)".

• Exadata Simulation

Creating an Analysis Task Using Enterprise Manager

3-2 Oracle Database Testing Guide

Use the Exadata simulation workflow to simulate how using Oracle Exadata
will affect SQL performance, as described in "Using the Exadata Simulation
Workflow (page 3-10)".

• Guided workflow

Use the guided workflow to compare SQL performance for all other types of
system changes, as described in "Using the Guided Workflow (page 3-13)".

3.1.1 Using the Parameter Change Workflow
The parameter change workflow enables you to test the performance effect on a SQL
workload when you change the value of a single environment initialization parameter.
For example, you can compare SQL performance by setting the
OPTIMIZER_FEATURES_ENABLE initialization parameter to 10.2.0.4 and 12.1.0.1.

After you select a SQL tuning set and a comparison metric, SQL Performance
Analyzer creates a task and performs a trial with the initialization parameter set to the
original value. SQL Performance Analyzer then performs a second trial with the
parameter set to the changed value by issuing an ALTER SESSION statement. The
impact of the change is thus contained locally to the testing session. Any regression or
change in performance is reported in a system-generated SQL Performance Analyzer
report.

Note:

To create an analysis task for other types of system changes, use the guided
workflow instead, as described in "Using the Guided Workflow (page 3-13)".

To use the SQL Performance Analyzer parameter change workflow:

1. On the SQL Performance Analyzer Home page, under SQL Performance Analyzer
Workflows, click Parameter Change.

The Parameter Change page appears.

Creating an Analysis Task Using Enterprise Manager

Creating an Analysis Task 3-3

2. In the Task Name field, enter the name of the task.

3. In the SQL Tuning Set field, enter the name of the SQL tuning set that contains the
SQL workload to be analyzed.

Alternatively, click the search icon to search for a SQL tuning set using the Search
and Select: SQL Tuning Set window.

The selected SQL tuning set now appears in the SQL Tuning Set field.

4. In the Description field, optionally enter a description of the task.

5. In the Creation Method list, determine how the SQL trial is created and what
contents are generated by performing one of the following actions:

• Select Execute SQLs.

The SQL trial generates both execution plans and statistics for each SQL
statement in the SQL tuning set by actually running the SQL statements.

• Select Generate Plans.

The SQL trial invokes the optimizer to create execution plans only without
actually running the SQL statements.

6. In the Per-SQL Time Limit list, determine the time limit for SQL execution during
the trial by performing one of the following actions:

• Select 5 minutes.

The execution will run each SQL statement in the SQL tuning set up to 5
minutes and gather performance data.

Creating an Analysis Task Using Enterprise Manager

3-4 Oracle Database Testing Guide

• Select Unlimited.

The execution will run each SQL statement in the SQL tuning set to
completion and gather performance data. Collecting execution statistics
provides greater accuracy in the performance analysis but takes a longer time.
Using this setting is not recommended because the task may be stalled by one
SQL statement for a prolonged time period.

• Select Customize and enter the specified number of seconds, minutes, or
hours.

7. In the Parameter Change section, complete the following steps:

a. In the Parameter Name field, enter the name of the initialization parameter
whose value you want to modify, or click the Search icon to select an
initialization parameter using the Search and Select: Initialization Parameters
window.

b. In the Base Value field, enter the current value of the initialization parameter.

c. In the Changed Value field, enter the new value of the initialization
parameter.

8. In the Comparison Metric list, select the comparison metric to use for the analysis:

• If you selected Generate Plans in Step 5 (page 3-4), then select Optimizer
Cost.

• If you selected Execute SQLs in Step 5 (page 3-4), then select one of the
following options:

– Elapsed Time

– CPU Time

– User I/O Time

– Buffer Gets

– Physical I/O

– Optimizer Cost

– I/O Interconnect Bytes

To perform the comparison analysis by using more than one comparison metric,
perform separate comparison analyses by repeating this procedure using different
metrics.

9. In the Schedule section:

a. In the Time Zone list, select your time zone code.

b. Select Immediately to start the task now, or Later to schedule the task to start
at a time specified using the Date and Time fields.

10. Click Submit.

The SQL Performance Analyzer Home page appears.

Creating an Analysis Task Using Enterprise Manager

Creating an Analysis Task 3-5

In the SQL Performance Analyzer Tasks section, the status of this task is
displayed. To refresh the status icon, click Refresh. After the task completes, the
Status field changes to Completed.

11. In the SQL Performance Analyzer Tasks section, select the task and click the link
in the Name column.

The SQL Performance Analyzer Task page appears.

This page contains the following sections:

• SQL Tuning Set

This section summarizes information about the SQL tuning set, including its
name, owner, description, and the number of SQL statements it contains.

• SQL Trials

This section includes a table that lists the SQL trials used in the SQL
Performance Analyzer task.

• SQL Trial Comparisons

This section contains a table that lists the results of the SQL trial comparisons

12. Click the icon in the Comparison Report column.

The SQL Performance Analyzer Task Result page appears.

13. Review the results of the performance analysis, as described in "Reviewing the
SQL Performance Analyzer Report Using Oracle Enterprise Manager
(page 6-3)".

Creating an Analysis Task Using Enterprise Manager

3-6 Oracle Database Testing Guide

14. In cases when regression are identified, click the icon in the SQL Tune Report
column to view a SQL tuning report.

3.1.2 Using the Optimizer Statistics Workflow
The optimizer statistics workflow enables you to analyze the effects of optimizer
statistics changes on the performance of a SQL workload.

The

SQL Performance Analyzer tests the effect of new optimizer statistics by enabling
pending optimizer statistics in the testing session. The first SQL trial measures the
baseline SQL tuning set performance; the second SQL trial uses the pending optimizer
statistics. You can then run a comparison report for the two SQL trials.

To use the optimizer statistics workflow:

1. On the SQL Performance Analyzer Home page, under SQL Performance Analyzer
Workflows, click Optimizer Statistics.

The Optimizer Statistics page appears.

2. In the Task Name field, enter the name of the task.

3. In the SQL Tuning Set field, enter the name of the SQL tuning set that contains the
SQL workload to be analyzed.

Alternatively, click the search icon to search for a SQL tuning set using the Search
and Select: SQL Tuning Set window.

The selected SQL tuning set now appears in the SQL Tuning Set field.

4. In the Description field, optionally enter a description of the task.

5. In the Creation Method list, determine how the SQL trial is created and what
contents are generated by performing one of the following actions:

Creating an Analysis Task Using Enterprise Manager

Creating an Analysis Task 3-7

• Select Execute SQLs.

The SQL trial generates both execution plans and statistics for each SQL
statement in the SQL tuning set by actually running the SQL statements.

• Select Generate Plans.

The SQL trial invokes the optimizer to create execution plans only without
actually running the SQL statements.

6. In the Per-SQL Time Limit list, determine the time limit for SQL execution during
the trial by performing one of the following actions:

• Select 5 minutes.

The execution will run each SQL statement in the SQL tuning set up to 5
minutes and gather performance data.

• Select Unlimited.

The execution will run each SQL statement in the SQL tuning set to
completion and gather performance data. Collecting execution statistics
provides greater accuracy in the performance analysis but takes a longer time.
Using this setting is not recommended because the task may be stalled by one
SQL statement for a prolonged time period.

• Select Customize and enter the specified number of seconds, minutes, or
hours.

7. In the Comparison Metric list, select the comparison metric to use for the
comparison analysis:

• Elapsed Time

• CPU Time

• User I/O Time

• Buffer Gets

• Physical I/O

• Optimizer Cost

• I/O Interconnect Bytes

Optimizer Cost is the only comparison metric available if you chose to generate
execution plans only in the SQL trials.

To perform the comparison analysis by using more than one comparison metric,
perform separate comparison analyses by repeating this procedure with different
metrics.

8. Ensure that pending optimizer statistics are collected, and select Pending
optimizer statistics collected.

9. In the Schedule section:

a. In the Time Zone list, select your time zone code.

b. Select Immediately to start the task now, or Later to schedule the task to start
at a time specified using the Date and Time fields.

Creating an Analysis Task Using Enterprise Manager

3-8 Oracle Database Testing Guide

10. Click Submit.

The SQL Performance Analyzer Home page appears.

In the SQL Performance Analyzer Tasks section, the status of this task is
displayed. To refresh the status icon, click Refresh. After the task completes, the
Status field changes to Completed.

11. In the SQL Performance Analyzer Tasks section, select the task and click the link
in the Name column.

The SQL Performance Analyzer Task page appears.

This page contains the following sections:

• SQL Tuning Set

This section summarizes information about the SQL tuning set, including its
name, owner, description, and the number of SQL statements it contains.

• SQL Trials

This section includes a table that lists the SQL trials used in the SQL
Performance Analyzer task.

• SQL Trial Comparisons

This section contains a table that lists the results of the SQL trial comparisons

12. Click the icon in the Comparison Report column.

The SQL Performance Analyzer Task Result page appears.

13. Review the results of the performance analysis, as described in "Reviewing the
SQL Performance Analyzer Report Using Oracle Enterprise Manager
(page 6-3)".

Creating an Analysis Task Using Enterprise Manager

Creating an Analysis Task 3-9

Any regressions found in performance can be fixed using SQL plan baselines and
the SQL Tuning Advisor. If the pending optimizer statistics produce satisfactory
performance, you can publish for use.

3.1.3 Using the Exadata Simulation Workflow
The Exadata simulation workflow enables you to simulate the effects of an Exadata
Storage Server installation on the performance of a SQL workload.

Oracle Exadata provides extremely large I/O bandwidth coupled with a capability to
offload SQL processing from the database to storage. This allows Oracle Database to
significantly reduce the volume of data sent through the I/O interconnect, while at the
same time offloading CPU resources to the Exadata storage cells.

SQL Performance Analyzer can analyze the effectiveness of Exadata SQL offload
processing by simulating an Exadata Storage Server installation and measuring the
reduction in I/O interconnect usage for the SQL workload.

Running the Exadata simulation does not require any hardware or configuration
changes to your system. After you select a SQL tuning set, SQL Performance Analyzer
creates a task and performs an initial trial with the Exadata Storage Server simulation
disabled. SQL Performance Analyzer then performs a second trial with the Exadata
Storage Server simulation enabled. SQL Performance Analyzer then compares the two
trials using the I/O Interconnect Bytes comparison metric and generates a SQL
Performance Analyzer report, which estimates the amount of data that would not
need to be sent from the Exadata storage cells to the database if Oracle Exadata is
being used. In both SQL trials, the SQL statements are executed to completion and I/O
interconnect bytes measurements are taken as the actual and simulated Exadata values
for the first and second trials, respectively. The measured change in I/O interconnect
bytes provides a good estimate of how much filtering can be performed in the Exadata
storage cells and, in turn, the amount of CPU that normally would be used to process
this data, but now can be offloaded from the database.

Note:

Using the Exadata simulation will not result in any plan changes. Execution
plans do not change in an Exadata Storage Server installation because the
simulation focuses on measuring the improvement in I/O interconnect usage.
Moreover, I/O interconnect bytes will not increase, except when data
compression is used (see next note), because Oracle Exadata will only decrease
the amount of data sent to the database.

Note:

Because I/O interconnect bytes is the only metric used to measure the
performance change impact of using an Exadata Storage Server installation, it
will not work properly if Oracle Exadata is used with data compression. Since
Exadata storage cells also decompress data, the I/O interconnect bytes with
Oracle Exadata (or the second SQL trial) of a SQL statement may be greater
than the I/O interconnect bytes without Oracle Exadata (or the first SQL trial)
where the data is compressed. This comparison will be misleading because the
SQL statement will be reported as a regression; when in fact, it is not.

Creating an Analysis Task Using Enterprise Manager

3-10 Oracle Database Testing Guide

Note:

The Exadata simulation workflow is used to simulate an Exadata Storage
Server installation on non-Exadata hardware. To test changes on Exadata
hardware, use the standard SQL Performance Analyzer workflows.

Note:

The Exadata simulation is supported for DSS and data warehouse workloads
only.

To use the SQL Performance Analyzer Exadata simulation workflow:

1. On the SQL Performance Analyzer Home page, under SQL Performance Analyzer
Workflows, click Exadata Simulation.

The Exadata Simulation page appears.

2. In the Task Name field, enter the name of the task.

3. In the SQL Tuning Set field, enter the name of the SQL tuning set that contains the
SQL workload to be analyzed.

Alternatively, click the search icon to search for a SQL tuning set using the Search
and Select: SQL Tuning Set window.

The selected SQL tuning set now appears in the SQL Tuning Set field.

4. In the Description field, optionally enter a description of the task.

5. In the Per-SQL Time Limit list, determine the time limit for SQL execution during
the trial by performing one of the following actions:

• Select 5 minutes.

Creating an Analysis Task Using Enterprise Manager

Creating an Analysis Task 3-11

The execution will run each SQL statement in the SQL tuning set up to 5
minutes and gather performance data.

• Select Unlimited.

The execution will run each SQL statement in the SQL tuning set to
completion and gather performance data. Collecting execution statistics
provides greater accuracy in the performance analysis but takes a longer time.
Using this setting is not recommended because the task may be stalled by one
SQL statement for a prolonged time period.

• Select Customize and enter the specified number of seconds, minutes, or
hours.

6. In the Schedule section:

a. In the Time Zone list, select your time zone code.

b. Select Immediately to start the task now, or Later to schedule the task to start
at a time specified using the Date and Time fields.

7. Click Submit.

The SQL Performance Analyzer Home page appears.

In the SQL Performance Analyzer Tasks section, the status of this task is
displayed. To refresh the status icon, click Refresh. After the task completes, the
Status field changes to Completed.

8. In the SQL Performance Analyzer Tasks section, select the task and click the link
in the Name column.

The SQL Performance Analyzer Task page appears.

This page contains the following sections:

• SQL Tuning Set

Creating an Analysis Task Using Enterprise Manager

3-12 Oracle Database Testing Guide

This section summarizes information about the SQL tuning set, including its
name, owner, description, and the number of SQL statements it contains.

• SQL Trials

This section includes a table that lists the SQL trials used in the SQL
Performance Analyzer task.

• SQL Trial Comparisons

This section contains a table that lists the results of the SQL trial comparisons

9. Click the icon in the Comparison Report column.

The SQL Performance Analyzer Task Result page appears.

10. Review the results of the performance analysis, as described in "Reviewing the
SQL Performance Analyzer Report Using Oracle Enterprise Manager
(page 6-3)".

Any SQL performance improvement with the Exadata simulation between the
first and second trials is captured in the report. In general, you can expect a
greater impact if the SQL workload contains queries that scan a large number of
rows or a small subset of table columns. Conversely, a SQL workload that queries
indexed tables or tables with fewer rows will result in a lesser impact from the
Exadata simulation.

3.1.4 Using the Guided Workflow
The guided workflow enables you to test the performance effect of any types of system
changes on a SQL workload. See "SQL Performance Analyzer (page 1-1)" for a list of
system changes that can impact SQL performance.

Note:

To create an analysis task to test database initialization parameter changes, use
the simplified parameter change workflow instead, as described in "Using the
Parameter Change Workflow (page 3-3)".

To use the SQL Performance Analyzer task guided workflow:

1. On the SQL Performance Analyzer Home page, under SQL Performance Analyzer
Workflows, click Guided Workflow.

The Guided Workflow page appears.

The guided workflow enables you to test the performance effect on a SQL
workload when you perform any type of system changes, as described in "SQL
Performance Analyzer (page 1-1)".

This page lists the required steps in the SQL Performance Analyzer task in
sequential order. Each step must be completed in the order displayed before the
next step can begin.

Creating an Analysis Task Using Enterprise Manager

Creating an Analysis Task 3-13

2. On the Guided Workflow page, click the Execute icon for the Step 1: Create SQL
Performance Analyzer Task based on SQL Tuning Set.

The Create SQL Performance Analyzer Task page appears.

3. In the Name field, enter the name of the task.

4. In the Description field, optionally enter a description of the task.

5. Under SQL Tuning Set, in the Name field, enter the name the SQL tuning set that
contains the SQL workload to be analyzed.

Alternatively, click the search icon to select a SQL tuning set from the Search and
Select: SQL Tuning Set window.

6. Click Create.

The Guided Workflow page appears.

The Status icon of this step has changed to a check mark and the Execute icon for
the next step is now enabled.

7. Once the analysis task is created, you can build the pre-change performance data
by executing the SQL statements stored in the SQL tuning set, as described in
Creating a Pre-Change SQL Trial (page 4-1).

3.2 Creating an Analysis Task Using APIs
This section describes how to create a SQL Performance Analyzer task by using the
DBMS_SQLPA.CREATE_ANALYSIS_TASK function. A task is a database container for
SQL Performance Analyzer execution inputs and results.

Creating an Analysis Task Using APIs

3-14 Oracle Database Testing Guide

Before proceeding, capture the SQL workload to be used in the performance analysis
into a SQL tuning set on the production system, then transport it to the test system
where the performance analysis will be performed, as described in "Capturing the SQL
Workload (page 2-3)".

To create an analysis task:

• Call the CREATE_ANALYSIS_TASK function using the following parameters:

– Set task_name to specify an optional name for the SQL Performance
Analyzer task.

– Set sqlset_name to the name of the SQL tuning set.

– Set sqlset_owner to the owner of the SQL tuning set. The default is the
current schema owner.

– Set basic_filter to the SQL predicate used to filter the SQL from the SQL
tuning set.

– Set order_by to specify the order in which the SQL statements will be
executed.

You can use this parameter to ensure that the more important SQL statements
will be processed and not skipped if the time limit is reached.

– Set top_sql to consider only the top number of SQL statements after
filtering and ranking.

The following example illustrates a function call:

VARIABLE t_name VARCHAR2(100);
EXEC :t_name := DBMS_SQLPA.CREATE_ANALYSIS_TASK(sqlset_name => 'my_sts', -
 task_name => 'my_spa_task');

Once the analysis task is created, you can build the pre-change performance data by
executing the SQL statements stored in the SQL tuning set, as described in Creating a
Pre-Change SQL Trial (page 4-1).

See Also:

• Oracle Database PL/SQL Packages and Types Reference to learn more about
the DBMS_SQLPA.CREATE_ANALYSIS_TASK function

3.3 Configuring an Analysis Task Using APIs
This section describes how to configure a SQL Performance Analyzer task once it has
been created. You can configure an analysis task by setting its parameters using the
DBMS_SQLPA.SET_ANALYSIS_TASK_PARAMETER procedure.

This section contains the following topics:

• Configuring the Execution Plan Comparison Method of an Analysis Task Using
APIs (page 3-16)

• Configuring an Analysis Task for Exadata Simulation Using APIs (page 3-16)

• Remapping Multitenant Container Database Identifiers in an Analysis Task Using
APIs (page 3-17)

Configuring an Analysis Task Using APIs

Creating an Analysis Task 3-15

• Configuring Trigger Execution in an Analysis Task (page 3-18)

• Configuring a Date to be Returned by Calls in an Analysis Task (page 3-19)

• Configuring the Number of Rows to Fetch for an Analysis Task (page 3-20)

3.3.1 Configuring the Execution Plan Comparison Method of an Analysis Task Using
APIs

You can configure the comparison method that determines when a SQL Performance
Analyzer task performs line-by-line comparison of execution plans. By default, a SQL
Performance Analyzer task performs line-by-line comparison of execution plans only
if the plan hash value is unknown.

To configure the execution plan comparison method of an analysis task:

• Use the SET_ANALYSIS_TASK_PARAMETER procedure to set the value of the
PLAN_LINES_COMPARISON parameter.

Table 3-1 (page 3-16) lists the valid values for the PLAN_LINES_COMPARISON
parameter.

Table 3-1 SQL Performance Analyzer Task Execution Plan Methods

Method Description

ALWAYS The analysis task always performs a line-by-line comparison of execution
plans.

AUTO The analysis task performs a line-by-line comparison of execution plans
only if the computation of the plan hash value for the first SQL trial has
changed or the second SQL trial is unavailable.

NONE The analysis task performs a line-by-line comparison of execution plans
only if the plan hash value is unknown. This is the default value.

The following example shows how to set the execution plan method for an analysis
task to AUTO:

EXEC DBMS_SQLPA.SET_ANALYSIS_TASK_PARAMETER(task_name => 'my_spa_task', -
 parameter => 'PLAN_LINES_COMPARISON', -
 value => 'AUTO');

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS_SQLPA.SET_ANALYSIS_TASK_PARAMETER procedure

3.3.2 Configuring an Analysis Task for Exadata Simulation Using APIs
You can configure a SQL Performance Analyzer to run the Oracle Exadata simulation.
For information about how SQL Performance Analyzer simulates the effects of an
Exadata Storage Server installation on the performance of a SQL workload, see "Using
the Exadata Simulation Workflow (page 3-10)".

Configuring an Analysis Task Using APIs

3-16 Oracle Database Testing Guide

To enable Exadata simulation for an analysis task:

• Call the SET_ANALYSIS_TASK_PARAMETER procedure before creating the post-
change SQL trial, as shown in the following example:

EXEC DBMS_SQLPA.SET_ANALYSIS_TASK_PARAMETER(task_name => 'my_spa_task', -
 parameter => 'CELL_SIMULATION_ENABLED', -
 value => 'TRUE');

This will enable Exadata simulation when you create the post-change SQL trial,
which can then be compared to the pre-change SQL trial that was created with
Exadata simulation disabled.

Alternatively, you can run the Exadata simulation using the tcellsim.sql script.

To run the Exadata simulation using tcellsim.sql:

1. At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/tcellsim.sql

2. Enter the name and owner of the SQL tuning set to use:

Enter value for sts_name: MY_STS
Enter value for sts_owner: IMMCHAN

The script then runs the following four steps automatically:

• Creates a SQL Performance Analyzer task

• Test executes SQL statements with Exadata simulation disabled

• Test executes SQL statements with Exadata simulation enabled

• Compares performance and generates analysis report

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS_SQLPA.SET_ANALYSIS_TASK_PARAMETER procedure

3.3.3 Remapping Multitenant Container Database Identifiers in an Analysis Task Using
APIs

You can store captured SQL statements in a SQL tuning set, and use it as an input
source when creating a SQL Performance Analyzer task. SQL Performance Analyzer
then uses the SQL tuning set as the source for test executing or generating execution
plans for SQL trials.

If you use a SQL tuning set that was transported from a non-CDB to a multitenant
container database (CDB) as the input source, the CDB identifiers of the SQL
statements in the SQL tuning set must be remapped to make the STS usable in the
CDB. Remapping CDB identifiers associates each SQL statement in the SQL tuning set
with a CDB identifier that can be remapped to the corresponding pluggable databases
(PDBs) within the CDB.

Typically, CDB identifiers should be remapped when the SQL tuning set is
transported from a non-CDB to a CDB. In this case, you can simply use the SQL tuning

Configuring an Analysis Task Using APIs

Creating an Analysis Task 3-17

set as an input source for SQL Performance Analyzer. However, if you are using a
SQL tuning set whose CDB identifiers have not been remapped, you can specify the
remapping as a SQL Performance Analyzer task property.

To remap CDB identifiers for an analysis task:

• Use the SET_ANALYSIS_TASK_PARAMETER procedure, as shown in the
following example:

EXEC DBMS_SQLPA.SET_ANALYSIS_TASK_PARAMETER(task_name => 'non_cdb_spa1', -
 parameter => 'CON_DBID_MAPPING', -
 value => '1234:5678,1357:2468');

In this example, the CDB identifiers 1234 and 1357 are remapped to 5678 and
2468, respectively.

After the CDB identifiers are remapped, SQL Performance Analyzer uses the new
CDB identifier when it finds a match for the old CDB identifier, and executes the SQL
statements in the appropriate PDB within the CDB.

See Also:

• Oracle Database SQL Tuning Guide for information about transporting SQL
tuning sets

• Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS_SQLPA.SET_ANALYSIS_TASK_PARAMETER procedure

3.3.4 Configuring Trigger Execution in an Analysis Task
You can configure whether or not triggers are executed in an analysis task. By default,
triggers are executed by SQL Performance Analyzer.

To configure trigger execution in an analysis task:

• Use the SET_ANALYSIS_TASK_PARAMETER procedure to set the value of the
EXECUTE_TRIGGERS parameter.

Table 3-2 (page 3-18) lists the valid values for the EXECUTE_TRIGGERS
parameter.

Table 3-2 Valid Values for the EXECUTE_TRIGGERS Parameter

Value Description

FALSE Triggers are not executed by SQL
Performance Analyzer, even in the
EXECUTE_FULLDML mode of TEST
EXECUTE. This is the default value.

TRUE All triggers are executed by SQL Performance
Analyzer.

The following example shows how to set the value of the EXECUTE_TRIGGERS
parameter to FALSE, ensuring that triggers are not executed by SQL Performance
Analyzer:

Configuring an Analysis Task Using APIs

3-18 Oracle Database Testing Guide

EXEC DBMS_SQLPA.SET_ANALYSIS_TASK_PARAMETER(task_name => 'my_spa_task', -
 parameter => 'EXECUTE_TRIGGERS', -
 value => 'FALSE');

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS_SQLPA.SET_ANALYSIS_TASK_PARAMETER procedure

3.3.5 Configuring a Date to be Returned by Calls in an Analysis Task
You can configure how SQL statements that refer to SYSDATE in an analysis task are
handled.

When you set the REPLACE_SYSDATE_WITH parameter, all calls to SYSDATE within
the task execution return a date specified by the parameter. This can be used when the
input to a SPA task is a SQL tuning set (STS).

To configure the date to be returned by calls to SYSDATE in an analysis task:

• Use the SET_ANALYSIS_TASK_PARAMETER procedure to set the value of the
REPLACE_SYSDATE_WITH parameter.

Table 3-3 (page 3-19) lists the valid values for the REPLACE_SYSDATE_WITH
parameter.

Table 3-3 Valid Values for the REPLACE_SYSDATE_WITH Parameter

Value Description

CURRENT_SYSDATE All calls to SYSDATE within the task
execution return the current SYSDATE. This
is the default.

SQLSET_SYSDATE For every SQL statement that has a SYSDATE
call, SQL Performance Analyzer will replace
its value with the value in the
LAST_EXEC_START_TIME column of the
DBA_SQLSET_STATEMENTS view for that
SQL statement.

Note:

The setting for this parameter does not affect calls to SYSDATE outside of the
SQL Performance Analyzer task execution.

The following example shows how to set the value of the REPLACE_SYSDATE_WITH
parameter to SQLSET_SYSDATE, ensuring that calls to SYDATE within the task
execution return the SYSDATE in the SQL tuning set.

EXEC DBMS_SQLPA.SET_ANALYSIS_TASK_PARAMETER(task_name => 'my_spa_task', -
 parameter => 'REPLACE_SYSDATE_WITH', -
 value => 'SQLSET_SYSDATE');

Configuring an Analysis Task Using APIs

Creating an Analysis Task 3-19

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS_SQLPA.SET_ANALYSIS_TASK_PARAMETER procedure

• Oracle Database Reference for more information about the
DBA_SQLSET_STATEMENTS view.

3.3.6 Configuring the Number of Rows to Fetch for an Analysis Task
You can configure how many rows are fetched for the SQL statements in an analysis
task.

To configure the number of rows to fetch in an analysis task:

• Use the SET_ANALYSIS_TASK_PARAMETER procedure to set the value of the
NUM_ROWS_TO_FETCH parameter.

Table 3-4 (page 3-20) lists the valid values for the NUM_ROWS_TO_FETCH
parameter.

Table 3-4 Valid Values for the NUM_ROWS_TO_FETCH Parameter

Value Description

ALL_ROWS Fetches all the rows for the SQL. This is the
default value.

AUTO The number of result rows is determined
using the value of the OPTIMIZER_MODE
parameter in the optimizer environment
captured in the SQL tuning set. If the value of
OPTIMIZER_MODE was ALL_ROWS, then all
result rows will be fetched. If its value was
FIRST_ROWS_n, then n result rows will be
fetched by SQL Performance Analyzer.

AVERAGE The number of result rows is calculated as the
ratio of total rows processed and total
executions for each SQL in the SQL tuning
set.

A valid number The number of result rows will be equal to
the specified value, or fewer, if there were
fewer rows to fetch.

The following example shows how to set the value of the NUM_ROWS_TO_FETCH
parameter to ALL_ROWS, so that all the rows for the SQL are fetched.

EXEC DBMS_SQLPA.SET_ANALYSIS_TASK_PARAMETER(task_name => 'my_spa_task', -
 parameter => 'NUM_ROWS_TO_FETCH', -
 value => 'ALL_ROWS');

Configuring an Analysis Task Using APIs

3-20 Oracle Database Testing Guide

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS_SQLPA.SET_ANALYSIS_TASK_PARAMETER procedure

• Oracle Database Reference for more information about the
OPTIMIZER_MODE database initialization parameter

Configuring an Analysis Task Using APIs

Creating an Analysis Task 3-21

Configuring an Analysis Task Using APIs

3-22 Testing Guide

4
Creating a Pre-Change SQL Trial

After creating a SQL Performance Analyzer task and selecting a SQL tuning set as the
input source, you need to establish the initial environment on the test system.
Establishing the database environment on the test system involves manually making
any necessary environmental changes that affect SQL optimization and performance.
These changes may include changing initialization parameters, gathering or setting
optimizer statistics, and creating indexes. It is recommended that you build a test
system that is as similar to the production system as possible. The dedicated
workflows in Enterprise Manager simplifies this process by creating both SQL trials
automatically and performing the change restricted to the testing session.

Note:

You can optionally run SQL trials on a remote system by providing access to a
public database link. When conducting remote SQL trials, the database
version of the remote database where the SQL statements are executed must
be less than or equal to the database version of the database to which it
connects. Starting with Oracle Database release 11.2.0.2, the remote database
can be a read-only database, such as an Oracle Active Data Guard instance.

Once the environment on the test system is properly configured, you can build the
pre-change version of performance data before performing the system change. You
can build SQL trials using SQL Performance Analyzer by using one of the following
methods:

• Executing the SQL statements in the workload

• Generating execution plans for the SQL statements in the workload

• Loading performance data and execution plans from a SQL tuning set (APIs only)

This chapter describes how to create the pre-change SQL trial and contains the
following topics:

• Creating a Pre-Change SQL Trial Using Enterprise Manager (page 4-2)

• Creating a Pre-Change SQL Trial Using APIs (page 4-4)

Note:

The primary interface for creating a pre-change SQL trial is Oracle Enterprise
Manager. If for some reason Oracle Enterprise Manager is unavailable, you
can create a pre-change SQL trial using the DBMS_SQLPA PL/SQL package.

Creating a Pre-Change SQL Trial 4-1

See Also:

• "Setting Up the Test System (page 2-4)"

• "Measuring the Pre-Change SQL Performance (page 2-5)"

4.1 Creating a Pre-Change SQL Trial Using Enterprise Manager
This section describes how to collect the pre-change SQL performance data using
Oracle Enterprise Manager.

Before creating a pre-change SQL trial, you need to create a SQL Performance
Analyzer task, as described in Creating an Analysis Task (page 3-1).

To create a pre-change SQL trial using Enterprise Manager:

1. On the Guided Workflow page, click the Execute icon for the Create SQL Trial in
Initial Environment step.

The Create SQL Trial page appears. A summary of the selected SQL tuning set
containing the SQL workload is displayed.

2. In the SQL Trial Name field, enter the name of the SQL trial.

3. In the SQL Trial Description field, enter a description of the SQL trial.

4. In the Creation Method list, determine how the SQL trial is created and what
contents are generated by performing one of the following actions:

• Select Execute SQLs Locally.

The SQL trial generates both execution plans and statistics for each SQL
statement in the SQL tuning set by actually running the SQL statements
locally on the test system.

• Select Execute SQLs Remotely.

The SQL trial generates both execution plans and statistics for each SQL
statement in the SQL tuning set by actually running the SQL statements
remotely on another test system over a public database link.

• Select Generate Plans Locally.

Creating a Pre-Change SQL Trial Using Enterprise Manager

4-2 Oracle Database Testing Guide

The SQL trial invokes the optimizer to create execution plans locally on the
test system, after taking bind values and optimizer configuration into
account, without actually running the SQL statements.

• Select Generate Plans Remotely.

The SQL trial invokes the optimizer to create execution plans remotely on
another test system, after taking bind values and optimizer configuration into
account, over a public database link without actually running the SQL
statements.

• Select Build From SQL Tuning Set.

The SQL trial copies the execution plans and statistics from the SQL tuning
set directly into the trial.

For more information about the different methods, see "Measuring the Pre-
Change SQL Performance (page 2-5)".

5. In the Per-SQL Time Limit list, determine the time limit for SQL execution during
the trial by performing one of the following actions:

• Select 5 minutes.

The execution will run each SQL statement in the SQL tuning set up to 5
minutes and gather performance data.

• Select Unlimited.

The execution will run each SQL statement in the SQL tuning set to
completion and gather performance data. Collecting execution statistics
provides greater accuracy in the performance analysis but takes a longer time.
Using this setting is not recommended because the task may be stalled by one
SQL statement for a prolonged period.

• Select Customize and enter the specified number of seconds, minutes, or
hours.

6. Ensure that the database environment on the test system matches the production
environment as closely as possible, and select Trial environment established.

7. In the Schedule section:

a. In the Time Zone list, select your time zone code.

b. Select Immediately to start the task now, or Later to schedule the task to start
at a time specified using the Date and Time fields.

8. Click Submit.

The Guided Workflow page appears when the execution begins.

The status icon of this step changes to a clock while the execution is in progress.
To refresh the status icon, click Refresh. Depending on the options selected and
the size of the SQL workload, the execution may take a long time to complete.
After the execution is completed, the Status icon will change to a check mark and
the Execute icon for the next step is enabled.

9. Once the pre-change performance data is built, you can make the system change
and build the post-change performance data by re-executing the SQL statements

Creating a Pre-Change SQL Trial Using Enterprise Manager

Creating a Pre-Change SQL Trial 4-3

in the SQL tuning set on the post-change test system, as described in Creating a
Post-Change SQL Trial (page 5-1).

4.2 Creating a Pre-Change SQL Trial Using APIs
This section describes how to build the pre-change performance data by using the
DBMS_SQLPA package.

Before creating a pre-change SQL trial, you need to create a SQL Performance
Analyzer task, as described in Creating an Analysis Task (page 3-1).

To create a pre-change SQL trial:

• Call the EXECUTE_ANALYSIS_TASK procedure using the following parameters:

– Set the task_name parameter to the name of the SQL Performance Analyzer
task that you want to execute.

– Set the execution_type parameter in one of the following ways:

* Set to EXPLAIN PLAN to generate execution plans for all SQL statements
in the SQL tuning set without executing them.

* Set to TEST EXECUTE (recommended) to execute all statements in the
SQL tuning set and generate their execution plans and statistics. When
TEST EXECUTE is specified, the procedure generates execution plans
and execution statistics. The execution statistics enable SQL Performance
Analyzer to identify SQL statements that have improved or regressed.
Collecting execution statistics in addition to generating execution plans
provides greater accuracy in the performance analysis, but takes longer.

* Set to CONVERT SQLSET to refer to a SQL tuning set for the execution
statistics and plans for the SQL trial. Values for the execution parameters
SQLSET_NAME and SQLSET_OWNER should also be specified.

– Specify a name to identify the execution using the execution_name
parameter. If not specified, then SQL Performance Analyzer automatically
generates a name for the task execution.

– Specify execution parameters using the execution_params parameters.
The execution_params parameters are specified as (name, value) pairs for
the specified execution. For example, you can set the following execution
parameters:

* The time_limit parameter specifies the global time limit to process all
SQL statements in a SQL tuning set before timing out.

* The local_time_limit parameter specifies the time limit to process
each SQL statement in a SQL tuning set before timing out.

* To perform a remote test execute, set the DATABASE_LINK task
parameter to the global name of a public database link connecting to a
user with the EXECUTE privilege for the DBMS_SQLPA package and the
ADVISOR privilege on the test system.

* To fully execute DML statements—including acquiring row locks and
modifying row—set the EXECUTE_FULLDML parameter to TRUE. SQL
Performance Analyzer will issue a rollback after executing the DML

Creating a Pre-Change SQL Trial Using APIs

4-4 Oracle Database Testing Guide

statements to prevent persistent changes from being made. The default
value for this parameter is FALSE, which executes only the query portion
of the DML statement without modifying the data.

* To restore the relevant captured init.ora settings during a test execute,
set the APPLY_CAPTURED_COMPILENV parameter to TRUE. This is not
the default behavior because typically you are running SQL trials to test
changes when changing the environment. However, this method may be
used in cases when the init.ora settings are not being changed (such
as creating an index). This method is not supported for remote SQL trials.

The following example illustrates a function call made before a system change:

EXEC DBMS_SQLPA.EXECUTE_ANALYSIS_TASK(task_name => 'my_spa_task', -
 execution_type => 'TEST EXECUTE', -
 execution_name => 'my_exec_BEFORE_change');

Once the pre-change performance data is built, you can make the system change and
build the post-change performance data by re-executing the SQL statements in the
SQL tuning set on the post-change test system, as described in Creating a Post-Change
SQL Trial (page 5-1).

See Also:

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_SQLPA.EXECUTE_ANALYSIS_TASK function

Creating a Pre-Change SQL Trial Using APIs

Creating a Pre-Change SQL Trial 4-5

Creating a Pre-Change SQL Trial Using APIs

4-6 Testing Guide

5
Creating a Post-Change SQL Trial

After computing the pre-change SQL performance data, you can perform the system
change on the test system. Before making the system change, ensure that you have
executed the SQL workload in the initial environment to generate the pre-change
performance data. For example, if you are testing how changing a database
initialization parameter will affect SQL performance, execute the SQL workload once
before changing the database initialization parameter to a new value. Depending on
the type of change you are making, it may be necessary to reconfigure the
environment on the test system to match the new environment for which you want to
perform SQL performance analysis.

Note:

You can optionally run SQL trials on a remote system by providing access to a
public database link. When conducting remote SQL trials, the database
version of the remote database where the SQL statements are executed must
be less than or equal to the database version of the database to which it
connects. Starting with Oracle Database release 11.2.0.2, the remote database
can be a read-only database, such as an Oracle Active Data Guard instance.

"SQL Performance Analyzer (page 1-1)" lists examples of possible system changes that
can be analyzed using SQL Performance Analyzer. For example, you may want to
determine how a database initialization parameter change or database upgrade will
affect SQL performance. You may also decide to change the system based on
recommendations from an advisor such as Automatic Database Diagnostic Monitor
(ADDM), SQL Tuning Advisor, or SQL Access Advisor.

After you have made the system change, you can build the post-change version of
performance data by executing the SQL workload again. SQL Performance Analyzer
will store the results from executing the SQL statements in a post-change SQL trial.

This section describes how to create the post-change SQL trial and contains the
following topics:

• Creating a Post-Change SQL Trial Using Oracle Enterprise Manager (page 5-2)

• Creating a Post-Change SQL Trial Using APIs (page 5-3)

Note:

The primary interface for creating a post-change SQL trial is Oracle Enterprise
Manager. If for some reason Oracle Enterprise Manager is unavailable, you
can create a post-change SQL trial using the DBMS_SQLPA PL/SQL package.

Creating a Post-Change SQL Trial 5-1

See Also:

• "Making a System Change (page 2-7)"

• "Measuring the Post-Change SQL Performance (page 2-7)"

5.1 Creating a Post-Change SQL Trial Using Oracle Enterprise Manager
This section describes how to collect the post-change SQL performance data using
Oracle Enterprise Manager.

Before making the system change creating a post-change SQL trial, you need to create
a pre-change SQL trial, as described in Creating a Pre-Change SQL Trial (page 4-1).

To create a post-change SQL trial using Enterprise Manager:

1. On the Guided Workflow page, click the Execute icon for the Create SQL Trial in
Changed Environment step.

The Create SQL Trial page appears.

2. In the SQL Trial Name field, enter the name of the SQL trial.

3. In the SQL Trial Description field, enter a description of the SQL trial.

4. In the Creation Method list, determine how the SQL trial is created and what
contents are generated by performing one of the following actions:

• Select Execute SQLs Locally.

The SQL trial generates both execution plans and statistics for each SQL
statement in the SQL tuning set by actually running the SQL statements
locally on the test system.

• Select Execute SQLs Remotely.

The SQL trial generates both execution plans and statistics for each SQL
statement in the SQL tuning set by actually running the SQL statements
remotely on another test system over a public database link.

• Select Generate Plans Locally.

The SQL trial invokes the optimizer to create execution plans locally on the
test system without actually running the SQL statements.

• Select Generate Plans Remotely.

The SQL trial invokes the optimizer to create execution plans remotely on
another test system over a public database link without actually running the
SQL statements.

For each of these creation methods, the application schema and data should
already exist on the local or remote test system.

5. In the Per-SQL Time Limit list, determine the time limit for SQL execution during
the trial by performing one of the following actions:

• Select 5 minutes.

Creating a Post-Change SQL Trial Using Oracle Enterprise Manager

5-2 Oracle Database Testing Guide

The execution will run each SQL statement in the SQL tuning set up to 5
minutes and gather performance data.

• Select Unlimited.

The execution will run each SQL statement in the SQL tuning set to
completion and gather performance data. Collecting execution statistics
provides greater accuracy in the performance analysis but takes a longer time.
Using this setting is not recommended because the task may be stalled by one
SQL statement for a prolonged time period.

• Select Customize and enter the specified number of seconds, minutes, or
hours.

6. Ensure that the system change you are testing has been performed on the test
system, and select Trial environment established.

7. In the Schedule section:

a. In the Time Zone list, select your time zone code.

b. Select Immediately to start the task now, or Later to schedule the task to start
at a time specified using the Date and Time fields.

8. Click Submit.

The Guided Workflow page appears when the execution begins.

The status icon of this step changes to a clock while the execution is in progress.
To refresh the status icon, click Refresh. Depending on the options selected and
the size of the SQL workload, the execution may take a long time to complete.
After the execution is completed, the Status icon will change to a check mark and
the Execute icon for the next step is enabled.

9. Once the post-change performance data is built, you can compare the pre-change
SQL trial to the post-change SQL trial by running a comparison analysis, as
described in Comparing SQL Trials (page 6-1).

5.2 Creating a Post-Change SQL Trial Using APIs
This section describes how to collect the post-change SQL performance data using the
DBMS_SQLPA package.

Before making the system change creating a post-change SQL trial, you need to create
a pre-change SQL trial, as described in Creating a Pre-Change SQL Trial (page 4-1).

Note:

If you are running the SQL statements remotely on another test system over a
database link, the remote user calling this procedure needs to have the
EXECUTE privilege for the DBMS_SQLPA package.

To create a post-change SQL trial:

• Call the EXECUTE_ANALYSIS_TASK procedure using the parameters described in
"Creating a Pre-Change SQL Trial Using APIs (page 4-4)".

Creating a Post-Change SQL Trial Using APIs

Creating a Post-Change SQL Trial 5-3

Be sure to specify a different value for the execution_name parameter. It is also
highly recommended that you create the post-change SQL trial using the same
method as the pre-change SQL trial by using the same value for the
execution_type parameter.

Note:

If you want to run an Oracle Exadata simulation, you should first set the
CELL_SIMULATION_ENABLED task parameter to TRUE.

The following example illustrates a function call made after a system change:

EXEC DBMS_SQLPA.EXECUTE_ANALYSIS_TASK(task_name => 'my_spa_task', -
 execution_type => 'TEST EXECUTE', -
 execution_name => 'my_exec_AFTER_change');

Once the post-change performance data is built, you can compare the pre-change SQL
trial to the post-change SQL trial by running a comparison analysis, as described in
Comparing SQL Trials (page 6-1).

See Also:

• "Configuring an Analysis Task for Exadata Simulation Using APIs
(page 3-16)"

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_SQLPA.EXECUTE_ANALYSIS_TASK function

Creating a Post-Change SQL Trial Using APIs

5-4 Oracle Database Testing Guide

6
Comparing SQL Trials

After the post-change SQL performance data is built, you can compare the
performance data collected in the pre-change SQL trial to the post-change SQL trial by
running a comparison analysis using SQL Performance Analyzer. After the
comparison analysis is completed, you can generate a report to identify the SQL
statements that have improved, remained unchanged, or regressed due to the system
change. The SQL Performance Analyzer report calculates two chief impact
measurements for the change in performance of each SQL statement:

• Impact on workload

This represents the percentage of impact that this change to the SQL statement has
on the cumulative execution time of the workload, after accounting for execution
frequency. For example, a change that causes a SQL statement's cumulative
execution time to improve from 101 seconds to 1 second—where the rest of the
workload had a total execution time of 99 seconds before the change—would have
a 50% (2x) value for this measurement.

• Impact on SQL

This represents the percentage of impact that this change to the SQL statement has
on the SQL statement's response time. For example, a change that causes a SQL
statement's response time to improve from 10 seconds to 1 second will have a 90%
(10x) value for this measurement.

This chapter describes how to compare and analyze the performance data from the
pre-change and post-change SQL trials and contains the following topics:

• Comparing SQL Trials Using Oracle Enterprise Manager (page 6-1)

• Comparing SQL Trials Using APIs (page 6-10)

Note:

The primary interface for comparing SQL trials is Oracle Enterprise Manager.
If for some reason Oracle Enterprise Manager is unavailable, you can compare
SQL trials using the DBMS_SQLPA PL/SQL package.

See Also:

"Comparing Performance Measurements (page 2-7)"

6.1 Comparing SQL Trials Using Oracle Enterprise Manager
Comparing SQL trials using Oracle Enterprise Manager involves the following steps:

Comparing SQL Trials 6-1

• Analyzing SQL Performance Using Oracle Enterprise Manager (page 6-2)

• Reviewing the SQL Performance Analyzer Report Using Oracle Enterprise
Manager (page 6-3)

• Tuning Regressed SQL Statements Using Oracle Enterprise Manager (page 6-8)

6.1.1 Analyzing SQL Performance Using Oracle Enterprise Manager
This section describes how to analyze SQL performance before and after the system
change using Oracle Enterprise Manager.

Before comparing SQL trials, you need to create a post-change SQL trial, as described
in Creating a Post-Change SQL Trial (page 5-1).

To analyze SQL performance using Enterprise Manager:

1. On the Guided Workflow page, click the Execute icon for Compare Step 2 and
Step 3.

The Run SQL Trial Comparison page appears.

In this example, the SQL_TRIAL_1241213421833 and
SQL_TRIAL_1241213881923 trials are selected for comparison.

2. To compare trials other than those listed by default, select the desired trials in the
Trial 1 Name and Trial 2 Name lists.

Note that you cannot compare a statistical trial with a trial that tests the explain
plan only.

3. In the Comparison Metric list, select the comparison metric to use for the
comparison analysis:

• Elapsed Time

• CPU Time

Comparing SQL Trials Using Oracle Enterprise Manager

6-2 Oracle Database Testing Guide

• User I/O Time

• Buffer Gets

• Physical I/O

• Optimizer Cost

• I/O Interconnect Bytes

Optimizer Cost is the only comparison metric available if you generated execution
plans only in the SQL trials.

To perform the comparison analysis by using more than one comparison metric,
perform separate comparison analyses by repeating this procedure with different
metrics.

4. In the Schedule section:

a. In the Time Zone list, select your time zone code.

b. Select Immediately to start the task now, or Later to schedule the task to start
at a time specified using the Date and Time fields.

5. Click Submit.

The Guided Workflow page appears when the comparison analysis begins.

The status icon of this step changes to an arrow icon while the comparison
analysis is in progress. To refresh the status icon, click Refresh. Depending on the
amount of performance data collected from the pre-change and post-change
executions, the comparison analysis may take a long time to complete. After the
comparison analysis is completed, the Status icon changes to a check mark and the
Execute icon for the next step is enabled.

6. Once SQL Performance Analyzer has analyzed the pre-change and post-change
performance data, generate a SQL Performance Analyzer report that you can use
for further analysis.

On the Guided Workflow page, click the Execute icon for View Trial Comparison
Report.

The SQL Performance Analyzer Task Report page appears. Review the report, as
described in "Reviewing the SQL Performance Analyzer Report Using Oracle
Enterprise Manager (page 6-3)".

6.1.2 Reviewing the SQL Performance Analyzer Report Using Oracle Enterprise
Manager

When a SQL Performance Analyzer task is completed, the resulting data is generated
into a SQL Performance Analyzer report that compares the pre-change and post-
change SQL performance.

Figure 6-1 (page 6-4) shows a sample SQL Performance Analyzer report. This
sample report uses the elapsed time comparison metric to compare the pre-change and
post-change executions of a SQL workload.

Comparing SQL Trials Using Oracle Enterprise Manager

Comparing SQL Trials 6-3

Figure 6-1 SQL Performance Analyzer Report

Before you can view the SQL Performance Analyzer report, compare the pre-change
version of performance data with the post-change version, as described in "Comparing
SQL Trials Using Oracle Enterprise Manager (page 6-1)"

To generate and review the SQL Performance Analyzer report:

1. From the Performance menu, select SQL, then SQL Performance Analyzer.

If the Database Login page appears, then log in as a user with administrator
privileges.

The SQL Performance Analyzer Home page appears. A list of existing SQL
Performance Analyzer tasks are displayed.

2. Under SQL Performance Analyzer Tasks, select the task for which you want to
view a SQL Performance Analyzer report and click View Latest Report.

The SQL Performance Analyzer Task Report page appears.

3. Review the general information about the performance analysis, as described in
"Reviewing the SQL Performance Analyzer Report: General Information
(page 6-5)".

4. Review general statistics, as described in "Reviewing the SQL Performance
Analyzer Report: Global Statistics (page 6-5)".

5. Optionally, review the detailed statistics, as described in "Reviewing the SQL
Performance Analyzer Report: Global Statistics Details (page 6-7)".

6. To generate an active report, click Save to generate and save the report, or Mail to
generate and mail the report as an HTML attachment.

Active reports include information about the top SQL statements from each
category (such as improved, regressed, and changed plans) with pre-change and
post-change statistics, explain plans, and task summary.

For more information, see "About SQL Performance Analyzer Active Reports
(page 6-8)".

Comparing SQL Trials Using Oracle Enterprise Manager

6-4 Oracle Database Testing Guide

6.1.2.1 Reviewing the SQL Performance Analyzer Report: General Information
The General Information section contains basic information and metadata about the
workload comparison performed by SQL Performance Analyzer.

To review general information:

1. On the SQL Performance Analyzer Task Report page, review the summary at the
top of the page.

This summary includes the following information:

• The name and owner of the SQL tuning set

• The total number of SQL statements in the tuning set and the number of SQL
statements that had errors, are unsupported, or timed out

• The names of the SQL trials and the comparison metric used

2. Optionally, click the link next to SQL Tuning Set Name.

The SQL Tuning Set page appears.

This page contains information—such as SQL ID and SQL text—about every SQL
statement in the SQL tuning set.

3. Click the link next to SQL Statements With Errors if errors were found.

The Errors table reports all errors that occurred while executing a given SQL
workload. An error may be reported at the SQL tuning set level if it is common to
all SQL executions in the SQL tuning set, or at the execution level if it is specific to a
SQL statement or execution plan.

4. Review the global statistics, as described in "Reviewing the SQL Performance
Analyzer Report: Global Statistics (page 6-5)".

6.1.2.2 Reviewing the SQL Performance Analyzer Report: Global Statistics
The Global Statistics section reports statistics that describe the overall performance of
the entire SQL workload. This section is a very important part of the SQL Performance
Analyzer analysis, because it reports on the impact of the system change on the overall
performance of the SQL workload. Use the information in this section to understand
the tendency of the workload performance, and determine how it will be affected by
the system change.

To review global statistics:

1. Review the chart in the Projected Workload Elapsed Time subsection.

Note:

The name of the subsection may vary based on the comparison metric that is
selected.

Comparing SQL Trials Using Oracle Enterprise Manager

Comparing SQL Trials 6-5

The chart shows the two trials on the x-axis and the elapsed time (in seconds) on
the y-axis.

The most important statistic is the overall impact, which is given as a percentage.
The overall impact is the difference between the improvement impact and the
regression impact. You can click the link for any impact statistic to obtain more
details, as described in "Reviewing the SQL Performance Analyzer Report: Global
Statistics Details (page 6-7)".

In this example, the improvement impact is 20%, while the regression impact is
-2%, so the overall impact of the system change is an improvement of
approximately 18%. This means that if all regressions are fixed in this example, the
overall impact of the change will be an improvement of 20%.

Note:

The overall impact percentage may sometimes be off by 1% compared to the
sum of the improvement impact and the regression impact. This discrepancy
may be caused by rounding or if the SQL and workload time limits are set at
1%, which is the recommended value. This enables the analysis to focus on
SQL statements with higher impact by filtering out those that have a minimal
impact.

2. Review the chart in the SQL Statement Count subsection.

The x-axis of the chart shows the number of SQL statements whose performance
improved, regressed, or remain unchanged after the system change. The y-axis
shows the number of SQL statements. The chart also indicates whether the explain
plans changed for the SQL statements.

This chart enables you to quickly weigh the relative performance of the SQL
statements. You can click any bar in the chart to obtain more details about the SQL
statements, as described in "Reviewing the SQL Performance Analyzer Report:
Global Statistics Details (page 6-7)". Only up to the top 100 SQL statements will
be displayed, even if the actual number of SQL statements exceeds 100.

In this example, all SQL statements were unchanged after the system change.

Comparing SQL Trials Using Oracle Enterprise Manager

6-6 Oracle Database Testing Guide

6.1.2.3 Reviewing the SQL Performance Analyzer Report: Global Statistics Details
You can use the SQL Performance Analyzer Report to obtain detailed statistics for the
SQL workload comparison. The details chart enables you to drill down into the
performance of SQL statements that appears in the report. Use the information in this
section to investigate why the performance of a particular SQL statement regressed.

Note:

The report displays only up to the top 100 SQL statements, even if the actual
number of SQL statements exceeds 100.

To review global statistics details:

1. In the Projected Workload Elapsed Time subsection, click the impact percentage of
the SQL statements for which you want to view details. To view SQL statements
whose performance:

• Improved, click the percentage for Improvement Impact

• Regressed, click the percentage for Regression Impact

• Improved or regressed, click the percentage for Overall Impact

A table including the detailed statistics appears. Depending on the type of SQL
statements chosen, the following columns are included:

• SQL ID

This column indicates the ID of the SQL statement.

• Net Impact on Workload (%)

This column indicates the impact of the system change relative to the
performance of the SQL workload.

• Elapsed Time

This column indicates the total time (in seconds) of the SQL statement
execution.

• Net Impact on SQL (%)

This column indicates the local impact of the change on the performance of a
particular SQL statement.

• New Plan

This column indicates whether the SQL execution plan changed.

2. To view details about a particular SQL statement, click the SQL ID link for the SQL
statement that you are interested in.

The SQL Details page appears.

You can use this page to access the SQL text and obtain low-level details about the
SQL statement, such as its execution statistics and execution plan.

Comparing SQL Trials Using Oracle Enterprise Manager

Comparing SQL Trials 6-7

6.1.2.4 About SQL Performance Analyzer Active Reports
SQL Performance Analyzer active reports are HTML files that display all reporting
data using a Web-hosted interactive user interface. Similar to the SQL Performance
Analyzer reports available in Oracle Enterprise Manager, active reports include
information about the top SQL statements from each category (such as improved,
regressed, and changed plans) with pre-change and post-change statistics, explain
plans, and task summary.

SQL Performance Analyzer active reports are more useful than traditional HTML or
text reports because they offer a similar user interface as Oracle Enterprise Manager,
yet they can be viewed even when the database is unavailable, or even after a database
is dropped. Hence active reports offer the advantages of traditional reporting and
dynamic Oracle Enterprise Manager analysis, but eliminates the disadvantages of
both. Moreover, active reports contain more information about the comparison
analysis and provide more user interactive options. It is strongly recommended that
you use active reports instead of HTML or text reports.

The active report user interface components are very similar to those displayed in
Oracle Enterprise Manager. For descriptions of the user interface components, see the
related sections described in "Reviewing the SQL Performance Analyzer Report Using
Oracle Enterprise Manager (page 6-3)".

6.1.3 Tuning Regressed SQL Statements Using Oracle Enterprise Manager
After reviewing the SQL Performance Analyzer report, you should tune any regressed
SQL statements that are identified after comparing the SQL performance. If there are
large numbers of SQL statements that appear to have regressed, you should try to
identify the root cause and make system-level changes to rectify the problem. In cases
when only a few SQL statements have regressed, consider using one of the following
tuning methods to implement a point solution for them:

• Creating SQL Plan Baselines (page 6-9)

• Running SQL Tuning Advisor (page 6-9)

After tuning the regressed SQL statements, you should test these changes using SQL
Performance Analyzer. Run a new SQL trial on the test system, followed by a second
comparison (between this new SQL trial and the first SQL trial) to validate your
results. Once SQL Performance Analyzer shows that performance has stabilized, the
testing is complete. Implement the fixes from this step to your production system.

Starting with Oracle Database 11g Release 1, SQL Tuning Advisor performs an
alternative plan analysis when tuning a SQL statement. SQL Tuning Advisor searches
the current system for previous execution plans, including the plans from the first SQL
trial. If the execution plans from the first SQL trial differ from those of the second SQL
trial, SQL Tuning Advisor will recommend the plans from the first SQL trial. If these
execution plans produce better performance, you can create plan baselines using the
plans from the first SQL trial.

Note:

SQL Performance Analyzer does not provide the option to create SQL plan
baselines or run SQL Tuning Advisor directly after after completing a remote
SQL trial. In such cases, you need to use APIs to manually transport the SQL
tuning set and complete the appropriate procedure on the remote database.

Comparing SQL Trials Using Oracle Enterprise Manager

6-8 Oracle Database Testing Guide

See Also:

• Oracle Database SQL Tuning Guide for information about alternative plan
analysis

6.1.3.1 Creating SQL Plan Baselines
Creating SQL plan baselines enables the optimizer to avoid performance regressions
by using execution plans with known performance characteristics. If a performance
regression occurs due to plan changes, a SQL plan baseline can be created and used to
prevent the optimizer from picking a new, regressed execution plan.

To create SQL plan baselines:

1. On the SQL Performance Analyzer Task Result page, under Recommendations,
click Create SQL Plan Baselines.

The Create SQL Plan Baselines page appears. The Regressed SQL Statements
section lists the regressed SQL statements that will be associated with the new
SQL plan baselines.

2. Under Job Parameters, specify the parameters for the job:

a. In the Job Name field, enter a name for the job.

b. In the Description field, optionally enter a description for the job.

3. Under Schedule, select:

• Immediately to start the job now.

• Later to schedule the job to start at a time specified using the Time Zone,
Date, and Time fields.

4. Click OK.

The SQL Performance Analyzer Task Result page appears. A message is displayed
to inform you that the job has been submitted successfully.

See Also:

• Oracle Database 2 Day + Performance Tuning Guide for information about
creating and managing SQL plan baselines

6.1.3.2 Running SQL Tuning Advisor
The SQL Tuning Advisor performs an in-depth analysis of regressed SQL statements
and attempts to fix the root cause of the problem.

To run SQL Tuning Advisor:

1. On the SQL Performance Analyzer Task Result page, under Recommendations,
click Run SQL Tuning Advisor.

The Schedule SQL Tuning Task page appears.

Comparing SQL Trials Using Oracle Enterprise Manager

Comparing SQL Trials 6-9

2. In the Tuning Task Name field, enter a name for the SQL tuning task.

3. In the Tuning Task Description field, optionally enter a name for the SQL tuning
task.

4. Under Schedule, select:

• Immediately to start the job now.

• Later to schedule the job to start at a time specified using the Time Zone, Date,
and Time fields.

5. Click OK.

The SQL Performance Analyzer Task Result page appears. A link to the SQL tuning
report appears under Recommendations.

6. To view the SQL tuning report, click the SQL Tune Report link.

The SQL Tuning Results page appears.

See Also:

• Oracle Database 2 Day + Performance Tuning Guide for information about
running the SQL Tuning Advisor

6.2 Comparing SQL Trials Using APIs
Comparing SQL trials using APIs involves the following steps:

• Analyzing SQL Performance Using APIs (page 6-10)

• Reviewing the SQL Performance Analyzer Report in Command-Line (page 6-13)

• Comparing SQL Tuning Sets Using APIs (page 6-18)

• Tuning Regressed SQL Statements Using APIs (page 6-23)

• Tuning Regressed SQL Statements From a Remote SQL Trial Using APIs
(page 6-25)

• Creating SQL Plan Baselines Using APIs (page 6-27)

• Using SQL Performance Analyzer Views (page 6-27)

Before comparing SQL trials, you need to create a post-change SQL trial, as described
in Creating a Post-Change SQL Trial (page 5-1).

6.2.1 Analyzing SQL Performance Using APIs
After the post-change SQL performance data is built, you can compare the pre-change
version of performance data to the post-change version. Run a comparison analysis
using the DBMS_SQLPA.EXECUTE_ANALYSIS_TASK procedure or function.

To compare the pre-change and post-change SQL performance data:

1. Call the EXECUTE_ANALYSIS_TASK procedure or function using the following
parameters:

Comparing SQL Trials Using APIs

6-10 Oracle Database Testing Guide

• Set the task_name parameter to the name of the SQL Performance Analyzer
task.

• Set the execution_type parameter to COMPARE PERFORMANCE. This
setting will analyze and compare two versions of SQL performance data.

• Specify a name to identify the execution using the execution_name
parameter. If not specified, it will be generated by SQL Performance Analyzer
and returned by the function.

• Specify two versions of SQL performance data using the
execution_params parameters. The execution_params parameters are
specified as (name, value) pairs for the specified execution. Set the execution
parameters that are related to comparing and analyzing SQL performance
data as follows:

– Set the execution_name1 parameter to the name of the first execution
(before the system change was made). This value should correspond to
the value of the execution_name parameter specified in "Creating a
Pre-Change SQL Trial Using APIs (page 4-4)".

– Set the execution_name2 parameter to the name of the second
execution (after the system change was made). This value should
correspond to the value of the execution_name parameter specified in
"Creating a Post-Change SQL Trial Using APIs (page 5-3)" when you
executed the SQL workload after the system change. If the caller does not
specify the executions, then by default SQL Performance Analyzer will
always compare the last two task executions.

– Set the comparison_metric parameter to specify an expression of
execution statistics to use in the performance impact analysis. Possible
values include the following metrics or any combination of them:
elapsed_time (default), cpu_time, buffer_gets, disk_reads,
direct_writes, optimizer_cost, and io_interconnect_bytes.

For other possible parameters that you can set for comparison, see the
description of the DBMS_SQLPA package in Oracle Database PL/SQL Packages
and Types Reference.

The following example illustrates a function call:

EXEC DBMS_SQLPA.EXECUTE_ANALYSIS_TASK(task_name => 'my_spa_task', -
 execution_type => 'COMPARE PERFORMANCE', -
 execution_name => 'my_exec_compare', -
 execution_params => dbms_advisor.arglist(-
 'comparison_metric', 'buffer_gets'));

2. Call the REPORT_ANALYSIS_TASK function using the following parameters:

• Set the task_name parameter to the name of the SQL Performance Analyzer
task.

• Set the execution_name parameter to the name of the execution to use. This
value should match the execution_name parameter of the execution for
which you want to generate a report.

To generate a report to display the results of:

Comparing SQL Trials Using APIs

Comparing SQL Trials 6-11

– Execution plans generated for the SQL workload, set this value to match
the execution_name parameter of the desired EXPLAIN PLAN
execution.

– Execution plans and execution statistics generated for the SQL workload,
set this parameter to match the value of the execution_name parameter
used in the desired TEST EXECUTE execution.

– A comparison analysis, set this value to match the execution_name
parameter of the desired ANALYZE PERFORMANCE execution.

If unspecified, SQL Performance Analyzer generates a report for the last
execution.

• Set the type parameter to specify the type of report to generate. Possible
values include TEXT (default), HTML, XML, and ACTIVE.

Active reports provides in-depth reporting using an interactive user interface
that enables you to perform detailed analysis even when disconnected from
the database or Oracle Enterprise Manager. It is recommended that you use
active reports instead of HTML or text reports when possible.

For information about active reports, see "About SQL Performance Analyzer
Active Reports (page 6-8)".

• Set the level parameter to specify the format of the recommendations.
Possible values include TYPICAL (default), ALL, BASIC, CHANGED,
CHANGED_PLANS, ERRORS, IMPROVED, REGRESSED, TIMEOUT, UNCHANGED,
UNCHANGED_PLANS, and UNSUPPORTED.

• Set the section parameter to specify a particular section to generate in the
report. Possible values include SUMMARY (default) and ALL.

• Set the top_sql parameter to specify the number of SQL statements in a SQL
tuning set to generate in the report. By default, the report shows the top 100
SQL statements impacted by the system change.

To generate an active report, run the following script:

set trimspool on
set trim on
set pages 0
set linesize 1000
set long 1000000
set longchunksize 1000000
spool spa_active.html
SELECT DBMS_SQLPA.REPORT_ANALYSIS_TASK(task_name => 'my_spa_task',
 type => 'active', section => 'all') FROM dual;
spool off

The following example illustrates a portion of a SQL script that you could use to
create and display a comparison summary report in text format:

VAR rep CLOB;
EXEC :rep := DBMS_SQLPA.REPORT_ANALYSIS_TASK('my_spa_task', -
 'text', 'typical', 'summary');
SET LONG 100000 LONGCHUNKSIZE 100000 LINESIZE 130
PRINT :rep

3. Review the SQL Performance Analyzer report, as described in "Reviewing the
SQL Performance Analyzer Report in Command-Line (page 6-13)".

Comparing SQL Trials Using APIs

6-12 Oracle Database Testing Guide

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS_SQLPA.EXECUTE_ANALYSIS_TASK and
DBMS_SQLPA.REPORT_ANALYSIS_TASK functions

6.2.2 Reviewing the SQL Performance Analyzer Report in Command-Line
The SQL Performance Analyzer report is divided into the following sections:

• General Information (page 6-13)

• Result Summary (page 6-14)

• Result Details (page 6-16)

This section uses a sample report to illustrate how to review the SQL Performance
Analyzer report. The sample report uses buffer_gets as the comparison metric to
compare the pre-change and post-change executions of a SQL workload.

6.2.2.1 General Information
The General Information section contains basic information and metadata about the
SQL Performance Analyzer task, the SQL tuning set used, and the pre-change and
post-change executions. Example 6-1 (page 6-13) shows the General Information
section of a sample report.

In Example 6-1 (page 6-13), the Task Information section indicates that the task name
is my_spa_task. The Workload Information section indicates that the task compares
executions of the my_sts SQL tuning set, which contains 101 SQL statements. As
shown in the Execution Information section, the comparison execution is named
my_exec_compare.

The Analysis Information sections shows that SQL Performance Analyzer compares
two executions of the my_sts SQL tuning set, my_exec_BEFORE_change and
my_exec_AFTER_change, using buffer_gets as a comparison metric.

Example 6-1 General Information

General Information

 Task Information: Workload Information:
 --- ---
 Task Name : my_spa_task SQL Tuning Set Name : my_sts
 Task Owner : APPS SQL Tuning Set Owner : APPS
 Description : Total SQL Statement Count : 101

Execution Information:

 Execution Name : my_exec_compare Started : 05/21/2007 11:30:09
 Execution Type : ANALYZE PERFORMANCE Last Updated : 05/21/2007 11:30:10
 Description : Global Time Limit : UNLIMITED
 Scope : COMPREHENSIVE Per-SQL Time Limit : UNUSED
 Status : COMPLETED Number of Errors : 0

Analysis Information:

 Comparison Metric: BUFFER_GETS

Comparing SQL Trials Using APIs

Comparing SQL Trials 6-13

 Workload Impact Threshold: 1%

 SQL Impact Threshold: 1%

 Before Change Execution: After Change Execution:
 --- ---
 Execution Name : my_exec_BEFORE_change Execution Name : my_exec_AFTER_change
 Execution Type : TEST EXECUTE Execution Type : TEST EXECUTE
 Description : Description :
 Scope : COMPREHENSIVE Scope : COMPREHENSIVE
 Status : COMPLETED Status : COMPLETED
 Started : 05/21/2007 11:22:06 Started : 05/21/2007 11:25:56
 Last Updated : 05/21/2007 11:24:01 Last Updated : 05/21/2007 11:28:30
 Global Time Limit : 1800 Global Time Limit : 1800
 Per-SQL Time Limit : UNUSED Per-SQL Time Limit : UNUSED
 Number of Errors : 0 Number of Errors : 0

6.2.2.2 Result Summary
The Result Summary section summarizes the results of the SQL Performance Analyzer
task. The Result Summary section is divided into the following subsections:

• Overall Performance Statistics (page 6-14)

• Performance Statistics of SQL Statements (page 6-15)

• Errors (page 6-15)

6.2.2.2.1 Overall Performance Statistics

The Overall Performance Statistics subsection displays statistics about the overall
performance of the entire SQL workload. This section is a very important part of the
SQL Performance Analyzer analysis because it shows the impact of the system change
on the overall performance of the SQL workload. Use the information in this section to
understand the change of the workload performance, and determine whether the
workload performance will improve or degrade after making the system change.

Example 6-2 (page 6-14) shows the Overall Performance Statistics subsection of a
sample report.

This example indicates that the overall performance of the SQL workload improved by
47.94%, even though regressions had a negative impact of -10.08%. This means that if
all of the regressions are fixed in this example, the overall change impact will be
58.02%. After the system change, 2 of the 101 SQL statements ran faster, while 1 ran
slower. Performance of 98 statements remained unchanged.

Example 6-2 Overall Performance Statistics

Report Summary

Projected Workload Change Impact:

 Overall Impact : 47.94%
 Improvement Impact : 58.02%
 Regression Impact : -10.08%

SQL Statement Count

Comparing SQL Trials Using APIs

6-14 Oracle Database Testing Guide

 SQL Category SQL Count Plan Change Count
 Overall 101 6
 Improved 2 2
 Regressed 1 1
 Unchanged 98 3
.
.
.

6.2.2.2.2 Performance Statistics of SQL Statements

The Performance Statistics subsection highlights the SQL statements that are the most
impacted by the system change. The pre-change and post-change performance data
for each SQL statement in the workload are compared based on the following criteria:

• Execution frequency, or importance, of each SQL statement

• Impact of the system change on each SQL statement relative to the entire SQL
workload

• Impact of the system change on each SQL statement

• Whether the structure of the execution plan for each SQL statement has changed

Example 6-3 (page 6-15) shows the Performance Statistics of SQL Statements
subsection of a sample report. The report has been altered slightly to fit on the page.

The SQL statements are sorted in descending order by the absolute value of the net
impact on the SQL workload, that is, the sort order does not depend on whether the
impact was positive or negative.

Example 6-3 Performance Statistics of SQL Statements

SQL Statements Sorted by their Absolute Value of Change Impact on the Workload

| | | Impact on | Execution | Metric | Metric | Impact | Plan |
| object_id | sql_id | Workload | Frequency | Before | After | on SQL | Change |

205	73s2sgy2svfrw	29.01%	100000	1681683	220590	86.88%	y
206	gq2a407mv2hsy	29.01%	949141	1681683	220590	86.88%	y
204	2wtgxbjz6u2by	-10.08%	478254	1653012	2160529	-30.7%	y

6.2.2.2.3 Errors

The Errors subsection reports all errors that occurred during an execution. An error
may be reported at the SQL tuning set level if it is common to all executions in the SQL
tuning set, or at the execution level if it is specific to a SQL statement or execution
plan.

Example 6-4 (page 6-15) shows an example of the Errors subsection of a SQL
Performance Analyzer report.

Example 6-4 Errors

--
 SQL STATEMENTS WITH ERRORS
--
SQL ID Error
------------- --
47bjmcdtw6htn ORA-00942: table or view does not exist

Comparing SQL Trials Using APIs

Comparing SQL Trials 6-15

br61bjp4tnf7y ORA-00920: invalid relational operator
--

6.2.2.3 Result Details
The Result Details section represents a drill-down into the performance of SQL
statements that appears in the Result Summary section of the report Use the
information in this section to investigate why the performance of a particular SQL
statement regressed.

This section will contain an entry of every SQL statement processed in the SQL
performance impact analysis. Each entry is organized into the following subsections:

• SQL Details (page 6-16)

• Execution Statistics (page 6-16)

• Execution Plans (page 6-17)

6.2.2.3.1 SQL Details

This section of the report summarizes the SQL statement, listing its information and
execution details.

Example 6-5 (page 6-16) shows the SQL Details subsection of a sample report.

In Example 6-5 (page 6-16), the report summarizes the regressed SQL statement
whose ID is 2wtgxbjz6u2by and corresponding object ID is 204.

Example 6-5 SQL Details

SQL Details:

 Object ID : 204
 Schema Name : APPS
 SQL ID : 2wtgxbjz6u2by
 Execution Frequency : 1
 SQL Text : SELECT /* my_query_14_scott */ /*+ ORDERED INDEX(t1)
 USE_HASH(t1) */ 'B' || t2.pg_featurevalue_05_id
 pg_featurevalue_05_id, 'r' || t4.elementrange_id
 pg_featurevalue_15_id, 'G' || t5.elementgroup_id
 pg_featurevalue_01_id, 'r' || t6.elementrange_id . . .
.
.
.

6.2.2.3.2 Execution Statistics

The Execution Statistics subsection compares execution statistics of the SQL statement
from the pre-change and post-change executions and then summarizes the findings.

Example 6-6 (page 6-16) shows the Execution Statistics subsection of a sample report.

Example 6-6 Execution Statistics

Execution Statistics:

| | Impact on | Value | Value | Impact | % Workload | % Workload |
| Stat Name | Workload | Before | After | on SQL | Before | After |

| elapsed_time | -95.54%| 36.484 | 143.161 | -292.39% | 32.68% | 94.73% |
| parse_time | -12.37%| .004 | .062 | -1450% | .85% | 11.79% |

Comparing SQL Trials Using APIs

6-16 Oracle Database Testing Guide

exec_elapsed	-95.89%	36.48	143.099	-292.27%	32.81%	95.02%
exec_cpu	-19.73%	36.467	58.345	-59.99%	32.89%	88.58%
buffer_gets	-10.08%	1653012	2160529	-30.7%	32.82%	82.48%
cost	12.17%	11224	2771	75.31%	16.16%	4.66%
reads	-1825.72%	4091	455280	-11028.82%	16.55%	96.66%
writes	-1500%	0	15	-1500%	0%	100%
rows		135	135			

Notes:

Before Change:
1. The statement was first executed to warm the buffer cache.
2. Statistics shown were averaged over next 9 executions.

After Change:
1. The statement was first executed to warm the buffer cache.
2. Statistics shown were averaged over next 9 executions.

Findings (2):

1. The performance of this SQL has regressed.
2. The structure of the SQL execution plan has changed.

6.2.2.3.3 Execution Plans

The Execution Plans subsection displays the pre-change and post-change execution
plans for the SQL statement. In cases when the performance regressed, this section
also contains findings on root causes and symptoms.

Example 6-7 (page 6-17) shows the Execution Plans subsection of a sample report.

Example 6-7 Execution Plans
Execution Plan Before Change:

 Plan Id : 1
 Plan Hash Value : 3412943215

--
| Id | Operation | Name | Rows | Bytes | Cost | Time |
--
0	SELECT STATEMENT		1	126	11224	00:02:15
1	HASH GROUP BY		1	126	11224	00:02:15
2	NESTED LOOPS		1	126	11223	00:02:15
* 3	HASH JOIN		1	111	11175	00:02:15
* 4	TABLE ACCESS FULL	LU_ELEMENTGROUP_REL	1	11	162	00:00:02
* 5	HASH JOIN		487	48700	11012	00:02:13
6	MERGE JOIN		14	924	1068	00:00:13
7	SORT JOIN		5391	274941	1033	00:00:13
* 8	HASH JOIN		5391	274941	904	00:00:11
* 9	TABLE ACCESS FULL	LU_ELEMENTGROUP_REL	123	1353	175	00:00:03
* 10	HASH JOIN		5352	214080	729	00:00:09
* 11	TABLE ACCESS FULL	LU_ITEM_293	5355	128520	56	00:00:01
* 12	TABLE ACCESS FULL	ADM_PG_FEATUREVALUE	1629	26064	649	00:00:08
* 13	FILTER					
* 14	SORT JOIN		1	15	36	00:00:01
* 15	TABLE ACCESS FULL	LU_ELEMENTRANGE_REL	1	15	35	00:00:01
16	INLIST ITERATOR					
* 17	TABLE ACCESS BY INDEX ROWID	FACT_PD_OUT_ITM_293	191837	6522458	9927	00:02:00
18	BITMAP CONVERSION TO ROWIDS					
* 19	BITMAP INDEX SINGLE VALUE	FACT_274_PER_IDX				
* 20	TABLE ACCESS FULL	LU_ELEMENTRANGE_REL	1	15	49	00:00:01
--
.
.
.

Execution Plan After Change:

 Plan Id : 102
 Plan Hash Value : 1923145679

--
| Id | Operation | Name | Rows | Bytes | Cost | Time |

Comparing SQL Trials Using APIs

Comparing SQL Trials 6-17

--
0	SELECT STATEMENT		1	126	2771	00:00:34
1	HASH GROUP BY		1	126	2771	00:00:34
2	NESTED LOOPS		1	126	2770	00:00:34
* 3	HASH JOIN		1	111	2722	00:00:33
* 4	HASH JOIN		1	100	2547	00:00:31
* 5	TABLE ACCESS FULL	LU_ELEMENTGROUP_REL	1	11	162	00:00:02
6	NESTED LOOPS					
7	NESTED LOOPS		484	43076	2384	00:00:29
* 8	HASH JOIN		14	770	741	00:00:09
9	NESTED LOOPS		4	124	683	00:00:09
* 10	TABLE ACCESS FULL	LU_ELEMENTRANGE_REL	1	15	35	00:00:01
* 11	TABLE ACCESS FULL	ADM_PG_FEATUREVALUE	4	64	649	00:00:08
* 12	TABLE ACCESS FULL	LU_ITEM_293	5355	128520	56	00:00:01
13	BITMAP CONVERSION TO ROWIDS					
* 14	BITMAP INDEX SINGLE VALUE	FACT_274_ITEM_IDX				
* 15	TABLE ACCESS BY INDEX ROWID	FACT_PD_OUT_ITM_293	36	1224	2384	00:00:29
* 16	TABLE ACCESS FULL	LU_ELEMENTGROUP_REL	123	1353	175	00:00:03
* 17	TABLE ACCESS FULL	LU_ELEMENTRANGE_REL	1	15	49	00:00:01
--

6.2.3 Comparing SQL Tuning Sets Using APIs
You can compare two SQL tuning sets using the DBMS_SQLPA package. For example,
while using Database Replay, you may have captured a SQL tuning set on the
production system during workload capture, and another SQL tuning set on a test
system during workload replay. You can then use SQL Performance Analyzer to
compare these SQL tuning sets, without having to re-execute the SQL statements. This
is useful in cases where you already have another utility to run your workload before
and after making the system change, such as a custom script.

When comparing SQL tuning sets, SQL Performance Analyzer uses the runtime
statistics captured in the SQL tuning sets to perform its comparison analysis, and
reports on any new or missing SQL statements that are found in one SQL tuning set,
but not in the other. Any changes in execution plans between the two SQL tuning sets
are also reported. For each SQL statement in both SQL tuning sets, improvement and
regression findings are reported for each SQL statement—calculated based on the
average statistic value per execution—and for the entire workload—calculated based
on the cumulative statistic value.

To compare SQL tuning sets using APIs:

1. Create a SQL Performance Analyzer task:

VAR aname varchar2(30);
EXEC :aname := 'compare_s2s';
EXEC :aname := DBMS_SQLPA.CREATE_ANALYSIS_TASK(task_name => :aname);

It is not necessary to associate a SQL tuning set to the task during creation.

2. Create the first SQL trial and convert the first SQL tuning set:

EXEC DBMS_SQLPA.EXECUTE_ANALYSIS_TASK(task_name => :aname, -
 execution_type => 'convert sqlset', -
 execution_name => 'first trial', -
 execution_params => DBMS_ADVISOR.ARGLIST(
 'sqlset_name', 'my_first_sts', -
 'sqlset_owner', 'APPS'));

Specify the name and owner of the SQL tuning set using the SQLSET_NAME and
SQLSET_OWNER task parameters. The content of the SQL tuning set will not be
duplicated by the SQL Performance Analyzer task. Instead, a reference to the SQL
tuning set is recorded in association to the new SQL trial, which in this example is
"first trial".

Comparing SQL Trials Using APIs

6-18 Oracle Database Testing Guide

3. Create a second SQL trial and associate it to the second SQL tuning second to
which you want to compare:

EXEC DBMS_SQLPA.EXECUTE_ANALYSIS_TASK(task_name => :aname, -
 execution_type => 'convert sqlset', -
 execution_name => 'second trial', -
 execution_params => DBMS_ADVISOR.ARGLIST(
 'sqlset_name', 'my_second_sts', -
 'sqlset_owner', 'APPS'));

4. Compare the performance data from the two SQL trials (or SQL tuning sets) by
running a comparison analysis:

EXEC DBMS_SQLPA.EXECUTE_ANALYSIS_TASK(task_name => :aname, -
 execution_type => 'compare', -
 execution_name => 'comparison', -
 execution_params => DBMS_ADVISOR.ARGLIST(
 'workload_impact_threshold', 0, -
 'sql_impact_threshold', 0));

In this example, the workload and per-SQL impact threshold are set to 0% for
comparison (the default value is 1%).

5. After the comparison analysis is complete, generate a SQL Performance Analyzer
report using the DBMS_SQLPA.REPORT_ANALYSIS_TASK function.

For information about generating a SQL Performance Analyzer report using APIs,
see "Analyzing SQL Performance Using APIs (page 6-10)".

Once the report is generated, review it to identify any differences between the contents
of the two SQL tuning sets. Example 6-8 (page 6-19) shows the Analysis Information
and Report Summary sections of a sample report generated by comparing two SQL
tuning sets:

Example 6-8 Analysis Information and Report Summary

Analysis Information:
--
 Before Change Execution: After Change Execution:
 --- ---
 Execution Name : first trial Execution Name : second trial
 Execution Type : CONVERT SQLSET Execution Type : CONVERT SQLSET
 Status : COMPLETED Status : COMPLETED
 Started : …
 Last Updated : …

 Before Change Workload: After Change Workload:
 --- ---
 SQL Tuning Set Name : my_first_sts SQL Tuning Set Name : my_second_sts
 SQL Tuning Set Owner : APPS SQL Tuning Set Owner : APPS
 Total SQL Statement Count : 5 Total SQL Statement Count : 6

--
Report Summary
--

Projected Workload Change Impact:

 Overall Impact : 72.32%
 Improvement Impact : 47.72%
 Regression Impact : -.02%
 Missing-SQL Impact : 33.1%

Comparing SQL Trials Using APIs

Comparing SQL Trials 6-19

 New-SQL Impact : -8.48%

SQL Statement Count

 SQL Category SQL Count Plan Change Count
 Overall 7 1
 Common 4 1
 Improved 3 1
 Regressed 1 0
 Different 3 0
 Missing SQL 1 0
 New SQL 2 0

As shown in Example 6-8 (page 6-19), this report contains two additional categories
that are not found in standard SQL Performance Analyzer reports; both categories are
grouped under the heading Different:

• Missing SQL

This category represents all SQL statements that are present in the first SQL
tuning set, but are not found in the second SQL tuning set. In this example, only
one SQL statement is missing. As shown in Example 6-9 (page 6-20), this SQL
statement has:

– A sql_id value of gv7xb8tyd1v91

– A performance impact on the workload of 33.1% based on the change

– No performance impact on the SQL statement based on the change because
its "Total Metric After" change value is missing

• New SQL

This category represents all SQL statements that are present in the second SQL
tuning set, but are not found in the first SQL tuning set. In this example, only two
SQL statements are new in the second SQL tuning set. As shown in Example 6-9
(page 6-20), these SQL statements have:

– sql_id values of 4c8nrqxhtb2sf and 9utadgu5udmh4

– A total performance impact on the workload of -8.48%

– Missing "Total Metric Before" change values

Example 6-9 (page 6-20) shows a table in the sample report that lists the missing and
new SQL statements, as well as other top SQL statements as determined by their
impact on the workload:

Example 6-9 Top 7 SQL Sorted by Absolute Value of Change Impact on the Workload

Top 7 SQL Sorted by Absolute Value of Change Impact on the Workload
--
--
| | | Impact on | Total Metric | Total Metric | Impact | Plan |
| object_id | sql_id | Workload | Before | After | on SQL | Change |
--
4	7gj3w9ya4d9sj	41.04%	812791	36974	95%	y
7	gv7xb8tyd1v91	33.1%	625582			n
2	4c8nrqxhtb2sf	-8.35%		157782		n
1	22u3tvrt0yr6g	4.58%	302190	215681	28.63%	n
6	fgdd0fd56qmt0	2.1%	146128	106369	27.21%	n
5	9utadgu5udmh4	-.13%		2452		n

Comparing SQL Trials Using APIs

6-20 Oracle Database Testing Guide

| 3 | 4dtv43awxnmv3 | -.02% | 3520 | 3890 | -47.35% | n |
--

Once you have identified a SQL statement of interest, you can generate a report for the
SQL statement to perform more detailed investigation. For example, you may want to
investigate the SQL statement with the sql_id value of 7gj3w9ya4d9sj and
object_id value of 4 because it has the highest impact on the workload:

SELECT DBMS_SQLPA.REPORT_ANALYSIS_TASK(task_name => :aname, object_id => 4) rep
FROM dual;

Example 6-10 (page 6-21) shows a sample report generated for this SQL statement:

Example 6-10 Sample Report for SQL Statement

SQL Details:

 Object ID : 4
 SQL ID : 7gj3w9ya4d9sj
 SQL Text : /* my_csts_query1 */ select * FROM emp where empno=2

SQL Execution Statistics (average):

| | Impact on | Value | Value | Impact |
| Stat Name | Workload | Before | After | on SQL |

elapsed_time	41.04%	.036945	.001849	95%
cpu_time	13.74%	.004772	.00185	61.24%
buffer_gets	9.59%	8	2	69.01%
cost	11.76%	1	1	10%
reads	4.08%	0	0	63.33%
writes	0%	0	0	0%
rows		0	0	
executions		22	20	
plan_count		3	2	

Findings (2):

 1. The performance of this SQL has improved.
 2. The structure of the SQL execution plan has changed.

Plan Execution Statistics (average):

--
| Statistic Name | Plans Before Change | Plans After Change |
--
plan hash value	440231712 571903972 3634526668	571903972 3634526668
---------------	--------- --------- ----------	--------- ----------
schema name	APPS1 APPS2 APPS2	APPS2 APPS2
executions	7 5 10	10 10
cost	2 1 2	1 2
elapsed_time	.108429 .000937 .00491	.000503 .003195
cpu_time	.00957 .0012 .0032	.0005 .0032
buffer_gets	18 0 5	0 5
reads	0 0 0	0 0
writes	0 0 0	0 0
rows	0 0 0	0 0
--
Execution Plans Before Change:

Plan Hash Value : 440231712

Comparing SQL Trials Using APIs

Comparing SQL Trials 6-21

| Id | Operation | Name | Rows | Bytes | Cost | Time |

0	SELECT STATEMENT				2	
1	PX COORDINATOR					
2	PX SEND QC (RANDOM)	:TQ10000	1	87	2	00:00:01
3	PX BLOCK ITERATOR		1	87	2	00:00:01
4	TABLE ACCESS FULL	EMP	1	87	2	00:00:01

Note

- dynamic sampling used for this statement
Plan Hash Value : 571903972
--
| Id | Operation | Name | Rows | Bytes | Cost | Time |
--
0	SELECT STATEMENT				1	
1	TABLE ACCESS BY INDEX ROWID	EMP	1	87	1	00:00:01
2	INDEX UNIQUE SCAN	MY_EMP_IDX	1		0	
--
Plan Hash Value : 3634526668
--
| Id | Operation | Name | Rows | Bytes | Cost | Time |
--
| 0 | SELECT STATEMENT | | | | 2 | |
| 1 | TABLE ACCESS FULL | EMP | 1 | 87 | 2 | 00:00:01 |
--
Note

- dynamic sampling used for this statement

Executions Plan After Change:

Plan Hash Value : 571903972
--
| Id | Operation | Name | Rows | Bytes | Cost | Time |
--
0	SELECT STATEMENT				1	
1	TABLE ACCESS BY INDEX ROWID	EMP	1	87	1	00:00:01
2	INDEX UNIQUE SCAN	MY_EMP_IDX	1		0	
--
Plan Hash Value : 3634526668
--
| Id | Operation | Name | Rows | Bytes | Cost | Time |
--
| 0 | SELECT STATEMENT | | | | 2 | |
| 1 | TABLE ACCESS FULL | EMP | 1 | 87 | 2 | 00:00:01 |
--
Note

- dynamic sampling used for this statement
--

The SQL Execution Statistics section shows the average runtime statistics (per
execution) of the SQL statement. The data in this table reveals that this SQL statement
is present in both SQL tuning sets, but that it has only three execution plans in the first
SQL tuning set and two execution plans in the second SQL tuning set. Furthermore,
the SQL statement was executed 22 times in the first SQL tuning set, but only 20 times
in the second SQL tuning set.

Comparing SQL Trials Using APIs

6-22 Oracle Database Testing Guide

The Plan Execution Statistics section shows runtime statistics per execution plan (or
plan hash value). The Plans Before Change column lists plans and their associated
execution statistics for the first SQL tuning set; the Plans After Change columns lists
these values for the second SQL tuning set. Execution plans structures for both SQL
tuning sets are shown at the end of the report.

You can use these sections in the report to identify changes in execution plans between
two SQL tuning sets. This is important because changes in execution plans may be a
result of test changes that can have a direct impact to performance. When comparing
two SQL tuning sets, SQL Performance Analyzer reports execution plan changes when
a SQL statement has:

• One plan in both SQL tuning sets, but the plan structure is different

• More than one plan, and the number of plans in both SQL tuning sets are:

– The same, but at least one plan in the second SQL tuning set is different from
all plans in the first SQL tuning set

– Different

After evaluating the SQL statement and plan changes, determine if further action is
required. If the SQL statement has regressed, perform one of the following actions:

• Tune the regressed SQL statement, as described in "Tuning Regressed SQL
Statements Using APIs (page 6-23)"

• Create SQL plan baselines, as described in "Creating SQL Plan Baselines Using
APIs (page 6-27)"

6.2.4 Tuning Regressed SQL Statements Using APIs
After reviewing the SQL Performance Analyzer report, you should tune any regressed
SQL statements that are identified after comparing the SQL performance. If there are
large numbers of SQL statements that appear to have regressed, you should try to
identify the root cause and make system-level changes to rectify the problem. In cases
when only a few SQL statements have regressed, consider using the SQL Tuning
Advisor to implement a point solution for them, or creating SQL plan baselines to
instruct the optimizer to select the original execution plan in the future.

To tune regressed SQL statements using APIs:

• Create a SQL tuning task for the SQL Performance Analyzer execution by using
the CREATE_TUNING_TASK function in the DBMS_SQLTUNE package:

BEGIN
 DBMS_SQLTUNE.CREATE_TUNING_TASK(
 spa_task_name => 'my_spa_task',
 spa_task_owner => 'immchan',
 spa_compare_exec => 'my_exec_compare');
 DBMS_SQLTUNE.EXECUTE_TUNING_TASK(spa_task_name => 'my_spa_task');
END;
/

This example creates and executes a SQL tuning task to tune the SQL statements
that regressed in the compare performance execution named my_exec_compare
of the SQL Performance Analyzer task named my_spa_task. In this case, it is
important to use this version of the CREATE_TUNING_TASK function call.

Comparing SQL Trials Using APIs

Comparing SQL Trials 6-23

Otherwise, SQL statements may be tuned in the environment from the production
system where they were captured, which will not reflect the system change.

Note:

If you chose to execute the SQL workload remotely on a separate database,
you should not use this version of the CREATE_TUNING_TASK function call to
tune regressed SQL statements. Instead, you should tune any regressions
identified by the SQL trials on the remote database, because the application
schema is not on the database running SQL Performance Analyzer. Therefore,
you need to run SQL Tuning Advisor on the database where the schema
resides and where the change was made.

Table 6-1 (page 6-24) lists the SQL Performance Analyzer parameters that can be used
with the DBMS_SQLTUNE.CREATE_TUNING_TASK function.

Table 6-1 CREATE_TUNING_TASK Function SQL Performance Analyzer
Parameters

Parameter Description

SPA_TASK_NAME Name of the SQL Performance Analyzer task.

SPA_TASK_OWNER Owner of the specified SQL Performance Analyzer task. If unspecified,
this parameter will default to the current user.

SPA_COMPARE_EXE
C

Execution name of the compare performance trial for the specified
SQL Performance Analyzer task. If unspecified, this parameter
defaults to the most recent execution of the COMPARE PERFORMANCE
type for the given SQL Performance Analyzer task.

After tuning the regressed SQL statements, you should test these changes using SQL
Performance Analyzer. Run a new SQL trial on the test system, followed by a second
comparison (between this new SQL trial and the first SQL trial) to validate your
results. Once SQL Performance Analyzer shows that performance has stabilized,
implement the fixes from this step to your production system.

Starting with Oracle Database 11g Release 2, SQL Tuning Advisor performs an
alternative plan analysis when tuning a SQL statement. SQL Tuning Advisor reviews
the execution history of the SQL statement, including any historical plans stored in the
Automatic Workload Repository. If SQL Tuning Advisor finds alternate plans, it
allows you to choose a specific plan and create a plan baseline to ensure that the
desired execution plan is used for that SQL statement.

Comparing SQL Trials Using APIs

6-24 Oracle Database Testing Guide

See Also:

• "Tuning Regressed SQL Statements From a Remote SQL Trial Using APIs
(page 6-25)"

• Oracle Database SQL Tuning Guide for information about using the SQL
Tuning Advisor

• Oracle Database SQL Tuning Guide for information about alternative plan
analysis

• Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS_SQLTUNE package

6.2.5 Tuning Regressed SQL Statements From a Remote SQL Trial Using APIs
If you chose to execute the SQL workload remotely on a separate database, then you
should tune any regressions identified by the SQL trials on the remote database,
instead of the system where the SQL Performance Analyzer task resides.

To tune regressed SQL statements from a remote SQL trial using APIs:

1. On the system running SQL Performance Analyzer, create a subset of the
regressed SQL statements as a SQL tuning set:

DECLARE
 sqlset_cur DBMS_SQLTUNE.SQLSET_CURSOR;
BEGIN
 DBMS_SQLTUNE.CREATE_SQLSET('SUB_STS1', 'test purpose');

 OPEN sqlset_cur FOR
 SELECT value(p)
 FROM table(
 DBMS_SQLTUNE.SELECT_SQLPA_TASK(
 task_name => 'SPA_TASK1',
 execution_name => 'COMP',
 level_filter => 'REGRESSED')) p;

 DBMS_SQLTUNE.LOAD_SQLSET('SUB_STS1', sqlset_cur);

 CLOSE sqlset_cur;
END;
/

Other than 'REGRESSED', you can use other filters to select SQL statements for
the SQL tuning set, such as 'CHANGED', 'ERRORS', or 'CHANGED_PLANS'. For
more information, see Oracle Database PL/SQL Packages and Types Reference.

2. Create a staging table to where the SQL tuning set will be exported:

BEGIN
 DBMS_SQLTUNE.CREATE_STGTAB_SQLSET(
 table_name => 'STG_TAB1',
 schema_name => 'JOHNDOE',
 tablespace_name => 'TBS_1',
 db_version => DBMS_SQLTUNE.STS_STGTAB_11_1_VERSION);
END;
/

Comparing SQL Trials Using APIs

Comparing SQL Trials 6-25

Use the db_version parameter to specify the appropriate database version to
where the SQL tuning set will be exported and tuned. In this example, the staging
table will be created with a format so that it can be exported to a system running
Oracle Database 11g Release 1, where it will later be tuned using SQL Tuning
Advisor. For other database versions, see Oracle Database PL/SQL Packages and
Types Reference for that release.

3. Export the SQL tuning set into the staging table:

BEGIN
 DBMS_SQLTUNE.PACK_STGTAB_SQLSET(
 sqlset_name => 'SUB_STS1',
 sqlset_owner => 'JOHNDOE',
 staging_table_name => 'STG_TAB1',
 staging_schema_owner => 'JOHNDOE',
 db_version => DBMS_SQLTUNE.STS_STGTAB_11_1_VERSION);
END;
/

4. Move the staging table to the remote database (where the SQL workload was
executed) using the mechanism of choice (such as Oracle Data Pump or database
link).

5. On the remote database, import the SQL tuning set from the staging table:

BEGIN
 DBMS_SQLTUNE.UNPACK_STGTAB_SQLSET(
 sqlset_name => 'SUB_STS1',
 staging_table_name => 'STG_TAB1',
 replace => TRUE);
END;
/

6. Tune the regressed SQL statements in the SQL tuning set by running SQL Tuning
Advisor:

BEGIN
 sts_name := 'SUB_STS1';
 sts_owner := 'JOHNDOE';
 tune_task_name := 'TUNE_TASK1';
 tname := DBMS_SQLTUNE.CREATE_TUNING_TASK(sqlset_name => sts_name,
 sqlset_owner => sts_owner,
 task_name => tune_task_name);
 EXEC DBMS_SQLTUNE.SET_TUNING_TASK_PARAMETER(:tname,
 'APPLY_CAPTURED_COMPILENV',
 'FALSE');
 exec_name := DBMS_SQLTUNE.EXECUTE_TUNING_TASK(tname);
END;
/

Note:

The APPLY_CAPTURED_COMPILENV parameter used in this example is only
supported by Oracle Database 11g Release 1 and newer releases. If you are
testing a database upgrade from an earlier version of Oracle Database, SQL
Tuning Advisor will use the environment variables stored in the SQL tuning
set instead.

Comparing SQL Trials Using APIs

6-26 Oracle Database Testing Guide

After tuning the regressed SQL statements, you should test these changes using SQL
Performance Analyzer. Run a new SQL trial on the test system, followed by a second
comparison (between this new SQL trial and the first SQL trial) to validate your
results. Once SQL Performance Analyzer shows that performance has stabilized,
implement the fixes from this step to your production system.

See Also:

• Oracle Database SQL Tuning Guide for information about using the SQL
Tuning Advisor and transporting SQL tuning sets

• Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS_SQLTUNE package

6.2.6 Creating SQL Plan Baselines Using APIs
Creating SQL plan baselines for regressed SQL statements with plan changes is
another option to running the SQL Tuning Advisor. Doing so instructs the optimizer
to use the original execution plans for these SQL statements in the future.

To create SQL plan baselines for the original plans:

1. Create a subset of a SQL tuning set of only the regressed SQL statements.

2. Create SQL plan baselines for this subset of SQL statements by loading their plans
using the LOAD_PLANS_FROM_SQLSET function of the DBMS_SPM package, as
shown in the following example:

DECLARE
 my_plans PLS_INTEGER;
BEGIN
 my_plans := DBMS_SPM.LOAD_PLANS_FROM_SQLSET(
 sqlset_name => 'regressed_sql');
END;
/

See Also:

• Oracle Database SQL Tuning Guide for information about using SQL plan
baselines

• Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS_SPM package

6.2.7 Using SQL Performance Analyzer Views
You can query the following views to monitor SQL Performance Analyzer and view
its analysis results:

Comparing SQL Trials Using APIs

Comparing SQL Trials 6-27

Note:

The information available in these views are also contained in the SQL
Performance Analyzer report. It is recommended that you use the SQL
Performance Analyzer report to view analysis results instead. Consider using
these views only for performing more advanced analysis of the results.

• The DBA_ADVISOR_TASKS and USER_ADVISOR_TASKS views display
descriptive information about the SQL Performance Analyzer task that was
created.

• The DBA_ADVISOR_EXECUTIONS and USER_ADVISOR_EXECUTIONS views
display information about task executions. SQL Performance Analyzer creates at
least three executions to analyze the SQL performance impact caused by a
database change on a SQL workload. The first execution collects a pre-change
version of the performance data. The second execution collects a post-change
version of the performance data. The third execution performs the comparison
analysis.

• The DBA_ADVISOR_FINDINGS and USER_ADVISOR_FINDINGS views display
the SQL Performance Analyzer findings. SQL Performance Analyzer generates the
following types of findings:

– Problems, such as performance regression

– Symptoms, such as when the structure of an execution plan has changed

– Errors, such as nonexistence of an object or view

– Informative messages, such as when the structure of an execution plan in the
pre-change version is different than the one stored in the SQL tuning set

• The DBA_ADVISOR_SQLPLANS and USER_ADVISOR_SQLPLANS views display a
list of all execution plans.

• The DBA_ADVISOR_SQLSTATS and USER_ADVISOR_SQLSTATS views display a
list of all SQL compilations and execution statistics.

• The V$ADVISOR_PROGRESS view displays the operation progress of SQL
Performance Analyzer. Use this view to monitor how many SQL statements have
completed or are awaiting execution in a SQL trial. The SOFAR column indicates
the number of SQL statements processed so far, and the TOTAL WORK column
shows the total number of SQL statements to be processed by the task execution.

You must have the SELECT_CATALOG_ROLE role to access the DBA views.

See Also:

• Oracle Database Reference for information about the
DBA_ADVISOR_TASKS, DBA_ADVISOR_EXECUTIONS, and
DBA_ADVISOR_SQLPLANS views

Comparing SQL Trials Using APIs

6-28 Oracle Database Testing Guide

7
Using SPA Quick Check

Oracle Enterprise Manager Cloud Control (Cloud Control) includes the SQL
Performance Analyzer Quick Check (SPA Quick Check) feature. On some Cloud
Control database management pages, SPA Quick Check can validate the impact of a
system change to the database workload before you make the change.

You can use SPA Quick Check to validate what the impact to your database workload
will be for the following changes:

• Changing the value of an initialization parameter

• Gathering pending optimizer statistics

• Implementing key SQL profiles

Note:

SPA Quick Check is available starting with Cloud Control Release 12.1.0.4
Bundle Patch 8 and later.

SPA Quick Check is supported for any database running Oracle Database 10g
Release 2 (10.2) and later. However, not all the SPA Quick Check features are
supported in Oracle Database 10g Release 2 (10.2).

For example, optimizer pending statistics and Automatic SQL Tuning Advisor
features are available starting with Oracle Database 11g Release 1 (11.1), so
SPA Quick Check workflows for these features are only supported for
databases running Oracle Database 11g Release 1 (11.1) and later.

This chapter describes how to use SPA Quick Check and contains the following topics:

• "About Configuring SPA Quick Check (page 7-1)"

• "Specifying Default Values for SPA Quick Check (page 7-2)"

• "Validating the Impact of an Initialization Parameter Change (page 7-2)"

• "Validating the Impact of Pending Optimizer Statistics (page 7-3)"

• "Validating the Impact of Implementing Key SQL Profiles (page 7-5)"

• "Validating Statistics Findings from Automatic SQL Tuning Advisor (page 7-6)"

7.1 About Configuring SPA Quick Check
Before you can use SPA Quick Check to validate the impact of an initialization
parameter change or of gathering pending optimizer statistics, you must specify
default settings for SPA Quick Check.

Using SPA Quick Check 7-1

You will specify a default SQL tuning set for SPA Quick Check to use as one of the
settings, and this SQL tuning set should include SQL statements used in the database
application you are trying to tune.

Note:

It is not necessary to set default values for SPA Quick Check before using SPA
Quick Check to validate the impact of implementing one or more key SQL
profiles.

7.2 Specifying Default Values for SPA Quick Check
You specify default settings for SPA Quick Check on the SQL Performance Analyzer
Setup page in Cloud Control.

To specify default settings for SPA Quick Check:

1. On the Database Home page in Cloud Control, from the Performance menu, select
SQL, then SQL Performance Analyzer Setup. If the Database Login page appears,
enter administrator privileges for the database, then click Login.

The SQL Performance Analyzer Setup page appears.

2. Configure the settings for the SPA Quick Check feature, which is available on some
Cloud Control database management pages. The SQL tuning set that you specify
should be representative of the workload for the application that you want to tune.

3. Click Save to save the default SPA Quick Check settings you specified.

7.3 Validating the Impact of an Initialization Parameter Change
Before you change the value of a session-modifiable initialization parameter, you can
validate the impact of that change on your database workload by using SPA Quick
Check. Session-modifiable parameters are initialization parameters whose values can
be changed using the ALTER SESSION statement.

Note:

You can use SPA Quick Check to validate the impact of an initialization
parameter change in databases running Oracle Database 10g Release 2 (10.2)
and later.

Specifying Default Values for SPA Quick Check

7-2 Oracle Database Testing Guide

To validate the impact of an initialization parameter change:

1. On the Database Home page in Cloud Control, from the Administration menu,
select Initialization Parameters.

The Initialization Parameters page appears.

2. Use the filter on the Initialization Parameters page to identify the session-
modifiable initialization parameter whose value you want to change, and click Go
to display that parameter in the table at the bottom of the page. Most of the
parameters in the Optimizer category are session-modifiable.

3. In the table, change the current value of the parameter to the new value whose
impact you would like to validate using SPA Quick Check.

4. Click Validate with SPA.

An Information message appears at the top of the page, and says that a SPA task
for validating the impact of the initialization parameter change has been submitted.

5. Click the link for the SPA task in the Information message.

The SQL Performance Analyzer Home page appears.

6. In the SQL Performance Analyzer Tasks section at the bottom of the page, select the
task for the initialization parameter job, and click View Latest Report.

The SQL Performance Analyzer Task Report page appears.

7. View the table at the bottom of the page to see what the result of changing the
initialization parameter's value would be on the most impactful SQL statements in
the workload.

7.4 Validating the Impact of Pending Optimizer Statistics
Before you gather pending optimizer statistics, you can validate the impact of
gathering those statistics on your database workload by using SPA Quick Check.

Validating the Impact of Pending Optimizer Statistics

Using SPA Quick Check 7-3

Note:

You can use SPA Quick Check to validate the impact of gathering pending
optimizer statistics in databases running Oracle Database 11g Release 1 (11.1)
and later.

To validate the impact of gathering pending optimizer statistics:

1. On the Database Home page in Cloud Control, from the Performance menu, select
SQL, and then Optimizer Statistics.

The Optimizer Statistics Console page appears.

2. In the Operations section, click Gather.

The Gather Optimize Statistics wizard appears.

3. In the Validate with SQL Performance Analyzer section at the bottom of the Gather
Optimizer Statistics: Scope page, enable the Validate impact of stats on SQL
performance prior to publishing (recommended) option. The database global
statistics gathering option PUBLISH will be set to FALSE temporarily during the
process. Then click Next.

4. Continue through the wizard, and on the Gather Optimizer Statistics: Scope page,
click Submit.

Along with gathering pending statistics, this starts a job that creates a SQL
Performance Analyzer task that validates the impact of gathering optimizer
statistics for the database.

5. When the job starts, a Confirmation message appears on the Manage Optimizer
Statistics page that says that the Gather Optimizer Statistics job has been
successfully submitted. Click the link in that message.

The SQL Performance Analyzer Home page appears.

Validating the Impact of Pending Optimizer Statistics

7-4 Oracle Database Testing Guide

6. In the SQL Performance Analyzer Tasks table at the bottom of the page, make sure
that the statistics gathering job has completed. It may take several minutes for the
job to complete. Then select the row for the Gather Optimizer Statistics job and
click View Latest Report.

The SQL Performance Analyzer Task Report page appears.

7. View the table at the bottom of the page to see what the result of publishing the
pending optimizer statistics would be on the most impactful SQL statements in the
workload.

7.5 Validating the Impact of Implementing Key SQL Profiles
Before you implement key SQL profiles for SQL statements, you can validate the
impact of using those profiles by using SPA Quick Check. You can validate the impact
of key SQL profiles on the Automatic SQL Tuning Result Summary page. Key SQL
profiles are profiles verified to yield at least a 3 times performance improvement, and
which would have been implemented automatically if auto-implementation had been
enabled for Automatic SQL Tuning Advisor.

Note:

You can use SPA Quick Check to validate the impact of implementing key
SQL profiles in databases running Oracle Database 11g Release 1 (11.1) and
later.

To validate the impact of key SQL profiles:

1. On the Database Home page in Cloud Control, from the Performance menu, select
Advisors Home.

The Advisor Central page appears.

2. In the Advisors section, click SQL Advisors.

The SQL Advisors page appears.

3. In the SQL Tuning Advisor section, click Automatic SQL Tuning Results.

The Automatic SQL Tuning Result Summary page appears.

4. The Key SQL Profiles field in the Task Status section lists the number of key SQL
profiles for the current automatic SQL tuning task. If a value of 0 appears in the
field, there are no key SQL profiles to use (or validate). If a value greater than 0
appears in the Key SQL Profiles field, click the value to validate the impact of
using the key SQL profile or profiles.

The Automatic SQL Tuning Result Details: SQLs with Key SQL Profile page
appears.

5. The key SQL profiles appear in the Recommendations section. Click Validate All
Profiles with SPA.

Validating the Impact of Implementing Key SQL Profiles

Using SPA Quick Check 7-5

A Confirmation statement appears at the top of the page that indicates that a SPA
task for validating the SQL profiles has been submitted.

6. Click the link for the SPA task in the Confirmation statement.

The SQL Performance Analyzer Home page appears, and the SPA task for
validating the key SQL profiles appears in the SQL Performance Analyzer Tasks
table at the bottom of the page.

7. Select the task and click View Latest Report.

The SQL Performance Analyzer Task Report page appears.

8. View the table at the bottom of the page to see what the result would be of
implementing the key SQL profiles recommended on the Automatic SQL Tuning
Result Summary page on the most impactful SQL statements in the workload.

7.6 Validating Statistics Findings from Automatic SQL Tuning Advisor
You can validate the impact of statistics findings from Automatic SQL Tuning Advisor
using SPA Quick Check.

Note:

You can use SPA Quick Check to validate the impact of validating statistics
findings from Automatic SQL Tuning Advisor in databases running Oracle
Database 11g Release 1 (11.1) and later.

To validate the impact of statistics findings from Automatic SQL Tuning Advisor:

1. On the Database Home page in Cloud Control, from the Performance menu, select
Advisors Home.

The Advisor Central page appears.

2. In the Advisors section, click SQL Advisors.

Validating Statistics Findings from Automatic SQL Tuning Advisor

7-6 Oracle Database Testing Guide

The SQL Advisors page appears.

3. In the SQL Tuning Advisor section, click Automatic SQL Tuning Results.

The Automatic SQL Tuning Result Summary page appears.

4. If any statistics findings are available, they appear in the Statistics Finding
Summary section near the bottom of the page. To validate the impact of statistics
findings in user schemas, click Validate with SPA.

A Confirmation statement appears at the top of the page that indicates a SPA task
for validating the statistics findings has been submitted.

5. Click the link for the SPA task in the Confirmation statement.

The SQL Performance Analyzer Home page appears, and the SPA task for
validating the statistics findings appears in the SQL Performance Analyzer Tasks
table at the bottom of the page.

6. After all the steps in the task have completed successfully, and Completed appears
in the Last Run Status column of the table, select the task and click View Latest
Report. It may take several minutes for all of the steps in the task to complete.

The SQL Performance Analyzer Task Report page appears.

7. View the table at the bottom of the page to see what the result would be of
implementing the statistics on the Automatic SQL Tuning Result Summary page on
the most impactful SQL statements in the workload.

Validating Statistics Findings from Automatic SQL Tuning Advisor

Using SPA Quick Check 7-7

Validating Statistics Findings from Automatic SQL Tuning Advisor

7-8 Testing Guide

8
Testing a Database Upgrade

SQL Performance Analyzer supports testing database upgrades from Oracle9i and
later releases to Oracle Database 10g Release 2 or newer releases. The methodology
used to test a database upgrade from Oracle9i Database and Oracle Database 10g
Release 1 is slightly different from the one used to test a database upgrade from Oracle
Database 10g Release 2 and later releases, so both methodologies are described here.

This chapter describes how to use SQL Performance Analyzer in a database upgrade
and contains the following sections:

• Upgrading from Oracle9i Database and Oracle Database 10g Release 1
(page 8-1)

• Upgrading from Oracle Database 10g Release 2 and Newer Releases (page 8-11)

• Tuning Regressed SQL Statements After Testing a Database Upgrade (page 8-17)

See Also:

• "SQL Performance Analyzer (page 1-1)" for information about using SQL
Performance Analyzer in other cases

• Oracle Database Upgrade Guide for information on upgrade paths for Oracle
Database 12c

8.1 Upgrading from Oracle9i Database and Oracle Database 10g Release 1
SQL Performance Analyzer supports testing database upgrades of Oracle9i Database
and Oracle Database 10g Release 1 to Oracle Database 11g Release 2 or higher releases.
Use the following steps and see Figure 8-1 (page 8-2):

• Building a SQL tuning set from SQL trace files captured on the production system

• Executing the SQL tuning set on the upgraded database remotely over a database
link

• Comparing the results to those captured on the production system

Because SQL Performance Analyzer only accepts a set of SQL statements stored in a
SQL tuning set as its input source, and SQL tuning sets are not supported for Oracle9i
Database, a SQL tuning set must be constructed so that it can be used as an input
source for SQL Performance Analyzer if you are upgrading from Oracle9i Database.

Testing a Database Upgrade 8-1

Figure 8-1 SQL Performance Analyzer Workflow for Database Upgrade from
Oracle9i or 10g Release 1 to Oracle Database 11g Release 2 or Higher

Oracle Database 9.2.0.8
or 10.1.0.5 -
Production

Oracle
Database

12.2

1
2

SQL Trace

(subset of sessions)
Mapping

Table

No Data Necessary
Remote Test-execute
(db link)

3
3

5
5

Oracle Database
11.2.0.3 or

higher - Test

SQL

Plan + Stats

6
Compare Perf, View Report

4

Build STS

Before the database upgrade can be tested, ensure that the following conditions are
met:

• The production system which you are upgrading from is running Oracle9i
(9.2.0.8) or Oracle Database 10g Release 1 (10.1.0.5).

• The test system which you are upgrading to is running Oracle Database 11g
Release 2 or higher.

The database version can be release 11.2.0.3 or higher.

• The test system must resemble the production system as closely as possible
because the performance on both systems will be compared to each other.

• The hardware configurations on both systems must also be as similar as possible.

You will also need to set up a separate SQL Performance Analyzer system running
Oracle Database 12c Release 2. You will be using this system to build a SQL tuning set
and to run SQL Performance Analyzer. Neither your production data or schema need
to be available on this system, since the SQL tuning set will be built using statistics
stored in the SQL trace files from the production system. SQL Performance Analyzer
tasks will be executed remotely on the test system to generate the execution plan and
statistics for the SQL trial over a database link that you specify. The database link must
be a public database link that connects to a user with the EXECUTE privilege for the
DBMS_SQLPA package and the ADVISOR privilege on the test system. You should also
drop any existing PLAN_TABLE from the user's schema on the test system.

Once the upgrade environment is configured as described, perform the steps as
described in the following procedure to use SQL Performance Analyzer in a database
upgrade from Oracle9i or Oracle Database 10g Release 1 to a newer release.

1. Enable the SQL Trace facility on the production system, as described in "Enabling
SQL Trace on the Production System (page 8-3)".

Upgrading from Oracle9i Database and Oracle Database 10g Release 1

8-2 Oracle Database Testing Guide

To minimize the performance impact on the production system and still be able to
fully capture a representative set of SQL statements, consider enabling SQL Trace
for only a subset of the sessions, for as long as required, to capture all important
SQL statements at least once.

2. On the production system, create a mapping table, as described in "Creating a
Mapping Table (page 8-4)".

This mapping table will be used to convert the user and object identifier numbers
in the SQL trace files to their string equivalents.

3. Move the SQL trace files and the mapping table from the production system to the
SQL Performance Analyzer system, as described in "Creating a Mapping Table
(page 8-4)".

4. On the SQL Performance Analyzer system, construct a SQL tuning set using the
SQL trace files, as described in "Building a SQL Tuning Set (page 8-5)".

The SQL tuning set will contain the SQL statements captured in the SQL trace
files, along with their relevant execution context and statistics.

5. On the SQL Performance Analyzer system, use SQL Performance Analyzer to
create a SQL Performance Analyzer task and convert the contents in the SQL
tuning set into a pre-upgrade SQL trial that will be used as a baseline for
comparison, then remotely test execute the SQL statements on the test system over
a database link to build a post-upgrade SQL trial, as described in "Testing
Database Upgrades from Oracle9i Database and Oracle Database 10g Release 1
(page 8-6)".

6. Compare SQL performance and fix regressed SQL.

SQL Performance Analyzer compares the performance of SQL statements read
from the SQL tuning set during the pre-upgrade SQL trial to those captured from
the remote test execution during the post-upgrade SQL trial. A report is produced
to identify any changes in execution plans or performance of the SQL statements.

If the report reveals any regressed SQL statements, you can make further changes
to fix the regressed SQL, as described in "Tuning Regressed SQL Statements After
Testing a Database Upgrade (page 8-17)".

Repeat the process of executing the SQL tuning set and comparing its
performance to a previous execution to test any changes made until you are
satisfied with the outcome of the analysis.

8.1.1 Enabling SQL Trace on the Production System
Oracle9i uses the SQL Trace facility to collect performance data on individual SQL
statements. The information generated by SQL Trace is stored in SQL trace files. SQL
Performance Analyzer consumes the following information from these files:

• SQL text and username under which parse occurred

• Bind values for each execution

• CPU and elapsed times

• Physical reads and logical reads

• Number of rows processed

Upgrading from Oracle9i Database and Oracle Database 10g Release 1

Testing a Database Upgrade 8-3

• Execution plan for each SQL statement (only captured if the cursor for the SQL
statement is closed)

Although it is possible to enable SQL Trace for an instance, it is recommended that
you enable SQL Trace for a subset of sessions instead. When the SQL Trace facility is
enabled for an instance, performance statistics for all SQL statements executed in the
instance are stored into SQL trace files. Using SQL Trace in this way can have a severe
performance impact and may result in increased system overhead, excessive CPU
usage, and inadequate disk space. It is required that trace level be set to 4 to capture
bind values, along with the execution plans.

For production systems running Oracle Database 10g Release 1, use the
DBMS_MONITOR.SESSION_TRACE_ENABLE procedure to enable SQL Trace
transparently in another session. You should also enable binds explicitly by setting the
binds procedure parameter to TRUE (its default value is FALSE).

After enabling SQL Trace, identify the SQL trace files containing statistics for a
representative set of SQL statements that you want to use with SQL Performance
Analyzer. You can then copy the SQL trace files to the SQL Performance Analyzer
system. Once the SQL workload is captured in the SQL trace files, disable SQL Trace
on the production system.

See Also:

• Oracle Database SQL Tuning Guide for additional considerations when
using SQL Trace, such as setting initialization parameters to manage SQL
trace files

• Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS_MONITOR package

8.1.2 Creating a Mapping Table
To convert the user and object identifier numbers stored in the SQL trace files to their
respective names, you need to provide a table that specifies each mapping. The SQL
Performance Analyzer system will read this mapping table when converting the trace
files into a SQL tuning set.

To create a mapping table:

• Run the following SQL statements on the production database:

CREATE TABLE mapping AS
 SELECT object_id id, owner, SUBSTR(object_name, 1, 30) name FROM dba_objects
 WHERE object_type NOT IN ('CONSUMER GROUP', 'EVALUATION CONTEXT', 'FUNCTION',
 'INDEXTYPE', 'JAVA CLASS', 'JAVA DATA',
 'JAVA RESOURCE', 'LIBRARY', 'LOB', 'OPERATOR',
 'PACKAGE', 'PACKAGE BODY', 'PROCEDURE', 'QUEUE',
 'RESOURCE PLAN', 'SYNONYM', 'TRIGGER', 'TYPE',
 'TYPE BODY')
 UNION ALL
 SELECT user_id id, username owner, null name FROM dba_users;

Once the mapping table is created, you can use Data Pump to transport it to the
SQL Performance Analyzer system.

Upgrading from Oracle9i Database and Oracle Database 10g Release 1

8-4 Oracle Database Testing Guide

See Also:

• Oracle Database Utilities for information about using Data Pump

8.1.3 Building a SQL Tuning Set
Once the SQL trace files and mapping table are moved to the SQL Performance
Analyzer system, you can build a SQL tuning set using the DBMS_SQLTUNE package.

To build a SQL tuning set:

1. Copy the SQL trace files to a directory on the SQL Performance Analyzer system.

2. Create a directory object for this directory.

3. Use the DBMS_SQLTUNE.SELECT_SQL_TRACE function to read the SQL
statements from the SQL trace files.

For each SQL statement, only information for a single execution is collected. The
execution frequency of each SQL statement is not captured. Therefore, when
performing a comparison analysis for a production system running Oracle
Database 10g Release 1 and older releases, you should ignore the workload-level
statistics in the SQL Performance Analyzer report and only evaluate performance
changes on an execution level.

The following example reads the contents of SQL trace files stored in the
sql_trace_prod directory object and loads them into a SQL tuning set.

DECLARE
 cur sys_refcursor;
BEGIN
 DBMS_SQLTUNE.CREATE_SQLSET('my_sts_9i');
 OPEN cur FOR
 SELECT VALUE (P)
 FROM table(DBMS_SQLTUNE.SELECT_SQL_TRACE('sql_trace_prod', '%ora%')) P;
 DBMS_SQLTUNE.LOAD_SQLSET('my_sts_9i', cur);
 CLOSE cur;
END;
/

The syntax for the SELECT_SQL_TRACE function is as follows:

 DBMS_SQLTUNE.SELECT_SQL_TRACE (
 directory IN VARCHAR2,
 file_name IN VARCHAR2 := NULL,
 mapping_table_name IN VARCHAR2 := NULL,
 mapping_table_owner IN VARCHAR2 := NULL,
 select_mode IN POSITIVE := SINGLE_EXECUTION,
 options IN BINARY_INTEGER := LIMITED_COMMAND_TYPE,
 pattern_start IN VARCHAR2 := NULL,
 parttern_end IN VARCHAR2 := NULL,
 result_limit IN POSITIVE := NULL)
 RETURN sys.sqlset PIPELINED;

Table 8-1 (page 8-6) describes the available parameters for the SELECT_SQL_TRACE
function.

Upgrading from Oracle9i Database and Oracle Database 10g Release 1

Testing a Database Upgrade 8-5

Table 8-1 DBMS_SQLTUNE.SELECT_SQL_TRACE Function Parameters

Parameter Description

directory Specifies the directory object pointing to the directory where
the SQL trace files are stored.

file_name Specifies all or part of the name of the SQL trace files to process.
If unspecified, the current or most recent trace file in the
specified directory will be used. % wildcards are supported for
matching trace file names.

mapping_table_name Specifies the name of the mapping table. If set to the default
value of NULL, mappings from the current database will be
used. Note that the mapping table name is not case-sensitive.

mapping_table_owner Specifies the schema where the mapping table resides. If set to
NULL, the current schema will be used.

select_mode Specifies the mode for selecting SQL statements from the trace
files. The default value is SINGLE_EXECUTION. In this mode,
only statistics for a single execution per SQL statement will be
loaded into the SQL tuning set. The statistics are not
cumulative, as is the case with other SQL tuning set data source
table functions.

options Specifies the options for the operation. The default value is
LIMITED_COMMAND_TYPE, only SQL types that are meaningful
to SQL Performance Analyzer (such as SELECT, INSERT,
UPDATE, and DELETE) are returned from the SQL trace files.

pattern_start Specifies the opening delimiting pattern of the trace file sections
to consider. This parameter is currently not used.

pattern_end Specifies the closing delimiting pattern of the trace file sections
to process. This parameter is currently not used.

result_limit Specifies the top SQL from the (filtered) source. The default
value is 231, which represents unlimited.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS_SQLTUNE package

8.1.4 Testing Database Upgrades from Oracle9i Database and Oracle Database 10g
Release 1

Once the SQL tuning set is built, you can use SQL Performance Analyzer to build a
pre-upgrade SQL trial from the execution plans and run-time statistics in the SQL
tuning set. After the pre-upgrade SQL trial is built, perform a test execute or generate
plans of SQL statements in the SQL tuning set on the test system to build a post-
upgrade SQL trial. SQL Performance Analyzer test executes the SQL statements using

Upgrading from Oracle9i Database and Oracle Database 10g Release 1

8-6 Oracle Database Testing Guide

a public database link that you specify by connecting to the test system remotely and
generating the execution plans and statistics for the SQL trial. The database link
should exist on the SQL Performance Analyzer system and connect to a remote user
with privileges to execute the SQL tuning set on the test system.

You can run SQL Performance Analyzer to test a database upgrade from Oracle9i
Database or Oracle Database 10g Release 1 using Oracle Enterprise Manager or APIs,
as described in the following sections:

• Testing Database Upgrades from Releases 9.x and 10.1 Using Cloud Control
(page 8-7)

• Testing Database Upgrades from Releases 9.x and 10.1 Using APIs (page 8-9)

8.1.4.1 Testing Database Upgrades from Releases 9.x and 10.1 Using Cloud Control
To test a database upgrade from Oracle9i Database or Oracle Database 10g Release 1
using SQL Performance Analyzer:

1. From the Performance menu, select SQL, then SQL Performance Analyzer.

If the Database Login page appears, then log in as a user with administrator
privileges.

The SQL Performance Analyzer Home page appears.

2. Under SQL Performance Analyzer Workflows, click Upgrade from 9i or 10.1.

The Upgrade from 9i or higher releases page appears.

3. Under Task Information:

Upgrading from Oracle9i Database and Oracle Database 10g Release 1

Testing a Database Upgrade 8-7

a. In the Task Name field, enter the name of the task.

b. In the SQL Tuning Set field, enter the name of the SQL tuning set that was
built.

Alternatively, click the search icon to search for the SQL tuning set using the
Search and Select: SQL Tuning Set window.

The selected SQL tuning set now appears in the SQL Tuning Set field.

c. In the Description field, optionally enter a description of the task.

4. In the Creation Method field, select:

• Execute SQLs to generate both execution plans and statistics for each SQL
statement in the SQL tuning set by actually running the SQL statements
remotely on the test system over a public database link.

• Generate Plans to create execution plans remotely on the test system over a
public database link without actually running the SQL statements.

5. In the Per-SQL Time Limit list, determine the time limit for SQL execution during
the trial by performing one of the following actions:

• Select 5 minutes.

The execution will run each SQL statement in the SQL tuning set up to 5
minutes and gather performance data.

• Select Unlimited.

The execution will run each SQL statement in the SQL tuning set to
completion and gather performance data. Collecting execution statistics
provides greater accuracy in the performance analysis but takes a longer time.
Using this setting is not recommended because the task may be stalled by one
SQL statement for a prolonged time period.

• Select Customize and enter the specified number of seconds, minutes, or
hours.

6. In the Database Link field, enter the global name of a public database link
connecting to a user with the EXECUTE privilege for the DBMS_SQLPA package
and the ADVISOR privilege on the test system.

Alternatively, click the search icon to search for and select a database link, or click
Create Database Link to create a database link using the Create Database Link
page.

7. In the Comparison Metric list, select the comparison metric to use for the
comparison analysis:

• Elapsed Time

• CPU Time

• User I/O Time

• Buffer Gets

• Physical I/O

Upgrading from Oracle9i Database and Oracle Database 10g Release 1

8-8 Oracle Database Testing Guide

• Optimizer Cost

• I/O Interconnect Bytes

Optimizer Cost is the only comparison metric available if you generated execution
plans only in the SQL trials.

To perform the comparison analysis by using more than one comparison metric,
perform separate comparison analyses by repeating this procedure with different
metrics.

8. Under Schedule:

a. In the Time Zone list, select your time zone code.

b. Select Immediately to start the task now, or Later to schedule the task to start
at a time specified using the Date and Time fields.

9. Click Submit.

The SQL Performance Analyzer Home page appears.

In the SQL Performance Analyzer Tasks section, the status of this task is
displayed. To refresh the status icon, click Refresh. After the task completes, the
Status field changes to Completed.

10. Under SQL Performance Analyzer Tasks, select the task and click the link in the
Name column.

The SQL Performance Analyzer Task page appears.

This page contains the following sections:

• SQL Tuning Set

This section summarizes information about the SQL tuning set, including its
name, owner, description, and the number of SQL statements it contains.

• SQL Trials

This section includes a table that lists the SQL trials used in the SQL
Performance Analyzer task.

• SQL Trial Comparisons

This section contains a table that lists the results of the SQL trial comparisons

11. Click the icon in the Comparison Report column.

The SQL Performance Analyzer Task Result page appears.

12. Review the results of the performance analysis, as described in "Reviewing the
SQL Performance Analyzer Report Using Oracle Enterprise Manager (page 6-3)".

If regressed SQL statements are found following the database upgrade, tune them
as described in "Tuning Regressed SQL Statements After Testing a Database
Upgrade (page 8-17)".

8.1.4.2 Testing Database Upgrades from Releases 9.x and 10.1 Using APIs
This section describes how to test database upgrades from Oracle Database releases 9.x
and 10.1 using APIs.

Upgrading from Oracle9i Database and Oracle Database 10g Release 1

Testing a Database Upgrade 8-9

To test a database upgrade from releases 9.x and 10.1:

1. On the system running SQL Performance Analyzer, create an analysis task.

2. Build the pre-upgrade SQL trial from the execution plans and run-time statistics
in the SQL tuning set by calling the EXECUTE_ANALYSIS_TASK procedure using
the following parameters:

• Set the task_name parameter to the name of the SQL Performance Analyzer
task that you want to execute.

• Set the execution_type parameter to CONVERT SQLSET to direct SQL
Performance Analyzer to treat the statistics in the SQL tuning set as a trial
execution.

• Specify a name to identify the execution using the execution_name
parameter. If not specified, then SQL Performance Analyzer automatically
generates a name for the task execution.

The following example executes the SQL Performance Analyzer task named
my_spa_task as a trial execution:

EXEC DBMS_SQLPA.EXECUTE_ANALYSIS_TASK(task_name => 'my_spa_task', -
 execution_type => 'CONVERT SQLSET', -
 execution_name => 'my_trial_9i');

3. Build the post-upgrade SQL trial by performing an explain plan or test execute
using the EXECUTE_ANALYSIS_TASK procedure:

• Set the execution_type parameter to EXPLAIN PLAN or TEST EXECUTE:

– If you choose to use EXPLAIN PLAN, only execution plans will be
generated. Subsequent comparisons will only be able to yield a list of
changed plans without making any conclusions about performance
changes.

– If you choose to use TEST EXECUTE, the SQL workload will be executed
to completion. This effectively builds the post-upgrade SQL trial using
the statistics and execution plans generated from the test system. Using
TEST EXECUTE is recommended to capture the SQL execution plans and
performance data at the source, thereby resulting in a more accurate
analysis.

• Set the DATABASE_LINK task parameter to the global name of a public
database link connecting to a user with the EXECUTE privilege for the
DBMS_SQLPA package and the ADVISOR privilege on the test system.

The following example performs a test execute of the SQL statements remotely
over a database link:

EXEC DBMS_SQLPA.EXECUTE_ANALYSIS_TASK(task_name => 'my_spa_task', -
 execution_type => 'TEST EXECUTE', -
 execution_name => 'my_remote_trial_10g', -
 execution_params => dbms_advisor.arglist('database_link',
 'LINK.A.B.C.BIZ.COM'));

Upgrading from Oracle9i Database and Oracle Database 10g Release 1

8-10 Oracle Database Testing Guide

See Also:

• "Creating an Analysis Task Using APIs (page 3-14)"

• "Creating a Pre-Change SQL Trial Using APIs (page 4-4)"

• "Creating a Post-Change SQL Trial Using APIs (page 5-3)"

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_SQLPA.EXECUTE_ANALYSIS_TASK function

8.2 Upgrading from Oracle Database 10g Release 2 and Newer Releases
You can use SQL Performance Analyzer to test the impact on SQL response time of a
database upgrade from Oracle Database 10g Release 2 or a newer release to any later
release by capturing a SQL tuning set on the production system, then executing it
twice remotely over a database link on a test system—first to create a pre-change SQL
trial, then again to create a post-change SQL trial.

Before the database upgrade can be tested, ensure that the following conditions are
met:

• The production system which you are upgrading from is running Oracle Database
10g Release 2 or a newer release.

• Initially, the test system should also be running the same release of Oracle
Database.

• The test system must contain an exact copy of the production data found on the
production system.

• The hardware configuration must be as similar to the production system as
possible.

You will also need to set up a separate SQL Performance Analyzer system running
Oracle Database 11g Release 2. You will be using this system to run SQL Performance
Analyzer. Neither your production data or schema need to be available on this system,
since the SQL tuning set will be built using statistics stored in the SQL trace files from
the production system. SQL Performance Analyzer tasks will be executed remotely on
the test system to generate the execution plan and statistics for the SQL trial over a
database link that you specify. The database link must be a public database link that
connects to a user with the EXECUTE privilege for the DBMS_SQLPA package and the
ADVISOR privilege on the test system. You should also drop any existing
PLAN_TABLE from the user's schema on the test system.

Once the upgrade environment is configured as described, perform the steps as
described in the following procedure to use SQL Performance Analyzer in a database
upgrade from Oracle Database 10g Release 2 or a newer release to any later release.

1. On the production system, capture the SQL workload that you intend to analyze
and store it in a SQL tuning set, as described in "Capturing the SQL Workload
(page 2-3)".

2. Set up the test system so that it matches the production environment as closely as
possible, as described in "Setting Up the Test System (page 2-4)".

3. Transport the SQL tuning set to the SQL Performance Analyzer system.

Upgrading from Oracle Database 10g Release 2 and Newer Releases

Testing a Database Upgrade 8-11

For information about transporting SQL tuning sets using:

• Oracle Enterprise Manager, see Oracle Database 2 Day + Performance Tuning
Guide

• APIs, see Oracle Database SQL Tuning Guide

4. On the SQL Performance Analyzer system, create a SQL Performance Analyzer
task using the SQL tuning set as its input source.

Remotely test execute the SQL statements in the SQL tuning set on the test system
over a database link to build a pre-upgrade SQL trial that will be used as a baseline
for comparison, as described in "Testing Database Upgrades from Oracle Database
10g Release 2 and Newer Releases (page 8-12)".

5. Upgrade the test system.

6. Remotely test execute the SQL statements a second time on the upgraded test
system over a database link to build a post-upgrade SQL trial, as described in
"Testing Database Upgrades from Oracle Database 10g Release 2 and Newer
Releases (page 8-12)".

7. Compare SQL performance and fix regressed SQL.

SQL Performance Analyzer compares the performance of SQL statements read
from the SQL tuning set during the pre-upgrade SQL trial to those captured from
the remote test execution during the post-upgrade SQL trial. A report is produced
to identify any changes in execution plans or performance of the SQL statements.

If the report reveals any regressed SQL statements, you can make further changes
to fix the regressed SQL, as described in "Tuning Regressed SQL Statements After
Testing a Database Upgrade (page 8-17)".

Repeat the process of executing the SQL tuning set and comparing its performance
to a previous execution to test any changes made until you are satisfied with the
outcome of the analysis.

8.2.1 Testing Database Upgrades from Oracle Database 10g Release 2 and Newer
Releases

Once the SQL tuning set is transported to the SQL Performance Analyzer system, you
can use SQL Performance Analyzer to build a pre-upgrade SQL trial by executing or
generating plans of SQL statements in the SQL tuning set on the test system. SQL
Performance Analyzer test executes the SQL statements using a database link that you
specify by connecting to the test system remotely and generating the execution plans
and statistics for the SQL trial. The database link should exist on the SQL Performance
Analyzer system and connect to a remote user with privileges to execute the SQL
tuning set on the test system.

After the pre-upgrade SQL trial is built, you need to upgrade the test system. Once the
database has been upgraded, SQL Performance Analyzer will need to execute or
generate plans of SQL statements in the SQL tuning set a second time on the upgraded
test system to build a post-upgrade SQL trial. Alternatively, if hardware resources are
available, you can use another upgraded test system to execute the second remote SQL
trial. This method can be useful in helping you investigate issues identified by SQL
Performance Analyzer.

Upgrading from Oracle Database 10g Release 2 and Newer Releases

8-12 Oracle Database Testing Guide

You can run SQL Performance Analyzer to test a database upgrade from Oracle
Database 10g Release 2 or a newer release using Oracle Enterprise Manager or APIs, as
described in the following sections:

• Testing Database Upgrades from Releases 10.2 and Higher Using Cloud Control
(page 8-13)

• Testing Database Upgrades from Releases 10.2 and Higher Using APIs
(page 8-16)

8.2.1.1 Testing Database Upgrades from Releases 10.2 and Higher Using Cloud
Control
To test a database upgrade from Oracle Database 10g Release 2 or a newer release
using SQL Performance Analyzer:

1. From the Performance menu, select SQL, then SQL Performance Analyzer.

If the Database Login page appears, then log in as a user with administrator
privileges.

The SQL Performance Analyzer Home page appears.

2. Under SQL Performance Analyzer Workflows, click Upgrade from 10.2 or 11g.

The Upgrade from 10.2 or higher releases page appears.

3. Under Task Information:

Upgrading from Oracle Database 10g Release 2 and Newer Releases

Testing a Database Upgrade 8-13

a. In the Task Name field, enter the name of the task.

b. In the SQL Tuning Set field, enter the name of the SQL tuning set that was
built.

Alternatively, click the search icon to search for the SQL tuning set using the
Search and Select: SQL Tuning Set window.

The selected SQL tuning set now appears in the SQL Tuning Set field.

c. In the Description field, optionally enter a description of the task.

4. In the Creation Method field, select:

• Execute SQLs to generate both execution plans and statistics for each SQL
statement in the SQL tuning set by actually running the SQL statements
remotely on the test system over a public database link.

• Generate Plans to create execution plans remotely on the test system over a
public database link without actually running the SQL statements.

5. In the Per-SQL Time Limit list, determine the time limit for SQL execution during
the trial by performing one of the following actions:

• Select 5 minutes.

The execution will run each SQL statement in the SQL tuning set up to 5
minutes and gather performance data.

• Select Unlimited.

The execution will run each SQL statement in the SQL tuning set to
completion and gather performance data. Collecting execution statistics
provides greater accuracy in the performance analysis but takes a longer time.
Using this setting is not recommended because the task may be stalled by one
SQL statement for a prolonged time period.

• Select Customize and enter the specified number of seconds, minutes, or
hours.

6. In the Database Link field, enter the global name of a public database link
connecting to a user with the EXECUTE privilege for the DBMS_SQLPA package
and the ADVISOR privilege on the pre-upgrade system.

Alternatively, click the search icon to search for and select a database link, or click
Create Database Link to create a database link using the Create Database Link
page.

7. Under Post-upgrade Trial:

a. Select Use the same system as in the pre-upgrade trial to use the same
system for executing both the pre-upgrade and post-upgrade trials.

Oracle recommends using this option to avoid possible errors due to different
system configurations. When using this option, you will need to upgrade the
test database to the higher database version before the post-upgrade trial is
executed.

b. In the Database Link field, enter the global name of a public database link
connecting to a user with the EXECUTE privilege for the DBMS_SQLPA
package and the ADVISOR privilege on the post-upgrade system.

Upgrading from Oracle Database 10g Release 2 and Newer Releases

8-14 Oracle Database Testing Guide

8. In the Comparison Metric list, select the comparison metric to use for the
comparison analysis:

• Elapsed Time

• CPU Time

• User I/O Time

• Buffer Gets

• Physical I/O

• Optimizer Cost

• I/O Interconnect Bytes

Optimizer Cost is the only comparison metric available if you generated execution
plans only in the SQL trials.

To perform the comparison analysis by using more than one comparison metric,
perform separate comparison analyses by repeating this procedure with different
metrics.

9. Under Schedule:

a. In the Time Zone list, select your time zone code.

b. Select Immediately to start the task now, or Later to schedule the task to start
at a time specified using the Date and Time fields.

10. Click Submit.

The SQL Performance Analyzer Home page appears.

In the SQL Performance Analyzer Tasks section, the status of this task is
displayed. To refresh the status icon, click Refresh.

If you are using the same system to execute both the pre-upgrade and post-
upgrade trials, you will need to upgrade the database after the pre-upgrade trial
step is completed. After the database is upgraded, the post-upgrade trial can be
executed. After the task completes, the Status field changes to Completed.

11. Under SQL Performance Analyzer Tasks, select the task and click the link in the
Name column.

The SQL Performance Analyzer Task page appears.

This page contains the following sections:

• SQL Tuning Set

This section summarizes information about the SQL tuning set, including its
name, owner, description, and the number of SQL statements it contains.

• SQL Trials

This section includes a table that lists the SQL trials used in the SQL
Performance Analyzer task.

• SQL Trial Comparisons

This section contains a table that lists the results of the SQL trial comparisons

Upgrading from Oracle Database 10g Release 2 and Newer Releases

Testing a Database Upgrade 8-15

12. Click the icon in the Comparison Report column.

The SQL Performance Analyzer Task Result page appears.

13. Review the results of the performance analysis, as described in "Reviewing the
SQL Performance Analyzer Report Using Oracle Enterprise Manager (page 6-3)".

If regressed SQL statements are found following the database upgrade, tune them
as described in "Tuning Regressed SQL Statements After Testing a Database
Upgrade (page 8-17)".

8.2.1.2 Testing Database Upgrades from Releases 10.2 and Higher Using APIs
This section describes how to test database upgrades from Oracle Database releases
10.2 and higher using APIs.

To test a database upgrade from releases 10.2 and higher:

1. On the system running SQL Performance Analyzer, create an analysis task.

2. Build the pre-upgrade SQL trial by performing an explain plan or test execute of
SQL statements in the SQL tuning set.

Call the EXECUTE_ANALYSIS_TASK procedure using the following parameters:

• Set the task_name parameter to the name of the SQL Performance Analyzer
task that you want to execute.

• Set the execution_type parameter to EXPLAIN PLAN or TEST EXECUTE:

– If you choose to use EXPLAIN PLAN, only execution plans will be
generated. Subsequent comparisons will only be able to yield a list of
changed plans without making any conclusions about performance
changes.

– If you choose to use TEST EXECUTE, the SQL workload will be executed
to completion. This effectively builds the pre-upgrade SQL trial using the
statistics and execution plans generated from the test system. Using TEST
EXECUTE is recommended to capture the SQL execution plans and
performance data at the source, thereby resulting in a more accurate
analysis.

• Specify a name to identify the execution using the execution_name
parameter. If not specified, then SQL Performance Analyzer automatically
generates a name for the task execution.

• Set the DATABASE_LINK task parameter to the global name of a public
database link connecting to a user with the EXECUTE privilege for the
DBMS_SQLPA package and the ADVISOR privilege on the test system.

The following example executes the SQL Performance Analyzer task named
my_spa_task and performs a test execute of the SQL statements remotely over a
database link:

EXEC DBMS_SQLPA.EXECUTE_ANALYSIS_TASK(task_name => 'my_spa_task', -
 execution_type => 'TEST EXECUTE', -
 execution_name => 'my_remote_trial_10g', -
 execution_params => dbms_advisor.arglist('database_link',
 'LINK.A.B.C.BIZ.COM'));

Upgrading from Oracle Database 10g Release 2 and Newer Releases

8-16 Oracle Database Testing Guide

3. Build the post-upgrade SQL trial by performing an explain plan or test execute
using the EXECUTE_ANALYSIS_TASK procedure:

• Set the execution_type parameter to EXPLAIN PLAN or TEST EXECUTE:

– If you choose to use EXPLAIN PLAN, only execution plans will be
generated. Subsequent comparisons will only be able to yield a list of
changed plans without making any conclusions about performance
changes.

– If you choose to use TEST EXECUTE, the SQL workload will be executed
to completion. This effectively builds the post-upgrade SQL trial using
the statistics and execution plans generated from the test system. Using
TEST EXECUTE is recommended to capture the SQL execution plans and
performance data at the source, thereby resulting in a more accurate
analysis.

• Set the DATABASE_LINK task parameter to the global name of a public
database link connecting to a user with the EXECUTE privilege for the
DBMS_SQLPA package and the ADVISOR privilege on the test system.

The following example performs a test execute of the SQL statements remotely
over a database link:

EXEC DBMS_SQLPA.EXECUTE_ANALYSIS_TASK(task_name => 'my_spa_task', -
 execution_type => 'TEST EXECUTE', -
 execution_name => 'my_remote_trial_12c', -
 execution_params => dbms_advisor.arglist('database_link',
 'LINK.A.B.C.BIZ.COM'));

See Also:

• "Creating an Analysis Task Using APIs (page 3-14)"

• "Creating a Pre-Change SQL Trial Using APIs (page 4-4)"

• "Creating a Post-Change SQL Trial Using APIs (page 5-3)"

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_SQLPA.EXECUTE_ANALYSIS_TASK function

8.3 Tuning Regressed SQL Statements After Testing a Database Upgrade
In some cases, SQL Performance Analyzer may identify SQL statements whose
performance regressed after you upgrade the database on the test system.

You can tune the regressed SQL statements by using the SQL Tuning Advisor or SQL
plan baselines, as described in Comparing SQL Trials (page 6-1). This involves using
APIs to build a subset of a SQL tuning set with only the regressed SQL statements,
transport this subset of regressed SQL statements to the remote database, and running
the SQL Tuning Advisor on the remote database.

Oracle Enterprise Manager does not provide support for fixing regressions after
running SQL Performance Analyzer involving one or more remote SQL trials.

If you are upgrading from Oracle Database 10g Release 2 and newer releases, you can
also create SQL plan baselines to instruct the optimizer to select existing execution
plans in the future.

Tuning Regressed SQL Statements After Testing a Database Upgrade

Testing a Database Upgrade 8-17

See Also:

• "Tuning Regressed SQL Statements From a Remote SQL Trial Using APIs
(page 6-25)"

• "Creating SQL Plan Baselines Using APIs (page 6-27)"

Tuning Regressed SQL Statements After Testing a Database Upgrade

8-18 Oracle Database Testing Guide

Part II
Database Replay

Database Replay enables you to replay a full production workload on a test system to
assess the overall impact of system changes.

Part II covers Database Replay and contains the following chapters:

• Introduction to Database Replay (page 9-1)

• Capturing a Database Workload (page 10-1)

• Preprocessing a Database Workload (page 11-1)

• Replaying a Database Workload (page 12-1)

• Analyzing Captured and Replayed Workloads (page 13-1)

• Using Workload Intelligence (page 14-1)

• Using Consolidated Database Replay (page 15-1)

• Using Workload Scale-Up (page 16-1)

9
Introduction to Database Replay

You can use Database Replay to capture a workload on the production system and
replay it on a test system with the exact timing, concurrency, and transaction
characteristics of the original workload. This enables you to test the effects of a system
change without affecting the production system.

Database Replay supports workload capture on a system running Oracle Database 10g
Release 2 and newer releases. In order to capture a workload on a system running
Oracle Database 10g Release 2, the database version must be 10.2.0.4 or higher.
Workload replay is only supported on systems running Oracle Database 11g Release 1
and newer releases.

Note:

To use the workload capture feature on a system running Oracle9i Database or
an earlier version of Oracle Database 10g, refer to My Oracle Support note ID
560977.1 at the URL below for information about the required patches, or
contact Oracle Support for more information:

https://support.oracle.com/rs?type=doc&id=560977.1

Analyzing the effect of system changes using Database Replay involves the following
steps, as illustrated in Figure 9-1 (page 9-2):

Introduction to Database Replay 9-1

https://support.oracle.com/rs?type=doc&id=560977.1

Figure 9-1 Database Replay Workflow

TestProduction

Client

Oracle�
Database

Storage
Oracle�

Database

Storage

Middle Tier

Capture�
SQL

Make�
Change

Execute�
SQL

Compare�
Performance

Execute�
SQL

Client Client

1. On the production system, capture the workload into capture files, as described in
"Workload Capture (page 9-2)".

2. Copy the capture files to the test system and preprocess them, as described in
"Workload Preprocessing (page 9-3)".

3. On the test system, replay the preprocessed files, as described in "Workload
Replay (page 9-3)".

4. Using the reports generated by Database Replay, perform detailed analysis of
both the workload capture and workload replay, as described in "Analysis and
Reporting (page 9-4)".

9.1 Workload Capture
The first step in using Database Replay is to capture the production workload.
Capturing a workload involves recording all requests made by external clients to
Oracle Database.

Workload Capture

9-2 Oracle Database Testing Guide

When workload capture is enabled, all external client requests directed to Oracle
Database are tracked and stored in binary files—called capture files—on the file
system. You can specify the location where the capture files will be stored. Once
workload capture begins, all external database calls are written to the capture files.
The capture files contain all relevant information about the client request, such as SQL
text, bind values, and transaction information. Background activities and database
scheduler jobs are not captured. These capture files are platform independent and can
be transported to another system.

See Also:

• Capturing a Database Workload (page 10-1) for information about how
to capture a workload on the production system

9.2 Workload Preprocessing
Once the workload has been captured, the information in the capture files must be
preprocessed. Preprocessing creates all necessary metadata needed for replaying the
workload. This must be done once for every captured workload before they can be
replayed. After the captured workload is preprocessed, it can be replayed repeatedly
on a replay system running the same version of Oracle Database. Typically, the
capture files should be copied to a test system for preprocessing. As workload
preprocessing can be time consuming and resource intensive, it is recommended that
this step be performed on the test system where the workload will be replayed.

See Also:

• Preprocessing a Database Workload (page 11-1) for information about
how to preprocess a captured workload

9.3 Workload Replay
After a captured workload has been preprocessed, it can be replayed on a test system.
During the workload replay phase, Oracle Database performs the actions recorded
during the workload capture phase on the test system by re-creating all captured
external client requests with the same timing, concurrency, and transaction
dependencies of the production system.

Database Replay uses a client program called the replay client to re-create all external
client requests recorded during workload capture. Depending on the captured
workload, you may need one or more replay clients to properly replay the workload.
A calibration tool is provided to help determine the number of replay clients needed
for a particular workload. Because the entire workload is replayed—including DML
and SQL queries—the data in the replay system should be as logically similar to the
data in the capture system as possible. This will minimize replay divergence and
enable a more reliable analysis of the replay.

See Also:

• Replaying a Database Workload (page 12-1) for information about how
to replay a preprocessed workload on the test system

Workload Preprocessing

Introduction to Database Replay 9-3

9.4 Analysis and Reporting
Once the workload is replayed, in-depth reporting is provided for you to perform
detailed analysis of both workload capture and replay.

The workload capture report and workload replay report provide basic information
about the workload capture and replay, such as errors encountered during replay and
data divergence in rows returned by DML or SQL queries. A comparison of several
statistics—such as database time, average active sessions, and user calls—between the
workload capture and the workload replay is also provided.

The replay compare period report can be used to perform a high-level comparison of
one workload replay to its capture or to another replay of the same capture. A
divergence summary with an analysis of whether any data divergence occurred and if
there were any significant performance changes is also provided. Furthermore,
Automatic Database Diagnostic Monitor (ADDM) findings are incorporated into these
reports.

For advanced analysis, Automatic Workload Repository (AWR) reports are available
to enable detailed comparison of performance statistics between the workload capture
and the workload replay. The information available in these reports is very detailed,
and some differences between the workload capture and replay can be expected.
Furthermore, Workload Intelligence operates on data recorded during a workload
capture to create a model that describes the workload. This model can be used to
identify significant patterns in templates that are executed as part of the workload. For
each pattern, you can view important statistics, such as the number of executions of a
given pattern and the database time consumed by the pattern during its execution.

The SQL Performance Analyzer report can be used to compare a SQL tuning set from
a workload capture to another SQL tuning set from a workload replay, or two SQL
tuning sets from two workload replays. Comparing SQL tuning sets with Database
Replay provides more information than SQL Performance Analyzer test-execute
because it considers and shows all execution plans for each SQL statement, while SQL
Performance Analyzer test-execute generates only one execution plan per SQL
statement for each SQL trial. Moreover, the SQL statements are executed in a more
authentic environment because Database Replay captures all bind values and
reproduces dynamic session state such as PL/SQL package state more accurately. It is
recommended that you run SQL Performance Analyzer test-execute first as a sanity
test to ensure SQL statements have not regressed and the test system is set up properly
before using Database Replay to perform load and currency testing.

Besides using replay divergence information to analyze replay characteristics of a
given system change, you should also use an application-level validation procedure to
assess the system change. Consider developing a script to assess the overall success of
the replay. For example, if 10,000 orders are processed during workload capture, you
should validate that a similar number of orders are also processed during replay.

After the replay analysis is complete, you can restore the database to its original state
at the time of workload capture and repeat workload replay to test other changes to
the system.

See Also:

• Analyzing Captured and Replayed Workloads (page 13-1) for
information about how to analyze data and performance divergence
using Database Replay reports

Analysis and Reporting

9-4 Oracle Database Testing Guide

10
Capturing a Database Workload

This chapter describes how to capture a database workload on the production system.
The first step in using Database Replay is to capture the production workload.

This chapter contains the following sections:

• Prerequisites for Capturing a Database Workload (page 10-1)

• Setting Up the Capture Directory (page 10-2)

• Workload Capture Options (page 10-2)

• Workload Capture Restrictions (page 10-4)

• Enabling and Disabling the Workload Capture Feature (page 10-5)

• Enterprise Manager Privileges and Roles (page 10-6)

• Capturing a Database Workload Using Enterprise Manager (page 10-7)

• Capturing Workloads from Multiple Databases Concurrently (page 10-12)

• Monitoring a Workload Capture Using Enterprise Manager (page 10-15)

• Importing a Workload External to Enterprise Manager (page 10-17)

• Creating Subsets from an Existing Workload (page 10-19)

• Copying or Moving a Workload to a New Location (page 10-21)

• Capturing a Database Workload Using APIs (page 10-22)

• Monitoring Workload Capture Using Views (page 10-26)

See Also:

"Workload Capture (page 9-2)" for more information about how capturing a
database workload fits within the Database Replay architecture

10.1 Prerequisites for Capturing a Database Workload
Before starting a workload capture, you should have a strategy in place to restore the
database on the test system. Before a workload can be replayed, the logical state of the
application data on the replay system should be similar to that of the capture system
when replay begins. To accomplish this, consider using one of the following methods:

• Recovery Manager (RMAN) DUPLICATE command

• Snapshot standby

Capturing a Database Workload 10-1

• Data Pump Import and Export

This will allow you to restore the database on the replay system to the application
state as of the workload capture start time.

See Also:

• Oracle Database Backup and Recovery User’s Guide for information about
duplicating databases with RMAN

• Oracle Data Guard Concepts and Administration for information about
managing snapshot standby databases

• Oracle Database Utilities for information about using Data Pump

10.2 Setting Up the Capture Directory
Determine the location and set up a directory where the captured workload will be
stored. Before starting the workload capture, ensure that the directory is empty and
has ample disk space to store the workload. If the directory runs out of disk space
during a workload capture, the capture will stop. To estimate the amount of disk
space that is required, you can run a test capture on your workload for a short
duration (such as a few minutes) to extrapolate how much space you will need for a
full capture. To avoid potential performance issues, you should also ensure that the
target replay directory is mounted on a separate file system.

For Oracle RAC, consider using a shared file system. Alternatively, you can set up one
capture directory path that resolves to separate physical directories on each instance,
but you will need to consolidate the files created in each of these directories into a
single directory. For captures on an Oracle RAC database, Enterprise Manager only
supports Oracle RAC configured with a shared file system. The entire content of the
local capture directories on each instance (not only the capture files) must be copied to
the shared directory before it can be used for preprocessing. For example, assume that
you are:

• Running an Oracle RAC environment in Linux with two database instances
named host1 and host2

• Using a capture directory object named CAPDIR that resolves to /
$ORACLE_HOME/rdbms/capture on both instances

• Using a shared directory that resides in /nfs/rac_capture

You will need to login into each host and run the following command:

cp -r /$ORACLE_HOME/rdbms/capture/* /nfs/rac_capture

After this is done for both instances, the /nfs/rac_capture shared directory is
ready to be preprocessed or masked.

10.3 Workload Capture Options
Proper planning before workload capture is required to ensure that the capture will be
accurate and useful when replayed in another environment.

Before capturing a database workload, carefully consider the following options:

• Restarting the Database (page 10-3)

Setting Up the Capture Directory

10-2 Oracle Database Testing Guide

• Using Filters with Workload Capture (page 10-4)

10.3.1 Restarting the Database
While this step is not required, Oracle recommends that the database be restarted
before capturing the workload to ensure that ongoing and dependent transactions are
allowed to be completed or rolled back before the capture begins. If the database is not
restarted before the capture begins, transactions that are in progress or have yet to be
committed will not be fully captured in the workload. Ongoing transactions will thus
not be replayed properly, because only the part of the transaction whose calls were
captured will be replayed. This may result in undesired replay divergence when the
workload is replayed. Any subsequent transactions with dependencies on the
incomplete transactions may also generate errors during replay. On a busy system, it
is normal to see some replay divergence, but the replay can still be used to perform
meaningful analysis of a system change if the diverged calls do not make up a
significant portion of the replay in terms of DB time and other such key attributes.

Before restarting the database, determine an appropriate time to shut down the
production database before the workload capture when it is the least disruptive. For
example, you may want to capture a workload that begins at 8:00 a.m. However, to
avoid service interruption during normal business hours, you may not want to restart
the database during this time. In this case, you should consider starting the workload
capture at an earlier time, so that the database can be restarted at a time that is less
disruptive.

Once the database is restarted, it is important to start the workload capture before any
user sessions reconnect and start issuing any workload. Otherwise, transactions
performed by these user sessions will not be replayed properly in subsequent database
replays, because only the part of the transaction whose calls were executed after the
workload capture is started will be replayed. To avoid this problem, consider
restarting the database in RESTRICTED mode using STARTUP RESTRICT, which will
only allow the SYS user to login and start the workload capture. By default, once the
workload capture begins, any database instance that are in RESTRICTED mode will
automatically switch to UNRESTRICTED mode, and normal operations can continue
while the workload is being captured.

Only one workload capture can be performed at any given time. If you have a Oracle
Real Application Clusters (Oracle RAC) configuration, workload capture is performed
for the entire database. Once you enable capture for one of the Oracle RAC nodes,
workload capture is started on all database instances (the workload capture process is
Oracle RAC aware). Although it is not required, restarting all instances in a Oracle
RAC configuration before workload capture is recommended to avoid capturing
ongoing transactions.

To restart all instances in a Oracle RAC configuration before workload capture:

1. Shut down all the instances.

2. Restart all the instances.

3. Start workload capture.

4. Connect the application and start the user workload.

Workload Capture Options

Capturing a Database Workload 10-3

See Also:

• Oracle Database Administrator’s Guide for information about restricting
access to an instance at startup

10.3.2 Using Filters with Workload Capture
By default, all user sessions are recorded during workload capture. You can use
workload filters to specify which user sessions to include in or exclude from the
workload during workload capture. There are two types of workload filters: inclusion
filters and exclusion filters. You can use either inclusion filters or exclusion filters in a
workload capture, but not both.

Inclusion filters enable you to specify user sessions that will be captured in the
workload. This is useful if you want to capture only a subset of the database workload.

Exclusion filters enable you to specify user sessions that will not be captured in the
workload. This is useful if you want to filter out session types that do not need to
captured in the workload, such as those that monitor the infrastructure—like Oracle
Enterprise Manager (EM) or Statspack—or other such processes that are already
running on the test system. For example, if the system where the workload will be
replayed is running EM, replaying captured EM sessions on the system will result in
duplication of workload. In this case, you may want to use exclusion filters to filter out
EM sessions.

10.4 Workload Capture Restrictions
Certain types of user sessions and client requests may sometimes be captured in a
workload, but they are not supported by Database Replay. Capturing these session
and request types in a workload may result in errors during workload replay.

The following types of user sessions and client requests are not supported by Database
Replay:

• Direct path load of data from external files using utilities such as SQL*Loader

• Non-PL/SQL based Advanced Queuing (AQ)

• Flashback queries

• Oracle Call Interface (OCI) based object navigations

• Non SQL-based object access

• Distributed transactions

Any distributed transactions that are captured will be replayed as local
transactions.

• XA transactions

XA transactions are not captured or replayed. All local transactions are captured.

• JAVA_XA transactions

If the workload uses the JAVA_XA package, JAVA_XA function and procedure
calls are captured as normal PL/SQL workload. To avoid problems during
workload replay, consider dropping the JAVA_XA package on the replay system
to enable the replay to complete successfully.

Workload Capture Restrictions

10-4 Oracle Database Testing Guide

• Database Resident Connection Pooling (DRCP)

• Workloads using OUT binds

• Multi-threaded Server (MTS) and shared server sessions with synchronization
mode set to OBJECT_ID

• Migrated sessions

The workload is captured for migrated sessions. However, user logins or session
migration operations are not captured. Without a valid user login or session
migration, the replay may cause errors because the workload may be replayed by
a wrong user.

Typically, Database Replay refrains from capturing these types of non-supported user
sessions and client requests. Even when they are captured, Database Replay will not
replay them. Therefore, it is usually not necessary to manually filter out non-
supported user sessions and client requests. In cases where they are captured and
found to cause errors during replay, consider using workload capture filters to
exclude them from the workload.

See Also:

• "Using Filters with Workload Capture (page 10-4)" for information about
using workload capture filters

• "Using Filters with Workload Replay (page 12-4)" for information about
using workload replay filters

10.5 Enabling and Disabling the Workload Capture Feature
Database Replay supports capturing a database workload on a system running Oracle
Database 10g Release 2 that can be used to test database upgrades to Oracle Database
11g and subsequent releases. By default, the workload capture feature is not enabled
in Oracle Database 10g Release 2 (10.2). You can enable or disable this feature by
specifying the PRE_11G_ENABLE_CAPTURE initialization parameter.

Note:

It is only necessary to enable the workload capture feature if you are capturing
a database workload on a system running Oracle Database 10g Release 2.

If you are capturing a database workload on a system running Oracle
Database 11g Release 1 or a later release, it is not necessary to enable the
workload capture feature because it is enabled by default. Furthermore, the
PRE_11G_ENABLE_CAPTURE initialization parameter is only valid with
Oracle Database 10g Release 2 (10.2) and cannot be used with subsequent
releases.

To enable the workload capture feature on a system running Oracle Database 10g
Release 2, run the wrrenbl.sql script at the SQL prompt:

@$ORACLE_HOME/rdbms/admin/wrrenbl.sql

The wrrenbl.sql script calls the ALTER SYSTEM SQL statement to set the
PRE_11G_ENABLE_CAPTURE initialization parameter to TRUE. If a server parameter

Enabling and Disabling the Workload Capture Feature

Capturing a Database Workload 10-5

file (spfile) is being used, the PRE_11G_ENABLE_CAPTURE initialization parameter
will be modified for the currently running instance and recorded in the spfile, so that
the new setting will persist when the database is restarted. If a spfile is not being used,
the PRE_11G_ENABLE_CAPTURE initialization parameter will only be modified for
the currently running instance, and the new setting will not persist when the database
is restarted. To make the setting persistent without using a spfile, you will need to
manually specify the parameter in the initialization parameter file (init.ora).

To disable workload capture, run the wrrdsbl.sql script at the SQL prompt:

@$ORACLE_HOME/rdbms/admin/wrrdsbl.sql

The wrrdsbl.sql script calls the ALTER SYSTEM SQL statement to set the
PRE_11G_ENABLE_CAPTURE initialization parameter to FALSE. If a server parameter
file (spfile) is being used, the PRE_11G_ENABLE_CAPTURE initialization parameter
will be modified for the currently running instance and also recorded in the spfile, so
that the new setting will persist when the database is restarted. If a spfile is not being
used, the PRE_11G_ENABLE_CAPTURE initialization parameter will only be modified
for the currently running instance, and the new setting will not persist when the
database is restarted. To make the setting persistent without using a spfile, you will
need to manually specify the parameter in the initialization parameter file
(init.ora).

Note:

The PRE_11G_ENABLE_CAPTURE initialization parameter can only be used
with Oracle Database 10g Release 2 (10.2). This parameter is not valid in
subsequent releases. After upgrading the database, you will need to remove
the parameter from the server parameter file (spfile) or the initialization
parameter file (init.ora); otherwise, the database will fail to start up.

10.6 Enterprise Manager Privileges and Roles
The Database Replay resource type privileges enable you to view or operate any
Database Replay entities. Additionally, you need the target operator privilege for the
target from which the workload was captured to access the entities associated with the
workload. For a target that does not exist anymore, the Enterprise Manager user who
owns the entities or the Enterprise Manager super user can still access the entities.

The two security roles discussed in the following sections make it easier to grant or
revoke privileges related to Database Replay entities.

10.6.1 Database Replay Viewer Role
Users who have the Database Replay Viewer role can view any Database Replay
entity. By default, no Enterprise Manager user is granted this role. However, the
EM_ALL_VIEWER role includes this role by default.

The Database Replay Viewer role consists of the Database Replay Viewer (resource
type) privilege.

10.6.2 Database Replay Operator Role
The Database Replay Operator role includes the Database Replay Viewer role and thus
its privileges. Users who have the Database Replay Operator role can also edit and
delete any Database Replay entity. By default, no Enterprise Manager user is granted
this role. However, the EM_ALL_OPERATOR role includes this role by default.

Enterprise Manager Privileges and Roles

10-6 Oracle Database Testing Guide

The Database Replay Operator role consists of the following privileges:

• Database Replay Operator (resource type privilege)

• Create new Named Credential (resource type privilege)

• Create new job (resource type privilege)

• Connect to any viewable target (target type privilege)

• Execute Command Anywhere (target type privilege)

To capture or replay a workload on a database target, an Enterprise Manager user
needs all the privileges granted by the Database Replay Operator role plus the target
operator privilege for the database target.

10.7 Capturing a Database Workload Using Enterprise Manager
This section describes how to capture a database workload using Enterprise Manager.
The primary tool for capturing database workloads is Oracle Enterprise Manager.

For information about the prerequisites, see "Prerequisites for Capturing a Database
Workload (page 10-1)".

Tip:

If Oracle Enterprise Manager is unavailable, you can capture database
workloads using APIs, as described in "Capturing a Database Workload Using
APIs (page 10-22)".

To capture a database workload using Enterprise Manager:

1. From the Enterprise menu of the Enterprise Manager Cloud Control console, select
Quality Management, then Database Replay.

If the Database Login page appears, log in as a user with administrator privileges.

The Database Replay page appears.

2. From the Database Replay page, click the Captured Workloads tab, then click
Create in the toolbar.

The Create Capture: Plan Environment page appears.

Capturing a Database Workload Using Enterprise Manager

Capturing a Database Workload 10-7

3. Verify that you have met both prerequisites described on this page, then enable
both checkboxes and click Next.

The Create Capture: Database page appears.

4. Click Add.

The Add pop-up appears.

5. Provide a capture name, provide an optional description, then click the Target
Database search icon.

The Search and Select: Targets pop-up appears.

Capturing a Database Workload Using Enterprise Manager

10-8 Oracle Database Testing Guide

6. Select a Target Type, optionally provide a configuration search, choose a target
database from the list, then click Select.

The Add pop-up reappears with added sections for Database Credential and
Database Host Credential.

7. Provide database credentials, database host credentials, a Database Capture
Intermediate Storage Location, then click OK.

• After the Capture, the files are copied to the storage location, unless you use
the intermediate storage location as the final storage location.

Capturing a Database Workload Using Enterprise Manager

Capturing a Database Workload 10-9

Note:

For captures on an Oracle RAC database, Enterprise Manager only supports
Oracle RAC configured with a shared file system.

The selected target database now appears in the list of databases in the Select
Production Databases table.

8. Click Next.

The Create Capture: Options page appears.

9. Select the workload capture options:

• Under the SQL Performance Analyzer section, select whether to capture SQL
statements into a SQL tuning set during workload capture.

While Database Replay provides an analysis of how a change affects your
entire system, you can use a SQL tuning set in conjunction with the SQL
Performance Analyzer to gain a more SQL-centric analysis of how the change
affects SQL statements and execution plans.

By capturing a SQL tuning set during workload capture and another SQL
tuning set during workload replay, you can use the SQL Performance
Analyzer to compare these SQL tuning sets to each other without having to re-
execute the SQL statements. This enables you to obtain a SQL Performance
Analyzer report and compare the SQL performance, before and after changes,
while running Database Replay.

Note:

Capturing SQL statements into a SQL Tuning Set is the default, and is the
recommended workload capture option. Capturing SQL statements into a
SQL Tuning Set is not available for Oracle RAC.

Capturing a Database Workload Using Enterprise Manager

10-10 Oracle Database Testing Guide

Tip:

For information about comparing SQL tuning sets using SQL Performance
Analyzer reports, see "Generating SQL Performance Analyzer Reports Using
APIs (page 13-15)".

• Under the Workload Filters section, select whether to use exclusion filters by
selecting Exclusion in the Filter Mode list, or inclusion filters by selecting
Inclusion in the Filter Mode list.

To add filters, click Add and enter the filter name, session attribute, and value
in the corresponding fields.

Tip:

For more information, see "Using Filters with Workload Capture (page 10-4)".

After selecting the desired workload capture options, click Next.

The Create Capture: Storage page appears.

10. Click the Storage Host icon, choose a target from the list, then click Select.

The Storage page now requests Host Credentials and a Storage Location.

11. Provide Host Credentials, click Browse to select a Storage Location, select the
location and click OK, then click Next.

The Create Capture: Schedule page appears.

12. Schedule the starting time and duration for the capture, schedule the exporting of
AWR data, then click Next.

• The default capture duration is 5 minutes. Change the capture duration to
capture representative activity over a time period of interest that needs to be
tested.

Capturing a Database Workload Using Enterprise Manager

Capturing a Database Workload 10-11

The Create Capture: Review page appears.

13. If all of the parameters appear as you have intended, click Submit to start the
capture job.

• The "Capture SQL statements into a SQL Tuning Set during workload capture"
option is enabled by default. Uncheck this option if you do not want to
compare SQL tuning sets at the end of the Replay.

The Database Replay page reappears, displays a message that the capture was
created successfully, and displays the status of the capture in the Captures list, such
as "Scheduled."

14. For detailed information about the capture, double-click the name of the capture.

The Capture Summary page appears, and displays several attributes, including the
average active sessions, a workload comparison, and related concurrent captures, if
any.

Tip:

After capturing a workload on the production system, you need to preprocess
the captured workload, as described in Preprocessing a Database Workload
(page 11-1).

10.8 Capturing Workloads from Multiple Databases Concurrently
Concurrent capture refers to capturing the workload on multiple databases
simultaneously.

To capture a concurrent database replay workload:

1. From the Enterprise menu of the Enterprise Manager Cloud Control console,
select Quality Management, then Database Replay.

Capturing Workloads from Multiple Databases Concurrently

10-12 Oracle Database Testing Guide

If the Database Login page appears, log in as a user with administrator privileges.

The Database Replay page appears.

2. From the Database Replay page, click the Captured Workloads tab, then click
Create in the toolbar.

The Create Capture: Plan Environment page appears.

3. Make sure that you have met both prerequisites described on this page, then
enable both checkboxes and click Next.

The Create Capture: Database page appears.

Tip:

For information about the prerequisites, see "Prerequisites for Capturing a
Database Workload (page 10-1)".

4. Click Add.

The Add pop-up appears.

5. Provide a Capture name, provide an optional description, then click the Target
Database search icon.

The Search and Select: Targets pop-up appears.

6. Choose a target database from the list, then click Select.

The Add pop-up reappears with added sections for Database Credential and
Database Host Credential.

7. Provide database credentials, database host credentials, a Database Capture
Intermediate Storage Location, then click OK.

• After the Capture, the files are copied to the storage location, unless you use
the intermediate storage location as the final storage location.

The selected target database now appears in the list of databases in the Select
Production Databases table.

8. Add another database for concurrent capture:

a. Follow the instructions in steps 4 (page 10-13) through 7 (page 10-13).

The Create Capture: Database page reappears, and displays the additional
database for capture along with the first database you specified in steps 4
(page 10-13) through 7 (page 10-13).

b. Provide a name and optional description for the concurrent capture, then
click Next.

The Create Capture: Options page appears.

9. Select the workload capture options:

• Under the SQL Performance Analyzer section, select whether to capture SQL
statements into a SQL tuning set during workload capture.

While Database Replay provides an analysis of how a change affects your
entire system, you can use a SQL tuning set in conjunction with the SQL

Capturing Workloads from Multiple Databases Concurrently

Capturing a Database Workload 10-13

Performance Analyzer to gain a more SQL-centric analysis of how the change
affects SQL statements and execution plans.

By capturing a SQL tuning set during workload capture and another SQL
tuning set during workload replay, you can use the SQL Performance
Analyzer to compare these SQL tuning sets to each other without having to
re-execute the SQL statements. This enables you to obtain a SQL Performance
Analyzer report and compare the SQL performance, before and after changes,
while running Database Replay.

Note:

Capturing SQL statements into a SQL tuning set is the default and
recommended workload capture option.

• Under the Workload Filters section, select whether to use exclusion filters by
selecting Exclusion in the Filter Mode list, or inclusion filters by selecting
Inclusion in the Filter Mode list.

To add filters, click Add and enter the filter name, session attribute, and value
in the corresponding fields.

After selecting the desired workload capture options, click Next.

The Create Capture: Storage page appears.

10. Click the Storage Host icon, choose a target from the list, then click Select.

The Storage page now requests Host Credentials and a Storage Location.

11. Provide Host Credentials, click Browse to select a Storage Location, then click
Next.

The Create Capture: Schedule page appears.

12. Schedule the starting time and duration for the capture, schedule the exporting of
AWR data, then click Next.

• The default capture duration is 5 minutes. Change the capture duration to
capture representative activity over a time period of interest that needs to be
tested.

The Create Capture: Review page appears.

13. If all of the parameters appear as you have intended, click Submit to start the
Capture job.

• The "Capture SQL statements into a SQL Tuning Set during workload
capture" option is enabled by default. Uncheck this option if you do not want
to compare SQL tuning sets at the end of the Replay.

The Database Replay page reappears, displays a message that the capture was
created successfully, and displays the status of the capture in the Captures list,
such as "Scheduled."

14. For detailed information about the capture, double-click the name of the capture.

The Capture Summary page appears, and displays several attributes, including
the average active sessions, a workload comparison, and related concurrent
captures.

Capturing Workloads from Multiple Databases Concurrently

10-14 Oracle Database Testing Guide

10.9 Monitoring a Workload Capture Using Enterprise Manager
This section describes how to monitor workload capture using Enterprise Manager.
The primary tool for monitoring workload capture is Oracle Enterprise Manager.
Using Enterprise Manager, you can:

• Monitor or stop an active workload capture

• View a completed workload capture

Tip:

If Oracle Enterprise Manager is unavailable, you can monitor workload
capture using views, as described in "Monitoring Workload Capture Using
Views (page 10-26)".

This section contains the following topics:

• Monitoring an Active Workload Capture (page 10-15)

• Stopping an Active Workload Capture (page 10-16)

• Viewing a Completed Workload Capture (page 10-16)

10.9.1 Monitoring an Active Workload Capture
This section describes how to monitor an active workload capture using Enterprise
Manager.

To monitor an active workload capture:

1. From the Enterprise menu of the Enterprise Manager Cloud Control console, select
Quality Management, then Database Replay.

If the Database Login page appears, log in as a user with administrator privileges.

The Database Replay page appears.

2. From the Captured Workloads tab of the Database Replay page for a capture that
has a Status other than Completed, click the name of the desired capture from the
Capture table.

The Summary tab of the Database Replay page appears, showing detailed statistics,
a chart for average active sessions that updates dynamically while the capture is in
progress, a comparison of data for captured elements versus the same elements not
captured, and related concurrent captures, if any.

• The Not Captured data shown in the Active Average Sessions chart shows the
database activity (database sessions) that is not being captured.

• The values for the Total column in the Comparison section shows all of the
captured and uncaptured activity in the database. Filtering, as determined by
the Workload Filters you provided in the Options step of the Create Capture
wizard, is primarily why some activity is captured or not. Additionally,
background activities, database scheduler jobs, and unreplayable calls are not
captured.

Monitoring a Workload Capture Using Enterprise Manager

Capturing a Database Workload 10-15

• You can click the refresh icon in the upper right corner to update the capture
while it is running.

3. To return to the Database Replay page, click the Database Replay breadcrumb.

10.9.2 Stopping an Active Workload Capture
This section describes how to stop an active workload capture using Enterprise
Manager.

To stop an active workload capture:

1. From the Enterprise menu of the Enterprise Manager Cloud Control console, select
Quality Management, then Database Replay.

If the Database Login page appears, log in as a user with administrator privileges.

The Database Replay page appears.

2. From the Captured Workloads tab of the Database Replay page for a capture that
has a Status of Draft, click the name in the Capture table of the capture you want to
stop.

The Capture Summary page appears.

3. Click the Stop Capture button.

The button label changes to Stopping Capture. When the process completes, the
Status changes to Stopped.

10.9.3 Viewing a Completed Workload Capture
This section describes how to manage a completed workload capture using Enterprise
Manager.

To view a completed workload capture:

1. From the Enterprise menu of the Enterprise Manager Cloud Control console, select
Quality Management, then Database Replay.

If the Database Login page appears, log in as a user with administrator privileges.

The Database Replay page appears.

2. From the Capture Workloads tab of the Database Replay page, click the name of a
capture that has a Status of Completed.

The contents of the Summary tab of the Database Replay page appears as for a
capture in progress, except the Average Active Sessions chart shows aggregated
data for the capture time period, rather than dynamic data recorded during the
capture.

Monitoring a Workload Capture Using Enterprise Manager

10-16 Oracle Database Testing Guide

The Average Active Sessions chart provides a graphic display of the captured
session activity compared to the uncaptured session activity (such as background
activities or filtered sessions). This chart appears only when Active Session History
(ASH) data is available for the capture period.

Under Comparison, various statistics for the workload capture are displayed:

• Capture column

Displays the statistics for the captured session activity.

• Total column

Displays the statistics for the total session activity.

• Percentage of Total column

Displays the percentage of total session activity that has been captured in the
workload.

3. To return to the Database Replay page, click the Database Replay breadcrumb.

Tip:

See Analyzing Captured and Replayed Workloads (page 13-1) for
information about accessing workload capture reports.

10.10 Importing a Workload External to Enterprise Manager
You can import a workload captured through the PL/SQL interface or through a
different Enterprise Manager instance into Enterprise Manager to manage it as you
would for a workload originally created within Enterprise Manager. The workload can
be in the process of being captured, or the Capture can be completed and the
workload stored on a file system. You can also preprocess and replay the workload as
you would ordinarily do for a workload created within Enterprise Manager.

Importing a Workload External to Enterprise Manager

Capturing a Database Workload 10-17

This feature is available for Cloud Control Database plug-in 12.1.0.5 and later releases.

To import a database workload external to Enterprise Manager:

1. From the Database Replay page, click the Captured Workloads tab, then click
Import in the toolbar.

The Import Workload: Source page appears.

2. Select one of the three choices available to import a captured workload, then click
Next:

• Import a completed captured workload from a directory in the file system

This option typically applies for a workload created using an API, in which
you now want to import it to Enterprise Manager for subsequent processing.
In this case, Enterprise Manager may not even be managing the Capture
database.

• Import a completed captured workload from a database target

In this case, Enterprise Manager is probably already managing the Capture
database. The Capture could have been done on this database, or it could
have been loaded in as would be the case for the option above.

• Attach to a Capture running in a database target

This option is similar to the option above, except this a Capture that is still in
progress, rather than one that has already completed.

The Import Workload: Database page appears.

3. Click the search icon next to the Database Target field and select a database
from the pop-up that appears.

Note:

The target version of the database loading the workload must be at least as
high as the one you used to capture the workload. For instance, if you
captured using Oracle Database 12x, the database you select to read the
Capture must be at least version 12x.

• The system now requests database and host credentials.

• In the previous step, if you chose to import a completed captured workload
from a directory in the file system, the system also requires a workload
location.

• A consolidated Replay has a different directory structure in which there are at
least two capture directories. Consequently, if the workload directory
contains a consolidated Replay, you need to enable the check box so that
Enterprise Manager can be aware of the consolidated Replay during the
import operation.

4. Provide the requisite input for the step above, then click Next.

The Import Workload: Workload page appears.

Importing a Workload External to Enterprise Manager

10-18 Oracle Database Testing Guide

• If you chose "Import a completed captured workload from a directory in the
file system" in step 2 (page 10-18), this page provides a Load Workload
button.

• If you chose “Import a completed captured workload from a database target"
or “Attach to a Capture running in a database target" in step 2 (page 10-18),
this page provides a Discover Workload button.

5. Click either Load Workload or Discover Workload, depending on which button
is available in accordance with your selection in step 2 (page 10-18).

The system displays workloads, if found, in the Discovered Workloads table.

6. Either click Next to load the workload, or select one of the workloads, then click
Next to continue importing the workload.

The Import Workload: Replay page appears only under the following conditions:

• You chose "Import a completed captured workload from a directory in the file
system" in step 2 (page 10-18).

• The workload contains one or more Replays.

7. Optional: Select one or more Replays, if desired, provide a Replay Task Name,
then click Next.

The Import Workload: Review page appears.

8. If everything appears as you have intended, click Submit.

The Database Replay page reappears and displays a message stating that the job
was submitted successfully. The Status column for your loaded or imported
workload in the Captured Workload table will show In Progress.

Tip:

You can check on the job's progress by clicking on the captured workload
name that you just submitted in the Review step. A Capture Summary page
appears, and you can click the Database Replay Import Job link to see the
progress of the job execution steps.

10.11 Creating Subsets from an Existing Workload
For cases in which you have captured a large workload covering a long period of time,
you may only want to replay a portion of it to accelerate testing. The Database Replay
Workload Subsetting feature enables you to create new workloads by extracting
portions of an existing captured workload.

Enterprise Manager provides a wizard to extract a subset of data from an existing
workload that you can use for Replay on a test system. Each extracted subset is a
legitimate workload that can be replayed on its own or with other workloads in a
consolidated Replay.

To perform a Replay, you need to preprocess the workloads.

This feature is available for Cloud Control Database plug-in 12.1.0.5 and later releases.

To extract subsets from a workload:

1. From the Captured Workloads tab of the Database Replay page, select a workload
for which you want to extract a subset, then click Subset.

Creating Subsets from an Existing Workload

Capturing a Database Workload 10-19

The Subset Workload: Define page appears, showing an Active Sessions History
chart for the workload.

2. Select a starting and ending time for the subset you want to extract from the
workload:

a. Click Add above the Subsets table at the bottom of the page.

The Create Subset pop-up appears.

b. Select either snapshot or calendar times, provide start and end times, then
click OK.

Note:

Snapshot time is the preferred choice, because not all performance data may
be available for the calendar time you select.

Your selected time period now appears in the Active Sessions chart as a
greyed-out segment.

c. Optional: Define one or more additional subsets with different time periods
than those you selected in the step above.

d. Optional: In the Advanced Parameters section, indicate whether you want to
include incomplete calls after the subset workload ends. The default is to
include incomplete calls when the subset workload begins.

• These parameters enable you to include the calls outside of your defined
boundaries. For example, when you specify a starting and ending time as
the boundaries for a transaction, the transaction may have started before
your indicated start time, and may also have continued after your
indicated end time.

3. Click Next.

The Subset Workload: Database page appears.

4. Click the search icon next to the Database Target field and select a database for
subsetting from the Search and Select: Targets pop-up that appears.

The system now requests database and host credentials.

5. Provide the requisite input for the step above, then click Next.

The Subset Workload: Location page appears.

• If the source host and staged database host are the same, the location is pre-
populated, so you do not need to provide the location for the source
workload files.

• If the source host and staged database host are not the same, do the following:

a. Choose whether you want to access the workload files from the host
name shown in the Host field, or whether you want to copy the files from
the source host to the Destination Host shown.

Access Directly means that the database to be used to subset the
workload can access the original workload directly using the specified

Creating Subsets from an Existing Workload

10-20 Oracle Database Testing Guide

file system location. This is typically the case when the original workload
is stored at a network shared location.

Access Copy means that the two hosts are not in the shared network
path. You need to provide the source host credentials so that Enterprise
Manager can copy the original workload from its current location to the
specified location on the subset database host.

b. Depending on your choice above, either provide the directory location
containing the workload files, or provide the location for the destination
host.

6. In the Subset field, specify the storage location for each subset, then click Next.

The Subset Workload: Schedule page appears.

7. Indicate when you want to start the subset job, then click Next.

The Subset Workload: Review page appears.

8. If everything appears as you have intended, click Submit.

The Database Replay page reappears and displays a message stating that the job
was submitted successfully. The Status column for your subset in the Replay
Tasks table will show In Progress.

Tip:

You can check on the job's progress by clicking on the subset name that you
just submitted in the Review step. A Capture Summary page appears, and you
can click the Database Replay Subset Job link to see the progress of the job
execution steps.

10.12 Copying or Moving a Workload to a New Location
You can use the copy function for two purposes. The purposes are:

• Duplicate the Capture files from the source to another host and location.

• Move the Capture files to a new host and location, and delete the source files from
the original location.

This feature is available for Cloud Control Database plug-in 12.1.0.5 and later releases.

To copy a workload to a new location:

1. From the Captured Workloads tab of the Database Replay page, select a workload
you want to copy to a new location, then click Copy.

The Copy Workload page appears, and displays the current source location of the
workload directory you selected.

2. Provide or change credentials for the storage host, if necessary. The system
automatically picks up the previously defined credentials for the current storage
host.

3. Leave the After Copy radio button enabled, which is "Keep original workload in
the source location."

4. Select the Storage Host for the new location of the workload directory.

Copying or Moving a Workload to a New Location

Capturing a Database Workload 10-21

5. Provide credentials for the new storage host.

6. Select the directory for the new Destination Location for the workload.

7. Schedule the job, then click Submit.

The Database Replay page reappears and displays a message stating that the job
was submitted and that the storage location has been updated successfully.

Tip:

You can check on the job's progress by going to the Job Activity page,
searching for the job name that appeared in the submit message, then clicking
its link to access the Job Run page.

10.13 Capturing a Database Workload Using APIs
This section describes how to capture a database workload using APIs. You can also
use Oracle Enterprise Manager to capture database workloads, as described in
"Capturing a Database Workload Using Enterprise Manager (page 10-7)".

Capturing a database workload using the DBMS_WORKLOAD_CAPTURE package
involves:

• Defining Workload Capture Filters (page 10-22)

• Starting a Workload Capture (page 10-23)

• Stopping a Workload Capture (page 10-25)

• Exporting AWR Data for Workload Capture (page 10-25)

• Importing AWR Data for Workload Capture (page 10-26)

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS_WORKLOAD_CAPTURE package

10.13.1 Defining Workload Capture Filters
This section describes how to add and remove workload capture filters. For
information about using workload filters with workload capture, see "Using Filters
with Workload Capture (page 10-4)".

To add filters to a workload capture:

• Use the ADD_FILTER procedure:

BEGIN
 DBMS_WORKLOAD_CAPTURE.ADD_FILTER (
 fname => 'user_ichan',
 fattribute => 'USER',
 fvalue => 'ICHAN');
END;
/

Capturing a Database Workload Using APIs

10-22 Oracle Database Testing Guide

In this example, the ADD_FILTER procedure adds a filter named user_ichan,
which can be used to filter out all sessions belonging to the user name ICHAN.

The ADD_FILTER procedure in this example uses the following parameters:

– The fname required parameter specifies the name of the filter that will be
added.

– The fattribute required parameter specifies the attribute on which the
filter will be applied. Valid values include PROGRAM, MODULE, ACTION,
SERVICE, INSTANCE_NUMBER, and USER.

– The fvalue required parameter specifies the value for the corresponding
attribute on which the filter will be applied. It is possible to use wildcards
such as % with some of the attributes, such as modules and actions.

To remove filters from a workload capture:

• Use the DELETE_FILTER procedure:

BEGIN
 DBMS_WORKLOAD_CAPTURE.DELETE_FILTER (fname => 'user_ichan');
END;
/

In this example, the DELETE_FILTER procedure removes the filter named
user_ichan from the workload capture.

The DELETE_FILTER procedure in this example uses the fname required
parameter, which specifies the name of the filter to be removed. The
DELETE_FILTER procedure will not remove filters that belong to completed
captures; it only applies to filters of captures that have yet to start.

10.13.2 Starting a Workload Capture
This section describes how to start a workload capture.

Before starting a workload capture, you must first complete the prerequisites for
capturing a database workload. The prerequisites are described in "Prerequisites for
Capturing a Database Workload (page 10-1)". You should also review the workload
capture options, as described in "Workload Capture Options (page 10-2)".

It is important to have a well-defined starting point for the workload so that the replay
system can be restored to that point before initiating a replay of the captured
workload. To have a well-defined starting point for the workload capture, it is
preferable not to have any active user sessions when starting a workload capture. If
active sessions perform ongoing transactions, those transactions will not be replayed
properly in subsequent database replays, since only that part of the transaction whose
calls were executed after the workload capture is started will be replayed. To avoid
this problem, consider restarting the database in restricted mode using STARTUP
RESTRICT before starting the workload capture. Once the workload capture begins,
the database will automatically switch to unrestricted mode and normal operations
can continue while the workload is being captured. For more information about
restarting the database before capturing a workload, see "Restarting the Database
(page 10-3)".

Capturing a Database Workload Using APIs

Capturing a Database Workload 10-23

To start a workload capture:

• Use the START_CAPTURE procedure:

BEGIN
 DBMS_WORKLOAD_CAPTURE.START_CAPTURE (name => 'dec10_peak',
 dir => 'dec10',
 duration => 600,
 capture_sts => TRUE,
 sts_cap_interval => 300,
 plsql_mode => 'extended');
END;
/

In this example, a workload named dec10_peak will be captured for 600 seconds
and stored in the file system defined by the database directory object named
dec10. A SQL tuning set will also be captured in parallel with the workload
capture.

The START_CAPTURE procedure in this example uses the following parameters:

– The name required parameter specifies the name of the workload that will be
captured.

– The dir required parameter specifies a directory object pointing to the
directory where the captured workload will be stored.

– The duration parameter specifies the number of seconds before the
workload capture will end. If a value is not specified, the workload capture
will continue until the FINISH_CAPTURE procedure is called.

– The capture_sts parameter specifies whether to capture a SQL tuning set
in parallel with the workload capture. If this parameter is set to TRUE, you
can capture a SQL tuning set during workload capture, then capture another
SQL tuning set during workload replay, and use SQL Performance Analyzer
to compare the SQL tuning sets without having to re-execute the SQL
statements. This enables you to obtain a SQL Performance Analyzer report
and compare the SQL performance—before and after the change—while
running Database Replay. You can also export the resulting SQL tuning set
with its AWR data using the EXPORT_AWR procedure, as described in
"Exporting AWR Data for Workload Capture (page 10-25)".

This feature is not supported for Oracle RAC. Workload capture filters that
are defined using DBMS_WORKLOAD_CAPTURE do not apply to the SQL
tuning set capture. The default value for this parameter is FALSE.

– The sts_cap_interval parameter specifies the duration of the SQL tuning
set capture from the cursor cache in seconds. The default value is 300. Setting
the value of this parameter below the default value may cause additional
overhead with some workloads and is not recommended.

– The optional plsql_mode parameter determines how PL/SQL is handled by
DB Replay during capture and replays.

These two values can be set for the plsql_mode parameter:

* top_level: Only top-level PL/SQL calls are captured and replayed,
which is how DB Replay handled PL/SQL prior to Oracle Database 12c
Release 2 (12.2.0.1). This is the default value.

Capturing a Database Workload Using APIs

10-24 Oracle Database Testing Guide

* extended: Both top-level PL/SQL calls and SQL called from PL/SQL
are captured. When the workload is replayed, the replay can be done at
either top-level or extended level, but not both.

10.13.3 Stopping a Workload Capture
This section describes how to stop a workload capture.

To stop a workload capture:

• Use the FINISH_CAPTURE procedure:

BEGIN
 DBMS_WORKLOAD_CAPTURE.FINISH_CAPTURE ();
END;
/

In this example, the FINISH_CAPTURE procedure finalizes the workload capture
and returns the database to a normal state.

Tip:

After capturing a workload on the production system, you need to preprocess
the captured workload, as described in Preprocessing a Database Workload
(page 11-1).

10.13.4 Exporting AWR Data for Workload Capture
Exporting AWR data enables detailed analysis of the workload. This data is also
required if you plan to run the Replay Compare Period report or the AWR Compare
Period report on a pair of workload captures or replays.

To export AWR data:

• Use the EXPORT_AWR procedure:

BEGIN
 DBMS_WORKLOAD_CAPTURE.EXPORT_AWR (capture_id => 2);
END;
/

In this example, the AWR snapshots that correspond to the workload capture with
a capture ID of 2 are exported, along with any SQL tuning set that may have been
captured during workload capture.

The EXPORT_AWR procedure uses the capture_id required parameter, which
specifies the ID of the capture whose AWR snapshots will be exported. The value
of the capture_id parameter is displayed in the ID column of the
DBA_WORKLOAD_CAPTURES view.

Note:

This procedure works only if the corresponding workload capture was
performed in the current database and the AWR snapshots that correspond to
the original capture time period are still available.

Capturing a Database Workload Using APIs

Capturing a Database Workload 10-25

See Also:

Oracle Database Reference for information about the
DBA_WORKLOAD_CAPTURES view

10.13.5 Importing AWR Data for Workload Capture
After AWR data is exported from the capture system, you can import the AWR data
into another system, such as a test system where the captured workload will be
replayed. Importing AWR data enables detailed analysis of the workload. This data is
also required if you plan to run the Replay Compare Period report or the AWR
Compare Period report on a pair of workload captures or replays.

To import AWR data:

• Use the IMPORT_AWR function, as shown in the following example:

CREATE USER capture_awr
SELECT DBMS_WORKLOAD_CAPTURE.IMPORT_AWR (capture_id => 2,
 staging_schema => 'capture_awr')
 FROM DUAL;

In this example, the AWR snapshots that correspond to the workload capture with
a capture ID of 2 are imported using a staging schema named capture_awr.

The IMPORT_AWR procedure in this example uses the following parameters:

– The capture_id required parameter specifies the ID of the capture whose
AWR snapshots will be import. The value of the capture_id parameter is
displayed in the ID column of the DBA_WORKLOAD_CAPTURES view.

– The staging_schema required parameter specifies the name of a valid
schema in the current database which can be used as a staging area while
importing the AWR snapshots from the capture directory to the SYS AWR
schema.

Note:

This function fails if the schema specified by the staging_schema parameter
contains any tables with the same name as any of the AWR tables.

See Also:

Oracle Database Reference for information about the
DBA_WORKLOAD_CAPTURES view

10.14 Monitoring Workload Capture Using Views
This section summarizes the views that you can display to monitor workload capture.
You can also use Oracle Enterprise Manager to monitor workload capture, as
described in "Monitoring a Workload Capture Using Enterprise Manager
(page 10-15)".

To access these views, you need DBA privileges:

Monitoring Workload Capture Using Views

10-26 Oracle Database Testing Guide

• The DBA_WORKLOAD_CAPTURES view lists all the workload captures that have
been captured in the current database.

• The DBA_WORKLOAD_FILTERS view lists all workload filters used for workload
captures defined in the current database.

See Also:

• Oracle Database Reference for information about the
DBA_WORKLOAD_CAPTURES view

• Oracle Database Reference for information about the
DBA_WORKLOAD_FILTERS view

Monitoring Workload Capture Using Views

Capturing a Database Workload 10-27

Monitoring Workload Capture Using Views

10-28 Testing Guide

11
Preprocessing a Database Workload

After a workload is captured and setup of the test system is complete, the captured
data must be preprocessed. Preprocessing a captured workload creates all necessary
metadata for replaying the workload. This must be done once for every captured
workload before they can be replayed. After the captured workload is preprocessed, it
can be replayed repeatedly on a replay system.

To preprocess a captured workload, you will first need to move all captured data files
from the directory where they are stored on the capture system to a directory on the
instance where the preprocessing will be performed. Preprocessing is resource
intensive and should be performed on a system that is:

• Separate from the production system

• Running the same version of Oracle Database as the replay system

For Oracle Real Application Clusters (Oracle RAC), select one database instance of the
replay system for the preprocessing. This instance must have access to the captured
data files that require preprocessing, which can be stored on a local or shared file
system. If the capture directory path on the capture system resolves to separate
physical directories in each instance, you will need to merge them into a single capture
directory where the preprocessing will be performed. All directories must have the
same directory tree and all files contained in each of these directories must be moved
into a directory that has the same relative path to the capture directory.

Typically, you will preprocess the captured workload on the replay system. If you
plan to preprocess the captured workload on a system that is separate from the replay
system, you will also need to move all preprocessed data files from the directory
where they are stored on the preprocessing system to a directory on the replay system
after preprocessing is complete.

This chapter contains the following sections:

• Preparing a Single Database Workload Using Enterprise Manager (page 11-1)

• Preprocessing a Database Workload Using APIs (page 11-9)

11.1 Preparing a Single Database Workload Using Enterprise Manager
Several tasks are involved in preparing a single workload. For example:

• Creating a database replay task

• Creating a replay from a replay task

• Preparing the test database

• Preprocessing the workload and deploying the replay clients

Preprocessing a Database Workload 11-1

Before you can preprocess a captured workload, you must first capture the workload
on the production system, as described in Capturing a Database Workload (page 10-1).

Note:

Preparing the test database is only required if you have not done so already.

The following sections provide procedures for these tasks.

11.1.1 Creating a Database Replay Task
Before creating a database replay task, make sure that the capture that you want to
replay has some captured user calls.

To create a database replay task:

1. From the Database Replay page, click the Replay Tasks tab, then click Create in
the toolbar.

The Create Task page appears.

2. Provide a Name for the task, select a capture to be replayed, then click Submit.
For consolidated replays, select two or more captures.

The Database Replay page reappears, and displays your newly created replay task
in the table under the Replay Task tab.

Preparing a Single Database Workload Using Enterprise Manager

11-2 Oracle Database Testing Guide

11.1.2 Creating a Replay from a Replay Task
This topic describes how to create a replay from a replay task.

To create the replay:

1. From the Database Replay page, click the Replay Tasks tab.

2. Click the link for the desired replay task in the table.

The Replay Task page for the capture appears.

3. Click Create in the Replays section.

The Create Replay pop-up appears.

4. Provide a required Name and optional description, then click the Target Database
icon.

The Search and Select: Targets pop-up appears.

5. Choose the desired database, then click Select.

6. Click OK in the Create Replay pop-up.

Preparing a Single Database Workload Using Enterprise Manager

Preprocessing a Database Workload 11-3

The Database Replay page for your replay appears, which includes a Task List
with links to perform the needed tasks.

You can now proceed to the first task in the Task List, described in the next section.

11.1.3 Preparing the Test Database
This topic describes the tasks involved in preparing the test database. For example:

• Setting up the test database

• Isolating the test database

Note:

These tasks are optional. If you have already set up your test database, skip to
"Preprocessing the Workload and Deploying the Replay Clients
(page 11-6)".

The following procedures explain how to perform each of these tasks, which you can
do in any order.

To set up the test database:

1. From the Replay page for your particular replay, click the link for the Set Up Test
Database task.

The Set Up Test Database page appears.

Preparing a Single Database Workload Using Enterprise Manager

11-4 Oracle Database Testing Guide

2. Choose whether you want to upgrade the database or not, and indicate whether
this is a cluster database.

3. Click the Go to Task icon for the Clone Existing Database Software sub-task, or
click Enable All Tasks if you want to create the test database first.

4. Follow the instructions provided in the online help for the wizards.

When the tasks are complete, a checkmark appears in the Status column for each
task.

5. Click OK to return to the Database Replay page.

To isolate the test database:

1. From the Replay page for your particular replay, click the link for the Isolate Test
Database task.

A page appears explaining that references to external systems can cause problems
during the replay.

Preparing a Single Database Workload Using Enterprise Manager

Preprocessing a Database Workload 11-5

2. Use the links provided to verify potential references to external systems, modify
those that are invalid, then click OK.

The Replay Summary page reappears.

11.1.4 Preprocessing the Workload and Deploying the Replay Clients
The final preparation for the replay involves preprocessing the workload and
deploying the replay clients. For example:

• Preprocessing the workload

You need to preprocess each captured workload once for each version of the
database against which the workload will be replayed. After you preprocess the
workload once, you can use it for any subsequent replay tasks and replays
without needing to preprocess again, as long as the test database is the same
version as the database where the workload was preprocessed.For instance, for a
replay task that contains two replays named "MyReplay1" and "MyReplay2," after
you have preprocessed "MyReplay1", you can just directly reuse the directory
object to replay "MyReplay2."

The Workload Analyzer report is available after preprocessing.

• Deploying the replay clients

You do not need to deploy the replay clients to other replay client hosts if these
hosts can access the Oracle home of the test database you specified in the
Database Target Name field.

The following procedures explain how to accomplish each of these tasks.

To preprocess the workload:

1. From the Replay page for your particular replay, click the link for the Preprocess
Workload task.

The Preprocess Captured Workload: Locate Workload page appears.

2. Select the desired workload location option, then click Next.

Note:

You initially need to select the copy option.

The Preprocess Captured Workload: Copy Workload page appears.

Preparing a Single Database Workload Using Enterprise Manager

11-6 Oracle Database Testing Guide

3. Provide the required credentials and the new location to which the workloads will
be copied and preprocessed, then click Next.

• For a consolidated replay, there are multiple source workloads, so multiple
source credentials might be needed for the current location of the workload
directory. For more information on consolidated replays, see "Using
Consolidated Database Replay with Enterprise Manager (page 15-9)."

The system responds by displaying a progress bar graph during processing, then
displays the Preprocess Captured Workload: Select Directory page after the copy
operation concludes.

4. Specify the Directory Object, or create a new Directory Object that points to the
location that contains the workload. If you chose to copy from the workload
location to a new location in the previous step, make sure that the directory object
points to the exact location you specified in the New Location of the Workload
Directory section.

Preparing a Single Database Workload Using Enterprise Manager

Preprocessing a Database Workload 11-7

The system responds by displaying a Capture Summary. You can now expand the
Capture Details section to see the workload profile and workload filters. The
Capture Summary does not appear for consolidated replays.

Click Next to display the Preprocess Captured Workload: Schedule page.

5. Provide input to schedule the preprocess job:

a. Provide your own required job name or accept the system-supplied name.
The job system automatically names the job in uppercase.

b. Indicate whether you want the job to run as soon as you submit it, or whether
you want it to run at a later time.

c. Provide the host credentials, which are used to run the preprocess job in the
operating system.

Click Next to display the Preprocess Captured Workload: Review page.

6. Check to make sure that the settings are what you intend, then click Submit.

The Database Replay page appears, and assuming that there were no errors in
your input, a confirmation message at the top of the page states "Job JOBNAME to
prepare the workload has been created successfully."

7. Click the JOBNAME link to check the status of the job. The job must succeed
before you can proceed to the Replay Workload task.

Note:

A message may appear in the Task List stating that you need to install an
additional PL/SQL package in the test database to generate a compare period
report after the trial. Click Install PL/SQL Package to resolve this issue before
proceeding to the Replay Workload task.

Tip:

After preprocessing a captured workload, you can replay it on the test system,
as described in Replaying a Database Workload (page 12-1).

To deploy the replay clients:

1. From the Replay page for your particular replay, click the link for the Deploy
Replay Clients task.

The Deploy Replay Clients page appears.

Preparing a Single Database Workload Using Enterprise Manager

11-8 Oracle Database Testing Guide

2. Accept the default values defined for the associated workload capture, or override
these values, then click Continue.

The Provision Oracle Database Client wizard appears.

3. Follow the instructions provided in the online help for each step of the wizard.

After you click Submit in the Review step to run the deployment procedure
according to the schedule you have set, the Replay Summary page reappears.

11.2 Preprocessing a Database Workload Using APIs
This section describes how to preprocess a captured workload using the
DBMS_WORKLOAD_REPLAY package. You can also use Oracle Enterprise Manager to
preprocess a captured workload, as described in "Preparing a Single Database
Workload Using Enterprise Manager (page 11-1)".

Before you can preprocess a captured workload, you must first capture the workload
on the production system, as described in Capturing a Database Workload (page 10-1).

To preprocess a captured workload:

• Use the PROCESS_CAPTURE procedure:

BEGIN
 DBMS_WORKLOAD_REPLAY.PROCESS_CAPTURE (capture_dir => 'dec06',
 plsql_mode => 'extended');
END;
/

In this example, the captured workload stored in the dec06 directory will be
preprocessed.

The PROCESS_CAPTURE procedure in this example uses the capture_dir
required parameter, which specifies the directory that contains the captured
workload to be preprocessed.

The optional plsql_mode parameter specifies the processing mode for PL/SQL.

These two values can be set for the plsql_mode parameter:

– top_level: Metadata is generated for top-level PL/SQL calls only; this will
be the only option for replay. This is the default value.

Preprocessing a Database Workload Using APIs

Preprocessing a Database Workload 11-9

– extended: Metadata is generated for both top-level PL/SQL calls and the
SQL called from PL/SQL. A new directory ppe_X.X.X.X (where X's
represent the current Oracle version) is created under the capture root
directory. Capture must have been done with this same value for the
plsql_mode parameter. Replay can use either 'TOP_LEVEL' or
'EXTENDED'.

The extended value can be set only for workloads that were captured with
the plsql_mode parameter set to extended. If extended is specified, but
the capture was not executed in extended mode, then you will receive an
error message.

Tip:

After preprocessing a captured workload, you can replay it on the test system,
as described in Replaying a Database Workload (page 12-1).

See Also:

• Starting a Workload Capture (page 10-23) for information about the
plsql_mode parameter for the START_CAPTURE procedure for the
DBMS_WORKLOAD_CAPTURE package

• Oracle Database PL/SQL Packages and Types Reference for additional
information about the DBMS_WORKLOAD_REPLAY.PROCESS_CAPTURE
procedure

11.2.1 Running the Workload Analyzer Command-Line Interface
The Workload Analyzer is a Java program that analyzes a workload capture directory
and identifies parts of a captured workload that may not replay accurately due to
insufficient data, errors that occurred during workload capture, or usage features that
are not supported by Database Replay. The results of the workload analysis are saved
to an HTML report named wcr_cap_analysis.html located in the capture
directory that is being analyzed. If an error can be prevented, the workload analysis
report displays available preventive actions that can be implemented before replay. If
an error cannot be corrected, the workload analysis report provides a description of
the error so it can be accounted for during replay. Running Workload Analyzer is the
default option and is strongly recommended.

Note:

If you are preprocessing a workload capture using Oracle Enterprise Manager,
then you do not need to run Workload Analyzer in the command-line
interface. Oracle Enterprise Manager enables you to run Workload Analyzer
as part of the workload preprocessing.

Workload Analyzer is composed of two JAR files, dbranalyzer.jar and
dbrparser.jar, located in the $ORACLE_HOME/rdbms/jlib/ directory of a
system running Oracle Database Enterprise Edition Release 11.2.0.2 or higher.
Workload Analyzer requires Java 1.5 or higher and the ojdbc6.jar file located in the
$ORACLE_HOME/jdbc/lib/ directory.

Preprocessing a Database Workload Using APIs

11-10 Oracle Database Testing Guide

To run Workload Analyzer:

1. In the command-line interface, run the following java command on a single line:

java -classpath
$ORACLE_HOME/jdbc/lib/ojdbc6.jar:$ORACLE_HOME/rdbms/jlib/dbrparser.jar:
$ORACLE_HOME/rdbms/jlib/dbranalyzer.jar:
oracle.dbreplay.workload.checker.CaptureChecker
<capture_directory> <connection_string>

For the capture_directory parameter, input the operating system path of the
capture directory. This directory should also contain the exported AWR data for
the workload capture. For the connection_string parameter, input the
connection string of an Oracle database that is release 11.1 or higher.

An example of this command may be:

java -classpath
$ORACLE_HOME/jdbc/lib/ojdbc6.jar:$ORACLE_HOME/rdbms/jlib/dbrparser.jar:
$ORACLE_HOME/rdbms/jlib/dbranalyzer.jar:
oracle.dbreplay.workload.checker.CaptureChecker /scratch/capture
jdbc:oracle:thin:@myhost.mycompany.com:1521:orcl

2. When prompted, input the username and password of a database user with
EXECUTE privileges for the DBMS_WORKLOAD_CAPTURE package and the
SELECT_CATALOG role on the target database.

Preprocessing a Database Workload Using APIs

Preprocessing a Database Workload 11-11

Preprocessing a Database Workload Using APIs

11-12 Testing Guide

12
Replaying a Database Workload

After a captured workload is preprocessed, it can be replayed repeatedly on a replay
system that is running the same version of Oracle Database. Typically, the replay
system where the preprocessed workload will be replayed should be a test system that
is separate from the production system.

This chapter describes how to replay a database workload on the test system and
contains the following sections:

• Steps for Replaying a Database Workload (page 12-1)

• Replaying a Database Workload Using Enterprise Manager (page 12-8)

• Setting Up the Replay Schedule and Parameters Using Enterprise Manager
(page 12-15)

• Monitoring Workload Replay Using Enterprise Manager (page 12-16)

• Importing a Replay External to Enterprise Manager (page 12-19)

• Replaying a Database Workload Using APIs (page 12-20)

• Monitoring Workload Replay Using APIs (page 12-33)

Tip:

Before you can replay a database workload, you must first:

• Capture the workload on the production system, as described in
Capturing a Database Workload (page 10-1)

• Preprocess the captured workload, as described in Preprocessing a
Database Workload (page 11-1)

12.1 Steps for Replaying a Database Workload
Proper preparation of the replay system and planning of the workload replay ensures
that the replay will be accurate. Before replaying a database workload, complete the
following steps to prepare the replay system and the workload replay:

• Setting Up the Replay Directory (page 12-2)

• Restoring the Database (page 12-2)

• Resolving References to External Systems (page 12-2)

• Connection Remapping (page 12-3)

• User Remapping (page 12-3)

Replaying a Database Workload 12-1

• Specifying Replay Options (page 12-3)

• Using Filters with Workload Replay (page 12-4)

• Setting Up Replay Clients (page 12-5)

12.1.1 Setting Up the Replay Directory
The captured workload must have been preprocessed and copied to the replay system.
A directory object for the directory to which the preprocessed workload is copied
must exist in the replay system.

12.1.2 Restoring the Database
Before a workload can be replayed, the application data state on the replay system
should be logically equivalent to that of the capture system at the start time of
workload capture. This minimizes replay divergence during replay. The method for
restoring the database depends on the backup method that was used before capturing
the workload. For example, if RMAN was used to back up the capture system, you can
use RMAN DUPLICATE capabilities to create the test database. For more information,
see "Prerequisites for Capturing a Database Workload (page 10-1)".

After the database is created with the appropriate application data on the replay
system, perform the system change you want to test, such as a database or operating
system upgrade. The primary purpose of Database Replay is to test the effect of
system changes on a captured workload. Therefore, the system changes you make
should define the test you are conducting with the captured workload.

12.1.3 Resolving References to External Systems
A captured workload may contain references to external systems, such as database
links or external tables. Typically, you should reconfigure these external interactions to
avoid impacting other production systems during replay. External references that
need to be resolved before replaying a workload include:

• Database links

It is typically not desirable for the replay system to interact with other databases.
Therefore, you should reconfigure all database links to point to an appropriate
database that contains the data needed for replay.

• External tables

All external files specified using directory objects referenced by external tables
need to be available to the database during replay. The content of these files
should be the same as during capture, and the filenames and directory objects
used to define the external tables should also be valid.

• Directory objects

You should reconfigure any references to directories on the production system by
appropriately redefining the directory objects present in the replay system after
restoring the database.

• URLs

URLs/URIs that are stored in the database need to be configured so that Web
services accessed during the workload capture will point to the proper URLs

Steps for Replaying a Database Workload

12-2 Oracle Database Testing Guide

during replay. If the workload refers to URLs that are stored in the production
system, you should isolate the test system network during replay.

• E-mails

To avoid resending E-mail notifications during replay, any E-mail server
accessible to the replay system should be configured to ignore requests for
outgoing E-mails.

Tip:

To avoid impacting other production systems during replay, Oracle strongly
recommends running the replay within an isolated private network that does
not have access to the production environment hosts.

12.1.4 Connection Remapping
During workload capture, connection strings used to connect to the production system
are captured. In order for the replay to succeed, you need to remap these connection
strings to the replay system. The replay clients can then connect to the replay system
using the remapped connections.

For Oracle Real Application Clusters (Oracle RAC) databases, you can map all
connection strings to a load balancing connection string. This is especially useful if the
number of nodes on the replay system is different from the capture system.
Alternatively, if you want to direct workload to specific instances, you can use services
or explicitly specify the instance identifier in the remapped connection strings.

12.1.5 User Remapping
During workload capture, the username of the database user or schema used to
connect to the production system is captured. You can choose to remap the captured
username to that of a new user or schema.

12.1.6 Specifying Replay Options
After the database is restored, and connections and users are remapped, you can set
the appropriate replay options. For example:

• Specifying the Synchronization Method (page 12-3)

• Controlling Session Connection Rate (page 12-4)

• Controlling Request Rate Within a Session (page 12-4)

12.1.6.1 Specifying the Synchronization Method
The synchronization parameter controls the synchronization method used for
database replay.

If the parameter is set to TIME, the replay will use the same wall-clock timing as the
capture. All database session login times will be replayed exactly as the capture.
Likewise, all timing between transactions within database sessions will be preserved
and replayed as captured. This synchronization method will produce good replays for
most workloads.

If this parameter is set to SCN, the COMMIT order in the captured workload will be
observed during replay and all replay actions will be executed only after all dependent
COMMIT actions have completed. This synchronization method may introduce

Steps for Replaying a Database Workload

Replaying a Database Workload 12-3

significant delays for some workloads. If this is the case, it is recommended to use
TIME as the synchronization parameter.

If this parameter is set to OBJECT_ID, all replay actions will be executed only after all
relevant COMMIT actions have completed. Relevant COMMIT actions must meet the
following criteria:

• Issued before the given action in the workload capture

• Modified at least one of the database objects for which the given action is
referencing, either implicitly or explicitly

Setting this parameter to OBJECT_ID allows for more concurrency during workload
replays for COMMIT actions that do not reference the same database objects during
workload capture.

12.1.6.2 Controlling Session Connection Rate
The connect_time_scale parameter enables you to scale the elapsed time between
the time when the workload capture began and each session connects. You can use
this option to manipulate the session connect time during replay with a given
percentage value. The default value is 100, which will attempt to connect all sessions
as captured. Setting this parameter to 0 will attempt to connect all sessions
immediately.

12.1.6.3 Controlling Request Rate Within a Session
User think time is the elapsed time while the replayed user waits between issuing calls
within a single session. To control replay speed, use the think_time_scale
parameter to scale user think time during replay.

If user calls are being executed slower during replay than during capture, you can
make the database replay attempt to catch up by setting the
think_time_auto_correct parameter to TRUE. This will make the replay client
shorten the think time between calls, so that the overall elapsed time of the replay will
more closely match the captured elapsed time.

If user calls are being executed faster during replay than during capture, setting the
think_time_auto_correct parameter to TRUE will not change the think time. The
replay client will not increase the think time between calls to match the captured
elapsed time.

12.1.7 Using Filters with Workload Replay
By default, all captured database calls are replayed during workload replay. You can
use workload filters to specify which database calls to include in or exclude from the
workload during workload replay.

Workload replay filters are first defined and then added to a replay filter set so they
can be used in a workload replay. There are two types of workload filters: inclusion
filters and exclusion filters. Inclusion filters enable you to specify database calls that
will be replayed. Exclusion filters enable you to specify database calls that will not be
replayed. You can use either inclusion filters or exclusion filters in a workload replay,
but not both. The workload filter is determined as an inclusion or exclusion filter when
the replay filter set is created.

Steps for Replaying a Database Workload

12-4 Oracle Database Testing Guide

12.1.8 Setting Up Replay Clients
The replay client is a multithreaded program (an executable named wrc located in the
$ORACLE_HOME/bin directory) where each thread submits a workload from a
captured session. Before replay begins, the database will wait for replay clients to
connect. At this point, you need to set up and start the replay clients, which will
connect to the replay system and send requests based on what has been captured in
the workload.

Before starting replay clients, ensure that the:

• Replay client software is installed on the hosts where it will run

• Replay clients have access to the replay directory

• Replay directory contains the preprocessed workload capture

• Replay user has the correct user ID, password, and privileges (the replay user
needs the DBA role and cannot be the SYS user)

• Replay clients are not started on a system that is running the database

• Replay clients read the capture directory on a file system that is different from the
one on which the database files reside

To do this, copy the capture directory to the system where the replay client will
run. After the replay is completed, you can delete the capture directory.

After these prerequisites are met, you can proceed to set up and start the replay clients
using the wrc executable. The wrc executable uses the following syntax:

wrc [user/password[@server]] MODE=[value] [keyword=[value]]

The parameters user, password and server specify the username, password and
connection string used to connect to the replay database. The parameter mode
specifies the mode in which to run the wrc executable. Possible values include
replay (the default), calibrate, and list_hosts. The parameter keyword
specifies the options to use for the execution and is dependent on the mode selected.
To display the possible keywords and their corresponding values, run the wrc
executable without any arguments.

The following sections describe the modes that you can select when running the wrc
executable:

• Calibrating Replay Clients (page 12-5)

• Starting Replay Clients (page 12-6)

• Displaying Host Information (page 12-7)

12.1.8.1 Calibrating Replay Clients
Since one replay client can initiate multiple sessions with the database, it is not
necessary to start a replay client for each session that was captured. The number of
replay clients that need to be started depends on the number of workload streams, the
number of hosts, and the number of replay clients for each host.

To estimate the number of replay clients and hosts that are required to replay a
particular workload, run the wrc executable in calibrate mode.

Steps for Replaying a Database Workload

Replaying a Database Workload 12-5

In calibrate mode, the wrc executable accepts the following keywords:

• replaydir specifies the directory that contains the preprocessed workload
capture you want to replay. If unspecified, it defaults to the current directory.

• process_per_cpu specifies the maximum number of client processes that can
run per CPU. The default value is 4.

• threads_per_process specifies the maximum number of threads that can run
within a client process. The default value is 50.

The following example shows how to run the wrc executable in calibrate mode:

%> wrc mode=calibrate replaydir=./replay

In this example, the wrc executable is executed to estimate the number of replay
clients and hosts that are required to replay the workload capture stored in a
subdirectory named replay under the current directory. In the following sample
output, the recommendation is to use at least 21 replay clients divided among 6 CPUs:

Workload Replay Client: Release 12.1.0.0.1 - Production on Fri Sept 30
13:06:33 2011

Copyright (c) 1982, 2011, Oracle. All rights reserved.

Report for Workload in: /oracle/replay/

Recommendation:
Consider using at least 21 clients divided among 6 CPU(s).

Workload Characteristics:
- max concurrency: 1004 sessions
- total number of sessions: 1013

Assumptions:
- 1 client process per 50 concurrent sessions
- 4 client process per CPU
- think time scale = 100
- connect time scale = 100
- synchronization = TRUE

12.1.8.2 Starting Replay Clients
After determining the number of replay clients that are needed to replay the
workload, you need to start the replay clients by running the wrc executable in replay
mode on the hosts where they are installed. Once started, each replay client will
initiate one or more sessions with the database to drive the workload replay.

In replay mode, the wrc executable accepts the following keywords:

• userid and password specify the user ID and password of a replay user for the
replay client. If unspecified, these values default to the system user.

• server specifies the connection string that is used to connect to the replay
system. If unspecified, the value defaults to an empty string.

• replaydir specifies the directory that contains the preprocessed workload
capture you want to replay. If unspecified, it defaults to the current directory.

Steps for Replaying a Database Workload

12-6 Oracle Database Testing Guide

• workdir specifies the directory where the client logs will be written. This
parameter is only used with the debug parameter for debugging purposes.

• debug specifies whether debug data will be created. Possible values include:

– on

Debug data will be written to files in the working directory

– off

No debug data will be written (the default value)

Note:

Before running the wrc executable in debug mode, contact Oracle Support for
more information.

• connection_override specifies whether to override the connection mappings
stored in the DBA_WORKLOAD_CONNECTION_MAP view. If set to TRUE, connection
remappings stored in the DBA_WORKLOAD_CONNECTION_MAP view will be
ignored and the connection string specified using the server parameter will be
used. If set to FALSE, all replay threads will connect using the connection
remappings stored in the DBA_WORKLOAD_CONNECTION_MAP view. This is the
default setting.

The following example shows how to run the wrc executable in replay mode:

%> wrc system/password@test mode=replay replaydir=./replay

In this example, the wrc executable starts the replay client to replay the workload
capture stored in a subdirectory named replay under the current directory.

After all replay clients have connected, the database will automatically distribute
workload capture streams among all available replay clients and workload replay can
begin. You can monitor the status of the replay clients using the V
$WORKLOAD_REPLAY_THREAD view. After the replay finishes, all replay clients will
disconnect automatically.

12.1.8.3 Displaying Host Information
You can display the hosts that participated in a workload capture and workload
replay by running the wrc executable in list_hosts mode.

In list_hosts mode, the wrc executable accepts the keyword replaydir, which
specifies the directory that contains the preprocessed workload capture you want to
replay. If unspecified, it defaults to the current directory.

The following example shows how to run the wrc executable in list_hosts mode:

%> wrc mode=list_hosts replaydir=./replay

In this example, the wrc executable is executed to list all hosts that participated in
capturing or replaying the workload capture stored in a subdirectory named replay
under the current directory. In the following sample output, the hosts that participated
in the workload capture and three subsequent replays are shown:

Workload Replay Client: Release 12.1.0.0.1 - Production on Fri Sept 30
13:44:48 2011

Steps for Replaying a Database Workload

Replaying a Database Workload 12-7

Copyright (c) 1982, 2011, Oracle. All rights reserved.

Hosts found:
Capture:
 prod1
 prod2
Replay 1:
 test1
Replay 2:
 test1
 test2
Replay 3:
 testwin

12.2 Replaying a Database Workload Using Enterprise Manager
This section describes how to replay a database workload using Enterprise Manager.

Before proceeding, you must already have created a replay task and created a replay
from the replay task. To do this, see "Preparing a Single Database Workload Using
Enterprise Manager (page 11-1)".

The primary tool for replaying database workloads is Oracle Enterprise Manager. If
Oracle Enterprise Manager is unavailable, you can also replay database workloads
using APIs, as described in "Replaying a Database Workload Using APIs
(page 12-20)".

To replay a database workload using Enterprise Manager:

1. From the Enterprise menu of the Enterprise Manager Cloud Control console,
select Quality Management, then Database Replay.

If the Database Login page appears, log in as a user with administrator privileges.

The Database Replay page appears.

2. Select the Replay Tasks tab, then click the link for the desired replay task in the
table.

The Replay Task page for the replay appears.

Replaying a Database Workload Using Enterprise Manager

12-8 Oracle Database Testing Guide

3. Click Create in the Replays section to create the replay.

The Create Replay pop-up appears.

4. Provide a required Name and optional description, then click the Target Database
icon.

The Search and Select: Targets pop-up appears.

5. Choose the appropriate database, then click Select.

6. Click OK in the Create Replay pop-up.

The Database Replay page for your replay appears, which includes a Task List
with a link to perform the replay.

7. Click the link for the Replay Workload task.

The Replay Workload: Locate Workload page appears.

Replaying a Database Workload Using Enterprise Manager

Replaying a Database Workload 12-9

8. Select the desired workload location option.

If you have not previously copied the workload from its storage location to the
replay location where the replay clients can access it, select the option to copy the
workload. Otherwise, select the option to use the existing replay directory that
contains the workload to be replayed.

Click Next to display the Replay Workload: Copy Workload page.

9. Provide the required credentials and the new location of the workload directory
to which you want to copy the workload, then click Next.

• There are multiple source workloads for a consolidated replay, so multiple
source credentials might be needed for the current location of the workload

Replaying a Database Workload Using Enterprise Manager

12-10 Oracle Database Testing Guide

directory. For more information on consolidated replays, see "Using
Consolidated Database Replay with Enterprise Manager (page 15-9)."

The system responds by displaying a progress bar graph during processing, then
displays the Replay Workload: Select Directory page after the copy operation
concludes.

10. Specify the Directory Object, or create a new Directory Object that points to the
location that contains the workload. If you chose to copy from the workload
location to a new location in the previous step, make sure that the directory object
points to the exact location you specified in the New Location of the Workload
Directory section.

The system responds by displaying a Capture Summary. You can expand the
Capture Details section to see the workload profile and workload filters. You can
also generate a Workload Capture Analyzer Report and Database Capture Report.
The Capture Summary does not appear for consolidated replays.

Click Next to display the Replay Workload: Initialize Options page.

11. In the SQL Performance Analyzer section, retain or disable the Capture SQL
Statements option, which is enabled by default and recommended. You can
disable this option if you do not want to compare SQL tuning sets at the end of
the replay.

• The SQL Performance Analyzer can initiate an impact analysis of
environmental changes on the performance of SQL statements within a SQL
Tuning Set. You can create and analyze SQL Performance Analyzer tasks to
test the effects of a database upgrade, initialization parameter change,
Exadata simulation, or custom experiments. A task compares the effects of
before-trial changes with after-trial changes.

Although Database Replay provides an analysis of how a change affects your
entire system, you can use a SQL tuning set in conjunction with the SQL
Performance Analyzer to gain a more SQL-centric analysis of how the change
affects SQL statements and execution plans.

By capturing a SQL tuning set during workload replay, you can use SQL
Performance Analyzer to compare this SQL tuning set to another SQL tuning
set captured during workload capture, without having to re-execute the SQL

Replaying a Database Workload Using Enterprise Manager

Replaying a Database Workload 12-11

statements. This enables you to obtain a SQL Performance Analyzer report
and compare the SQL performance, before and after change, while running
Database Replay.

• In the Identify Source section, initial replay options refer to the connection
mappings and parameters on the Customize Options page. Connections are
captured along with the workload.

Note:

This section does not appear for consolidated replays or Oracle RAC.

Click Next to display the Replay Workload: Customize Options page.

12. Remap captured connection strings to connection strings that point to the replay
system. Note that you need to remap each capture connection. For example, in the
illustration above, you would need to remap the connection for both capture12_1
and capture12_adc.

(You can remap connections per workload for consolidated replay. There is a
Capture Name drop-down to choose the workload.)

Click the Connection Mappings tab. There are several methods you can use to
remap captured connection strings. You can choose to:

• Use a single connect descriptor for all client connections by selecting this
option and entering the connect descriptor you want to use. The connect
descriptor should point to the replay system.

To test the connection, click Test Connection. If the connect descriptor is
valid, an Information message is displayed to inform you that the connection
was successful.

• Use a single TNS net service name for all client connections by selecting
this option and entering the net service name you want to use. All replay
clients must be able to resolve the net service name, which can be done using
a local tnsnames.ora file.

Replaying a Database Workload Using Enterprise Manager

12-12 Oracle Database Testing Guide

• Use a separate connect descriptor or net service name for each client
connect descriptor captured in the workload by selecting this option and, for
each capture system value, entering a corresponding replay system value that
the replay client will be use. If you selected the "Use replay options from a
previous replay" option in the Initialize Options step, the "Use a separate
connect descriptor" option is selected, and the previous replay system values
appear in the text field below.

Note:

This option does not apply to consolidated replays.

13. Specify the replay options using the replay parameters, which control some
aspects of the replay.

To modify the replay behavior, click the Replay Parameters tab and enter the
desired values for each replay parameter. Using the default values is
recommended. For information about setting the replay parameters, see .

After setting the replay parameters, click Next.

The Replay Workload: Prepare Replay Clients page appears.

14. Ensure that the replay clients are prepared for replay:

Before proceeding, the replay clients must be set up.

a. Click Estimate to determine how many replay clients and CPUs are required
for the replay.

b. Click Add Replay Client Hosts to add a host or hosts for the replay clients. (If
you do not want to add any replay client hosts, you can still continue and
start the replay clients from the command line outside of Enterprise
Manager).

The Search and Select: Replay Client Host pop-up appears.

• Specify a Target Name and then click Go, or just click Go to display the
entire list of available hosts.

Replaying a Database Workload Using Enterprise Manager

Replaying a Database Workload 12-13

• Choose a host and then click Select.

c. When the host name appears in the Target column of the Replay Client Hosts
table, specify the number of replay clients recommended from the estimate
results, then make sure that the number of CPUs listed for the host satisfies
the minimum recommendation in the estimate results. You should start at
least one replay client per captured workload.

d. In the Configured column, click the No link to configure the replay client host
in the pop-up that appears.

e. Click Apply after you have finished providing input in the pop-up. The
Configured column now displays Yes in the Replay Client Hosts table.

15. Click Next to start the replay clients and display the Replay Workload: Wait for
Client Connections page.

Note:

If you have reached this step in the process from the Enterprise menu, you
also need to enter credentials for the replay job and for the replay result
storage host.

• As replay clients are started, the replay client connections are displayed in the
Client Connections table.

• The text below the clock changes if a replay client is connected.

• The Client Connections table is populated when at least one replay client is
connected.

When all replay clients have connected, enter host credentials at the bottom of the
page to start the replay job, then click Next to display the Replay Workload:
Review page.

16. Review the options and parameters that have been defined for the workload
replay.

• The value for Connected Replay Clients must be at least 1 in order to
successfully submit the Replay Workload job.

• The Submit button is enabled only if at least one replay client is connected.

17. If everything appears as you have intended, click Submit to submit the replay job.

Replaying a Database Workload Using Enterprise Manager

12-14 Oracle Database Testing Guide

After the replay starts, the Home tab of the Database Replay page for this replay
reappears with a system message that states "The workload replay has started."

See Also:

• "Connection Remapping (page 12-3)"

• "Specifying Replay Options (page 12-3)"

• "Setting Up Replay Clients (page 12-5)"

• "Monitoring an Active Workload Replay (page 12-17)"

12.3 Setting Up the Replay Schedule and Parameters Using Enterprise
Manager

The replay schedule feature enables you to scale up the instances of captured
workloads to be included in a consolidated replay, and then control the relative
playback scheduling of the instances within the replay. The relative scheduling of the
captured workload instances is visually displayed by updating the alignment of the
active session chart for each instance.

This feature is available for Cloud Control Database plug-in 12.1.0.5 and later releases.

This feature enables you to accomplish the following tasks:

• Offset instances so that they execute at different time intervals

You can adjust the relative replay start time of each workload instance to align the
average active sessions peak times for scheduled instances of Capture workloads.
This alignment of the workload peaks potentially maximizes the load on the
system, so that you can experiment with how the test system responds under
different workload conditions.

• Scale up the replay workload by adding instances of the captured workload

Each added instance is replayed independently of the other instances.

When you scale up a workload by specifying multiple instances of it, the default
and recommended configuration is to replay the DML statements in one of the
instances. All of the additional instances will only replay the query (ready-only)
statements.

For example, if a workload has a SQL Insert to an employee database, you
normally would want to have only one instance that executes the Insert, and the
others would bypass user calls that modify the database with this Insert.
However, you can override the default setting of an instance by unchecking the
Replay Query-only check box to replay all statements in the workload.

To access the Plan Replay Schedule page:

1. From the Database Replay home page, click on the Replay Tasks tab.

2. Click on the name of an existing replay task with more than one workload to
navigate to the Replay Task page.

3. Click Create to create a new replay.

Setting Up the Replay Schedule and Parameters Using Enterprise Manager

Replaying a Database Workload 12-15

4. Provide the requisite information in the Create Replay pop-up, then click OK.

The new replay appears in the Replays table.

5. Click the name of your new replay in the Replays table.

A Task List now appears in the Replay page.

6. Click the Plan Replay Schedule link.

The Plan Replay Schedule page appears.

To scale up a replay:

1. In the drop-down next to the Add Workload Instance button, select the Capture
workload for which you want to add an instance.

2. Click Add Workload Instance to add the instance.

To schedule the time intervals:

1. From the Replay Delay column, either leave the default value of 0 for the first
capture instance, or adjust the number of minutes desired before the instance
starts to execute.

2. Repeat the step above for each capture instance until you have set all of the values
to represent how you want the performance spikes to execute for your testing
needs.

To auto-align workload peaks:

1. Click the Auto-align button.

To specify query-only instances:

1. For each instance that you want to be query-only, enable the Replay Query-only
check box.

To review the updated schedule:

1. From the Replay Task tab of the Database Replay page, click the Replay task link
containing your scheduled replay.

The Replay Task page appears.

2. Click the scheduled replay in the Replays table.

3. Select the Review tab in the Replay page.

12.4 Monitoring Workload Replay Using Enterprise Manager
This section describes how to monitor workload replay using Enterprise Manager. The
primary tool for monitoring workload replay is Oracle Enterprise Manager. Using
Enterprise Manager, you can:

• Monitor or stop an active workload replay

• View a completed workload replay

Monitoring Workload Replay Using Enterprise Manager

12-16 Oracle Database Testing Guide

If Oracle Enterprise Manager is unavailable, you can monitor workload replay using
APIs and views, as described in "Monitoring Workload Replay Using APIs
(page 12-33)".

This section contains the following topics:

• Monitoring an Active Workload Replay (page 12-17)

• Viewing a Completed Workload Replay (page 12-17)

12.4.1 Monitoring an Active Workload Replay
This section describes how to monitor an active workload replay using Enterprise
Manager.

To monitor an active workload replay:

1. From the Database Replay page, click the Replay Tasks tab.

2. Click the name of the replay task that contains the replay for which you want to
monitor replay progress.

3. From the Replays section of the Replay Task page, click the name of the replay you
have submitted for processing in the Create Replay wizard. (The Status column for
this replay should show In Progress.)

The Home tab of the Database Replay page appears, and the Replay Summary
shows a Status of Running.

• The replay line in the Replay Progress chart updates dynamically while the
replay is in progress. You can update the chart by clicking the Refresh button.

• The user calls line in the Replay Progress chart indicates how much of the
workload the database has serviced relative to the capture at the same time.

• Data for the Replay Divergence Summary is not available until the replay
completes.

12.4.2 Viewing a Completed Workload Replay
This section describes how to view a completed workload replay using Enterprise
Manager.

To view a completed workload replay:

1. From the Database Replay page, click the Replay Tasks tab.

2. Click the name of the replay task that contains the completed replay you want to
view.

3. From the Replays section of the Replay Task page, click the name of the replay you
have submitted for processing in the Create Replay wizard. (The Status column for
this replay should show Completed.)

The Home tab of the Database Replay page appears, and the Replay Summary
shows a Status of Completed.

Monitoring Workload Replay Using Enterprise Manager

Replaying a Database Workload 12-17

• The replay line in the User Calls chart graphically represents the replay
progress during the course of the entire replay from initiation to conclusion.

The chart shows how much time it has taken to replay the same workload
compared to the elapsed time during the workload capture in terms of user
calls. If the Replay line is above or to the left of the Capture line, the replay
system is processing the workload faster than the capture system.

• Under the Replay Divergence Summary, any errors and data discrepancies
between the replay system and the capture system are displayed as diverged
database calls during replay. You can use the percentage of total calls that
diverged as a measure of the replay quality.

To view details about the diverged calls, click the link that corresponds to the
type of diverged call in the Count column to access the Diverged Calls During
Replay page. The Diverged Calls During Replay page shows the most relevant
set of replayed calls that diverged from the workload captured by grouping
them based on common attribute values and specified filter conditions. To
view details about a particular diverged call—such as the call attributes, SQL
text, and bind variables—click the corresponding link in the SQL ID column to
bring up the Replay Diverged Statement page.

4. To return to the Database Replay page, click the Database Replay breadcrumb.

See Also:

"Analyzing Captured and Replayed Workloads (page 13-1)" for information
about accessing workload replay reports

Monitoring Workload Replay Using Enterprise Manager

12-18 Oracle Database Testing Guide

12.5 Importing a Replay External to Enterprise Manager
As with importing workloads external to Enterprise Manager, you can import replays
into Enterprise Manager to manage them. To import a replay, you import it from a
replay task, which can contain one or more workloads and one or more replays. The
replay task is at the top of the database replay hierarchy, and serves as the container
for these other subordinate components.

A replay to be imported can be running in the test database, or the replay can be
completed and the replay directory stored on a file system.

This feature is available for Cloud Control Database plug-in 12.1.0.5 and later releases.

To import a replay external to Enterprise Manager:

1. From the Database Replay page, click the Replay Tasks tab, then select the
desired replay task.

The Replay Task page appears.

2. Click Import in the Replays section.

The Import Replay: Source page appears

3. Select one of the three choices available to import a replay, then click Next.

• Import one or more completed Replays from a directory in the file system

This option typically applies for a replay created using an API, in which you
now want to import it to Enterprise Manager for subsequent processing. In
this case, Enterprise Manager may not be necessarily managing the replay
database.

• Import one or more completed Replays from a database target

In this case, Enterprise Manager is probably already managing the replay
database. The replay could have been done on this database, or it could have
been loaded in as would be the case for the option above.

• Attach to a Replay of this Replay task running in a database target

This option is similar to the option above, except this replay is still in
progress, rather than one that has already completed.

The Import Replay: Database page appears.

4. Click the search icon next to the Database Target field and select a database
from the pop-up that appears.

Note:

The target version of the database reading the replay must be at least as high
as the one you used in the replay task. For instance, if the replay task used
Oracle Database 12x, the database you select to read the replay must be at
least version 12x.

• The system now requests database and host credentials.

Importing a Replay External to Enterprise Manager

Replaying a Database Workload 12-19

• In the previous step, if you chose to import one or more completed replays
from a directory in the file system, the system also requires a workload
location.

• The replay task can determine if this is a consolidated replay based on the
number of workloads contained in the replay task. If this is a consolidated
replay, this step asks you to enter a consolidated replay directory for the
workload location.

5. Provide the requisite input for the step above, then click Next.

The Import Replay: Replay page appears.

• If you chose "Import one or more completed Replays from a directory in the
file system" in step 3 (page 12-19), this page provides a Load Replay button.

• If you chose “Import one or more completed Replays from a database target"
or “Attach to a Replay of this Replay task running in a database target" in step
3 (page 12-19), this page provides a Discover Replay button.

6. Click either Load Replay or Discover Replay, depending on which button is
available in accordance with your selection in step 3 (page 12-19).

The system displays one or more replays, if found, in the Discovered Replays
table.

7. Either click Next to load the replay, or select one or more replays, then click Next
to continue importing the replays.

The Import Replay: Review page appears.

8. If everything appears as you have intended, click Submit.

The Database Replay page reappears and displays a message stating that the job
was submitted successfully. The Status column in the table for your imported
replay will show In Progress.

Tip:

You can check on the job's progress by clicking on the replay name that you
just submitted in the Review step. A Replay Summary page appears, and you
can click the Database Replay Import Job link to see the progress of the job
execution steps.

12.6 Replaying a Database Workload Using APIs
This section describes how to replay a database workload using the
DBMS_WORKLOAD_REPLAY package. You can also use Oracle Enterprise Manager to
replay a database workload, as described in "Replaying a Database Workload Using
Enterprise Manager (page 12-8)".

Replaying a database workload using the DBMS_WORKLOAD_REPLAY package is a
multi-step process that involves:

• Initializing Replay Data (page 12-21)

• Remapping Connections (page 12-22)

• Remapping Users (page 12-22)

• Setting Workload Replay Options (page 12-23)

Replaying a Database Workload Using APIs

12-20 Oracle Database Testing Guide

• Defining Workload Replay Filters and Replay Filter Sets (page 12-25)

• Setting the Replay Timeout Action (page 12-27)

• Starting a Workload Replay (page 12-28)

• Pausing a Workload Replay (page 12-29)

• Resuming a Workload Replay (page 12-29)

• Cancelling a Workload Replay (page 12-30)

• Retrieving Information About Workload Replays (page 12-30)

• Loading Divergence Data for Workload Replay (page 12-31)

• Deleting Information About Workload Replays (page 12-31)

• Exporting AWR Data for Workload Replay (page 12-32)

• Importing AWR Data for Workload Replay (page 12-32)

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS_WORKLOAD_REPLAY package

12.6.1 Initializing Replay Data
After the workload capture is preprocessed and the test system is properly prepared,
the replay data can be initialized. Initializing replay data loads the necessary metadata
into tables required by workload replay. For example, captured connection strings are
loaded into a table where they can be remapped for replay.

To initialize replay data:

• Use the INITIALIZE_REPLAY procedure:

BEGIN
 DBMS_WORKLOAD_REPLAY.INITIALIZE_REPLAY (replay_name => 'dec06_102',
 replay_dir => 'dec06',
 plsql_mode => 'top_level');
END;
/

In this example, the INITIALIZE_REPLAY procedure loads preprocessed
workload data from the dec06 directory into the database.

The INITIALIZE_REPLAY procedure in this example uses the following
parameters:

– The replay_name required parameter specifies a replay name that can be
used with other APIs to retrieve settings and filters of previous replays.

– The replay_dir required parameter specifies the directory that contains the
workload capture that will be replayed.

– The optional plsql_mode parameter specifies the PL/SQL replay mode.

Replaying a Database Workload Using APIs

Replaying a Database Workload 12-21

These two values can be set for the plsql_mode parameter:

* top_level: Only top-level PL/SQL calls. This is the default value.

* extended: SQL executed inside PL/SQL or top-level PL/SQL if there is
no SQL recorded inside. Non-PL/SQL calls will be replayed in the usual
manner.

See Also:

• "Preprocessing a Database Workload Using APIs (page 11-9)" for
information about preprocessing a workload capture

• "Steps for Replaying a Database Workload (page 12-1)" for information
preparing the test system

12.6.2 Remapping Connections
After the replay data is initialized, connection strings used in the workload capture
need to be remapped so that user sessions can connect to the appropriate databases
and perform external interactions as captured during replay. To view connection
mappings, use the DBA_WORKLOAD_CONNECTION_MAP view.

To remap connections:

• Use the REMAP_CONNECTION procedure:

BEGIN
 DBMS_WORKLOAD_REPLAY.REMAP_CONNECTION (connection_id => 101,
 replay_connection => 'dlsun244:3434/bjava21');
END;
/

In this example, the connection that corresponds to the connection ID 101 will use
the new connection string defined by the replay_connection parameter.

The REMAP_CONNECTION procedure in this example uses the following
parameters:

– The connection_id required parameter is generated when initializing
replay data and corresponds to a connection from the workload capture.

– The replay_connection required parameter specifies the new connection
string that will be used during workload replay.

See Also:

"Connection Remapping (page 12-3)"

12.6.3 Remapping Users
Aside from remapping connection strings, you can also use a new schema or user
instead of the user captured in the workload capture. To view captured users, use the
DBA_WORKLOAD_USER_MAP view.

Replaying a Database Workload Using APIs

12-22 Oracle Database Testing Guide

To remap users:

• Use the SET_USER_MAPPING procedure:

BEGIN
 DBMS_WORKLOAD_REPLAY.SET_USER_MAPPING (capture_user => 'PROD',
 replay_user => 'TEST');
END;
/

In this example, the PROD user used during capture is remapped to the TEST user
during replay.

The SET_USER_MAPPING procedure in this example uses the following
parameters:

– The capture_user required parameter specifies the username captured
during the time of the workload capture.

– The replay_user required parameter specifies the username to which the
captured user is remapped during replay. If this parameter is set to NULL,
then the mapping is disabled.

See Also:

"User Remapping (page 12-3)"

12.6.4 Setting Workload Replay Options
After the replay data is initialized, and connections and users are remapped, you need
to prepare the database for workload replay.

To prepare workload replay on the replay system:

• Use the PREPARE_REPLAY procedure:

BEGIN
 DBMS_WORKLOAD_REPLAY.PREPARE_REPLAY (synchronization => 'OBJECT_ID',
 capture_sts => TRUE,
 sts_cap_interval => 300);
END;
/

In this example, the PREPARE_REPLAY procedure prepares a replay that has been
previously initialized. A SQL tuning set will also be captured in parallel with the
workload replay.

The PREPARE_REPLAY procedure uses the following parameters:

– The synchronization required parameter controls the type of
synchronization used during workload replay.

If the parameter is set to TIME, the replay will use the same wall-clock timing
as the capture. All database session login times will be replayed exactly as the
capture. Likewise, all timing between transactions within database sessions
will be preserved and replayed as captured. This synchronization method
will produce good replays for most workloads.

Replaying a Database Workload Using APIs

Replaying a Database Workload 12-23

If this parameter is set to SCN (the default value), the COMMIT order in the
captured workload will be observed during replay and all replay actions will
be executed only after all dependent COMMIT actions have completed. This
synchronization method may introduce significant delays for some
workloads. If this is the case, it is recommended to use TIME as the
synchronization parameter.

If this parameter is set to OBJECT_ID, all replay actions will be executed only
after all relevant COMMIT actions have completed. Relevant COMMIT actions
must meet the following criteria:

* Issued before the given action in the workload capture

* Modified at least one of the database objects for which the given action is
referencing, either implicitly or explicitly

Setting this parameter to OBJECT_ID can allow for more concurrency during
workload replays for COMMIT actions that do not reference the same database
objects during workload capture.

– The connect_time_scale parameter scales the elapsed time from when
the workload capture started to when the session connects with the specified
value and is interpreted as a % value. Use this parameter to increase or
decrease the number of concurrent users during replay. The default value is
100.

– The think_time_scale parameter scales the elapsed time between two
successive user calls from the same session and is interpreted as a % value.
Setting this parameter to 0 will send user calls to the database as fast as
possible during replay. The default value is 100.

– The think_time_auto_correct parameter corrects the think time (based
on the think_time_scale parameter) between calls when user calls take
longer to complete during replay than during capture. This parameter can be
set to either TRUE or FALSE. Setting this parameter to TRUE reduces the think
time if the workload replay is taking longer than the workload capture. The
default value is TRUE.

– The scale_up_multiplier parameter defines the number of times the
workload is scaled up during replay. Each captured session will be replayed
concurrently for as many times as specified by this parameter. However, only
one session in each set of identical replay sessions will execute both queries
and updates. The rest of the sessions will only execute queries.

– The capture_sts parameter specifies whether to capture a SQL tuning set
in parallel with the workload replay. If this parameter is set to TRUE, you can
capture a SQL tuning set during workload replay and use SQL Performance
Analyzer to compare it to another SQL tuning set without having to re-
execute the SQL statements. This enables you to obtain a SQL Performance
Analyzer report and compare the SQL performance—before and after the
change—while running Database Replay. You can also export the resulting
SQL tuning set with its AWR data using the EXPORT_AWR procedure, as
described in "Exporting AWR Data for Workload Replay (page 12-32)".

This feature is not supported for Oracle RAC. Workload replay filters that are
defined using DBMS_WORKLOAD_REPLAY do not apply to the SQL tuning set
capture. The default value for this parameter is FALSE.

Replaying a Database Workload Using APIs

12-24 Oracle Database Testing Guide

– The sts_cap_interval parameter specifies the duration of the SQL tuning
set capture from the cursor cache in seconds. The default value is 300. Setting
the value of this parameter below the default value may cause additional
overhead with some workloads and is not recommended.

For more information about setting these parameters, see "Specifying Replay Options
(page 12-3)".

See Also:

"Steps for Replaying a Database Workload (page 12-1)"

12.6.5 Defining Workload Replay Filters and Replay Filter Sets
This section describes how to add and remove workload replay filters, and how to
create and use replay filter sets.

This section contains the following topics:

• Adding Workload Replay Filters (page 12-25)

• Deleting Workload Replay Filters (page 12-26)

• Creating a Replay Filter Set (page 12-26)

• Using a Replay Filter Set (page 12-27)

See Also:

"Using Filters with Workload Replay (page 12-4)"

12.6.5.1 Adding Workload Replay Filters

This section describes how to add a new filter to be used in a replay filter set.

To add a new filter:

• Use the ADD_FILTER procedure:

BEGIN
 DBMS_WORKLOAD_REPLAY.ADD_FILTER (
 fname => 'user_ichan',
 fattribute => 'USER',
 fvalue => 'ICHAN');
END;
/

In this example, the ADD_FILTER procedure adds a filter named user_ichan,
which can be used to filter out all sessions belonging to the user name ICHAN.

The ADD_FILTER procedure in this example uses the following parameters:

– The fname required parameter specifies the name of the filter that will be
added.

– The fattribute required parameter specifies the attribute on which the
filter will be applied. Valid values include PROGRAM, MODULE, ACTION,

Replaying a Database Workload Using APIs

Replaying a Database Workload 12-25

SERVICE, USER, and CONNECTION_STRING. You must specify a valid
captured connection string that will be used during replay as the
CONNECTION_STRING attribute.

– The fvalue required parameter specifies the value for the corresponding
attribute on which the filter will be applied. It is possible to use wildcards
such as % with some of the attributes, such as modules and actions.

Once all workload replay filters are added, you can create a replay filter set that
can be used when replaying the workload.

12.6.5.2 Deleting Workload Replay Filters

This section describes how to delete workload replay filters.

To delete workload replay filters:

• Use the DELETE_FILTER procedure:

BEGIN
 DBMS_WORKLOAD_REPLAY.DELETE_FILTER (fname => 'user_ichan');
END;
/

In this example, the DELETE_FILTER procedure removes the filter named
user_ichan.

The DELETE_FILTER procedure in this example uses the fname required
parameter, which specifies the name of the filter to be removed.

12.6.5.3 Creating a Replay Filter Set

After the workload replay filters are added, you can create a set of replay filters to use
with workload replay. When creating a replay filter set, all workload replay filters that
were added since the previous replay filter set was created will be used.

To create a replay filter set:

• Use the CREATE_FILTER_SET procedure:

BEGIN
 DBMS_WORKLOAD_REPLAY.CREATE_FILTER_SET (
 replay_dir => 'apr09',
 filter_set => 'replayfilters',
 default_action => 'INCLUDE');
END;
/

In this example, the CREATE_FILTER_SET procedure creates a replay filter set
named replayfilters, which will replay all captured calls for the replay stored in
the apr09 directory, except for the part of the workload defined by the replay
filters.

The CREATE_FILTER_SET procedure in this example uses the following
parameters:

– The replay_dir parameter specifies the directory where the replay to be
filtered is stored

– The filter_set parameter specifies the name of the filter set to create

Replaying a Database Workload Using APIs

12-26 Oracle Database Testing Guide

– The default_action parameter determines if every captured database call
should be replayed and whether the workload replay filters should be
considered as inclusion or exclusion filters.

If this parameter is set to INCLUDE, all captured database calls will be
replayed, except for the part of the workload defined by the replay filters. In
this case, all replay filters will be treated as exclusion filters, since they will
define the part of the workload that will not be replayed. This is the default
behavior.

If this parameter is set to EXCLUDE, none of the captured database calls will
be replayed, except for the part of the workload defined by the replay filters.
In this case, all replay filters will be treated as inclusion filters, since they will
define the part of the workload that will be replayed.

12.6.5.4 Using a Replay Filter Set

Once the replay filter set is created and the replay is initialized, you can use the replay
filter set to filter the replay in the replay_dir directory.

To use a replay filter set:

• Use the USE_FILTER_SET procedure:

BEGIN
 DBMS_WORKLOAD_REPLAY.USE_FILTER_SET (filter_set => 'replayfilters');
END;
/

In this example, the USE_FILTER_SET procedure uses the filter set named
replayfilters.

The USE_FILTER_SET procedure in this example uses the filter_set required
parameter, which specifies the name of the filter set to be used in the replay.

12.6.6 Setting the Replay Timeout Action
This section describes how to set a timeout action for the workload replay. You can set
a replay timeout action to abort user calls that are significantly slower during replay or
cause a replay to hang. For example, you may want to set a replay timeout action to
abort runaway queries caused by sub-optimal execution plans following a database
upgrade.

When a replay timeout action is enabled, a user call will exit with an ORA-15569 error
if it is delayed beyond the conditions specified by the replay timeout action. The
aborted call and its error are reported as error divergence.

To set a replay timeout:

• Use the SET_REPLAY_TIMEOUT procedure:

BEGIN
 DBMS_WORKLOAD_REPLAY.SET_REPLAY_TIMEOUT (
 enabled => TRUE,
 min_delay => 20,
 max_delay => 60,
 delay_factor => 10);
END;
/

Replaying a Database Workload Using APIs

Replaying a Database Workload 12-27

In this example, the SET_REPLAY_TIMEOUT procedure defines a replay timeout
action that will abort a user call if the delay during replay is more than 60
minutes, or if the delay during replay is over 20 minutes and the elapsed time is
10 times greater than the capture elapsed time.

The SET_REPLAY_TIMEOUT procedure in this example uses the following
parameters:

– The enabled parameter specifies if the replay timeout action is enabled or
disabled. The default value is TRUE.

– The min_delay parameter defines the lower bound value of call delay in
minutes. The replay timeout action is only activated when the delay is over
this value. The default value is 10.

– The max_delay parameter defines the upper bound value of call delay in
minutes. The replay timeout action is activated and issues an error when the
delay is over this value. The default value is 120.

– The delay_factor parameter defines a factor for the call delays that are
between the values of min_delay and max_delay. The replay timeout
action issues an error when the current replay elapsed time is higher than the
multiplication of the capture elapsed time and this value. The default value is
8.

To retrieve the replay timeout action setting:

• Use the GET_REPLAY_TIMEOUT procedure:

DECLARE
 enabled BOOLEAN;
 min_delay NUMBER;
 max_delay NUMBER;
 delay_factor NUMBER;
BEGIN
 DBMS_WORKLOAD_REPLAY.GET_REPLAY_TIMEOUT(enabled, min_delay, max_delay,
 delay_factor);
END;
/

The GET_REPLAY_TIMEOUT procedure in this example returns the following
parameters:

– The enabled parameter returns whether the replay timeout action is enabled
or disabled.

– The min_delay parameter returns the lower bound value of call delay in
minutes.

– The max_delay parameter returns the upper bound value of call delay in
minutes.

– The delay_factor parameter returns the delay factor.

12.6.7 Starting a Workload Replay
There are tasks to perform before starting a workload replay. For example:

Replaying a Database Workload Using APIs

12-28 Oracle Database Testing Guide

• Preprocess the captured workload, as described in "Preprocessing a Database
Workload Using APIs (page 11-9)"

• Initialize the replay data, as described in "Initializing Replay Data (page 12-21)"

• Specify the replay options, as described in "Setting Workload Replay Options
(page 12-23)"

• Start the replay clients, as described in "Starting Replay Clients (page 12-6)"

Note:

Once a workload replay is started, new replay clients will not be able to
connect to the database. Only replay clients that were started before the
START_REPLAY procedure is executed will be used to replay the captured
workload.

To start a workload replay:

• Use the START_REPLAY procedure:

BEGIN
 DBMS_WORKLOAD_REPLAY.START_REPLAY ();
END;
/

12.6.8 Pausing a Workload Replay
Pausing a workload replay will halt all subsequent user calls issued by the replay
clients until the workload replay is either resumed or cancelled. User calls that are
already in progress will be allowed to complete. This option enables you to
temporarily stop the replay to perform a change and observe its impact for the
remainder of the replay.

To pause a workload replay:

• Use the PAUSE_REPLAY procedure:

BEGIN
 DBMS_WORKLOAD_REPLAY.PAUSE_REPLAY ();
END;
/

12.6.9 Resuming a Workload Replay
This section describes how to resume a workload replay that is paused.

To resume a workload replay:

• Use the RESUME_REPLAY procedure:

BEGIN
 DBMS_WORKLOAD_REPLAY.RESUME_REPLAY ();
END;
/

Replaying a Database Workload Using APIs

Replaying a Database Workload 12-29

12.6.10 Cancelling a Workload Replay
This section describes how to cancel a workload replay.

To cancel a workload replay:

• Use the CANCEL_REPLAY procedure:

BEGIN
 DBMS_WORKLOAD_REPLAY.CANCEL_REPLAY ();
END;
/

12.6.11 Retrieving Information About Workload Replays
You can retrieve all information about the workload captures in a replay directory
object and the history of the workload replay attempts from the directory. By default,
the workload replay divergence data is not loaded, but you can selectively choose to
load this data.

To retrieve information about workload replays:

• Call the DBMS_WORKLOAD_REPLAY.GET_REPLAY_INFO function.

The GET_REPLAY_INFO function first imports a row into the
DBA_WORKLOAD_CAPTURES view, which contains information about the
workload capture. By default, it then only imports information for replays that
have not been previously loaded into the DBA_WORKLOAD_REPLAYS view. This
function returns the cap_id of the capture directory (for a consolidated capture
directory, the cap_id returned is 0), which can be associated with the
CAPTURE_ID column in the DBA_WORKLOAD_REPLAYS view to access the
information retrieved.

The GET_REPLAY_INFO function uses the following parameters:

– The replay_dir required parameter, which specifies the name of the
workload replay directory object.

– The load_divergence optional parameter, which specifies if divergence
data is loaded. The default value for this parameter is FALSE. To load
divergence data, which imports rows for every replay attempt retrieved from
the replay directory into the DBA_WORKLOAD_REPLAY_DIVERGENCE view,
set this parameter to TRUE. Alternatively, you can use the
LOAD_DIVERGENCE procedure to selectively load divergence data for a single
replay or all replays in a directory object after the replay information is
retrieved, as described in "Loading Divergence Data for Workload Replay
(page 12-31)".

Example 12-1 Retrieving information about workload replay

The following example shows how to retrieve information about the workload
captures and the history of the workload replay attempts for the replay directory
object named jul14, and to validate that the information is retrieved.

DECLARE
 cap_id NUMBER;
BEGIN
 cap_id := DBMS_WORKLOAD_REPLAY.GET_REPLAY_INFO(replay_dir => 'jul14');

Replaying a Database Workload Using APIs

12-30 Oracle Database Testing Guide

 SELECT capture_id
 FROM dba_workload_replays
 WHERE capture_id = cap_id;
END;
/

12.6.12 Loading Divergence Data for Workload Replay
Loading divergence data for workload replay imports rows for every replay attempt
retrieved from the replay directory into the DBA_WORKLOAD_REPLAY_DIVERGENCE
view, which displays information about diverged calls and errors during replay
attempts. You can choose to load divergence data for either a single workload replay
or all workload replays in a given directory object.

To load divergence data for workload replay:

1. Call the WORKLOAD_REPLAY.LOAD_DIVERGENCE procedure using one of the
following parameters:

• The replay_id parameter specifies the ID of the workload replay for which
you want to load divergence data. Use this parameter if you only want to
load divergence data for a single workload replay.

• The replay_dir parameter specifies the name of the directory object (the
value is case-sensitive). Use this parameter if you want to load divergence
data for all workload replays in a given directory object.

2. To check the loading status of divergence data, query the
DIVERGENCE_LOAD_STATUS column in the DBA_WORKLOAD_REPLAYS view.

A value of TRUE indicates that the divergence data is loaded, and a value of
FALSE indicates that it has not been loaded.

Example 12-2 Loading divergence data for a single workload replay

The following example shows how to load divergence data for the workload replay
with a replay_id value of 12, and to validate that the divergence data is loaded.

DECLARE
 rep_id NUMBER;
BEGIN
 rep_id := DBMS_WORKLOAD_REPLAY.LOAD_DIVERGENCE (replay_id => 12);
 SELECT divergence_load_status
 FROM dba_workload_replays
 WHERE capture_id = rep_id;
END;
/

12.6.13 Deleting Information About Workload Replays
You can delete information retrieved for either a single workload replay or all
workload replays in a given directory object. Deleted information can be retrieved
using the GET_REPLAY_INFO function, as described in "Retrieving Information About
Workload Replays (page 12-30)".

To delete information about workload replays:

1. Call the DBMS_WORKLOAD_REPLAY.DELETE_REPLAY_INFO procedure using the
replay_id parameter.

Replaying a Database Workload Using APIs

Replaying a Database Workload 12-31

• The replay_id parameter specifies the ID of the workload replay for which
you want to delete replay information. Use this parameter if you only want to
delete information for a single workload replay.

2. By default, deleting information about workload replays does not remove the data
from disk.

Example 12-3 Deleting information about workload replay

The following example deletes information retrieved about the workload captures and
the history of the workload replay attempts for the workload replay with an ID of 2.
The replay data is not deleted from disk, and thus can be retrieved by calling the
GET_REPLAY_INFO function, as described in "Retrieving Information About
Workload Replays (page 12-30)".

BEGIN
 DBMS_WORKLOAD_REPLAY.DELETE_REPLAY_INFO (replay_id => 2);
END;
/

12.6.14 Exporting AWR Data for Workload Replay
Exporting AWR data enables detailed analysis of the workload. This data is also
required if you plan to run the AWR Compare Period report on a pair of workload
captures or replays.

To export AWR data:

• Use the EXPORT_AWR procedure:

BEGIN
 DBMS_WORKLOAD_REPLAY.EXPORT_AWR (replay_id => 1);
END;
/

In this example, the AWR snapshots that correspond to the workload replay with
a replay ID of 1 are exported, along with any SQL tuning set that may have been
captured during workload replay.

The EXPORT_AWR procedure uses the replay_id required parameter, which
specifies the ID of the replay whose AWR snapshots will be exported.

Note:

This procedure works only if the corresponding workload replay was
performed in the current database and the AWR snapshots that correspond to
the original replay time period are still available.

12.6.15 Importing AWR Data for Workload Replay
After AWR data is exported from the replay system, you can import the AWR data
into another system. Importing AWR data enables detailed analysis of the workload.
This data is also required if you plan to run the AWR Compare Period report on a pair
of workload captures or replays.

Replaying a Database Workload Using APIs

12-32 Oracle Database Testing Guide

To import AWR data:

• Use the IMPORT_AWR function:

CREATE USER capture_awr
SELECT DBMS_WORKLOAD_REPLAY.IMPORT_AWR (replay_id => 1,
 staging_schema => 'capture_awr')
 FROM DUAL;

In this example, the AWR snapshots that correspond to the workload replay with
a capture ID of 1 are imported using a staging schema named capture_awr.

The IMPORT_AWR procedure in this example uses the following parameters:

– The replay_id required parameter specifies the ID of the replay whose
AWR snapshots will be import.

– The staging_schema required parameter specifies the name of a valid
schema in the current database which can be used as a staging area while
importing the AWR snapshots from the replay directory to the SYS AWR
schema.

Note:

This function fails if the schema specified by the staging_schema parameter
contains any tables with the same name as any of the AWR tables.

12.7 Monitoring Workload Replay Using APIs
This section describes how to monitor workload replay using APIs and views. You can
also use Oracle Enterprise Manager to monitor workload replay, as described in
"Monitoring Workload Replay Using Enterprise Manager (page 12-16)".

This section contains the following topics:

• Retrieving Information About Diverged Calls (page 12-33)

• Monitoring Workload Replay Using Views (page 12-34)

12.7.1 Retrieving Information About Diverged Calls
During replay, any error and data discrepancies between the replay system and the
capture system are recorded as diverged calls.

To retrieve information about a diverged call—including its SQL identifier, SQL text,
and bind values—call the GET_DIVERGING_STATEMENT function using the following
parameters:

• Set the replay_id parameter to the ID of the replay in which the call diverged

• Set the stream_id parameter to the stream ID of the diverged call

• Set the call_counter parameter to the call counter of the diverged call

To view these information about a diverged call, use the
DBA_WORKLOAD_REPLAY_DIVERGENCE view. The following example illustrates a
function call:

Monitoring Workload Replay Using APIs

Replaying a Database Workload 12-33

DECLARE
 r CLOB;
 ls_stream_id NUMBER;
 ls_call_counter NUMBER;
 ls_sql_cd VARCHAR2(20);
 ls_sql_err VARCHAR2(512);
 CURSOR c IS
 SELECT stream_id, call_counter
 FROM DBA_WORKLOAD_REPLAY_DIVERGENCE
 WHERE replay_id = 72;
BEGIN
 OPEN c;
 LOOP
 FETCH c INTO ls_stream_id, ls_call_counter;
 EXIT when c%notfound;
 DBMS_OUTPUT.PUT_LINE (ls_stream_id||''||ls_call_counter);
 r:=DBMS_WORKLOAD_REPLAY.GET_DIVERGING_STATEMENT(replay_id => 72,
 stream_id => ls_stream_id, call_counter => ls_call_counter);
 DBMS_OUTPUT.PUT_LINE (r);
 END LOOP;
END;
/

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS_WORKLOAD_REPLAY package

12.7.2 Monitoring Workload Replay Using Views
This section summarizes the views that you can display to monitor workload replay.
You need DBA privileges to access these views.

• The DBA_WORKLOAD_CAPTURES view lists all the workload captures that have
been captured in the current database.

• The DBA_WORKLOAD_FILTERS view lists all workload filters for workload
captures defined in the current database.

• The DBA_WORKLOAD_REPLAYS view lists all the workload replays that have been
replayed in the current database.

• The DBA_WORKLOAD_REPLAY_DIVERGENCE view enables you to view
information about diverged calls, such as the replay identifier, stream identifier,
and call counter.

• The DBA_WORKLOAD_REPLAY_FILTER_SET view lists all workload filters for
workload replays defined in the current database.

• The DBA_WORKLOAD_CONNECTION_MAP view lists the connection mapping
information for workload replay.

• The V$WORKLOAD_REPLAY_THREAD view lists information about all sessions
from the replay clients.

Monitoring Workload Replay Using APIs

12-34 Oracle Database Testing Guide

See Also:

• Oracle Database Reference for information about these views

Monitoring Workload Replay Using APIs

Replaying a Database Workload 12-35

Monitoring Workload Replay Using APIs

12-36 Testing Guide

13
Analyzing Captured and Replayed

Workloads

This chapter describes how to analyze captured and replayed workloads using various
Database Replay reports. This chapter contains the following sections:

• Using Workload Capture Reports (page 13-1)

• Using Workload Replay Reports (page 13-4)

• Using Replay Compare Period Reports (page 13-10)

• Using SQL Performance Analyzer Reports (page 13-15)

Note:

After the replay analysis is complete, you can restore the database to its
original state at the time of workload capture and repeat workload replay to
test other changes to the system once the workload directory object is backed
up to another physical location.

13.1 Using Workload Capture Reports
Workload capture reports contain captured workload statistics, information about the
top session activities that were captured, and any workload filters used during the
capture process.

The following sections describe how to generate and utilize workload capture reports:

• Accessing Workload Capture Reports Using Enterprise Manager (page 13-1)

• Generating Workload Capture Reports Using APIs (page 13-2)

• Reviewing Workload Capture Reports (page 13-3)

13.1.1 Accessing Workload Capture Reports Using Enterprise Manager
This section describes how to generate a workload capture report using Oracle
Enterprise Manager.

The primary tool for generating workload capture reports is Oracle Enterprise
Manager. If for some reason Oracle Enterprise Manager is unavailable, you can
generate workload capture reports using APIs, as described in "Generating Workload
Capture Reports Using APIs (page 13-2)".

Analyzing Captured and Replayed Workloads 13-1

To access workload capture reports using Enterprise Manager:

1. From the Enterprise menu of the Enterprise Manager Cloud Control console, select
Quality Management, then Database Replay.

If the Database Login page appears, log in as a user with administrator privileges.

The Database Replay page appears.

2. From the Captured Workloads tab of the Database Replay page for a capture that
has a Status other than Completed, click the name of the desired capture from the
Capture table.

The Summary tab of the Database Replay page appears.

3. Click the Reports tab for access to controls for the Workload Capture report and
Workload Capture ASH Analytics report.

• The Workload Capture report contains detailed output showing the type of
data components that were captured and not captured.

• The Capture ASH Analytics report shows which sessions are consuming the
most database time. This report provides a stacked chart to help you visualize
the active session activity for several dimensions, such as Event, Activity Class,
Module/Action, Session, Instance ID, and PL/SQL function.

The "Other Activity" list choice for the report means that the activity has not
been captured.

4. After you access a report, you can save it by clicking Save.

See Also:

• "Reviewing Workload Capture Reports (page 13-3)" for information
about how to interpret the workload capture report

• Oracle Database Performance Tuning Guide for information about ASH
(Active Session History)

13.1.2 Generating Workload Capture Reports Using APIs
You can generate a workload capture report using the DBMS_WORKLOAD_CAPTURE
package. You can also use Oracle Enterprise Manager to generate a workload capture
report, as described in "Accessing Workload Capture Reports Using Enterprise
Manager (page 13-1)".

To generate a report on the latest workload capture:

1. Use the DBMS_WORKLOAD_CAPTURE.GET_CAPTURE_INFO procedure.

The GET_CAPTURE_INFO procedure retrieves all information regarding the
workload capture and returns the cap_id for the workload capture. This function
uses the dir required parameter, which specifies the name of the workload
capture directory object.

2. Call the DBMS_WORKLOAD_CAPTURE.REPORT function.

Using Workload Capture Reports

13-2 Oracle Database Testing Guide

The REPORT function generates a report using the cap_id that was returned by
the GET_CAPTURE_INFO procedure. This function uses the following parameters:

• The capture_id required parameter relates to the directory that contains
the workload capture for which the report will be generated. The directory
should be a valid directory in the host system containing the workload
capture. The value of this parameter should match the cap_id returned by
the GET_CAPTURE_INFO procedure.

• The format required parameter specifies the report format. Valid values
include DBMS_WORKLOAD_CAPTURE.TYPE_TEXT and
DBMS_WORKLOAD_REPLAY.TYPE_HTML.

In this example, the GET_CAPTURE_INFO procedure retrieves all information
regarding the workload capture in the jul14 directory and returns the cap_id for
the workload capture. The REPORT function then generates a text report using the
cap_id that was returned by the GET_CAPTURE_INFO procedure.

DECLARE
 cap_id NUMBER;
 cap_rpt CLOB;
BEGIN
 cap_id := DBMS_WORKLOAD_CAPTURE.GET_CAPTURE_INFO(dir => 'jul14');
 cap_rpt := DBMS_WORKLOAD_CAPTURE.REPORT(capture_id => cap_id,
 format => DBMS_WORKLOAD_CAPTURE.TYPE_TEXT);
END;
/

See Also:

• "Reviewing Workload Capture Reports (page 13-3)" for information
about how to interpret the workload capture report

• Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS_WORKLOAD_CAPTURE package

13.1.3 Reviewing Workload Capture Reports
The workload capture report contains various types of information that can be used to
assess the validity of the workload capture. Using the information provided in this
report, you can determine if the captured workload:

• Represents the actual workload you want to replay

• Does not contain any workload you want to exclude

• Can be replayed

The information contained in the workload capture report is divided into the
following categories:

• Details about the workload capture (such as the name of the workload capture,
defined filters, date, time, and SCN of capture)

• Overall statistics about the workload capture (such as the total DB time captured,
and the number of logins and transactions captured) and the corresponding
percentages with respect to total system activity

Using Workload Capture Reports

Analyzing Captured and Replayed Workloads 13-3

• Profile of the captured workload

• Profile of the uncaptured workload due to version limitations

• Profile of the uncaptured workload that was excluded using defined filters

• Profile of the uncaptured workload that consists of background process or
scheduled jobs

13.2 Using Workload Replay Reports
Workload replay reports contain information that can be used to measure
performance differences between the capture system and the replay system.

The following sections describe how to generate and review workload replay reports:

• Accessing Workload Replay Reports Using Enterprise Manager (page 13-4)

• Generating Workload Replay Reports Using APIs (page 13-8)

• Reviewing Workload Replay Reports (page 13-9)

13.2.1 Accessing Workload Replay Reports Using Enterprise Manager
This section describes how to generate a workload replay report using Oracle
Enterprise Manager.

The primary tool for generating workload replay reports is Oracle Enterprise
Manager. If for some reason Oracle Enterprise Manager is unavailable, you can
generate workload replay reports using APIs, as described in "Generating Workload
Replay Reports Using APIs (page 13-8)"

To access workload replay reports using Enterprise Manager:

1. From the Enterprise menu of the Enterprise Manager Cloud Control console, select
Quality Management, then Database Replay.

If the Database Login page appears, log in as a user with administrator privileges.

The Database Replay page appears.

2. Click the Replay Tasks tab, then select a replay for which you want to access
reports.

3. Click the Reports tab to gain access to individual reports.

There are several types of reports you can view for a completed workload replay:

• Database Replay

Use this report to view complete replay statistics in a tabular format, including
replay divergence and the workload profile.

Using Workload Replay Reports

13-4 Oracle Database Testing Guide

• Compare Period ADDM

Use this report to perform a high-level comparison of one workload replay to
its capture or to another replay of the same capture. Only workload replays
that contain at least 5 minutes of database time can be compared using this
report.

Examine the following sections of the report to understand the performance
change between the two periods and the cause of the change:

– Overview

This portion of the report shows SQL commonality, which is the
comparability between the base and comparison periods based on the

Using Workload Replay Reports

Analyzing Captured and Replayed Workloads 13-5

average resource consumption of the SQL statements common to both
periods.

A commonality value of 100% means that the workload "signature" in both
time periods is identical. A commonality of 100% is expected for this use
case, because the workload being replayed is the same (assuming that you
are not using replay filters). A value of 0% means that the two time
periods have no items in common for the specific workload dimension.

Commonality is based on the type of input (that is, which SQL is
executing) as well as the load of the executing SQL statements.
Consequently, SQL statements running in only one time period, but not
consuming significant time, do not affect commonality. Therefore, two
workloads could have a commonality of 100% even if some SQL
statements are running only in one of the two periods, provided that these
SQL statements do not consume significant resources.

– Configuration

The information displayed shows base period and comparison period
values for various parameters categorized by instance, host, and database.

– Findings

The findings can show performance improvements and identify the major
performance differences caused by system changes. For negative
outcomes, if you understand and remove the cause, the negative outcome
can be eliminated.

The values shown for the Base Period and Comparison Period represent
performance with regard to database time.

The Change Impact value represents a measurement of the scale of a
change in performance from one time period to another. It is applicable to
issues or items measured by the total database time they consumed in each
time period. The absolute values are sorted in descending order.

If the value is positive, an improvement has occurred, and if the value is
negative, a regression has occurred. For instance, a change impact of
-200% means that period 2 is three times as slow as period 1.

You can run performance tuning tools, such as ADDM and the SQL
Tuning Advisor, to fix issues in the comparison period to improve general
system performance.

– Resources

The information shown provides a summary of the division of database
time for both time periods, and shows the resource usage for CPU,
memory, I/O, and interconnect (Oracle RAC only).

• SQL Performance Analyzer

Use this report to compare a SQL tuning set from a workload capture to
another SQL tuning set from a workload replay, or two SQL tuning sets from
two workload replays. Comparing SQL tuning sets with Database Replay
provides more information than SQL Performance Analyzer test-execute,
because it considers and shows all execution plans for each SQL statement,
while SQL Performance Analyzer test-execute generates only one execution
plan per SQL statement for each SQL trial.

Using Workload Replay Reports

13-6 Oracle Database Testing Guide

• Replay Compare Period

Use this report to compare the AWR data from one workload replay to its
capture or to another replay of the same capture. Before running this report,
AWR data for the captured or replayed workload must have been previously
exported.

For information about using this report, see "Reviewing Replay Compare
Period Reports (page 13-11)".

• Replay ASH Analytics

The Replay ASH Analytics report contains active session history (ASH)
information for a specified duration of a workload that was replayed for the
category you selected in the drop-down menu. Before running this report,
AWR data must have been previously exported from the captured or replayed
workload.

The chart shows workload activity breakdown values for wait classes, and
provides detailed statistics for the top activity sessions that are adversely
affecting the system.

Using Workload Replay Reports

Analyzing Captured and Replayed Workloads 13-7

You can optionally use the Load Map for a graphical view of system activity.
The Load Map is useful for viewing activity in a single- or multi-dimensional
layout when you are not interested in seeing how activity has changed over
time within the selected period.

See Also:

Oracle Database 2 Day + Performance Tuning Guide for information about how to
interpret replay compare period reports

13.2.2 Generating Workload Replay Reports Using APIs
You can generate a workload replay report using the DBMS_WORKLOAD_REPLAY
package. You can also use Oracle Enterprise Manager to generate a workload replay
report, as described in "Accessing Workload Replay Reports Using Enterprise
Manager (page 13-4)".

To generate a report on the latest workload replay for a workload capture using
APIs:

1. Retrieve information about the workload captures and the history of the workload
replay attempts from the replay directory object by calling the
DBMS_WORKLOAD_REPLAY.GET_REPLAY_INFO function, as described in
"Retrieving Information About Workload Replays (page 12-30)".

The GET_REPLAY_INFO function returns the cap_id of a single capture directory
(for a consolidated capture directory, the cap_id returned is 0).

2. Using the cap_id that was returned by the GET_REPLAY_INFO function, run a
query to return the appropriate rep_id for the latest replay of the workload.

3. Call the DBMS_WORKLOAD_REPLAY.REPORT function.

The REPORT function generates a report using the rep_id that was returned by
the SELECT statement.

The REPORT function uses the following parameters:

• The replay_id required parameter specifies the directory that contains the
workload replay for which the report will be generated. The directory should
be a valid directory in the host system containing the workload replay. The
value of this parameter should match the rep_id returned by the previous
query.

• The format parameter required parameter specifies the report format. Valid
values include DBMS_WORKLOAD_REPLAY.TYPE_TEXT,
DBMS_WORKLOAD_REPLAY.TYPE_HTML, and
DBMS_WORKLOAD_REPLAY.TYPE_XML.

In this example, the GET_REPLAY_INFO function retrieves all information about the
workload captures and the history of all the workload replay attempts from the jul14
replay directory object. The function returns the cap_id of the capture directory,
which can be associated with the CAPTURE_ID column in the
DBA_WORKLOAD_REPLAYS view to access the information retrieved.The SELECT
statement returns the appropriate rep_id for the latest replay of the workload. The
REPORT function then generates a HTML report using the rep_id that was returned
by the SELECT statement.

Using Workload Replay Reports

13-8 Oracle Database Testing Guide

DECLARE
 cap_id NUMBER;
 rep_id NUMBER;
 rep_rpt CLOB;
BEGIN
 cap_id := DBMS_WORKLOAD_REPLAY.GET_REPLAY_INFO(replay_dir => 'jul14');
 /* Get the latest replay for that capture */
 SELECT max(id)
 INTO rep_id
 FROM dba_workload_replays
 WHERE capture_id = cap_id;

 rep_rpt := DBMS_WORKLOAD_REPLAY.REPORT(replay_id => rep_id,
 format => DBMS_WORKLOAD_REPLAY.TYPE_HTML);
END;
/

See Also:

• "Reviewing Workload Replay Reports (page 13-9)" for information
about how to interpret the workload replay report

• Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS_WORKLOAD_REPLAY package

13.2.3 Reviewing Workload Replay Reports
After the workload is replayed on a test system, there may be some divergence in
what is replayed compared to what was captured. There are numerous factors that can
cause replay divergence, which can be analyzed using the workload replay report. The
information contained in the workload replay report consists of performance and
replay divergence.

Performance divergence may result when new algorithms are introduced in the replay
system that affect the overall performance of the database. For example, if the
workload is replayed on a newer version of Oracle Database, a new algorithm may
cause specific requests to run faster, and the divergence will appear as a faster
execution. In this case, this is a desirable divergence.

Data divergence occurs when the results of DML or SQL queries do not match results
that were originally captured in the workload. For example, a SQL statement may
return fewer rows during replay than those returned during capture.

Error divergence occurs when a replayed database call:

• Encounters a new error that was not captured

• Does not encounter an error that was captured

• Encounters a different error from what was captured

The information contained in the workload replay report is divided into the following
categories:

• Details about the workload replay and the workload capture, such as job name,
status, database information, duration and time of each process, and the directory
object and path

Using Workload Replay Reports

Analyzing Captured and Replayed Workloads 13-9

• Replay options selected for the workload replay and the number of replay clients
that were started

• Overall statistics about the workload replay and the workload capture (such as
the total DB time captured and replayed, and the number of logins and
transactions captured and replayed) and the corresponding percentages with
respect to total system activity

• Profile of the replayed workload

• Replay divergence

• Error divergence

• DML and SQL query data divergence

13.3 Using Replay Compare Period Reports
Replay compare period reports can be used for several purposes. For example, you
can use replay compare period reports to compare the performance of:

• A workload replay to its workload capture

• A workload replay to another replay of the same workload capture

• Multiple workload captures to a consolidated replay

The following sections describe how to generate and review replay compare period
reports:

• Generating Replay Compare Period Reports Using APIs (page 13-10)

• Reviewing Replay Compare Period Reports (page 13-11)

See Also:

• Using Consolidated Database Replay (page 15-1) for information about
Consolidated Database Replay

13.3.1 Generating Replay Compare Period Reports Using APIs
This section describes how to generate replay compare period reports using the
DBMS_WORKLOAD_REPLAY package. This report only compares workload replays that
contain at least 5 minutes of database time.

To generate replay compare period reports, use the
DBMS_WORKLOAD_REPLAY.COMPARE_PERIOD_REPORT procedure:

BEGIN
 DBMS_WORKLOAD_REPLAY.COMPARE_PERIOD_REPORT (
 replay_id1 => 12,
 replay_id2 => 17,
 format => DBMS_WORKLOAD_CAPTURE.TYPE_HTML,
 result => :report_bind);
END;
/

Using Replay Compare Period Reports

13-10 Oracle Database Testing Guide

In this example, the COMPARE_PERIOD_REPORT procedure generates a replay
compare period report in HTML format that compares a workload replay with a
replay ID of 12 with another replay with an ID of 17.

The COMPARE_PERIOD_REPORT procedure in this example uses the following
parameters:

• The replay_id1 parameter specifies the numerical identifier of the workload
replay after change for which the reported will be generated. This parameter is
required.

• The replay_id2 parameter specifies the numerical identifier of the workload
replay before change for which the reported will be generated. If unspecified, the
comparison will be performed with the workload capture.

• The format parameter specifies the report format. Valid values include
DBMS_WORKLOAD_CAPTURE.TYPE_HTML for HTML and
DBMS_WORKLOAD_CAPTURE.TYPE_XML for XML. This parameter is required.

• The result parameter specifies the output of the report.

See Also:

• "Reviewing Replay Compare Period Reports (page 13-11)" for
information about how to interpret the replay compare period report

• Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS_WORKLOAD_REPLAY package

13.3.2 Reviewing Replay Compare Period Reports
Reviewing replay compare period reports enables you to determine if any replay
divergence occurred and whether there were any significant performance changes.

Depending on the type of comparison that is being made, one of three types of replay
compare period reports is generated:

• Capture vs. Replay

This report type compares the performance of a workload replay to its workload
capture.

• Replay vs. Replay

This report type compares the performance of two workload replays of the same
workload capture.

• Consolidated Replay

This report type compares the performance of multiple workload captures to a
consolidated replay. Only the ASH Data Comparison section is available for this
report type. For more information about this report type, see "Reporting and
Analysis for Consolidated Database Replay (page 15-8)".

All replay compare period report types contain information about the most important
changes between the two runs that are being compared. Use this information to
determine the appropriate action to take. For example, if a new concurrency issue is
found, review Automatic Database Diagnostic Monitor (ADDM) reports to diagnose

Using Replay Compare Period Reports

Analyzing Captured and Replayed Workloads 13-11

the issue. If a new SQL performance problem is found, run SQL Tuning Advisor to fix
the problem.

The information in the replay compare period report is divided into the following
sections:

• General Information (page 13-12)

• Replay Divergence (page 13-12)

• Main Performance Statistics (page 13-12)

• Top SQL/Call (page 13-12)

• Hardware Usage Comparison (page 13-12)

• ADDM Comparison (page 13-12)

• ASH Data Comparison (page 13-13)

13.3.2.1 General Information
This section contains metadata about the two runs being compared in the report. Any
init.ora parameter changes between the two runs are also shown here. Review this
section to verify if the system change being tested was performed.

13.3.2.2 Replay Divergence
This section contains the divergence analysis of the second run relative to the first. If
the analysis shows significant divergence, review the full divergence report.

13.3.2.3 Main Performance Statistics
This section contains a high-level performance statistic comparison across the two
runs (such as change in database time). If the comparison shows an insignificant
change in database time, then the performance between the two runs are generally
similar. If there is a significant change in database time, review the statistics to
determine the component (CPU or user I/O) that is causing the greatest change.

13.3.2.4 Top SQL/Call
This section compares the performance change of individual SQL statements from one
run to the next. The SQL statements are ordered by the total change in database time.
Top SQL statements that regressed by the most database time are best candidates for
SQL tuning.

13.3.2.5 Hardware Usage Comparison
This section compares CPU and I/O usage across the two runs. The number of CPUs
is summed for all instances and CPU usage is averaged over instances.

I/O statistics are shown for data and temp files. A high value for the single block read
time (much higher than 10 milliseconds) suggests that the system is I/O bound. If this
is the case, then review the total read and write times to determine if the latency is
caused by excessive I/O requests or poor I/O throughput.

13.3.2.6 ADDM Comparison
This section contains a comparison of ADDM analyses across the two runs ordered by
the absolute difference in impact. Compare the ADDM results for the two runs to
identify possible problems that only existed in one run. If the system change being

Using Replay Compare Period Reports

13-12 Oracle Database Testing Guide

tested is intended to improve database performance, then verify if the expected
improvement is reflected in the ADDM findings.

See Also:

• Oracle Database Performance Tuning Guide for information about ADDM
analysis

13.3.2.7 ASH Data Comparison
This section compares the ASH data across the two runs. The begin time and end time
of the comparison period are displayed in a table. These times may not match the
capture and replay times of the two runs being compared. Instead, these times
represent the times when the ASH samples were taken.

The ASH Data Comparison section contains the following subsections:

• Compare Summary (page 13-13)

• Top SQL (page 13-14)

• Long Running SQL (page 13-14)

• Common SQL (page 13-14)

• Top Objects (page 13-14)

See Also:

• Oracle Database Performance Tuning Guide for information about ASH

13.3.2.7.1 Compare Summary

This section summarizes the activity during the two runs based on database time and
wait time distribution. For example:

• DB Time Distribution indicates how the total database time is distributed across
CPU usage, wait times, and I/O requests.

Figure 13-1 (page 13-13) shows the DB Time Distribution subsection of a sample
report.

Figure 13-1 DB Time Distribution

• Wait Time Distribution indicates how the total wait time is distributed across wait
events. The top wait event class, event name, and event count are listed for both
runs.

Using Replay Compare Period Reports

Analyzing Captured and Replayed Workloads 13-13

Figure 13-2 (page 13-14) shows the Wait Time Distribution subsection of a
sample report.

Figure 13-2 Wait Time Distribution

13.3.2.7.2 Top SQL

This section displays the top SQL statements for both runs by total database time, CPU
time, and wait time.

13.3.2.7.3 Long Running SQL

This section displays the top long-running SQL statements for both runs. Each long-
running SQL statement contains details about the query, such as the maximum,
minimum, and average response times.

13.3.2.7.4 Common SQL

This section extracts the SQL statements that are common in both runs and displays
the top common SQL statements by variance in average response time and total
database time.

13.3.2.7.5 Top Objects

This section contains details about the top objects for both runs by total wait time.

Figure 13-3 (page 13-14) shows the Top Objects section of a sample report.

Figure 13-3 Top Objects

Using Replay Compare Period Reports

13-14 Oracle Database Testing Guide

13.4 Using SQL Performance Analyzer Reports
Use the SQL Performance Analyzer report to compare a SQL tuning set from a
workload replay to another SQL tuning set from a workload capture, or two SQL
tuning sets from two workload replays.

Comparing SQL tuning sets with Database Replay provides more information than
SQL Performance Analyzer test-execute because it considers and shows all execution
plans for each SQL statement, while SQL Performance Analyzer test-execute generates
only one execution plan per SQL statement for each SQL trial.

13.4.1 Generating SQL Performance Analyzer Reports Using APIs
This section describes how to generate a SQL Performance Analyzer report using the
DBMS_WORKLOAD_REPLAY package.

To generate a SQL Performance Analyzer report, use the
DBMS_WORKLOAD_REPLAY.COMPARE_SQLSET_REPORT procedure:

BEGIN
 DBMS_WORKLOAD_REPLAY.COMPARE_SQLSET_REPORT (
 replay_id1 => 12,
 replay_id2 => 17,
 format => DBMS_WORKLOAD_CAPTURE.TYPE_HTML,
 result => :report_bind);
END;
/

In this example, the COMPARE_SQLSET_REPORT procedure generates a SQL
Performance Analyzer report in HTML format that compares a SQL tuning set
captured during the workload replay with a replay ID of 12 to a SQL tuning set
captured during workload replay with an ID of 17.

The COMPARE_SQLSET_REPORT procedure in this example uses the following
parameters:

• The replay_id1 parameter specifies the numerical identifier of the workload
replay after change for which the reported will be generated. This parameter is
required.

• The replay_id2 parameter specifies the numerical identifier of the workload
replay after change for which the reported will be generated. If unspecified, the
comparison will be performed with the workload capture.

• The format parameter specifies the report format. Valid values include
DBMS_WORKLOAD_CAPTURE.TYPE_HTML for HTML,
DBMS_WORKLOAD_CAPTURE.TYPE_XML for XML, and
DBMS_WORKLOAD_CAPTURE.TYPE_TEXT for text. This parameter is required.

• The result parameter specifies the output of the report.

Using SQL Performance Analyzer Reports

Analyzing Captured and Replayed Workloads 13-15

See Also:

• "Reviewing the SQL Performance Analyzer Report in Command-Line
(page 6-13)" for information about how to interpret the SQL Performance
Analyzer report

• Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS_WORKLOAD_REPLAY package

Using SQL Performance Analyzer Reports

13-16 Oracle Database Testing Guide

14
Using Workload Intelligence

Workload Intelligence analyzes the data stored in a captured workload and identifies
significant patterns in a workload. This chapter describes how to use Workload
Intelligence and contains the following sections:

• Overview of Workload Intelligence (page 14-1)

• Analyzing Captured Workloads Using Workload Intelligence (page 14-3)

• Example: Workload Intelligence Results (page 14-7)

14.1 Overview of Workload Intelligence
Workload capture generates a number of binary files—called capture files—that
contain relevant information about the captured workload. The information stored in
the capture files enables workload replay to realistically reproduce the captured
workload at a later time. For each client request that is recorded by workload capture,
the captured information includes SQL text, bind values, transaction information,
timing data, identifiers of accessed objects, and other information about the request.

Workload Intelligence enables you to use the information stored in capture files in
additional ways, including the following:

• Analyze and model the workload

• Discover significant patterns and trends within the workload

• Visualize what was running on the production system during workload capture

This section describes Workload Intelligence and contains the following topics:

• About Workload Intelligence (page 14-1)

• Use Case for Workload Intelligence (page 14-2)

• Requirements for Using Workload Intelligence (page 14-2)

See Also:

• "Workload Capture (page 9-2)" for information about workload capture

• "Workload Replay (page 9-3)" for information about workload replay

14.1.1 About Workload Intelligence
Workload Intelligence comprises a suite of Java programs that enable you to analyze
the data stored in a captured workload. These Java programs operate on data recorded
during a workload capture to create a model that describes the workload. This model

Using Workload Intelligence 14-1

can help you identify significant patterns of templates that are executed as part of the
workload.

A template represents a read-only SQL statement, or an entire transaction that consists
of one or more SQL statements. If two SQL statements (or transactions) exhibit
significant similarity, then they are represented by the same template.

Workload Intelligence enables you to better visualize what a captured workload looks
like by exploring template patterns and the corresponding SQL statements. For each
pattern, you can view important statistics, such as the number of executions of a given
pattern and the database time consumed by the pattern during its execution.

14.1.2 Use Case for Workload Intelligence
You can use Workload Intelligence to discover significant patterns in a captured
workload.

SQL statements that are executed in a production system are typically not manually
inputted by the users, but instead come from one or more applications running on an
application server that is connected to the database server. There is usually a finite
number of such SQL statements in an application. Even if different bind values are
used in every execution of a particular statement, its SQL text essentially remains the
same.

Depending on the user input to the application, a code path is executed that includes
one or more SQL statements submitted to the database in a given order as defined by
the application code. Frequent user actions correspond to application code paths that
are regularly executed. Such frequently executed code paths generate a frequent
pattern of SQL statements that are executed by the database in a given order. By
analyzing a captured workload, Workload Intelligence discovers such patterns and
associates them with related execution statistics. In other words, Workload
Intelligence uses the information stored in capture files to discover patterns that are
generated by significant code paths of applications running in the production system
during workload capture. Workload Intelligence does this without requiring any
information about the applications.

Using Workload Intelligence to discover significant patterns:

• Enables you to better visualize what was running in the database during
workload capture.

• Provides more information that can be used for optimizations.

• Offers a better context because SQL statements are not isolated, but are combined.

14.1.3 Requirements for Using Workload Intelligence
Workload Intelligence uses the information that is stored in the capture files, and does
not require the execution of the workload using workload replay. Furthermore,
Workload Intelligence does not require any user schema, user data, or connection to
the production system. To avoid any overhead in the production system, it is
recommended that Workload Intelligence be used on a test system where the capture
files have been copied, especially for large captured workloads because running
Workload Intelligence may be resource intensive.

The necessary Java classes for invoking the Java programs that comprise Workload
Intelligence are packed in $ORACLE_HOME/rdbms/jlib/dbrintelligence.jar.
Two other jar files must be included in the classpath: $ORACLE_HOME/rdbms/jlib/
dbrparser.jar and $ORACLE_HOME/jdbc/lib/ojdbc6.jar.

Overview of Workload Intelligence

14-2 Oracle Database Testing Guide

Workload Intelligence also uses some SYS tables and views internally.

14.2 Analyzing Captured Workloads Using Workload Intelligence
This section introduces the steps for analyzing captured workloads using Workload
Intelligence. For example:

To analyze captured workloads using Workload Intelligence:

1. Create a database user with the appropriate privileges to use Workload
Intelligence, as described in "Creating a Database User for Workload Intelligence
(page 14-3)".

2. Create a new Workload Intelligence job by running the LoadInfo Java program,
as described in "Creating a Workload Intelligence Job (page 14-3)".

3. Generate a model that describes the workload by running the BuildModel Java
program, as described in "Generating a Workload Model (page 14-4)".

4. Identify patterns in templates that occur in the workload by running the
FindPatterns Java program, as described in "Identifying Patterns in a
Workload (page 14-5)".

5. Generate a report to display the results by running the GenerateReport Java
program, as described in "Generating a Workload Intelligence Report
(page 14-6)".

14.2.1 Creating a Database User for Workload Intelligence
Before using Workload Intelligence, first create a database user with the appropriate
privileges.

Example 14-1 (page 14-3) shows how to create a database user that can use
Workload Intelligence.

Example 14-1 Creating a Database User for Workload Intelligence

create user workintusr identified by password;
grant create session to workintusr;
grant select,insert,alter on WI$_JOB to workintusr;
grant insert,alter on WI$_TEMPLATE to workintusr;
grant insert,alter on WI$_STATEMENT to workintusr;
grant insert,alter on WI$_OBJECT to workintusr;
grant insert,alter on WI$_CAPTURE_FILE to workintusr;
grant select,insert,alter on WI$_EXECUTION_ORDER to workintusr;
grant select,insert,update,delete,alter on WI$_FREQUENT_PATTERN to workintusr;
grant select,insert,delete,alter on WI$_FREQUENT_PATTERN_ITEM to workintusr;
grant select,insert,delete,alter on WI$_FREQUENT_PATTERN_METADATA to workintusr;
grant select on WI$_JOB_ID to workintusr;
grant execute on DBMS_WORKLOAD_REPLAY to workintusr;

14.2.2 Creating a Workload Intelligence Job
To create a Workload Intelligence job, use the LoadInfo program. LoadInfo is a
Java program that creates a new task to apply the algorithms of Workload Intelligence.
The program parses the data contained in a capture directory and stores the relevant
information required for running Workload Intelligence in internal tables.

The LoadInfo program uses the following syntax:

Analyzing Captured Workloads Using Workload Intelligence

Using Workload Intelligence 14-3

java oracle.dbreplay.workload.intelligence.LoadInfo -cstr connection_string -user
username -job job_name -cdir capture_directory

java oracle.dbreplay.workload.intelligence.LoadInfo -version

java oracle.dbreplay.workload.intelligence.LoadInfo -usage

The LoadInfo program supports the following options:

• -cstr

Specifies the JDBC connection string to the database where Workload Intelligence
stores the information and intermediate results required for execution (for
example, jdbc:oracle:thin@hostname:portnum:ORACLE_SID)

• -user

Specifies the database username. The user must have certain privileges for using
Workload Intelligence.

For information about creating a database user with the appropriate privileges,
see "Creating a Database User for Workload Intelligence (page 14-3)".

• -job

Specifies a name that uniquely identifies the Workload Intelligence job.

• -cdir

Specifies the operating system path of the capture directory to be analyzed by
Workload Intelligence.

• -version

Displays the version information for the LoadInfo program.

• -usage

Displays the command-line options for the LoadInfo program.

Example 14-2 (page 14-4) shows how to create a workload intelligence job named
wijobsales using the LoadInfo program.

Example 14-2 Creating a Workload Intelligence Job

java -classpath $ORACLE_HOME/rdbms/jlib/dbrintelligence.jar:
$ORACLE_HOME/rdbms/jlib/dbrparser.jar:
$ORACLE_HOME/jdbc/lib/ojdbc6.jar:
oracle.dbreplay.workload.intelligence.LoadInfo -job wijobsales -cdir
/test/captures/sales -cstr jdbc:oracle:thin:@myhost:1521:orcl -user workintusr

14.2.3 Generating a Workload Model
To generate a workload model, use the BuildModel program. BuildModel is a Java
program that reads data from a captured workload (this data must be generated by
the LoadInfo program) and generates a model that describes the workload. This
model can then be used to identify frequent template patterns that occur in the
workload.

The BuildModel program uses the following syntax:

java oracle.dbreplay.workload.intelligence.BuildModel -cstr connection_string -user
username -job job_name

Analyzing Captured Workloads Using Workload Intelligence

14-4 Oracle Database Testing Guide

java oracle.dbreplay.workload.intelligence.BuildModel -version

java oracle.dbreplay.workload.intelligence.BuildModel -usage

The BuildModel program supports the following options:

• -cstr

Specifies the JDBC connection string to the database where Workload Intelligence
stores the information and intermediate results required for execution (for
example, jdbc:oracle:thin@hostname:portnum:ORACLE_SID)

• -user

Specifies the database username. The user must have certain privileges for using
Workload Intelligence.

For information about creating a database user with the appropriate privileges,
see "Creating a Database User for Workload Intelligence (page 14-3)".

• -job

Specifies a name that uniquely identifies the Workload Intelligence job.

• -version

Displays the version information for the BuildModel program.

• -usage

Displays the command-line options for the BuildModel program.

Example 14-3 (page 14-5) shows how to generate a workload model using the
BuildModel program.

Example 14-3 Generating a Workload Model

java -classpath $ORACLE_HOME/rdbms/jlib/dbrintelligence.jar:
$ORACLE_HOME/rdbms/jlib/dbrparser.jar:
$ORACLE_HOME/jdbc/lib/ojdbc6.jar:
oracle.dbreplay.workload.intelligence.BuildModel -job wijobsales -cstr
jdbc:oracle:thin:@myhost:1521:orcl -user workintusr

14.2.4 Identifying Patterns in a Workload
To identify patterns in a workload, use the FindPatterns program. FindPatterns
is a Java program that reads data from a captured workload (this data must be
generated by the LoadInfo program) and its corresponding workload model (the
workload model must be generated by the BuildModel program), and identifies
frequent template patterns that occur in the workload.

The FindPatterns program uses the following syntax:

java oracle.dbreplay.workload.intelligence.FindPatterns -cstr connection_string
-user username -job job_name -t threshold

java oracle.dbreplay.workload.intelligence.FindPatterns -version

java oracle.dbreplay.workload.intelligence.FindPatterns -usage

The FindPatterns program supports the following options:

• -cstr

Analyzing Captured Workloads Using Workload Intelligence

Using Workload Intelligence 14-5

Specifies the JDBC connection string to the database where Workload Intelligence
stores the information and intermediate results required for execution (for
example, jdbc:oracle:thin@hostname:portnum:ORACLE_SID)

• -user

Specifies the database username. The user must have certain privileges for using
Workload Intelligence.

For information about creating a database user with the appropriate privileges,
see "Creating a Database User for Workload Intelligence (page 14-3)".

• -job

Specifies a name that uniquely identifies the Workload Intelligence job.

• -t

Specifies a threshold probability that defines when a transition from one template
to the next is part of the same pattern or the border between two patterns. Valid
values include real numbers in the range [0.0, 1.0]. Setting this value is optional;
its default value is 0.5.

• -version

Displays the version information for the FindPatterns program.

• -usage

Displays the command-line options for the FindPatterns program.

Example 14-4 (page 14-6) shows how to identify frequent template patterns in a
workload using the FindPatterns program.

Example 14-4 Identifying Patterns in a Workload

java -classpath $ORACLE_HOME/rdbms/jlib/dbrintelligence.jar:
$ORACLE_HOME/rdbms/jlib/dbrparser.jar:
$ORACLE_HOME/jdbc/lib/ojdbc6.jar:
oracle.dbreplay.workload.intelligence.FindPatterns -job wijobsales -cstr
jdbc:oracle:thin:@myhost:1521:orcl -user workintusr -t 0.2

14.2.5 Generating a Workload Intelligence Report
To generate a Workload Intelligence report, use the GenerateReport program.
GenerateReport is a Java program that generates a report to display the results of
Workload Intelligence. The Workload Intelligence report is an HTML page that
displays the patterns identified in the workload.

The GenerateReport program uses the following syntax:

java oracle.dbreplay.workload.intelligence.GenerateReport -cstr connection_string
-user username -job job_name -top top_patterns -out filename

java oracle.dbreplay.workload.intelligence.GenerateReport -version

java oracle.dbreplay.workload.intelligence.GenerateReport -usage

The GenerateReport program supports the following options:

• -cstr

Analyzing Captured Workloads Using Workload Intelligence

14-6 Oracle Database Testing Guide

Specifies the JDBC connection string to the database where Workload Intelligence
stores the information and intermediate results required for execution (for
example, jdbc:oracle:thin@hostname:portnum:ORACLE_SID)

• -user

Specifies the database username. The user must have certain privileges for using
Workload Intelligence.

For information about creating a database user with the appropriate privileges,
see "Creating a Database User for Workload Intelligence (page 14-3)".

• -job

Specifies a name that uniquely identifies the Workload Intelligence job.

• -top

Specifies a number that indicates how many patterns to display in the report. The
patterns are ordered by different criteria (number of executions, DB time, and
length) and only the defined number of top results are displayed. Setting this
value is optional; its default value is 10.

• -out

Specifies the name of the file (in HTML format) where the report is stored. Setting
this value is optional; its default value is based on the job name specified in the -
job option.

• -version

Displays the version information for the GenerateReport program.

• -usage

Displays the command-line options for the GenerateReport program.

Example 14-5 (page 14-7) shows how to generate a Workload Intelligence report
using the GenerateReport program.

Example 14-5 Generating a Workload Intelligence Report

java -classpath $ORACLE_HOME/rdbms/jlib/dbrintelligence.jar:
$ORACLE_HOME/rdbms/jlib/dbrparser.jar:
$ORACLE_HOME/jdbc/lib/ojdbc6.jar:
oracle.dbreplay.workload.intelligence.GenerateReport -job wijobsales -cstr
jdbc:oracle:thin:@myhost:1521:orcl -user workintusr -top 5 -out wijobsales.html

14.3 Example: Workload Intelligence Results
This section assumes a scenario where Workload Intelligence is used on a captured
workload generated by Swingbench, a benchmark used for stress testing Oracle
Database.

The most significant pattern discovered by Workload Intelligence consists of the
following 6 templates:

SELECT product_id, product_name, product_description, category_id, weight_class,
 supplier_id, product_status, list_price, min_price, catalog_url
 FROM product_information
 WHERE product_id = :1;

SELECT p.product_id, product_name, product_description, category_id, weight_class,
 supplier_id, product_status, list_price, min_price, catalog_url,

Example: Workload Intelligence Results

Using Workload Intelligence 14-7

 quantity_on_hand, warehouse_id
 FROM product_information p, inventories i
 WHERE i.product_id = :1 and i.product_id = p.product_id;

INSERT INTO order_items (order_id, line_item_id, product_id, unit_price, quantity)
 VALUES (:1, :2, :3, :4, :5);

UPDATE orders
 SET order_mode = :1, order_status = :2, order_total = :3
 WHERE order_id = :4;

SELECT /*+ use_nl */ o.order_id, line_item_id, product_id, unit_price, quantity,
 order_mode, order_status, order_total, sales_rep_id, promotion_id,
 c.customer_id, cust_first_name, cust_last_name, credit_limit, cust_email
 FROM orders o, order_items oi, customers c
 WHERE o.order_id = oi.order_id
 AND o.customer_id = c.customer_id
 AND o.order_id = :1;

UPDATE inventories
 SET quantity_on_hand = quantity_on_hand - :1
 WHERE product_id = :2
 AND warehouse_id = :3;

This pattern corresponds to a common user action for ordering a product. In this
example, the identified pattern was executed 222,261 times (or approximately 8.21% of
the total number of executions) and consumed 58,533.70 seconds of DB time (or
approximately 11.21% of total DB time).

Another significant pattern discovered by Workload Intelligence in this example
consists of the following 4 templates:

SELECT customer_seq.nextval
 FROM dual;

INSERT INTO customers (customer_id, cust_first_name, cust_last_name, nls_language,
 nls_territory, credit_limit, cust_email, account_mgr_id)
 VALUES (:1, :2, :3, :4, :5, :6, :7, :8);

INSERT INTO logon
 VALUES (:1, :2);

SELECT customer_id, cust_first_name, cust_last_name, nls_language, nls_territory,
 credit_limit, cust_email, account_mgr_id
 FROM customers
 WHERE customer_id = :1;

This pattern corresponds to the creation of a new customer account followed by a
login in the system. In this example, the identified pattern was executed 90,699 times
(or approximately 3.35% of the total number of executions) and consumed 17,484.97
seconds of DB time (or approximately 3.35% of total DB time).

Example: Workload Intelligence Results

14-8 Oracle Database Testing Guide

15
Using Consolidated Database Replay

Database Replay enables you to capture a workload on the production system and
replay it on a test system. This can be very useful when evaluating or adopting new
database technologies because these changes can be tested on a test system without
affecting the production system. However, if the new system being tested offers
significantly better performance than the existing system, then Database Replay may
not accurately predict how much additional workload can be handled by the new
system.

For example, if you are consolidating multiple production systems into a single Oracle
Exadata Machine, replaying a workload captured from one of the existing systems on
Oracle Exadata Machine may result in much lower resource usage (such as host CPU
and I/O) during replay because the new system is much more powerful. In this case, it
is more useful to assess how the new system will handle the combined workloads
from all existing systems, rather than that of a single workload from one system.

Consolidated Database Replay enables you to consolidate multiple workloads
captured from one or multiple systems and replay them concurrently on a single test
system. In this example, using Consolidated Database Replay will help you to assess
how the database consolidation will affect the production system and if a single Oracle
Exadata Machine can handle the combined workloads from the consolidated
databases.

This chapter describes how to use Consolidated Database Replay and contains the
following sections:

• Use Cases for Consolidated Database Replay (page 15-1)

• Steps for Using Consolidated Database Replay (page 15-3)

• Using Consolidated Database Replay with Enterprise Manager (page 15-9)

• Using Consolidated Database Replay with APIs (page 15-9)

• About Query-Only Database Replay (page 15-21)

• Example: Replaying a Consolidated Workload with APIs (page 15-22)

15.1 Use Cases for Consolidated Database Replay
Consolidated Database Replay enables you to replay multiple workloads captured
from one or multiple systems concurrently. During the replay, every workload capture
that is consolidated will start to replay when the consolidated replay begins.

Some typical use cases for Consolidated Database Replay include:

• Database Consolidation Using Pluggable Databases (page 15-2)

• Stress Testing (page 15-2)

Using Consolidated Database Replay 15-1

• Scale-Up Testing (page 15-2)

Each of these use cases can be performed using the procedures described in this
chapter. In addition, you can employ various workload scale-up techniques when
using Consolidated Database Replay, as described in Using Workload Scale-Up
(page 16-1).

15.1.1 Database Consolidation Using Pluggable Databases
One use for Consolidated Database Replay is to assess if the system can handle the
combined workload from a database consolidation.

For example, assume that you want to consolidate the databases for the CRM, ERP,
and SCM applications by migrating them to pluggable databases (PDBs). You can use
Consolidated Database Replay to combine the captured workloads from the three
applications and replay them concurrently on PDBs.

See Also:

"Example: Replaying a Consolidated Workload with APIs (page 15-22)" for
an example of this use case

15.1.2 Stress Testing
Another use for Consolidated Database Replay is for stress testing or capacity
planning.

For example, assume that you are expecting the workload for the Sales application to
double during the holiday season. You can use Consolidated Database Replay to test
the added stress on the system by doubling the workload and replaying the combined
workload.

See Also:

"Using Time Shifting (page 16-2)" for an example of this use case

15.1.3 Scale-Up Testing
A third use for Consolidated Database Replay is for scale-up testing.

For example, assume that you want to test if your system can handle captured
workloads from the Financials application and the Orders application concurrently.
You can use Consolidated Database Replay to test the effects of the scaled-up
workload on your system by combining the workloads and replaying them
simultaneously.

See Also:

• "Using Schema Remapping (page 16-7)"

• "Using Workload Folding (page 16-5)"

Use Cases for Consolidated Database Replay

15-2 Oracle Database Testing Guide

15.2 Steps for Using Consolidated Database Replay
This section describes the steps involved when using Consolidated Workload Replay.
It contains the following topics:

• Capturing Database Workloads for Consolidated Database Replay (page 15-3)

• Setting Up the Test System for Consolidated Database Replay (page 15-4)

• Preprocessing Database Workloads for Consolidated Database Replay
(page 15-5)

• Replaying Database Workloads for Consolidated Database Replay (page 15-6)

• Reporting and Analysis for Consolidated Database Replay (page 15-8)

15.2.1 Capturing Database Workloads for Consolidated Database Replay
Consolidated Database Replay does not require any special steps for capturing
database workloads. The steps for capturing database workloads are exactly the same
as for capturing a single workload for Database Replay, as described in Capturing a
Database Workload (page 10-1).

This section contains the following topics for workload captures that are specific to
Consolidated Database Replay:

• Supported Types of Workload Captures (page 15-3)

• Capture Subsets (page 15-3)

15.2.1.1 Supported Types of Workload Captures
Consolidated Database Replay supports multiple workloads captured from one or
multiple systems running Oracle Database 9i Release 2 (release 9.2.0.8.0) or higher on
one or multiple operating systems. For example, you can use workloads captured
from one system running Oracle Database 9i Release 2 (release 9.2.0.8.0) on HP-UX
and another system running Oracle Database 10g Release 2 (release 10.2.0.4.0) on AIX.

Note:

Consolidated Database Replay is only available on Oracle Database 11g
Release 2 (release 11.2.0.2.0) and higher.

15.2.1.2 Capture Subsets
Consolidated Database Replay enables you to transform existing workload captures
into new, smaller pieces of capture subsets. You can then generate new workload
captures from the capture subsets that can be used in different use cases, as described
in "Use Cases for Consolidated Database Replay (page 15-1)".

A capture subset is a piece of a workload capture that is defined from an existing
workload capture by applying a time range. The time range is specified as an offset
from the start of the workload capture. All user workloads captured within the
specified time range are included in the defined capture subset.

For example, assume that a workload was captured from 2 a.m. to 8 p.m. and the peak
workload is identified to be from 10 a.m. to 4 p.m. You can define a capture subset to

Steps for Using Consolidated Database Replay

Using Consolidated Database Replay 15-3

represent the peak workload by applying a time range that starts at 8 hours after the
start of the workload (or 10 a.m.) and ends at 14 hours after the start of the workload
(or 4 p.m.).

However, if a capture subset only contains recorded user workloads that satisfy the
specified time range, user logins that occurred before the specified time range are not
recorded. If these user logins are required for replay, then the capture subset may not
be replayable. For example, if a user session starts at 9:30 a.m. and ends at 10:30 a.m.
and the specified time range for the capture subset is 10:00 a.m. to 4:00 p.m., the replay
may fail if the user login at 9:30 a.m. is not included in the workload. Similarly, the
specified time range may also include incomplete user calls that are only partially
recorded if a user sessions starts at 3:30 p.m. but does not complete until 4:30 p.m.

Consolidated Database Replay addresses this problem by including only incomplete
user calls caused by the start time of the specified time range. To avoid including the
same incomplete user calls twice if the workload capture is folded, incomplete user
calls caused by the end time are not included by default. Therefore, a capture subset is
essentially the minimal number of recorded user calls during a specified time range
that are required for proper replay, including the necessary user logins, alter session
statements, and incomplete user calls caused by the start time.

See Also:

"Generating Capture Subsets Using APIs (page 15-10)"

15.2.2 Setting Up the Test System for Consolidated Database Replay
Setting up the test system for Consolidated Database Replay is similar to setting up a
test system for Database Replay. However, there are some additional considerations
when setting up a replay database for Consolidated Database Replay. See "Steps for
Replaying a Database Workload (page 12-1)" for more information about setting up a
test system for Database Replay.

To minimize divergence during the replay, the test system should contain the same
application data and the state of the application data should be logically equivalent to
that of the capture system at the start time of each workload capture. However,
because a consolidated capture may contain multiple workload captures from
different production systems, the test system needs to be set up for all the captures. In
this case, it is recommended that the multitenant architecture be used to consolidate
multiple databases, so that each database will have equivalent data to its capture
system at the capture start time.

For Consolidated Database Replay, all participating workload captures must be placed
under a new capture directory on the test system. You can copy all the workload
captures into the new capture directory, or create symbolic links pointing to the
original workload captures. Before consolidating the workload captures, ensure that
the new capture directory has enough disk space to store all participating captures.

Figure 15-1 (page 15-5) illustrates how to set up the test system and new capture
directory to consolidate three workload captures.

Steps for Using Consolidated Database Replay

15-4 Oracle Database Testing Guide

Figure 15-1 Setting Up the Test System for Consolidated Database Replay

CDB

PDB2PDB1 PDB3

New Capture Directory

Capture 2 Capture 3Capture 1

Consolidated Capture

Test System

Production System

Capture 2 Capture 3Capture 1

DB2DB1 DB3

See Also:

• "Setting the Consolidated Replay Directory Using APIs (page 15-11)"

• Oracle Database Concepts for information about the multitenant
architecture

15.2.3 Preprocessing Database Workloads for Consolidated Database Replay
Preprocessing a database workload for Consolidated Database Replay is similar to
preprocessing a database workload for Database Replay. See " Preprocessing a
Database Workload (page 11-1)" for information about preprocessing a database
workload for Database Replay.

For Consolidated Database Replay, preprocess each captured workload into its own
directory. Do not combine different workload captures into one directory for
preprocessing. Preprocessing of captured workloads must be performed using a
database running the same version of Oracle Database as that of the test system where
the workloads will be replayed.

Steps for Using Consolidated Database Replay

Using Consolidated Database Replay 15-5

15.2.4 Replaying Database Workloads for Consolidated Database Replay
Replaying consolidated workloads using Consolidated Database Replay is quite
different from replaying a single database workload using Database Replay.

This section contains the following topics for replaying workloads that are specific to
Consolidated Database Replay:

• Defining Replay Schedules (page 15-6)

• Remapping Connections for Consolidated Database Replay (page 15-7)

• Remapping Users for Consolidated Database Replay (page 15-7)

• Preparing for Consolidated Database Replay (page 15-7)

• Replaying Individual Workloads (page 15-8)

15.2.4.1 Defining Replay Schedules
A replay schedule adds one or multiple workload captures to a consolidated replay
and specifies the order in which the captures will start during replay. A replay
schedule must be created before a consolidated replay can be initialized. Multiple
replay schedules can be defined for a consolidated replay. During replay initialization,
you can select from any of the existing replay schedules.

Replay schedules perform two types of operation:

• Adding Workload Captures (page 15-6)

• Adding Schedule Orders (page 15-6)

See Also:

"Defining Replay Schedules Using APIs (page 15-12)"

15.2.4.1.1 Adding Workload Captures

The first type of operation performed by a replay schedule is to add the participating
workload captures to a replay.

When a workload capture is added to a replay schedule, a unique number is returned
to identify the workload capture. A workload capture can be added to a replay
schedule more than once, as it will be assigned a different capture number each time it
is added. The replay schedule will point to the same capture directory each time to
avoid a waste of disk space by copying the capture each time it is added.

See Also:

"Adding Workload Captures to Replay Schedules Using APIs (page 15-13)"

15.2.4.1.2 Adding Schedule Orders

The second type of operation performed by a replay schedule is to add schedule
orders that specify the order in which the participating workload captures will start
during replay.

Steps for Using Consolidated Database Replay

15-6 Oracle Database Testing Guide

A schedule order defines an order between the start of two workload captures that
have been added to the replay schedule. Multiple schedule orders can be added to a
replay schedule. For example, assume that a replay schedule has three workload
captures added. One schedule order can be added to specify that Capture 2 must wait
for Capture 1 to complete before starting. Another schedule order can be added to
specify that Capture 3 must wait for Capture 1 to complete before starting. In this case,
both Capture 2 and Capture 3 must wait for Capture 1 to complete before starting.

It is possible for a replay schedule to not contain any schedule orders. In this case, all
participating workload captures in the replay schedule will start to replay
simultaneously when the consolidated replay begins.

See Also:

"Adding Schedule Orders to Replay Schedules Using APIs (page 15-14)"

15.2.4.2 Remapping Connections for Consolidated Database Replay
As in the case with replaying a single database workload using Database Replay,
captured connection strings used to connect to the production system need to be
remapped to the replay system. See "Connection Remapping (page 12-3)" for more
information.

For Consolidated Database Replay, you need to remap captured connection strings
from multiple workload captures to different connection strings during replay.

See Also:

"Remapping Connection Using APIs (page 15-18)"

15.2.4.3 Remapping Users for Consolidated Database Replay
As in the case with replaying a single database workload using Database Replay,
usernames of database users and schemas used to connect to the production system
can be remapped during replay. See "User Remapping (page 12-3)" for more
information.

For Consolidated Database Replay, you can choose to remap the captured users from
multiple workload captures to different users or schemas during replay.

See Also:

"Remapping Users Using APIs (page 15-19)"

15.2.4.4 Preparing for Consolidated Database Replay
As is the case with replaying a single database workload using Database Replay,
replay options are defined during preparation of a replay. See "Specifying Replay
Options (page 12-3)" for more information.

For Consolidated Database Replay, all participating workload captures in a
consolidated replay use the same replay options during replay that are defined during
replay preparation.

Steps for Using Consolidated Database Replay

Using Consolidated Database Replay 15-7

See Also:

"Preparing for Consolidated Database Replay Using APIs (page 15-20)"

15.2.4.5 Replaying Individual Workloads
It is recommended that each of the participating workloads be replayed individually
before replaying the consolidated workload. See "Replaying a Database Workload
(page 12-1)" for more information.

The individual replays can establish a baseline performance for each workload capture
and be used to analyze the performance of the consolidated replay.

15.2.5 Reporting and Analysis for Consolidated Database Replay
Reporting and analysis for Consolidated Database Replay is performed using the
replay compare period report. See "Using Replay Compare Period Reports
(page 13-10)" for more information.

The replay compare period report for Consolidated Database Replay identifies the
Active Session History (ASH) data for each individual workload capture and
compares the ASH data from the workload capture to the filtered ASH data from the
consolidated replay. Use this report to compare replays of the same consolidated
workload capture.

The replay compare period report for Consolidated Database Replay treats the
consolidated replay as multiple Capture vs. Replay comparisons. The summary
section of the report contains a table that summarizes all individual Capture vs.
Replay comparisons. Review the information in this section to gain a general
understanding of how the consolidated replay ran.

Figure 15-2 (page 15-8) shows the summary section of a sample replay compare
period report for Consolidated Database Replay.

Figure 15-2 Compare Period Report: Consolidated Replay

The rest of the sections in the report resemble the ASH Data Comparison section of the
replay compare period report and are formed by joining all Capture vs. Replay reports
in the consolidated replay. For a description of this section, see "ASH Data
Comparison (page 13-13)".

Steps for Using Consolidated Database Replay

15-8 Oracle Database Testing Guide

15.3 Using Consolidated Database Replay with Enterprise Manager
This section describes how to use Consolidated Database Replay with Enterprise
Manager.

The primary tool for replaying consolidated database workloads is Oracle Enterprise
Manager. If Oracle Enterprise Manager is unavailable, you can also replay
consolidated database workloads using APIs, as described in "Using Consolidated
Database Replay with APIs (page 15-9)".

The process for replaying a consolidated database workload is nearly identical to that
of replaying a single database workload. The differences are documented in the
procedures for single replays in the following sections:

• "Creating a Database Replay Task (page 11-2)" in Preprocessing a Database
Workload (page 11-1)

• "Preprocessing the Workload and Deploying the Replay Clients (page 11-6)" in
Preprocessing a Database Workload (page 11-1)

• "Replaying a Database Workload Using Enterprise Manager (page 12-8)" in
Replaying a Database Workload (page 12-1)

The following list provides a summary of the differences between replaying a
consolidated database workload versus replaying a single database workload:

• When creating a replay task, you need to select two or more captured workloads
from the Select Captures table in the Create Task page.

• The Preprocess Captured Workload: Copy Workload step of the wizard has more
than one choice for the Capture Name drop-down, so you may need to enter
multiple credentials for the current location of the workload directory.

• The Preprocess Captured Workload: Select Directory step of the wizard does not
display a Capture Summary as it does for single replays.

• The Replay Workload: Copy Workload step of the wizard has more than one
choice for the Capture Name drop-down, so you may need to enter multiple
credentials for the current location of the workload directory.

• The Replay Workload: Select Directory step of the wizard does not display a
Capture Summary as it does for single replays.

• The Replay Workload: Initialize Options step of the wizard does not display the
Identify Source section.

• The Replay Workload: Customize Options step of the wizard has more than one
choice for the Capture Name drop-down in the Connection Mappings tab, so you
can remap connections for each captured workload. The option to use a single
connect descriptor or net service name is not available.

15.4 Using Consolidated Database Replay with APIs
This section describes how to create and replay consolidated workloads using the
DBMS_WORKLOAD_REPLAY package. You can also create and replay consolidated
workloads using Oracle Enterprise Manager, as described in "Using Consolidated
Database Replay with Enterprise Manager (page 15-9)".

Using Consolidated Database Replay with Enterprise Manager

Using Consolidated Database Replay 15-9

Creating and replay a consolidated workload using APIs is a multi-step process that
involves:

• Generating Capture Subsets Using APIs (page 15-10)

• Setting the Consolidated Replay Directory Using APIs (page 15-11)

• Defining Replay Schedules Using APIs (page 15-12)

• Running Consolidated Database Replay Using APIs (page 15-17)

See Also:

Oracle Database PL/SQL Packages and Types Reference for information about the
DBMS_WORKLOAD_REPLAY package

15.4.1 Generating Capture Subsets Using APIs
This section describes how to generate capture subsets from existing workload
captures using the DBMS_WORKLOAD_REPLAY package. For information about capture
subsets, see "Capture Subsets (page 15-3)".

To generate a capture subset from existing workload captures:

1. Use the GENERATE_CAPTURE_SUBSET procedure:

DBMS_WORKLOAD_REPLAY.GENERATE_CAPTURE_SUBSET (
 input_capture_dir IN VARCHAR2,
 output_capture_dir IN VARCHAR2,
 new_capture_name IN VARCHAR2,
 begin_time IN NUMBER,
 begin_include_incomplete IN BOOLEAN DEFAULT TRUE,
 end_time IN NUMBER,
 end_include_incomplete IN BOOLEAN DEFAULT FALSE,
 parallel_level IN NUMBER DEFAULT NULL);

2. Set the input_capture_dir parameter to the name of the directory object that
points to an existing workload capture.

3. Set the output_capture_dir parameter to the name of the directory object that
points to an empty directory where the new workload capture will be stored.

4. Set the new_capture_name parameter to the name of the new workload capture
that is to be generated.

5. Set the other parameters, which are optional, as appropriate.

For information about these parameters, see Oracle Database PL/SQL Packages and
Types Reference.

This example shows how to create a capture subset named peak_wkld at directory
object peak_capdir from an existing workload capture at directory object rec_dir.
The capture subset includes workload from 2 hours after the start of the workload
capture (or 7,200 seconds) to 3 hours after the start of the workload capture (or 10,800
seconds).

EXEC DBMS_WORKLOAD_REPLAY.GENERATE_CAPTURE_SUBSET ('rec_dir', 'peak_capdir',
 'peak_wkld', 7200, TRUE, 10800, FALSE, 1);

Using Consolidated Database Replay with APIs

15-10 Oracle Database Testing Guide

See Also:

Oracle Database PL/SQL Packages and Types Reference for information about the
GENERATE_CAPTURE_SUBSET procedure

15.4.2 Setting the Consolidated Replay Directory Using APIs
This section describes how to set the consolidated replay directory on the test system
using the DBMS_WORKLOAD_REPLAY package. Set the consolidated replay directory to
a directory on the test system that contains the workload captures to be consolidated
and replayed. For information about setting up the test system, see "Setting Up the
Test System for Consolidated Database Replay (page 15-4)".

To set the replay directory:

1. Use the SET_CONSOLIDATED_DIRECTORY procedure:

DBMS_WORKLOAD_REPLAY.SET_CONSOLIDATED_DIRECTORY (
 replay_dir IN VARCHAR2);

2. Set the replay_dir parameter to the name of the directory object that points to
the operating system directory containing the workload captures to be used for
workload consolidation.

Tip:

The SET_REPLAY_DIRECTORY procedure is deprecated and replaced by the
SET_CONSOLIDATED_DIRECTORY procedure.

This example shows how to set the replay directory to a directory object named
rep_dir.

EXEC DBMS_WORKLOAD_REPLAY.SET_CONSOLIDATED_DIRECTORY ('rep_dir');

You can also use the DBMS_WORKLOAD_REPLAY package to view the current
consolidated replay directory that has been set by the
SET_CONSOLIDATED_DIRECTORY procedure.

To view the current consolidated replay directory that has been set:

• Use the GET_REPLAY_DIRECTORY function:

DBMS_WORKLOAD_REPLAY.GET_REPLAY_DIRECTORY RETURN VARCHAR2;

If no consolidated replay directory has been set, then the function returns NULL.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information about
the SET_REPLAY_DIRECTORY procedure

• Oracle Database PL/SQL Packages and Types Reference for information about
the GET_REPLAY_DIRECTORY function

Using Consolidated Database Replay with APIs

Using Consolidated Database Replay 15-11

15.4.3 Defining Replay Schedules Using APIs
This section describes how to define replay schedules using the
DBMS_WORKLOAD_REPLAY package. For information about replay schedules, see
"Defining Replay Schedules (page 15-6)".

Before defining replay schedules, ensure that the following prerequisites are met:

• All workload captures are preprocessed using the PROCESS_CAPTURE procedure
on a system running the same database version as the replay system, as described
in Preprocessing a Database Workload (page 11-1).

• All capture directories are copied to the replay directory on the replay system

• Replay directory is set using the SET_REPLAY_DIRECTORY procedure, as
described in "Setting the Consolidated Replay Directory Using APIs (page 15-11)".

• Database state is not in replay mode

To define replay schedules:

1. Create a new replay schedule, as described in "Creating Replay Schedules Using
APIs (page 15-12)".

2. Add workload captures to the replay schedule, as described in "Adding Workload
Captures to Replay Schedules Using APIs (page 15-13)".

3. Add schedule orders to the replay schedule, as described in "Adding Schedule
Orders to Replay Schedules Using APIs (page 15-14)".

4. Save the replay schedule, as described in "Saving Replay Schedules Using APIs
(page 15-16)".

15.4.3.1 Creating Replay Schedules Using APIs
This section describes how to create replay schedules using the
DBMS_WORKLOAD_REPLAY package. For information about replay schedules, see
"Defining Replay Schedules (page 15-6)".

To create a replay schedule:

1. Use the BEGIN_REPLAY_SCHEDULE procedure:

DBMS_WORKLOAD_REPLAY.BEGIN_REPLAY_SCHEDULE (
 schedule_name IN VARCHAR2);

2. Set the schedule_name parameter to the name of this replay schedule.

Note:

The BEGIN_REPLAY_SCHEDULE procedure initiates the creation of a reusable
replay schedule. Only one replay schedule can be defined at a time. Calling
this procedure again while a replay schedule is being defined will result in an
error.

This example shows how to create a replay schedule named peak_schedule.

Using Consolidated Database Replay with APIs

15-12 Oracle Database Testing Guide

EXEC DBMS_WORKLOAD_REPLAY.BEGIN_REPLAY_SCHEDULE ('peak_schedule');

See Also:

Oracle Database PL/SQL Packages and Types Reference for information about the
BEGIN_REPLAY_SCHEDULE procedure

15.4.3.2 Adding Workload Captures to Replay Schedules Using APIs
This section describes how to add workload captures to and remove workload
captures from replay schedules using the DBMS_WORKLOAD_REPLAY package. For
information about adding workload captures to replay schedules, see "Adding
Workload Captures (page 15-6)".

Before adding workload captures to a replay schedule, ensure that the following
prerequisite is met:

• A replay schedule to which the workload captures are to be added is created.

For information about creating a replay schedule, see "Creating Replay Schedules
Using APIs (page 15-12)".

To add workload captures to a replay schedule:

1. Use the ADD_CAPTURE function:

DBMS_WORKLOAD_REPLAY.ADD_CAPTURE (
 capture_dir_name IN VARCHAR2,
 start_delay_seconds IN NUMBER DEFAULT 0,
 stop_replay IN BOOLEAN DEFAULT FALSE,
 take_begin_snapshot IN BOOLEAN DEFAULT FALSE,
 take_end_snapshot IN BOOLEAN DEFAULT FALSE,
 query_only IN BOOLEAN DEFAULT FALSE)
RETURN NUMBER;

DBMS_WORKLOAD_REPLAY.ADD_CAPTURE (
 capture_dir_name IN VARCHAR2,
 start_delay_seconds IN NUMBER,
 stop_replay IN VARCHAR2,
 take_begin_snapshot IN VARCHAR2 DEFAULT 'N',
 take_end_snapshot IN VARCHAR2 DEFAULT 'N',
 query_only IN VARCHAR2 DEFAULT 'N')
RETURN NUMBER;

This function returns an unique identifier that identifies the workload capture in
this replay schedule.

See:

"About Query-Only Database Replay (page 15-21)" for information about
query-only database replays.

Using Consolidated Database Replay with APIs

Using Consolidated Database Replay 15-13

Note:

Query-only database replays are meant to be used and executed in test
environments only.

• Do not use query-only database replays on production systems.

• Divergence is expected during query-only database replays.

2. Set the capture_dir_name parameter to the name of the directory object that
points to the workload capture under the top-level replay directory.

The directory must contain a valid workload capture that is preprocessed on a
system running the same database version as the replay system.

3. Set the other parameters, which are optional, as appropriate.

For information about these parameters, see Oracle Database PL/SQL Packages and
Types Reference.

The following example shows how to add a workload capture named peak_wkld to a
replay schedule by using the ADD_CAPTURE function in a SELECT statement.

SELECT DBMS_WORKLOAD_REPLAY.ADD_CAPTURE ('peak_wkld')
 FROM dual;

You can also use the DBMS_WORKLOAD_REPLAY package to remove workload
captures from a replay schedule.

To remove workload captures from a replay schedule:

1. Use the REMOVE_CAPTURE procedure:

DBMS_WORKLOAD_REPLAY.REMOVE_CAPTURE (
 schedule_capture_number IN NUMBER);

2. Set the schedule_capture_number parameter to the unique identifier that
identifies the workload capture in this replay schedule.

The unique identifier is the same identifier that was returned by the
ADD_CAPTURE function when the workload capture was added to the replay
schedule.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information about
the ADD_CAPTURE function

• Oracle Database PL/SQL Packages and Types Reference for information about
the REMOVE_CAPTURE procedure

15.4.3.3 Adding Schedule Orders to Replay Schedules Using APIs
This section describes how to add schedule orders to and remove schedule orders
from replay schedules using the DBMS_WORKLOAD_REPLAY package. For information
about adding schedule orders to replay schedules, see "Adding Schedule Orders
(page 15-6)".

Using Consolidated Database Replay with APIs

15-14 Oracle Database Testing Guide

Before adding schedule orders to a replay schedule, ensure that the following
prerequisites are met:

• A replay schedule to which the schedule orders are to be added is created.

For information about creating a replay schedule, see "Creating Replay Schedules
Using APIs (page 15-12)".

• All workload captures participating in the schedule order are added to the replay
schedule.

For information about adding workload captures to a replay schedule, see
"Adding Workload Captures to Replay Schedules Using APIs (page 15-13)".

Note:

Adding schedule orders to a replay schedule is optional. If you do not add a
schedule order to a replay schedule, then all workload captures added to the
replay schedule will start to replay simultaneously when the consolidated
replay begins.

To add schedule orders to a replay schedule:

1. Use the ADD_SCHEDULE_ORDERING function:

DBMS_WORKLOAD_REPLAY.ADD_SCHEDULE_ORDERING (
 schedule_capture_id IN NUMBER,
 waitfor_capture_id IN NUMBER)
RETURN NUMBER;

This function adds a schedule order between two workload captures that have
been added to the replay schedule. If a schedule order cannot be added, it returns
a nonzero error code.

2. Set the schedule_capture_id parameter to the workload capture that you
want to wait in this schedule order.

3. Set the wait_for_capture_id parameter to the workload capture that you
want to be completed before the other workload capture can start in this schedule
order.

You can also use the DBMS_WORKLOAD_REPLAY package to remove schedule orders
from a replay schedule.

To remove schedule orders from a replay schedule:

1. Use the REMOVE_SCHEDULE_ORDERING procedure:

DBMS_WORKLOAD_REPLAY.REMOVE_SCHEDULE ORDERING (
 schedule_capture_id IN VARCHAR2,
 wait_for_capture_id IN VARCHAR2);

2. Set the schedule_capture_id parameter to the workload capture waiting in
this schedule order.

3. Set the wait_for_capture_id parameter to the workload capture that needs to
be completed before the other workload capture can start in this schedule order.

Using Consolidated Database Replay with APIs

Using Consolidated Database Replay 15-15

To view schedule orders:

• Use the DBA_WORKLOAD_SCHEDULE_ORDERING view.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information about
the ADD_SCHEDULE_ORDERING function

• Oracle Database PL/SQL Packages and Types Reference for information about
the REMOVE_SCHEDULE_ORDERING procedure

• Oracle Database Reference for information about the
DBA_WORKLOAD_SCHEDULE_ORDERING view

15.4.3.4 Saving Replay Schedules Using APIs
This section describes how to save replay schedules that been defined using the
DBMS_WORKLOAD_REPLAY package.

Before saving a replay schedule, ensure that the following prerequisites are met:

• A replay schedule that will be saved is created.

For information about creating a replay schedule, see "Creating Replay Schedules
Using APIs (page 15-12)".

• All workload captures participating in the schedule order are added to the replay
schedule.

For information about adding workload captures to a replay schedule, see
"Adding Workload Captures to Replay Schedules Using APIs (page 15-13)".

• Any schedule orders that you want to use are added to the replay schedule (this
step is optional).

For information about adding schedule orders to a replay schedule, see "Adding
Schedule Orders to Replay Schedules Using APIs (page 15-14)".

To save a replay schedule:

• Use the END_REPLAY_SCHEDULE procedure:

DBMS_WORKLOAD_REPLAY.END_REPLAY_SCHEDULE;

This procedure completes the creation of a replay schedule. The replay schedule is
saved and associated with the replay directory. Once a replay schedule is saved,
you can use it for a consolidated replay.

To view replay schedules:

• Use the DBA_WORKLOAD_REPLAY_SCHEDULES view.

Using Consolidated Database Replay with APIs

15-16 Oracle Database Testing Guide

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information about
the END_REPLAY_SCHEDULE procedure

• Oracle Database Reference for information about the
DBA_WORKLOAD_REPLAY_SCHEDULES view

15.4.4 Running Consolidated Database Replay Using APIs
This section describes how to run Consolidated Database Replay using the
DBMS_WORKLOAD_REPLAY package. For information about consolidated replay, see
"Replaying Database Workloads for Consolidated Database Replay (page 15-6)".

Before running Consolidated Database Replay, ensure that the following prerequisites
are met:

• All workload captures are preprocessed using the PROCESS_CAPTURE procedure
on a system running the same database version as the replay system, as described
in Preprocessing a Database Workload (page 11-1).

• All capture directories are copied to the replay directory on the replay system

• Replay directory is set using the SET_REPLAY_DIRECTORY procedure, as
described in "Setting the Consolidated Replay Directory Using APIs (page 15-11)".

• Database is logically restored to the same application state as that of all the
capture systems at the start time of all workload captures.

To run Consolidated Database Replay:

1. Initialize the replay data, as described in "Initializing Consolidated Database
Replay Using APIs (page 15-17)".

2. Remap connections strings, as described in "Remapping Connection Using APIs
(page 15-18)".

3. Remap users, as described in "Remapping Users Using APIs (page 15-19)".

Remapping users is optional.

4. Prepare the consolidated replay, as described in "Preparing for Consolidated
Database Replay Using APIs (page 15-20)".

5. Set up and start the replay clients, as described in "Setting Up Replay Clients
(page 12-5)".

6. Start the consolidated replay, as described in "Starting Consolidated Database
Replay Using APIs (page 15-21)".

7. Generate reports and perform analysis, as described in "Reporting and Analysis
for Consolidated Database Replay (page 15-8)".

15.4.4.1 Initializing Consolidated Database Replay Using APIs
This section describes how to initialize the replay data for a consolidated replay using
the DBMS_WORKLOAD_REPLAY package.

Using Consolidated Database Replay with APIs

Using Consolidated Database Replay 15-17

Initializing the replay data performs the following operations:

• Puts the database state in initialized mode for the replay of a consolidated
workload.

• Points to the replay directory that contains all workload captures participating in
the replay schedule.

• Loads the necessary metadata into tables required for replay.

For example, captured connection strings are loaded into a table where they can
be remapped for replay.

To initialize Consolidated Database Replay:

1. Use the INITIALIZE_CONSOLIDATED_REPLAY procedure:

DBMS_WORKLOAD_REPLAY.INITIALIZE_CONSOLIDATED_REPLAY (
 replay_name IN VARCHAR2,
 schedule_name IN VARCHAR2,
 plsql_mode IN VARCHAR2 DEFAULT 'TOP_LEVEL');

2. Set the replay_name parameter to the name of the consolidated replay.

3. Set the schedule_name parameter to the name of the replay schedule to use.

The schedule_name parameter is the name of the replay schedule used during
its creation, as described in "Creating Replay Schedules Using APIs (page 15-12)".

The optional plsql_mode parameter specifies the PL/SQL replay mode.

These two values can be set for the plsql_mode parameter:

• top_level: Only top-level PL/SQL calls. This is the default value.

• extended: SQL executed inside PL/SQL or top-level PL/SQL if there is no SQL
recorded inside. All captures must have been done in the ‘extended’ PL/SQL
mode. Non-PL/SQL calls will be replayed in the usual manner.

The following example shows how to initialize a consolidated replay named
peak_replay using the replay schedule named peak_schedule.

EXEC DBMS_WORKLOAD_REPLAY.INITIALIZE_CONSOLIDATED_REPLAY ('peak_replay',
 'peak_schedule');

See Also:

Oracle Database PL/SQL Packages and Types Reference for information about the
INITIALIZE_CONSOLIDATED_REPLAY procedure

15.4.4.2 Remapping Connection Using APIs
This section describes how to remap connection strings for a consolidated replay using
the DBMS_WORKLOAD_REPLAY package. For information about connection remapping,
see "Remapping Connections for Consolidated Database Replay (page 15-7)".

To remap connection strings:

1. Use the REMAP_CONNECTION procedure:

Using Consolidated Database Replay with APIs

15-18 Oracle Database Testing Guide

DBMS_WORKLOAD_REPLAY.REMAP_CONNECTION (
 schedule_cap_id IN NUMBER,
 connection_id IN NUMBER,
 replay_connection IN VARCHAR2);

This procedure remaps the captured connection to a new connection string for all
participating workload captures in the replay schedule.

2. Set the schedule_capture_id parameter to a participating workload capture
in the current replay schedule.

The schedule_capture_id parameter is the unique identifier returned when
adding the workload capture to the replay schedule, as described in "Adding
Workload Captures to Replay Schedules Using APIs (page 15-13)".

3. Set the connection_id parameter to the connection to be remapped.

The connection_id parameter is generated when replay data is initialized and
corresponds to a connection from the workload capture.

4. Set the replay_connection parameter to the new connection string that will be
used during replay.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information about the
REMAP_CONNECTION procedure

15.4.4.3 Remapping Users Using APIs
This section describes how to remap users for a consolidated replay using the
DBMS_WORKLOAD_REPLAY package. For information about remapping users, see
"Remapping Users for Consolidated Database Replay (page 15-7)".

Before remapping users, ensure that the following prerequisites are met:

• Replay data is initialized, as described in "Initializing Consolidated Database
Replay Using APIs (page 15-17)".

• The database state is not in replay mode.

To remap users:

1. Use the SET_USER_MAPPING procedure:

DBMS_WORKLOAD_REPLAY.SET_USER_MAPPING (
 schedule_cap_id IN NUMBER,
 capture_user IN VARCHAR2,
 replay_user IN VARCHAR2);

2. Set the schedule_capture_id parameter to a participating workload capture
in the current replay schedule.

The schedule_capture_id parameter is the unique identifier returned when
adding the workload capture to the replay schedule, as described in "Adding
Workload Captures to Replay Schedules Using APIs (page 15-13)".

3. Set the capture_user parameter to the username of the user or schema captured
during the time of the workload capture.

Using Consolidated Database Replay with APIs

Using Consolidated Database Replay 15-19

4. Set the replay_user parameter to the username of a new user or schema to
which the captured user is remapped during replay.

If this parameter is set to NULL, then the mapping is disabled.

This example shows how to remap the PROD user used during capture to the TEST
user during replay for the workload capture identified as 1001.

EXEC DBMS_WORKLOAD_REPLAY.SET_USER_MAPPING (1001, 'PROD', 'TEST');

See Also:

Oracle Database PL/SQL Packages and Types Reference for information about the
SET_USER_MAPPING procedure

15.4.4.4 Preparing for Consolidated Database Replay Using APIs
This section describes how to prepare a consolidated replay using the
DBMS_WORKLOAD_REPLAY package. For information about preparing consolidated
replays, see "Preparing for Consolidated Database Replay (page 15-7)".

Before preparing a consolidated replay, ensure that the following prerequisites are
met:

• Replay data is initialized, as described in "Initializing Consolidated Database
Replay Using APIs (page 15-17)".

• Captured connections are remapped, as described in "Remapping Connection
Using APIs (page 15-18)".

• Users are mapped, as described in "Remapping Users Using APIs (page 15-19)".

Remapping users is optional. However, if you are planning to remap users during
replay, then it must be completed before preparing the consolidated replay.

Preparing a consolidated replay performs the following operations:

• Specifies the replay options, such as synchronization mode, session connection
rate, and session request rate.

• Puts the database state in replay mode.

• Enables the start of replay clients.

Note:

Consolidated Database Replay only supports time based or OBJECT_ID-based
synchronization (synchronization=TIME or OBJECT_ID). SCN-based
synchronization is currently not supported.

To prepare a consolidated replay:

• Use the PREPARE_CONSOLIDATED_REPLAY procedure:

DBMS_WORKLOAD_REPLAY.PREPARE_CONSOLIDATED_REPLAY (
 synchronization IN VARCHAR2 DEFAULT 'OBJECT_ID',
 connect_time_scale IN NUMBER DEFAULT 100,

Using Consolidated Database Replay with APIs

15-20 Oracle Database Testing Guide

 think_time_scale IN NUMBER DEFAULT 100,
 think_time_auto_correct IN BOOLEAN DEFAULT TRUE,
 capture_sts IN BOOLEAN DEFAULT FALSE,
 sts_cap_interval IN NUMBER DEFAULT 300);

For information about these parameters and how to set them, see "Specifying
Replay Options (page 12-3)".

Note:

Be sure to set synchronization to false when you use the
PREPARE_CONSOLIDATED_REPLAY procedure.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information about the
PREPARE_CONSOLIDATED_REPLAY procedure

15.4.4.5 Starting Consolidated Database Replay Using APIs
This section describes how to start a consolidated replay using the
DBMS_WORKLOAD_REPLAY package.

Before starting a consolidated replay, ensure that the following prerequisites are met:

• The consolidated replay is prepared, as described in "Preparing for Consolidated
Database Replay Using APIs (page 15-20)".

• An adequate number of replay clients are started.

For information about setting up and starting replay clients, see "Setting Up
Replay Clients (page 12-5)".

To start a consolidated replay:

• Use the START_CONSOLIDATED_REPLAY procedure:

DBMS_WORKLOAD_REPLAY.START_CONSOLIDATED_REPLAY;

See Also:

Oracle Database PL/SQL Packages and Types Reference for information about the
START_CONSOLIDATED_REPLAY procedure

15.5 About Query-Only Database Replay
In a query-only database replay, only the read-only queries of a workload capture are
replayed. In other words, in a query-only replay, only SELECT statements are sent to
the server at replay time. No DML statements are executed during a query-only
replay, and the replay does not make any changes to user schemas or data.

About Query-Only Database Replay

Using Consolidated Database Replay 15-21

Note:

A query-only database replay can be performed with Consolidated Database
Replay only.

Note:

Query-only database replays are meant to be used and executed in test
environments only.

• Do not use query-only database replays on production systems.

• Divergence is expected during query-only database replays.

15.5.1 Use Cases for Query-Only Database Replay
You can use query-only database replay to warm up the database buffer cache and to
find regressions. For example:

• To warm up the database buffer cache

In some cases, a workload is captured when the database buffer cache is warm
(data blocks are already in the buffer cache). However, when you replay that
workload on the test system, the buffer cache will not be warm, and the data
blocks will need to be loaded from disk initially. This may make the replay
duration longer than the capture duration, and increase the database time.

To avoid having to warm up the buffer cache, you can perform a query-only
replay and then perform the read/write replay without restarting the database
and without flushing the buffer cache. Note that you do not have to restart the
database after a query-only replay because a query-only replay is read-only.

• To find regressions

A query-only replay is a good and easy way to find regressions from the read-
only part of the workload with concurrency. The read-only part includes SELECT
(not SELECT...FOR UPDATE) statements, PL/SQL without DMLs and DDLs,
LOB reads, and so on. It is typically the main part of the workload capture.

15.5.2 Performing a Query-Only Database Replay
You can perform a query-only database replay.

To perform a query-only database replay, follow the instructions in "Using
Consolidated Database Replay with APIs (page 15-9)". When you use the
ADD_CAPTURE function to add workload captures to the replay schedule as described
in "Adding Workload Captures to Replay Schedules Using APIs (page 15-13)", set the
query_only parameter to Y.

15.6 Example: Replaying a Consolidated Workload with APIs
This section assumes a scenario where workloads from three separate production
systems running different versions of Oracle Database on various operating systems
are being consolidated.

This scenario uses the following assumptions:

Example: Replaying a Consolidated Workload with APIs

15-22 Oracle Database Testing Guide

• The first workload to be consolidated is captured from the CRM system, which is
running Oracle Database 10g Release 2 (release 10.2.0.4) on a Solaris server.

• The second workload to be consolidated is captured from the ERP system, which
is running Oracle Database 10g Release 2 (release 10.2.0.5) on a Linux server.

• The third workload to be consolidated is captured from the SCM system, which is
running Oracle Database 11g Release 2 (release 11.2.0.2) on a Solaris server.

• The test system is set up as a multitenant container database (CDB) running
Oracle Database 12c Release 1 (release 12.1.0.1).

• The CDB contains three PDBs created from the CRM, ERP, and SCM systems.

• Each PDB contained within the CDB is restored to the same application data state
as the CRM, ERP, and SCM systems at the capture start time.

Figure 15-3 (page 15-23) illustrates this scenario.

Figure 15-3 Scenario for Consolidating Three Workloads

CDB
DB 12.1.0.1

ERPCRM SCM

/u01/test/cons_dir

cap_erp cap_scmcap_crm

Consolidated Capture

Test System

Production Systems

cap_erp cap_scmcap_crm

ERPCRM SCM

PDBs

DB

10.2.0.4

DB

10.2.0.5

DB

11.2.0.2

Example: Replaying a Consolidated Workload with APIs

Using Consolidated Database Replay 15-23

To consolidate the workloads and replay the consolidated workload in this
scenario:

1. On the test system, preprocess the individual workload captures into separate
directories:

• For the CRM workload:

a. Create a directory object:

CREATE OR REPLACE DIRECTORY crm AS '/u01/test/cap_crm';

b. Ensure that the captured workload from the CRM system is stored in this
directory.

c. Preprocess the workload:

EXEC DBMS_WORKLOAD_REPLAY.PROCESS_CAPTURE ('CRM');

• For the ERP workload:

a. Create a directory object:

CREATE OR REPLACE DIRECTORY erp AS '/u01/test/cap_erp';

b. Ensure that the captured workload from the ERP system is stored in this
directory.

c. Preprocess the workload:

EXEC DBMS_WORKLOAD_REPLAY.PROCESS_CAPTURE ('ERP');

• For the SCM workload:

a. Create a directory object:

CREATE OR REPLACE DIRECTORY scm AS '/u01/test/cap_scm';

b. Ensure that the captured workload from the SCM system is stored in this
directory.

c. Preprocess the workload:

EXEC DBMS_WORKLOAD_REPLAY.PROCESS_CAPTURE ('SCM');

2. Create a root directory to store the preprocessed workloads:

mkdir '/u01/test/cons_dir';
CREATE OR REPLACE DIRECTORY cons_workload AS '/u01/test/cons_dir';

3. Copy each preprocessed workload directory into the root directory:

cp -r /u01/test/cap_crm /u01/test/cons_dir
cp -r /u01/test/cap_erp /u01/test/cons_dir
cp -r /u01/test/cap_scm /u01/test/cons_dir

4. For each workload, create a directory object using the new operating system
directory path:

CREATE OR REPLACE DIRECTORY crm AS '/u01/test/cons_dir/cap_crm';
CREATE OR REPLACE DIRECTORY erp AS '/u01/test/cons_dir/cap_erp';
CREATE OR REPLACE DIRECTORY scm AS '/u01/test/cons_dir/cap_scm';

Example: Replaying a Consolidated Workload with APIs

15-24 Oracle Database Testing Guide

5. Set the replay directory to the root directory previously created in Step 2
(page 15-24):

EXEC DBMS_WORKLOAD_REPLAY.SET_REPLAY_DIRECTORY ('CONS_WORKLOAD');

6. Create a replay schedule and add the workload captures:

EXEC DBMS_WORKLOAD_REPLAY.BEGIN_REPLAY_SCHEDULE ('CONS_SCHEDULE');
SELECT DBMS_WORKLOAD_REPLAY.ADD_CAPTURE ('CRM') FROM dual;
SELECT DBMS_WORKLOAD_REPLAY.ADD_CAPTURE ('ERP') FROM dual;
SELECT DBMS_WORKLOAD_REPLAY.ADD_CAPTURE ('SCM') FROM dual;
EXEC DBMS_WORKLOAD_REPLAY.END_REPLAY_SCHEDULE;

7. Initialize the consolidated replay:

EXEC DBMS_WORKLOAD_REPLAY.INITIALIZE_CONSOLIDATED_REPLAY ('CONS_REPLAY',
 'CONS_SCHEDULE');

8. Remap connections:

a. Query the DBA_WORKLOAD_CONNECTION_MAP view for the connection
mapping information:

SELECT schedule_cap_id, conn_id, capture_conn, replay_conn
 FROM dba_workload_connection_map;

b. Remap the connections:

EXEC DBMS_WORKLOAD_REPLAY.REMAP_CONNECTION (schedule_cap_id => 1,
 conn_id => 1, replay_connection => 'CRM');
EXEC DBMS_WORKLOAD_REPLAY.REMAP_CONNECTION (schedule_cap_id => 2,
 conn_id => 1, replay_connection => 'ERP');
EXEC DBMS_WORKLOAD_REPLAY.REMAP_CONNECTION (schedule_cap_id => 3,
 conn_id => 1, replay_connection => 'SCM');

The replay_connection parameter represents the services that are defined
on the test system.

c. Verify the connection remappings:

SELECT schedule_cap_id, conn_id, capture_conn, replay_conn
 FROM dba_workload_connection_map;

9. Prepare the consolidated replay:

EXEC DBMS_WORKLOAD_REPLAY.PREPARE_CONSOLIDATED_REPLAY (
 synchronization => 'OBJECT_ID');

10. Start replay clients:

a. Estimate the number of replay clients that are required:

wrc mode=calibrate replaydir=/u01/test/cons_dir/cap_crm
wrc mode=calibrate replaydir=/u01/test/cons_dir/cap_erp
wrc mode=calibrate replaydir=/u01/test/cons_dir/cap_scm

b. Add the output to determine the number of replay clients required.

You will need to start at least one replay client per workload capture
contained in the consolidated workload.

c. Start the required number of replay clients by repeating this command:

wrc username/password mode=replay replaydir=/u01/test/cons_dir

Example: Replaying a Consolidated Workload with APIs

Using Consolidated Database Replay 15-25

The replaydir parameter is set to the root directory in which the workload
captures are stored.

11. Start the consolidated replay:

EXEC DBMS_WORKLOAD_REPLAY.START_CONSOLIDATED_REPLAY;

See Also:

• Oracle Database Administrator’s Guide for information about configuring a
CDB

• Oracle Database Administrator’s Guide for information about creating PDBs

Example: Replaying a Consolidated Workload with APIs

15-26 Oracle Database Testing Guide

16
Using Workload Scale-Up

This chapter describes using various workload scale-up techniques with Consolidated
Database Replay. It contains the following sections:

• Overview of Workload Scale-Up (page 16-1)

• Using Time Shifting (page 16-2)

• Using Workload Folding (page 16-5)

• Using Schema Remapping (page 16-7)

16.1 Overview of Workload Scale-Up
Consolidated Database Replay enables you to replay multiple workloads captured
from one or multiple systems concurrently. During the replay, every workload capture
that is consolidated will start to replay when the consolidated replay begins.
Depending on the use case, you can employ various workload scale-up techniques
when using Consolidated Database Replay.

This section describes the following workload scale-up techniques:

• About Time Shifting (page 16-1)

• About Workload Folding (page 16-2)

• About Schema Remapping (page 16-2)

See Also:

"Use Cases for Consolidated Database Replay (page 15-1)" for information
about typical use cases for Consolidated Database Replay

16.1.1 About Time Shifting
Database Replay enables you to perform time shifting when replaying captured
workloads. This technique is useful in cases where you want to conduct stress testing
on a system by adding workloads to an existing workload capture and replaying them
together.

For example, assume that there are three workloads captured from three applications:
Sales, CRM, and DW. In order to perform stress testing, you can align the peaks of
these workload captures and replay them together using Consolidated Database
Replay.

Using Workload Scale-Up 16-1

See Also:

• "Using Time Shifting (page 16-2)" for information about using time
shifting

• "Stress Testing (page 15-2)" for information about using Consolidated
Database Replay for stress testing

16.1.2 About Workload Folding
Database Replay enables you to perform scale-up testing by folding an existing
workload capture. For example, assume that a workload was captured from 2 a.m. to 8
p.m. You can use Database Replay to fold the original workload into three capture
subsets: one from 2 a.m. to 8 a.m., a second from 8 a.m. to 2 p.m., and a third from 2
p.m. to 8 p.m. By replaying the three capture subsets together, you can fold the
original capture and triple the workload during replay to perform scale-up testing.

See Also:

• "Using Workload Folding (page 16-5)" for information about using
workload folding

• "Capture Subsets (page 15-3)" for information about capture subsets

• "Scale-Up Testing (page 15-2)" for information about using Consolidated
Database Replay for scale-up testing

16.1.3 About Schema Remapping
Database Replay enables you to perform scale-up testing by remapping database
schemas. This technique is useful in cases when you are deploying multiple instances
of the same application—such as a multi-tenet application—or adding a new
geographical area to an existing application.

For example, assume that a single workload exists for a Sales application. To perform
scale-up testing and identify possible host bottlenecks, set up the test system with
multiple schemas from the Sales schema.

See Also:

• "Using Schema Remapping (page 16-7)" for information about using
schema remapping

• "Scale-Up Testing (page 15-2)" for information about using Consolidated
Database Replay for scale-up testing

16.2 Using Time Shifting
This section describes how to use time shifting with Consolidated Database Replay,
and assumes a scenario where you want to use time shifting to align the peaks of
workloads captured from three applications and replay them simultaneously. The
scenario demonstrates how to use time shifting for stress testing. For more information
about time shifting, see "About Time Shifting (page 16-1)".

Using Time Shifting

16-2 Oracle Database Testing Guide

This scenario uses the following assumptions:

• The first workload is captured from the Sales application.

• The second workload is captured from the CRM application and its peak time
occurs 1 hour before that of the Sales workload.

• The third workload is captured from the DW application and its peak time occurs
30 minutes before that of the Sales workload.

• To align the peaks of these workloads, time shifting is performed by adding a
delay of one hour to the CRM workload and a delay of 30 minutes to the DW
workload during replay.

To perform time shifting in this scenario:

1. On the replay system which will undergo stress testing, create a directory object
for the root directory where the captured workloads are stored:

CREATE [OR REPLACE] DIRECTORY cons_dir AS '/u01/test/cons_dir';

2. Preprocess the individual workload captures into separate directories:

• For the Sales workload:

a. Create a directory object:

CREATE OR REPLACE DIRECTORY sales AS '/u01/test/cons_dir/cap_sales';

b. Ensure that the captured workload from the Sales application is stored in
this directory.

c. Preprocess the workload:

EXEC DBMS_WORKLOAD_REPLAY.PROCESS_CAPTURE ('SALES');

• For the CRM workload:

a. Create a directory object:

CREATE OR REPLACE DIRECTORY crm AS '/u01/test/cons_dir/cap_crm';

b. Ensure that the captured workload from the CRM application is stored in
this directory.

c. Preprocess the workload:

EXEC DBMS_WORKLOAD_REPLAY.PROCESS_CAPTURE ('CRM');

• For the DW workload:

a. Create a directory object:

CREATE OR REPLACE DIRECTORY DW AS '/u01/test/cons_dir/cap_dw';

b. Ensure that the captured workload from the DW application is stored in
this directory.

c. Preprocess the workload:

EXEC DBMS_WORKLOAD_REPLAY.PROCESS_CAPTURE ('DW');

3. Set the replay directory to the root directory:

Using Time Shifting

Using Workload Scale-Up 16-3

EXEC DBMS_WORKLOAD_REPLAY.SET_REPLAY_DIRECTORY ('CONS_DIR');

4. Create a replay schedule and add the workload captures:

EXEC DBMS_WORKLOAD_REPLAY.BEGIN_REPLAY_SCHEDULE ('align_peaks_schedule');
SELECT DBMS_WORKLOAD_REPLAY.ADD_CAPTURE ('SALES') FROM dual;
SELECT DBMS_WORKLOAD_REPLAY.ADD_CAPTURE ('CRM', 3600) FROM dual;
SELECT DBMS_WORKLOAD_REPLAY.ADD_CAPTURE ('DW', 1800) FROM dual;
EXEC DBMS_WORKLOAD_REPLAY.END_REPLAY_SCHEDULE;

Note that a delay of 3,600 seconds (or 1 hour) is added to the CRM workload, and
a delay of 1,800 seconds (or 30 minutes) is added to the DW workload.

5. Initialize the consolidated replay:

EXEC DBMS_WORKLOAD_REPLAY.INITIALIZE_CONSOLIDATED_REPLAY ('align_peaks_replay',
 'align_peaks_schedule');

6. Remap connections:

a. Query the DBA_WORKLOAD_CONNECTION_MAP view for the connection
mapping information:

SELECT schedule_cap_id, conn_id, capture_conn, replay_conn
 FROM dba_workload_connection_map;

b. Remap the connections:

EXEC DBMS_WORKLOAD_REPLAY.REMAP_CONNECTION (schedule_cap_id => 1,
 conn_id => 1, replay_connection => 'inst1');
EXEC DBMS_WORKLOAD_REPLAY.REMAP_CONNECTION (schedule_cap_id => 1,
 conn_id => 2, replay_connection => 'inst1');
EXEC DBMS_WORKLOAD_REPLAY.REMAP_CONNECTION (schedule_cap_id => 2,
 conn_id => 1, replay_connection => 'inst2');
EXEC DBMS_WORKLOAD_REPLAY.REMAP_CONNECTION (schedule_cap_id => 2,
 conn_id => 2, replay_connection => 'inst2');
EXEC DBMS_WORKLOAD_REPLAY.REMAP_CONNECTION (schedule_cap_id => 3,
 conn_id => 1, replay_connection => 'inst3');
EXEC DBMS_WORKLOAD_REPLAY.REMAP_CONNECTION (schedule_cap_id => 3,
 conn_id => 2, replay_connection => 'inst3');

The replay_connection parameter represents the services that are defined
on the test system.

c. Verify the connection remappings:

SELECT schedule_cap_id, conn_id, capture_conn, replay_conn
 FROM dba_workload_connection_map;

7. Prepare the consolidated replay:

EXEC DBMS_WORKLOAD_REPLAY.PREPARE_CONSOLIDATED_REPLAY;

8. Start replay clients:

a. Estimate the number of replay clients that are required:

wrc mode=calibrate replaydir=/u01/test/cons_dir/cap_sales
wrc mode=calibrate replaydir=/u01/test/cons_dir/cap_crm
wrc mode=calibrate replaydir=/u01/test/cons_dir/cap_dw

b. Add the output to determine the number of replay clients required.

Using Time Shifting

16-4 Oracle Database Testing Guide

You will need to start at least one replay client per workload capture
contained in the consolidated workload.

c. Start the required number of replay clients by repeating this command:

wrc username/password mode=replay replaydir=/u01/test/cons_dir

The replaydir parameter is set to the root directory in which the workload
captures are stored.

9. Start the consolidated replay:

EXEC DBMS_WORKLOAD_REPLAY.START_CONSOLIDATED_REPLAY;

16.3 Using Workload Folding
This section describes how to use workload folding with Consolidated Database
Replay, and assumes a scenario where you want to use workload folding to triple a
captured workload. The scenario demonstrates how to use workload folding for scale-
up testing. For more information about workload folding, see "About Workload
Folding (page 16-2)".

This scenario uses the following assumptions:

• The original workload was captured from 2 a.m. to 8 p.m. and folded into three
capture subsets.

• The first capture subset contains part of the original workload from 2 a.m. to 8
a.m.

• The second capture subset contains part of the original workload from 8 a.m. to 2
p.m.

• The third capture subset contains part of the original workload from 2 p.m. to 8
p.m.

• To triple the workload during replay, workload folding is performed by replaying
the three capture subsets simultaneously.

To perform workload folding in this scenario:

1. On the replay system where you plan to perform scale-up testing, create a
directory object for the root directory where the captured workloads are stored:

CREATE OR REPLACE DIRECTORY cons_dir AS '/u01/test/cons_dir';

2. Create a directory object for the directory where the original workload is stored:

CREATE OR REPLACE DIRECTORY cap_monday AS '/u01/test/cons_dir/cap_monday';

3. Create directory objects for the directories where you are planning to store the
capture subsets:

a. Create a directory object for the first capture subset:

CREATE OR REPLACE DIRECTORY cap_mon_2am_8am
 AS '/u01/test/cons_dir/cap_monday_2am_8am';

b. Create a directory object for the second capture subset:

CREATE OR REPLACE DIRECTORY cap_mon_8am_2pm
 AS '/u01/test/cons_dir/cap_monday_8am_2pm';

Using Workload Folding

Using Workload Scale-Up 16-5

c. Create a directory object for the third capture subset:

CREATE OR REPLACE DIRECTORY cap_mon_2pm_8pm
 AS '/u01/test/cons_dir/cap_monday_2pm_8pm';

4. Create the capture subsets:

a. Generate the first capture subset for the time period from 2 a.m. to 8 a.m.:

EXEC DBMS_WORKLOAD_REPLAY.GENERATE_CAPTURE_SUBSET ('CAP_MONDAY',
 'CAP_MON_2AM_8AM', 'mon_2am_8am_wkld',
 0, TRUE, 21600, FALSE, 1);

b. Generate the second capture subset for the time period from 8 a.m. to 2 p.m.:

EXEC DBMS_WORKLOAD_REPLAY.GENERATE_CAPTURE_SUBSET ('CAP_MONDAY',
 'CAP_MON_8AM_2PM', 'mon_8am_2pm_wkld',
 21600, TRUE, 43200, FALSE, 1);

c. Generate the third capture subset for the time period from 2 p.m. to 8 p.m.:

EXEC DBMS_WORKLOAD_REPLAY.GENERATE_CAPTURE_SUBSET ('CAP_MONDAY',
 'CAP_MON_2PM_8PM', 'mon_2pm_8pm_wkld',
 43200, TRUE, 0, FALSE, 1);

5. Preprocess the capture subsets:

EXEC DBMS_WORKLOAD_REPLAY.PROCESS_CAPTURE ('CAP_MON_2AM_8AM');
EXEC DBMS_WORKLOAD_REPLAY.PROCESS_CAPTURE ('CAP_MON_8AM_2PM');
EXEC DBMS_WORKLOAD_REPLAY.PROCESS_CAPTURE ('CAP_MON_2PM_8PM');

6. Set the replay directory to the root directory:

EXEC DBMS_WORKLOAD_REPLAY.SET_REPLAY_DIRECTORY ('CONS_DIR');

7. Create a replay schedule and add the capture subsets:

EXEC DBMS_WORKLOAD_REPLAY.BEGIN_REPLAY_SCHEDULE ('monday_folded_schedule');
SELECT DBMS_WORKLOAD_REPLAY.ADD_CAPTURE ('CAP_MON_2AM_8AM') FROM dual;
SELECT DBMS_WORKLOAD_REPLAY.ADD_CAPTURE ('CAP_MON_8AM_2PM') FROM dual;
SELECT DBMS_WORKLOAD_REPLAY.ADD_CAPTURE ('CAP_MON_2PM_8PM') FROM dual;
EXEC DBMS_WORKLOAD_REPLAY.END_REPLAY_SCHEDULE;

8. Initialize the consolidated replay:

EXEC DBMS_WORKLOAD_REPLAY.INITIALIZE_CONSOLIDATED_REPLAY (
 'monday_folded_replay', 'monday_folded_schedule');

9. Remap connections:

a. Query the DBA_WORKLOAD_CONNECTION_MAP view for the connection
mapping information:

SELECT schedule_cap_id, conn_id, capture_conn, replay_conn
 FROM dba_workload_connection_map;

b. Remap the connections:

EXEC DBMS_WORKLOAD_REPLAY.REMAP_CONNECTION (schedule_cap_id => 1,
 conn_id => 1, replay_connection => 'inst1');
EXEC DBMS_WORKLOAD_REPLAY.REMAP_CONNECTION (schedule_cap_id => 1,
 conn_id => 2, replay_connection => 'inst1');
EXEC DBMS_WORKLOAD_REPLAY.REMAP_CONNECTION (schedule_cap_id => 2,
 conn_id => 1, replay_connection => 'inst2');
EXEC DBMS_WORKLOAD_REPLAY.REMAP_CONNECTION (schedule_cap_id => 2,

Using Workload Folding

16-6 Oracle Database Testing Guide

 conn_id => 2, replay_connection => 'inst2');
EXEC DBMS_WORKLOAD_REPLAY.REMAP_CONNECTION (schedule_cap_id => 3,
 conn_id => 1, replay_connection => 'inst3');
EXEC DBMS_WORKLOAD_REPLAY.REMAP_CONNECTION (schedule_cap_id => 3,
 conn_id => 2, replay_connection => 'inst3');

The replay_connection parameter represents the services that are defined
on the test system.

c. Verify the connection remappings:

SELECT schedule_cap_id, conn_id, capture_conn, replay_conn
 FROM dba_workload_connection_map;

10. Prepare the consolidated replay:

EXEC DBMS_WORKLOAD_REPLAY.PREPARE_CONSOLIDATED_REPLAY;

11. Start replay clients:

a. Estimate the number of replay clients that are required:

wrc mode=calibrate replaydir=/u01/test/cons_dir/cap_monday_2am_8am
wrc mode=calibrate replaydir=/u01/test/cons_dir/cap_monday_8am_2pm
wrc mode=calibrate replaydir=/u01/test/cons_dir/cap_monday_2pm_8pm

b. Add the output to determine the number of replay clients required.

You will need to start at least one replay client per workload capture
contained in the consolidated workload.

c. Start the required number of replay clients by repeating this command:

wrc username/password mode=replay replaydir=/u01/test/cons_dir

The replaydir parameter is set to the root directory in which the workload
captures are stored.

12. Start the consolidated replay:

EXEC DBMS_WORKLOAD_REPLAY.START_CONSOLIDATED_REPLAY;

16.4 Using Schema Remapping
This section describes how to use schema remapping with Consolidated Database
Replay, and assumes a scenario where you want to use schema remapping to identify
possible host bottlenecks when deploying multiple instances of an application. The
scenario demonstrates how to use schema remapping for scale-up testing. For more
information about schema remapping, see "About Schema Remapping (page 16-2)".

This scenario uses the following assumptions:

• A single workload exists that is captured from the Sales application.

• To set up the replay system with multiple schemas from the Sales schema, schema
remapping is performed by adding the captured workload multiple times into a
replay schedule and remapping the users to different schemas.

To perform schema remapping in this scenario:

1. On the replay system where you plan to perform scale-up testing, create a
directory object for the root directory where the captured workloads are stored:

Using Schema Remapping

Using Workload Scale-Up 16-7

CREATE OR REPLACE DIRECTORY cons_dir AS '/u01/test/cons_dir';

2. Create a directory object for the directory where the captured workload is stored:

CREATE OR REPLACE DIRECTORY cap_sales AS '/u01/test/cons_dir/cap_sales';

Ensure that the captured workload from the Sales application is stored in this
directory.

3. Preprocess the captured workload:

EXEC DBMS_WORKLOAD_REPLAY.PROCESS_CAPTURE ('CAP_SALES');

4. Set the replay directory to the root directory:

EXEC DBMS_WORKLOAD_REPLAY.SET_REPLAY_DIRECTORY ('CONS_DIR');

5. Create a replay schedule and add the captured workload multiple times:

EXEC DBMS_WORKLOAD_REPLAY.BEGIN_REPLAY_SCHEDULE ('double_sales_schedule');
SELECT DBMS_WORKLOAD_REPLAY.ADD_CAPTURE ('CAP_SALES') FROM dual;
SELECT DBMS_WORKLOAD_REPLAY.ADD_CAPTURE ('CAP_SALES') FROM dual;
EXEC DBMS_WORKLOAD_REPLAY.END_REPLAY_SCHEDULE;

6. Initialize the consolidated replay:

EXEC DBMS_WORKLOAD_REPLAY.INITIALIZE_CONSOLIDATED_REPLAY (
 'double_sales_replay', 'double_sales_schedule);

7. Remap the users:

EXEC DBMS_WORKLOAD_REPLAY.SET_USER_MAPPING (2, 'sales_usr', 'sales_usr_2');

8. Prepare the consolidated replay:

EXEC DBMS_WORKLOAD_REPLAY.PREPARE_CONSOLIDATED_REPLAY;

9. Start replay clients:

a. Estimate the number of replay clients that are required:

wrc mode=calibrate replaydir=/u01/test/cons_dir/cap_sales

b. Add the output to determine the number of replay clients required.

You will need to start at least one replay client per workload capture
contained in the consolidated workload.

c. Start the required number of replay clients by repeating this command:

wrc username/password mode=replay replaydir=/u01/test/cons_dir

The replaydir parameter is set to the root directory in which the workload
captures are stored.

10. Start the consolidated replay:

EXEC DBMS_WORKLOAD_REPLAY.START_CONSOLIDATED_REPLAY;

Using Schema Remapping

16-8 Oracle Database Testing Guide

Index

C
capture subset

about, 15-3
generating, 15-10

Consolidated Database Replay
about, 15-1
connection remapping, 15-7, 15-18
consolidated replay directory

setting, 15-11
initializing, 15-17
preparing, 15-20
replay options, 15-7
reporting, 15-8
running, 15-17
sample scenario, 15-22
starting, 15-21
steps, 15-3
test system

capture directory, 15-4
setting up, 15-4

user remapping, 15-7, 15-19
using with APIs, 15-9
workload captures

supported, 15-3

D
Database Replay

about, 1-2
methodology, 9-1
replay clients

about, 9-3, 12-5
calibrating, 12-5
starting, 12-5, 12-6

replay filter set
about, 12-4

reporting
replay compare period reports, 13-10
SQL Performance Analyzer reports, 13-15
workload capture report, 13-2
workload replay report, 13-8

usage, 1-2, 9-1

Database Replay (continued)
workflow, 9-1
workload capture

about, 10-1
capture directory, 10-2
capture files, 9-3
capturing, 9-2, 10-7, 10-22, 10-23
exporting data, 10-25
importing data, 10-26
managing, 10-16
monitoring, 10-15, 10-26
options, 10-2
prerequisites, 10-1
reporting, 13-1
restarting the database, 10-3
restrictions, 10-4
stopping, 10-16, 10-25

workload filters
about, 10-4, 12-4
defining, 10-22
exclusion filters, 10-4, 12-4
inclusion filters, 10-4, 12-4

workload preprocessing
about, 9-3, 11-1
preprocessing, 11-9

workload replay
about, 9-3, 12-1
cancelling, 12-30
exporting data, 12-32
filters, 12-25
importing data, 12-32
monitoring, 12-16, 12-33
options, 12-3, 12-23
pausing, 12-29
replaying, 12-8, 12-20
reporting, 13-4
resuming, 12-29
starting, 12-28
steps, 12-1

database upgrades
testing, 8-1

database version
production system, 8-2, 8-11

Index-1

database version (continued)
system running SQL Performance Analyzer, 8-2,

8-11
test system, 8-2, 8-11

DBMS_SPM package
LOAD_PLANS_FROM_SQLSET function, 6-27

DBMS_SQLPA package
CREATE_ANALYSIS_TASK function, 3-15
EXECUTE_ANALYSIS_TASK procedure, 4-4, 5-3,

6-10, 8-10, 8-16
REPORT_ANALYSIS_TASK function, 6-11
SET_ANALYSIS_TASK_PARAMETER procedure,

3-16–3-20
DBMS_SQLTUNE package

CREATE_TUNING_TASK function, 6-23
SELECT_SQL_TRACE function, 8-5

DBMS_WORKLOAD_CAPTURE package
ADD_FILTER procedure, 10-22
DELETE_FILTER procedure, 10-23
EXPORT_AWR procedure, 10-25
FINISH_CAPTURE procedure, 10-25
GET_CAPTURE_INFO procedure, 13-2
IMPORT_AWR function, 10-26
START_CAPTURE procedure, 10-24

DBMS_WORKLOAD_REPLAY package
ADD_CAPTURE function, 15-13
ADD_FILTER procedure, 12-25
ADD_SCHEDULE_ORDERING function, 15-15
BEGIN_REPLAY_SCHEDULE procedure, 15-12
CANCEL_REPLAY procedure, 12-30
COMPARE_PERIOD_REPORT procedure, 13-10
COMPARE_SQLSET_REPORT procedure, 13-15
CREATE_FILTER_SET procedure, 12-26
DELETE_FILTER procedure, 12-26
DELETE_REPLAY_INFO function, 12-31
END_REPLAY_SCHEDULE procedure, 15-16
EXPORT_AWR procedure, 12-32
GENERATE_CAPTURE_SUBSET procedure,

15-10
GET_DIVERGING_STATEMENT function, 12-33
GET_REPLAY_DIRECTORY function, 15-11
GET_REPLAY_INFO function, 12-30, 13-8
IMPORT_AWR function, 12-33
INITIALIZE_CONSOLIDATED_REPLAY

procedure, 15-18
INITIALIZE_REPLAY procedure, 12-21
LOAD_DIVERGENCE procedure, 12-31
PAUSE_REPLAY procedure, 12-29
PREPARE_CONSOLIDATED_REPLAY

procedure, 15-20
PREPARE_REPLAY procedure, 12-23
PROCESS_CAPTURE procedure, 11-9
REMAP_CONNECTION procedure, 12-22, 15-18
REMOVE_CAPTURE procedure, 15-14
RESUME_REPLAY procedure, 12-29

DBMS_WORKLOAD_REPLAY package (continued)
SET_CONSOLIDATED_DIRECTORY procedure,

15-11
SET_REPLAY_TIMEOUT procedure, 12-27
SET_USER_MAPPING procedure, 12-23, 15-19
START_CONSOLIDATED_REPLAY procedure,

15-21
START_REPLAY procedure, 12-29
USE_FILTER_SET procedure, 12-27

M
mapping table

about, 8-4
creating, 8-3, 8-4
moving, 8-3, 8-4

R
Real Application Testing

about, 1-1
components, 1-1

replay schedule
about, 15-6
defining, 15-12
saving, 15-16
schedule orders

adding, 15-14
removing, 15-15

workload captures
adding, 15-13
removing, 15-14

S
schedule order

about, 15-7
viewing, 15-14

SPA Quick Check
configuring, 7-1
specifying default values, 7-2
using, 7-1
validating initialization parameter changes, 7-2
validating key SQL profiles, 7-5
validating pending optimizer statistics, 7-3
validating statistics findings, 7-6

SQL Performance Analyzer
about, 1-1
comparing execution plans, 3-16
comparing performance, 6-10, 8-3, 8-12
configuring a date to be returned by calls, 3-19
configuring a task, 3-15
configuring the number of rows to fetch, 3-20
configuring trigger execution, 3-18
creating a task, 3-1, 3-14
executing the SQL workload, 4-2, 4-4

Index-2

SQL Performance Analyzer (continued)
executing the SQL workload after a change, 5-2,

5-3
initial environment

establishing, 4-1
input source, 8-1
making a change, 5-1
methodology, 2-1
monitoring, 6-27
performance data

collecting post-change version, 5-1
collecting pre-change version, 4-1
comparing, 6-1

remote test execution, 8-6, 8-12
reporting, 2-8
setting up the test system, 2-4
SQL Performance Analyzer report

active reports, 6-8
general information, 6-5, 6-13
global statistics, 6-5
global statistics details, 6-7
result details, 6-16
result summary, 6-14
reviewing, 6-3, 6-13

SQL tuning set
selecting, 2-5, 3-1

SQL workload
capturing, 2-3
executing, 2-5, 2-7
transporting, 2-4

system change
making, 5-1

task
creating, 8-3, 8-12

usage, 1-1
using, 2-1
workflow

Exadata simulation, 3-10
guided, 3-13
optimizer statistics, 3-7
parameter change, 3-3

SQL Performance Analyzer Quick Check
See SPA Quick Check

SQL plan baselines
creating, 6-27

SQL statements
regressed, 1-1, 2-8, 6-8, 6-23, 6-25, 8-3, 8-12, 8-17

SQL Trace
about, 8-3
enabling, 8-2, 8-4
trace level, 8-4

SQL trace files

SQL trace files (continued)
about, 8-3
moving, 8-3, 8-4

SQL trials
about, 2-5, 2-7
building

post-upgrade version, 8-3, 8-6, 8-12
pre-upgrade version, 8-3, 8-10, 8-12, 8-16

comparing, 6-1
SQL tuning set

about, 2-4
building, 8-5
comparing, 6-18
constructing, 8-3
converting, 8-3

U

upgrade environment, 8-2, 8-11

W
Workload Analyzer

about, 11-10
running, 11-10

Workload Intelligence
about, 14-1
BuildModel program

options, 14-5
syntax, 14-4

creating a database user, 14-3
creating a job, 14-3
creating a workload model, 14-4
FindPatterns program

about, 14-5
options, 14-5
syntax, 14-5

GenerateReport program
about, 14-6
options, 14-6
syntax, 14-6

generating report, 14-6
identifying patterns, 14-5
LoadInfo program

about, 14-3
options, 14-4
syntax, 14-3

pattern, 14-2
sample scenario, 14-7
template, 14-2
using, 14-3

Index-3

Index-4

	Contents
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle Database Testing Guide
	Changes in Oracle Database 12c Release 2 (12.2.0.1)
	New Features in Oracle Database 12c Release 2 (12.2.0.1)
	Other Changes in Oracle Database 12c Release 2 (12.2.0.1)

	Changes in Oracle Database 12c Release 1 (12.1)
	New Features
	Other Changes

	1 Introduction to Oracle Database Testing
	1.1 SQL Performance Analyzer
	1.2 Database Replay

	Part I SQL Performance Analyzer
	2 Introduction to SQL Performance Analyzer
	2.1 Capturing the SQL Workload
	2.2 Setting Up the Test System
	2.3 Creating a SQL Performance Analyzer Task
	2.4 Measuring the Pre-Change SQL Performance
	2.5 Making a System Change
	2.6 Measuring the Post-Change SQL Performance
	2.7 Comparing Performance Measurements
	2.8 Fixing Regressed SQL Statements

	3 Creating an Analysis Task
	3.1 Creating an Analysis Task Using Enterprise Manager
	3.1.1 Using the Parameter Change Workflow
	3.1.2 Using the Optimizer Statistics Workflow
	3.1.3 Using the Exadata Simulation Workflow
	3.1.4 Using the Guided Workflow

	3.2 Creating an Analysis Task Using APIs
	3.3 Configuring an Analysis Task Using APIs
	3.3.1 Configuring the Execution Plan Comparison Method of an Analysis Task Using APIs
	3.3.2 Configuring an Analysis Task for Exadata Simulation Using APIs
	3.3.3 Remapping Multitenant Container Database Identifiers in an Analysis Task Using APIs
	3.3.4 Configuring Trigger Execution in an Analysis Task
	3.3.5 Configuring a Date to be Returned by Calls in an Analysis Task
	3.3.6 Configuring the Number of Rows to Fetch for an Analysis Task

	4 Creating a Pre-Change SQL Trial
	4.1 Creating a Pre-Change SQL Trial Using Enterprise Manager
	4.2 Creating a Pre-Change SQL Trial Using APIs

	5 Creating a Post-Change SQL Trial
	5.1 Creating a Post-Change SQL Trial Using Oracle Enterprise Manager
	5.2 Creating a Post-Change SQL Trial Using APIs

	6 Comparing SQL Trials
	6.1 Comparing SQL Trials Using Oracle Enterprise Manager
	6.1.1 Analyzing SQL Performance Using Oracle Enterprise Manager
	6.1.2 Reviewing the SQL Performance Analyzer Report Using Oracle Enterprise Manager
	6.1.2.1 Reviewing the SQL Performance Analyzer Report: General Information
	6.1.2.2 Reviewing the SQL Performance Analyzer Report: Global Statistics
	6.1.2.3 Reviewing the SQL Performance Analyzer Report: Global Statistics Details
	6.1.2.4 About SQL Performance Analyzer Active Reports

	6.1.3 Tuning Regressed SQL Statements Using Oracle Enterprise Manager
	6.1.3.1 Creating SQL Plan Baselines
	6.1.3.2 Running SQL Tuning Advisor

	6.2 Comparing SQL Trials Using APIs
	6.2.1 Analyzing SQL Performance Using APIs
	6.2.2 Reviewing the SQL Performance Analyzer Report in Command-Line
	6.2.2.1 General Information
	6.2.2.2 Result Summary
	6.2.2.2.1 Overall Performance Statistics
	6.2.2.2.2 Performance Statistics of SQL Statements
	6.2.2.2.3 Errors

	6.2.2.3 Result Details
	6.2.2.3.1 SQL Details
	6.2.2.3.2 Execution Statistics
	6.2.2.3.3 Execution Plans

	6.2.3 Comparing SQL Tuning Sets Using APIs
	6.2.4 Tuning Regressed SQL Statements Using APIs
	6.2.5 Tuning Regressed SQL Statements From a Remote SQL Trial Using APIs
	6.2.6 Creating SQL Plan Baselines Using APIs
	6.2.7 Using SQL Performance Analyzer Views

	7 Using SPA Quick Check
	7.1 About Configuring SPA Quick Check
	7.2 Specifying Default Values for SPA Quick Check
	7.3 Validating the Impact of an Initialization Parameter Change
	7.4 Validating the Impact of Pending Optimizer Statistics
	7.5 Validating the Impact of Implementing Key SQL Profiles
	7.6 Validating Statistics Findings from Automatic SQL Tuning Advisor

	8 Testing a Database Upgrade
	8.1 Upgrading from Oracle9i Database and Oracle Database 10g Release 1
	8.1.1 Enabling SQL Trace on the Production System
	8.1.2 Creating a Mapping Table
	8.1.3 Building a SQL Tuning Set
	8.1.4 Testing Database Upgrades from Oracle9i Database and Oracle Database 10g Release 1
	8.1.4.1 Testing Database Upgrades from Releases 9.x and 10.1 Using Cloud Control
	8.1.4.2 Testing Database Upgrades from Releases 9.x and 10.1 Using APIs

	8.2 Upgrading from Oracle Database 10g Release 2 and Newer Releases
	8.2.1 Testing Database Upgrades from Oracle Database 10g Release 2 and Newer Releases
	8.2.1.1 Testing Database Upgrades from Releases 10.2 and Higher Using Cloud Control
	8.2.1.2 Testing Database Upgrades from Releases 10.2 and Higher Using APIs

	8.3 Tuning Regressed SQL Statements After Testing a Database Upgrade

	Part II Database Replay
	9 Introduction to Database Replay
	9.1 Workload Capture
	9.2 Workload Preprocessing
	9.3 Workload Replay
	9.4 Analysis and Reporting

	10 Capturing a Database Workload
	10.1 Prerequisites for Capturing a Database Workload
	10.2 Setting Up the Capture Directory
	10.3 Workload Capture Options
	10.3.1 Restarting the Database
	10.3.2 Using Filters with Workload Capture

	10.4 Workload Capture Restrictions
	10.5 Enabling and Disabling the Workload Capture Feature
	10.6 Enterprise Manager Privileges and Roles
	10.6.1 Database Replay Viewer Role
	10.6.2 Database Replay Operator Role

	10.7 Capturing a Database Workload Using Enterprise Manager
	10.8 Capturing Workloads from Multiple Databases Concurrently
	10.9 Monitoring a Workload Capture Using Enterprise Manager
	10.9.1 Monitoring an Active Workload Capture
	10.9.2 Stopping an Active Workload Capture
	10.9.3 Viewing a Completed Workload Capture

	10.10 Importing a Workload External to Enterprise Manager
	10.11 Creating Subsets from an Existing Workload
	10.12 Copying or Moving a Workload to a New Location
	10.13 Capturing a Database Workload Using APIs
	10.13.1 Defining Workload Capture Filters
	10.13.2 Starting a Workload Capture
	10.13.3 Stopping a Workload Capture
	10.13.4 Exporting AWR Data for Workload Capture
	10.13.5 Importing AWR Data for Workload Capture

	10.14 Monitoring Workload Capture Using Views

	11 Preprocessing a Database Workload
	11.1 Preparing a Single Database Workload Using Enterprise Manager
	11.1.1 Creating a Database Replay Task
	11.1.2 Creating a Replay from a Replay Task
	11.1.3 Preparing the Test Database
	11.1.4 Preprocessing the Workload and Deploying the Replay Clients

	11.2 Preprocessing a Database Workload Using APIs
	11.2.1 Running the Workload Analyzer Command-Line Interface

	12 Replaying a Database Workload
	12.1 Steps for Replaying a Database Workload
	12.1.1 Setting Up the Replay Directory
	12.1.2 Restoring the Database
	12.1.3 Resolving References to External Systems
	12.1.4 Connection Remapping
	12.1.5 User Remapping
	12.1.6 Specifying Replay Options
	12.1.6.1 Specifying the Synchronization Method
	12.1.6.2 Controlling Session Connection Rate
	12.1.6.3 Controlling Request Rate Within a Session

	12.1.7 Using Filters with Workload Replay
	12.1.8 Setting Up Replay Clients
	12.1.8.1 Calibrating Replay Clients
	12.1.8.2 Starting Replay Clients
	12.1.8.3 Displaying Host Information

	12.2 Replaying a Database Workload Using Enterprise Manager
	12.3 Setting Up the Replay Schedule and Parameters Using Enterprise Manager
	12.4 Monitoring Workload Replay Using Enterprise Manager
	12.4.1 Monitoring an Active Workload Replay
	12.4.2 Viewing a Completed Workload Replay

	12.5 Importing a Replay External to Enterprise Manager
	12.6 Replaying a Database Workload Using APIs
	12.6.1 Initializing Replay Data
	12.6.2 Remapping Connections
	12.6.3 Remapping Users
	12.6.4 Setting Workload Replay Options
	12.6.5 Defining Workload Replay Filters and Replay Filter Sets
	12.6.5.1 Adding Workload Replay Filters
	12.6.5.2 Deleting Workload Replay Filters
	12.6.5.3 Creating a Replay Filter Set
	12.6.5.4 Using a Replay Filter Set

	12.6.6 Setting the Replay Timeout Action
	12.6.7 Starting a Workload Replay
	12.6.8 Pausing a Workload Replay
	12.6.9 Resuming a Workload Replay
	12.6.10 Cancelling a Workload Replay
	12.6.11 Retrieving Information About Workload Replays
	12.6.12 Loading Divergence Data for Workload Replay
	12.6.13 Deleting Information About Workload Replays
	12.6.14 Exporting AWR Data for Workload Replay
	12.6.15 Importing AWR Data for Workload Replay

	12.7 Monitoring Workload Replay Using APIs
	12.7.1 Retrieving Information About Diverged Calls
	12.7.2 Monitoring Workload Replay Using Views

	13 Analyzing Captured and Replayed Workloads
	13.1 Using Workload Capture Reports
	13.1.1 Accessing Workload Capture Reports Using Enterprise Manager
	13.1.2 Generating Workload Capture Reports Using APIs
	13.1.3 Reviewing Workload Capture Reports

	13.2 Using Workload Replay Reports
	13.2.1 Accessing Workload Replay Reports Using Enterprise Manager
	13.2.2 Generating Workload Replay Reports Using APIs
	13.2.3 Reviewing Workload Replay Reports

	13.3 Using Replay Compare Period Reports
	13.3.1 Generating Replay Compare Period Reports Using APIs
	13.3.2 Reviewing Replay Compare Period Reports
	13.3.2.1 General Information
	13.3.2.2 Replay Divergence
	13.3.2.3 Main Performance Statistics
	13.3.2.4 Top SQL/Call
	13.3.2.5 Hardware Usage Comparison
	13.3.2.6 ADDM Comparison
	13.3.2.7 ASH Data Comparison
	13.3.2.7.1 Compare Summary
	13.3.2.7.2 Top SQL
	13.3.2.7.3 Long Running SQL
	13.3.2.7.4 Common SQL
	13.3.2.7.5 Top Objects

	13.4 Using SQL Performance Analyzer Reports
	13.4.1 Generating SQL Performance Analyzer Reports Using APIs

	14 Using Workload Intelligence
	14.1 Overview of Workload Intelligence
	14.1.1 About Workload Intelligence
	14.1.2 Use Case for Workload Intelligence
	14.1.3 Requirements for Using Workload Intelligence

	14.2 Analyzing Captured Workloads Using Workload Intelligence
	14.2.1 Creating a Database User for Workload Intelligence
	14.2.2 Creating a Workload Intelligence Job
	14.2.3 Generating a Workload Model
	14.2.4 Identifying Patterns in a Workload
	14.2.5 Generating a Workload Intelligence Report

	14.3 Example: Workload Intelligence Results

	15 Using Consolidated Database Replay
	15.1 Use Cases for Consolidated Database Replay
	15.1.1 Database Consolidation Using Pluggable Databases
	15.1.2 Stress Testing
	15.1.3 Scale-Up Testing

	15.2 Steps for Using Consolidated Database Replay
	15.2.1 Capturing Database Workloads for Consolidated Database Replay
	15.2.1.1 Supported Types of Workload Captures
	15.2.1.2 Capture Subsets

	15.2.2 Setting Up the Test System for Consolidated Database Replay
	15.2.3 Preprocessing Database Workloads for Consolidated Database Replay
	15.2.4 Replaying Database Workloads for Consolidated Database Replay
	15.2.4.1 Defining Replay Schedules
	15.2.4.1.1 Adding Workload Captures
	15.2.4.1.2 Adding Schedule Orders

	15.2.4.2 Remapping Connections for Consolidated Database Replay
	15.2.4.3 Remapping Users for Consolidated Database Replay
	15.2.4.4 Preparing for Consolidated Database Replay
	15.2.4.5 Replaying Individual Workloads

	15.2.5 Reporting and Analysis for Consolidated Database Replay

	15.3 Using Consolidated Database Replay with Enterprise Manager
	15.4 Using Consolidated Database Replay with APIs
	15.4.1 Generating Capture Subsets Using APIs
	15.4.2 Setting the Consolidated Replay Directory Using APIs
	15.4.3 Defining Replay Schedules Using APIs
	15.4.3.1 Creating Replay Schedules Using APIs
	15.4.3.2 Adding Workload Captures to Replay Schedules Using APIs
	15.4.3.3 Adding Schedule Orders to Replay Schedules Using APIs
	15.4.3.4 Saving Replay Schedules Using APIs

	15.4.4 Running Consolidated Database Replay Using APIs
	15.4.4.1 Initializing Consolidated Database Replay Using APIs
	15.4.4.2 Remapping Connection Using APIs
	15.4.4.3 Remapping Users Using APIs
	15.4.4.4 Preparing for Consolidated Database Replay Using APIs
	15.4.4.5 Starting Consolidated Database Replay Using APIs

	15.5 About Query-Only Database Replay
	15.5.1 Use Cases for Query-Only Database Replay
	15.5.2 Performing a Query-Only Database Replay

	15.6 Example: Replaying a Consolidated Workload with APIs

	16 Using Workload Scale-Up
	16.1 Overview of Workload Scale-Up
	16.1.1 About Time Shifting
	16.1.2 About Workload Folding
	16.1.3 About Schema Remapping

	16.2 Using Time Shifting
	16.3 Using Workload Folding
	16.4 Using Schema Remapping

	Index

