
Oracle® Data Guard
Concepts and Administration

12c Release 2 (12.2)

E49693-05

January 2017

Oracle Data Guard Concepts and Administration, 12c Release 2 (12.2)

E49693-05

Copyright © 1999, 2017, Oracle and/or its affiliates. All rights reserved.

Primary Author: Kathy Rich

Contributors: Andy Adams, Beldalker Anand, Chipper Brown, Larry Carpenter, Jin-Jwei Chen, Laurence
Clarke, Jeff Detjen, Ray Dutcher, David Gagne, B.G. Garin, Mahesh Girkar, Yuhong Gu, Joydip Kundu,
Steven Lee, Steven Lim, Nitin Karkhanis, Goutam Kulkarni, Jonghyun Lee, Yunrui Li, Shashi Mangalat,
Steven McGee, Bob McGuirk, Joe Meeks, Steve Moriarty, Muthu Olagappan, Ashish Ray, Mike Schloss, Mike
Smith, Lawrence To, Stephen Vivian, Doug Voss, Hongjie Yang

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface .. xxi

Audience ... xxi

Documentation Accessibility ... xxi

Related Documents.. xxi

Conventions... xxii

Changes in This Release for Oracle Data Guard Concepts and Administration xxiii

Changes in Oracle Database 12c Release 2 (12.2.0.1) .. xxiii

Part I Concepts and Administration

1 Introduction to Oracle Data Guard

1.1 Oracle Data Guard Configurations .. 1-1

1.1.1 Primary Database .. 1-2

1.1.2 Standby Databases .. 1-2

1.1.3 Far Sync Instances ... 1-3

1.1.4 Zero Data Loss Recovery Appliance .. 1-3

1.1.5 Configuration Example .. 1-4

1.2 Oracle Data Guard Services .. 1-4

1.2.1 Redo Transport Services... 1-4

1.2.2 Apply Services ... 1-5

1.2.3 Role Transitions ... 1-6

1.3 Oracle Data Guard Broker... 1-6

1.3.1 Using Oracle Enterprise Manager Cloud Control .. 1-7

1.3.2 Using the Oracle Data Guard Command-Line Interface... 1-7

1.4 Oracle Data Guard Protection Modes.. 1-7

1.5 Client Failover ... 1-9

1.5.1 Application Continuity... 1-9

1.6 Oracle Data Guard and Complementary Technologies.. 1-9

1.7 Oracle Active Data Guard Supports Oracle Sharding .. 1-11

1.8 Summary of Oracle Data Guard Benefits.. 1-15

iii

2 Getting Started with Oracle Data Guard

2.1 Standby Database Types.. 2-1

2.1.1 Physical Standby Databases... 2-1

2.1.2 Logical Standby Databases .. 2-2

2.1.3 Snapshot Standby Databases ... 2-3

2.2 User Interfaces for Administering Oracle Data Guard Configurations.................................... 2-4

2.3 Oracle Data Guard Operational Prerequisites.. 2-5

2.3.1 Hardware and Operating System Requirements ... 2-5

2.3.2 Oracle Software Requirements.. 2-5

2.4 Standby Database Directory Structure Considerations .. 2-7

2.5 Moving the Location of Online Data Files .. 2-9

2.5.1 Restrictions When Moving the Location of Online Data Files.. 2-9

3 Creating a Physical Standby Database

3.1 Preparing the Primary Database for Standby Database Creation ... 3-2

3.1.1 Enable Forced Logging... 3-2

3.1.2 Configure Redo Transport Authentication.. 3-2

3.1.3 Configure the Primary Database to Receive Redo Data .. 3-3

3.1.4 Set Primary Database Initialization Parameters ... 3-4

3.1.5 Enable Archiving... 3-6

3.2 Step-by-Step Instructions for Creating a Physical Standby Database....................................... 3-6

3.2.1 Creating a Physical Standby Task 1: Create a Backup Copy of the Primary Database

Data Files.. 3-7

3.2.2 Creating a Physical Standby Task 2: Create a Control File for the Standby Database

... 3-7

3.2.3 Creating a Physical Standby Task 3: Create a Parameter File for the Standby

Database ... 3-8

3.2.4 Creating a Physical Standby Task 4: Copy Files from the Primary System to the

Standby System... 3-10

3.2.5 Creating a Physical Standby Task 5: Set Up the Environment to Support the

Standby Database ... 3-10

3.2.6 Creating a Physical Standby Task 6: Start the Physical Standby Database 3-11

3.2.7 Creating a Physical Standby Task 7: Verify the Physical Standby Database Is

Performing Properly... 3-12

3.3 Creating a Physical Standby: Post-Creation Steps... 3-12

3.4 Using DBCA to Create a Data Guard Standby... 3-13

3.5 Creating a Physical Standby of a CDB... 3-14

3.6 Creating a PDB in a Primary Database.. 3-16

4 Creating a Logical Standby Database

4.1 Prerequisite Conditions for Creating a Logical Standby Database ... 4-1

4.1.1 Determine Support for Data Types and Storage Attributes for Tables 4-2

iv

4.1.2 Ensure Table Rows in the Primary Database Can Be Uniquely Identified................... 4-2

4.2 Step-by-Step Instructions for Creating a Logical Standby Database .. 4-3

4.2.1 Creating a Logical Standby Task 1: Create a Physical Standby Database 4-4

4.2.2 Creating a Logical Standby Task 2: Stop Redo Apply on the Physical Standby

Database ... 4-4

4.2.3 Creating a Logical Standby Task 3: Prepare the Primary Database to Support a

Logical Standby Database.. 4-4

4.2.4 Creating a Logical Standby Task 4: Transition to a Logical Standby Database 4-6

4.2.5 Creating a Logical Standby Task 5: Open the Logical Standby Database 4-9

4.2.6 Creating a Logical Standby Task 6: Verify the Logical Standby Database Is

Performing Properly... 4-11

4.3 Creating a Logical Standby: Post-Creation Steps... 4-11

4.4 Creating a Logical Standby of a CDB .. 4-12

5 Using Far Sync Instances

5.1 Creating a Far Sync Instance ... 5-2

5.1.1 Creating and Configuring a Far Sync Instance ... 5-2

5.2 Alternate Destinations ... 5-5

5.2.1 Assigning Log Archive Destinations to a Group.. 5-6

5.2.2 Assigning Priorities to Log Archive Destinations in a Group .. 5-6

5.2.3 Shipping to Multiple Active Destinations in a Group ... 5-7

5.2.4 Using Multiple Log Archive Destination Groups .. 5-8

5.2.5 Determining the Availability Status of Log Archive Destinations 5-9

5.3 Configuring Alternate Destinations... 5-9

5.3.1 Reduced Protection After a Far Sync Failure .. 5-9

5.3.2 Far Sync Instance High Availability ... 5-10

5.3.3 Maintaining Protection After a Role Change .. 5-11

5.4 Supported Protection Modes for Far Sync Instances... 5-12

5.4.1 Far Sync Instances in Maximum Availability Mode Configurations 5-12

5.4.2 Far Sync Instances in Maximum Performance Mode Configurations......................... 5-13

6 Oracle Data Guard Protection Modes

6.1 Oracle Data Guard Protection Modes.. 6-1

6.2 Setting the Data Protection Mode of a Primary Database .. 6-3

7 Redo Transport Services

7.1 Introduction to Redo Transport Services .. 7-1

7.2 Configuring Redo Transport Services ... 7-2

7.2.1 Redo Transport Security... 7-3

7.2.2 Configuring an Oracle Database to Send Redo Data ... 7-4

7.2.3 Configuring an Oracle Database to Receive Redo Data .. 7-7

7.3 Cascaded Redo Transport Destinations .. 7-8

7.3.1 Configuring a Terminal Destination... 7-9

v

7.3.2 Cascading Scenarios.. 7-10

7.4 Data Protection Considerations for Cascading Standbys ... 7-11

7.5 Validating a Configuration.. 7-11

7.6 Monitoring Redo Transport Services... 7-12

7.6.1 Monitoring Redo Transport Status ... 7-12

7.6.2 Monitoring Synchronous Redo Transport Response Time... 7-13

7.6.3 Redo Gap Detection and Resolution .. 7-14

7.6.4 Redo Transport Services Wait Events .. 7-16

7.7 Tuning Redo Transport.. 7-16

8 Apply Services

8.1 Introduction to Apply Services... 8-1

8.2 Apply Services Configuration Options ... 8-1

8.2.1 Using Real-Time Apply to Apply Redo Data Immediately .. 8-2

8.2.2 Specifying a Time Delay for the Application of Archived Redo Log Files................... 8-3

8.3 Applying Redo Data to Physical Standby Databases.. 8-4

8.3.1 Starting Redo Apply ... 8-4

8.3.2 Stopping Redo Apply ... 8-5

8.3.3 Monitoring Redo Apply on Physical Standby Databases ... 8-5

8.4 Applying Redo Data to Logical Standby Databases.. 8-5

8.4.1 Starting SQL Apply... 8-6

8.4.2 Stopping SQL Apply on a Logical Standby Database ... 8-6

8.4.3 Monitoring SQL Apply on Logical Standby Databases... 8-6

8.5 Standby Considerations When Removing or Renaming a PDB at a Primary 8-6

9 Role Transitions

9.1 Introduction to Role Transitions... 9-2

9.1.1 Preparing for a Role Transition ... 9-2

9.1.2 Choosing a Target Standby Database for a Role Transition ... 9-3

9.1.3 Switchovers .. 9-4

9.1.4 Failovers.. 9-6

9.1.5 Role Transition Triggers ... 9-8

9.2 Role Transitions Involving Physical Standby Databases.. 9-8

9.2.1 Performing a Switchover to a Physical Standby Database.. 9-9

9.2.2 Performing a Failover to a Physical Standby Database ... 9-12

9.3 Role Transitions Involving Logical Standby Databases.. 9-15

9.3.1 Performing a Switchover to a Logical Standby Database ... 9-15

9.3.2 Performing a Failover to a Logical Standby Database... 9-17

9.4 Using Flashback Database After a Role Transition.. 9-19

9.4.1 Using Flashback Database After a Switchover ... 9-20

9.4.2 Using Flashback Database After a Failover... 9-20

vi

10 Managing Physical and Snapshot Standby Databases

10.1 Starting Up and Shutting Down a Physical Standby Database ... 10-1

10.1.1 Starting Up a Physical Standby Database.. 10-1

10.1.2 Shutting Down a Physical Standby Database ... 10-2

10.2 Opening a Physical Standby Database .. 10-2

10.2.1 Real-time Query... 10-3

10.2.2 DML Operations on Temporary Tables on Oracle Active Data Guard Instances ... 10-8

10.2.3 IM Column Store in an Active Data Guard Environment... 10-9

10.2.4 Using Sequences in Oracle Active Data Guard... 10-10

10.3 Primary Database Changes That Require Manual Intervention at a Physical Standby... 10-13

10.3.1 Adding a Data File or Creating a Tablespace.. 10-14

10.3.2 Dropping Tablespaces and Deleting Data Files.. 10-15

10.3.3 Using Transportable Tablespaces with a Physical Standby Database..................... 10-16

10.3.4 Renaming a Data File in the Primary Database .. 10-16

10.3.5 Add or Drop a Redo Log File Group.. 10-18

10.3.6 NOLOGGING or Unrecoverable Operations.. 10-18

10.3.7 Refresh the Password File .. 10-19

10.3.8 Reset the TDE Master Encryption Key... 10-19

10.4 Recovering Through the OPEN RESETLOGS Statement ... 10-20

10.5 Monitoring Primary, Physical Standby, and Snapshot Standby Databases....................... 10-21

10.5.1 Using Views to Monitor Primary, Physical, and Snapshot Standby Databases 10-22

10.6 Tuning Redo Apply.. 10-24

10.7 Tuning Databases in an Active Data Guard Environment with SQL Tuning Advisor.... 10-24

10.8 Using Oracle Diagnostic Pack to Tune Oracle Active Data Guard Standbys.................... 10-25

10.9 Managing a Snapshot Standby Database .. 10-25

10.9.1 Converting a Physical Standby Database into a Snapshot Standby Database 10-25

10.9.2 Using a Snapshot Standby Database .. 10-26

10.9.3 Converting a Snapshot Standby Database into a Physical Standby Database 10-26

11 Managing a Logical Standby Database

11.1 Overview of the SQL Apply Architecture .. 11-1

11.1.1 Various Considerations for SQL Apply ... 11-3

11.2 Controlling User Access to Tables in a Logical Standby Database 11-6

11.3 Views Related to Managing and Monitoring a Logical Standby Database.......................... 11-7

11.3.1 DBA_LOGSTDBY_EVENTS View.. 11-7

11.3.2 DBA_LOGSTDBY_LOG View... 11-8

11.3.3 V$DATAGUARD_STATS View.. 11-8

11.3.4 V$LOGSTDBY_PROCESS View.. 11-9

11.3.5 V$LOGSTDBY_PROGRESS View... 11-10

11.3.6 V$LOGSTDBY_STATE View... 11-11

11.3.7 V$LOGSTDBY_STATS View ... 11-12

11.4 Monitoring a Logical Standby Database ... 11-13

vii

11.4.1 Monitoring SQL Apply Progress .. 11-13

11.4.2 Automatic Deletion of Log Files.. 11-15

11.5 Customizing a Logical Standby Database... 11-16

11.5.1 Customizing Logging of Events in the DBA_LOGSTDBY_EVENTS View............ 11-17

11.5.2 Using DBMS_LOGSTDBY.SKIP to Prevent Changes to Specific Schema Objects 11-17

11.5.3 Setting up a Skip Handler for a DDL Statement... 11-18

11.5.4 Modifying a Logical Standby Database ... 11-19

11.5.5 Adding or Re-Creating Tables On a Logical Standby Database 11-21

11.6 Managing Specific Workloads In the Context of a Logical Standby Database.................. 11-23

11.6.1 Importing a Transportable Tablespace to the Primary Database............................. 11-23

11.6.2 Using Materialized Views.. 11-23

11.6.3 How Triggers and Constraints Are Handled on a Logical Standby Database 11-24

11.6.4 Using Triggers to Replicate Unsupported Tables... 11-25

11.6.5 Recovering Through the Point-in-Time Recovery Performed at the Primary 11-27

11.6.6 Running an Oracle Streams Capture Process on a Logical Standby Database 11-28

11.7 Using Extended Datatype Support During Replication ... 11-29

11.7.1 How EDS-Based Replication Works... 11-29

11.7.2 Enabling EDS-Based Replication At a Logical Standby... 11-30

11.7.3 Removing EDS-Based Replication From a Logical Standby 11-31

11.7.4 How EDS-Based Replication Handles Skip Rules.. 11-31

11.7.5 How EDS-Based Replication Handles DDL ... 11-31

11.8 Tuning a Logical Standby Database... 11-32

11.8.1 Create a Primary Key RELY Constraint... 11-33

11.8.2 Gather Statistics for the Cost-Based Optimizer... 11-34

11.8.3 Adjust the Number of Processes ... 11-34

11.8.4 Adjust the Memory Used for LCR Cache .. 11-37

11.8.5 Adjust How Transactions are Applied On the Logical Standby Database............. 11-37

11.9 Backup and Recovery in the Context of a Logical Standby Database 11-38

12 Using RMAN to Back Up and Restore Files

12.1 About RMAN File Management in an Oracle Data Guard Configuration 12-2

12.1.1 Interchangeability of Backups in an Oracle Data Guard Environment 12-2

12.1.2 Association of Backups in an Oracle Data Guard Environment 12-2

12.1.3 Accessibility of Backups in an Oracle Data Guard Environment 12-2

12.2 About RMAN Configuration in an Oracle Data Guard Environment 12-3

12.3 Recommended RMAN and Oracle Database Configurations ... 12-4

12.3.1 Oracle Database Configurations on Primary and Standby Databases 12-4

12.3.2 RMAN Configurations at the Primary Database.. 12-5

12.3.3 RMAN Configurations at a Standby Database Where Backups are Performed 12-6

12.3.4 RMAN Configurations at a Standby Where Backups Are Not Performed 12-7

12.4 Backup Procedures ... 12-7

12.4.1 Using Disk as Cache for Tape Backups.. 12-8

12.4.2 Performing Backups Directly to Tape .. 12-9

viii

12.5 Registering and Unregistering Databases in an Oracle Data Guard Environment 12-11

12.6 Reporting in an Oracle Data Guard Environment... 12-11

12.7 Performing Backup Maintenance in an Oracle Data Guard Environment 12-11

12.7.1 Changing Metadata in the Recovery Catalog ... 12-12

12.7.2 Deleting Archived Logs or Backups... 12-13

12.7.3 Validating Recovery Catalog Metadata ... 12-13

12.8 Recovery Scenarios in an Oracle Data Guard Environment .. 12-14

12.8.1 Recovery from Loss of Files on the Primary or Standby Database.......................... 12-14

12.8.2 Recovery from Loss of Online Redo Log Files .. 12-14

12.8.3 Incomplete Recovery of the Primary Database... 12-15

12.8.4 Actions Needed on Standby After TSPITR or Tablespace Plugin at Primary........ 12-16

12.9 Additional Backup Situations ... 12-17

12.9.1 Standby Databases Too Geographically Distant to Share Backups 12-17

12.9.2 Standby Database Does Not Contain Data Files, Used as a FAL Server................. 12-17

12.9.3 Standby Database File Names Are Different From Primary Database 12-18

12.10 Restoring and Recovering Files Over the Network... 12-18

12.11 RMAN Support for CDBs In an Oracle Data Guard Environment 12-19

13 Using SQL Apply to Upgrade the Oracle Database

13.1 Benefits of a Rolling Upgrade Using SQL Apply... 13-1

13.2 Requirements to Perform a Rolling Upgrade Using SQL Apply .. 13-2

13.3 Figures and Conventions Used in the Upgrade Instructions... 13-2

13.4 Performing a Rolling Upgrade By Creating a New Logical Standby Database 13-3

13.5 Performing a Rolling Upgrade With an Existing Logical Standby Database 13-4

13.6 Performing a Rolling Upgrade With an Existing Physical Standby Database 13-10

14 Using DBMS_ROLLING to Perform a Rolling Upgrade

14.1 Concepts New to Rolling Upgrades... 14-2

14.1.1 Data Guard Broker Support for DBMS_ROLLING Upgrades 14-3

14.2 DBMS_ROLLING Upgrades and CDBs .. 14-5

14.3 Overview of Using DBMS_ROLLING... 14-5

14.4 Planning a Rolling Upgrade.. 14-6

14.5 Performing a Rolling Upgrade ... 14-13

14.6 Monitoring a Rolling Upgrade ... 14-16

14.7 Rolling Back a Rolling Upgrade ... 14-16

14.8 Handling Role Changes That Occur During a Rolling Upgrade... 14-17

14.9 Examples of Rolling Upgrades ... 14-17

15 Oracle Data Guard Scenarios

15.1 Configuring Logical Standby Databases After a Failover .. 15-1

15.1.1 When the New Primary Database Was Formerly a Physical Standby Database..... 15-2

15.1.2 When the New Primary Database Was Formerly a Logical Standby Database....... 15-2

15.2 Converting a Failed Primary Into a Standby Database Using Flashback Database 15-3

ix

15.2.1 Flashing Back a Failed Primary Database into a Physical Standby Database 15-4

15.2.2 Flashing Back a Failed Primary Database into a Logical Standby Database............ 15-5

15.2.3 Flashing Back a Logical Standby Database to a Specific Applied SCN..................... 15-6

15.3 Using Flashback Database After Issuing an Open Resetlogs Statement 15-7

15.3.1 Flashing Back a Physical Standby Database to a Specific Point-in-Time 15-7

15.3.2 Flashing Back a Logical Standby Database to a Specific Point-in-Time.................... 15-8

15.4 Recovering After the NOLOGGING Clause Is Specified ... 15-9

15.4.1 Recovery Steps for Logical Standby Databases .. 15-9

15.4.2 Recovery Steps for Physical Standby Databases... 15-9

15.4.3 Determining If a Backup Is Required After Unrecoverable Operations 15-11

15.4.4 Recovery Steps for Part of a Physical Standby Database .. 15-11

15.5 Creating a Standby Database That Uses OMF or Oracle ASM .. 15-12

15.6 Recovering From Lost-Write Errors on a Primary Database.. 15-14

15.7 Using the DBCOMP Procedure to Detect Lost Writes and Other Inconsistencies............ 15-16

15.8 Converting a Failed Primary into a Standby Database Using RMAN Backups................ 15-17

15.8.1 Converting a Failed Primary into a Physical Standby Using RMAN Backups...... 15-18

15.8.2 Converting a Failed Primary into a Logical Standby Using RMAN Backups 15-20

15.9 Changing the Character Set of a Primary Without Re-Creating Physical Standbys......... 15-21

15.10 Actions Needed On a Standby After a PDB PITR or PDB Flashback On a Primary 15-22

Part II Reference

16 Initialization Parameters... 16-1

17 LOG_ARCHIVE_DEST_n Parameter Attributes

17.1 AFFIRM and NOAFFIRM ... 17-2

17.2 ALTERNATE... 17-3

17.3 COMPRESSION.. 17-5

17.4 DB_UNIQUE_NAME .. 17-6

17.5 DELAY.. 17-7

17.6 ENCRYPTION... 17-9

17.7 GROUP... 17-10

17.8 LOCATION and SERVICE.. 17-11

17.9 MANDATORY.. 17-12

17.10 MAX_CONNECTIONS ... 17-14

17.11 MAX_FAILURE .. 17-15

17.12 NET_TIMEOUT ... 17-17

17.13 NOREGISTER.. 17-17

17.14 PRIORITY... 17-18

17.15 REOPEN... 17-19

17.16 SYNC and ASYNC.. 17-20

17.17 TEMPLATE.. 17-21

17.18 VALID_FOR .. 17-22

x

18 SQL Statements Relevant to Oracle Data Guard

18.1 ALTER DATABASE Statements... 18-1

18.2 ALTER SESSION Statements .. 18-4

18.3 ALTER SYSTEM Statements ... 18-5

19 Views Relevant to Oracle Data Guard .. 19-1

Part III Appendixes

A Troubleshooting Oracle Data Guard

A.1 Common Problems.. A-1

A.1.1 Renaming Data Files with the ALTER DATABASE Statement..................................... A-1

A.1.2 Standby Database Does Not Receive Redo Data from the Primary Database A-2

A.1.3 You Cannot Mount the Physical Standby Database ... A-3

A.2 Log File Destination Failures ... A-3

A.3 Handling Logical Standby Database Failures ... A-4

A.4 Problems Switching Over to a Physical Standby Database... A-4

A.4.1 Switchover Fails Because Redo Data Was Not Transmitted.. A-4

A.4.2 Switchover Fails with the ORA-01102 Error .. A-5

A.4.3 Redo Data Is Not Applied After Switchover.. A-5

A.4.4 Roll Back After Unsuccessful Switchover and Start Over.. A-6

A.5 Problems Switching Over to a Logical Standby Database... A-7

A.5.1 Failures During the Prepare Phase of a Switchover Operation..................................... A-7

A.5.2 Failures During the Commit Phase of a Switchover Operation.................................... A-8

A.6 What to Do If SQL Apply Stops .. A-10

A.7 Network Tuning for Redo Data Transmission.. A-11

A.8 Slow Disk Performance on Standby Databases... A-11

A.9 Log Files Must Match to Avoid Primary Database Shutdown... A-12

A.10 Troubleshooting a Logical Standby Database ... A-12

A.10.1 Recovering from Errors ... A-12

A.10.2 Troubleshooting SQL*Loader Sessions... A-14

A.10.3 Troubleshooting Long-Running Transactions ... A-15

A.10.4 Troubleshooting ORA-1403 Errors with Flashback Transactions............................. A-18

B Patching, Upgrading, and Downgrading Databases in an Oracle Data Guard
Configuration

B.1 Before You Patch or Upgrade the Oracle Database Software.. B-1

B.2 Patching Oracle Database with Standby First Patching ... B-2

B.3 Upgrading Oracle Database with a Physical Standby Database in Place B-3

B.4 Upgrading Oracle Database with a Logical Standby Database in Place.................................. B-4

B.5 Modifying the COMPATIBLE Initialization Parameter After Upgrading B-5

B.6 Downgrading Oracle Database with No Logical Standby in Place .. B-6

xi

B.7 Downgrading Oracle Database with a Logical Standby in Place.. B-6

C Data Type and DDL Support on a Logical Standby Database

C.1 Datatype Considerations .. C-1

C.1.1 Supported Datatypes in a Logical Standby Database ... C-2

C.1.2 Unsupported Datatypes in a Logical Standby Database .. C-4

C.2 Support for Data Types That Lack Native Redo-Based Support .. C-4

C.3 Support for Transparent Data Encryption (TDE).. C-5

C.4 Support for Tablespace Encryption... C-5

C.5 Support For Row-level Security and Fine-Grained Auditing ... C-6

C.5.1 Row-level Security.. C-6

C.5.2 Fine-Grained Auditing .. C-6

C.5.3 Skipping and Enabling PL/SQL Replication ... C-7

C.6 Oracle Label Security... C-7

C.7 Oracle Database Vault ... C-7

C.8 Oracle E-Business Suite... C-8

C.9 Supported Table Storage Types ... C-8

C.10 Unsupported Table Storage Types .. C-9

C.11 PL/SQL Supplied Packages Considerations .. C-10

C.11.1 Supported PL/SQL Supplied Packages ... C-10

C.11.2 Unsupported PL/SQL Supplied Packages .. C-10

C.11.3 Handling XML and XDB PL/SQL Packages in Logical Standby............................. C-11

C.12 Unsupported Tables ... C-16

C.12.1 Unsupported Tables During Rolling Upgrades.. C-17

C.12.2 Unsupported Tables As a Result of DML Performed In a PL/SQL Function........ C-18

C.13 Skipped SQL Statements on a Logical Standby Database .. C-18

C.14 DDL Statements Supported by a Logical Standby Database ... C-19

C.14.1 DDL Statements that Use DBLINKS... C-22

C.14.2 Replication of AUD$ and FGA_LOG$ on Logical Standbys..................................... C-22

C.15 Distributed Transactions and XA Support.. C-23

C.16 Support for SecureFiles LOBs ... C-23

C.17 Support for Database File System (DBFS) ... C-24

C.18 Character Set Considerations .. C-24

C.19 Additional PL/SQL Package Support Available Only in the Context of

DBMS_ROLLING Upgrades .. C-24

D Oracle Data Guard and Oracle Real Application Clusters

D.1 Configuring Standby Databases in an Oracle RAC Environment.. D-1

D.1.1 Setting Up Multi-Instance Redo Apply... D-1

D.1.2 Setting Up a Multi-Instance Primary with a Single-Instance Standby D-2

D.1.3 Setting Up Oracle RAC Primary and Standby Databases .. D-3

D.2 Configuration Considerations in an Oracle RAC Environment ... D-4

D.2.1 Format for Archived Redo Log Filenames ... D-4

xii

D.2.2 Data Protection Modes .. D-4

E Creating a Standby Database with Recovery Manager

E.1 Prerequisites.. E-1

E.2 Overview of Standby Database Creation with RMAN... E-1

E.2.1 Purpose of Standby Database Creation with RMAN .. E-1

E.2.2 Basic Concepts of Standby Creation with RMAN ... E-2

E.3 Using the DUPLICATE Command to Create a Standby Database... E-4

E.3.1 Using Active Database Duplication to Create a Standby Database or Far Sync

Instance... E-4

E.3.2 Creating a Standby Database with Backup-Based Duplication E-5

F Setting Archive Tracing

F.1 Setting the LOG_ARCHIVE_TRACE Initialization Parameter.. F-1

G Performing Role Transitions Using Old Syntax

G.1 SQL Syntax for Role Transitions Involving Physical Standbys ... G-1

G.1.1 New Features When Using the Old Syntax... G-2

G.2 Role Transitions Involving Physical Standby Databases.. G-2

G.2.1 Performing a Switchover to a Physical Standby Database Using Old Syntax G-2

G.2.2 Performing a Failover to a Physical Standby Database Using Old Syntax................. G-4

G.3 Troubleshooting Switchovers to Physical Standby Databases .. G-6

G.3.1 Switchover Fails Because Redo Data Was Not Transmitted... G-7

G.3.2 Switchover Fails with the ORA-01102 Error ... G-7

G.3.3 Redo Data Is Not Applied After Switchover... G-8

G.3.4 Roll Back After Unsuccessful Switchover and Start Over... G-8

H Using the ALTERNATE Attribute to Configure Remote Alternate Destinations

H.1 Configuring an Alternate Destination.. H-1

Index

xiii

xiv

List of Examples

3-1 Modifying Initialization Parameters for a Physical Standby Database............................... 3-8
4-1 Primary Database: Logical Standby Role Initialization Parameters.................................... 4-5
4-2 Modifying Initialization Parameters for a Logical Standby Database................................. 4-9
5-1 Some of the Initialization Parameters Used for Far Sync Instances..................................... 5-4
5-2 Configuring for Single Destination Failover... 5-9
5-3 Configuring for Multiple Standby Database Redo Destination Failover.......................... 5-10
5-4 Parameters Used to Set Up the High Availability Far Sync Instance................................ 5-11
5-5 Parameters Used to Set Up Protection After a Role Change.. 5-12
7-1 Some of the Initialization Parameters Used When Cascading Redo................................... 7-9
14-1 Setting Switchover to Enforce Apply Lag Requirements.. 14-13
14-2 Resetting Logging Back to Its Default Value.. 14-13
14-3 Designating a Database as an Optional Participant... 14-13
14-4 Setting a Database to Protect the Transient Logical Standby... 14-13
14-5 Basic Rolling Upgrade Steps.. 14-17
14-6 Rolling Upgrade Between Two Databases.. 14-18
14-7 Rolling Upgrade Between Three Databases.. 14-18
14-8 Rolling Upgrade Between Four Databases.. 14-19
14-9 Rolling Upgrade on a Reader Farm.. 14-19
14-10 Rolling Upgrade for Application Testing.. 14-20
14-11 Resuming a Rolling Upgrade After a Failover to a New Primary................................... 14-20
14-12 Resuming a Rolling Upgrade After a Failover to a New Transient Logical................... 14-21
15-1 Primary and All Standbys Are Mounted or Open and DBCOMP Is Executed From the

Primary.. 15-16
15-2 Primary and All Standbys Are Mounted or Open and DBCOMP Is Executed From a

Standby... 15-17
15-3 Primary Is Mounted or Open, But Not All Standbys Are, and DBCOMP is Executed

From the Primary... 15-17
15-4 Primary Is Mounted or Open, But Not All Standbys Are, and DBCOMP is Executed

From a Standby.. 15-17
15-5 Primary is Not Mounted, But Multiple Standbys Are Mounted or Open...................... 15-17
15-6 Primary Is Mounted or Open, But No Standbys Are Mounted or Open........................ 15-17
17-1 Automatically Failing Over to an Alternate Local Destination.. 17-5
17-2 Automatic Local Alternate Fallback... 17-5
A-1 Setting a Retry Time and Limit... A-3
A-2 Specifying an Alternate Destination... A-3
C-1 PL/SQL Skip Procedure for RegisterSchema... C-14

xv

xvi

List of Figures

1-1 Typical Oracle Data Guard Configuration.. 1-4
1-2 Automatic Updating of a Physical Standby Database .. 1-5
1-3 Automatic Updating of a Logical Standby Database... 1-6
1-4 System-Managed Sharding With Oracle Data Guard Replication..................................... 1-12
1-5 Composite Sharding With Oracle Data Guard Replication.. 1-14
2-1 Possible Standby Configurations.. 2-8
8-1 Applying Redo Data to a Standby Destination Using Real-Time Apply............................ 8-3
9-1 Oracle Data Guard Configuration Before Switchover... 9-5
9-2 Standby Databases Before Switchover to the New Primary Database................................ 9-5
9-3 Oracle Data Guard Environment After Switchover... 9-6
9-4 Failover to a Standby Database... 9-7
11-1 SQL Apply Processing.. 11-2
11-2 Progress States During SQL Apply Processing.. 11-13
13-1 Oracle Data Guard Configuration Before Upgrade... 13-3
13-2 Upgrade the Logical Standby Database Release... 13-6
13-3 Running Mixed Releases.. 13-6
13-4 After a Switchover... 13-9
13-5 Both Databases Upgraded.. 13-9
D-1 Transmitting Redo Data from a Multi-Instance Primary Database..................................... D-2

xvii

xviii

List of Tables

2-1 Standby Database Location and Directory Options... 2-8
3-1 Creating a Physical Standby Database... 3-6
4-1 Creating a Logical Standby Database... 4-3
6-1 Required Redo Transport Attributes for Data Protection Modes.. 6-3
7-1 LOG_ARCHIVE_DEST_STATE_n Initialization Parameter Values.................................... 7-4
7-2 Redo Transport Wait Events.. 7-16
10-1 Primary Database Changes That Require Manual Intervention at a Physical Standby 10-14
10-2 Sources of Information About Common Primary Database Management Actions 10-21
13-1 Steps to Perform a Rolling Upgrade by Creating a New Logical Standby....................... 13-3
13-2 Steps to Perform a Rolling Upgrade With an Existing Logical Standby........................... 13-5
13-3 Steps to Perform a Rolling Upgrade With an Existing Physical Standby....................... 13-11
14-1 Trailing Group Physicals (TGP) Versus Leading Group Physicals (LGP)........................ 14-3
14-2 Steps to Perform Rolling Upgrade Using DBMS_ROLLING... 14-14
16-1 Initialization Parameters for Instances in an Oracle Data Guard Configuration............. 16-1
17-1 Directives for the TEMPLATE Attribute... 17-22
18-1 ALTER DATABASE Statements Used in Data Guard Environments............................... 18-1
18-2 ALTER SESSION Statements Used in Oracle Data Guard Environments........................ 18-5
18-3 ALTER SYSTEM Statements Used in Oracle Data Guard Environments......................... 18-5
19-1 Views That Are Pertinent to Oracle Data Guard Configurations...................................... 19-1
A-1 Fixing Typical SQL Apply Errors... A-10
C-1 Values for stmt Parameter of the DBMS_LOGSTDBY.SKIP procedure........................... C-19
D-1 Directives for the LOG_ARCHIVE_FORMAT Initialization Parameter............................ D-4

xix

xx

Preface

Oracle Data Guard is the most effective solution available today to protect the core
asset of any enterprise—its data, and make it available on a 24x7 basis even in the face
of disasters and other calamities. This guide describes Oracle Data Guard technology
and concepts, and helps you configure and implement standby databases.

Audience
Oracle Data Guard Concepts and Administration is intended for database administrators
(DBAs) who administer the backup, restoration, and recovery operations of an Oracle
database system.

To use this document, you should be familiar with relational database concepts and
basic backup and recovery administration. You should also be familiar with the
operating system environment under which you are running Oracle software.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Documents
Readers of Oracle Data Guard Concepts and Administration should also read:

• The beginning of Oracle Database Concepts, that provides an overview of the
concepts and terminology related to the Oracle database and serves as a foundation
for the more detailed information in this guide.

• The chapters in the Oracle Database Administrator's Guide that deal with managing
the control files, online redo log files, and archived redo log files.

• The chapter in the Oracle Database Utilities that discusses LogMiner technology.

xxi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• Oracle Data Guard Broker that describes the graphical user interface and command-
line interface for automating and centralizing the creation, maintenance, and
monitoring of Oracle Data Guard configurations.

• Oracle Database High Availability Overview for information about how Oracle Data
Guard is used as a key component in high availability and disaster recovery
environments.

• Oracle Enterprise Manager Cloud Control online Help system

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xxii

Changes in This Release for Oracle Data
Guard Concepts and Administration

This preface lists changes in Oracle Data Guard Concepts and Administration.

Changes in Oracle Database 12c Release 2 (12.2.0.1)
The following are changes in Oracle Data Guard Concepts and Administration for Oracle
Database 12c Release 2 (12.2.0.1).

• A new INSTANCES [ALL | integer] clause is available on the SQL ALTER
RECOVER MANAGED STANDBY DATABASE command which enables you to control
the number of instances on a physical standby that Redo Apply uses. See Setting
Up Multi-Instance Redo Apply (page D-1).

• Logical standby now supports long identifiers (128 bytes).

• You can now upgrade databases that use Oracle Label Security (OLS) to new
Oracle Database releases and patch sets by using Oracle Data Guard database
rolling upgrades using a transient logical standby database and the PL/SQL
package, DBMS_ROLLING. See Oracle Label Security (page C-7).

• You can now upgrade databases that use Oracle Database Vault to new Oracle
Database releases and patch sets by using Oracle Data Guard database rolling
upgrades with a transient logical standby and the PL/SQL package,
DBMS_ROLLING. See Oracle Database Vault (page C-7).

• A new database initialization parameter, DATA_GUARD_SYNC_LATENCY, enables
you to define the maximum amount of time (in seconds) that the primary database
may wait before disconnecting subsequent destinations after at least one
synchronous standby has acknowledged receipt of the redo. See Configuring an
Oracle Database to Send Redo Data (page 7-4)

• You can now detect lost writes and also inconsistencies between a primary
database and physical standby databases by using the new PL/SQL procedure,
DBMS_DBCOMP.DBCOMP. See Using the DBCOMP Procedure to Detect Lost Writes
and Other Inconsistencies (page 15-16).

• The new ENABLED_PDBS_ON_STANDBY initialization parameter enables you to
specify a subset of pluggable databases (PDBs) for replication on a physical
standby of a multitenant container database (CDB). In releases prior to Oracle
Database 12c Release 2 (12.2.0.1), you had to specify either all PDBs or none. See
Creating a Physical Standby of a CDB (page 3-14).

xxiii

• Oracle Database In-Memory column store (IM column store) is now supported on
standby databases in Oracle Active Data Guard (ADG) environments. See IM
Column Store in an Active Data Guard Environment (page 10-9).

• Oracle Active Data Guard is integrated with Oracle Sharding. See Oracle Active
Data Guard Supports Oracle Sharding. (page 1-11)

• You can use the new FARSYNC option on the RMAN DUPLICATE command to
create an Oracle Data Guard far sync instance. You can do so using either active
database duplication or backup-based duplication. See Using the DUPLICATE
Command to Create a Standby Database (page E-4).

• You can now use the Oracle Diagnostic Pack with an Oracle Active Data Guard
standby database that is open read-only. See Using Oracle Diagnostic Pack to Tune
Oracle Active Data Guard Standbys (page 10-25).

• The number of alternate log archive destinations that you can define has been
increased with the capability to create groups of log archive destinations. You can
define priority of group members, as well as policies in a failure state. See Alternate
Destinations (page 5-5).

• Rolling upgrades performed using the DBMS_ROLLING PL/SQL package are
supported on multitenant container databases (CDBs). See DBMS_ROLLING
Upgrades and CDBs (page 14-5).

• Password file changes done on the primary database are now automatically
propagated to standby databases. The only exception to this is far sync instances.
Updated password files must still be manually copied to far sync instances because
far sync instances receive redo, but do not apply it. Once the password file is up-to-
date at the far sync instance, the redo containing the password update at the
primary is automatically propagated to any standby databases that are set up to
receive redo from that far sync instance. The password file is updated on the
standby when the redo is applied.

• When a physical standby database is converted into a primary, there is now an
option to keep any sessions connected to the standby during the switchover/
failover. This is done with the STANDBY_DB_PRESERVE_STATES initialization
parameter. See Role Transitions Involving Physical Standby Databases (page 9-8).

• You can encrypt and decrypt both new and existing tablespaces, and existing
databases within an Oracle Data Guard environment. This can be done offline or
online. See Reset the TDE Master Encryption Key (page 10-19) and Support for
Tablespace Encryption (page C-5).

xxiv

Part I
Concepts and Administration

The following topics provide information about Oracle Data Guard concepts and
administration:

• Introduction to Oracle Data Guard (page 1-1)

• Getting Started with Oracle Data Guard (page 2-1)

• Creating a Physical Standby Database (page 3-1)

• Creating a Logical Standby Database (page 4-1)

• Using Far Sync Instances (page 5-1)

• Oracle Data Guard Protection Modes (page 6-1)

• Redo Transport Services (page 7-1)

• Apply Services (page 8-1)

• Role Transitions (page 9-1)

• Managing Physical and Snapshot Standby Databases (page 10-1)

• Managing a Logical Standby Database (page 11-1)

• Using RMAN to Back Up and Restore Files (page 12-1)

• Using SQL Apply to Upgrade the Oracle Database (page 13-1)

• Using DBMS_ROLLING to Perform a Rolling Upgrade (page 14-1)

• Oracle Data Guard Scenarios (page 15-1)

1
Introduction to Oracle Data Guard

Oracle Data Guard ensures high availability, data protection, and disaster recovery for
enterprise data.

Oracle Data Guard provides a comprehensive set of services that create, maintain,
manage, and monitor one or more standby databases to enable production Oracle
databases to survive disasters and data corruptions. Oracle Data Guard maintains
these standby databases as copies of the production database. Then, if the production
database becomes unavailable because of a planned or an unplanned outage, Oracle
Data Guard can switch any standby database to the production role, minimizing the
downtime associated with the outage. Oracle Data Guard can be used with traditional
backup, restoration, and cluster techniques to provide a high level of data protection
and data availability. Oracle Data Guard transport services are also used by other
Oracle features such as Oracle Streams and Oracle GoldenGate for efficient and
reliable transmission of redo from a source database to one or more remote
destinations.

With Oracle Data Guard, administrators can optionally improve production database
performance by offloading resource-intensive backup and reporting operations to
standby systems.

See the following topics which describe the highlights of Oracle Data Guard:

• Oracle Data Guard Configurations (page 1-1)

• Oracle Data Guard Services (page 1-4)

• Oracle Data Guard Broker (page 1-6)

• Oracle Data Guard Protection Modes (page 1-7)

• Client Failover (page 1-9)

• Oracle Data Guard and Complementary Technologies (page 1-9)

• Oracle Active Data Guard Supports Oracle Sharding (page 1-11)

• Summary of Oracle Data Guard Benefits (page 1-15)

1.1 Oracle Data Guard Configurations
An Oracle Data Guard configuration can contain one primary database and up to
thirty destinations.

The members of an Oracle Data Guard configuration are connected by Oracle Net and
may be dispersed geographically. There are no restrictions on where the members of
an Oracle Data Guard configuration are located as long as they can communicate with
each other. For example, you can have a standby database in the same data center as
the primary database, along with two standbys in another data center.

Introduction to Oracle Data Guard 1-1

You can manage primary and standby databases using either the SQL command-line
interface or the Oracle Data Guard broker interfaces. The broker provides a command-
line interface (DGMGRL) and a graphical user interface that is integrated in Oracle
Enterprise Manager Cloud Control.

1.1.1 Primary Database
An Oracle Data Guard configuration contains one production database, also referred
to as the primary database, that functions in the primary role.

The primary database is the database that is accessed by most of your applications.

The primary database can be either a single-instance Oracle database or an Oracle Real
Application Clusters (Oracle RAC) database.

1.1.2 Standby Databases
A standby database is a transactionally consistent copy of the primary database.

Using a backup copy of the primary database, you can create up to thirty standby
databases and incorporate them into an Oracle Data Guard configuration. Oracle Data
Guard automatically maintains each standby database by transmitting redo data from
the primary database and then applying the redo to the standby database.

Similar to a primary database, a standby database can be either a single-instance
Oracle database or an Oracle RAC database.

The types of standby databases are as follows:

• Physical standby database

Provides a physically identical copy of the primary database, with on-disk database
structures that are identical to the primary database on a block-for-block basis. The
database schema, including indexes, are the same. A physical standby database is
kept synchronized with the primary database, through Redo Apply, which
recovers the redo data received from the primary database and applies the redo to
the physical standby database.

As of Oracle Database 11g Release 1 (11.1), a physical standby database can receive
and apply redo while it is open for read-only access. A physical standby database
can therefore be used concurrently for data protection and reporting.

Additionally, as of Oracle Database 11g Release 2 (11.2.0.1), a physical standby
database can be used to install eligible one-off patches, patch set updates (PSUs),
and critical patch updates (CPUs), in rolling fashion. For more information about
this functionality, see the My Oracle Support note 1265700.1 at http://
support.oracle.com.

• Logical standby database

Contains the same logical information as the production database, although the
physical organization and structure of the data can be different. The logical standby
database is kept synchronized with the primary database through SQL Apply,
which transforms the data in the redo received from the primary database into SQL
statements and then executes the SQL statements on the standby database.

The flexibility of a logical standby database lets you upgrade Oracle Database
software (patch sets and new Oracle Database releases) and perform other database
maintenance in rolling fashion with almost no downtime. From Oracle Database
11g onward, the transient logical database rolling upgrade process can also be used
with existing physical standby databases.

Oracle Data Guard Configurations

1-2 Concepts and Administration

http://support.oracle.com
http://support.oracle.com

• Snapshot Standby Database

A snapshot standby database is a fully updatable standby database.

Like a physical or logical standby database, a snapshot standby database receives
and archives redo data from a primary database. Unlike a physical or logical
standby database, a snapshot standby database does not apply the redo data that it
receives. The redo data received by a snapshot standby database is not applied
until the snapshot standby is converted back into a physical standby database, after
first discarding any local updates made to the snapshot standby database.

A snapshot standby database is best used in scenarios that require a temporary,
updatable snapshot of a physical standby database. For example, you can use the
Oracle Real Application Testing option to capture the database workload on a
primary and then replay it for test purposes on the snapshot standby. Because redo
data received by a snapshot standby database is not applied until it is converted
back into a physical standby, the time needed to recover from a primary database
failure is directly proportional to the amount of redo data that needs to be applied.

See Also:

• Oracle Database Testing Guide for more information about Oracle Real
Application Testing and the license required to use it

1.1.3 Far Sync Instances
An Oracle Data Guard far sync instance is a remote Oracle Data Guard destination
that accepts redo from the primary database and then ships that redo to other
members of the Oracle Data Guard configuration.

A far sync instance manages a control file, receives redo into standby redo logs (SRLs),
and archives those SRLs to local archived redo logs, but that is where the similarity
with standbys ends. A far sync instance does not have user data files, cannot be
opened for access, cannot run redo apply, and can never function in the primary role
or be converted to any type of standby database.

Far sync instances are part of the Oracle Active Data Guard Far Sync feature, which
requires an Oracle Active Data Guard license.

See Also:

• Far Sync (page 5-1)

1.1.4 Zero Data Loss Recovery Appliance
Zero Data Loss Recovery Appliance (Recovery Appliance) is an enterprise-level
backup solution that provides a single repository for backups of all of your Oracle
databases.

Recovery Appliance offloads most Oracle Database backup and restore processing to a
centralized backup system. It enables you to achieve significant efficiencies in storage
utilization, performance, and manageability of backups.

Oracle Data Guard Configurations

Introduction to Oracle Data Guard 1-3

See Also:

• Zero Data Loss Recovery Appliance Administrator's Guide

1.1.5 Configuration Example
Figure 1-1 (page 1-4) shows a typical Oracle Data Guard configuration that contains
a primary database that transmits redo data to a standby database. The standby
database is remotely located from the primary database for disaster recovery and
backup operations. You can configure the standby database at the same location as the
primary database. However, for disaster recovery purposes, Oracle recommends you
configure standby databases at remote locations.

Figure 1-1 Typical Oracle Data Guard Configuration

Apply Redo

Disaster Recovery
Database Backup �
Operations

Standby�
Database

Primary�
Database

Redo�
Stream

Transmit�
Redo

Standby�
Redo Log

1.2 Oracle Data Guard Services
Oracle Data Guard uses Redo Transport Services and Apply Services to manage the
transmission of redo data, the application of redo data, and changes to the database
roles.

• Redo Transport Services (page 1-4)

Control the automated transfer of redo data from the production database to one or
more archival destinations.

• Apply Services (page 1-5)

Redo data is applied directly from standby redo log files as they are filled using
real-time apply. If standby redo log files are not configured, then redo data must
first be archived at the standby database before it is applied.

• Role Transitions (page 1-6)

Change the role of a database from a standby database to a primary database, or
from a primary database to a standby database using either a switchover or a
failover operation.

1.2.1 Redo Transport Services
Redo transport services control the automated transfer of redo data from the
production database to one or more archival destinations.

Redo transport services perform the following tasks:

• Transmit redo data from the primary system to the standby systems in the
configuration

Oracle Data Guard Services

1-4 Concepts and Administration

• Manage the process of resolving any gaps in the archived redo log files due to a
network failure

• Automatically detect missing or corrupted archived redo log files on a standby
system and automatically retrieve replacement archived redo log files from the
primary database or another standby database.

1.2.2 Apply Services
Apply services automatically apply the redo data on the standby database to maintain
consistency with the primary database.

The redo data is transmitted from the primary database and written to the standby
redo log on the standby database. Apply services also allows read-only access to the
data.

The main difference between physical and logical standby databases is the manner in
which apply services apply the archived redo data:

• For physical standby databases, Oracle Data Guard uses Redo Apply technology,
which applies redo data on the standby database using standard recovery
techniques of an Oracle database, as shown in Figure 1-2 (page 1-5).

Figure 1-2 Automatic Updating of a Physical Standby Database

Read-only�
Access

Read / Write
Transactions

Primary�
Database

Physical�
Standby�
Database

Redo Apply
Redo�

Stream

Redo�
Transport

• For logical standby databases, Oracle Data Guard uses SQL Apply technology,
which first transforms the received redo data into SQL statements and then
executes the generated SQL statements on the logical standby database, as shown
in Figure 1-3 (page 1-6).

Oracle Data Guard Services

Introduction to Oracle Data Guard 1-5

Figure 1-3 Automatic Updating of a Logical Standby Database

Read / Write
Transactions

Read / Write
Transactions

Primary
Database

Logical
Standby
Database

SQL Apply
Redo

Stream

Redo
Transport

Reports

(cannot
modify
replicated
tables)

1.2.3 Role Transitions
Using Oracle Data Guard, you can change the role of a database using either a
switchover or a failover operation.

An Oracle database operates in one of two roles: primary or standby.

A switchover is a role reversal between the primary database and one of its standby
databases. A switchover ensures no data loss. This is typically done for planned
maintenance of the primary system. During a switchover, the primary database
transitions to a standby role, and the standby database transitions to the primary role.

A failover is when the primary database is unavailable. Failover is performed only in
the event of a failure of the primary database, and the failover results in a transition of
a standby database to the primary role. The database administrator can configure
Oracle Data Guard to ensure no data loss.

The role transitions described in this documentation are invoked manually using SQL
statements. You can also use the Oracle Data Guard broker to simplify role transitions
and automate failovers using Oracle Enterprise Manager Cloud Control or the
DGMGRL command-line interface, as described in Oracle Data Guard Broker
(page 1-6).

1.3 Oracle Data Guard Broker
The Oracle Data Guard broker is a distributed management framework that automates
the creation, maintenance, and monitoring of Oracle Data Guard configurations.

You can use either the Oracle Enterprise Manager Cloud Control graphical user
interface (GUI) or the Oracle Data Guard command-line interface (DGMGRL) to:

• Create and enable Oracle Data Guard configurations, including setting up redo
transport services and apply services

• Manage an entire Oracle Data Guard configuration from any system in the
configuration

• Manage and monitor Oracle Data Guard configurations that contain Oracle RAC
primary or standby databases

Oracle Data Guard Broker

1-6 Concepts and Administration

• Simplify switchovers and failovers by allowing you to invoke them using either a
single key click in Oracle Enterprise Manager Cloud Control or a single command
in the DGMGRL command-line interface.

• Enable Oracle Data Guard fast-start failover to fail over automatically when the
primary database becomes unavailable. When fast-start failover is enabled, the
Oracle Data Guard broker determines if a failover is necessary and initiates the
failover to the specified target standby database automatically, with no need for
DBA intervention.

In addition, Oracle Enterprise Manager Cloud Control automates and simplifies:

• Creating a physical or logical standby database from a backup copy of the primary
database

• Adding new or existing standby databases to an existing Oracle Data Guard
configuration

• Monitoring log apply rates, capturing diagnostic information, and detecting
problems quickly with centralized monitoring, testing, and performance tools

See Also:

Oracle Data Guard Broker for more information

1.3.1 Using Oracle Enterprise Manager Cloud Control
Oracle Enterprise Manager Cloud Control provides a web-based interface for viewing,
monitoring, and administering primary and standby databases in an Oracle Data
Guard configuration.

Oracle Enterprise Manager Cloud Control is sometimes referred to simply as Cloud
Control.

Enterprise Manager's easy-to-use interfaces, combined with the broker's centralized
management and monitoring of the Oracle Data Guard configuration, enhance the
Oracle Data Guard solution for high availability, site protection, and data protection of
an enterprise.

Using Enterprise Manager, you can perform all management operations either locally
or remotely. You can view home pages for Oracle databases, including primary and
standby databases and instances, create or add existing standby databases, start and
stop instances, monitor instance performance, view events, schedule jobs, and perform
backup and recovery operations.

1.3.2 Using the Oracle Data Guard Command-Line Interface
The Oracle Data Guard command-line interface (DGMGRL) enables you to control
and monitor an Oracle Data Guard configuration from the DGMGRL prompt or
within scripts.

You can perform most of the activities required to manage and monitor the databases
in the configuration using DGMGRL. See Oracle Data Guard Broker for complete
DGMGRL reference information and examples.

1.4 Oracle Data Guard Protection Modes
Oracle Data Guard provides three distinct modes of data protection.

Oracle Data Guard Protection Modes

Introduction to Oracle Data Guard 1-7

In some situations, a business cannot afford to lose data regardless of the
circumstances. In other situations, the availability of the database may be more
important than any potential data loss in the unlikely event of a multiple failure.
Finally, some applications require maximum database performance at all times, and
can therefore tolerate a small amount of data loss if any component fails. The
following are brief descriptions of the protection modes available for each of these
situations:

Maximum Availability

This protection mode provides the highest level of data protection that is possible
without compromising the availability of a primary database. With Oracle Data
Guard, transactions do not commit until all redo data needed to recover those
transactions has either been received in memory or written to the standby redo log
(depending upon configuration) on at least one synchronized standby database. If the
primary database cannot write its redo stream to at least one synchronized standby
database, it operates as if it were in maximum performance mode to preserve primary
database availability until it is again able to write its redo stream to a synchronized
standby database.

This protection mode ensures zero data loss except in the case of certain double faults,
such as failure of a primary database after failure of the standby database.

Maximum Performance

This is the default protection mode. It provides the highest level of data protection that
is possible without affecting the performance of a primary database. This is
accomplished by allowing transactions to commit as soon as all redo data generated
by those transactions has been written to the online log. Redo data is also written to
one or more standby databases, but this is done asynchronously with respect to
transaction commitment, so primary database performance is unaffected by delays in
writing redo data to the standby database(s).

This protection mode offers slightly less data protection than maximum availability
mode and has minimal impact on primary database performance.

Maximum Protection

This protection mode ensures that no data loss occurs if the primary database fails. To
provide this level of protection, the redo data needed to recover a transaction must be
written to both the online redo log and to the standby redo log on at least one
synchronized standby database before the transaction commits. To ensure that data
loss cannot occur, the primary database shuts down, rather than continue processing
transactions, if it cannot write its redo stream to at least one synchronized standby
database.

All three protection modes require that specific redo transport options be used to send
redo data to at least one standby database.

See Also:

• Oracle Data Guard Protection Modes (page 6-1) for more detailed
descriptions of these modes and for information about setting the
protection mode of a primary database

Oracle Data Guard Protection Modes

1-8 Concepts and Administration

1.5 Client Failover
A high availability architecture requires a fast failover capability for databases and
database clients. Client failover encompasses failure notification, stale connection
cleanup, and transparent reconnection to the new primary database.

Oracle Database provides the capability to integrate database failover with failover
procedures that automatically redirect clients to a new primary database within
seconds of a database failover.

See Also:

• Oracle Data Guard Broker for information about configuration requirements
specific to Oracle Data Guard for Fast Application Notification (FAN), Fast
Connection Failover (FCF), and role-specific database services

• The Maximum Availability Architecture client failover best practices white
paper at

http://www.oracle.com/goto/maa

1.5.1 Application Continuity
Application Continuity is an Oracle Database feature that enables rapid and
nondisruptive replays of requests against the database after a recoverable error that
made the database session unavailable.

Application Continuity is supported for Oracle Data Guard switchovers to physical
standby databases. It is also supported for fast-start failover to physical standbys in
maximum availability data protection mode. To use Application Continuity, the
primary and standby databases must be licensed for Oracle Real Application Clusters
(Oracle RAC) or Oracle Active Data Guard.

See Also:

• Oracle Real Application Clusters Administration and Deployment Guide for
information about Application Continuity

1.6 Oracle Data Guard and Complementary Technologies
Oracle Database provides several unique technologies that complement Oracle Data
Guard to help keep business critical systems running with greater levels of availability
and data protection than when using any one solution by itself.

The following list summarizes some Oracle high-availability technologies:

• Oracle Real Application Clusters (Oracle RAC)

Oracle RAC enables multiple independent servers that are linked by an
interconnect to share access to an Oracle database, providing high availability,
scalability, and redundancy during failures. Oracle RAC and Oracle Data Guard
together provide the benefits of both system-level, site-level, and data-level
protection, resulting in high levels of availability and disaster recovery without loss
of data:

Client Failover

Introduction to Oracle Data Guard 1-9

http://www.oracle.com/goto/maa

– Oracle RAC addresses system failures by providing rapid and automatic
recovery from failures, such as node failures and instance crashes. It also
provides increased scalability for applications.

– Oracle Data Guard addresses site failures and data protection through
transactionally consistent primary and standby databases that do not share
disks, enabling recovery from site disasters and data corruption.

Many different architectures using Oracle RAC and Oracle Data Guard are possible
depending on the use of local and remote sites and the use of nodes and a
combination of logical and physical standby databases. See Oracle Data Guard and
Oracle Real Application Clusters (page D-1) and Oracle Database High Availability
Overview for Oracle RAC and Oracle Data Guard integration.

• Oracle Real Application Clusters One Node (Oracle RAC One Node)

Oracle RAC One Node provides enhanced high availability for noncluster
databases, protecting them from both planned and unplanned downtime. Oracle
RAC One Node provides the following:

– Always-on noncluster database services

– Better consolidation for database servers

– Enhanced server virtualization

– Lower cost development and test platform for full Oracle RAC

In addition, Oracle RAC One Node facilitates the consolidation of database storage,
standardizes your database environment, and, when necessary, enables you to
upgrade to a full, multinode Oracle RAC database without downtime or
disruption.

As of Oracle Database 11g Release 2 (11.2.0.2), Oracle Data Guard and Oracle Data
Guard broker are fully integrated with Oracle Real Application Clusters One Node
(Oracle RAC One Node).

• Flashback Database

The Flashback Database feature provides fast recovery from logical data corruption
and user errors. By allowing you to flash back in time, previous versions of
business information that might have been erroneously changed or deleted can be
accessed once again. This feature:

– Eliminates the need to restore a backup and roll forward changes up to the time
of the error or corruption. Instead, Flashback Database can roll back an Oracle
database to a previous point-in-time, without restoring data files.

– Provides an alternative to delaying the application of redo to protect against
user errors or logical corruptions. Therefore, standby databases can be more
closely synchronized with the primary database, thus reducing failover and
switchover times.

– Avoids the need to completely re-create the original primary database after a
failover. The failed primary database can be flashed back to a point in time
before the failover and converted to be a standby database for the new primary
database.

Oracle Data Guard and Complementary Technologies

1-10 Concepts and Administration

See Oracle Database Backup and Recovery User's Guide for information about
Flashback Database, and Specifying a Time Delay for the Application of Archived
Redo Log Files (page 8-3) for information describing the application of redo data.

• Recovery Manager (RMAN)

RMAN is an Oracle utility that simplifies backing up, restoring, and recovering
database files. Like Oracle Data Guard, RMAN is a feature of the Oracle database
and does not require separate installation. Oracle Data Guard is well integrated
with RMAN, allowing you to:

– Use the Recovery Manager DUPLICATE command to create a standby database
from backups of your primary database.

– Take backups on a physical standby database instead of the production
database, relieving the load on the production database and enabling efficient
use of system resources on the standby site. Moreover, backups can be taken
while the physical standby database is applying redo.

– Help manage archived redo log files by automatically deleting the archived
redo log files used for input after performing a backup.

See Creating a Standby Database with Recovery Manager (page E-1).

• Oracle Global Data Services (GDS)

Oracle Global Data Services (GDS) applies the Oracle RAC service model to pools
of globally distributed databases, providing dynamic load balancing, failover, and
centralized service management for a set of replicated databases that offer common
services. The set of databases can include Oracle RAC and single-instance Oracle
databases interconnected through Oracle Data Guard, Oracle GoldenGate, or any
other replication technology.

GDS is integrated with Oracle Data Guard broker. This allows role-specific global
services to be automatically started and stopped as appropriate when role
transitions occur within an Oracle Data Guard broker configuration.

GDS allows the specification of a replication lag limit for a global service. If the lag
limit is exceeded at a given replica, the global service is temporarily stopped at that
replica and new client requests are routed to a replica that satisfies the lag limit.
The global service is automatically restarted at the original replica when the
replication lag becomes less than the lag limit.

See Oracle Database Global Data Services Concepts and Administration Guide for more
information about GDS.

1.7 Oracle Active Data Guard Supports Oracle Sharding
Oracle Sharding allows you to horizontally partition data across multiple independent
Oracle databases and route database connection requests to databases that contain
appropriate data. Oracle Data Guard and Oracle Sharding are integrated technologies.

Sharding splits data into multiple independent databases (shards) that do not share
any physical resources. Sharding is usually combined with data replication, such as
that provided by Oracle Data Guard. Oracle Data Guard provides fast single-master
replication of an entire Oracle Database. In an Oracle Data Guard configuration there
is an updateable primary database and one or more standby databases which can be
open for read-only access. Replication can improve performance and scalability of a
sharded database and provide high-availability and disaster recovery. Replication
topology in a sharded database is specified using the -repl option on the GDSCTL

Oracle Active Data Guard Supports Oracle Sharding

Introduction to Oracle Data Guard 1-11

create shardcatalog command. The default replication topology is Oracle Data
Guard.

Oracle Sharding supports two methods of sharding: system-managed and composite.
The sharding method is specified with the GDSCTL command CREATE
SHARDCATALOG.

Shards that belong to a shardgroup are usually located in the same data center. An
entire shardgroup can be fully replicated to one or more shardgroups in the same or
different data centers.

System-Managed Sharding With Oracle Data Guard Replication

In system-managed sharding, the logical unit of replication is a group of shards called
shardgroup. In system-managed sharding, a shardgroup contains all data stored in the
sharded database. The data is automatically distributed across shards using
partitioning by consistent hash (consistent hash is a partitioning strategy commonly
used in scalable distributed systems). The partitioning algorithm evenly and randomly
distributes data across shards. The following figure illustrates how Oracle Data Guard
replication is used with system-managed sharding. There is a primary shardgroup –
Shardgroup 1 and two standby shardgroups - Shardgroup 2 and Shardgroup 3.

Figure 1-4 System-Managed Sharding With Oracle Data Guard Replication

Datacenter 1

Datacenter 2

Shardgroup 1

Shardgroup 2

Shardgroup 3

1 2

5

3

4 6

7 8 9

Shardgroup 1 consists of Oracle Data Guard primary databases (shards 1, 2, 3).
Shardgroup 2 consists of local standby databases (shards 4, 5, 6) which are located in
the same datacenter and configured for synchronous replication. And Shardgroup 3
consists of remote standbys (shards 7, 8, 9) located in a different datacenter and
configured for asynchronous replication. The default replication topology is Oracle
Data Guard. To open each standby in the configuration in read-only mode, you must
enable Oracle Active Data Guard. This is done using the -deploy_as
ACTIVE_STANDBY option on the GDSCTL add shardgroup command.

The sharded database shown in the previous figure consists of three sets of replicated
shards: {1, 4, 7}, {2, 5, 8} and {3, 6, 9}. Each set of replicated shards is managed as an
Oracle Data Guard broker configuration with fast-start failover enabled.

Oracle Active Data Guard Supports Oracle Sharding

1-12 Concepts and Administration

To deploy replication, you only need to specify the properties of shardgroups (region,
role, etc) and add shards to them. Oracle Sharding automatically configures Oracle
Data Guard and starts a fast-start failover observer for each set of replicated shards. It
also provides load balancing of read-only workloads, role-based global services, and
replication lag and locality-based routing.

To deploy the configuration shown in the previous figure, execute the following
GDSCTL commands:

CREATE SHARDCATALOG –database host00:1521:shardcat –region dc1, dc2

ADD GSM -gsm gsm1 -listener 1571 –catalog host00:1521:shardcat –region dc1
ADD GSM -gsm gsm2 -listener 1571 –catalog host00:1521:shardcat –region dc2

ADD SHARDGROUP -shardgroup shardgroup1 -region dc1 -deploy_as primary
ADD SHARDGROUP -shardgroup shardgroup2 -region dc1 -deploy_as standby
ADD SHARDGROUP -shardgroup shardgroup3 -region dc2 -deploy_as standby

CREATE SHARD -shardgroup shardgroup1 -destination host01 -credential oracle_cred -
netparamfile /home/oracle/netca_dbhome.rsp
CREATE SHARD -shardgroup shardgroup1 -destination host02 -credential oracle_cred -
netparamfile /home/oracle/netca_dbhome.rsp
CREATE SHARD -shardgroup shardgroup1 -destination host03 -credential oracle_cred -
netparamfile /home/oracle/netca_dbhome.rsp
……
CREATE SHARD -shardgroup shardgroup3 -destination host09 -credential oracle_cred -
netparamfile /home/oracle/netca_dbhome.rsp

DEPLOY

Composite Sharding With Oracle Data Guard Replication

Composite sharding combines features of system-managed sharding and user-
managed sharding. In composite sharding the logical unit of replication is a group of
shards called a shardgroup (as in system-managed sharding). Also in composite
sharding, a sharded database consists of multiple shardspaces (as in user-managed
sharding), however, each shardspace, instead of replicated shards, contains replicated
shardgroups as shown in the following figure.

Oracle Active Data Guard Supports Oracle Sharding

Introduction to Oracle Data Guard 1-13

Figure 1-5 Composite Sharding With Oracle Data Guard Replication

Shardgroup
A1

Shardgroup
B1

Shardgroup
A2

Shardgroup
B2

Shardgroup
B3

Shardgroup
A3

Shardspace A Shardspace B

Datacenter
1

Datacenter
2

Datacenter
3

To deploy the configuration shown in the previous figure, execute the following
GDSCTL commands:

CREATE SHARDCATALOG -sharding composite –database host00:1521:cat –region dc1, dc2,
dc3

ADD GSM -gsm gsm1 -listener 1571 –catalog host00:1521:cat –region dc1
ADD GSM -gsm gsm2 -listener 1571 –catalog host00:1521:cat –region dc2
ADD GSM -gsm gsm3 -listener 1571 –catalog host00:1521:cat –region dc3

ADD SHARDSPACE -shardspace shardspace_a
ADD SHARDSPACE -shardspace shardspace_b

ADD SHARDGROUP -shardgroup shardgroup_a1 –shardspace shardspace_a -region dc1
-deploy_as primary
ADD SHARDGROUP -shardgroup shardgroup_a2 –shardspace shardspace_a -region dc1 -
deploy_as standby
ADD SHARDGROUP -shardgroup shardgroup_a3 –shardspace shardspace_a -region dc3 -
deploy_as standby
ADD SHARDGROUP -shardgroup shardgroup_b1 –shardspace shardspace_a -region dc1
-deploy_as primary
ADD SHARDGROUP -shardgroup shardgroup_b2 –shardspace shardspace_a -region dc1 -
deploy_as standby
ADD SHARDGROUP -shardgroup shardgroup_b3 –shardspace shardspace_a -region dc2 -
deploy_as standby

Oracle Active Data Guard Supports Oracle Sharding

1-14 Concepts and Administration

CREATE SHARD -shardgroup shardgroup_a1 -destination host01 –credential orcl_cred -
netparamfile /home/oracle/netca_dbhome.rsp
……
CREATE SHARD -shardgroup shardgroup_b3 -destination host09 -credential
orcl_cred -netparamfile /home/oracle/netca_dbhome.rsp

DEPLOY

Related Topics:

Oracle Database Administrator’s Guide

Oracle Database Global Data Services Concepts and Administration Guide

1.8 Summary of Oracle Data Guard Benefits
Oracle Data Guard offers these benefits:

• Disaster recovery, data protection, and high availability

Oracle Data Guard provides an efficient and comprehensive disaster recovery and
high availability solution. Easy-to-manage switchover and failover capabilities
allow role reversals between primary and standby databases, minimizing the
downtime of the primary database for planned and unplanned outages.

• Complete data protection

Oracle Data Guard can ensure zero data loss, even in the face of unforeseen
disasters. A standby database provides a safeguard against unplanned outages of
all types, including data corruption and administrative error. Because the redo data
received from a primary database is validated at a standby database, physical
corruptions that can occur at a primary database are not propagated to the standby
database. Additional validation performed at a standby database also prevents
logical intra-block corruptions and lost-write corruptions from propagating to the
standby. Similarly, administrative errors such as accidental file deletions by a
storage administrator are not propagated to a standby database. A physical
standby database can also be used to protect against user errors either by delaying
the redo apply or by using Flashback Database to rewind the standby and extract a
good copy of the data.

• Efficient use of system resources

The standby database tables that are updated with redo data received from the
primary database can be used for other tasks such as backups, reporting,
summations, and queries, thereby reducing the primary database workload
necessary to perform these tasks, saving valuable CPU and I/O cycles.

• Flexibility in data protection to balance availability against performance
requirements

Oracle Data Guard offers maximum protection, maximum availability, and
maximum performance modes to help enterprises balance data availability against
system performance requirements.

• Automatic gap detection and resolution

If connectivity is lost between the primary and one or more standby databases (for
example, due to network problems), then redo data being generated on the primary
database cannot be sent to those standby databases. After a connection is
reestablished, the missing archived redo log files (referred to as a gap) are

Summary of Oracle Data Guard Benefits

Introduction to Oracle Data Guard 1-15

automatically detected by Oracle Data Guard, which then automatically transmits
the missing archived redo log files to the standby databases. The standby databases
are synchronized with the primary database, without manual intervention by the
DBA.

• Centralized and simple management

The Oracle Data Guard broker provides a graphical user interface and a command-
line interface to automate management and operational tasks across multiple
databases in an Oracle Data Guard configuration. The broker also monitors all of
the systems within a single Oracle Data Guard configuration.

• Integration with Oracle Database

Oracle Data Guard is a feature of Oracle Database Enterprise Edition and does not
require separate installation.

• Automatic role transitions

When fast-start failover is enabled, the Oracle Data Guard broker automatically
fails over to a synchronized standby site in the event of a disaster at the primary
site, requiring no intervention by the DBA. In addition, applications are
automatically notified of the role transition.

Summary of Oracle Data Guard Benefits

1-16 Concepts and Administration

2
Getting Started with Oracle Data Guard

Considerations when getting started with Oracle Data Guard are discussed in the
following topics:

• Standby Database Types (page 2-1)

• User Interfaces for Administering Oracle Data Guard Configurations (page 2-4)

• Oracle Data Guard Operational Prerequisites (page 2-5)

• Standby Database Directory Structure Considerations (page 2-7)

• Moving the Location of Online Data Files (page 2-9)

2.1 Standby Database Types
A standby database is a transactionally consistent copy of an Oracle production
database that is initially created from a backup copy of the primary database.

Once the standby database is created and configured, Oracle Data Guard
automatically maintains the standby database by transmitting primary database redo
data to the standby system, where the redo data is applied to the standby database.

A standby database can be one of these types: a physical standby database, a logical
standby database, or a snapshot standby database. If needed, either a physical or a
logical standby database can assume the role of the primary database and take over
production processing. An Oracle Data Guard configuration can include any
combination of these types of standby databases.

2.1.1 Physical Standby Databases
A physical standby database is an exact, block-for-block copy of a primary database.

A physical standby is maintained as an exact copy through a process called Redo
Apply, in which redo data received from a primary database is continuously applied
to a physical standby database using the database recovery mechanisms.

A physical standby database can be opened for read-only access and used to offload
queries from a primary database. If a license for the Oracle Active Data Guard option
has been purchased, Redo Apply can be active while the physical standby database is
open, thus allowing queries to return results that are identical to what would be
returned from the primary database. This capability is known as the real-time query
feature.

Getting Started with Oracle Data Guard 2-1

See Also:

• "Opening a Physical Standby Database (page 10-2)"

• Oracle Database Licensing Information for more information about Oracle
Active Data Guard

Benefits of a Physical Standby Database

A physical standby database provides the following benefits:

• Disaster recovery and high availability

A physical standby database is a robust and efficient disaster recovery and high
availability solution. Easy-to-manage switchover and failover capabilities allow
easy role reversals between primary and physical standby databases, minimizing
the downtime of the primary database for planned and unplanned outages.

• Data protection

A physical standby database can prevent data loss, even in the face of unforeseen
disasters. A physical standby database supports all datatypes, and all DDL and
DML operations that the primary database can support. It also provides a
safeguard against data corruptions and user errors. Storage level physical
corruptions on the primary database are not propagated to a standby database.
Similarly, logical corruptions or user errors that would otherwise cause data loss
can be easily resolved.

• Reduction in primary database workload

Oracle Recovery Manager (RMAN) can use a physical standby database to off-load
backups from a primary database, saving valuable CPU and I/O cycles.

A physical standby database can also be queried while Redo Apply is active, which
allows queries to be offloaded from the primary to a physical standby, further
reducing the primary workload.

• Performance

The Redo Apply technology used by a physical standby database is the most
efficient mechanism for keeping a standby database updated with changes being
made at a primary database because it applies changes using low-level recovery
mechanisms which bypass all SQL level code layers.

2.1.2 Logical Standby Databases
A logical standby database is initially created as an identical copy of the primary
database, but it later can be altered to have a different structure.

The logical standby database is updated by executing SQL statements. The flexibility
of a logical standby database lets you upgrade Oracle Database software (patch sets
and new Oracle Database releases) and perform other database maintenance in rolling
fashion with almost no downtime. From Oracle Database 11g onward, the transient
logical database rolling upgrade process can also be used with existing physical
standby databases.

Oracle Data Guard automatically applies information from the archived redo log file
or standby redo log file to the logical standby database by transforming the data in the

Standby Database Types

2-2 Concepts and Administration

log files into SQL statements and then executing the SQL statements on the logical
standby database. Because the logical standby database is updated using SQL
statements, it must remain open. Although the logical standby database is opened in
read/write mode, its target tables for the regenerated SQL are available only for read-
only operations. While those tables are being updated, they can be used
simultaneously for other tasks such as reporting, summations, and queries.

A logical standby database has some restrictions on data types, types of tables, and
types of DDL and DML operations. See Data Type and DDL Support on a Logical
Standby Database (page C-1) for information on data type and DDL support on
logical standby databases.

Benefits of a Logical Standby Database

A logical standby database is ideal for high availability (HA) while still offering data
recovery (DR) benefits. Compared to a physical standby database, a logical standby
database provides significant additional HA benefits:

• Minimizing downtime on software upgrades

A logical standby database is ideal for upgrading an Oracle Data Guard
configuration in a rolling fashion. Logical standby can be used to greatly reduce
downtime associated with applying patchsets and new software releases. A logical
standby can be upgraded to the new release and then switched over to become the
active primary. This allows full availability while the old primary is converted to a
logical standby and the patchset is applied. Logical standbys provide the
underlying platform for the DBMS_ROLLING PL/SQL package, which provides
functionality that allows you to make your Oracle Data Guard configuration highly
available in the context of rolling upgrades and other storage reorganization.

• Support for reporting and decision support requirements

A key benefit of logical standby is that significant auxiliary structures can be
created to optimize the reporting workload; structures that could have a
prohibitive impact on the primary's transactional response time. A logical standby
can have its data physically reorganized into a different storage type with different
partitioning, have many different indexes, have on-demand refresh materialized
views created and maintained, and can be used to drive the creation of data cubes
and other OLAP data views. However, a logical standby database does not allow
for any transformation of your data (such as replicating only a subset of columns or
allowing additional columns on user tables). For those types of reporting activities,
Oracle GoldenGate is Oracle's preferred solution.

2.1.3 Snapshot Standby Databases
A snapshot standby database is a type of updatable standby database that provides
full data protection for a primary database.

A snapshot standby database receives and archives, but does not apply, redo data
from its primary database. Redo data received from the primary database is applied
when a snapshot standby database is converted back into a physical standby database,
after discarding all local updates to the snapshot standby database.

A snapshot standby database diverges from its primary database over time because
redo data from the primary database is not applied as it is received. Local updates to
the snapshot standby database cause additional divergence. The data in the primary
database is fully protected however, because a snapshot standby can be converted
back into a physical standby database at any time, and the redo data received from the
primary is then applied.

Standby Database Types

Getting Started with Oracle Data Guard 2-3

Benefits of a Snapshot Standby Database

A snapshot standby database is a fully updatable standby database that provides
disaster recovery and data protection benefits that are similar to those of a physical
standby database. Snapshot standby databases are best used in scenarios where the
benefit of having a temporary, updatable snapshot of the primary database justifies
the increased time to recover from primary database failures.

The benefits of using a snapshot standby database include the following:

• It provides an exact replica of a production database for development and testing
purposes, while maintaining data protection at all times. You can use the Oracle
Real Application Testing option to capture primary database workload and then
replay it for test purposes on the snapshot standby.

• It can be easily refreshed to contain current production data by converting to a
physical standby and resynchronizing.

The ability to create a snapshot standby, test, resynchronize with production, and then
again create a snapshot standby and test, is a cycle that can be repeated as often as
desired. The same process can be used to easily create and regularly update a snapshot
standby for reporting purposes where read/write access to data is required.

See Also:

• Oracle Database Testing Guide for more information about Oracle Real
Application Testing and the license required to use it

2.2 User Interfaces for Administering Oracle Data Guard Configurations
Oracle Data Guard provides several interfaces that you can use to configure,
implement, and manage an Oracle Data Guard configuration.

• Oracle Enterprise Manager Cloud Control

Oracle Enterprise Manager Cloud Control provides a GUI interface for the Oracle
Data Guard broker that automates many of the tasks involved in creating,
configuring, and monitoring an Oracle Data Guard environment. See the Oracle
Enterprise Manager Cloud Control online Help for information about the GUI and
its wizards.

• SQL*Plus Command-line interface

Several SQL*Plus statements use the STANDBY keyword to specify operations on a
standby database. Other SQL statements do not include standby-specific syntax,
but they are useful for performing operations on a standby database. See SQL
Statements Relevant to Oracle Data Guard (page 18-1) for a list of the relevant
statements.

• Initialization parameters

Several initialization parameters are used to define the Oracle Data Guard
environment. See Initialization Parameters (page 16-1) for a list of the relevant
initialization parameters.

• Oracle Data Guard broker command-line interface (DGMGRL)

User Interfaces for Administering Oracle Data Guard Configurations

2-4 Concepts and Administration

The DGMGRL command-line interface is an alternative to using Oracle Enterprise
Manager Cloud Control. The DGMGRL command-line interface is useful if you
want to use the broker to manage an Oracle Data Guard configuration from batch
programs or scripts. See Oracle Data Guard Broker for complete information.

2.3 Oracle Data Guard Operational Prerequisites
The use of Oracle Data Guard requires certain hardware and software prerequisites.

• Hardware and Operating System Requirements (page 2-5)

• Oracle Software Requirements (page 2-5)

2.3.1 Hardware and Operating System Requirements
The same release of Oracle Database Enterprise Edition must be installed on the
primary database and all standby databases, except during rolling database upgrades
using logical or transient logical standby databases.

As of Oracle Database 11g, Oracle Data Guard provides increased flexibility for Oracle
Data Guard configurations in which the primary and standby systems may have
different CPU architectures, operating systems (for example, Windows and Linux),
operating system binaries (32-bit/64-bit), or Oracle database binaries (32-bit/64-bit).

This increased mixed-platform flexibility is subject to the current restrictions
documented in the My Oracle Support notes 413484.1 and 1085687.1 at http://
support.oracle.com.

Note 413484.1 discusses mixed-platform support and restrictions for physical
standbys.

Note 1085687.1 discusses mixed-platform support and restrictions for logical standbys.

See Also:

• Using SQL Apply to Upgrade the Oracle Database (page 13-1) for
information about rolling database upgrades

2.3.2 Oracle Software Requirements
To use Oracle Data Guard, you must meet certain Oracle software requirements.

• Oracle Data Guard is available only as a feature of Oracle Database Enterprise
Edition. It is not available with Oracle Database Standard Edition.

Note:

It is possible to simulate a standby database environment with databases
running Oracle Database Standard Edition. You can do this by manually
transferring archived redo log files using an operating system copy utility or
using custom scripts that periodically send archived redo log files from one
database to the other, registering them, and using media recovery to roll
forward the copy of the database at the disaster recovery site. Such a
configuration does not provide the ease-of-use, manageability, performance,
and disaster-recovery capabilities available with Oracle Data Guard.

Oracle Data Guard Operational Prerequisites

Getting Started with Oracle Data Guard 2-5

http://support.oracle.com
http://support.oracle.com

• Using Oracle Data Guard SQL Apply, you can perform a rolling upgrade of the
Oracle database software from patch set release n (minimally, this must be release
10.1.0.3) to any higher versioned patch set or major version release. During a
rolling upgrade, you can run different releases of the Oracle database on the
primary and logical standby databases while you upgrade them, one at a time. For
complete information, see Using SQL Apply to Upgrade the Oracle Database
(page 13-1) and the ReadMe file for the applicable Oracle Database 10g patch set
release.

• The COMPATIBLE database initialization parameter must be set to the same value
on all databases in an Oracle Data Guard configuration, except when using a
logical standby database, which can have a higher COMPATIBLE setting than the
primary database.

• The primary database must run in ARCHIVELOG mode. See Oracle Database
Administrator's Guide for more information.

• The primary database can be a single instance database or an Oracle Real
Application Clusters (Oracle RAC) database. The standby databases can be single
instance databases or Oracle RAC databases, and these standby databases can be a
mix of physical, logical, and snapshot types.

• Each primary database and standby database must have its own control file.

• If a standby database is located on the same system as the primary database, the
archival directories for the standby database must use a different directory
structure than the primary database. Otherwise, the standby database may
overwrite the primary database files.

• To protect against unlogged direct writes in the primary database that cannot be
propagated to the standby database, turn on FORCE LOGGING at the primary
database before performing data file backups for standby creation. Keep the
database in FORCE LOGGING mode as long as the standby database is required.

• The user accounts you use to manage the primary and standby database instances
must have either the SYSDG or SYSDBA administrative privilege.

• For operational simplicity, Oracle recommends that when you set up Oracle
Automatic Storage Management (Oracle ASM) and Oracle Managed Files (OMF) in
an Oracle Data Guard configuration that you set it up symmetrically on the
primary and standby database(s). If any database in the Oracle Data Guard
configuration uses Oracle ASM, OMF, or both, then every database in the
configuration should use Oracle ASM, OMF, or both, respectively, unless you are
purposely implementing a mixed configuration for migration or maintenance
purposes. See the scenario in Creating a Standby Database That Uses OMF or
Oracle ASM (page 15-12) for more information.

Note:

Because some applications that perform updates involving time-based data
cannot handle data entered from multiple time zones, consider setting the
time zone for the primary and remote standby systems to be the same to
ensure the chronological ordering of records is maintained after a role
transition.

Oracle Data Guard Operational Prerequisites

2-6 Concepts and Administration

2.4 Standby Database Directory Structure Considerations
The directory structure of the various standby databases is important because it
determines the path names for the standby data files, archived redo log files, and
standby redo log files.

If possible, the data files, log files, and control files on the primary and standby
systems should have the same names and path names and use Optimal Flexible
Architecture (OFA) naming conventions. The archival directories on the standby
database should also be identical between sites, including size and structure. This
strategy allows other operations such as backups, switchovers, and failovers to execute
the same set of steps, reducing the maintenance complexity.

See Also:

Your operating system-specific Oracle documentation for more information
about Optimal Flexible Architecture (OFA)

Otherwise, you must set the filename conversion parameters (as shown in Table 2-1
(page 2-8)) or rename the data file. Nevertheless, if you need to use a system with a
different directory structure or place the standby and primary databases on the same
system, you can do so with a minimum of extra administration.

The three basic configuration options are illustrated in Figure 2-1 (page 2-8). These
include:

• A standby database on the same system as the primary database that uses a
different directory structure than the primary system. This is illustrated in
Figure 2-1 (page 2-8) as Standby1.

If you have a standby database on the same system as the primary database, you
must use a different directory structure. Otherwise, the standby database attempts
to overwrite the primary database files.

• A standby database on a separate system that uses the same directory structure as
the primary system. This is illustrated in Figure 2-1 (page 2-8) as Standby2. This
is the recommended method.

• A standby database on a separate system that uses a different directory structure
than the primary system. This is illustrated in Figure 2-1 (page 2-8) as Standby3.

Note:

For operational simplicity, Oracle recommends that when you set up Oracle
Automatic Storage Management (Oracle ASM) and Oracle Managed Files
(OMF) in an Oracle Data Guard configuration that you set it up symmetrically
on the primary and standby database(s). If any database in the Oracle Data
Guard configuration uses Oracle ASM, OMF, or both, then every database in
the configuration should use Oracle ASM, OMF, or both, respectively, unless
you are purposely implementing a mixed configuration for migration or
maintenance purposes. See the scenario in Creating a Standby Database That
Uses OMF or Oracle ASM (page 15-12) for more information.

Standby Database Directory Structure Considerations

Getting Started with Oracle Data Guard 2-7

Figure 2-1 Possible Standby Configurations

 Primary1

/oracle/dbs

Standby1

/oracle/standby/dbs

Standby3

/disk2/FS3/oracle/dbs

Standby2

/oracle/dbs

Computer System at�
Location 3

Computer System at�
Location 2

Computer System at�
Location 1

Oracle

Net

Oracle

Net

Table 2-1 (page 2-8) describes possible configurations of primary and standby
databases and the consequences of each.

Table 2-1 Standby Database Location and Directory Options

Standby
System

Directory
Structure

Consequences

Same as
primary
system

Different
than
primary
system
(required)

• You can either manually rename files or set up the
DB_FILE_NAME_CONVERT and LOG_FILE_NAME_CONVERT
initialization parameters on the standby database to
automatically update the path names for primary database data
files and archived redo log files and standby redo log files in
the standby database control file. (See Set Primary Database
Initialization Parameters (page 3-4).)

• The standby database does not protect against disasters that
destroy the system on which the primary and standby
databases reside, but it does provide switchover capabilities for
planned maintenance.

Standby Database Directory Structure Considerations

2-8 Concepts and Administration

Table 2-1 (Cont.) Standby Database Location and Directory Options

Standby
System

Directory
Structure

Consequences

Separate
system

Same as
primary
system

• You do not need to rename primary database files, archived
redo log files, and standby redo log files in the standby
database control file, although you can still do so if you want a
new naming scheme (for example, to spread the files among
different disks).

• By locating the standby database on separate physical media,
you safeguard the data on the primary database against
disasters that destroy the primary system.

Separate
system

Different
than
primary
system

• You can either manually rename files or set up the
DB_FILE_NAME_CONVERT and LOG_FILE_NAME_CONVERT
initialization parameters on the standby database to
automatically rename the data files (see Set Primary Database
Initialization Parameters (page 3-4)).

• By locating the standby database on separate physical media,
you safeguard the data on the primary database against
disasters that destroy the primary system.

2.5 Moving the Location of Online Data Files
You can move the location of an online data file from one physical file to another
physical file while the database is actively accessing the file.

To move the location of the file, you use the SQL statement ALTER DATABASE MOVE
DATAFILE.

An operation performed with the ALTER DATABASE MOVE DATAFILE statement
increases the availability of the database because it does not require that the database
be shut down to move the location of an online data file.

You can perform an online move data file operation independently on the primary
and on the standby (either physical or logical). The standby is not affected when a data
file is moved on the primary, and vice versa.

On a physical standby, an online move data file operation can be executed while
standby recovery is running if the instance that opens the database is in read-only
mode. This functionality requires an Oracle Active Data Guard license.

2.5.1 Restrictions When Moving the Location of Online Data Files
There are restrictions when you move the location of online data files.

• You cannot use the SQL ALTER DATABASE MOVE DATAFILE command to
rename or relocate an online data file on a physical standby that is a fast-start
failover target if the standby is mounted, but not open.

• The online move data file operation cannot be executed on physical standby while
standby recovery is running in a mounted but not open instance.

• The online move data file operation may get aborted if the standby recovery
process takes the data file offline, shrinks the file, or drops the tablespace.

Moving the Location of Online Data Files

Getting Started with Oracle Data Guard 2-9

• On a primary database, the online move data file operation cannot be executed on a
file that belongs to a pluggable database (PDB) that has been closed on all instances
of the primary database.

See Also:

• Oracle Database Administrator's Guide for more information about renaming
and relocating online data files

• Oracle Database SQL Language Reference for more information about the
ALTER DATABASE MOVE DATAFILE statement

Moving the Location of Online Data Files

2-10 Concepts and Administration

3
Creating a Physical Standby Database

You can manually create a physical standby database in maximum performance mode
using asynchronous redo transport and real-time apply, the default Oracle Data Guard
configuration.

See the following main topics:

• Preparing the Primary Database for Standby Database Creation (page 3-2)

• Step-by-Step Instructions for Creating a Physical Standby Database (page 3-6)

• Post-Creation Steps (page 3-12)

• Using DBCA to Create a Data Guard Standby (page 3-13)

• Creating a Physical Standby of a CDB (page 3-14)

• Creating a PDB in a Primary Database (page 3-16)

See Also:

• Oracle Database Administrator's Guide for information about creating and
using server parameter files

• Enterprise Manager online help system for information about using the
Oracle Data Guard broker graphical user interface (GUI) to automatically
create a physical standby database

• Creating a Standby Database with Recovery Manager (page E-1) for
information about alternative methods of creating a physical standby
database that automate much of the process by using Oracle Recovery
Manager (RMAN) and either backup based duplication or active
duplication over a network

• Oracle Data Guard Broker for information about configuring a database so
that it can be managed by Oracle Data Guard broker

Note:

If you are working in a multitenant container database (CDB) environment,
then see Creating a Physical Standby of a CDB (page 3-14) for information
about behavioral differences from non-CDB environments. For instance, in a
CDB environment, many DBA views have analogous CDB views that you
should use instead.

Creating a Physical Standby Database 3-1

3.1 Preparing the Primary Database for Standby Database Creation
Before you create a standby database you must first ensure the primary database is
properly configured.

Perform the following tasks on the primary database to prepare for physical standby
database creation:

• Enable Forced Logging (page 3-2)

• Configure Redo Transport Authentication (page 3-2)

• Configure the Primary Database to Receive Redo Data (page 3-3)

• Set Primary Database Initialization Parameters (page 3-4)

• Enable Archiving (page 3-6)

Note:

Perform these preparatory tasks only once. After you complete these steps, the
database is prepared to serve as the primary database for one or more standby
databases.

3.1.1 Enable Forced Logging
As part of preparing the primary database for standby database creation, you place the
primary database in FORCE LOGGING mode.

You can do this after database creation using the following SQL statement:

SQL> ALTER DATABASE FORCE LOGGING;

When you issue this statement, the primary database must at least be mounted (and it
can also be open). This statement can take a considerable amount of time to complete,
because it waits for all unlogged direct write I/O to finish.

See Also:

• Oracle Database Administrator's Guide for more information about the
ramifications of specifying FORCE LOGGING mode

3.1.2 Configure Redo Transport Authentication
Oracle Data Guard uses Oracle Net sessions to transport redo data and control
messages between the members of an Oracle Data Guard configuration.

These redo transport sessions are authenticated using either the Secure Sockets Layer
(SSL) protocol or a remote login password file.

SSL is used to authenticate redo transport sessions between two databases if:

• The databases are members of the same Oracle Internet Directory (OID) enterprise
domain and it allows the use of current user database links

Preparing the Primary Database for Standby Database Creation

3-2 Concepts and Administration

• The LOG_ARCHIVE_DEST_n, and FAL_SERVER database initialization parameters
that correspond to the databases use Oracle Net connect descriptors configured for
SSL

• Each database has an Oracle wallet or supported hardware security module that
contains a user certificate with a distinguished name (DN) that matches the DN in
the OID entry for the database

If the SSL authentication requirements are not met, then each member of an Oracle
Data Guard configuration must be configured to use a remote login password file and
every physical standby database in the configuration must have an up-to-date copy of
the password file from the primary database.

Note:

As of Oracle Database 12c Release 2 (12.2.0.1) password file changes done on a
primary database are automatically propagated to standby databases. The
only exception to this is far sync instances. Updated password files must still
be manually copied to far sync instances because far sync instances receive
redo, but do not apply it. Once the password file is up-to-date at the far sync
instance, the redo is automatically propagated to any standby databases that
are set up to receive redo logs from that far sync instance. The password file is
updated on the standby when the redo is applied.

See Also:

• Oracle Database Administrator's Guide and Oracle Database Reference for more
information about remote login password files

• Oracle Database Security Guide for more information about SSL

• Oracle Database Net Services Administrator's Guide for more information
about Oracle Net Services

3.1.3 Configure the Primary Database to Receive Redo Data
It is a best practice to configure the primary database to receive redo if this is the first
time a standby database is added to the configuration.

The primary database can then quickly transition to the standby role and begin
receiving redo data, if necessary.

To create a standby redo log, use the SQL ALTER DATABASE ADD STANDBY LOGFILE
statement. For example:

SQL> ALTER DATABASE ADD STANDBY LOGFILE ('/oracle/dbs/slog1.rdo') SIZE 500M;

SQL> ALTER DATABASE ADD STANDBY LOGFILE ('/oracle/dbs/slog2.rdo') SIZE 500M;

See Configuring an Oracle Database to Receive Redo Data (page 7-7) for a
discussion of how to determine the size of each log file and the number of log groups,
as well as other background information about managing standby redo logs.

Preparing the Primary Database for Standby Database Creation

Creating a Physical Standby Database 3-3

3.1.4 Set Primary Database Initialization Parameters
On the primary database, you define initialization parameters that control redo
transport services while the database is in the primary role.

There are additional parameters you need to add that control the receipt of the redo
data and apply services when the primary database is transitioned to the standby role.

The following example shows the primary role initialization parameters that you
maintain on the primary database. This example represents an Oracle Data Guard
configuration with a primary database located in Chicago and one physical standby
database located in Boston. The parameters shown in this example are valid for the
Chicago database when it is running in either the primary or the standby database
role. The configuration examples use the names shown in the following table:

Database DB_UNIQUE_NAME Oracle Net Service Name

Primary chicago chicago

Physical standby boston boston

DB_NAME=chicago
DB_UNIQUE_NAME=chicago
LOG_ARCHIVE_CONFIG='DG_CONFIG=(chicago,boston)'
CONTROL_FILES='/arch1/chicago/control1.ctl', '/arch2/chicago/control2.ctl'
LOG_ARCHIVE_DEST_1=
 'LOCATION=USE_DB_RECOVERY_FILE_DEST
 VALID_FOR=(ALL_LOGFILES,ALL_ROLES)
 DB_UNIQUE_NAME=chicago'
LOG_ARCHIVE_DEST_2=
 'SERVICE=boston ASYNC
 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
 DB_UNIQUE_NAME=boston'
REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE
LOG_ARCHIVE_FORMAT=%t_%s_%r.arc

These parameters control how redo transport services transmit redo data to the
standby system and the archiving of redo data on the local file system. Note that the
example specifies asynchronous (ASYNC) network transmission to transmit redo data
on the LOG_ARCHIVE_DEST_2 initialization parameter. These are the recommended
settings and require standby redo log files (see Configure the Primary Database to
Receive Redo Data (page 3-3)).

The following shows the additional standby role initialization parameters on the
primary database. These parameters take effect when the primary database is
transitioned to the standby role.

FAL_SERVER=boston
DB_FILE_NAME_CONVERT='/boston/','/chicago/'
LOG_FILE_NAME_CONVERT='/boston/','/chicago/'
STANDBY_FILE_MANAGEMENT=AUTO

Specifying the initialization parameters shown above sets up the primary database to
resolve gaps, converts new data file and log file path names from a new primary
database, and archives the incoming redo data when this database is in the standby
role. With the initialization parameters for both the primary and standby roles set as
described, none of the parameters need to change after a role transition.

Preparing the Primary Database for Standby Database Creation

3-4 Concepts and Administration

The following table provides a brief explanation about each parameter setting shown
in the previous two examples.

Parameter Recommended Setting

DB_NAME On a primary database, specify the name used when the database was created.
On a physical standby database, use the DB_NAME of the primary database.

DB_UNIQUE_NAME Specify a unique name for each database. This name stays with the database
and does not change, even if the primary and standby databases reverse roles.

LOG_ARCHIVE_CONFIG The DG_CONFIG attribute of this parameter must be explicitly set on each
database in an Oracle Data Guard configuration to enable full Oracle Data
Guard functionality. Set DG_CONFIG to a text string that contains the
DB_UNIQUE_NAME of each database in the configuration, with each name in
this list separated by a comma.

CONTROL_FILES Specify the path name for the control files on the primary database. It is
recommended that a second copy of the control file is available so an instance
can be easily restarted after copying the good control file to the location of the
bad control file.

LOG_ARCHIVE_DEST_n Specify where the redo data is to be archived on the primary and standby
systems.

• LOG_ARCHIVE_DEST_1 archives redo data generated by the primary
database from the local online redo log files to the local archived redo log
files in /arch1/chicago/.

• LOG_ARCHIVE_DEST_2 is valid only for the primary role. This destination
transmits redo data to the remote physical standby destination boston.

Note: If a fast recovery area was configured (with the
DB_RECOVERY_FILE_DEST initialization parameter) and you have not
explicitly configured a local archiving destination with the LOCATION attribute,
Oracle Data Guard automatically uses the LOG_ARCHIVE_DEST_1
initialization parameter (if it has not already been set) as the default destination
for local archiving. Also, see LOG_ARCHIVE_DEST_n Parameter Attributes
(page 17-1) for complete LOG_ARCHIVE_DEST_n information.

REMOTE_LOGIN_PASSWORDFI
LE

This parameter must be set to EXCLUSIVE or SHARED if a remote login
password file is used to authenticate administrative users or redo transport
sessions.

LOG_ARCHIVE_FORMAT Specify the format for the archived redo log files using a thread (%t), sequence
number (%s), and resetlogs ID (%r).

FAL_SERVER Specify the Oracle Net service name of the FAL server (typically this is the
database running in the primary role). When the Chicago database is running
in the standby role, it uses the Boston database as the FAL server from which to
fetch (request) missing archived redo log files if Boston is unable to
automatically send the missing log files.

DB_FILE_NAME_CONVERT Specify the path name and filename location of the standby database data files
followed by the primary location. This parameter converts the path names of
the primary database data files to the standby data file path names. This
parameter is used only to convert path names for physical standby databases.
Multiple pairs of paths may be specified by this parameter.

LOG_FILE_NAME_CONVERT Specify the location of the standby database online redo log files followed by
the primary location. This parameter converts the path names of the primary
database log files to the path names on the standby database. Multiple pairs of
paths may be specified by this parameter.

Preparing the Primary Database for Standby Database Creation

Creating a Physical Standby Database 3-5

Parameter Recommended Setting

STANDBY_FILE_MANAGEMENT Set to AUTO so when data files are added to or dropped from the primary
database, corresponding changes are made automatically to the standby
database.

Note:

Review the initialization parameter file for additional parameters that may
need to be modified. For example, you may need to modify the dump
destination parameters if the directory location on the standby database is
different from those specified on the primary database.

3.1.5 Enable Archiving
If archiving is not enabled, then you must put the primary database in ARCHIVELOG
mode and enable automatic archiving.

Issue the following SQL statements:

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP MOUNT;
SQL> ALTER DATABASE ARCHIVELOG;
SQL> ALTER DATABASE OPEN;

See Oracle Database Administrator's Guide for information about archiving.

3.2 Step-by-Step Instructions for Creating a Physical Standby Database
This section describes the tasks you perform to create a physical standby database. It is
written at a level of detail that requires you to already have a thorough understanding
of the following topics:

• Database administrator authentication

• Database initialization parameters

• Managing redo logs, data files, and control files

• Managing archived redo logs

• Fast recovery areas

• Oracle Net configuration

Table 3-1 (page 3-6) provides a checklist of the tasks that you perform to create a
physical standby database and the database or databases on which you perform each
task.

Table 3-1 Creating a Physical Standby Database

Task Database

Create a Backup Copy of the Primary Database Data
Files (page 3-7)

Primary

Step-by-Step Instructions for Creating a Physical Standby Database

3-6 Concepts and Administration

Table 3-1 (Cont.) Creating a Physical Standby Database

Task Database

Create a Control File for the Standby Database
(page 3-7)

Primary

Create a Parameter File for the Standby Database
(page 3-8)

Primary

Copy Files from the Primary System to the Standby
System (page 3-10)

Primary

Set Up the Environment to Support the Standby
Database (page 3-10)

Standby

Start the Physical Standby Database (page 3-11) Standby

Verify the Physical Standby Database Is Performing
Properly (page 3-12)

Standby

3.2.1 Creating a Physical Standby Task 1: Create a Backup Copy of the Primary
Database Data Files

You can use any backup copy of the primary database to create the physical standby
database, as long as you have the necessary archived redo log files to completely
recover the database. Oracle recommends that you use the Recovery Manager utility
(RMAN).

See Oracle Database High Availability Architecture and Best Practices for backup
recommendations and Oracle Database Backup and Recovery User's Guide to perform a
database backup operation.

3.2.2 Creating a Physical Standby Task 2: Create a Control File for the Standby
Database

Create the control file for the standby database, as shown in the following example
(the primary database does not have to be open, but it must at least be mounted):

SQL> ALTER DATABASE CREATE STANDBY CONTROLFILE AS '/tmp/boston.ctl';

The ALTER DATABASE command designates the database that is to operate in the
standby role; in this case, a database named boston.

You cannot use a single control file for both the primary and standby databases. They
must each have their own file.

Note:

If a control file backup is taken on the primary and restored on a standby (or
vice versa), then the location of the snapshot control file on the restored
system is configured to be the default. (The default value for the snapshot
control file name is platform-specific and dependent on Oracle home.)
Manually reconfigure it to the correct value using the RMAN CONFIGURE
SNAPSHOT CONTROLFILE command.

Step-by-Step Instructions for Creating a Physical Standby Database

Creating a Physical Standby Database 3-7

3.2.3 Creating a Physical Standby Task 3: Create a Parameter File for the Standby
Database

Perform the following steps to create a parameter file for the standby database.

1. Create a parameter file (PFILE) from the server parameter file (SPFILE) used by the
primary database. For example:

SQL> CREATE PFILE='/tmp/initboston.ora' FROM SPFILE;

In Set Up the Environment to Support the Standby Database (page 3-10), you then
create a server parameter file from this parameter file, after it has been modified to
contain parameter values appropriate for use at the physical standby database.

2. Modify the parameter values in the parameter file created in the previous step.

Although most of the initialization parameter settings in the parameter file are also
appropriate for the physical standby database, some modifications must be made.

Example 3-1 (page 3-8) shows, in bold typeface, the parameters created earlier on
the primary that must be changed.

Example 3-1 Modifying Initialization Parameters for a Physical Standby Database

.

.

.
DB_NAME=chicago
DB_UNIQUE_NAME=boston
LOG_ARCHIVE_CONFIG='DG_CONFIG=(chicago,boston)'
CONTROL_FILES='/arch1/boston/control1.ctl', '/arch2/boston/control2.ctl'
DB_FILE_NAME_CONVERT='/chicago/','/boston/'
LOG_FILE_NAME_CONVERT='/chicago/','/boston/'
LOG_ARCHIVE_FORMAT=log%t_%s_%r.arc
LOG_ARCHIVE_DEST_1=
 'LOCATION=USE_DB_RECOVERY_FILE_DEST
 VALID_FOR=(ALL_LOGFILES,ALL_ROLES)
 DB_UNIQUE_NAME=boston'
LOG_ARCHIVE_DEST_2=
 'SERVICE=chicago ASYNC
 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
 DB_UNIQUE_NAME=chicago'
REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE
STANDBY_FILE_MANAGEMENT=AUTO
FAL_SERVER=chicago
.
.
.

Ensure the COMPATIBLE initialization parameter is set to the same value on both the
primary and standby databases. If the values differ, then redo transport services may
be unable to transmit redo data from the primary database to the standby databases.

It is always a good practice to use the SHOW PARAMETERS command to verify no other
parameters need to be changed.

The following table provides a brief explanation about the parameter settings shown
in Example 3-1 (page 3-8) that have different settings from the primary database.

Step-by-Step Instructions for Creating a Physical Standby Database

3-8 Concepts and Administration

Parameter Recommended Setting

DB_UNIQUE_NAME Specify a unique name for this database. This name stays with the
database and does not change even if the primary and standby databases
reverse roles.

CONTROL_FILES Specify the path name for the control files on the standby database.
Example 3-1 (page 3-8) shows how to do this for two control files. It is
recommended that a second copy of the control file is available so an
instance can be easily restarted after copying the good control file to the
location of the bad control file.

DB_FILE_NAME_CONVERT Specify the path name and filename location of the primary database data
files followed by the standby location. This parameter converts the path
names of the primary database data files to the standby data file path
names.

LOG_FILE_NAME_CONVERT Specify the location of the primary database online redo log files followed
by the standby location. This parameter converts the path names of the
primary database log files to the path names on the standby database.

LOG_ARCHIVE_DEST_n Specify where the redo data is to be archived. In Example 3-1 (page 3-8):

• LOG_ARCHIVE_DEST_1 archives redo data received from the
primary database to archived redo log files in /arch1/boston/.

• LOG_ARCHIVE_DEST_2 is currently ignored because this destination
is valid only for the primary role. If a switchover occurs and this
instance becomes the primary database, then it transmits redo data to
the remote Chicago destination.

Note: If a fast recovery area was configured (with the
DB_RECOVERY_FILE_DEST initialization parameter) and you have not
explicitly configured a local archiving destination with the LOCATION
attribute, then Oracle Data Guard automatically uses the
LOG_ARCHIVE_DEST_1 initialization parameter (if it has not already
been set) as the default destination for local archiving. Also, see
LOG_ARCHIVE_DEST_n Parameter Attributes (page 17-1) for complete
information about LOG_ARCHIVE_DEST_n.

FAL_SERVER Specify the Oracle Net service name of the FAL server (typically this is
the database running in the primary role). When the Boston database is
running in the standby role, it uses the Chicago database as the FAL
server from which to fetch (request) missing archived redo log files if
Chicago is unable to automatically send the missing log files.

Note:

Review the initialization parameter file for additional parameters that may
need to be modified. For example, you may need to modify the dump
destination parameters if the directory location on the standby database is
different from those specified on the primary database.

Step-by-Step Instructions for Creating a Physical Standby Database

Creating a Physical Standby Database 3-9

3.2.4 Creating a Physical Standby Task 4: Copy Files from the Primary System to the
Standby System

Ensure that all required directories are created and use an operating system copy
utility to copy the following binary files from the primary system to their correct
locations on the standby system:

• Database backup created in Create a Backup Copy of the Primary Database Data
Files (page 3-7)

• Standby control file created in Create a Control File for the Standby Database
(page 3-7)

• Initialization parameter file created in Create a Parameter File for the Standby
Database (page 3-8)

3.2.5 Creating a Physical Standby Task 5: Set Up the Environment to Support the
Standby Database

Perform the following steps to create a Windows-based service, create a password file,
set up the Oracle Net environment, and create a SPFILE.

1. If the standby database is going to be hosted on a Windows system, then use the
ORADIM utility to create a Windows service. For example:

WINNT> oradim –NEW –SID boston –STARTMODE manual

The ORADIM utility automatically determines the username for which this service
should be created and prompts for a password for that username (if that username
needs a password). See Oracle Database Platform Guide for Microsoft Windows for
more information about using the ORADIM utility.

2. Copy the remote login password file from the primary database system to the
standby database system.

This step is optional if operating system authentication is used for administrative
users and if SSL is used for redo transport authentication. If not, then copy the
remote login password file from the primary database to the appropriate directory
on the physical standby database system.

Any subsequent changes to the password file on the primary are automatically
propagated to the standby. Changes to a password file can include when
administrative privileges (SYSDG, SYSOPER, SYSDBA, and so on) are granted or
revoked, and when passwords of any user with administrative privileges is
changed. Updated password files must still be manually copied to far sync
instances because far sync instances receive redo, but do not apply it. Once the
password file is up-to-date at the far sync instance, the redo containing the
password update at the primary is automatically propagated to any standby
databases that are set up to receive redo from that far sync instance. The password
file is updated on the standby when the redo is applied.

3. Configure and start a listener on the standby system if one is not already
configured.

See Oracle Database Net Services Administrator's Guide.

Step-by-Step Instructions for Creating a Physical Standby Database

3-10 Concepts and Administration

4. Create Oracle Net service names.

On both the primary and standby systems, use Oracle Net Manager to create a
network service name for the primary and standby databases that are to be used by
redo transport services. As shown in Set Primary Database Initialization
Parameters (page 3-4), the Net service names in this example are chicago and
boston.

The Oracle Net service name must resolve to a connect descriptor that uses the
same protocol, host address, port, and service that you specified when you
configured the listeners for the primary and standby databases. The connect
descriptor must also specify that a dedicated server be used.

See the Oracle Database Net Services Administrator's Guide for more information
about service names.

5. On an idle standby database, use the SQL CREATE statement to create a server
parameter file for the standby database from the text initialization parameter file
that was edited in Step 2 in Create a Parameter File for the Standby Database
(page 3-8). For example:

SQL> CREATE SPFILE FROM PFILE='initboston.ora';

6. If the primary database has a database encryption wallet, then copy it to the
standby database system and configure the standby database to use this wallet.

Note:

The database encryption wallet must be copied from the primary database
system to each standby database system whenever the master encryption key
is updated.

Encrypted data in a standby database cannot be accessed unless the standby
database is configured to point to a database encryption wallet or hardware
security module that contains the current master encryption key from the
primary database.

See Also:

Oracle Database Advanced Security Guide for more information about
Transparent Data Encryption

3.2.6 Creating a Physical Standby Task 6: Start the Physical Standby Database
Perform the following steps to start the physical standby database and Redo Apply.

1. On the standby database, issue the following SQL statement to start and mount the
database:

SQL> STARTUP MOUNT;

2. Restore the backup of the data files taken in Create a Backup Copy of the Primary
Database Data Files (page 3-7) and copied in Copy Files from the Primary System
to the Standby System (page 3-10) on the standby system.

3. On the standby database, issue the following command to start Redo Apply:

Step-by-Step Instructions for Creating a Physical Standby Database

Creating a Physical Standby Database 3-11

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE -
> DISCONNECT FROM SESSION;

The statement includes the DISCONNECT FROM SESSION option so that Redo
Apply runs in a background session. See Applying Redo Data to Physical Standby
Databases (page 8-4) for more information.

3.2.7 Creating a Physical Standby Task 7: Verify the Physical Standby Database Is
Performing Properly

After you create the physical standby database and set up redo transport services, you
may want to verify database modifications are being successfully transmitted from the
primary database to the standby database.

On the standby database, query the V$MANAGED_STANDBY view to verify that redo is
being transmitted from the primary database and applied to the standby database.

The following is an example of querying the V$MANAGED_STANDBY view:

SQL> SELECT CLIENT_PROCESS, PROCESS, THREAD#, SEQUENCE#, STATUS FROM
V$MANAGED_STANDBY WHERE CLIENT_PROCESS='LGWR' OR PROCESS='MRP0';

CLIENT_PROCESS PROCESS THREAD# SEQUENCE# STATUS
-------------- --------- ---------- ---------- ------------
N/A MRP0 1 80 APPLYING_LOG
LGWR RFS 1 80 IDLE

The query output should show one line for the primary database with a
CLIENT_PROCESS of LGWR. This indicates that redo transport is functioning correctly
and the primary redo thread is being sent to the standby.

Note:

If the Primary database is an Oracle RAC database, then the output contains
one line with a CLIENT_PROCESS of LGWR for each primary instance that is
currently active.

The query output should also show one line for the MRP. If the MRP status shows
APPLYING_LOG and the SEQUENCE# is equal to the sequence number currently being
sent by the primary database, then the standby has resolved all gaps and is currently
in real-time apply mode.

Note:

The MRP may show a SEQUENCE# older than the sequence number currently
being sent from the primary. This indicates that it is applying archive log files
that were sent as a gap and it has not yet caught up. Once all gaps are
resolved, the same query shows that the MRP is applying the current
SEQUENCE#.

3.3 Creating a Physical Standby: Post-Creation Steps
At this point, the physical standby database is running and can provide the maximum
performance level of data protection. The following list describes additional actions
you can take on the physical standby database:

Creating a Physical Standby: Post-Creation Steps

3-12 Concepts and Administration

• Upgrade the data protection mode

Oracle Data Guard Protection Modes (page 6-1) provides information about
configuring the different data protection modes.

• Enable Flashback Database

Flashback Database removes the need to re-create the primary database after a
failover. Flashback Database enables you to return a database to its state at a time
in the recent past much faster than traditional point-in-time recovery, because it
does not require restoring data files from backup nor the extensive application of
redo data. You can enable Flashback Database on the primary database, the
standby database, or both. See Converting a Failed Primary Into a Standby
Database Using Flashback Database (page 15-3) and Using Flashback Database
After Issuing an Open Resetlogs Statement (page 15-7) for scenarios showing how
to use Flashback Database in an Oracle Data Guard environment. Also, see Oracle
Database Backup and Recovery User's Guide for more information about Flashback
Database.

3.4 Using DBCA to Create a Data Guard Standby
The Database Configuration Assistant (DBCA) can also be used as a simple command-
line method to create an Oracle Data Guard physical standby database.

The DBCA command qualifier used to create the physical standby database is
createDuplicateDB .

DBCA can only be used to create standby databases for non-multitenant primary
databases. In addition, this capability creates only single instance standby databases,
not Oracle Real Application Clusters (Oracle RAC) databases. If required, the standby
can then be converted to an Oracle RAC standby database, either manually or using
Oracle Enterprise Manager Cloud Control.

The basic createDuplicateDB command has the following syntax:

dbca -createDuplicateDB
 -gdbName global_database_name
 -primaryDBConnectionString easy_connect_string_to_primary
 -sid database_system_identifier
 [-createAsStandby
 [-dbUniqueName db_unique_name_for_standby]]
 [-customScripts scripts_list]

For more information about createDuplicateDB options, including the use of
custom scripts, see Oracle Database Administrator’s Guide.

In the following two examples the primary database is chicago and it resides on the
primary system myprimary.domain. Each example creates a physical standby on the
system on which the command is executed, boston. The initParams parameter is
used in the examples to show how other DBCA parameters can be used in the standby
creation command. In these examples, initParams is used to explicitly set the
INSTANCE_NAME of the standby to match the DB_UNIQUE_NAME, boston.

This first example creates the standby database without any custom scripts being
executed afterward.

dbca –silent -createDuplicateDB -primaryDBConnectionString myprimary.domain:1523/
chicago.domain
-gdbName chicago.domain -sid boston -initParams instance_name=boston –createAsStandby

Using DBCA to Create a Data Guard Standby

Creating a Physical Standby Database 3-13

Enter SYS user password:
Listener config step
33% complete
Auxiliary instance creation
66% complete
RMAN duplicate
100% complete
Look at the log file " /u01/app/oracle/product/12.2.0/dbhome_1/cfgtoollogs/dbca/
chicago/chicago.log" for further details.

The following example is exactly the same as the previous example, except that it runs
a SQL script named /tmp/test.sql which can be used to perform post-creation
operations.

dbca -silent -createDuplicateDB -primaryDBConnectionString myprimary.domain:1523/
chicago.domain
-gdbName chicago.domain -sid boston -initParams instance_name=boston -
createAsStandby -customScripts /tmp/test.sql

Enter SYS user password:

Listener config step
25% complete
Auxiliary instance creation
50% complete
RMAN duplicate
75% complete
Running Custom Scripts
100% complete
Look at the log file " /u01/app/oracle/product/12.2.0/dbhome_1/cfgtoollogs/dbca/
chicago/chicago.log" for further details.

Note: Even though it is required to have a listener running on the physical
standby system, it is not necessary to configure the Oracle Net service names
for the databases on either system to execute these commands. In these
examples, the Easy Connect naming method was used to create a connection
to the primary database, Chicago, to complete creation of the standby,
Boston . Before adding the new standby to the Data Guard configuration you
would first configure Oracle Net service name descriptors on both systems, as
described in Step 4 in Creating a Physical Standby Task 5: Set Up the
Environment to Support the Standby Database (page 3-10).

When these commands complete without any errors, the physical standby Boston is
ready to be added to your Data Guard configuration. As part of adding it, you would
need to define the Data Guard parameters in Chicago and Boston as shown in
Creating a Physical Standby Task 3: Create a Parameter File for the Standby Database
(page 3-8). Optionally, if you have an Oracle Data Guard broker configuration, you
could use the broker ADD DATABASE command to add the new standby to your
configuration (see Oracle Data Guard Broker).

3.5 Creating a Physical Standby of a CDB
You can create a physical standby of a multitenant container database (CDB) just as
you can create a physical standby of a regular primary database.

The following are some of the behavioral differences to be aware of when you create
and use a physical standby of a CDB:

Creating a Physical Standby of a CDB

3-14 Concepts and Administration

• If you execute a switchover or failover operation, the entire CDB undergoes the
role change. If you used the ENABLED_PDBS_ON_STANDBY intialization parameter,
then be aware of the possibility that not every PDB is present in both the primary
and the standby databases.

• The database role is defined at the CDB level, not at the individual container level.

• Any DDL related to role changes must be executed in the root container because a
role is associated with an entire CDB. Individual pluggable databases (PDBs) do
not have their own roles.

• In a physical standby of a CDB, the syntax of SQL statements is generally the same
as for noncontainer databases. However, the effect of some statements, including
the following, may be different:

– ALTER DATABASE RECOVER MANAGED STANDBY functions only in the root
container; it is not allowed in a PDB.

– A role is associated with an entire CDB; individual PDBs do not have their own
roles. Therefore, the following role change DDL associated with physical
standbys affect the entire CDB:

ALTER DATABASE SWITCHOVER TO target_db_name

ALTER DATABASE ACTIVATE PHYSICAL STANDBY

• The ALTER PLUGGABLE DATABASE [OPEN|CLOSE] SQL statement is supported
on the standby, provided you have already opened the root container.

• The ALTER PLUGGABLE DATABASE RECOVER statement is not supported on the
standby. (Standby recovery is always at the CDB level.)

• To administer a multitenant environment, you must have the CDB_DBA role.

• Oracle recommends that the standby database have its own keystore.

• In a multitenant environment, the redo must be shipped to the root container of the
standby database.

The following is an example of how to determine whether redo is being shipped to
the root container. Suppose your primary database has the following settings:

LOG_ARCHIVE_DEST_2='SERVICE=boston ASYNC VALID_FOR=(ONLINE_LOGFILES,
PRIMARY_ROLE) DB_UNIQUE_NAME=boston'

Redo is being shipped to boston. The container ID (CON_ID) for the root container
is always 1, so you must make sure that the CON_ID is 1 for the service boston. To
do this, check the service name in the tnsnames.ora file. For example:

boston = (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=boston-server)(PORT=1521))
(CONNECT_DATA=(SERVICE_NAME=boston.us.example.com))

The service name for boston is boston.us.example.com.

On the standby database, query the CDB_SERVICES view to determine the
CON_ID. For example:

SQL> SELECT NAME, CON_ID FROM CDB_SERVICES;

NAME CON_ID

boston.us.example.com 1

Creating a Physical Standby of a CDB

Creating a Physical Standby Database 3-15

The query result shows that the CON_ID for boston is 1.

See Also:

• Oracle Database Concepts for more information about CDBs

• Oracle Database Security Guide for more information about privileges and
roles in CDBs and PDBs

• Oracle Database Advanced Security Guide for more information about
creating keystores

3.6 Creating a PDB in a Primary Database
In an Oracle Data Guard configuration, a PDB on a primary database is created in the
same way that a PDB on a regular database is created.

This section discusses creating a pluggable database (PDB) in a primary database,
when a physical standby is being used.

The steps to create a PDB on a regular database are documented in the Oracle Database
Administrator's Guide. Before following those steps, note the following:

• In Oracle Database 12c Release 1 (12.1), you could only specify whether a PDB was
created and recovered in all (ALL) standbys or in no (NONE) standbys when adding
a PDB to the primary database. As of Oracle Database 12c Release 2 (12.2.0.1), you
can specify a subset of PDBs to be replicated on a physical standby of a multitenant
container database (CDB), instead of having to choose either all PDBs or none. To
do so, use the ENABLED_PDBS_ON_STANDBY initialization parameter to specify a
list of PDBs or use the enhanced STANDBYS qualifier on the CREATE PLUGGABLE
DATABASE statement, or both. PDBs that are not enabled on a standby CDB can
remain disabled (true SUBSET Standby) or they can be enabled at a later date when
all the required files are available at the standby CDB.

• The ENABLED_PDBS_ON_STANDBY parameter is valid only on a physical standby;
it is ignored by primary databases. (It can be set on a primary database to be used if
that database ever becomes a standby database.) It can be used to specify which
PDBs should or should not be enabled on a physical standby database. If the
parameter is not specified, then all PDBs in the CDB are created on the standby
unless the STANDBYS clause is used. See ENABLED_PDBS_ON_STANDBY for
more information about this parameter.

• To specify in which standby CDBs the new PDB being created is to be included,
you can also use the STANDBYS clause of the SQL CREATE PLUGGABLE
DATABASE statement. The syntax is as follows:

create pluggable database … STANDBYS={('cdb_name', 'cdb_name', ...) | NONE | ALL
[EXCEPT ('cdb_name', 'cdb_name', ...)]}

– cdb_name is the DB_UNIQUE_NAME for the physical standbys in which the PDB
is to be included

– NONE excludes the PDB being created from all standby CDBs. When a PDB is
excluded from all standby CDBs, the PDB's data files are offline and marked as
unnamed on all of the standby CDBs. Any new standby CDBs that are
instantiated after the PDB has been created must disable the PDB for recovery

Creating a PDB in a Primary Database

3-16 Concepts and Administration

explicitly to exclude it from the standby CDB. It is possible to enable a PDB on a
standby CDB after it was excluded on that standby CDB.

– ALL (the default) includes the PDB being created in all standby CDBs.

– EXCEPT cdb_name includes the PDB being created in all standby CDBs except
for those CDBs listed in this clause by their DB_UNIQUE_NAME.

Parentheses are required around the list of CDB names and each name must be
enclosed within single quotation marks. The value of DB_UNIQUE_NAME can be up
to 30 characters and is case insensitive. The following characters are valid in a
database name: alphanumeric characters, underscore (_), number sign (#), and
dollar sign ($).

Note:

The EXCEPT clause is available starting with Oracle Database 12c Release 2
(12.2.0.1).

• To create a PDB as a local clone from a different PDB or from the seed PDB within
the same primary CDB, copy the data files that belong to the source PDB over to
the standby database. (This step is not necessary in an Oracle Active Data Guard
environment because the data files are copied automatically at the standby when
the PDB is created on the standby database.)

To perform a remote clone of a PDB from another CDB into the primary CDB, you
must use the STANDBY=NONE clause and then copy the files and enable recovery by
following the steps in the My Oracle Support note 2049127.1 at http://
support.oracle.com.

• To create a PDB from an XML file, copy the data files specified in the XML file to
the standby database.

If your standby database has the Oracle Active Data Guard option enabled (open
read-only), then copy to it the same set of PDB data files that are to be plugged into
the primary database. To minimize disruptions to managed standby recovery or
database sessions running on systems that have Oracle Active Data Guard enabled,
you must copy these files to the standby database before plugging in the PDB at the
primary database. Ensure that the files are copied to an appropriate location where
they can be found by managed standby recovery:

– If data files reside in standard operating system file systems, then the location of
the files at the standby database are based on the value of the
DB_FILE_NAME_CONVERT parameter. For more details about setting primary
database initialization parameters, see Set Primary Database Initialization
Parameters (page 3-4)

– If data files reside in ASM, then use the ASMCMD utility to copy the files to the
following location at the standby database:

<db_create_file_dest>/<db_unique_name>/<GUID>/datafile

The GUID parameter is the global unique identifier assigned to the PDB; once
assigned, it does not change. To find the value of the GUID parameter, query the
V$CONTAINERS view before unplugging the PDB from its original source
container. The following example shows how to find the value of the GUID
parameter for the PDB whose PDB container ID in the source container is 3:

Creating a PDB in a Primary Database

Creating a Physical Standby Database 3-17

http://support.oracle.com
http://support.oracle.com

SELECT guid
 FROM V$CONTAINERS
 WHERE con_id=3;

GUID

D98C12257A951FC4E043B623F00A7AF5

In this example, if the value of the DB_CREATE_FILE_DEST parameter is
+DATAFILE and the value of the DB_UNIQUE_NAME parameter is BOSTON, then
the data files are copied to:

+DATAFILE/BOSTON/D98C12257A951FC4E043B623F00A7AF5/datafile

The path name of the data files on the standby database must be the same as the
resultant path name when you create the PDB on the primary, unless the
DB_FILE_NAME_CONVERT database initialization parameter has been configured on
the standby. In that case, the path name of the data files on the standby database is the
path name on the primary with DB_FILE_NAME_CONVERT applied.

See Also:

• Oracle Database SQL Language Reference for more information about the SQL
statement CREATE PLUGGABLE DATABASE

Creating a PDB in a Primary Database

3-18 Concepts and Administration

4
Creating a Logical Standby Database

See the following topics for information about creating a logical standby database.

• Prerequisite Conditions for Creating a Logical Standby Database (page 4-1)

• Step-by-Step Instructions for Creating a Logical Standby Database (page 4-3)

• Post-Creation Steps (page 4-11)

• Creating a Logical Standby of a CDB (page 4-12)

See Also:

• Oracle Database Administrator's Guide for information about creating and
using server parameter files

• Oracle Enterprise Manager Cloud Control online help system for
information about using the Oracle Data Guard broker graphical user
interface (GUI) to automatically create a logical standby database.

Note:

If you are working in a multitenant container database (CDB) environment,
then see Creating a Logical Standby of a CDB (page 4-12) for information
about behavioral differences from non-CDB environments. For instance, in a
CDB environment, many DBA views have analogous CDB views that you
should use instead. For example, the view CDB_LOGSTDBY_NOT_UNIQUE
contains the same data as shown in DBA_LOGSTDBY_NOT_UNIQUE view, but
it has an additional column indicating the PDB name.

4.1 Prerequisite Conditions for Creating a Logical Standby Database
Before you create a logical standby database, you must first ensure the primary
database is properly configured.

Perform the following tasks on the primary database to prepare for logical standby
database creation:

• Determine Support for Data Types and Storage Attributes for Tables (page 4-2)

• Ensure Table Rows in the Primary Database Can Be Uniquely Identified
(page 4-2)

A logical standby database uses standby redo logs (SRLs) for redo received from the
primary database, and also writes to online redo logs (ORLs) as it applies changes to
the standby database. Thus, logical standby databases often require additional ARCn

Creating a Logical Standby Database 4-1

processes to simultaneously archive SRLs and ORLs. Additionally, because archiving
of ORLs takes precedence over archiving of SRLs, a greater number of SRLs may be
needed on a logical standby during periods of very high workload.

4.1.1 Determine Support for Data Types and Storage Attributes for Tables
Before setting up a logical standby database, ensure the logical standby database can
maintain the data types and tables in your primary database.

See Unsupported Tables (page C-16) for information about specific SQL queries you
can use to determine if there are any unsupported data types or storage attributes.

4.1.2 Ensure Table Rows in the Primary Database Can Be Uniquely Identified
The ROWIDs contained in the redo records generated by the primary database cannot
be used to identify the corresponding row in the logical standby database.

This is because the physical organization in a logical standby database is different
from that of the primary database, even though the logical standby database is created
from a backup copy of the primary database.

Oracle uses primary-key or unique-constraint/index supplemental logging to logically
identify a modified row in the logical standby database. When database-wide
primary-key and unique-constraint/index supplemental logging is enabled, each
UPDATE statement also writes the column values necessary in the redo log to uniquely
identify the modified row in the logical standby database.

• If a table has a primary key defined, then the primary key is logged along with the
modified columns as part of the UPDATE statement to identify the modified row.

• In the absence of a primary key, the shortest nonnull unique-constraint/index is
logged along with the modified columns as part of the UPDATE statement to
identify the modified row.

• If there is no primary key and no nonnull unique constraint/index, then all
columns with a declared maximum length of 4000 bytes are logged as part of the
UPDATE statement to help identify the modified row. There are some requirements
and restrictions with respect to supported data types. See the following sections for
more information:

– Supported Table Storage Types (page C-8)

– Unsupported Table Storage Types (page C-9)

• A function-based index, even though it is declared as unique, cannot be used to
uniquely identify a modified row. However, logical standby databases support
replication of tables that have function-based indexes defined, as long as modified
rows can be uniquely identified.

Oracle recommends that you add a primary key or a nonnull unique index to tables in
the primary database, whenever possible, to ensure that SQL Apply can efficiently
apply redo data updates to the logical standby database.

Perform the following steps to ensure SQL Apply can uniquely identify rows of each
table being replicated in the logical standby database.

1. Query the DBA_LOGSTDBY_NOT_UNIQUE view to display a list of tables that SQL
Apply may not be able to uniquely identify. For example:

Prerequisite Conditions for Creating a Logical Standby Database

4-2 Concepts and Administration

SQL> SELECT OWNER, TABLE_NAME FROM DBA_LOGSTDBY_NOT_UNIQUE
 2> WHERE (OWNER, TABLE_NAME) NOT IN
 3> (SELECT DISTINCT OWNER, TABLE_NAME FROM DBA_LOGSTDBY_UNSUPPORTED)
 4> AND BAD_COLUMN = 'Y';

This query may take a few minutes to run.

2. If your application ensures the rows in a table are unique, then you can create a
disabled primary key RELY constraint on the table. This avoids the overhead of
maintaining a primary key on the primary database.

To create a disabled RELY constraint on a primary database table, use the ALTER
TABLE statement with a RELY DISABLE clause. The following example creates a
disabled RELY constraint on a table named mytab, for which rows can be uniquely
identified using the id and name columns:

SQL> ALTER TABLE mytab ADD PRIMARY KEY (id, name) RELY DISABLE;

When you specify the RELY constraint, the system assumes that rows are unique.
Because you are telling the system to rely on the information, but are not validating it
on every modification done to the table, you must be careful to select columns for the
disabled RELY constraint that uniquely identify each row in the table. If such
uniqueness is not present, then SQL Apply does not correctly maintain the table.

To improve the performance of SQL Apply, add a unique-constraint/index to the
columns to identify the row on the logical standby database. Failure to do so results in
full table scans during UPDATE or DELETE statements carried out on the table by SQL
Apply.

See Also:

• Oracle Database Reference for information about the
DBA_LOGSTDBY_NOT_UNIQUE view

• Oracle Database SQL Language Reference for information about the ALTER
TABLE statement syntax

• Create a Primary Key RELY Constraint (page 11-33) for information about
RELY constraints and actions you can take to increase performance on a
logical standby database

4.2 Step-by-Step Instructions for Creating a Logical Standby Database
This section lists the tasks you perform to create a logical standby database.

Table 4-1 Creating a Logical Standby Database

Task Database

Create a Physical Standby Database (page 4-4) Primary

Stop Redo Apply on the Physical Standby Database
(page 4-4)

Standby

Prepare the Primary Database to Support a Logical
Standby Database (page 4-4)

Primary

Step-by-Step Instructions for Creating a Logical Standby Database

Creating a Logical Standby Database 4-3

Table 4-1 (Cont.) Creating a Logical Standby Database

Task Database

Transition to a Logical Standby Database (page 4-6) Standby

Open the Logical Standby Database (page 4-9) Standby

Verify the Logical Standby Database Is Performing
Properly (page 4-11)

Standby

4.2.1 Creating a Logical Standby Task 1: Create a Physical Standby Database
You create a logical standby database by first creating a physical standby database and
then transitioning it to a logical standby database.

Follow the instructions in Creating a Physical Standby Database (page 3-1) to create a
physical standby database.

4.2.2 Creating a Logical Standby Task 2: Stop Redo Apply on the Physical Standby
Database

You can run Redo Apply on the new physical standby database for any length of time
before converting it to a logical standby database.

However, before converting to a logical standby database, stop Redo Apply on the
physical standby database. Stopping Redo Apply is necessary to avoid applying
changes past the redo that contains the LogMiner dictionary (described in Build a
Dictionary in the Redo Data (page 4-5)).

To stop Redo Apply, issue the following statement on the physical standby database:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

4.2.3 Creating a Logical Standby Task 3: Prepare the Primary Database to Support a
Logical Standby Database

This section contains the following topics:

• Prepare the Primary Database for Role Transitions (page 4-4)

• Build a Dictionary in the Redo Data (page 4-5)

4.2.3.1 Prepare the Primary Database for Role Transitions

In Set Primary Database Initialization Parameters (page 3-4), you set up several
standby role initialization parameters to take effect when the primary database is
transitioned to the physical standby role.

Note:

This step is necessary only if you plan to perform switchovers.

If you plan to transition the primary database to the logical standby role, then you
must also modify the parameters shown in bold typeface in Example 4-1 (page 4-5),
so that no parameters need to change after a role transition:

Step-by-Step Instructions for Creating a Logical Standby Database

4-4 Concepts and Administration

• Change the VALID_FOR attribute in the original LOG_ARCHIVE_DEST_1
destination to archive redo data only from the online redo log and not from the
standby redo log.

• Include the LOG_ARCHIVE_DEST_3 destination on the primary database. This
parameter only takes effect when the primary database is transitioned to the logical
standby role.

The following table describes the archival processing defined by the changed
initialization parameters shown in Example 4-1 (page 4-5).

LOG_ARCHIVE_DEST_n When the Chicago Database Is
Running in the Primary Role

When the Chicago Database Is Running
in the Logical Standby Role

LOG_ARCHIVE_DEST_1 Directs archiving of redo data
generated by the primary database
from the local online redo log files
to the local archived redo log files
in /arch1/chicago/.

Directs archiving of redo data generated
by the logical standby database from the
local online redo log files to the local
archived redo log files in /arch1/
chicago/.

LOG_ARCHIVE_DEST_3 Is ignored; LOG_ARCHIVE_DEST_3
is valid only when chicago is
running in the standby role.

Directs archiving of redo data from the
standby redo log files to the local
archived redo log files in /arch2/
chicago/.

Example 4-1 Primary Database: Logical Standby Role Initialization Parameters

LOG_ARCHIVE_DEST_1=
 'LOCATION=/arch1/chicago/
 VALID_FOR=(ONLINE_LOGFILES,ALL_ROLES)
 DB_UNIQUE_NAME=chicago'
LOG_ARCHIVE_DEST_3=
 'LOCATION=/arch2/chicago/
 VALID_FOR=(STANDBY_LOGFILES,STANDBY_ROLE)
 DB_UNIQUE_NAME=chicago'
LOG_ARCHIVE_DEST_STATE_3=ENABLE

To dynamically set these initialization parameters, use the SQL ALTER SYSTEM SET
statement and include the SCOPE=BOTH clause so that the changes take effect
immediately and persist after the database is shut down and started up again.

4.2.3.2 Build a Dictionary in the Redo Data
A LogMiner dictionary must be built into the redo data so that the LogMiner
component of SQL Apply can properly interpret changes it sees in the redo.

As part of building the LogMiner dictionary, supplemental logging is automatically
set up to log primary key and unique-constraint/index columns. The supplemental
logging information ensures each update contains enough information to logically
identify each row that is modified by the statement.

To build the LogMiner dictionary, issue the following statement:

SQL> EXECUTE DBMS_LOGSTDBY.BUILD;

The DBMS_LOGSTDBY.BUILD procedure waits for all existing transactions to
complete. Long-running transactions executed on the primary database affect the
timeliness of this command.

Step-by-Step Instructions for Creating a Logical Standby Database

Creating a Logical Standby Database 4-5

Note:

In databases created using Oracle Database 11g Release 2 (11.2) or later,
supplemental logging information is automatically propagated to any existing
physical standby databases. However, for databases in earlier releases, or if
the database was created using an earlier release and then upgraded to 11.2,
you must check whether supplemental logging is enabled at the physical
standby(s) if it is also enabled at the primary database. If it is not enabled at
the physical standby(s), then before performing a switchover or failover, you
must enable supplemental logging on all existing physical standby databases.
To do so, issue the following SQL statement on each physical standby:

SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY, UNIQUE INDEX)
COLUMNS;

If you do not do this, then any logical standby that is also in the same Oracle
Data Guard configuration is unusable if a switchover or failover is performed
to one of the physical standby databases. If a switchover or failover has
already occurred and supplemental logging was not enabled, then you must
recreate all logical standby databases.

See Also:

• The DBMS_LOGSTDBY.BUILD PL/SQL package in Oracle Database PL/SQL
Packages and Types Reference

• The UNDO_RETENTION initialization parameter in Oracle Database Reference

4.2.4 Creating a Logical Standby Task 4: Transition to a Logical Standby Database
This section describes how to prepare the physical standby database to transition to a
logical standby database. It contains the following topics:

• Convert to a Logical Standby Database (page 4-6)

• Adjust Initialization Parameters for the Logical Standby Database (page 4-7)

4.2.4.1 Convert to a Logical Standby Database
The redo logs contain the information necessary to convert your physical standby
database to a logical standby database.

Note:

If you have an Oracle RAC physical standby database, then shut down all but
one instance, set CLUSTER_DATABASE to FALSE, and start the standby
database as a single instance in MOUNT EXCLUSIVE mode, as follows:

SQL> ALTER SYSTEM SET CLUSTER_DATABASE=FALSE SCOPE=SPFILE;
SQL> SHUTDOWN ABORT;
SQL> STARTUP MOUNT EXCLUSIVE;

To continue applying redo data to the physical standby database until it is ready to
convert to a logical standby database, issue the following SQL statement:

Step-by-Step Instructions for Creating a Logical Standby Database

4-6 Concepts and Administration

SQL> ALTER DATABASE RECOVER TO LOGICAL STANDBY db_name;

For db_name, specify a database name that is different from the primary database to
identify the new logical standby database. If you are using a server parameter file
(spfile) at the time you issue this statement, then the database updates the file with
appropriate information about the new logical standby database. If you are not using
an spfile, then the database issues a message reminding you to set the name of the
DB_NAME parameter after shutting down the database.

Note:

If you are creating a logical standby database in the context of performing a
rolling upgrade of Oracle software with a physical standby database, then
issue the following command instead:

SQL> ALTER DATABASE RECOVER TO LOGICAL STANDBY KEEP IDENTITY;

A logical standby database created with the KEEP IDENTITY clause retains
the same DB_NAME and DBID as that of its primary database. Such a logical
standby database can only participate in one switchover operation, and thus
should only be created in the context of a rolling upgrade with a physical
standby database.

The KEEP IDENTITY clause is available only if the database being upgraded
is running Oracle Database release 11.1 or later.

The statement waits, applying redo data until the LogMiner dictionary is found in the
log files. This may take several minutes, depending on how long it takes redo
generated in Build a Dictionary in the Redo Data (page 4-5) to be transmitted to the
standby database, and how much redo data needs to be applied. If a dictionary build
is not successfully performed on the primary database, then this command never
completes. You can cancel the SQL statement by issuing the ALTER DATABASE
RECOVER MANAGED STANDBY DATABASE CANCEL statement from another SQL
session.

Caution:

In releases prior to Oracle Database 11g, you needed to create a new password
file before you opened the logical standby database. This is no longer needed.
Creating a new password file at the logical standby database causes redo
transport services to not work properly.

4.2.4.2 Adjust Initialization Parameters for the Logical Standby Database

Note:

If you started with an Oracle RAC physical standby database, then set
CLUSTER_DATABASE back to TRUE, as follows:

SQL> ALTER SYSTEM SET CLUSTER_DATABASE=TRUE SCOPE=SPFILE;

Step-by-Step Instructions for Creating a Logical Standby Database

Creating a Logical Standby Database 4-7

On the logical standby database, shutdown the instance and issue the STARTUP
MOUNT statement to start and mount the database. Do not open the database; it should
remain closed to user access until later in the creation process. For example:

SQL> SHUTDOWN;
SQL> STARTUP MOUNT;

You need to modify the LOG_ARCHIVE_DEST_n parameters because, unlike physical
standby databases, logical standby databases are open databases that generate redo
data and have multiple log files (online redo log files, archived redo log files, and
standby redo log files). It is good practice to specify separate local destinations for:

• Archived redo log files that store redo data generated by the logical standby
database. In Example 4-2 (page 4-9), this is configured as the
LOG_ARCHIVE_DEST_1=LOCATION=/arch1/boston destination.

• Archived redo log files that store redo data received from the primary database. In
Example 4-2 (page 4-9), this is configured as the
LOG_ARCHIVE_DEST_3=LOCATION=/arch2/boston destination.

Example 4-2 (page 4-9) shows the initialization parameters that were modified for
the logical standby database. The parameters shown are valid for the Boston logical
standby database when it is running in either the primary or standby database role.

Note:

If database compatibility is set to 11.1 or later, you can use the fast recovery
area to store remote archived logs. To do this, you need to set only the
following parameters (assuming you have already set the
DB_RECOVERY_FILE_DEST and DB_RECOVERY_FILE_DEST_SIZE
parameters):

LOG_ARCHIVE_DEST_1=
 'LOCATION=USE_DB_RECOVERY_FILE_DEST
 DB_UNIQUE_NAME=boston'

Because you are using the fast recovery area, it is not necessary to specify the
VALID_FOR parameter. Its default value is (ALL_LOGFILES,ALL_ROLES)
and that is the desired behavior in this case. LOG_ARCHIVE_DEST_1 is used
for all log files, both online (primary) and standby.

The following table describes the archival processing defined by the initialization
parameters shown in Example 4-2 (page 4-9).

LOG_ARCHIVE_DEST_n When the Boston Database Is
Running in the Primary Role

When the Boston Database Is Running
in the Logical Standby Role

LOG_ARCHIVE_DEST_1 Directs archival of redo data
generated by the primary database
from the local online redo log files
to the local archived redo log files
in /arch1/boston/.

Directs archival of redo data generated
by the logical standby database from the
local online redo log files to the local
archived redo log files in /arch1/
boston/.

Step-by-Step Instructions for Creating a Logical Standby Database

4-8 Concepts and Administration

LOG_ARCHIVE_DEST_n When the Boston Database Is
Running in the Primary Role

When the Boston Database Is Running
in the Logical Standby Role

LOG_ARCHIVE_DEST_2 Directs transmission of redo data to
the remote logical standby database
chicago.

Is ignored; LOG_ARCHIVE_DEST_2 is
valid only when boston is running in
the primary role.

LOG_ARCHIVE_DEST_3 Is ignored; LOG_ARCHIVE_DEST_3
is valid only when boston is
running in the standby role.

Directs archival of redo data received
from the primary database to the local
archived redo log files in /arch2/
boston/.

Note:

The DB_FILE_NAME_CONVERT initialization parameter is not honored once a
physical standby database is converted to a logical standby database. If
necessary, register a skip handler and provide SQL Apply with a replacement
DDL string to execute by converting the path names of the primary database
data files to the standby data file path names. See the DBMS_LOGSTDBY
package in Oracle Database PL/SQL Packages and Types Reference. for
information about the SKIP procedure.

Example 4-2 Modifying Initialization Parameters for a Logical Standby Database

LOG_ARCHIVE_DEST_1=
 'LOCATION=/arch1/boston/
 VALID_FOR=(ONLINE_LOGFILES,ALL_ROLES)
 DB_UNIQUE_NAME=boston'
LOG_ARCHIVE_DEST_2=
 'SERVICE=chicago ASYNC
 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
 DB_UNIQUE_NAME=chicago'
LOG_ARCHIVE_DEST_3=
 'LOCATION=/arch2/boston/
 VALID_FOR=(STANDBY_LOGFILES,STANDBY_ROLE)
 DB_UNIQUE_NAME=boston'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_STATE_2=ENABLE
LOG_ARCHIVE_DEST_STATE_3=ENABLE

4.2.5 Creating a Logical Standby Task 5: Open the Logical Standby Database
To open the new logical standby database, use the following statement (do not supply
the RESETLOGS option if the logical standby was created using the KEEP IDENTITY
option):

SQL> ALTER DATABASE OPEN RESETLOGS;

Note:

If you started with an Oracle RAC physical standby database, then you can
start up all other standby instances at this point.

Step-by-Step Instructions for Creating a Logical Standby Database

Creating a Logical Standby Database 4-9

Caution:

If you are co-locating the logical standby database on the same computer
system as the primary database, then you must issue the following SQL
statement before starting SQL Apply for the first time, so that SQL Apply
skips the file operations performed at the primary database. The reason this is
necessary is that SQL Apply has access to the same directory structure as the
primary database, and data files that belong to the primary database could
possibly be damaged if SQL Apply attempted to re-execute certain file-specific
operations.

SQL> EXECUTE DBMS_LOGSTDBY.SKIP('ALTER TABLESPACE');

The DB_FILENAME_CONVERT parameter that you set up while co-locating the
physical standby database on the same system as the primary database, is
ignored by SQL Apply. See Oracle Database PL/SQL Packages and Types
Reference for information about DBMS_LOGSTDBY.SKIP and equivalent
behavior in the context of a logical standby database.

Because this is the first time the database is being opened, the database's global name
is adjusted automatically to match the new DB_NAME initialization parameter. (This is
not true if the logical standby was created using the KEEP IDENTITY option.)

Note:

If you are creating the logical standby database to perform a rolling upgrade
of the Oracle Database software, and you are concerned about updates to
objects that may not be supported by SQL Apply, then Oracle recommends
that you use the DBMS_LOGSTDBY PL/SQL procedure. At the logical standby
database, run the following procedures to capture and record the information
as events in the DBA_LOGSTDBY_EVENTS table:

EXEC DBMS_LOGSTDBY.APPLY_SET('MAX_EVENTS_RECORDED',
DBMS_LOGSTDBY.MAX_EVENTS);

EXEC DBMS_LOGSTDBY.APPLY_SET('RECORD_UNSUPPORTED_OPERATIONS', 'TRUE');

This captures information about any transactions running on the primary that
are not supported by logical standby. When the upgrade is complete and
before you switch production to the new version, check this table. If nothing is
recorded, then you know everything was replicated. If something is recorded,
then you can choose to either take corrective action or abandon the upgrade.

See Also:

• Customizing Logging of Events in the DBA_LOGSTDBY_EVENTS View
(page 11-17) for more information about the DBA_LOGSTDBY_EVENTS
view

• Oracle Database PL/SQL Packages and Types Reference for complete
information about the DBMS_LOGSTDBY package

Issue the following statement to begin applying redo data to the logical standby
database:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

Step-by-Step Instructions for Creating a Logical Standby Database

4-10 Concepts and Administration

4.2.6 Creating a Logical Standby Task 6: Verify the Logical Standby Database Is
Performing Properly

See the following sections for help verifying that the logical standby database is
performing properly:

• Redo Transport Services (page 7-1)

• Managing a Logical Standby Database (page 11-1)

4.3 Creating a Logical Standby: Post-Creation Steps

Note:

The conversion of the physical standby database to a logical standby database
happens in two phases:

1. As part of the ALTER DATABASE RECOVER TO LOGICAL STANDBY
statement (unless you have specified the KEEP IDENTITY clause), the
DBID of the database is changed.

2. As part of the first successful invocation of ALTER DATABASE START
LOGICAL STANDBY APPLY statement, the control file is updated to
make it consistent with that of the newly created logical standby database.

After you have successfully invoked the ALTER DATABASE START
LOGICAL STANDBY APPLY statement, take a full backup of the logical
standby database, because the backups taken from the primary database
cannot be used to restore the logical standby database.

At this point, the logical standby database is running and can provide the maximum
performance level of data protection. The following list describes additional
preparations you can take on the logical standby database:

• Upgrade the data protection mode

The Oracle Data Guard configuration is initially set up in the maximum
performance mode (the default).

• Enable Flashback Database

Flashback Database removes the need to re-create the primary database after a
failover. Flashback Database enables you to return a database to its state at a time
in the recent past much faster than traditional point-in-time recovery, because it
does not require restoring data files from backup nor the extensive application of
redo data. You can enable Flashback Database on the primary database, the
standby database, or both. See Converting a Failed Primary Into a Standby
Database Using Flashback Database (page 15-3) and Using Flashback Database
After Issuing an Open Resetlogs Statement (page 15-7) for scenarios showing how
to use Flashback Database in an Oracle Data Guard environment. Also, see Oracle
Database Backup and Recovery User's Guide for more information about Flashback
Database.

Creating a Logical Standby: Post-Creation Steps

Creating a Logical Standby Database 4-11

4.4 Creating a Logical Standby of a CDB
You can create a logical standby of a multitenant container database (CDB) just as you
can create a logical standby of a regular primary database.

The following are some of the behavioral differences to be aware of when you create
and use a logical standby of a CDB:

• The database role is defined at the CDB level, not at the pluggable database (PDB)
container level.

• If you execute a switchover or failover operation, then the entire CDB undergoes
the role change.

• Any DDL related to role changes must be executed while connected to the root
container of the CDB.

• As with a regular logical standby, a logical standby of a CDB operates a single pool
of processes that mine the redo stream once, but the responsibility is shared for
updating all of the PDBs and the root container of the CDB.

• You are not required to have the same set of PDBs at the primary and standby.
However, only tables that exist in the same container at both the primary and
standby are replicated.

• In general, logical standby PL/SQL interfaces which modify global configuration
attributes, such as DBMS_LOGSTDBY.APPLY_SET, are executed in the root
container. However, DBMS_LOGSTDBY.INSTANTIATE_TABLE must be called
inside the container where the table of interest resides, and the
DBMS_LOGSTDBY.SKIP procedure must be called inside the container of interest.

• Logical standby views are enhanced to provide container names where
appropriate. Many DBA views have analogous CDB views whose names begin
with CDB. For example, the view CDB_LOGSTDBY_NOT_UNIQUE contains the same
data as shown in DBA_LOGSTDBY_NOT_UNIQUE view, but it has an additional
column indicating the PDB name. When the CDB_LOGSTDBY_NOT_UNIQUE view is
queried in the root it shows data for all databases in the CDB.

• In a logical standby of a CDB, the syntax of SQL statements is generally the same as
for noncontainer databases. However, the effect of some statements, including the
following, may be different:

– ALTER DATABASE RECOVER TO LOGICAL STANDBY functions only in the
CDB; it is not allowed in a PDB.

– A role is associated with an entire CDB; individual PDBs do not have their own
roles. Therefore, the following role change DDL associated with logical
standbys affect the entire CDB:

ALTER DATABASE [PREPARE|COMMIT] TO SWITCHOVER

ALTER DATABASE ACTIVATE LOGICAL STANDBY

– ALTER DATABASE [START|STOP] LOGICAL STANDBY APPLY functions
only in the root container and affects the entire CDB. This statement is not
allowed on a PDB.

Creating a Logical Standby of a CDB

4-12 Concepts and Administration

– ALTER DATABASE GUARD functions only in the root container and affects the
entire CDB. For example, if an ALTER DATABASE GUARD ALL statement is
issued, then user activity in the root and in all PDBs is restricted.

– To administer a multitenant environment, you must have the CDB_DBA role.

See Also:

• Oracle Database Concepts for more information about CDBs

• Oracle Database PL/SQL Packages and Types Reference for more information
about using the DBMS_LOGSTDBY.SKIP procedure in containers

• Oracle Database Security Guide for more information about privileges and
roles in CDBs and PDBs

Creating a Logical Standby of a CDB

Creating a Logical Standby Database 4-13

Creating a Logical Standby of a CDB

4-14 Concepts and Administration

5
Using Far Sync Instances

An Oracle Data Guard far sync instance is a remote Oracle Data Guard destination
that accepts redo from the primary database and then ships that redo to other
members of the Oracle Data Guard configuration.

A far sync instance manages a control file, receives redo into standby redo logs (SRLs),
and archives those SRLs to local archived redo logs, but that is where the similarity
with standbys ends. A far sync instance does not have user data files, cannot be
opened for access, cannot run redo apply, and can never function in the primary role
or be converted to any type of standby database.

Far sync instances are part of the Oracle Active Data Guard Far Sync feature, which
requires an Oracle Active Data Guard license.

A far sync instance consumes very little disk and processing resources, yet provides
the ability to failover to a terminal destination with zero data loss, as well as offload
the primary database of other types of overhead (for example, redo transport).

All redo transport options available to a primary when servicing a typical standby
destination are also available to it when servicing a far sync instance. And all redo
transport options are available to a far sync instance when servicing terminal
destinations (for example, performing redo transport compression, if you have a
license for the Oracle Advanced Compression option).

Many configurations have a primary database shipping redo to a standby database
using asynchronous transport at the risk of some data loss at failover time. Using
synchronous redo transport to achieve zero data loss may not be a viable option
because of the impact on the commit response times at the primary due to network
latency between the two databases.

Creating a far sync instance close to the primary has the benefit of minimizing impact
on commit response times to an acceptable threshold (due to the smaller network
latency between primary and far sync instance) while allowing for higher data
protection guarantees -- if the primary were to fail, and assuming the far sync instance
was synchronized at the time of the failure, the far sync instance and the terminal
standby would coordinate a final redo shipment from the far sync instance to the
standby to ship any redo not yet available to the standby and then perform a zero-
data-loss failover.

See the following topics:

• Creating a Far Sync Instance (page 5-2)

• Alternate Destinations (page 5-5)

• Configuring Alternate Destinations (page 5-9)

• Supported Protection Modes for Far Sync Instances (page 5-12)

Using Far Sync Instances 5-1

5.1 Creating a Far Sync Instance
Creating a far sync instance is similar to creating a physical standby except that data
files do not exist at the far sync instance.

Therefore, on a far sync instance there is no need to copy data files or restore data files
from a backup. Once the far sync instance has been created, the configuration is
modified to send redo synchronously from the primary database to the far sync
instance in Maximum Availability mode and the far sync instance then forwards the
redo asynchronously in real time. Lastly, the original asynchronous standby (referred
to as the terminal standby) is configured to act as the alternate to the far sync instance
in the event that communication with the far sync instance is interrupted.

Note:

In a configuration that contains a far sync instance, there must still be a direct
network connection between the primary database and the remote standby
database. The direct connection between the primary and the remote standby
is used to perform health checks and switchover processing tasks. It is not
used for redo transport unless the standby has been configured as an alternate
destination in case the far sync instance fails and there is no alternate far sync
configured to maintain the protection level.

This section describes the following:

• Creating and Configuring a Far Sync Instance (page 5-2)

5.1.1 Creating and Configuring a Far Sync Instance
Take the following steps to create a far sync instance:

1. Create the control file for the far sync instance, as shown in the following example
(the primary database does not have to be open, but it must at least be mounted):

SQL> ALTER DATABASE CREATE FAR SYNC INSTANCE CONTROLFILE AS -
> '/arch2/chicagoFS/control01.ctl';

The resulting control file enables chicagoFS to operate as a far sync instance that
receives redo from primary database chicago. The path and file name shown are
just an example; you could use any path or file name that you want.

2. Create a parameter file (PFILE) from the server parameter file (SPFILE) used by the
primary database. Although most of the initialization settings in the parameter file
are also appropriate for the far sync instance, some modifications must be made.
For example, on a far sync instance, the DB_FILE_NAME_CONVERT and
LOG_FILE_NAME_CONVERT parameters must be set, and the DB_UNIQUE_NAME of
the far sync instance and the location of the far sync instance control file must be
modified. Example 5-1 (page 5-4) shows sample parameter file content for a far
sync instance with a DB_UNIQUE_NAME of chicagoFS.

3. Create a server parameter file (SPFILE) from the edited parameter file (PFILE) to
facilitate any subsequent changes to parameter values. If you do not use an SPFILE,
then a warning is returned in the SHOW CONFIGURATION output when the far sync
instance is added to an Oracle Data Guard broker configuration.

Creating a Far Sync Instance

5-2 Concepts and Administration

4. Use an operating system copy utility to copy the far sync instance control file
created in Step 1 and the server parameter file (SPFILE) created in Step 3 from the
primary system to the appropriate locations on the far sync instance system.

5. Create standby redo logs in the same way they are created for a regular standby.
See Managing Standby Redo Logs (page 7-7).

Because the LOG_FILE_NAME_CONVERT parameter was specified on the far sync
instance (see Example 5-1 (page 5-4)), the standby redo logs are created
automatically when redo transport begins from the primary, if they were created
on the primary as described in Configure the Primary Database to Receive Redo
Data (page 3-3).

Note:

Standby redo log files used at the far sync instance cannot be shared with
other databases. Therefore, all relevant considerations discussed in Standby
Database Directory Structure Considerations (page 2-7) for standby redo log
files also apply at the far sync instance.

6. If the far sync instance is to be hosted on a Windows system, use the ORADIM
utility to create a Windows service. For example:

WINNT> oradim –NEW –SID boston –STARTMODE manual

The ORADIM utility automatically determines the username for which this service
should be created and prompts for a password for that username (if that username
needs a password). See Oracle Database Platform Guide for Microsoft Windows for
more information about using the ORADIM utility.

7. This step is optional if operating system authentication is used for administrative
users and if SSL is used for redo transport authentication. If not, then copy the
primary database's remote login password file to the appropriate directory on the
far sync instance. The password file must be recopied whenever an administrative
privilege (SYSDG, SYSOPER, SYSDBA, and so on) is granted or revoked, and after
the password of any user with administrative privileges is changed.

As of Oracle Database 12c Release 2 (12.2.0.1), when a password file is manually
updated at a far sync instance, the redo containing the same password changes
from the primary database is automatically propagated to any standby databases
that are set up to receive redo from that far sync instance. The password file is
updated on the standby when the redo is applied.

8. On the far sync instance site, use Oracle Net Manager to configure a listener for the
far sync instance.

See Oracle Database Net Services Administrator's Guide for more information about
the listener.

9. On the primary system, use Oracle Net Manager to create a network service name
for the far sync instance (chicagoFS) that is to be used by redo transport services.

On the far sync instance system, use Oracle Net Manager to create a network
service name for the primary (chicago) and the terminal standby (boston) to be
used by redo transport services.

Creating a Far Sync Instance

Using Far Sync Instances 5-3

The Oracle Net service name must resolve to a connect descriptor that uses the
same protocol, host address, port, and service that you specified when you
configured the listeners for the primary database, the far sync instance, and the
terminal standby database. The connect descriptor must also specify that a
dedicated server be used.

See the Oracle Database Net Services Administrator's Guide for more information
about service names.

10. Start the far sync instance in mount mode.

11. Verify that the far sync instance is operating properly.

For information about validating a configuration after you create a far sync
instance, see Validating a Configuration (page 7-11).

12. Increase the protection mode of the configuration to Maximum Availability. On the
primary database, execute the following command:

SQL> ALTER DATABASE SET STANDBY TO MAXIMIZE AVAILABILITY;

See Also:

• Supported Protection Modes for Far Sync Instances (page 5-12) for more
information about far sync and protection modes

• Oracle Data Guard Protection Modes (page 6-1) for more information
about configuring different data protection modes

Example 5-1 Some of the Initialization Parameters Used for Far Sync Instances

Primary Database chicago

DB_UNIQUE_NAME=chicago

CONTROL_FILES='/arch1/chicago/control01.ctl'

DB_FILE_NAME_CONVERT='/boston/','/chicago/'

LOG_FILE_NAME_CONVERT='/boston/','/chicago/'

FAL_SERVER=boston

LOG_ARCHIVE_CONFIG='DG_CONFIG=(chicago,chicagoFS,boston)'

LOG_ARCHIVE_DEST_1='LOCATION=USE_DB_RECOVERY_FILE_DEST
VALID_FOR=(ALL_LOGFILES,ALL_ROLES) DB_UNIQUE_NAME=chicago'

LOG_ARCHIVE_DEST_2='SERVICE=chicagoFS SYNC AFFIRM
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) DB_UNIQUE_NAME=chicagoFS'

Far Sync Instance chicagoFS

DB_UNIQUE_NAME=chicagoFS

CONTROL_FILES='/arch2/chicagoFS/control01.ctl'

DB_FILE_NAME_CONVERT='/chicago/','/chicagoFS/','/boston/','/chicagoFS/'

LOG_FILE_NAME_CONVERT='/chicago/','/chicagoFS/','/boston/','/chicagoFS/'

Creating a Far Sync Instance

5-4 Concepts and Administration

FAL_SERVER=chicago

LOG_ARCHIVE_CONFIG='DG_CONFIG=(chicago,chicagoFS,boston)'

LOG_ARCHIVE_DEST_1='LOCATION= USE_DB_RECOVERY_FILE_DEST
VALID_FOR=(ALL_LOGFILES,ALL_ROLES) DB_UNIQUE_NAME=chicagoFS'

LOG_ARCHIVE_DEST_2='SERVICE=boston ASYNC
VALID_FOR=(STANDBY_LOGFILES,STANDBY_ROLE) DB_UNIQUE_NAME=boston'

Physical Standby boston

DB_UNIQUE_NAME=boston

CONTROL_FILES='/arch3/boston/control01.ctl'

DB_FILE_NAME_CONVERT='/chicago/','/boston/'

LOG_FILE_NAME_CONVERT='/chicago/','/boston/'

FAL_SERVER='chicagoFS','chicago'

LOG_ARCHIVE_CONFIG='DG_CONFIG=(chicago,chicagoFS,boston)'

LOG_ARCHIVE_DEST_1='LOCATION= USE_DB_RECOVERY_FILE_DEST
VALID_FOR=(ALL_LOGFILES,ALL_ROLES) DB_UNIQUE_NAME=boston'

LOG_ARCHIVE_DEST_2='SERVICE=chicago ASYNC
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) DB_UNIQUE_NAME=chicago'

5.2 Alternate Destinations
After you perform the steps in Creating and Configuring a Far Sync Instance
(page 5-2), the far sync instance provides zero data loss capability for the configuration
by forwarding the redo to the terminal standby at a remote site over the WAN. For the
configuration to remain protected in the event the far sync instance is not reachable,
you must configure alternate redo transport paths to the standby databases. This is
accomplished using the GROUP and PRIORITY attributes of the
LOG_ARCHIVE_DEST_n parameter. (As of Oracle Database 12c Release 2 (12.2.0.1), the
GROUP and PRIORITY attributes have replaced the ALTERNATE attribute for remote
redo destinations.)

The number of possible alternate remote destinations has been increased with the
concept of log archive destination groups. A log archive destination group specifies
multiple archive destinations that can be used to distribute redo to multiple
destinations, either from a far sync instance or through cascading. The destinations in
the group can then be prioritized so that only one destination is active at a time on the
primary database. Other destinations are available to become active if the active
destination becomes unavailable. To expand the number of possible archive
destinations for your database, you can specify multiple groups.

See Also:

• Using the ALTERNATE Attribute to Configure Remote Alternate
Destinations (page H-1) for information about configuring alternate
remote destinations using the old ALTERNATE syntax.

Alternate Destinations

Using Far Sync Instances 5-5

5.2.1 Assigning Log Archive Destinations to a Group
Use the GROUP attribute of the LOG_ARCHIVE_DEST_n initialization parameter to
assign log archive destinations to groups.

If log archive destination groups are used, then as long as at least one destination
within the group remains available, at least one destination remains enabled and
active. Log archive destinations that are not assigned to a group behave the same as
log archive destinations did prior to Oracle Database 12c Release 2 (12.2.0.1).

There can be up to 30 log archive destinations in a group. Log archive destination
groups are referenced by their group number, which is assigned when the group is
created. Groups are numbered from 1 through 8. A log archive destination group
contains a set of remote (SERVICE=…) destinations. (Local archival (LOCATION=…)
destinations are not supported in log archive destination groups and must use the
ALTERNATE attribute for alternate local archiving locations. See ALTERNATE
(page 17-3).

One log archive destination in the group is always active and the others are available
for use in the event of a failure of the active log archive destination. When a failed
destination again becomes available it becomes eligible if the currently active
destination fails, but it does not become active immediately, unless all other group
members are also unavailable. For example, the following declaration can be used to
specify three far sync instances as members of the same group and having the same
priority (Priority within a group is described in the next section). These are example
parameter definitions and do not contain all the necessary attributes. Do not use them
verbatim. In this example only the first destination is active with the second
destination available to take over if destination 1 becomes unavailable.

LOG_ARCHIVE_DEST_2='SERVICE=chicagoFS SYNC
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) GROUP=1'

LOG_ARCHIVE_DEST_STATE_2=ENABLE

LOG_ARCHIVE_DEST_3='SERVICE=chicagoFS1 SYNC
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) GROUP=1'

LOG_ARCHIVE_DEST_STATE_3=ALTERNATE

Note: Because log archive destination groups replace the
LOG_ARCHIVE_DEST_n ALTERNATE attribute, use of the ALTERNATE
attribute with log archive destinations that are not in the default group (where
GROUP is specified as 1 to 8) is not allowed.

5.2.2 Assigning Priorities to Log Archive Destinations in a Group
Using the PRIORITY attribute of the LOG_ARCHIVE_DEST_n initialization parameter
to assign destination preferences within a log archive destination group allows you to
control the fail back mechanism, especially with multiple members within a group.

In the previous section, the two far sync instance destinations did not have a priority,
which means that when the alternate destination is activated after a failure of the first
destination it remains as the active destination until it fails. The priority is used to
determine which log archive destination within a group to make active when the
database or far sync instance is started or when a destination fails. Log archive
destinations become active in the following cases: The primary database is opened in

Alternate Destinations

5-6 Concepts and Administration

read/write mode, a far sync instance is mounted, or a standby database is mounted or
opened in read-only mode. The same priority value can be assigned to more than one
log archive destination in a group. The priority value is an integer in the range of 1
through 8. Lower numbers indicate higher priorities. The default priority is 1 (the
highest priority).

The priority comes into play when a previously failed destination becomes available
again. A set of log archive destinations assigned to the same group have the same
priority, by default. Therefore, if one destination fails then a failover occurs to another
member of the set. When the failed destination becomes available again, it does not
become the active destination since both destinations have the same priority. If the
second destination fails after the first destination has again become available, then the
database fails over to the first destination or to another destination in the group at the
same priority. This cycle can repeat indefinitely, provided that another destination is
always available before the active destination fails.

Continuing with the previous example, priorities can be added to the log archive
destinations to control when a destination might become active. In the following
example, a third far sync instance is added, but at a lower priority:

LOG_ARCHIVE_DEST_2=’SERVICE=chicagoFS SYNC
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) GROUP=1 PRIORITY=1’

LOG_ARCHIVE_DEST_STATE_2=ENABLE

LOG_ARCHIVE_DEST_3=’SERVICE=chicagoFS1 SYNC
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) GROUP=1 PRIORITY=1’

LOG_ARCHIVE_DEST_STATE_3=ALTERNATE

LOG_ARCHIVE_DEST_4=’SERVICE=chicagoFS2 ASYNC
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) GROUP=1 PRIORITY=2’

LOG_ARCHIVE_DEST_STATE_4=ALTERNATE

This declaration results in the following behavior:

• The primary ships redo to the first of two preferred far sync instances, chicagoFS

• If chicagoFS become unavailable, then the primary ships to chicagoFS1.

• If chicagoFS becomes available again, no fail back occurs. It becomes the alternate
to chicagoFS1 because the priority is the same.

• If both chicagoFS and chicagoFS1 become unavailable, then the primary ships
to chicagoFS2 (in this case via the ASYNC redo transmission mode).

• If either chicagoFS or chicagoFS1 become available while the primary is
shipping to chicagoFS2, then the primary fails back to that available preferred
log archive destination.

5.2.3 Shipping to Multiple Active Destinations in a Group
You can also use the PRIORITY attribute to configure a group so that it ships to
multiple destinations if a preferred destination fails.

The mechanism that supports multiple active destinations within a single group is that
the lowest priority (PRIORITY=8) is defined to activate destinations within that group
at that priority, generally used to send the redo directly to the target standby
databases. The following log archive destination declaration shows how this could be

Alternate Destinations

Using Far Sync Instances 5-7

configured. In this example , there is one far sync instance that forwards redo to two
terminal standby databases:

LOG_ARCHIVE_DEST_2=’SERVICE=chicagoFS SYNC
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) GROUP=1 PRIORITY=1’

LOG_ARCHIVE_DEST_STATE_2=ENABLE

LOG_ARCHIVE_DEST_3=’SERVICE=boston ASYNC
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) GROUP=1 PRIORITY=8’

LOG_ARCHIVE_DEST_STATE_3=ALTERNATE

LOG_ARCHIVE_DEST_4=’SERVICE=newyork ASYNC
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) GROUP=1 PRIORITY=8’

LOG_ARCHIVE_DEST_STATE_4=ALTERNATE

This declaration results in the following behavior:

• The primary ships redo to the preferred far sync instance, chicagoFS.

• If chicagoFS is unavailable, then the primary ships directly to both terminal
standbys boston and newyork in ASYNC mode.

• While shipping to boston and newyork, if chicagoFS becomes available, then
the primary stops shipping directly to boston and newyork and begins shipping
instead to chicagoFS.

5.2.4 Using Multiple Log Archive Destination Groups
Multiple log archive destination groups can be used for site-specific high availability
considerations or to distribute service over large cascaded (reader farm)
configurations.

The following declaration sets up multiple log archive destination groups with
chicagoFS and chicagoFS1 in group 1 and chicagoFS3 and chicagoFS4 in
group 2:

LOG_ARCHIVE_DEST_2=’SERVICE=chicagoFS SYNC
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) GROUP=1 PRIORITY=1’

LOG_ARCHIVE_DEST_STATE_2=ENABLE

LOG_ARCHIVE_DEST_3=’SERVICE=chicagoFS1 SYNC
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) GROUP=1 PRIORITY=1’

LOG_ARCHIVE_DEST_STATE_3=ALTERNATE

LOG_ARCHIVE_DEST_4=’SERVICE=chicagoFS3 SYNC
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) GROUP=2 PRIORITY=1’

LOG_ARCHIVE_DEST_STATE_4=ENABLE

LOG_ARCHIVE_DEST_5=’SERVICE=chicagoFS4 SYNC
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) GROUP=2 PRIORITY=1’

LOG_ARCHIVE_DEST_STATE_5=ALTERNATE

Alternate Destinations

5-8 Concepts and Administration

5.2.5 Determining the Availability Status of Log Archive Destinations
Oracle Data Guard keeps track of the current status of available but inactive
destinations in log archive destination groups by periodically polling configured
destinations to determine their availability.

The information used to determine availability is derived from the MAX_FAILURE
attribute which specifies the consecutive number of times redo transport services
attempt to reestablish communication and transmit redo data to a failed destination
before the primary database gives up on the destination. The default value for
MAX_FAILURE is 1 when the GROUP and PRIORITY attributes are used.

The behavior of the MAX_FAILURE attribute is different between Oracle Database 12c
Release 1 (12.1) and Oracle Database 12c Release 2 (12.2). It is important to understand
the differences.

See Also:

• MAX_FAILURE (page 17-15)

5.3 Configuring Alternate Destinations
The topics in this section expand on the examples provided in the previous section
and provide examples of two additional far sync instance configurations. These
examples describe variations that provide better data protection when you use far
sync instances.

• Reduced Protection After a Far Sync Failure (page 5-9)

• Far Sync Instance High Availability (page 5-10)

• Maintaining Protection After a Role Change (page 5-11)

5.3.1 Reduced Protection After a Far Sync Failure
With all far sync instance configurations it is important that redo continues to ship to
the terminal standbys to continue to provide protection of the primary database.

In the simplest configuration there is one far sync instance (chicagoFS) and one
terminal standby database (boston).

If the far sync instance fails, then redo should be shipped directly to the terminal
standby by adding an additional log archive destination to the primary database,
chicago. This does reduce the protection level because redo transmission is then in
ASYNC mode instead of SYNC mode.

Example 5-2 Configuring for Single Destination Failover

Primary Database chicago

LOG_ARCHIVE_DEST_2='SERVICE=chicagoFS SYNC AFFIRM
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) DB_UNIQUE_NAME=chicagoFS GROUP=1 PRIORITY=1’

LOG_ARCHIVE_DEST_STATE_2=ENABLE

LOG_ARCHIVE_DEST_3='SERVICE=boston ASYNC NOAFFIRM
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) DB_UNIQUE_NAME=boston GROUP=1 PRIORITY=2'

Configuring Alternate Destinations

Using Far Sync Instances 5-9

LOG_ARCHIVE_DEST_STATE_3=ALTERNATE

This declaration causes the primary database to ship redo directly to the terminal
standby if the far sync instance chicagoFS fails. If the far sync instance becomes
available again, then it becomes the active destination and redo transmission goes to
the far sync instance.

If the far sync instance had multiple terminal standby databases, then you would use
PRIORITY=8 to ensure that all of those destinations received redo directly from the
primary database if the far sync instance failed.

Example 5-3 Configuring for Multiple Standby Database Redo Destination Failover

Primary Database chicago

As in the previous example, modify the log archive destination on the primary
database for the far sync instance to add it to a group with a Priority of 1 and then add
a new log archive destination for each standby the far sync instance services at Priority
8 in ASYNC mode.

LOG_ARCHIVE_DEST_2='SERVICE=chicagoFS SYNC AFFIRM
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) DB_UNIQUE_NAME=chicagoFS GROUP=1 PRIORITY=1’

LOG_ARCHIVE_DEST_STATE_2=ENABLE

LOG_ARCHIVE_DEST_3='SERVICE=boston ASYNC NOAFFIRM
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) DB_UNIQUE_NAME=boston GROUP=1 PRIORITY=8'

LOG_ARCHIVE_DEST_STATE_3=ALTERNATE

LOG_ARCHIVE_DEST_4='SERVICE=newyork ASYNC NOAFFIRM
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) DB_UNIQUE_NAME=newyork GROUP=1 PRIORITY=8'

LOG_ARCHIVE_DEST_STATE_3=ALTERNATE

This declaration causes the primary database to ship redo directly to both terminal
standby databases if the far sync instance chicagoFS fails. If the far sync instance
becomes available again, then it becomes the active destination and redo transmission
goes to the far sync instance.

5.3.2 Far Sync Instance High Availability
Configuring an alternate far sync instance keeps the protection level of the
configuration at the configured protection level of Maximum Availability if the
preferred far sync instance fails for some reason.

In both of the preceding examples the protection level of the configuration would fall
out of Maximum Availability because redo is no longer being shipped in SYNC mode.
For more protection from system or network failures, an additional far sync instance
can be configured that provides high availability for the active far sync instance. In
this configuration one is the preferred active far sync instance and the other is the
alternate far sync instance.

The primary automatically starts shipping to the alternate far sync instance if it detects
a failure at the preferred far sync instance. In these types of configurations, the
primary uses only one far sync instance to redistribute redo at any given time.

To maintain the Maximum Availability protection level, configure two far sync
instances near to the primary database and set them up to protect each other. Then, if
the active far sync instance becomes unavailable, the primary database can

Configuring Alternate Destinations

5-10 Concepts and Administration

automatically begin sending redo in synchronous mode to the alternate far sync
instance, thereby maintaining the elevated protection level of Maximum Availability.
In this case though, the two far sync instances have the same priority and when one
takes over for the other it remains the active far sync instance until it fails. To ensure
that redo continues to be shipped to the terminal standby database in the event that
both far sync instances fail, the terminal standby database is configured as before with
PRIORITY=2. (If there is more than one terminal standby database, then use
PRIORITY=8 for them).

The high availability far sync instance would be created using the same steps as given
in Creating and Configuring a Far Sync Instance (page 5-2), and configured to forward
redo to the terminal standby boston.

Example 5-4 Parameters Used to Set Up the High Availability Far Sync Instance

Primary Database chicago

LOG_ARCHIVE_CONFIG='DG_CONFIG=(chicago,chicagoFS,chicagoFS1,boston)'

LOG_ARCHIVE_DEST_2='SERVICE=chicagoFS SYNC AFFIRM
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) DB_UNIQUE_NAME=chicagoFS GROUP=1 PRIORITY=1’

LOG_ARCHIVE_DEST_STATE_2=ENABLE

LOG_ARCHIVE_DEST_3='SERVICE=chicagoFS1 SYNC AFFIRM
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) DB_UNIQUE_NAME=chicagoFS1 GROUP=1
PRIORITY=1’

LOG_ARCHIVE_DEST_STATE_3=ALTERNATE

LOG_ARCHIVE_DEST_4='SERVICE=boston ASYNC NOAFFIRM
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) DB_UNIQUE_NAME=boston GROUP=1 PRIORITY=2'

LOG_ARCHIVE_DEST_STATE_4=ALTERNATE

Oracle Data Guard can now continue synchronously sending redo to a far sync
instance, maintaining the required zero data loss protection mode of Maximum
Availability if a far sync instance fails. If both far sync instances fail, then redo ships in
ASYNC mode directly to boston, at a reduced protection level. As before, when either
of the failed far sync instances becomes available again, Oracle Data Guard
automatically resynchronizes it and returns to the original configuration, in which the
primary sends redo to an active far sync instance, which then forwards that redo to the
terminal standby. When the synchronization is complete, the alternate destination for
the standby (LOG_ARCHIVE_DEST_4 in the preceding example) again becomes
dormant as the alternate.

5.3.3 Maintaining Protection After a Role Change
The configuration described in the preceding sections works well to keep the
configuration running at Maximum Availability until all far sync instances fail and
redo is shipped to the standby database directly. But it would be inappropriate after a
role transition where boston becomes the primary database and chicago becomes
the terminal standby. The far sync instances chicagoFS and chicagoFS1 would be
too remote for boston to use as a synchronous destination because the network
latency between two sites is sufficiently large that it would impact commit response
times. To maintain the protection level of Maximum Availability for zero data loss, a
second far sync instance configuration close to boston must be established, in
readiness for a future role transition event.

Configuring Alternate Destinations

Using Far Sync Instances 5-11

Using the same procedure as described in Creating and Configuring a Far Sync
Instance (page 5-2), create two far sync instances named bostonFS and bostonFS1
close to the standby database boston and configure them both to ship redo to
chicago in ASYNC mode when they are active. Then add them to boston so that
when boston is the primary it ships redo to one of the far sync instances in SYNC
mode with all the failover capabilities that were configured for chicago and its far
sync instances. You need to add the new boston far sync instances to the
LOG_ARCHIVE_CONFIG on both boston and chicago.

Example 5-5 Parameters Used to Set Up Protection After a Role Change

Primary Database boston

LOG_ARCHIVE_CONFIG='DG_CONFIG=(chicago,chicagoFS,chicagoFS1,boston, bostonFS,
bostonFS1)'

LOG_ARCHIVE_DEST_2='SERVICE=bostonFS SYNC AFFIRM
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) DB_UNIQUE_NAME=bostonFS GROUP=1 PRIORITY=1’

LOG_ARCHIVE_DEST_STATE_2=ENABLE

LOG_ARCHIVE_DEST_3='SERVICE=bostonFS1 SYNC AFFIRM
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) DB_UNIQUE_NAME=bostonFS1 GROUP=1 PRIORITY=1’

LOG_ARCHIVE_DEST_STATE_3=ALTERNATE

LOG_ARCHIVE_DEST_4='SERVICE=chicago ASYNC NOAFFIRM
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) DB_UNIQUE_NAME=chicago GROUP=1 PRIORITY=2'

LOG_ARCHIVE_DEST_STATE_4=ALTERNATE

Primary Database chicago

LOG_ARCHIVE_CONFIG='DG_CONFIG=(chicago,chicagoFS,chicagoFS1,boston, bostonFS,
bostonFS1)'

Given these declarations, the far sync instance, bostonFS, receives redo from boston
and ships it to chicago only when boston is the primary database. However, even if
boston is not the primary database, Oracle recommends keeping far sync instance
bostonFS and bostonFS1 mounted in readiness for a future role transition.

5.4 Supported Protection Modes for Far Sync Instances
A far sync instance is supported in either maximum performance or maximum
availability mode.

5.4.1 Far Sync Instances in Maximum Availability Mode Configurations
In maximum availability mode, the far sync instance is relatively close to the primary
database to minimize network latency, and the primary services the far sync instance
using SYNC transport.

Supported Protection Modes for Far Sync Instances

5-12 Concepts and Administration

Note:

There is no architectural limit to the distance that can separate the primary
and far sync instance in maximum availability mode. The practical distance
limit varies depending upon a given application's tolerance to the impact of
network latency in a synchronous configuration. Also, it is possible to reduce
the performance impact for any given distance by using the new Oracle Data
Guard FastSync feature (SYNC/NOAFFIRM). See "Performance Versus
Protection in Maximum Availability Mode (page 6-2)".

Both SYNC/AFFIRM and SYNC/NOAFFIRM semantics are supported on the
LOG_ARCHIVE_DEST_n established at the primary for the far sync instance. See
Oracle Data Guard Protection Modes (page 6-1) for information about the trade-offs
of using each one.

When a primary services a far sync instance using SYNC transport, all committed redo
resides on disk at the far sync instance. This allows the far sync instance to use one of
the terminal standby destinations for a no data loss failover if the primary database is
lost.

The far sync instance uses ASYNC transport to ship the incoming redo to terminal
standbys that can be much farther away. This extends no data loss protection to
destinations that are too far away for a primary database to feasibly service directly
with SYNC transport because of the degradation in transaction throughput that would
result. This is a case where a far sync instance is beneficial even if there is only one
standby destination in the configuration.

5.4.2 Far Sync Instances in Maximum Performance Mode Configurations
In maximum performance mode, the primary database services the far sync instance
destination using ASYNC redo transport.

This is true regardless of the physical distance between the primary and the far sync
instance because high network latencies do not affect transaction throughput when a
destination is serviced with ASYNC transport.

In maximum performance mode, a far sync instance can benefit Oracle Data Guard
configurations that manage more than one remote destination. Although each ASYNC
destination has a near-zero effect on primary database performance, if there are many
remote destinations (for example, multiple Oracle Active Data Guard standbys that
form a reader farm), then the effect can become measurable. When a far sync instance
is used, there is zero incremental effect for each remote destination added to the
configuration. Additionally, redo transport compression can also be offloaded to the
far sync instance. When a far sync instance is used, the primary only has to service the
far sync instance, which then services the rest of the configuration; the greater the
number of destinations, the greater the performance benefit.

Supported Protection Modes for Far Sync Instances

Using Far Sync Instances 5-13

Supported Protection Modes for Far Sync Instances

5-14 Concepts and Administration

6
Oracle Data Guard Protection Modes

See the following topics for information about Data Guard protection modes and how
to set them on a primary database:

• Oracle Data Guard Protection Modes (page 6-1)

• Setting the Data Protection Mode of a Primary Database (page 6-3)

6.1 Oracle Data Guard Protection Modes
Oracle Data Guard provides three protection modes: maximum availability, maximum
performance, and maximum protection.

In the following descriptions of the protection modes, a synchronized standby
database is meant to be one that meets the minimum requirements of the configured
data protection mode and that does not have a redo gap. Redo gaps are discussed in
Redo Gap Detection and Resolution (page 7-14).

Maximum Availability

This protection mode provides the highest level of data protection that is possible
without compromising the availability of a primary database. Under normal
operations, transactions do not commit until all redo data needed to recover those
transactions has been written to the online redo log AND based on user configuration,
one of the following is true:

• redo has been received at the standby, I/O to the standby redo log has been
initiated, and acknowledgement sent back to primary

• redo has been received and written to standby redo log at the standby and
acknowledgement sent back to primary

If the primary does not receive acknowledgement from at least one synchronized
standby, then it operates as if it were in maximum performance mode to preserve
primary database availability until it is again able to write its redo stream to a
synchronized standby database.

If the primary database fails, then this mode ensures no data loss occurs provided
there is at least one synchronized standby in the Oracle Data Guard configuration. See
"Performance Versus Protection in Maximum Availability Mode (page 6-2)" for
information about the redo transport settings necessary to support Maximum
Availability and associated trade-offs.

Transactions on the primary are considered protected as soon as Oracle Data Guard
has written the redo data to persistent storage in a standby redo log file. Once that is
done, acknowledgment is quickly made back to the primary database so that it can
proceed to the next transaction. This minimizes the impact of synchronous transport
on primary database throughput and response time. To fully benefit from complete
Oracle Data Guard validation at the standby database, be sure to operate in real-time
apply mode so that redo changes are applied to the standby database as fast as they

Oracle Data Guard Protection Modes 6-1

are received. Oracle Data Guard signals any corruptions that are detected so that
immediate corrective action can be taken.

Performance Versus Protection in Maximum Availability Mode

When you use Maximum Availability mode, it is important to understand the possible
results of using the LOG_ARCHIVE_DEST_n attributes SYNC/AFFIRM versus SYNC/
NOAFFIRM (FastSync) so that you can make the choice best suited to your needs.

When a transport is performed using SYNC/AFFIRM, the primary performs write
operations and waits for acknowledgment that the redo has been transmitted
synchronously to the physical standby and written to disk. A SYNC/AFFIRM transport
provides an additional protection benefit at the expense of a performance impact
caused by the time required to complete the I/O to the standby redo log.

When a transport is performed using SYNC/NOAFFIRM, the primary performs write
operations and waits only for acknowledgement that the data has been received on the
standby, not that it has been written to disk. The SYNC/NOAFFIRM transport can
provide a performance benefit at the expense of potential exposure to data loss in a
special case of multiple simultaneous failures.

With those definitions in mind, suppose you experience a catastrophic failure at the
primary site at the same time that power is lost at the standby site. Whether data is lost
depends on the transport mode being used. In the case of SYNC/AFFIRM, in which
there is a check to confirm that data is written to disk on the standby, there would be
no data loss because the data would be available on the standby when the system was
recovered. In the case of SYNC/NOAFFIRM, in which there is no check that data has
been written to disk on the standby, there may be some data loss.

See Also:

• LOG_ARCHIVE_DEST_n Parameter Attributes (page 17-1) for more
information about the SYNC, AFFIRM, and NOAFFIRM attributes

• Oracle Data Guard Broker for information about transporting redo in a
broker configuration using FASTSYNC mode (using SYNC and NOAFFIRM
together in maximum availability mode)

Maximum Performance

This protection mode provides the highest level of data protection that is possible
without affecting the performance of a primary database. This is accomplished by
allowing transactions to commit as soon as all redo data generated by those
transactions has been written to the online log. Redo data is also written to one or
more standby databases, but this is done asynchronously with respect to transaction
commitment, so primary database performance is unaffected by the time required to
transmit redo data and receive acknowledgment from a standby database.

This protection mode offers slightly less data protection than maximum availability
mode and has minimal impact on primary database performance.

This is the default protection mode.

Maximum Protection

Maximum protection is similar to maximum availability but provides an additional
level of data protection in the event of multiple failure events. Unlike maximum
availability, which allows the primary to continue processing if it is unable to receive
acknowledgement from a standby database, maximum protection shuts the primary

Oracle Data Guard Protection Modes

6-2 Concepts and Administration

database down rather than allowing it to continue processing transactions that are
unprotected.

Because this data protection mode prioritizes data protection over primary database
availability, Oracle recommends that a minimum of two standby databases be used to
protect a primary database that runs in maximum protection mode to prevent a single
standby database failure from causing the primary database to shut down.

Note:

Asynchronously committed transactions are not protected by Oracle Data
Guard against loss until the redo generated by those transactions has been
written to the standby redo log of at least one synchronized standby database.

For more information about the asynchronous commit feature, see:

• Oracle Database Concepts

• Oracle Database PL/SQL Language Reference

6.2 Setting the Data Protection Mode of a Primary Database
Protection mode settings can be set and changed on an open database as long as the
configuration meets the requirements of the protection mode (including going from
maximum performance mode to maximum availability mode).

Perform the following steps to set the data protection mode of a primary database:

1. Select a data protection mode that meets your availability, performance, and data
protection requirements. See Oracle Data Guard Protection Modes (page 6-1) for a
description of the data protection modes.

2. Verify that at least one standby database meets the redo transport requirements for
the desired data protection mode.

The LOG_ARCHIVE_DEST_n database initialization parameter that corresponds to
at least one standby database must include the redo transport attributes listed in
the following table for the desired data protection mode.

The standby database must also have a standby redo log.

Table 6-1 Required Redo Transport Attributes for Data Protection Modes

Maximum Availability Maximum Performance Maximum Protection

AFFIRM or NOAFFIRM NOAFFIRM AFFIRM

SYNC ASYNC SYNC

DB_UNIQUE_NAME DB_UNIQUE_NAME DB_UNIQUE_NAME

3. Verify that the DB_UNIQUE_NAME database initialization parameter has been set to
a unique value on the primary database and on each standby database.

4. Verify that the LOG_ARCHIVE_CONFIG database initialization parameter has been
defined on the primary database and on each standby database, and that its value
includes a DG_CONFIG list that includes the DB_UNIQUE_NAME of the primary
database and each standby database.

Setting the Data Protection Mode of a Primary Database

Oracle Data Guard Protection Modes 6-3

The following sample SQL statement configures the LOG_ARCHIVE_CONFIG
parameter:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(CHICAGO,BOSTON)';

5. Set the data protection mode by executing the following SQL statement on the
primary database:

SQL> ALTER DATABASE -
> SET STANDBY DATABASE TO MAXIMIZE {AVAILABILITY | PERFORMANCE | PROTECTION};

The data protection mode can be set to MAXIMUM PROTECTION on an open
database only if the current data protection mode is MAXIMUM AVAILABILITY and
if there is at least one synchronized standby database.

6. Perform the following query on the primary database to confirm that it is operating
in the new protection mode:

SQL> SELECT PROTECTION_MODE FROM V$DATABASE;

Setting the Data Protection Mode of a Primary Database

6-4 Concepts and Administration

7
Redo Transport Services

See the following topics for information about how to configure and monitor Oracle
redo transport services:

• Introduction to Redo Transport Services (page 7-1)

• Configuring Redo Transport Services (page 7-2)

• Cascaded Redo Transport Destinations (page 7-8)

• Data Protection Considerations for Cascading Standbys (page 7-11)

• Validating a Configuration (page 7-11)

• Monitoring Redo Transport Services (page 7-12)

• Tuning Redo Transport (page 7-16)

7.1 Introduction to Redo Transport Services
Redo transport services performs the automated transfer of redo data between
members of an Oracle Data Guard configuration.

The following redo transport destinations are supported:

• Oracle Data Guard standby databases

This guide describes how to create and manage physical, logical, and snapshot
standby databases.

• Archive log repository

This destination type is used for temporary offsite storage of archived redo log
files. An archive log repository consists of an Oracle database instance and a
physical standby control file. An archive log repository does not contain data files,
so it cannot support role transitions.

The procedure used to create an archive log repository is identical to the procedure
used to create a physical standby database, except for the copying of data files.

• Oracle Streams downstream capture databases

See Oracle Streams Concepts and Administration for more information about Oracle
Streams downstream capture databases.

• Far sync instances

See Far Sync (page 5-1) for more information about far sync instances.

• Zero Data Loss Recovery Appliance (Recovery Appliance)

Redo Transport Services 7-1

See Zero Data Loss Recovery Appliance Administrator's Guide for more information
about Zero Data Loss Recovery Appliance (Recovery Appliance).

Each redo transport destination is individually configured to receive redo data via one
of two redo transport modes:

• Synchronous

The synchronous redo transport mode transmits redo data synchronously with
respect to transaction commitment. A transaction cannot commit until all redo
generated by that transaction has been successfully sent to every enabled redo
transport destination that uses the synchronous redo transport mode.

Although there is no limit on the distance between a primary database and a SYNC
redo transport destination, transaction commit latency increases as network latency
increases between a primary database and a SYNC redo transport destination.

This transport mode is used by the Maximum Protection and Maximum
Availability data protection modes described in Oracle Data Guard Protection
Modes (page 6-1).

Note:

Synchronous redo transport is not supported for Zero Data Loss Recovery
Appliance.

• Asynchronous

The asynchronous redo transport mode transmits redo data asynchronously with
respect to transaction commitment. A transaction can commit without waiting for
the redo generated by that transaction to be successfully sent to any redo transport
destination that uses the asynchronous redo transport mode.

This transport mode is used by the Maximum Performance data protection mode
described in Oracle Data Guard Protection Modes (page 6-1).

7.2 Configuring Redo Transport Services
This section describes how to configure redo transport services. The following topics
are discussed:

• Redo Transport Security (page 7-3)

• Configuring an Oracle Database to Send Redo Data (page 7-4)

• Configuring an Oracle Database to Receive Redo Data (page 7-7)

This section assumes that you have a thorough understanding of the following topics:

• Database administrator authentication

• Database initialization parameters

• Managing a redo log

• Managing archived redo logs

• Fast recovery areas

• Oracle Net Configuration

Configuring Redo Transport Services

7-2 Concepts and Administration

7.2.1 Redo Transport Security
Redo transport uses Oracle Net sessions to transport redo data.

These redo transport sessions are authenticated using either the Secure Socket Layer
(SSL) protocol or a remote login password file.

7.2.1.1 Redo Transport Authentication Using SSL
Secure Sockets Layer (SSL) is an industry standard protocol for securing network
connections.

SSL uses RSA public key cryptography and symmetric key cryptography to provide
authentication, encryption, and data integrity. SSL is automatically used for redo
transport authentication between two Oracle databases if:

• The databases are members of the same Oracle Internet Directory (OID) enterprise
domain and that domain allows the use of current user database links.

• The LOG_ARCHIVE_DEST_n, and FAL_SERVER database initialization parameters
that correspond to the databases use Oracle Net connect descriptors configured for
SSL.

• Each database has an Oracle wallet or a supported hardware security module that
contains a user certificate with a distinguished name (DN) that matches the DN in
the OID entry for the database.

See Also:

• Oracle Database Security Guide for more information about SSL

• Oracle Database Enterprise User Security Administrator's Guide for more
information about administering enterprise domains

• Oracle Label Security Administrator's Guide for information about
administering Oracle Internet Directory

7.2.1.2 Redo Transport Authentication Using a Password File
If the SSL authentication requirements are not met, then each database must use a
remote login password file.

In an Oracle Data Guard configuration, all physical and snapshot standby databases
must use a copy of the password file from the primary database. That copy is
automatically refreshed whenever an administrative privilege (SYSDG, SYSOPER,
SYSDBA, and so on) is granted or revoked, and after the password of any user with
administrative privileges is changed. The only exception to this is far sync instances.
Updated password files must still be manually copied to far sync instances because far
sync instances receive redo, but do not apply it. Once the password file is up-to-date at
the far sync instance the redo containing the password update at the primary is
automatically propagated to any standby databases that are set up to receive redo
from that far sync instance. The password file is updated on the standby when the
redo is applied.

When a password file is used for redo transport authentication, the password of the
user account used for redo transport authentication is compared between the database

Configuring Redo Transport Services

Redo Transport Services 7-3

initiating a redo transport session and the target database. The password must be the
same at both databases to create a redo transport session.

By default, the password of the SYS user is used to authenticate redo transport
sessions when a password file is used. The REDO_TRANSPORT_USER database
initialization parameter can be used to select a different user password for redo
transport authentication by setting this parameter to the name of any user who has
been granted the SYSOPER privilege. For administrative ease, Oracle recommends that
the REDO_TRANSPORT_USER parameter be set to the same value on the redo source
database and at each redo transport destination.

See Also:

Oracle Database Administrator's Guide for more information creating and
maintaining remote login password files

7.2.2 Configuring an Oracle Database to Send Redo Data
This section describes how to configure an Oracle database to send redo data to a redo
transport destination.

The LOG_ARCHIVE_DEST_n database initialization parameter (where n is an integer
from 1 to 31) is used to specify the location of a local archive redo log or to specify a
redo transport destination. This section describes the latter use of this parameter.

There is a LOG_ARCHIVE_DEST_STATE_n database initialization parameter (where n
is an integer from 1 to 31) that corresponds to each LOG_ARCHIVE_DEST_n
parameter. This parameter is used to enable or disable the corresponding redo
destination. Table 7-1 (page 7-4) shows the valid values that can be assigned to this
parameter.

Table 7-1 LOG_ARCHIVE_DEST_STATE_n Initialization Parameter Values

Value Description

ENABLE Redo transport services can transmit redo data to this destination. This is the
default.

DEFER Redo transport services do not transmit redo data to this destination.

ALTERNATE This destination becomes enabled if communication to its associated
destination fails.

A redo transport destination is configured by setting the LOG_ARCHIVE_DEST_n
parameter to a character string that includes one or more attributes. This section
briefly describes the most commonly used attributes. See LOG_ARCHIVE_DEST_n
Parameter Attributes (page 17-1) for a full description of all LOG_ARCHIVE_DEST_n
parameter attributes.

The SERVICE attribute, which is a mandatory attribute for a redo transport
destination, must be the first attribute specified in the attribute list. The SERVICE
attribute is used to specify the Oracle Net service name used to connect to the redo
transport destination. The service name must be resolvable through an Oracle Net
naming method to an Oracle Net connect descriptor that matches the Oracle Net
listener(s) at the redo transport destination. The connect descriptor must specify that a

Configuring Redo Transport Services

7-4 Concepts and Administration

dedicated server connection be used, unless that is the default connection type for the
redo transport destination.

See Also:

Oracle Database Net Services Administrator's Guide for information about Oracle
Net service names, connect descriptors, listeners, and network security

The SYNC attribute specifies that the synchronous redo transport mode be used to
send redo data to a redo transport destination.

The ASYNC attribute specifies that the asynchronous redo transport mode be used to
send redo data to a redo transport destination. The asynchronous redo transport mode
is used if neither the SYNC nor the ASYNC attribute is specified.

The NET_TIMEOUT attribute specifies how long the LGWR process waits for an
acknowledgement that redo data has been successfully received by a destination that
uses the synchronous redo transport mode. If an acknowledgement is not received
within NET_TIMEOUT seconds, the redo transport connection is terminated and an
error is logged.

Oracle recommends that the NET_TIMEOUT attribute be specified whenever the
synchronous redo transport mode is used, so that the maximum duration of a redo
source database stall caused by a redo transport fault can be precisely controlled. See
Monitoring Synchronous Redo Transport Response Time (page 7-13) for information
about monitoring synchronous redo transport mode response time.

Note: You could also set the database initialization parameter,
DATA_GUARD_SYNC_LATENCY, which is global for all synchronous standby
destinations. It defines the maximum amount of time (in seconds) that the
primary database may wait before disconnecting subsequent destinations after
at least one synchronous standby has acknowledged receipt of the redo.

For example, suppose you have three synchronous standby destinations and
you set DATA_GUARD_SYNC_LATENCY to a value of 2. If the first standby
acknowledges receipt of the redo immediately, then the primary database
waits no longer than 2 seconds for the other two standbys to respond. If one or
both respond within 2 seconds, then they are maintained as active
destinations. Destinations that do not respond in time are marked as failed. In
both cases the primary remains in zero data loss protection mode because one
synchronous standby has acknowledged receipt of the redo. Any failed
synchronous standbys are reconnected as normal after the number of seconds
specified for the REOPEN attribute have passed.

The AFFIRM attribute is used to specify that redo received from a redo source database
is not acknowledged until it has been written to the standby redo log. The NOAFFIRM
attribute is used to specify that received redo is acknowledged without waiting for
received redo to be written to the standby redo log.

The DB_UNIQUE_NAME attribute is used to specify the DB_UNIQUE_NAME of a redo
transport destination. The DB_UNIQUE_NAME attribute must be specified if the
LOG_ARCHIVE_CONFIG database initialization parameter has been defined and its
value includes a DG_CONFIG list.

Configuring Redo Transport Services

Redo Transport Services 7-5

If the DB_UNIQUE_NAME attribute is specified, its value must match one of the
DB_UNIQUE_NAME values in the DG_CONFIG list. It must also match the value of the
DB_UNIQUE_NAME database initialization parameter at the redo transport destination.
If either match fails, an error is logged and redo transport is not possible to that
destination.

The VALID_FOR attribute is used to specify when redo transport services transmits
redo data to a redo transport destination. Oracle recommends that the VALID_FOR
attribute be specified for each redo transport destination at every site in an Oracle
Data Guard configuration so that redo transport services continue to send redo data to
all standby databases after a role transition, regardless of which standby database
assumes the primary role.

The REOPEN attribute is used to specify the minimum number of seconds between
automatic reconnect attempts to a redo transport destination that is inactive because of
a previous error.

The COMPRESSION attribute is used to specify that redo data is transmitted to a redo
transport destination in compressed form. Redo transport compression can
significantly improve redo transport performance on network links with low
bandwidth and high latency.

Redo transport compression is a feature of the Oracle Advanced Compression option.
You must purchase a license for this option before using the redo transport
compression feature.

The following example uses all of the LOG_ARCHIVE_DEST_n attributes described in
this section. A DB_UNIQUE_NAME has been specified for both destinations, as has the
use of compression. If a redo transport fault occurs at either destination, then redo
transport attempts to reconnect to that destination, but not more frequently than once
every 60 seconds.

DB_UNIQUE_NAME=BOSTON
LOG_ARCHIVE_CONFIG='DG_CONFIG=(BOSTON,CHICAGO,HARTFORD)'
LOG_ARCHIVE_DEST_2='SERVICE=CHICAGO ASYNC NOAFFIRM VALID_FOR=(ONLINE_LOGFILE,
PRIMARY_ROLE) REOPEN=60 COMPRESSION=ENABLE DB_UNIQUE_NAME=CHICAGO'
LOG_ARCHIVE_DEST_STATE_2='ENABLE'
LOG_ARCHIVE_DEST_3='SERVICE=HARTFORD SYNC AFFIRM NET_TIMEOUT=30
VALID_FOR=(ONLINE_LOGFILE,PRIMARY_ROLE) REOPEN=60 COMPRESSION=ENABLE
DB_UNIQUE_NAME=HARTFORD'
LOG_ARCHIVE_DEST_STATE_3='ENABLE'

Note:

Configuration for Zero Data Loss Recovery Appliance (Recovery Appliance) is
identical to configuration for any standby database. So in the preceding
example, because Chicago is an ASYNC destination, it could be either a
standby database or a Recovery Appliance. (Synchronous redo transport is not
supported for Recovery Appliance)

7.2.2.1 Viewing Attributes With V$ARCHIVE_DEST

The V$ARCHIVE_DEST view can be queried to see the current settings and status for
each redo transport destination.

Configuring Redo Transport Services

7-6 Concepts and Administration

7.2.3 Configuring an Oracle Database to Receive Redo Data
This section describes how to configure a redo transport destination to receive and to
archive redo data from a redo source database.

The following topics are discussed:

• Managing Standby Redo Logs (page 7-7)

• Cases Where Redo Is Written Directly To an Archived Redo Log File (page 7-8)

7.2.3.1 Managing Standby Redo Logs

The synchronous and asynchronous redo transport modes require that a redo
transport destination have a standby redo log. A standby redo log is used to store redo
received from another Oracle database. Standby redo logs are structurally identical to
redo logs, and are created and managed using the same SQL statements used to create
and manage redo logs.

Redo received from another Oracle database via redo transport is written to the
current standby redo log group by a remote file server (RFS) foreground process.
When a log switch occurs on the redo source database, incoming redo is then written
to the next standby redo log group, and the previously used standby redo log group is
archived by an ARCn background process.

The process of sequentially filling and then archiving redo log file groups at a redo
source database is mirrored at each redo transport destination by the sequential filling
and archiving of standby redo log groups.

Each standby redo log file must be at least as large as the largest redo log file in the
redo log of the redo source database. For administrative ease, Oracle recommends that
all redo log files in the redo log at the redo source database and the standby redo log
at a redo transport destination be of the same size.

The standby redo log must have at least one more redo log group than the redo log at
the redo source database, for each redo thread at the redo source database. At the redo
source database, query the V$LOG view to determine how many redo log groups are in
the redo log at the redo source database and query the V$THREAD view to determine
how many redo threads exist at the redo source database.

Perform the following query on a redo source database to determine the size of each
log file and the number of log groups in the redo log:

SQL> SELECT GROUP#, BYTES FROM V$LOG;

Perform the following query on a redo destination database to determine the size of
each log file and the number of log groups in the standby redo log:

SQL> SELECT GROUP#, BYTES FROM V$STANDBY_LOG;

If the redo source database is an Oracle Real Applications Cluster (Oracle RAC) or
Oracle Real Application Clusters One Node (Oracle RAC One Node) database, query
the V$LOG view at the redo source database to determine how many redo threads exist
and specify the corresponding thread numbers when adding redo log groups to the
standby redo log.

The following sample SQL statements create a standby redo log at a database that is to
receive redo from a redo source database that has two redo threads:

Configuring Redo Transport Services

Redo Transport Services 7-7

SQL> ALTER DATABASE ADD STANDBY LOGFILE THREAD 1 SIZE 500M;
SQL> ALTER DATABASE ADD STANDBY LOGFILE THREAD 1 SIZE 500M;
SQL> ALTER DATABASE ADD STANDBY LOGFILE THREAD 1 SIZE 500M;
SQL> ALTER DATABASE ADD STANDBY LOGFILE THREAD 2 SIZE 500M;
SQL> ALTER DATABASE ADD STANDBY LOGFILE THREAD 2 SIZE 500M;
SQL> ALTER DATABASE ADD STANDBY LOGFILE THREAD 2 SIZE 500M;

Note:

Whenever a redo log group is added to a primary database, a log group must
also be added to the standby redo log of each standby database in the
configuration. Otherwise, the standby database may become unsynchronized
after a primary log switch, which could temporarily prevent a zero data loss
failover or cause a primary database operating in maximum protection mode
to shut down.

7.2.3.2 Cases Where Redo Is Written Directly To an Archived Redo Log File

Redo received by a standby database is written directly to an archived redo log file if a
standby redo log group is not available or if the redo was sent to resolve a redo gap.
When this occurs, redo is written to the location specified by the LOCATION attribute
of one LOG_ARCHIVE_DEST_n parameter that is valid for archiving redo received
from another database. The LOG_ARCHIVE_DEST_n parameter that is used for this
purpose is determined when the standby database is mounted, and this choice is
reevaluated each time a LOG_ARCHIVE_DEST_n parameter is modified.

7.3 Cascaded Redo Transport Destinations
A cascaded redo transport destination (also known as a terminal destination) receives
primary database redo indirectly from a standby database rather than directly from a
primary database.

A physical standby database that cascades primary database redo to one or more
terminal destinations at the same time it is applying changes to its local database files
is known as a cascading standby database.

With cascading, the overhead associated with performing redo transport is offloaded
from a primary database to a cascading standby database.

A cascading standby database can cascade primary database redo to up to 30 terminal
destinations.

A cascading standby database can either cascade redo in real-time (as it is being
written to the standby redo log file) or non-real-time (as complete standby redo log
files are being archived on the cascading standby).

Cascading has the following restrictions:

• Only physical standby databases can cascade redo.

• Real-time cascading requires a license for the Oracle Active Data Guard option.

• Non-real-time cascading is supported on destinations 1 through 10 only. (Real-time
cascading is supported on all destinations.)

Cascaded Redo Transport Destinations

7-8 Concepts and Administration

Note:

See Before You Patch or Upgrade the Oracle Database Software (page B-1)
for information about how to handle cascaded redo transport destinations
during an Oracle Database upgrade.

The rest of this section contains the following information:

• Configuring a Terminal Destination (page 7-9)

• Cascading Scenarios (page 7-10)

7.3.1 Configuring a Terminal Destination
Perform the following steps to configure a terminal destination:

1. Select a physical standby database to configure as a cascading standby database.

2. On the cascading standby database, configure the FAL_SERVER database
initialization parameter with the Oracle Net alias of the primary database or of a
standby database that receives redo directly from the primary database.

3. On the cascading standby database, configure a LOG_ARCHIVE_DEST_n database
initialization parameter for one or more terminal destinations. Configure the
SERVICE attribute of this destination with the Oracle Net alias of the terminal
destination, and the VALID attribute to be valid for archival of the standby redo log
while in the standby role.

If you specify ASYNC transport mode on destinations 1 through 10, then redo is
shipped in real-time. If you do not specify a transport mode or you specify SYNC on
destinations 1 through 10, then redo is shipped in non-real-time. Destinations 11
through 31 operate only in ASYNC (real-time) transport mode.

4. At the terminal destination, configure the FAL_SERVER database initialization
parameter with the Oracle Net alias of the cascading standby database or of
another standby database that is directly connected to the primary database.
Although it is also possible to specify the primary database, this would defeat the
purpose of cascading, which is to reduce the redo transport overhead on the
primary database.

5. Example 7-1 (page 7-9) shows some of the database initialization parameters
used by the members of an Oracle Data Guard configuration that includes a
primary database named boston that sends redo to a local physical standby
database named boston2, which then cascades primary database redo to a remote
physical standby database named denver.

A LOG_ARCHIVE_DEST_n database initialization parameter could also be
configured on database boston that is valid for standby redo log archival to
database denver when database boston is in the standby role. This would allow
redo cascading to database denver to continue if a switchover is performed
between database boston and database boston2.

Example 7-1 Some of the Initialization Parameters Used When Cascading Redo

Primary Database

DB_UNIQUE_NAME=boston

Cascaded Redo Transport Destinations

Redo Transport Services 7-9

FAL_SERVER=boston2

LOG_ARCHIVE_CONFIG='DG_CONFIG=(boston,boston2,denver)'

LOG_ARCHIVE_DEST_1='LOCATION=USE_DB_RECOVERY_FILE_DEST
VALID_FOR=(ALL_LOGFILES,ALL_ROLES) DB_UNIQUE_NAME=boston'

LOG_ARCHIVE_DEST_2='SERVICE=boston2 SYNC
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) DB_UNIQUE_NAME=boston2'

Cascading Physical Standby Database

DB_UNIQUE_NAME=boston2

FAL_SERVER=boston

LOG_ARCHIVE_CONFIG= 'DG_CONFIG=(boston,boston2,denver)'

LOG_ARCHIVE_DEST_1='LOCATION= USE_DB_RECOVERY_FILE_DEST
VALID_FOR=(ALL_LOGFILES,ALL_ROLES) DB_UNIQUE_NAME=boston2'

LOG_ARCHIVE_DEST_2= 'SERVICE=denver
VALID_FOR=(STANDBY_LOGFILES,STANDBY_ROLE) DB_UNIQUE_NAME=denver'

Cascaded Physical Standby Database

DB_UNIQUE_NAME=denver

FAL_SERVER=boston2

LOG_ARCHIVE_CONFIG='DG_CONFIG=(boston,boston2,denver)'

LOG_ARCHIVE_DEST_1='LOCATION= USE_DB_RECOVERY_FILE_DEST
VALID_FOR=(ALL_LOGFILES,ALL_ROLES) DB_UNIQUE_NAME=denver'

For information about validating a configuration after you set up a cascading
environment, see "Validating a Configuration (page 7-11)".

7.3.2 Cascading Scenarios
This section describes two typical cascading scenarios

• Cascading to a Physical Standby (page 7-10)

• Cascading to Multiple Physical Standbys (page 7-11)

7.3.2.1 Cascading to a Physical Standby

In this scenario, you have a mission-critical primary database. This database has
stringent performance and data protection requirements, so you have decided to
deploy a local physical standby database to provide zero data loss protection and a
remote, cascaded physical standby database to protect against regional disasters at the
primary and local standby database sites.

You can achieve the objectives described above by performing the following steps:

1. Create a physical standby database at a local site.

Cascaded Redo Transport Destinations

7-10 Concepts and Administration

2. Create a physical standby database at a site that is sufficiently remote to provide
protection against regional disasters at the primary and local standby database
sites.

3. Configure the local standby database as a SYNC redo transport destination of the
primary database.

4. Configure the remote physical standby database as a terminal destination of the
local standby database.

7.3.2.2 Cascading to Multiple Physical Standbys

In this scenario, you have a primary database in North America and you want to
deploy three replicas of this database in Europe to support read-only reporting
applications. For cost and performance reasons, you do not want to maintain network
links from North America to each of your European sites.

You can achieve the objectives described above by performing the following steps:

1. Create a network link between your North American site and one of your
European sites.

2. Create a physical standby database at each of your European sites.

3. Open your physical standby databases in real-time query mode, as described in
Opening a Physical Standby Database (page 10-2).

4. Configure the physical standby database at the European endpoint of your
transatlantic network link to cascade redo to your other European standby
databases.

5. Configure the other two physical standby databases as terminal destinations of the
cascading standby database configured in step 4.

7.4 Data Protection Considerations for Cascading Standbys
When your configuration includes cascading standbys, each destination should have a
LOG_ARCHIVE_DEST_n parameter defined that points back to its source for use
during a failover.

Real-time cascade enables a cascaded standby database to provide nearly the same
level of data protection as any standby database that receives redo directly from a
primary database using asynchronous redo transport. However, although redo is
forwarded in real-time, the fact that there is a second network hop creates the
potential for additional data loss if an outage prevents all redo from reaching the
terminal destination.

7.5 Validating a Configuration
To validate an Oracle Data Guard configuration after you create it, query the V
$DATAGUARD_CONFIG view from any database in the configuration.

The view displays the unique database names defined with the DB_UNIQUE_NAME
and LOG_ARCHIVE_CONFIG initialization parameters.

Data Protection Considerations for Cascading Standbys

Redo Transport Services 7-11

See Also:

• Oracle Database Reference for more information about the V
$DATAGUARD_CONFIG view

7.6 Monitoring Redo Transport Services
This section discusses the following topics:

• Monitoring Redo Transport Status (page 7-12)

• Monitoring Synchronous Redo Transport Response Time (page 7-13)

• Redo Gap Detection and Resolution (page 7-14)

• Redo Transport Services Wait Events (page 7-16)

7.6.1 Monitoring Redo Transport Status
You can query views to monitor redo transport status on a redo source database.

Take the following steps to monitor redo transport status on a redo source database.

1. Perform the following query on the redo source database to determine the most
recently archived sequence number for each thread:

SQL> SELECT MAX(SEQUENCE#), THREAD# FROM V$ARCHIVED_LOG -
> WHERE RESETLOGS_CHANGE# = (SELECT MAX(RESETLOGS_CHANGE#) FROM V$ARCHIVED_LOG) -
> GROUP BY THREAD#;

2. Perform the following query on the redo source database to determine the most
recently archived redo log file at each redo transport destination:

SQL> SELECT DESTINATION, STATUS, ARCHIVED_THREAD#, ARCHIVED_SEQ# -
> FROM V$ARCHIVE_DEST_STATUS -
> WHERE STATUS <> 'DEFERRED' AND STATUS <> 'INACTIVE';

DESTINATION STATUS ARCHIVED_THREAD# ARCHIVED_SEQ#
------------------ ------ ---------------- -------------
/private1/prmy/lad VALID 1 947
standby1 VALID 1 947

The most recently archived redo log file should be the same for each destination. If
it is not, a status other than VALID may identify an error encountered during the
archival operation to that destination.

3. Perform a query at a redo source database to find out if an archived redo log file
has been received at a particular redo transport destination. Each destination has
an ID number associated with it. You can query the DEST_ID column of the V
$ARCHIVE_DEST view on a database to identify each destination's ID number.

Assume that destination 1 points to the local archived redo log and that destination
2 points to a redo transport destination. Perform the following query at the redo
source database to find out if any log files are missing at the redo transport
destination:

SQL> SELECT LOCAL.THREAD#, LOCAL.SEQUENCE# FROM -
> (SELECT THREAD#, SEQUENCE# FROM V$ARCHIVED_LOG WHERE DEST_ID=1) -
> LOCAL WHERE -

Monitoring Redo Transport Services

7-12 Concepts and Administration

> LOCAL.SEQUENCE# NOT IN -
> (SELECT SEQUENCE# FROM V$ARCHIVED_LOG WHERE DEST_ID=2 AND -
> THREAD# = LOCAL.THREAD#);

THREAD# SEQUENCE#
--------- ---------
 1 12
 1 13
 1 14

4. Set the LOG_ARCHIVE_TRACE database initialization parameter at a redo source
database and at each redo transport destination to trace redo transport progress.
See Setting Archive Tracing (page F-1) for complete details and examples.

7.6.2 Monitoring Synchronous Redo Transport Response Time
The V$REDO_DEST_RESP_HISTOGRAM view contains response time data for each
redo transport destination.

The response time data is maintained for redo transport messages sent via the
synchronous redo transport mode.

The data for each destination consists of a series of rows, with one row for each
response time. To simplify record keeping, response times are rounded up to the
nearest whole second for response times less than 300 seconds. Response times greater
than 300 seconds are round up to 600, 1200, 2400, 4800, or 9600 seconds.

Each row contains four columns: FREQUENCY, DURATION, DEST_ID, and TIME.

The FREQUENCY column contains the number of times that a given response time has
been observed. The DURATION column corresponds to the response time. The
DEST_ID column identifies the destination. The TIME column contains a timestamp
taken when the row was last updated.

The response time data in this view is useful for identifying synchronous redo
transport mode performance issues that can affect transaction throughput on a redo
source database. It is also useful for tuning the NET_TIMEOUT attribute.

The next three examples show example queries for destination 2, which corresponds
to the LOG_ARCHIVE_DEST_2 parameter. To display response time data for a
different destination, simply change the DEST_ID in the query.

Perform the following query on a redo source database to display the response time
histogram for destination 2:

SQL> SELECT FREQUENCY, DURATION FROM -
> V$REDO_DEST_RESP_HISTOGRAM WHERE DEST_ID=2 AND FREQUENCY>1;

Perform the following query on a redo source database to display the slowest response
time for destination 2:

SQL> SELECT max(DURATION) FROM V$REDO_DEST_RESP_HISTOGRAM -
> WHERE DEST_ID=2 AND FREQUENCY>1;

Perform the following query on a redo source database to display the fastest response
time for destination 2:

SQL> SELECT min(DURATION) FROM V$REDO_DEST_RESP_HISTOGRAM -
> WHERE DEST_ID=2 AND FREQUENCY>1;

Monitoring Redo Transport Services

Redo Transport Services 7-13

Note:

The highest observed response time for a destination cannot exceed the
highest specified NET_TIMEOUT value specified for that destination, because
synchronous redo transport mode sessions are terminated if a redo transport
destination does not respond to a redo transport message within
NET_TIMEOUT seconds.

7.6.3 Redo Gap Detection and Resolution
A redo gap occurs whenever redo transmission is interrupted.

When redo transmission resumes, redo transport services automatically detects the
redo gap and resolves it by sending the missing redo to the destination.

The time needed to resolve a redo gap is directly proportional to the size of the gap
and inversely proportional to the effective throughput of the network link between the
redo source database and the redo transport destination. Redo transport services has
two options that may reduce redo gap resolution time when low performance network
links are used:

• Redo Transport Compression

The COMPRESSION attribute of the LOG_ARCHIVE_DEST_n parameter is used to
specify that redo data be compressed before transmission to the destination.

• Parallel Redo Transport Network Sessions

The MAX_CONNECTIONS attribute of the LOG_ARCHIVE_DEST_n parameter can be
used to specify that more than one network session be used to send the redo
needed to resolve a redo gap.

See LOG_ARCHIVE_DEST_n Parameter Attributes (page 17-1) for more information
about the COMPRESSION and MAX_CONNECTIONS attributes.

7.6.3.1 Manual Gap Resolution
In some situations, gap resolution cannot be performed automatically and it must be
performed manually.

For example, redo gap resolution must be performed manually on a logical standby
database if the primary database is unavailable.

Perform the following query at the physical standby database to determine if there is
redo gap on a physical standby database:

SQL> SELECT * FROM V$ARCHIVE_GAP;

 THREAD# LOW_SEQUENCE# HIGH_SEQUENCE#
----------- ------------- --------------
 1 7 10

The output from the previous example indicates that the physical standby database is
currently missing log files from sequence 7 to sequence 10 for thread 1.

Perform the following query on the primary database to locate the archived redo log
files on the primary database (assuming the local archive destination on the primary
database is LOG_ARCHIVE_DEST_1):

Monitoring Redo Transport Services

7-14 Concepts and Administration

SQL> SELECT NAME FROM V$ARCHIVED_LOG WHERE THREAD#=1 AND -
> DEST_ID=1 AND SEQUENCE# BETWEEN 7 AND 10;

NAME
--
/primary/thread1_dest/arcr_1_7.arc
/primary/thread1_dest/arcr_1_8.arc
/primary/thread1_dest/arcr_1_9.arc

Note:

This query may return consecutive sequences for a given thread. In that case,
there is no actual gap, but the associated thread was disabled and enabled
within the time period of generating these two archived logs. The query also
does not identify the gap that may exist at the tail end for a given thread. For
instance, if the primary database has generated archived logs up to sequence
100 for thread 1, and the latest archived log that the logical standby database
has received for the given thread is the one associated with sequence 77, then
this query does not return any rows, although there is a gap for the archived
logs associated with sequences 78 to 100.

Copy these log files to the physical standby database and register them using the
ALTER DATABASE REGISTER LOGFILE. For example:

SQL> ALTER DATABASE REGISTER LOGFILE -
> '/physical_standby1/thread1_dest/arcr_1_7.arc';

SQL> ALTER DATABASE REGISTER LOGFILE -
> '/physical_standby1/thread1_dest/arcr_1_8.arc';

SQL> ALTER DATABASE REGISTER LOGFILE -
> '/physical_standby1/thread1_dest/arcr_1_9.arc';

Note:

The V$ARCHIVE_GAP view on a physical standby database only returns the
gap that is currently blocking Redo Apply from continuing. After resolving
the gap, query the V$ARCHIVE_GAP view again on the physical standby
database to determine if there is another gap sequence. Repeat this process
until there are no more gaps.

To determine if there is a redo gap on a logical standby database, query the
DBA_LOGSTDBY_LOG view on the logical standby database. For example, the
following query indicates there is a gap in the sequence of archived redo log files
because it displays two files for THREAD 1 on the logical standby database. (If there
are no gaps, then the query shows only one file for each thread.) The output shows
that the highest registered file is sequence number 10, but there is a gap at the file
shown as sequence number 6:

SQL> COLUMN FILE_NAME FORMAT a55
SQL> SELECT THREAD#, SEQUENCE#, FILE_NAME FROM DBA_LOGSTDBY_LOG L -
> WHERE NEXT_CHANGE# NOT IN -
> (SELECT FIRST_CHANGE# FROM DBA_LOGSTDBY_LOG WHERE L.THREAD# = THREAD#) -
> ORDER BY THREAD#, SEQUENCE#;

 THREAD# SEQUENCE# FILE_NAME

Monitoring Redo Transport Services

Redo Transport Services 7-15

---------- ---------- ---
 1 6 /disk1/oracle/dbs/log-1292880008_6.arc
 1 10 /disk1/oracle/dbs/log-1292880008_10.arc

Copy the missing log files, with sequence numbers 7, 8, and 9, to the logical standby
system and register them using the ALTER DATABASE REGISTER LOGICAL
LOGFILE statement. For example:

SQL> ALTER DATABASE REGISTER LOGICAL LOGFILE -
> '/disk1/oracle/dbs/log-1292880008_7.arc';

SQL> ALTER DATABASE REGISTER LOGICAL LOGFILE -
> '/disk1/oracle/dbs/log-1292880008_8.arc';

SQL> ALTER DATABASE REGISTER LOGICAL LOGFILE -
> '/disk1/oracle/dbs/log-1292880008_9.arc';

Note:

A query based on the DBA_LOGSTDBY_LOG view on a logical standby
database, as specified above, only returns the gap that is currently blocking
SQL Apply from continuing. After resolving the gap, query the
DBA_LOGSTDBY_LOG view again on the logical standby database to determine
if there is another gap sequence. Repeat this process until there are no more
gaps.

7.6.4 Redo Transport Services Wait Events
You can use Oracle wait events to track redo transport wait time on a redo source
database.

Table 7-2 (page 7-16) lists several of these Oracle wait events, which are found in the
V$SYSTEM_EVENT dynamic performance view.

For a complete list of the Oracle wait events used by redo transport, see the Oracle
Data Guard Redo Transport and Network Best Practices white paper on the Oracle
Maximum Availability Architecture (MAA) home page at:

http://www.oracle.com/goto/maa

Table 7-2 Redo Transport Wait Events

Wait Event Description

LNS wait on ATTACH Total time spent waiting for redo transport sessions to be
established to all ASYNC and SYNC redo transport destinations

LNS wait on SENDREQ Total time spent waiting for redo data to be written to all
ASYNC and SYNC redo transport destinations

LNS wait on DETACH Total time spent waiting for redo transport connections to be
terminated to all ASYNC and SYNC redo transport destinations

7.7 Tuning Redo Transport
The Oracle Data Guard Redo Transport and Network Configuration Best Practices
white paper describes how to optimize redo transport for best performance. This

Tuning Redo Transport

7-16 Concepts and Administration

http://www.oracle.com/goto/maa

paper is available on the Oracle Maximum Availability Architecture (MAA) home
page at:

http://www.oracle.com/goto/maa

Tuning Redo Transport

Redo Transport Services 7-17

http://www.oracle.com/goto/maa

Tuning Redo Transport

7-18 Concepts and Administration

8
Apply Services

See the following topics for information about how redo data is applied to a standby
database:

• Introduction to Apply Services (page 8-1)

• Apply Services Configuration Options (page 8-1)

• Applying Redo Data to Physical Standby Databases (page 8-4)

• Applying Redo Data to Logical Standby Databases (page 8-5)

• Standby Considerations When Removing or Renaming a PDB at a Primary
(page 8-6)

8.1 Introduction to Apply Services
Apply services automatically apply redo to standby databases to maintain
synchronization with the primary database and allow transactionally consistent access
to the data.

By default, apply services waits for a standby redo log file to be archived before
applying the redo that it contains. However, you can enable real-time apply, which
allows apply services to apply the redo in the current standby redo log file as it is
being filled. Real-time apply is described in more detail in Using Real-Time Apply to
Apply Redo Data Immediately (page 8-2).

Apply services use the following methods to maintain physical and logical standby
databases:

• Redo Apply (physical standby databases only)

Uses media recovery to keep the primary and physical standby databases
synchronized.

• SQL Apply (logical standby databases only)

Reconstitutes SQL statements from the redo received from the primary database
and executes the SQL statements against the logical standby database.

8.2 Apply Services Configuration Options
This section contains the following topics:

• Using Real-Time Apply to Apply Redo Data Immediately (page 8-2)

• Specifying a Time Delay for the Application of Archived Redo Log Files
(page 8-3)

Apply Services 8-1

8.2.1 Using Real-Time Apply to Apply Redo Data Immediately
If the real-time apply feature is enabled, then apply services can apply redo data as it
is received, without waiting for the current standby redo log file to be archived.

This results in faster switchover and failover times because the standby redo log files
have already been applied to the standby database by the time the failover or
switchover begins. It also enables real-time reporting on an Oracle Active Data Guard
standby by keeping it more closely synchronized with the primary database.

Use the ALTER DATABASE statement to enable the real-time apply feature, as follows:

• For physical standby databases, issue the ALTER DATABASE RECOVER MANAGED
STANDBY DATABASE statement. (As of Oracle Database 12c Release 1 (12.1), the
USING CURRENT LOGFILE clause is deprecated and no longer necessary to start
real-time apply.)

• For logical standby databases, issue the ALTER DATABASE START LOGICAL
STANDBY APPLY IMMEDIATE statement.

Real-time apply requires a standby database that is configured with a standby redo
log and that is in ARCHIVELOG mode.

Figure 8-1 (page 8-3) shows an Oracle Data Guard configuration with a local
destination and a standby destination. As the remote file server (RFS) process writes
the redo data to standby redo log files on the standby database, apply services can
recover redo from standby redo log files as they are being filled.

Apply Services Configuration Options

8-2 Concepts and Administration

Figure 8-1 Applying Redo Data to a Standby Destination Using Real-Time Apply

Primary System Standby System

Primary�
Database�

Transactions

LGWR

ARCn

Online�
Redo Log Files

Archived�
Redo Log �
Files

ARCn

Standby�
Redo Log Files

Archived�
Redo Log Files

Oracle Net

RFS
MRP or�

LSP

Standby�
Database

Real Time Apply

Synchronous�
Oracle Net

8.2.2 Specifying a Time Delay for the Application of Archived Redo Log Files
In some cases, you may want to create a time lag between the time when redo data is
received from the primary site and when it is applied to the standby database.

You can specify a time interval (in minutes) to protect against the application of
corrupted or erroneous data to the standby database. When you set a DELAY interval,
it does not delay the transport of the redo data to the standby database. Instead, the
time lag you specify begins when the redo data is completely archived at the standby
destination.

Apply Services Configuration Options

Apply Services 8-3

Note:

If you define a delay for a destination that has real-time apply enabled, the
delay is ignored. If you define a delay as described in the following
paragraph, then you must start the apply using the USING ARCHIVED
LOGFILE clause as shown in Starting Redo Apply (page 8-4).

Specifying a Time Delay

You can set a time delay on primary and standby databases using the
DELAY=minutes attribute of the LOG_ARCHIVE_DEST_n initialization parameter to
delay applying archived redo log files to the standby database. By default, there is no
time delay. If you specify the DELAY attribute without specifying a value, then the
default delay interval is 30 minutes.

Canceling a Time Delay

You can cancel a specified delay interval as follows:

• For physical standby databases, use the NODELAY keyword of the RECOVER
MANAGED STANDBY DATABASE clause:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE NODELAY;

• For logical standby databases, specify the following SQL statement:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY NODELAY;

These commands result in apply services immediately beginning to apply archived
redo log files to the standby database, before the time interval expires.

8.2.2.1 Using Flashback Database as an Alternative to Setting a Time Delay
As an alternative to setting an apply delay, you can use Flashback Database to recover
from the application of corrupted or erroneous data to the standby database.

Flashback Database can quickly and easily flash back a standby database to an
arbitrary point in time.

See Oracle Data Guard Scenarios (page 15-1) for scenarios showing how to use Oracle
Data Guard with Flashback Database, and Oracle Database Backup and Recovery User's
Guide for more information about enabling and using Flashback Database.

8.3 Applying Redo Data to Physical Standby Databases
When performing Redo Apply, a physical standby database can use the real-time
apply feature to apply redo directly from the standby redo log files as they are being
written by the remote file server (RFS) process.

This section contains the following topics:

• Starting Redo Apply (page 8-4)

• Stopping Redo Apply (page 8-5)

• Monitoring Redo Apply on Physical Standby Databases (page 8-5)

8.3.1 Starting Redo Apply
To start apply services on a physical standby database, ensure the physical standby
database is started and mounted and then start Redo Apply.

Applying Redo Data to Physical Standby Databases

8-4 Concepts and Administration

Start apply services on a physical standby database as follows:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE;

This also automatically enables real-time apply provided the standby database is
configured with a standby redo log and is in ARCHIVELOG mode.

Redo Apply can be run either as a foreground session or as a background process. To
start Redo Apply in the foreground, issue the following SQL statement:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE;

If you start a foreground session, control is not returned to the command prompt until
recovery is canceled by another session.

To start Redo Apply in the background, include the DISCONNECT keyword on the
SQL statement. For example:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DISCONNECT;

or

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE USING ARCHIVED LOGFILE
DISCONNECT;

This statement starts a detached server process and immediately returns control to the
user. While the managed recovery process is performing recovery in the background,
the foreground process that issued the RECOVER statement can continue performing
other tasks. This command does not disconnect the current SQL session.

8.3.2 Stopping Redo Apply
To stop Redo Apply, issue the following SQL statement:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

8.3.3 Monitoring Redo Apply on Physical Standby Databases
To monitor the status of apply services on a physical standby database, see Using
Views to Monitor Primary_ Physical_ and Snapshot Standby Databases (page 10-22).
You can also monitor the standby database using Oracle Enterprise Manager Cloud
Control.

8.4 Applying Redo Data to Logical Standby Databases
SQL Apply converts the data from the archived redo log or standby redo log into SQL
statements and then executes these SQL statements on the logical standby database.

Because the logical standby database remains open, tables that are maintained can be
used simultaneously for other tasks such as reporting, summations, and queries.

This section contains the following topics:

• Starting SQL Apply (page 8-6)

• Stopping SQL Apply on a Logical Standby Database (page 8-6)

• Monitoring SQL Apply on Logical Standby Databases (page 8-6)

Applying Redo Data to Logical Standby Databases

Apply Services 8-5

8.4.1 Starting SQL Apply
To start SQL Apply, start the logical standby database and issue the following
statement:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY;

To start real-time apply on the logical standby database to immediately apply redo
data from the standby redo log files on the logical standby database, include the
IMMEDIATE keyword as shown in the following statement:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

8.4.2 Stopping SQL Apply on a Logical Standby Database
To stop SQL Apply, issue the following statement on the logical standby database:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;

When you issue this statement, SQL Apply waits until it has committed all complete
transactions that were in the process of being applied. Thus, this command may not
stop the SQL Apply processes immediately.

8.4.3 Monitoring SQL Apply on Logical Standby Databases
To monitor SQL Apply, see Views Related to Managing and Monitoring a Logical
Standby Database (page 11-7). You can also monitor the standby database using
Oracle Enterprise Manager Cloud Control. See Troubleshooting Oracle Data Guard
(page A-1).

8.5 Standby Considerations When Removing or Renaming a PDB at a
Primary

Restrictions apply when you are removing or renaming a pluggable database (PDB) at
the primary, if the primary is a multitenant container database (CDB).

• To perform DDL UNPLUG and DROP operations on a PDB, the PDB must first be
closed on the primary as well as on all standby databases.

• To perform a DDL RENAME operation on a PDB, the PDB must first be put in open
restricted mode on the primary, and closed on all standby databases.

If you do not close the PDB at the standby before removing it or renaming it at the
primary database, then the standby stops the recovery process for all PDBs. You must
close the dropped PDB at the standby and then restart recovery using the following
SQL statement:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE;

Standby Considerations When Removing or Renaming a PDB at a Primary

8-6 Concepts and Administration

9
Role Transitions

An Oracle Data Guard configuration consists of one database that functions in the
primary role and one or more databases that function in the standby role. To see the
current role of the databases, query the DATABASE_ROLE column in the V$DATABASE
view.

The number, location, and type of standby databases in an Oracle Data Guard
configuration and the way in which redo data from the primary database is
propagated to each standby database determine the role-management options
available to you in response to a primary database outage.

See the following topics for information about how to manage role transitions in an
Oracle Data Guard configuration:

• Introduction to Role Transitions (page 9-2)

• Role Transitions Involving Physical Standby Databases (page 9-8)

• Role Transitions Involving Logical Standby Databases (page 9-15)

• Using Flashback Database After a Role Transition (page 9-19)

Note:

These topics describe how to perform role transitions manually, using SQL
statements. Do not use these manual procedures to perform role transitions in
an Oracle Data Guard configuration that is managed by the broker. Use the
role transition procedures provided in Oracle Data Guard Broker instead.

See Also:

Oracle Data Guard Broker for information about using the Oracle Data Guard
broker to:

• Simplify switchovers and failovers by allowing you to invoke them using
either a single key click in Oracle Enterprise Manager Cloud Control or a
single command in the DGMGRL command-line interface.

• Enable fast-start failover to fail over automatically when the primary
database becomes unavailable. When fast-start failover is enabled, the
Oracle Data Guard broker determines if a failover is necessary and initiates
the failover to the specified target standby database automatically, with no
need for DBA intervention.

Role Transitions 9-1

9.1 Introduction to Role Transitions
A database operates in one of the following mutually exclusive roles: primary or
standby. Oracle Data Guard enables you to change these roles dynamically by using
SQL statements, or by using either of the Oracle Data Guard broker's interfaces. Oracle
Data Guard supports the following role transitions:

• Switchover

Allows the primary database to switch roles with one of its standby databases.
There is no data loss during a switchover. After a switchover, each database
continues to participate in the Oracle Data Guard configuration with its new role.

• Failover

Changes a standby database to the primary role in response to a primary database
failure. If the primary database was not operating in either maximum protection
mode or maximum availability mode before the failure, some data loss may occur.
If Flashback Database is enabled on the primary database, it can be reinstated as a
standby for the new primary database once the reason for the failure is corrected.

Preparing for a Role Transition (page 9-2) helps you choose the role transition that
best minimizes downtime and risk of data loss. Switchovers and failovers are
described in more detail in Switchovers (page 9-4) and Failovers (page 9-6),
respectively.

See Also:

Oracle Data Guard Broker for information about event notification and database
connection failover support available to database clients when a broker-
managed failover occurs

9.1.1 Preparing for a Role Transition
Before starting any role transition, perform the following preparations:

• Verify that each database is properly configured for the role that it is about to
assume. See Creating a Physical Standby Database (page 3-1) and Creating a
Logical Standby Database (page 4-1) for information about how to configure
database initialization parameters, ARCHIVELOG mode, standby redo logs, and
online redo logs on primary and standby databases.

Note:

You must define the LOG_ARCHIVE_DEST_n and
LOG_ARCHIVE_DEST_STATE_n parameters on each standby database so that
when a switchover or failover occurs, all standby sites continue to receive redo
data from the new primary database.

• Verify that there are no redo transport errors or redo gaps at the standby database
by querying the V$ARCHIVE_DEST_STATUS view on the primary database.

For example, the following query would be used to check the status of the standby
database associated with LOG_ARCHIVE_DEST_2:

Introduction to Role Transitions

9-2 Concepts and Administration

SQL> SELECT STATUS, GAP_STATUS FROM V$ARCHIVE_DEST_STATUS WHERE DEST_ID = 2;

STATUS GAP_STATUS
--------- ------------------------
VALID NO GAP

Do not proceed until the value of the STATUS column is VALID and the value of the
GAP_STATUS column is NOGAP, for the row that corresponds to the standby
database.

• Ensure temporary files exist on the standby database that match the temporary files
on the primary database.

• Remove any delay in applying redo that may be in effect on the standby database
that is set to become the new primary database. Not removing the delay results in
a longer switchover time, and may cause the switchover to be disallowed.

• Before performing a switchover to a physical standby database that is in real-time
query mode, consider bringing all instances of that standby database to the
mounted but not open state to achieve the fastest possible role transition and to
cleanly terminate any user sessions connected to the physical standby database
prior to the role transition.

• When you perform a switchover from an Oracle RAC primary database to a
physical standby database, it is not necessary to shut down all but one primary
database instance.

9.1.2 Choosing a Target Standby Database for a Role Transition
For an Oracle Data Guard configuration with multiple standby databases, there are a
number of factors to consider when choosing the target standby database for a role
transition. These include the following:

• Locality of the standby database.

• The capability of the standby database (hardware specifications—such as the
number of CPUs, I/O bandwidth available, and so on).

• The time it takes to perform the role transition. This is affected by how far behind
the standby database is in applying redo data, and how much flexibility you have
in terms of trading off application availability with data loss.

• Standby database type.

The type of standby chosen as the role transition target determines how other standby
databases in the configuration behave after the role transition. If the new primary was
a physical standby before the role transition, then all other standby databases in the
configuration become standbys of the new primary. If the new primary was a logical
standby before the role transition, then all other logical standbys in the configuration
become standbys of the new primary, but physical standbys in the configuration
continue to be standbys of the old primary and therefore, do not protect the new
primary. In the latter case, a future switchover or failover back to the original primary
database returns all standbys to their original role as standbys of the current primary.
For the reasons described above, a physical standby is generally the best role transition
target in a configuration that contains both physical and logical standbys.

Introduction to Role Transitions

Role Transitions 9-3

Note:

A snapshot standby cannot be the target of a role transition. To use a snapshot
standby database as a target for a role transition, first convert it to a physical
standby database and allow all redo received from the primary database to be
applied. See Converting a Snapshot Standby Database into a Physical Standby
Database (page 10-26).

Oracle Data Guard provides the V$DATAGUARD_STATS view, which you can use to
evaluate each standby database in terms of the currency of the data in the standby
database, and the time needed to perform a role transition if all available redo data is
applied to the standby database. For example:

SQL> COLUMN NAME FORMAT A24
SQL> COLUMN VALUE FORMAT A16
SQL> COLUMN DATUM_TIME FORMAT A24
SQL> SELECT NAME, VALUE, DATUM_TIME FROM V$DATAGUARD_STATS;

NAME VALUE DATUM_TIME
------------------------ ---------------- ------------------------
transport lag +00 00:00:00 06/18/2009 12:22:06
apply lag +00 00:00:00 06/18/2009 12:22:06
apply finish time +00 00:00:00.000
estimated startup time 9

This query output shows that the standby database has received and applied all redo
generated by the primary database. These statistics were computed using data
received from the primary database as of 12:22.06 on 06/18/09.

The apply lag and transport lag metrics are computed based on data received
from the primary database. These metrics become stale if communications between the
primary and standby database are disrupted. An unchanging value in the
DATUM_TIME column for the apply lag and transport lag metrics indicates that
these metrics are not being updated and have become stale, possibly due to a
communications fault between the primary and standby databases.

9.1.3 Switchovers
A switchover is typically used to reduce primary database downtime during planned
outages, such as operating system or hardware upgrades, or rolling upgrades of the
Oracle database software and patch sets (described in Using SQL Apply to Upgrade
the Oracle Database (page 13-1)).

A switchover takes place in two phases. In the first phase, the existing primary
database undergoes a transition to a standby role. In the second phase, a standby
database undergoes a transition to the primary role.

Figure 9-1 (page 9-5) shows a two-site Oracle Data Guard configuration before the
roles of the databases are switched. The primary database is in San Francisco, and the
standby database is in Boston.

Introduction to Role Transitions

9-4 Concepts and Administration

Figure 9-1 Oracle Data Guard Configuration Before Switchover

San Francisco

Boston

Standby�
Database

Online Redo
 Log Files

Archived �
Redo Log �
Files

Archived �
Redo Log �
Files

Local�
Archiving

Primary�
Database

Oracle Net

Figure 9-2 (page 9-5) shows the Oracle Data Guard environment after the original
primary database was switched over to a standby database, but before the original
standby database has become the new primary database. At this stage, the Oracle Data
Guard configuration temporarily has two standby databases.

Figure 9-2 Standby Databases Before Switchover to the New Primary Database

Boston

San Francisco

Standby�
Database

Archived �
Redo Log �
Files

Standby�
Database

Archived �
Redo Log �
Files

Figure 9-3 (page 9-6) shows the Oracle Data Guard environment after a switchover
took place. The original standby database became the new primary database. The
primary database is now in Boston, and the standby database is now in San Francisco.

Introduction to Role Transitions

Role Transitions 9-5

Figure 9-3 Oracle Data Guard Environment After Switchover

San Francisco

Boston

Standby
Database

Archived
Redo Log
Files

Primary
Database

Archived
Redo Log
Files

Online Redo
 Log Files

Local
Archiving

Oracle Net

Preparing for a Switchover

Ensure the prerequisites listed in Preparing for a Role Transition (page 9-2) are
satisfied. In addition, the following prerequisites must be met for a switchover:

• For switchovers involving a physical standby database, verify that the primary
database is open and that Redo Apply is active on the standby database. See
Applying Redo Data to Physical Standby Databases (page 8-4) for more
information about Redo Apply.

• For switchovers involving a logical standby database, verify both the primary and
standby database instances are open and that SQL Apply is active. See Applying
Redo Data to Logical Standby Databases (page 8-5) for more information about
SQL Apply.

9.1.4 Failovers
A failover is typically used only when the primary database becomes unavailable, and
there is no possibility of restoring it to service within a reasonable period of time. The
specific actions performed during a failover vary based on whether a logical or a
physical standby database is involved in the failover, the state of the Oracle Data
Guard configuration at the time of the failover, and on the specific SQL statements
used to initiate the failover.

Figure 9-4 (page 9-7) shows the result of a failover from a primary database in San
Francisco to a physical standby database in Boston.

Introduction to Role Transitions

9-6 Concepts and Administration

Figure 9-4 Failover to a Standby Database

Boston

Standby�
Database
Becomes
Primary�

Database

Archived �
Redo Log �
Files

Online Redo
 Log Files

Local�
Archiving

San Francisco

Primary�
Database

Archived �
Redo Log �
Files

Online Redo
 Log Files

Local�
Archiving

Preparing for a Failover

Note:

If managed standby recovery at a physical standby database chosen for
failover has stopped with error ORA-752 or ORA-600 [3020], then proceed
directly to Recovering From Lost-Write Errors on a Primary Database
(page 15-14).

If possible, before performing a failover, transfer as much of the available and
unapplied primary database redo data as possible to the standby database.

Ensure the prerequisites listed in Preparing for a Role Transition (page 9-2) are
satisfied. In addition, the following prerequisites must be met for a failover:

• If a standby database currently running in maximum protection mode is involved
in the failover, then first place it in maximum performance mode by issuing the
following statement on the standby database:

SQL> ALTER DATABASE SET STANDBY DATABASE TO MAXIMIZE PERFORMANCE;

Then, if appropriate standby databases are available, you can reset the desired
protection mode on the new primary database after the failover completes.

This is required because you cannot fail over to a standby database that is in
maximum protection mode. In addition, if a primary database in maximum
protection mode is still actively communicating with the standby database, then
issuing the ALTER DATABASE statement to change the standby database from
maximum protection mode to maximum performance mode does not succeed.
Because a failover removes the original primary database from the Oracle Data
Guard configuration, these features serve to protect a primary database operating
in maximum protection mode from the effects of an unintended failover.

Introduction to Role Transitions

Role Transitions 9-7

Note:

Do not fail over to a standby database to test whether or not the standby
database is being updated correctly. Instead:

– See Verify the Physical Standby Database Is Performing Properly
(page 3-12)

– See Verify the Logical Standby Database Is Performing Properly
(page 4-11)

9.1.5 Role Transition Triggers
The DB_ROLE_CHANGE system event is signaled whenever a role transition occurs.
This system event is signaled immediately if the database is open when the role
transition occurs, or the next time the database is opened if it is closed when a role
transition occurs.

The DB_ROLE_CHANGE system event can be used to fire a trigger that performs a set of
actions whenever a role transition occurs.

9.2 Role Transitions Involving Physical Standby Databases
The information in this section describes how to perform switchovers and failovers to
a physical standby database. The procedures to perform these operations have been
simplified if you are running Oracle Database 12c Release 1 (12.1). The former
procedures are still supported, however Oracle recommends that you use the new
procedures as described in the following sections:

• Performing a Switchover to a Physical Standby Database (page 9-9)

• Performing a Failover to a Physical Standby Database (page 9-12)

Keeping Physical Standby Sessions Connected During Role Transition

As of Oracle Database 12c Release 2 (12.2.0.1), when a physical standby database is
converted into a primary you have the option to keep any sessions connected to the
physical standby connected, without disruption, during the switchover/failover.

To enable this feature, set the STANDBY_DB_PRESERVE_STATES initialization
parameter in your init.ora file before the standby instance is started. This parameter
applies to physical standby databases only. The allowed values are:

• NONE — No sessions on the standby are retained during a switchover/failover.
This is the default value.

• ALL — User sessions are retained during switchover/failover.

• SESSION — User sessions are retained during switchover/failover.

Role Transitions Involving Physical Standby Databases

9-8 Concepts and Administration

See Also:

• Troubleshooting Oracle Data Guard (page A-1) for information about
how to troubleshoot problems you might encounter when performing role
transitions to a physical standby database

• Performing Role Transitions Using Old Syntax (page G-1) for information
about the procedures used in prior releases, and a comparison of old and
new syntax

• Oracle Database Reference for a complete description of the
STANDBY_DB_PRESERVE_STATES initialization parameter.

9.2.1 Performing a Switchover to a Physical Standby Database
This section describes how to perform a switchover to a physical standby database.

Note:

If there is a far sync instance (or a combination of preferred and alternate far
sync instances) connecting the primary and standby databases, then the
procedure to switchover to the standby is the same as described in this
section. Whether the far sync instance(s) are available or unavailable does not
affect switchover. During switchover, the primary and standby must be able
to communicate directly with each other and perform the switchover role
transition steps oblivious of the far sync instance(s). See Far Sync (page 5-1) for
examples of how to set up such configurations correctly so that the far sync
instance(s) can service the new roles of the two databases after switchover.

1. Verify that the target standby database is ready for switchover.

The new switchover statement has a VERIFY option that results in checks being
performed of many conditions required for switchover. Some of the items checked
are: whether Redo Apply is running on the switchover target; whether the release
version of the switchover target is 12.1 or later; whether the switchover target is
synchronized; and whether it has MRP running.

Suppose the primary database has a DB_UNIQUE_NAME of BOSTON and the
switchover target standby database has a DB_UNIQUE_NAME of CHICAGO. On the
primary database BOSTON, issue the following SQL statement to verify that the
switchover target, CHICAGO, is ready for switchover:

SQL> ALTER DATABASE SWITCHOVER TO CHICAGO VERIFY;
ERROR at line 1:
ORA-16470: Redo Apply is not running on switchover target

If this operation had been successful, a Database Altered message would have
been returned but in this example an ORA-16470 error was returned. This error
means that the switchover target CHICAGO is not ready for switchover. Redo Apply
must be started before the switchover operation.

After Redo Apply is started, issue the following statement again:

SQL> ALTER DATABASE SWITCHOVER TO CHICAGO VERIFY;
ERROR at line 1:
ORA-16475: succeeded with warnings, check alert log for more details

Role Transitions Involving Physical Standby Databases

Role Transitions 9-9

The switchover target, CHICAGO, is ready for switchover. However, the warnings
indicated by the ORA-16475 error may affect switchover performance. The alert
log contains messages similar to the following:

SWITCHOVER VERIFY WARNING: switchover target has dirty online redo logfiles that
require clearing. It takes time to clear online redo logfiles. This may slow down
switchover process.

You can fix the problems or if switchover performance is not important, those
warnings can be ignored. After making any fixes you determine are necessary,
issue the following SQL statement again:

SQL> ALTER DATABASE SWITCHOVER TO CHICAGO VERIFY;
Database altered.

The switchover target, CHICAGO, is now ready for switchover.

2. Initiate the switchover on the primary database, BOSTON, by issuing the following
SQL statement:

SQL> ALTER DATABASE SWITCHOVER TO CHICAGO;
Database altered.

If this statement completes without any errors, proceed to Step 3.

If an error occurs, mount the old primary database (BOSTON) and the old standby
database (CHICAGO). On both databases, query DATABASE_ROLE from V
$DATABASE. There are three possible combinations of database roles for BOSTON
and CHICAGO. The following table describes these combinations and provides the
likely cause and a high level remedial action for each situation. For details on
specific error situations, see Troubleshooting Oracle Data Guard (page A-1).

Value of DATABASE_ROLE
column in V$DATABASE

Cause and Remedial Action

BOSTON database is primary,
CHICAGO database is standby

Cause: The BOSTON database failed to convert to a
standby database role.

Action: See the alert log for details on the error that
prevented BOSTON from switching to a standby role, take
the necessary actions to fix the error, reopen one of the
nodes of BOSTON if necessary, and repeat the switchover
process from Step 1.

Role Transitions Involving Physical Standby Databases

9-10 Concepts and Administration

Value of DATABASE_ROLE
column in V$DATABASE

Cause and Remedial Action

BOSTON database is standby,
CHICAGO database is standby

Cause: The CHICAGO database failed to convert to a
primary database role.

Action: Issue the following SQL statement to convert
either BOSTON or CHICAGO to a primary database:

SQL> ALTER DATABASE SWITCHOVER TO target_db_name
FORCE;

For example:

• On the CHICAGO database, issue the following SQL
statement to convert it to a primary database:

ALTER DATABASE SWITCHOVER TO CHICAGO FORCE;

• On the BOSTON database, issue the following SQL
statement to convert it to a primary database:

ALTER DATABASE SWITCHOVER TO BOSTON FORCE;

If the SQL statement fails with an ORA-16473 error, then
you must start Redo Apply before reissuing the
command.

Restart Redo Apply as follows:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY
DATABASE DISCONNECT;

Reissue the switchover command as follows:

SQL> ALTER DATABASE SWTICHOVER TO BOSTON FORCE;
Database altered.

BOSTON database is standby,
CHICAGO database is primary

Cause: The BOSTON and CHICAGO databases have
successfully switched to their new roles, but there was an
error communicating the final success status back to
BOSTON.

Action: Continue to Step 3 to finish the switchover
operation.

3. Issue the following SQL statement on the new primary database, CHICAGO, to open
it.

SQL> ALTER DATABASE OPEN;

4. Issue the following SQL statement to mount the new physical standby database,
BOSTON:

SQL> STARTUP MOUNT;

Or, if BOSTON is an Oracle Active Data Guard physical standby database, then
issue the following SQL statement to open it read only:

SQL> STARTUP;

5. Start Redo Apply on the new physical standby database. For example:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DISCONNECT FROM SESSION;

Role Transitions Involving Physical Standby Databases

Role Transitions 9-11

9.2.2 Performing a Failover to a Physical Standby Database
This section describes the steps to follow to perform a failover to a physical standby
database.

1. If the primary database can be mounted, then flush any unsent archived and
current redo from the primary database to the standby database. If this operation is
successful, a zero data loss failover is possible even if the primary database is not in
a zero data loss data protection mode.

First, ensure that Redo Apply is active at the target standby database. Then mount,
but do not open the primary database. If the primary database cannot be mounted,
go to Step 2.

If not already done, then set up the remote LOG_ARCHIVE_DEST_n configured at
the primary to point to the target destination. (You may not have any remote
LOG_ARCHIVE_DEST_n configured if the target destination was serviced by a far
sync instance, or was a terminal standby in a cascaded configuration.) Also, ensure
that the primary can connect to the target destination by verifying that the
NET_ALIAS_TARGET_DB_NAME is valid and properly established.

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_6='SERVICE=NET_ALIAS_TARGET_DB_NAME -
> ASYNC VALID_FOR=(online_logfile, primary_role) -
> DB_UNIQUE_NAME="target_db_unique_name"' SCOPE=memory;

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_6=ENABLE;

It is also assumed that the LOG_ARCHIVE_CONFIG specification includes the
DB_UNIQUE_NAME of the target destination at the primary (and
LOG_ARCHIVE_CONFIG at the target destination includes the DB_UNIQUE_NAME of
the primary). If not, then add that information to the LOG_ARCHIVE_CONFIG at the
primary and target destination as required.

Issue the following SQL statement at the primary database:

SQL> ALTER SYSTEM FLUSH REDO TO target_db_name;

For target_db_name, specify the DB_UNIQUE_NAME of the standby database that
is to receive the redo flushed from the primary database.

This statement flushes any unsent redo from the primary database to the standby
database, and waits for that redo to be applied to the standby database.

If this statement completes without any errors, go to Step 5.If the statement
completes with any error, or if it must be stopped because you cannot wait any
longer for the statement to complete, continue with Step 2.

2. Query the V$ARCHIVED_LOG view on the target standby database to obtain the
highest log sequence number for each redo thread.

For example:

SQL> SELECT UNIQUE THREAD# AS THREAD, MAX(SEQUENCE#) -
> OVER (PARTITION BY thread#) AS LAST from V$ARCHIVED_LOG;

 THREAD LAST
---------- ----------
 1 100

Role Transitions Involving Physical Standby Databases

9-12 Concepts and Administration

If possible, copy the most recently archived redo log file for each primary database
redo thread to the standby database if it does not exist there, and register it. This
must be done for each redo thread.

For example:

SQL> ALTER DATABASE REGISTER PHYSICAL LOGFILE 'filespec1';

3. Query the V$ARCHIVE_GAP view on the target standby database to determine if
there are any redo gaps on the target standby database.

For example:

SQL> SELECT THREAD#, LOW_SEQUENCE#, HIGH_SEQUENCE# FROM V$ARCHIVE_GAP;

THREAD# LOW_SEQUENCE# HIGH_SEQUENCE#
---------- ------------- --------------
 1 90 92

In this example, the gap comprises archived redo log files with sequence numbers
90, 91, and 92 for thread 1.

If possible, copy any missing archived redo log files to the target standby database
from the primary database and register them at the target standby database. This
must be done for each redo thread.

For example:

SQL> ALTER DATABASE REGISTER PHYSICAL LOGFILE 'filespec1';

4. The query executed in Step 3 displays information for the highest gap only. After
resolving a gap, you must repeat the query until no more rows are returned.

If, after performing Step 2 through Step 4, you are not able to resolve all gaps in the
archived redo log files (for example, because you do not have access to the system
that hosted the failed primary database), then you can expect some data loss during
the failover.

5. Issue the following SQL statement on the target standby database:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

6. Issue the following SQL statement on the target standby database:

SQL> ALTER DATABASE FAILOVER TO target_db_name;

For example, suppose the target standby database is named CHICAGO:

SQL> ALTER DATABASE FAILOVER TO CHICAGO;

If this statement completes without any errors, proceed to Step 10.

If there are errors, go to Step 7.

7. If an error occurs, try to resolve the cause of the error and then reissue the
statement.

• If successful, go to Step 10.

• If the error still occurs and it involves a far sync instance, go to Step 8.

• If the error still occurs and there is no far sync instance involved, go to Step 9.

Role Transitions Involving Physical Standby Databases

Role Transitions 9-13

8. This step is for far sync instance error cases only. If the error involves a far sync
instance (for example, it is unavailable) and you have tried resolving the issue and
reissuing the statement without success, then you can use the FORCE option. For
example:

SQL> ALTER DATABASE FAILVOVER TO CHICAGO FORCE;

The FORCE option instructs the failover to ignore any failures encountered when
interacting with the far sync instance and proceed with the failover, if at all
possible. (The FORCE option has meaning only when the failover target is serviced
by a far sync instance.)

If the FORCE option is successful, go to Step 10.

If the FORCE option is unsuccessful, go to Step 9.

9. Perform a data loss failover.

If an error condition cannot be resolved, a failover can still be performed (with
some data loss) by issuing the following SQL statement on the target standby
database:

SQL> ALTER DATABASE ACTIVATE PHYSICAL STANDBY DATABASE;

In the following example, the failover operation fails with an ORA-16472 error.
That error means the database is configured in MaxAvailability or MaxProtection
mode but data loss is detected during failover.

SQL> ALTER DATABASE FAILOVER TO CHICAGO;
ERROR at line 1:
ORA-16472: failover failed due to data loss

You can complete the data loss failover by issuing the following SQL statement:

SQL> ALTER DATABASE ACTIVATE PHYSICAL STANDBY DATABASE;
Database altered.

10. Open the new primary database:

SQL> ALTER DATABASE OPEN;

11. Oracle recommends that you perform a full backup of the new primary database.

12. If Redo Apply has stopped at any of the other physical standby databases in your
Data Guard configuration, then restart it. For example:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DISCONNECT;

13. After a failover, the original primary database can be converted into a physical
standby database of the new primary database using the method described in
Converting a Failed Primary Into a Standby Database Using Flashback Database
(page 15-3) or Converting a Failed Primary into a Standby Database Using RMAN
Backups (page 15-17), or it can be re-created as a physical standby database from a
backup of the new primary database using the method described in Step-by-Step
Instructions for Creating a Physical Standby Database (page 3-6).

Once the original primary database is running in the standby role, a switchover can
be performed to restore it to the primary role.

Role Transitions Involving Physical Standby Databases

9-14 Concepts and Administration

9.3 Role Transitions Involving Logical Standby Databases
The following sections describe how to perform switchovers and failovers involving a
logical standby database:

• Performing a Switchover to a Logical Standby Database (page 9-15)

• Performing a Failover to a Logical Standby Database (page 9-17)

Note:

Logical standby does not replicate database services. In the event of a failover
or switchover to a logical standby, mid-tiers connecting to services in the
primary are not able to connect (since the creation of the service is not
replicated), or connect to an incorrect edition (since the modification of the
service attribute is not replicated).

Oracle Clusterware does not replicate the services it manages to logical
standbys. You must manually keep them synchronized between the primary
and standby. See Oracle Clusterware Administration and Deployment Guide for
more information about Oracle Clusterware.

9.3.1 Performing a Switchover to a Logical Standby Database
When you perform a switchover that changes roles between a primary database and a
logical standby database, always initiate the switchover on the primary database and
complete it on the logical standby database. For the switchover to succeed, these steps
must be performed in the order in which they are described.

1. On the current primary database, query the SWITCHOVER_STATUS column of the
V$DATABASE fixed view on the primary database to verify it is possible to
perform a switchover.

For example:

SQL> SELECT SWITCHOVER_STATUS FROM V$DATABASE;

SWITCHOVER_STATUS

TO STANDBY
1 row selected

A value of TO STANDBY or SESSIONS ACTIVE in the SWITCHOVER_STATUS
column indicates that it is possible to switch the primary database to the logical
standby role. If one of these values is not displayed, then verify the Oracle Data
Guard configuration is functioning correctly (for example, verify all
LOG_ARCHIVE_DEST_n parameter values are specified correctly). See Oracle
Database Reference for information about other valid values for the
SWITCHOVER_STATUS column of the V$DATABASE view.

2. To prepare the current primary database for a logical standby database role, issue
the following SQL statement on the primary database:

SQL> ALTER DATABASE PREPARE TO SWITCHOVER TO LOGICAL STANDBY;

Role Transitions Involving Logical Standby Databases

Role Transitions 9-15

This statement notifies the current primary database that it will soon switch to the
logical standby role and begin receiving redo data from a new primary database.
You perform this step on the primary database in preparation to receive the
LogMiner dictionary to be recorded in the redo stream of the current logical
standby database, as described in Step 3.

The value PREPARING SWITCHOVER is displayed in the V
$DATABASE.SWITCHOVER_STATUS column if this operation succeeds.

3. Use the following statement to build a LogMiner dictionary on the logical standby
database that is the target of the switchover:

SQL> ALTER DATABASE PREPARE TO SWITCHOVER TO PRIMARY;

This statement also starts redo transport services on the logical standby database
that begins transmitting its redo data to the current primary database and to other
standby databases in the Oracle Data Guard configuration. The sites receiving
redo data from this logical standby database accept the redo data but they do not
apply it.

The V$DATABASE.SWITCHOVER_STATUS on the logical standby database
initially shows PREPARING DICTIONARY while the LogMiner dictionary is being
recorded in the redo stream. Once this has completed successfully, the
SWITCHOVER_STATUS column shows PREPARING SWITCHOVER.

4. Before you can complete the role transition of the primary database to the logical
standby role, verify the LogMiner dictionary was received by the primary
database by querying the SWITCHOVER_STATUS column of the V$DATABASE
fixed view on the primary database. Without the receipt of the LogMiner
dictionary, the switchover cannot proceed, because the current primary database
must be able to interpret the redo records sent from the future primary database.
The SWITCHOVER_STATUS column shows the progress of the switchover.

When the query returns the TO LOGICAL STANDBY value, you can proceed with
Step 5. For example:

SQL> SELECT SWITCHOVER_STATUS FROM V$DATABASE;

SWITCHOVER_STATUS

TO LOGICAL STANDBY
1 row selected

Note:

You can cancel the switchover operation by issuing the following statements
in the order shown:

a. Cancel switchover on the primary database:

SQL> ALTER DATABASE PREPARE TO SWITCHOVER CANCEL;

b. Cancel the switchover on the logical standby database:

SQL> ALTER DATABASE PREPARE TO SWITCHOVER CANCEL;

5. To complete the role transition of the primary database to a logical standby
database, issue the following SQL statement:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO LOGICAL STANDBY;

Role Transitions Involving Logical Standby Databases

9-16 Concepts and Administration

This statement waits for all current transactions on the primary database to end,
prevents any new users from starting new transactions, and establishes a point in
time for the switchover to be committed.

Executing this statement also prevents users from making any changes to the data
being maintained in the logical standby database. To ensure faster execution,
ensure the primary database is in a quiet state with no update activity before
issuing the switchover statement (for example, have all users temporarily log off
the primary database). You can query the V$TRANSACTION view for information
about the status of any current in-progress transactions that could delay execution
of this statement.

The primary database has now undergone a role transition to run in the standby
database role.

When a primary database undergoes a role transition to a logical standby
database role, you do not have to shut down and restart the database.

6. After you complete the role transition of the primary database to the logical
standby role and the switchover notification is received by the standby databases
in the configuration, verify the switchover notification was processed by the target
standby database by querying the SWITCHOVER_STATUS column of the V
$DATABASE fixed view on the target standby database. Once all available redo
records are applied to the logical standby database, SQL Apply automatically
shuts down in anticipation of the expected role transition.

The SWITCHOVER_STATUS value is updated to show progress during the
switchover. When the status is TO PRIMARY, you can proceed with Step 7.

For example:

SQL> SELECT SWITCHOVER_STATUS FROM V$DATABASE;

SWITCHOVER_STATUS

TO PRIMARY
1 row selected

See Oracle Database Reference for information about other valid values for the
SWITCHOVER_STATUS column of the V$DATABASE view.

7. On the logical standby database that you want to switch to the primary role, use
the following SQL statement to switch the logical standby database to the primary
role:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY;

There is no need to shut down and restart any logical standby databases that are
in the Oracle Data Guard configuration. As described in Choosing a Target
Standby Database for a Role Transition (page 9-3), all other logical standbys in the
configuration become standbys of the new primary, but any physical standby
databases remain standbys of the original primary database.

8. On the new logical standby database, start SQL Apply:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

9.3.2 Performing a Failover to a Logical Standby Database
This section describes how to perform failovers involving a logical standby database.
A failover role transition involving a logical standby database necessitates taking

Role Transitions Involving Logical Standby Databases

Role Transitions 9-17

corrective actions on the failed primary database and on all bystander logical standby
databases. If Flashback Database was not enabled on the failed primary database, you
must re-create the database from backups taken from the current primary database.
Otherwise, you can follow the procedure described in Converting a Failed Primary
Into a Standby Database Using Flashback Database (page 15-3) to convert a failed
primary database to be a logical standby database for the new primary database.

Depending on the protection mode for the configuration and the attributes you chose
for redo transport services, it might be possible to automatically recover all or some of
the primary database modifications.

1. If the primary database can be mounted, then flush any unsent archived and
current redo from the primary database to the standby database. If this operation
is successful, a zero data loss failover is possible even if the primary database is
not in a zero data loss data protection mode.

First, ensure that Redo Apply is active at the target standby database. Then
mount, but do not open the primary database.

Issue the following SQL statement at the primary database:

SQL> ALTER SYSTEM FLUSH REDO TO target_db_name;

For target_db_name, specify the DB_UNIQUE_NAME of the standby database
that is to receive the redo flushed from the primary database.

This statement flushes any unsent redo from the primary database to the standby
database, and waits for that redo to be applied to the standby database.

2. Depending on the condition of the components in the configuration, you might
have access to the archived redo log files on the primary database. If so, do the
following:

a. Determine if any archived redo log files are missing on the logical standby
database.

b. Copy missing log files from the primary database to the logical standby
database.

c. Register the copied log files.

You can register an archived redo log file with the logical standby database by
issuing the following statement. For example:

SQL> ALTER DATABASE REGISTER LOGICAL LOGFILE -
> '/disk1/oracle/dbs/log-%r_%s_%t.arc';
Database altered.

3. If you have not previously configured role-based destinations, identify the
initialization parameters that correspond to the remote logical standby
destinations for the new primary database, and manually enable archiving of redo
data for each of these destinations.

For example, to enable archiving for the remote destination defined by the
LOG_ARCHIVE_DEST_2 parameter, issue the following statement:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE SCOPE=BOTH;

To ensure that this change persists if the new primary database is later restarted,
update the appropriate text initialization parameter file or server parameter file.
In general, when the database operates in the primary role, you must enable

Role Transitions Involving Logical Standby Databases

9-18 Concepts and Administration

archiving to remote destinations, and when the database operates in the standby
role, you must disable archiving to remote destinations.

4. Issue the following statement on the target logical standby database (that you are
transitioning to the new primary role):

SQL> ALTER DATABASE ACTIVATE LOGICAL STANDBY DATABASE FINISH APPLY;

This statement stops the remote file server (RFS) process, applies remaining redo
data in the standby redo log file before the logical standby database becomes a
primary database, stops SQL Apply, and activates the database in the primary
database role.

If the FINISH APPLY clause is not specified, then unapplied redo from the
current standby redo log file is not applied before the standby database becomes
the primary database.

5. Follow the method described in Configuring Logical Standby Databases After a
Failover (page 15-1) to ensure existing logical standby databases can continue to
provide protection for the new primary database.

6. Back up the new primary database immediately after the Oracle Data Guard
database failover. Immediately performing a backup is a necessary safety
measure, because you cannot recover changes made after the failover without a
complete backup copy of the database.

7. After a failover, the original primary database can be converted into a logical
standby database of the new primary database using the method described in
Converting a Failed Primary Into a Standby Database Using Flashback Database
(page 15-3), or it can be recreated as a logical standby database from a backup of
the new primary database as described in Creating a Logical Standby Database
(page 4-1).

Once the original primary database has been converted into a standby database, a
switchover can be performed to restore it to the primary role.

9.4 Using Flashback Database After a Role Transition
After a role transition, you can optionally use the FLASHBACK DATABASE command
to revert the databases to a point in time or system change number (SCN) prior to
when the role transition occurred. If you flash back a primary database, you must flash
back all of its standby databases to either the same (or earlier) SCN or time.When
flashing back primary or standby databases in this way, you do not have to be aware
of past switchovers. Oracle can automatically flashback across past switchovers if the
SCN/time is before any past switchover.

Note:

Flashback Database must be enabled on the databases before the role
transition occurs. See Oracle Database Backup and Recovery User's Guide for
more information

Using Flashback Database After a Role Transition

Role Transitions 9-19

9.4.1 Using Flashback Database After a Switchover
After a switchover, you can return databases to a time or system change number
(SCN) prior to when the switchover occurred using the FLASHBACK DATABASE
command.

If the switchover involved a physical standby database, the primary and standby
database roles are preserved during the flashback operation. The role in which the
database is running does not change when the database is flashed back to the target
SCN or time to which you flashed back the database. A database running in the
physical standby role after the switchover but prior to the flashback still runs in the
physical standby database role after the Flashback Database operation.

If the switchover involved a logical standby database, flashing back changes the role of
the standby database to what it was at the target SCN or time to which you flashed
back the database.

9.4.2 Using Flashback Database After a Failover
You can use Flashback Database to convert the failed primary database to a point in
time before the failover occurred and then convert it into a standby database. See
Converting a Failed Primary Into a Standby Database Using Flashback Database
(page 15-3) for the complete step-by-step procedure.

Using Flashback Database After a Role Transition

9-20 Concepts and Administration

10
Managing Physical and Snapshot Standby

Databases

See the following topics for information about how to manage physical and snapshot
standby databases:

• Starting Up and Shutting Down a Physical Standby Database (page 10-1)

• Opening a Physical Standby Database (page 10-2)

• Primary Database Changes That Require Manual Intervention at a Physical
Standby (page 10-13)

• Recovering Through the OPEN RESETLOGS Statement (page 10-20)

• Monitoring Primary_ Physical Standby_ and Snapshot Standby Databases
(page 10-21)

• Tuning Redo Apply (page 10-24)

• Tuning Databases in an Active Data Guard Environment with SQL Tuning Advisor
(page 10-24)

• Using Oracle Diagnostic Pack to Tune Oracle Active Data Guard Standbys
(page 10-25)

• Managing a Snapshot Standby Database (page 10-25)

See Oracle Data Guard Broker to learn how the Oracle Data Guard broker simplifies the
management of physical and snapshot standby databases.

10.1 Starting Up and Shutting Down a Physical Standby Database
This section describes how to start up and shut down a physical standby database.

10.1.1 Starting Up a Physical Standby Database
Use the SQL*Plus STARTUP command to start a physical standby database.

The SQL*Plus STARTUP command starts, mounts, and opens a physical standby
database in read-only mode when it is invoked without any arguments.

After it has been mounted or opened, a physical standby database can receive redo
data from the primary database.

See Applying Redo Data to Physical Standby Databases (page 8-4) for information
about Redo Apply and Opening a Physical Standby Database (page 10-2) for
information about opening a physical standby database in read-only mode.

Managing Physical and Snapshot Standby Databases 10-1

Note:

When Redo Apply is started on a physical standby database that has not yet
received redo data from the primary database, an ORA-01112 message may
be returned. This indicates that Redo Apply is unable to determine the starting
sequence number for media recovery. If this occurs, manually retrieve an
archived redo log file from the primary database and register it on the standby
database, or wait for redo transport to begin before starting Redo Apply.

10.1.2 Shutting Down a Physical Standby Database
Use the SQL*Plus SHUTDOWN command to stop Redo Apply and shut down a physical
standby database.

Control is not returned to the session that initiates a database shutdown until
shutdown is complete.

If the primary database is up and running, defer the standby destination on the
primary database and perform a log switch before shutting down the physical standby
database.

10.2 Opening a Physical Standby Database
A physical standby database can be opened for read-only access and used to offload
queries from a primary database.

Note:

A physical standby database that is opened in read-only mode is subject to the
same restrictions as any other Oracle database opened in read-only mode. For
more information, see Oracle Database Administrator's Guide.

If a license for the Oracle Active Data Guard option has been purchased, Redo Apply
can be active while the physical standby database is open, thus allowing queries to
return results that are identical to what would be returned from the primary database.
This capability is known as the real-time query feature. See Real-time query
(page 10-3) for more details.

If a license for the Oracle Active Data Guard option has not been purchased, a physical
standby database cannot be open while Redo Apply is active, so the following rules
must be observed when opening a physical standby database instance or starting Redo
Apply:

• Redo Apply must be stopped before any physical standby database instance is
opened.

• If one or more physical standby instances are open, those instances must be
stopped or restarted in a mounted state before starting Redo Apply.

See Also:

• Oracle Database Licensing Information for more information about Oracle
Active Data Guard

Opening a Physical Standby Database

10-2 Concepts and Administration

10.2.1 Real-time Query
The COMPATIBLE database initialization parameter must be set to 11.0 or higher to use
the real-time query feature of the Oracle Active Data Guard option.

A physical standby database instance cannot be opened if Redo Apply is active on a
mounted instance of that database. Use the following SQL statements to stop Redo
Apply, open a standby instance read-only, and restart Redo Apply:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;
SQL> ALTER DATABASE OPEN;
SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DISCONNECT;

Note:

If Redo Apply is active on an open instance, additional instances can be
opened without having to stop Redo Apply.

Redo Apply cannot be started on a mounted physical standby instance if any instance
of that database is open. The instance must be opened before starting Redo Apply on
it.

Example: Querying V$DATABASE to Check the Standby's Open Mode

This example shows how the value of the V$DATABASE.OPEN_MODE column changes
when a physical standby is open in real-time query mode.

1. Start up and open a physical standby instance, and perform the following SQL
query to show that the database is open in read-only mode:

SQL> SELECT open_mode FROM V$DATABASE;

OPEN_MODE

READ ONLY

2. Issue the following SQL statement to start Redo Apply:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DISCONNECT;

Database altered.

3. Now that the standby is in real-time query mode (the standby is open in read-only
mode and Redo Apply is active), the V$DATABASE.OPEN_MODE column changes to
indicate the following:

SQL> SELECT open_mode FROM V$DATABASE;

OPEN_MODE

READ ONLY WITH APPLY

10.2.1.1 Monitoring Apply Lag in a Real-time Query Environment
If you are using real-time query to offload queries from a primary database to a
physical standby database, you can monitor the apply lag to ensure that it is within
acceptable limits.

Opening a Physical Standby Database

Managing Physical and Snapshot Standby Databases 10-3

The current apply lag is the difference, in elapsed time, between when the last applied
change became visible on the standby and when that same change was first visible on
the primary. This metric is computed to the nearest second.

To obtain the apply lag, query the V$DATAGUARD_STATS view. For example:

SQL> SELECT name, value, datum_time, time_computed FROM V$DATAGUARD_STATS -
> WHERE name like 'apply lag';

 NAME VALUE DATUM_TIME TIME_COMPUTED
 --------- ------------- ------------------- -------------------
 apply lag +00 00:00:00 05/27/2009 08:54:16 05/27/2009 08:54:17

The apply lag metric is computed using data that is periodically received from the
primary database. The DATUM_TIME column contains a timestamp of when this data
was last received by the standby database. The TIME_COMPUTED column contains a
timestamp taken when the apply lag metric was calculated. The difference between
the values in these columns should be less than 30 seconds. If the difference is larger
than this, the apply lag metric may not be accurate.

To obtain a histogram that shows the history of apply lag values since the standby
instance was last started, query the V$STANDBY_EVENT_HISTOGRAM view. For
example:

SQL> SELECT * FROM V$STANDBY_EVENT_HISTOGRAM WHERE NAME = 'apply lag' -
> AND COUNT > 0;

NAME TIME UNIT COUNT LAST_TIME_UPDATED
--------- --------- -------- ----------- ------------------------
apply lag 0 seconds 79681 06/18/2009 10:05:00
apply lag 1 seconds 1006 06/18/2009 10:03:56
apply lag 2 seconds 96 06/18/2009 09:51:06
apply lag 3 seconds 4 06/18/2009 04:12:32
apply lag 4 seconds 1 06/17/2009 11:43:51
apply lag 5 seconds 1 06/17/2009 11:43:52

6 rows selected

To evaluate the apply lag over a time period, take a snapshot of V
$STANDBY_EVENT_HISTOGRAM at the beginning of the time period and compare that
snapshot with one taken at the end of the time period.

10.2.1.2 Configuring Apply Lag Tolerance in a Real-time Query Environment
The STANDBY_MAX_DATA_DELAY session parameter can be used to specify a session-
specific apply lag tolerance, measured in seconds, for queries issued by non-
administrative users to a physical standby database that is in real-time query mode.

This capability allows queries to be safely offloaded from the primary database to a
physical standby database, because it is possible to detect if the standby database has
become unacceptably stale.

If STANDBY_MAX_DATA_DELAY is set to the default value of NONE, than queries issued
to a physical standby database are executed regardless of the apply lag on that
database.

If STANDBY_MAX_DATA_DELAY is set to a non-zero value, then queries issued to a
physical standby database are executed only if the apply lag is less than or equal to
STANDBY_MAX_DATA_DELAY. Otherwise, an ORA-3172 error is returned to alert the
client that the apply lag is too large.

Opening a Physical Standby Database

10-4 Concepts and Administration

If STANDBY_MAX_DATA_DELAY is set to 0, a query issued to a physical standby
database is guaranteed to return the exact same result as if the query were issued on
the primary database, unless the standby database is lagging behind the primary
database, in which case an ORA-3172 error is returned.

Use the ALTER SESSION SQL statement to set STANDBY_MAX_DATA_DELAY. For
example:

SQL> ALTER SESSION SET STANDBY_MAX_DATA_DELAY=2

10.2.1.3 Forcing Redo Apply Synchronization in a Real-time Query Environment
To ensure that all redo data received from the primary database has been applied to a
physical standby database, you can use a SQL ALTER SESSION statement.

Issue the following SQL statement:

SQL> ALTER SESSION SYNC WITH PRIMARY;

This statement blocks until all redo data received by the standby database at the time
that this command is issued has been applied to the physical standby database. An
ORA-3173 error is returned immediately, and synchronization does not occur, if the
redo transport status at the standby database is not SYNCHRONIZED or if Redo Apply
is not active.

To ensure that Redo Apply synchronization occurs in specific cases, use the
SYS_CONTEXT('USERENV','DATABASE_ROLE') function to create a standby-only
trigger (enabled on the primary but that only takes certain actions if it is running on a
standby). For example, you could create the following trigger that would execute the
ALTER SESSION SYNC WITH PRIMARY statement for a specific user connection at
logon:

CREATE TRIGGER adg_logon_sync_trigger
 AFTER LOGON ON user.schema
 begin
 if (SYS_CONTEXT('USERENV', 'DATABASE_ROLE') IN ('PHYSICAL STANDBY')) then
 execute immediate 'alter session sync with primary';
 end if;
 end;

10.2.1.4 Real-time Query Restrictions

• The apply lag control and Redo Apply synchronization mechanisms described
above require that the client be connected and issuing queries to a physical standby
database that is in real-time query mode.

• The following additional restrictions apply if STANDBY_MAX_DATA_DELAY is set to
0 or if the ALTER SESSION SYNC WITH PRIMARY SQL statement is used:

– The standby database must receive redo data via the SYNC transport.

– The redo transport status at the standby database must be SYNCHRONIZED
and the primary database must be running in either maximum protection mode
or maximum availability mode.

– Real-time apply must be enabled.

• Oracle Active Data Guard achieves high performance of real-time queries in an
Oracle RAC environment through the use of cache fusion. This allows the Oracle
Data Guard apply instance and queries to work out of cache and not be slowed
down by disk I/O limitations. A consequence of this is that an unexpected failure

Opening a Physical Standby Database

Managing Physical and Snapshot Standby Databases 10-5

of the apply instance leaves buffers in inconsistent states across all the open Oracle
RAC instances. To ensure data consistency and integrity, Oracle Data Guard closes
all the other open instances in the Oracle RAC configuration, and brings them to a
mounted state. You must manually reopen the instances - at which time the data is
automatically made consistent, followed by restarting redo apply on one of the
instances. In an Oracle Data Guard broker configuration, the instances are
automatically reopened and redo apply is automatically restarted on one of the
instances.

See Also:

– Oracle Data Guard Broker for more information about how the broker
handles apply instance failures

– The My Oracle Support note 1357597.1 at http://
support.oracle.com for additional information about apply instance
failures in an Oracle Active Data Guard Oracle RAC standby

10.2.1.5 Automatic Block Media Recovery
If corrupt data blocks are encountered when a database is accessed, they can be
automatically replaced with uncorrupted copies of those blocks.

This requires the following conditions:

• The physical standby database must be operating in real-time query mode, which
requires an Oracle Active Data Guard license.

• The physical standby database must be running real-time apply.

Automatic block media recovery works in two directions depending on whether the
corrupted blocks are encountered on the primary or on the standby.

Corrupted Blocks On the Primary

If corrupt data blocks are encountered at a primary database, then the primary
automatically searches for good copies of those blocks on a standby and, if they are
found, has them shipped back to the primary.

The primary requires a LOG_ARCHIVE_DEST_n to the standby only (a physical
standby, a cascading physical standby, or a far sync instance). The primary does not
require a LOG_ARCHIVE_DEST_n to any terminal destinations; it is able to
automatically ascertain their service names.

Corrupted Blocks On a Standby

If corrupt data blocks are encountered at a standby, then the standby automatically
initiates communication with the primary and requests uncorrupted copies of those
blocks. For the primary to be able to ship the uncorrupted blocks to the standby, the
following database initialization parameters must be configured on the standby. This
is true even if the primary does not directly service the standby (for example, in
cascading configurations).

• The LOG_ARCHIVE_CONFIG parameter is configured with a DG_CONFIG list and a
LOG_ARCHIVE_DEST_n parameter is configured for the primary database.

or

Opening a Physical Standby Database

10-6 Concepts and Administration

http://support.oracle.com
http://support.oracle.com

• The FAL_SERVER parameter is configured and its value contains an Oracle Net
service name for the primary database.

Additional Automatic Block Media Repair Considerations

• Automatic repair is supported with any Oracle Data Guard protection mode.
However, the effectiveness of repairing a corrupt block at the primary using the
non-corrupt version of the block from the standby depends on how closely the
standby apply is synchronized with the redo generated by the primary.

• When an automatic block repair has been performed, a message is written to the
database alert log.

• If automatic block repair is not possible, an ORA-1578 error is returned.

10.2.1.6 Manual Block Media Recovery
The RMAN RECOVER BLOCK command is used to manually repair a corrupted data
block.

This command searches several locations for an uncorrupted copy of the data block.
By default, one of the locations is any available physical standby database operating in
real-time query mode. The EXCLUDE STANDBY option of the RMAN RECOVER
BLOCK command can be used to exclude physical standby databases as a source for
replacement blocks.

See Also:

Oracle Database Backup and Recovery Reference for more information about the
RMAN RECOVER BLOCK command

10.2.1.7 Tuning Queries on a Physical Standby Database

The Active Data Guard Best Practices white paper describes how to tune queries for
optimal performance on a physical standby database. This paper is available on the
Oracle Maximum Availability Architecture (MAA) home page at:

http://www.oracle.com/goto/maa

Force Full Database Caching Mode

The use of force full database caching mode can potentially improve performance
because queries are executed faster.

The enabling and disabling of force full database caching mode is not recorded in
redo, so the status of in-memory caching is not necessarily the same on all members of
a Data Guard configuration.

For more information about the Force Full Database In-Memory Caching feature,
including guidelines on how and when to enable and disable it, see Oracle Database
Performance Tuning Guide.

10.2.1.8 Adding Temp Files to a Physical Standby
If you are using a standby to offload queries from the primary database, then the
standby must be configured with the minimum of one temp tablespace with at least
one temporary data file.

Opening a Physical Standby Database

Managing Physical and Snapshot Standby Databases 10-7

http://www.oracle.com/goto/maa

If the nature of the workload requires more temp table space than is automatically
created when the standby is first created, then you may need to manually add
additional space.

To add temporary files to the physical standby database, perform the following tasks:

1. Identify the tablespaces that contain temporary files. Do this by entering the
following command on the standby database:

SQL> SELECT TABLESPACE_NAME FROM DBA_TABLESPACES
2> WHERE CONTENTS = 'TEMPORARY';

TABLESPACE_NAME

TEMP1
TEMP2

2. For each tablespace identified in the previous query, add a new temporary file to
the standby database. The following example adds a new temporary file called
TEMP1 with size and reuse characteristics that match the primary database
temporary files:

SQL> ALTER TABLESPACE TEMP1 ADD TEMPFILE
2> '/arch1/boston/temp01.dbf'
3> SIZE 40M REUSE;

10.2.2 DML Operations on Temporary Tables on Oracle Active Data Guard Instances
Redo generation on a read-only database is not allowed. When a data manipulation
language (DML) operation makes a change to a global temporary table, the change
itself does not generate redo since it is only a temporary table. However, the undo
generated for the change does in turn generate redo. Prior to Oracle Database 12c
Release 1 (12.1), this meant that global temporary tables could not be used on Oracle
Active Data Guard standbys, which are read-only.

As of Oracle Database 12c Release 1 (12.1), the temporary undo
feature allows the undo for changes to a global temporary table to be
stored in the temporary tablespace as opposed to the undo
tablespace.

Undo stored in the temporary tablespace does not generate redo, thus enabling redo-
less changes to global temporary tables. This allows DML operations on global
temporary tables on Oracle Active Data Guard standbys.

This feature benefits Oracle Data Guard in the following ways:

Redo generation on a read-only database is not allowed. When a data manipulation
language (DML) operation makes a change to a global temporary table, the change
itself does not generate redo since it is only a temporary table. However, the undo
generated for the change does in turn generate redo. Prior to Oracle Database 12c
Release 1 (12.1), this meant that global temporary tables could not be used on Oracle
Active Data Guard standbys, which are read-only.

However, as of Oracle Database 12c Release 1 (12.1), the temporary undo feature
allows the undo for changes to a global temporary table to be stored in the temporary
tablespace as opposed to the undo tablespace. Undo stored in the temporary
tablespace does not generate redo, thus enabling redo-less changes to global
temporary tables. This allows DML operations on global temporary tables on Oracle
Active Data Guard standbys. This feature benefits Oracle Data Guard in the following
ways:

Opening a Physical Standby Database

10-8 Concepts and Administration

• Read-mostly reporting applications that use global temporary tables for storing
temporary data can be offloaded to an Oracle Active Data Guard instance.

• When temporary undo is enabled on the primary database, undo for changes to a
global temporary table are not logged in the redo and thus, the primary database
generates less redo. Therefore, the amount of redo that Oracle Data Guard must
ship to the standby is also reduced, thereby reducing network bandwidth
consumption and storage consumption.

To enable temporary undo on the primary database, use the TEMP_UNDO_ENABLED
initialization parameter. On an Oracle Active Data Guard standby, temporary undo is
always enabled by default so the TEMP_UNDO_ENABLED parameter has no effect.

Note:

Data definition language (DDL) operations on global temporary tables (for
example, CREATE and DROP) must still be issued from the primary database.
DDL changes are visible on the standby when it catches up with the primary
database.

Restrictions

• The temporary undo feature requires that the database initialization parameter
COMPATIBLE be set to 12.0.0 or higher.

• The temporary undo feature on Oracle Active Data Guard instances does not
support temporary BLOBs or temporary CLOBs.

• Distributed transactions on an Oracle Active Data Guard instance are not permitted
if they involve changes to local objects. For example, you cannot commit a
transaction that modifies a global temporary table on the Oracle Active Data Guard
instance and also updates a remote table on another database using a database link.
You must commit or roll back any outstanding DML operations to global
temporary tables on the Active Data Guard instance before issuing a remote DML
operation, or vice versa. This also includes implicit writes to global temporary
tables made by operations such as EXPLAIN PLAN statements.

See Also:

• Oracle Database Administrator's Guide for more information about
temporary undo

• Oracle Database Reference for more information about the
TEMP_UNDO_ENABLED initialization parameter

10.2.3 IM Column Store in an Active Data Guard Environment
As of Oracle Database 12c Release 2 (12.2.0.1), the Oracle Database In-Memory column
store (IM column store) is supported on a standby database in an Active Data Guard
(ADG) environment.

A reporting workload executing on an Active Data Guard standby database can use
the IM column store. Using the IM column store improves the execution performance
of the workload because it can take full advantage of accessing data in a compressed

Opening a Physical Standby Database

Managing Physical and Snapshot Standby Databases 10-9

columnar format, in memory. Additionally, it is possible to populate a completely
different set of data in the IM column store on the primary and standby databases,
effectively doubling the size of the IM column store available to the application.

Note the following restrictions:

• In-Memory Expressions are captured based only on the queries executed on the
primary database.

• In-Memory Information Lifecycle Management (ILM) polices based on access
criteria are triggered based only on access recorded on the primary database.

Note:

• In-Memory FastStart is not supported on a standby database in an ADG
environment.

• In-Memory Join-Groups are not supported on a standby database in an
ADG environment.

• In-Memory column store is not supported with multi-instance redo apply
in an ADG environment.

Related Topics:

Oracle Database In-Memory Guide

10.2.4 Using Sequences in Oracle Active Data Guard
In an Oracle Active Data Guard environment, sequences created by the primary
database with the default CACHE and NOORDER options can be accessed from standby
databases as well.

When a standby database accesses such a sequence for the first time, it requests that
the primary database allocate a range of sequence numbers. The range is based on the
cache size and other sequence properties specified when the sequence was created.
Then the primary database allocates those sequence numbers to the requesting
standby database by adjusting the corresponding sequence entry in the data
dictionary. When the standby has used all the numbers in the range, it requests
another range of numbers.

The primary database ensures that each range request from a standby database gets a
range of sequence numbers that do not overlap with the ones previously allocated for
both the primary and standby databases. This generates a unique stream of sequence
numbers across the entire Oracle Data Guard configuration.

Because the standby's requests for a range of sequences involve a round-trip to the
primary, be sure to specify a large enough value for the CACHE keyword when you
create a sequence to be used on an Oracle Active Data Guard standby. Otherwise,
performance could suffer.

Also, be sure the terminal standby has a LOG_ARCHIVE_DEST_n parameter defined
that points back to the primary.

Opening a Physical Standby Database

10-10 Concepts and Administration

Example: Assigning a Range of Sequence Values In a Multi-standby
Configuration

This example shows how a range of sequence values can be assigned to a database
when it references NEXTVAL on the sequence either for the first time or after it uses up
all of the previously assigned sequence values. In this example, there are two standby
databases.

1. On the primary database, issue the following SQL statements to create a global
temporary table named gtt, and a sequence named g with a cache size of 10:

SQL> CREATE GLOBAL TEMPORARY TABLE gtt (a int);

Table created.

SQL> CREATE SEQUENCE g CACHE 10;

Sequence created.

2. On the first standby database, issue the following SQL statements:

SQL> INSERT INTO gtt VALUES (g.NEXTVAL);

1 row created.

SQL> INSERT INTO gtt VALUES (g.NEXTVAL);

1 row created.

SQL> SELECT * FROM gtt;

 A

 1
 2

Because the sequence cache size was set to 10 (in Step 1) and because this is the first
time the sequence was accessed, the results of the SELECT statement show that the
first standby database is assigned sequence numbers 1 to 10.

3. On the primary database, issue the following SQL statements:

SQL> SELECT g.NEXTVAL FROM dual;

 NEXTVAL

 11

SQL> SELECT g.NEXTVAL FROM dual;

 NEXTVAL

 12

The results of the SELECT statements show that the primary database is assigned
the next range of sequence values, 11-20.

4. On the second standby database, issue the following SQL statements:

SQL> INSERT INTO gtt VALUES (g.NEXTVAL);

Opening a Physical Standby Database

Managing Physical and Snapshot Standby Databases 10-11

1 row created.

SQL> INSERT INTO gtt VALUES (g.NEXTVAL);

1 row created.

SQL> SELECT * FROM gtt;

 A

 21
 22

The results of the SELECT statement show that the second standby is assigned the
next range of sequence values, 21-30.

Note: Sequences created with the ORDER or NOCACHE options cannot be
accessed on an Oracle Active Data Guard standby.

10.2.4.1 Session Sequences

A session sequence is a special type of sequence that is specifically designed to be used
with global temporary tables that have session visibility. Unlike the existing regular
sequences (referred to as "global" sequences for the sake of comparison), a session
sequence returns a unique range of sequence numbers only within a session, but not
across sessions. Another difference is that session sequences are not persistent. If a
session goes away, so does the state of the session sequences that were accessed
during the session.

Session sequences support most of the sequence properties that are specified when the
sequence is defined. However, the CACHE/NOCACHE and ORDER/NOORDER options
are not relevant to session sequences and are ignored.

Session sequences must be created by a read/write database but can be accessed on
any read/write or read-only databases (either a regular database temporarily open
read-only or a standby database).

Creating and Altering Session Sequences

To create a session sequence, issue the following SQL statement:

SQL> CREATE SEQUENCE … SESSION;

To alter an existing session sequence to be a regular ("global") sequence, issue the
following SQL statement:

SQL> ALTER SEQUENCE … GLOBAL;

To alter a regular sequence to be a session sequence, issue the following SQL
statement:

SQL> ALTER SEQUENCE … SESSION;

Example: Using Session Sequences

This example shows how session sequence values are unique to each database session.

1. On the primary database, issue the following SQL statements to create a global
temporary table named gtt and a session sequence named s:

Opening a Physical Standby Database

10-12 Concepts and Administration

SQL> CREATE GLOBAL TEMPORARY TABLE gtt (a int);

Table created.

SQL> CREATE SEQUENCE s SESSION;

Sequence created.

2. On the standby database, issue the following SQL statements:

SQL> INSERT INTO gtt VALUES (s.NEXTVAL);

1 row created.

SQL> INSERT INTO gtt VALUES (s.NEXTVAL);

1 row created.

SQL> SELECT * FROM gtt;

 A

 1
 2

3. From another session of the same standby database, issue the following SQL
statements:

SQL> INSERT INTO gtt VALUES (s.NEXTVAL);

1 row created.

SQL> INSERT INTO gtt VALUES (s.NEXTVAL);

1 row created.

SQL> SELECT * FROM gtt;

 A

 1
 2

The results of the SELECT statement show that the sequence values assigned are
the same as those assigned for the first session in the previous step. This is because
sequence values are unique to each database session.

10.3 Primary Database Changes That Require Manual Intervention at a
Physical Standby

Most structural changes made to a primary database are automatically propagated
through redo data to a physical standby database, but there are some changes that
require manual intervention.

The following table lists primary database structural and configuration changes that
require manual intervention at a physical standby database.

Primary Database Changes That Require Manual Intervention at a Physical Standby

Managing Physical and Snapshot Standby Databases 10-13

Table 10-1 Primary Database Changes That Require Manual Intervention at a Physical Standby

Primary Database Change Action Required on Physical Standby Database

Adding a Data File or Creating a Tablespace
(page 10-14)

No action is required if the STANDBY_FILE_MANAGEMENT
database initialization parameter is set to AUTO. If this
parameter is set to MANUAL, the new data file must be
copied to the physical standby database.

Dropping Tablespaces and Deleting Data Files
(page 10-15)

Delete data file from primary and physical standby
database after the redo data containing the DROP or
DELETE command is applied to the physical standby.

Using Transportable Tablespaces with a Physical
Standby Database (page 10-16)

Move tablespace between the primary and the physical
standby database.

Renaming a Data File in the Primary Database
(page 10-16)

Rename the data file on the physical standby database.

Add or Drop a Redo Log File Group (page 10-18) Evaluate the configuration of the redo log and standby
redo log on the physical standby database and adjust as
necessary.

NOLOGGING or Unrecoverable Operations
(page 10-18)

Use the RMAN command RECOVER ... NONLOGGED
BLOCK to replace the invalid blocks on the standby with
the changed blocks from the primary.

Refresh the Password File (page 10-19) As of Oracle Database 12c Release 2 (12.2.0.1), password
file changes done on the primary database are
automatically propagated to standby databases. The only
exception to this is far sync instances. Updated password
files must still be manually copied to far sync instances
because far sync instances receive redo, but do not apply
it. After the password file is up-to-date at the far sync
instance, the redo containing the password update at the
primary is automatically propagated to any standby
databases that are set up to receive redo from that far sync
instance. The password file is updated on the standby
when the redo is applied.

Reset the TDE Master Encryption Key (page 10-19) Replace the database encryption wallet on the physical
standby database with a fresh copy of the database
encryption wallet from the primary database.

Initialization Parameters (page 16-1) Evaluate whether a corresponding change must be made
to the initialization parameters on the physical standby
database.

10.3.1 Adding a Data File or Creating a Tablespace
The STANDBY_FILE_MANAGEMENT database initialization parameter controls whether
the addition of a data file to the primary database is automatically propagated to a
physical standby databases.

Primary Database Changes That Require Manual Intervention at a Physical Standby

10-14 Concepts and Administration

• If the STANDBY_FILE_MANAGEMENT database parameter on the physical standby
database is set to AUTO, any new data files created on the primary database are
automatically created on the physical standby database.

• If the STANDBY_FILE_MANAGEMENT database parameter on the physical standby
database is set to MANUAL, a new data file must be manually copied from the
primary database to the physical standby databases after it is added to the primary
database.

Note:

On a physical standby for which the Oracle Active Data Guard option has
been enabled, you cannot use the manual copy method. Instead, you must
execute the following SQL statement on the standby to create an empty data
file:

SQL> ALTER DATABASE CREATE DATAFILE [filename | filenumber] -
AS [NEW | new_filename];

You must specify which one to rename: the filename or the filenumber.

Also specify either the new filename or NEW. The NEW keyword lets Oracle
automatically choose a name, if Oracle Managed Files (OMF) is enabled.

If an existing data file from another database is copied to a primary database, it must
also be copied to the standby database and the standby control file must be re-created,
regardless of the setting of STANDBY_FILE_MANAGEMENT parameter.

10.3.2 Dropping Tablespaces and Deleting Data Files
When a tablespace is dropped or a data file is deleted from a primary database, the
corresponding data file(s) must be deleted from the physical standby database.

The following example shows how to drop a tablespace:

SQL> DROP TABLESPACE tbs_4;
SQL> ALTER SYSTEM SWITCH LOGFILE;

To verify that deleted data files are no longer part of the database, query the V
$DATAFILE view.

Delete the corresponding data file on the standby system after the redo data that
contains the previous changes is applied to the standby database. For example:

% rm /disk1/oracle/oradata/payroll/s2tbs_4.dbf

On the primary database, after ensuring the standby database applied the redo
information for the dropped tablespace, you can remove the data file for the
tablespace. For example:

% rm /disk1/oracle/oradata/payroll/tbs_4.dbf

10.3.2.1 Using DROP TABLESPACE INCLUDING CONTENTS AND DATAFILES
You can issue the SQL DROP TABLESPACE INCLUDING CONTENTS AND
DATAFILES statement on the primary database to delete the data files on both the
primary and standby databases.

To use this statement, the STANDBY_FILE_MANAGEMENT initialization parameter
must be set to AUTO. For example, to drop the tablespace at the primary site:

Primary Database Changes That Require Manual Intervention at a Physical Standby

Managing Physical and Snapshot Standby Databases 10-15

SQL> DROP TABLESPACE tbs_4 INCLUDING CONTENTS AND DATAFILES;
SQL> ALTER SYSTEM SWITCH LOGFILE;

10.3.3 Using Transportable Tablespaces with a Physical Standby Database
You can use the Oracle transportable tablespaces feature to move a subset of an Oracle
database and plug it in to another Oracle database, essentially moving tablespaces
between the databases.

To move or copy a set of tablespaces into a primary database when a physical standby
is being used, perform the following steps:

1. Generate a transportable tablespace set that consists of data files for the set of
tablespaces being transported and an export file containing structural information
for the set of tablespaces.

2. Transport the tablespace set:

a. Copy the data files and the export file to the primary database.

b. Copy the data files to the standby database.

The data files must have the same path name on the primary and standby
databases unless the DB_FILE_NAME_CONVERT database initialization parameter
has been configured. If DB_FILE_NAME_CONVERT has not been configured and
the path names of the data files are not the same on the primary and standby
databases, issue the ALTER DATABASE RENAME FILE statement to rename the
data files. Do this after Redo Apply has failed to apply the redo generated by
plugging the tablespace into the primary database. The
STANDBY_FILE_MANAGEMENT initialization parameter must be set to MANUAL
before renaming the data files, and then reset to the previous value after renaming
the data files.

3. Plug in the tablespace.

Invoke the Data Pump utility to plug the set of tablespaces into the primary
database. Redo data is generated and applied at the standby site to plug the
tablespace into the standby database.

For more information about transportable tablespaces, see Oracle Database
Administrator's Guide.

10.3.4 Renaming a Data File in the Primary Database
When you rename one or more data files in the primary database, the change is not
propagated to the standby database. It must be done manually.

To rename the same data files on the standby database, you must manually make the
equivalent modifications on the standby database because the modifications are not
performed automatically, even if the STANDBY_FILE_MANAGEMENT initialization
parameter is set to AUTO.

The following steps describe how to rename a data file in the primary database and
manually propagate the changes to the standby database.

1. To rename the data file in the primary database, take the tablespace offline:

SQL> ALTER TABLESPACE tbs_4 OFFLINE;

2. Exit from the SQL prompt and issue an operating system command, such as the
following UNIX mv command, to rename the data file on the primary system:

Primary Database Changes That Require Manual Intervention at a Physical Standby

10-16 Concepts and Administration

% mv /disk1/oracle/oradata/payroll/tbs_4.dbf
/disk1/oracle/oradata/payroll/tbs_x.dbf

3. Rename the data file in the primary database and bring the tablespace back online:

SQL> ALTER TABLESPACE tbs_4 RENAME DATAFILE -
> '/disk1/oracle/oradata/payroll/tbs_4.dbf' -
> TO '/disk1/oracle/oradata/payroll/tbs_x.dbf';

SQL> ALTER TABLESPACE tbs_4 ONLINE;

Note:

An alternative to these first three steps is to use the ALTER DATABASE MOVE
DATAFILE command to rename a datafile. This command lets you rename a
datafile while allowing read/write access to the datafile. Adequate storage
area is a prerequisite for moving a datafile because during the execution of the
MOVE DATAFILE command, the database maintains both the original and the
renamed datafiles as two separate files. See Moving the Location of Online
Data Files (page 2-9) for more information.

4. Connect to the standby database and stop Redo Apply:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

5. Shut down the standby database:

SQL> SHUTDOWN;

6. Rename the data file at the standby site using an operating system command, such
as the UNIX mv command:

% mv /disk1/oracle/oradata/payroll/tbs_4.dbf /disk1/oracle/oradata/payroll/
tbs_x.dbf

7. Start and mount the standby database:

SQL> STARTUP MOUNT;

8. Rename the data file in the standby control file. To rename a data file, you must set
the STANDBY_FILE_MANAGEMENT database initialization parameter to MANUAL.
You can then reset the parameter to its previous value after renaming the data file.

SQL> ALTER DATABASE RENAME FILE '/disk1/oracle/oradata/payroll/tbs_4.dbf' -
> TO '/disk1/oracle/oradata/payroll/tbs_x.dbf';

9. On the standby database, restart Redo Apply:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE -
> DISCONNECT FROM SESSION;

If you do not rename the corresponding data file at the standby system, and then try to
refresh the standby database control file, the standby database attempts to use the
renamed data file, but will not find it. Error messages similar to the following are
written to the alert log:

ORA-00283: recovery session canceled due to errors
ORA-01157: cannot identify/lock datafile 4 - see DBWR trace file
ORA-01110: datafile 4: '/Disk1/oracle/oradata/payroll/tbs_x.dbf'

Primary Database Changes That Require Manual Intervention at a Physical Standby

Managing Physical and Snapshot Standby Databases 10-17

Note:

An alternative to steps 4-9 is to use the ALTER DATABASE MOVE DATAFILE
command to rename a datafile at the standby. See Moving the Location of
Online Data Files (page 2-9) for more information.

10.3.5 Add or Drop a Redo Log File Group
The configuration of the redo log and standby redo log on a physical standby database
should be reevaluated and adjusted as necessary after adding or dropping a log file
group on the primary database.

Take the following steps to add or drop a log file group or standby log file group on a
physical standby database:

1. Stop Redo Apply.

2. If the STANDBY_FILE_MANAGEMENT initialization parameter is set to AUTO, change
the value to MANUAL.

3. Add or drop a log file group.

Note:

An online logfile group must always be manually cleared before it can be
dropped from a physical standby database. For example:

ALTER DATABASE CLEAR LOGFILE GROUP 3;

An online logfile group that has a status of CURRENT or CLEARING_CURRENT
cannot be dropped from a physical standby database. An online logfile group
that has this status can be dropped after a role transition.

4. Restore the STANDBY_FILE_MANAGEMENT initialization parameter and the Redo
Apply options to their original states.

5. Restart Redo Apply.

In Oracle RAC environments, keep the following in mind:

• When an online redo log group is added to a primary database, you must manually
add an online redo log group to the standby database. It is not done automatically.

• When a new redo thread is added to a primary database, a new redo thread is
automatically added to the standby. By default, the new thread is configured with
2 log groups of 100 MB each. This cannot be changed or overridden.

• When a new log group is added to an existing redo thread, a new log group is not
automatically added to its existing thread.

10.3.6 NOLOGGING or Unrecoverable Operations
When you perform a DML or DDL operation using the NOLOGGING or
UNRECOVERABLE clause, blocks on the standby may be marked as invalid (also known
as nonlogged blocks).

Primary Database Changes That Require Manual Intervention at a Physical Standby

10-18 Concepts and Administration

See Precedence of FORCE LOGGING Settings for details about when an operation is
actually performed in a nonlogged fashion.

See Recovering After the NOLOGGING Clause Is Specified (page 15-9) for
information about recovering after the NOLOGGING clause is used.

See the Oracle Database Administrator's Guide. for information about specifying FORCE
LOGGING mode.

10.3.7 Refresh the Password File
If the REMOTE_LOGIN_PASSWORDFILE database initialization parameter is set to
SHARED or EXCLUSIVE, then the password file on a physical standby database is
automatically replaced with a fresh copy from the primary database.

The file is replaced after administrative privileges are granted or revoked, or the
password of a user with administrative privileges is changed. The only exception to
this is far sync instances. Updated password files must still be manually copied to far
sync instances because far sync instances receive redo, but do not apply it. When a
password file is manually updated at a far sync instance, the redo containing the same
password changes from the primary database is automatically propagated to any
standby databases that are set up to receive redo from that far sync instance. The
password file is updated on the standby when the redo is applied.

10.3.8 Reset the TDE Master Encryption Key
The database encryption wallet on a physical standby database must be replaced with
a fresh copy of the database encryption wallet from the primary database whenever
the TDE master encryption key is reset on the primary database.

Failure to refresh the database encryption wallet on the physical standby database
prevents access to encrypted columns on the physical standby database that are
modified after the master encryption key is reset on the primary database.

For online tablespaces and databases, as of Oracle Database 12c Release 2 (12.2.0.1),
you can encrypt, decrypt, and re-key both new and existing tablespaces, and existing
databases within an Oracle Data Guard environment.

For offline tablespaces and databases, as of Oracle Database 12c Release 2 (12.2.0.1),
you can encrypt and decrypt both new and existing tablespaces, and existing
databases within an Oracle Data Guard environment.

In online conversion, the encryption, decryption, or re-keying on the standby is
automatic after it is performed on the primary. An online encryption, decryption, or
re-keying cannot be performed directly on a standby database.

In an offline conversion, the encryption or decryption must be performed manually on
both the primary and standby. An offline conversion affects the data files on the
particular primary or standby database only. Both the primary and physical standby
should be kept at the same state. You can minimize downtime by encrypting (or
decrypting) the tablespaces on the standby first, switching over to the primary, and
then encrypting (or decrypting) the tablespaces on the primary.

See Also:

• Oracle Database Advanced Security Guide

Primary Database Changes That Require Manual Intervention at a Physical Standby

Managing Physical and Snapshot Standby Databases 10-19

10.4 Recovering Through the OPEN RESETLOGS Statement
Oracle Data Guard allows recovery on a physical standby database to continue after
the primary database has been opened with the RESETLOGS option.

When an ALTER DATABASE OPEN RESETLOGS statement is issued on the primary
database, the incarnation of the database changes, creating a new branch of redo data.

When a physical standby database receives a new branch of redo data, Redo Apply
automatically takes the new branch of redo data. For physical standby databases, no
manual intervention is required if the standby database did not apply redo data past
the new resetlogs SCN (past the start of the new branch of redo data). The following
table describes how to resynchronize the standby database with the primary database
branch.

If the standby database. . . Then. . . Perform these steps. . .

Has not applied redo data past the
new resetlogs SCN (past the start of
the new branch of redo data) and
the new redo branch from OPEN
RESETLOGS has been registered at
the standby

Redo Apply automatically takes
the new branch of redo.

No manual intervention is
necessary. The managed redo
process (MRP) automatically
resynchronizes the standby database
with the new branch of redo data.

Note: To check whether the new
redo branch has been registered at
the standby, perform the following
query at the primary and standby
and verify that the results match:

SELECT resetlogs_id,
resetlogs_change# FROM V
$DATABASE_INCARNATION WHERE
status='CURRENT'

Has applied redo data past the new
resetlogs SCN (past the start of the
new branch of redo data) and
Flashback Database is enabled on
the standby database

The standby database is recovered
in the future of the new branch of
redo data.

1. Follow the procedure in
Flashing Back a Physical
Standby Database to a Specific
Point-in-Time (page 15-7) to
flash back a physical standby
database.

2. Restart Redo Apply to continue
application of redo data onto
new reset logs branch.

The managed redo process (MRP)
automatically resynchronizes the
standby database with the new
branch.

Has applied redo data past the new
resetlogs SCN (past the start of the
new branch of redo data) and
Flashback Database is not enabled
on the standby database

The primary database has
diverged from the standby on the
indicated primary database
branch.

Re-create the physical standby
database following the procedures
in Creating a Physical Standby
Database (page 3-1).

Is missing intervening archived redo
log files from the new branch of
redo data

The MRP cannot continue until the
missing log files are retrieved.

Locate and register missing archived
redo log files from each branch.

Recovering Through the OPEN RESETLOGS Statement

10-20 Concepts and Administration

If the standby database. . . Then. . . Perform these steps. . .

Is missing archived redo log files
from the end of the previous branch
of redo data.

The MRP cannot continue until the
missing log files are retrieved.

Locate and register missing archived
redo log files from the previous
branch.

See Oracle Database Backup and Recovery User's Guide for more information about
database incarnations, recovering through an OPEN RESETLOGS operation, and
Flashback Database.

10.5 Monitoring Primary, Physical Standby, and Snapshot Standby
Databases

This topic describes where to find useful information for monitoring primary and
standby databases.

Table 10-2 (page 10-21) summarizes common primary database management actions
and where to find information related to these actions.

Table 10-2 Sources of Information About Common Primary Database Management Actions

Primary Database Action Primary Site Information Standby Site Information

Enable or disable a redo thread • Alert log
• V$THREAD

Alert log

Display database role, protection
mode, protection level, switchover
status, fast-start failover information,
and so forth

V$DATABASE V$DATABASE

Add or drop a redo log file group • Alert log
• V$LOG

• STATUS column of V
$LOGFILE

Alert log

CREATE CONTROLFILE Alert log Alert log

Monitor Redo Apply • Alert log
• V$ARCHIVE_DEST_STATUS

• Alert log
• V$ARCHIVED_LOG

• V$LOG_HISTORY

• V$MANAGED_STANDBY

Change tablespace status • V$RECOVER_FILE

• DBA_TABLESPACES

• Alert log

• V$RECOVER_FILE

• DBA_TABLESPACES

Add or drop a data file or tablespace • DBA_DATA_FILES

• Alert log
• V$DATAFILE

• Alert log

Rename a data file • V$DATAFILE

• Alert log
• V$DATAFILE

• Alert log

Unlogged or unrecoverable
operations

• V$DATAFILE

• V$DATABASE

Alert log

Monitoring Primary, Physical Standby, and Snapshot Standby Databases

Managing Physical and Snapshot Standby Databases 10-21

Table 10-2 (Cont.) Sources of Information About Common Primary Database Management Actions

Primary Database Action Primary Site Information Standby Site Information

Monitor redo transport • V$ARCHIVE_DEST_STATUS

• V$ARCHIVED_LOG

• V$ARCHIVE_DEST

• Alert log

• V$ARCHIVED_LOG

• Alert log

Issue OPEN RESETLOGS or CLEAR
UNARCHIVED LOGFILES statements

Alert log Alert log

Change initialization parameter Alert log Alert log

10.5.1 Using Views to Monitor Primary, Physical, and Snapshot Standby Databases
You can use dynamic performance views to monitor primary, physical standby, and
snapshot standby databases.

The following dynamic performance views are discussed:

• V$DATABASE (page 10-22)

• V$MANAGED_STANDBY (page 10-23)

• V$ARCHIVED_LOG (page 10-23)

• V$LOG_HISTORY (page 10-23)

• V$DATAGUARD_STATUS (page 10-23)

• V$ARCHIVE_DEST (page 10-23)

See Also:

Oracle Database Reference for complete reference information about views

10.5.1.1 V$DATABASE

The following query displays the data protection mode, data protection level, database
role, and switchover status for a primary, physical standby or snapshot standby
database:

SQL> SELECT PROTECTION_MODE, PROTECTION_LEVEL, –
> DATABASE_ROLE ROLE, SWITCHOVER_STATUS –
> FROM V$DATABASE;

The following query displays fast-start failover status:

SQL> SELECT FS_FAILOVER_STATUS "FSFO STATUS", -
> FS_FAILOVER_CURRENT_TARGET TARGET, -
> FS_FAILOVER_THRESHOLD THRESHOLD, -
> FS_FAILOVER_OBSERVER_PRESENT "OBSERVER PRESENT" –
> FROM V$DATABASE;

Monitoring Primary, Physical Standby, and Snapshot Standby Databases

10-22 Concepts and Administration

10.5.1.2 V$MANAGED_STANDBY

The following query displays Redo Apply and redo transport status on a physical
standby database:

SQL> SELECT PROCESS, STATUS, THREAD#, SEQUENCE#,-
> BLOCK#, BLOCKS FROM V$MANAGED_STANDBY;

PROCESS STATUS THREAD# SEQUENCE# BLOCK# BLOCKS
------- ------------ ---------- ---------- ---------- ----------
RFS ATTACHED 1 947 72 72
MRP0 APPLYING_LOG 1 946 10 72

The sample output shows that a remote file server (RFS) process completed archiving
a redo log file with a sequence number of 947 and that Redo Apply is actively
applying an archived redo log file with a sequence number of 946. Redo Apply is
currently recovering block number 10 of the 72-block archived redo log file.

10.5.1.3 V$ARCHIVED_LOG

The following query displays information about archived redo log files that have been
received by a physical or snapshot standby database from a primary database:

SQL> SELECT THREAD#, SEQUENCE#, FIRST_CHANGE#, -
> NEXT_CHANGE# FROM V$ARCHIVED_LOG;

THREAD# SEQUENCE# FIRST_CHANGE# NEXT_CHANGE#
---------- ---------- ------------- ------------
1 945 74651 74739
1 946 74739 74772
1 947 74772 74795

The sample output shows that three archived redo log files have been received from
the primary database.

10.5.1.4 V$LOG_HISTORY

The following query displays archived log history information:

SQL> SELECT THREAD#, SEQUENCE#, FIRST_CHANGE#, -
> NEXT_CHANGE# FROM V$LOG_HISTORY;

10.5.1.5 V$DATAGUARD_STATUS

The following query displays messages generated by Oracle Data Guard events that
caused a message to be written to the alert log or to a server process trace file:

SQL> SELECT MESSAGE FROM V$DATAGUARD_STATUS;

10.5.1.6 V$ARCHIVE_DEST

The following query shows the status of each redo transport destination, and for redo
transport destinations that are standby databases, the SCN of the last primary
database redo applied at that standby database:

SQL> SELECT DEST_ID, APPLIED_SCN FROM V$ARCHIVE_DEST WHERE TARGET='STANDBY';

DEST_ID STATUS APPLIED_SCN
---------- --------- -----------
2 VALID 439054
3 VALID 439054

Monitoring Primary, Physical Standby, and Snapshot Standby Databases

Managing Physical and Snapshot Standby Databases 10-23

10.6 Tuning Redo Apply
The Active Data Guard 11g Best Practices (includes best practices for Redo Apply) white
paper describes how to optimize Redo Apply and media recovery performance. This
paper is available on the Oracle Maximum Availability Architecture (MAA) home
page at:

http://www.oracle.com/goto/maa

See Also:

My Oracle Support note 454848.1 at http://support.oracle.com for
information about the installation and use of the Standby Statspack, which can
be used to collect Redo Apply performance data from a physical standby
database

10.7 Tuning Databases in an Active Data Guard Environment with SQL
Tuning Advisor

In an Active Data Guard environment, SQL Tuning Advisor can tune a standby
workload on a primary database.

Using database links, you can issue SQL Tuning Advisor statements on one database,
but execute the statements on a different database.

Tuning a Standby Database Workload on a Primary Database

In some cases, a standby database can assume a reporting role in addition to its data
protection role. The standby database can have its own workload of queries, some of
which may require tuning. In this scenario, you tune a standby database workload by
issuing every tuning statement on the standby database, but SQL Tuning Advisor
performs its analysis on the primary database by using a standby-to-primary database
link.

The following are the tasks that must be performed to tune a standby database
workload on a primary database. The tasks must be performed at the standby
database in the order given, using the DBMS_SQLTUNE PL/SQL package:

1. Execute the DBMS_SQLTUNE.CREATE_TUNING_TASK statement to fetch the data
from the primary database needed to create a task. Because the standby is a read-
only database, the data about the task is written remotely to the primary database.
A database link parameter is required in this step to write to the primary. (A
database link parameter is optional in subsequent steps, because it is tied to the
task created in this step.)

2. Execute the DBMS_SQLTUNE.EXECUTE_TUNING_TASK statement. Initially, the
data required to execute a task is fetched from the remote primary database. The
tuning analysis process to find the possible recommendations is executed. Because
the standby is a read-only database, when the results are available they are stored
remotely at the primary.

3. Execute the DBMS_SQLTUNE.REPORT_TUNING_TASK statement. The data needed
to construct a report is stored remotely at the primary database. The data is
fetched remotely from the primary and constructed locally at the standby.

Tuning Redo Apply

10-24 Concepts and Administration

http://www.oracle.com/goto/maa
http://support.oracle.com

4. Execute the DBMS_SQLTUNE.ACCEPT_SQL_PROFILE statement. The profile data
is written to the remote primary database because the standby is read-only.

5. The SQL Profiles are made available at the standby using Redo Apply.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for more information
about the DBMS_SQLTUNE package

• Oracle Database SQL Tuning Guidefor more information about local and
remote SQL tuning

10.8 Using Oracle Diagnostic Pack to Tune Oracle Active Data Guard
Standbys

The Oracle Diagnostic Pack can be used with an Oracle Active Data Guard standby
database that is open in read-only mode. This enables you to capture performance
data to the Automatic Workload Repository (AWR) for an Oracle Active Data Guard
standby and to run Automatic Database Diagnostic Monitor (ADDM) analysis on the
AWR data. For details about how to perform these operations, see Oracle Database
Performance Tuning Guide.

10.9 Managing a Snapshot Standby Database
A snapshot standby database is a fully updatable standby database. A snapshot
standby database receives and archives, but does not apply, redo data from a primary
database. Redo data received from the primary database is applied when a snapshot
standby database is converted back into a physical standby database, after discarding
all local updates to the snapshot standby database.

A snapshot standby database typically diverges from its primary database over time
because redo data from the primary database is not applied as it is received. Local
updates to the snapshot standby database cause additional divergence. The data in the
primary database is fully protected however, because a snapshot standby can be
converted back into a physical standby database at any time, and the redo data
received from the primary is then applied.

A snapshot standby database provides disaster recovery and data protection benefits
that are similar to those of a physical standby database. Snapshot standby databases
are best used in scenarios where the benefit of having a temporary, updatable
snapshot of the primary database justifies increased time to recover from primary
database failures.

10.9.1 Converting a Physical Standby Database into a Snapshot Standby Database
Perform the following steps to convert a physical standby database into a snapshot
standby database:

1. Stop Redo Apply, if it is active.

2. Ensure that the database is mounted, but not open.

3. Ensure that a fast recovery area has been configured. It is not necessary for
flashback database to be enabled.

Using Oracle Diagnostic Pack to Tune Oracle Active Data Guard Standbys

Managing Physical and Snapshot Standby Databases 10-25

4. Issue the following SQL statement to perform the conversion:

SQL> ALTER DATABASE CONVERT TO SNAPSHOT STANDBY;

5. Open the snapshot standby in read/write mode by issuing the following SQL
statement:

SQL> ALTER DATABASE OPEN READ WRITE;

Note:

A physical standby database that is managed by the Oracle Data Guard broker
can be converted into a snapshot standby database using either DGMGRL or
Oracle Enterprise Manager Cloud Control. See Oracle Data Guard Broker for
more details.

10.9.2 Using a Snapshot Standby Database
A snapshot standby database can be opened in read-write mode and is fully
updatable.

A snapshot standby database has the following characteristics:

• A snapshot standby database cannot be the target of a switchover or failover. A
snapshot standby database must first be converted back into a physical standby
database before performing a role transition to it.

• A snapshot standby database cannot be the only standby database in a Maximum
Protection Oracle Data Guard configuration.

Note:

Flashback Database is used to convert a snapshot standby database back into a
physical standby database. Any operation that cannot be reversed using
Flashback Database technology prevents a snapshot standby from being
converted back to a physical standby.

For information about some of the limitations of Flashback Database, see
Oracle Database Backup and Recovery User's Guide.

10.9.3 Converting a Snapshot Standby Database into a Physical Standby Database
Perform the following steps to convert a snapshot standby database into a physical
standby database:

1. On an Oracle Real Applications Cluster (Oracle RAC) database, shut down all but
one instance.

2. Ensure that the database is mounted, but not open.

3. Issue the following SQL statement to perform the conversion:

SQL> ALTER DATABASE CONVERT TO PHYSICAL STANDBY;

Redo data received while the database was a snapshot standby database is
automatically applied when Redo Apply is started.

Managing a Snapshot Standby Database

10-26 Concepts and Administration

Note:

A snapshot standby database must be opened at least once in read-write mode
before it can be converted into a physical standby database.

Managing a Snapshot Standby Database

Managing Physical and Snapshot Standby Databases 10-27

Managing a Snapshot Standby Database

10-28 Concepts and Administration

11
Managing a Logical Standby Database

See the following topics for information about how to manage a logical standby
database:

• Overview of the SQL Apply Architecture (page 11-1)

• Controlling User Access to Tables in a Logical Standby Database (page 11-6)

• Views Related to Managing and Monitoring a Logical Standby Database
(page 11-7)

• Monitoring a Logical Standby Database (page 11-13)

• Customizing a Logical Standby Database (page 11-16)

• Managing Specific Workloads In the Context of a Logical Standby Database
(page 11-23)

• Using Extended Datatype Support During Replication (page 11-29)

• Tuning a Logical Standby Database (page 11-32)

• Backup and Recovery in the Context of a Logical Standby Database (page 11-38)

11.1 Overview of the SQL Apply Architecture
SQL Apply uses a collection of background processes to apply changes from the
primary database to the logical standby database.

Figure 11-1 (page 11-2) shows the flow of information and the role that each process
performs.

Managing a Logical Standby Database 11-1

Figure 11-1 SQL Apply Processing

LCR
LCR
LCR

.

.

.

Shared Pool

PreparerReader

Applier

Datafiles

Builder

AnalyzerCoordinator

LCR
Redo�

Records

Logical Change
Records Not Grouped�
Into Transactions

Transaction
Groups

Transactions
to be Applied

Transactions
Sorted in

Dependency Order

Log Mining

Apply Processing

Redo Data
from Primary

Database

The different processes involved and their functions during log mining and apply
processing are as follows:

During log mining:

• The READER process reads redo records from the archived redo log files or standby
redo log files.

• The PREPARER process converts block changes contained in redo records into
logical change records (LCRs). Multiple PREPARER processes can be active for a
given redo log file. The LCRs are staged in the system global area (SGA), known as
the LCR cache.

• The BUILDER process groups LCRs into transactions, and performs other tasks,
such as memory management in the LCR cache, checkpointing related to SQL
Apply restart and filtering out of uninteresting changes.

During apply processing:

• The ANALYZER process identifies dependencies between different transactions.

• The COORDINATOR process (LSP) assigns transactions to different appliers and
coordinates among them to ensure that dependencies between transactions are
honored.

• The APPLIER processes applies transactions to the logical standby database under
the supervision of the coordinator process.

You can query the V$LOGSTDBY_PROCESS view to examine the activity of the SQL
Apply processes. Another view that provides information about current activity is the
V$LOGSTDBY_STATS view that displays statistics, current state, and status
information for the logical standby database during SQL Apply activities. These and
other relevant views are discussed in more detail in Views Related to Managing and
Monitoring a Logical Standby Database (page 11-7).

Overview of the SQL Apply Architecture

11-2 Concepts and Administration

Note:

All SQL Apply processes (including the coordinator process lsp0) are true
background processes. They are not regulated by resource manager.
Therefore, creating resource groups at the logical standby database does not
affect the SQL Apply processes.

11.1.1 Various Considerations for SQL Apply
This section contains the following topics:

• Transaction Size Considerations (page 11-3)

• Pageout Considerations (page 11-4)

• Restart Considerations (page 11-4)

• DML Apply Considerations (page 11-4)

• DDL Apply Considerations (page 11-5)

• Password Verification Functions (page 11-6)

11.1.1.1 Transaction Size Considerations

SQL Apply categorizes transactions into two classes: small and large:

• Small transactions—SQL Apply starts applying LCRs belonging to a small
transaction once it has encountered the commit record for the transaction in the
redo log files.

• Large transactions—SQL Apply breaks large transactions into smaller pieces called
transaction chunks, and starts applying the chunks before the commit record for the
large transaction is seen in the redo log files. This is done to reduce memory
pressure on the LCR cache and to reduce the overall failover time.

For example, without breaking into smaller pieces, a SQL*Loader load of ten
million rows, each 100 bytes in size, would use more than 1 GB of memory in the
LCR cache. If the memory allocated to the LCR cache was less than 1 GB, it would
result in pageouts from the LCR cache.

Apart from the memory considerations, if SQL Apply did not start applying the
changes related to the ten million row SQL*Loader load until it encountered the
COMMIT record for the transaction, it could stall a role transition. A switchover or a
failover that is initiated after the transaction commit cannot finish until SQL Apply
has applied the transaction on the logical standby database.

Despite the use of transaction chunks, SQL Apply performance may degrade when
processing transactions that modify more than eight million rows. For transactions
larger than 8 million rows, SQL Apply uses the temporary segment to stage some
of the internal metadata required to process the transaction. Be sure to allocate
enough space in your temporary segment for SQL Apply to successfully process
transactions larger than 8 million rows.

All transactions start out categorized as small transactions. Depending on the amount
of memory available for the LCR cache and the amount of memory consumed by
LCRs belonging to a transaction, SQL Apply determines when to recategorize a
transaction as a large transaction.

Overview of the SQL Apply Architecture

Managing a Logical Standby Database 11-3

11.1.1.2 Pageout Considerations

Pageouts occur in the context of SQL Apply when memory in the LCR cache is
exhausted and space needs to be released for SQL Apply to make progress.

For example, assume the memory allocated to the LCR cache is 100 MB and SQL
Apply encounters an INSERT transaction to a table with a LONG column of size 300
MB. In this case, the log-mining component pages out the first part of the LONG data to
read the later part of the column modification. In a well-tuned logical standby
database, pageout activities occur occasionally and should not effect the overall
throughput of the system.

See Also:

See Customizing a Logical Standby Database (page 11-16) for more
information about how to identify problematic pageouts and perform
corrective actions

11.1.1.3 Restart Considerations

Modifications made to the logical standby database do not become persistent until the
commit record of the transaction is mined from the redo log files and applied to the
logical standby database. Thus, every time SQL Apply is stopped, whether as a result
of a user directive or because of a system failure, SQL Apply must go back and mine
the earliest uncommitted transaction again.

In cases where a transaction does little work but remains open for a long period of
time, restarting SQL Apply from the start could be prohibitively costly because SQL
Apply would have to mine a large number of archived redo log files again, just to read
the redo data for a few uncommitted transactions. To mitigate this, SQL Apply
periodically checkpoints old uncommitted data. The SCN at which the checkpoint is
taken is reflected in the RESTART_SCN column of V$LOGSTDBY_PROGRESS view.
Upon restarting, SQL Apply starts mining redo records that are generated at an SCN
greater than value shown by the RESTART_SCN column. Archived redo log files that
are not needed for restart are automatically deleted by SQL Apply.

Certain workloads, such as large DDL transactions, parallel DML statements (PDML),
and direct-path loads, prevent the RESTART_SCN from advancing for the duration of
the workload.

11.1.1.4 DML Apply Considerations

SQL Apply has the following characteristics when applying DML transactions that
affect the throughput and latency on the logical standby database:

• Batch updates or deletes done on the primary database, where a single statement
results in multiple rows being modified, are applied as individual row
modifications on the logical standby database. Thus, it is imperative for each
maintained table to have a unique index or a primary key. See Ensure Table Rows
in the Primary Database Can Be Uniquely Identified (page 4-2) for more
information.

• Direct path inserts performed on the primary database are applied using a
conventional INSERT statement on the logical standby database.

Overview of the SQL Apply Architecture

11-4 Concepts and Administration

• Parallel DML (PDML) transactions are not executed in parallel on the logical
standby database.

11.1.1.5 DDL Apply Considerations

SQL Apply has the following characteristics when applying DDL transactions that
affect the throughput and latency on the logical standby database:

• DDL transactions are applied serially on the logical standby database. Thus, DDL
transactions applied concurrently on the primary database are applied one at a
time on the logical standby database.

• CREATE TABLE AS SELECT (CTAS) statements are executed such that the DML
activities (that are part of the CTAS statement) are suppressed on the logical
standby database. The rows inserted in the newly created table as part of the CTAS
statement are mined from the redo log files and applied to the logical standby
database using INSERT statements.

• SQL Apply reissues the DDL that was performed at the primary database, and
ensures that DMLs that occur within the same transaction on the same object that is
the target of the DDL operation are not replicated at the logical standby database.
Thus, the following two cases cause the primary and standby sites to diverge from
each other:

– The DDL contains a non-literal value that is derived from the state at the
primary database. An example of such a DDL is:

ALTER TABLE hr.employees ADD (start_date date default sysdate);

Because SQL Apply reissues the same DDL at the logical standby, the function
sysdate() is reevaluated at the logical standby. Thus, the column
start_date is created with a different default value than at the primary
database.

– The DDL fires DML triggers defined on the target table. Since the triggered
DMLs occur in the same transaction as the DDL, and operate on the table that is
the target of the DDL, these triggered DMLs are not replicated at the logical
standby.

For example, assume you create a table as follows:

 create table HR.TEMP_EMPLOYEES (
 emp_id number primary key,
 first_name varchar2(64),
 last_name varchar2(64),
 modify_date timestamp);

Assume you then create a trigger on the table such that any time the table is
updated the modify_date is updated to reflect the time of change:

 CREATE OR REPLACE TRIGGER TRG_TEST_MOD_DT BEFORE UPDATE ON HR.TEST_EMPLOYEES
 REFERENCING
 NEW AS NEW_ROW FOR EACH ROW
 BEGIN
 :NEW_ROW.MODIFY_DATE:= SYSTIMESTAMP;
 END;
/

This table is maintained correctly under the usual DML/DDL workload.
However if you add a column with the default value to the table, the ADD

Overview of the SQL Apply Architecture

Managing a Logical Standby Database 11-5

COLUMN DDL fires this update trigger and changes the MODIFY_DATE column
of all rows in the table to a new timestamp. These changes to the MODIFY_DATE
column are not replicated at the logical standby database. Subsequent DMLs to
the table stop SQL Apply because the MODIFY_DATE column data recorded in
the redo stream does not match the data that exists at the logical standby
database.

11.1.1.6 Password Verification Functions

Password verification functions that check for the complexity of passwords must be
created in the SYS schema. Because SQL Apply does not replicate objects created in
the SYS schema, such verification functions are not replicated to the logical standby
database. You must create the password verification function manually at the logical
standby database, and associate it with the appropriate profiles.

11.2 Controlling User Access to Tables in a Logical Standby Database
The SQL ALTER DATABASE GUARD statement controls user access to tables in a
logical standby database. The database guard is set to ALL by default on a logical
standby database.

The ALTER DATABASE GUARD statement allows the following keywords:

• ALL

Specify ALL to prevent all users, other than SYS, from making changes to any data
in the logical standby database.

• STANDBY

Specify STANDBY to prevent all users, other than SYS, from making DML and DDL
changes to any table or sequence being maintained through SQL Apply.

• NONE

Specify NONE to use typical security for all data in the database.

For example, use the following statement to enable users to modify tables not
maintained by SQL Apply:

SQL> ALTER DATABASE GUARD STANDBY;

Privileged users can temporarily turn the database guard off and on for the current
session using the ALTER SESSION DISABLE GUARD and ALTER SESSION ENABLE
GUARD statements, respectively. This statement replaces the
DBMS_LOGSTDBY.GUARD_BYPASS PL/SQL procedure that performed the same
function in Oracle9i. The ALTER SESSION [ENABLE|DISABLE] GUARD statement is
useful when you want to temporarily disable the database guard to make changes to
the database, as described in Modifying a Logical Standby Database (page 11-19).

Note:

Do not let the primary and logical standby databases diverge while the
database guard is disabled.

Controlling User Access to Tables in a Logical Standby Database

11-6 Concepts and Administration

11.3 Views Related to Managing and Monitoring a Logical Standby
Database

The following performance views monitor the behavior of SQL Apply maintaining a
logical standby database. The following sections describe the key views that can be
used to monitor a logical standby database:

• DBA_LOGSTDBY_EVENTS View (page 11-7)

• DBA_LOGSTDBY_LOG View (page 11-8)

• V$DATAGUARD_STATS View (page 11-8)

• V$LOGSTDBY_PROCESS View (page 11-9)

• V$LOGSTDBY_PROGRESS View (page 11-10)

• V$LOGSTDBY_STATE View (page 11-11)

• V$LOGSTDBY_STATS View (page 11-12)

See Also:

Oracle Database Reference for complete reference information about views

11.3.1 DBA_LOGSTDBY_EVENTS View
The DBA_LOGSTDBY_EVENTS view records interesting events that occurred during
the operation of SQL Apply. By default, the view records the most recent 10,000
events. However, you can change the number of recorded events by calling
DBMS_LOGSTDBY.APPLY_SET() PL/SQL procedure. If SQL Apply stops
unexpectedly, the reason for the problem is also recorded in this view.

Note:

Errors that cause SQL Apply to stop are recorded in the events table These
events are put into the ALERT.LOG file as well, with the LOGSTDBY keyword
included in the text. When querying the view, select the columns in order by
EVENT_TIME_STAMP, COMMIT_SCN, and CURRENT_SCN to ensure the desired
ordering of events.

The view can be customized to contain other information, such as which DDL
transactions were applied and which were skipped. For example:

SQL> ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YY HH24:MI:SS';
Session altered.
SQL> COLUMN STATUS FORMAT A60
SQL> SELECT EVENT_TIME, STATUS, EVENT FROM DBA_LOGSTDBY_EVENTS -
> ORDER BY EVENT_TIMESTAMP, COMMIT_SCN, CURRENT_SCN;

EVENT_TIME STATUS
--
EVENT

Views Related to Managing and Monitoring a Logical Standby Database

Managing a Logical Standby Database 11-7

23-JUL-02 18:20:12 ORA-16111: log mining and apply setting up
23-JUL-02 18:25:12 ORA-16128: User initiated shut down successfully completed
23-JUL-02 18:27:12 ORA-16112: log mining and apply stopping
23-JUL-02 18:55:12 ORA-16128: User initiated shut down successfully completed
23-JUL-02 18:57:09 ORA-16111: log mining and apply setting up
23-JUL-02 20:21:47 ORA-16204: DDL successfully applied
create table hr.test_emp (empno number, ename varchar2(64))
23-JUL-02 20:22:55 ORA-16205: DDL skipped due to skip setting
create database link link_to_boston connect to system identified by change_on_inst
7 rows selected.

This query shows that SQL Apply was started and stopped a few times. It also shows
what DDL was applied and skipped.

11.3.2 DBA_LOGSTDBY_LOG View
The DBA_LOGSTDBY_LOG view provides dynamic information about archived logs
being processed by SQL Apply.

For example:

SQL> COLUMN DICT_BEGIN FORMAT A10;
SQL> SET NUMF 99999999;
SQL> SELECT FILE_NAME, SEQUENCE# AS SEQ#, FIRST_CHANGE# AS F_SCN#, -
> NEXT_CHANGE# AS N_SCN#, TIMESTAMP, -
> DICT_BEGIN AS BEG, DICT_END AS END, -
> THREAD# AS THR#, APPLIED FROM DBA_LOGSTDBY_LOG -
> ORDER BY SEQUENCE#;

FILE_NAME SEQ# F_SCN N_SCN TIMESTAM BEG END THR# APPLIED
------------------------- ---- ------- ------- -------- --- --- --- ---------
/oracle/dbs/hq_nyc_2.log 2 101579 101588 11:02:58 NO NO 1 YES
/oracle/dbs/hq_nyc_3.log 3 101588 142065 11:02:02 NO NO 1 YES
/oracle/dbs/hq_nyc_4.log 4 142065 142307 11:02:10 NO NO 1 YES
/oracle/dbs/hq_nyc_5.log 5 142307 142739 11:02:48 YES YES 1 YES
/oracle/dbs/hq_nyc_6.log 6 142739 143973 12:02:10 NO NO 1 YES
/oracle/dbs/hq_nyc_7.log 7 143973 144042 01:02:11 NO NO 1 YES
/oracle/dbs/hq_nyc_8.log 8 144042 144051 01:02:01 NO NO 1 YES
/oracle/dbs/hq_nyc_9.log 9 144051 144054 01:02:16 NO NO 1 YES
/oracle/dbs/hq_nyc_10.log 10 144054 144057 01:02:21 NO NO 1 YES
/oracle/dbs/hq_nyc_11.log 11 144057 144060 01:02:26 NO NO 1 CURRENT
/oracle/dbs/hq_nyc_12.log 12 144060 144089 01:02:30 NO NO 1 CURRENT
/oracle/dbs/hq_nyc_13.log 13 144089 144147 01:02:41 NO NO 1 NO

The YES entries in the BEG and END columns indicate that a LogMiner dictionary build
starts at log file sequence number 5. The most recent archived redo log file is sequence
number 13, and it was received at the logical standby database at 01:02:41.The
APPLIED column indicates that SQL Apply has applied all redo before SCN 144057.
Since transactions can span multiple archived log files, multiple archived log files may
show the value CURRENT in the APPLIED column.

11.3.3 V$DATAGUARD_STATS View
This view provides information related to the failover characteristics of the logical
standby database, including:

• The time to failover (apply finish time)

• How current is the committed data in the logical standby database (apply lag)

Views Related to Managing and Monitoring a Logical Standby Database

11-8 Concepts and Administration

• What the potential data loss will be in the event of a disaster (transport lag).

For example:

SQL> COL NAME FORMAT A20
SQL> COL VALUE FORMAT A12
SQL> COL UNIT FORMAT A30
SQL> SELECT NAME, VALUE, UNIT FROM V$DATAGUARD_STATS;

NAME VALUE UNIT
-------------------- ------------ ------------------------------
apply finish time +00 00:00:00 day(2) to second(1) interval
apply lag +00 00:00:00 day(2) to second(0) interval
transport lag +00 00:00:00 day(2) to second(0) interval

This output is from a logical standby database that has received and applied all redo
generated from the primary database.

11.3.4 V$LOGSTDBY_PROCESS View
This view provides information about the current state of the various processes
involved with SQL Apply, including;

• Identifying information (sid | serial# | spid)

• SQL Apply process: COORDINATOR, READER, BUILDER, PREPARER, ANALYZER, or
APPLIER (type)

• Status of the process's current activity (status_code | status)

• Highest redo record processed by this process (high_scn)

For example:

SQL> COLUMN SERIAL# FORMAT 9999
SQL> COLUMN SID FORMAT 9999
SQL> SELECT SID, SERIAL#, SPID, TYPE, HIGH_SCN FROM V$LOGSTDBY_PROCESS;

 SID SERIAL# SPID TYPE HIGH_SCN
 ----- ------- ----------- ---------------- ----------
 48 6 11074 COORDINATOR 7178242899
 56 56 10858 READER 7178243497
 46 1 10860 BUILDER 7178242901
 45 1 10862 PREPARER 7178243295
 37 1 10864 ANALYZER 7178242900
 36 1 10866 APPLIER 7178239467
 35 3 10868 APPLIER 7178239463
 34 7 10870 APPLIER 7178239461
 33 1 10872 APPLIER 7178239472

9 rows selected.

The HIGH_SCN column shows that the reader process is ahead of all other processes,
and the PREPARER and BUILDER process ahead of the rest.

SQL> COLUMN STATUS FORMAT A40
SQL> SELECT TYPE, STATUS_CODE, STATUS FROM V$LOGSTDBY_PROCESS;

TYPE STATUS_CODE STATUS
---------------- ----------- ---
COORDINATOR 16117 ORA-16117: processing
READER 16127 ORA-16127: stalled waiting for additional

Views Related to Managing and Monitoring a Logical Standby Database

Managing a Logical Standby Database 11-9

 transactions to be applied
BUILDER 16116 ORA-16116: no work available
PREPARER 16116 ORA-16117: processing
ANALYZER 16120 ORA-16120: dependencies being computed for
 transaction at SCN 0x0001.abdb440a
APPLIER 16124 ORA-16124: transaction 1 13 1427 is waiting
 on another transaction
APPLIER 16121 ORA-16121: applying transaction with commit
 SCN 0x0001.abdb4390
APPLIER 16123 ORA-16123: transaction 1 23 1231 is waiting
 for commit approval
APPLIER 16116 ORA-16116: no work available

The output shows a snapshot of SQL Apply running. On the mining side, the READER
process is waiting for additional memory to become available before it can read more,
the PREPARER process is processing redo records, and the BUILDER process has no
work available. On the apply side, the COORDINATOR is assigning more transactions to
APPLIER processes, the ANALYZER is computing dependencies at SCN 7178241034,
one APPLIER has no work available, while two have outstanding dependencies that
are not yet satisfied.

See Also:

Monitoring SQL Apply Progress (page 11-13) for example output

11.3.5 V$LOGSTDBY_PROGRESS View
This view provides detailed information regarding progress made by SQL Apply,
including:

• SCN and time at which all transactions that have been committed on the primary
database have been applied to the logical standby database (applied_scn,
applied_time)

• SCN and time at which SQL Apply would begin reading redo records
(restart_scn, restart_time) on restart

• SCN and time of the latest redo record received on the logical standby database
(latest_scn, latest_time)

• SCN and time of the latest record processed by the BUILDER process
(mining_scn, mining_time)

For example:

SQL> SELECT APPLIED_SCN, LATEST_SCN, MINING_SCN, RESTART_SCN -
> FROM V$LOGSTDBY_PROGRESS;

APPLIED_SCN LATEST_SCN MINING_SCN RESTART_SCN
----------- ----------- ---------- -----------
 7178240496 7178240507 7178240507 7178219805

According to the output:

• SQL Apply has applied all transactions committed on or before SCN of 7178240496

• The latest redo record received at the logical standby database was generated at
SCN 7178240507

Views Related to Managing and Monitoring a Logical Standby Database

11-10 Concepts and Administration

• The mining component has processed all redo records generate on or before SCN
7178240507

• If SQL Apply stops and restarts for any reason, it will start mining redo records
generated on or after SCN 7178219805

SQL> ALTER SESSION SET NLS_DATE_FORMAT='yy-mm-dd hh24:mi:ss';
Session altered

SQL> SELECT APPLIED_TIME, LATEST_TIME, MINING_TIME, RESTART_TIME -
> FROM V$LOGSTDBY_PROGRESS;

APPLIED_TIME LATEST_TIME MINING_TIME RESTART_TIME
----------------- ----------------- ----------------- -----------------
05-05-12 10:38:21 05-05-12 10:41:53 05-05-12 10:41:21 05-05-12 10:09:30

According to the output:

• SQL Apply has applied all transactions committed on or before the time 05-05-12
10:38:21 (APPLIED_TIME)

• The last redo was generated at time 05-05-12 10:41:53 at the primary database
(LATEST_TIME)

• The mining engine has processed all redo records generated on or before 05-05-12
10:41:21 (MINING_TIME)

• In the event of a restart, SQL Apply will start mining redo records generated after
the time 05-05-12 10:09:30

See Also:

Monitoring SQL Apply Progress (page 11-13) for example output

11.3.6 V$LOGSTDBY_STATE View
This view provides a synopsis of the current state of SQL Apply, including:

• The DBID of the primary database (primary_dbid).

• The LogMiner session ID allocated to SQL Apply (session_id).

• Whether or not SQL Apply is applying in real time (realtime_apply).

For example:

SQL> COLUMN REALTIME_APPLY FORMAT a15
SQL> COLUMN STATE FORMAT a16
SQL> SELECT * FROM V$LOGSTDBY_STATE;

PRIMARY_DBID SESSION_ID REALTIME_APPLY STATE
------------ ---------- --------------- ----------------
 1562626987 1 Y APPLYING

The output shows that SQL Apply is running in the real-time apply mode and is
currently applying redo data received from the primary database, the primary
database's DBID is 1562626987 and the LogMiner session identifier associated the SQL
Apply session is 1.

Views Related to Managing and Monitoring a Logical Standby Database

Managing a Logical Standby Database 11-11

See Also:

Monitoring SQL Apply Progress (page 11-13) for example output

11.3.7 V$LOGSTDBY_STATS View
The V$LOGSTDBY_STATS view displays statistics, current state, and status
information related to SQL Apply. No rows are returned from this view when SQL
Apply is not running. This view is only meaningful in the context of a logical standby
database.

For example:

 SQL> ALTER SESSION SET NLS_DATE_FORMAT='dd-mm-yyyy hh24:mi:ss';
 Session altered

 SQL> SELECT SUBSTR(name, 1, 40) AS NAME, SUBSTR(value,1,32) AS VALUE FROM V$LOGSTDBY_STATS;

 NAME VALUE
 -- --------------------------------
 logminer session id 1
 number of preparers 1
 number of appliers 5
 server processes in use 9
 maximum SGA for LCR cache (MB) 30
 maximum events recorded 10000
 preserve commit order TRUE
 transaction consistency FULL
 record skipped errors Y
 record skipped DDLs Y
 record applied DDLs N
 record unsupported operations N
 realtime apply Y
 apply delay (minutes) 0
 coordinator state APPLYING
 coordinator startup time 19-06-2007 09:55:47
 coordinator uptime (seconds) 3593
 txns received from logminer 56
 txns assigned to apply 23
 txns applied 22
 txns discarded during restart 33
 large txns waiting to be assigned 2
 rolled back txns mined 4
 DDL txns mined 40
 CTAS txns mined 0
 bytes of redo mined 60164040
 bytes paged out 0
 pageout time (seconds) 0
 bytes checkpointed 4845
 checkpoint time (seconds) 0
 system idle time (seconds) 2921
 standby redo logs mined 0
 archived logs mined 5
 gap fetched logs mined 0
 standby redo log reuse detected 1
 logfile open failures 0
 current logfile wait (seconds) 0
 total logfile wait (seconds) 2910
 thread enable mined 0
 thread disable mined 0

Views Related to Managing and Monitoring a Logical Standby Database

11-12 Concepts and Administration

 .
 40 rows selected.

11.4 Monitoring a Logical Standby Database
This section contains the following topics:

• Monitoring SQL Apply Progress (page 11-13)

• Automatic Deletion of Log Files (page 11-15)

11.4.1 Monitoring SQL Apply Progress
SQL Apply can be in any of six states of progress: initializing SQL Apply, waiting for
dictionary logs, loading the LogMiner dictionary, applying (redo data), waiting for an
archive gap to be resolved, and idle. Figure 11-2 (page 11-13) shows the flow of these
states.

Figure 11-2 Progress States During SQL Apply Processing

Initializing

Applying

Loading�
Dictionary

Waiting�
for Gap

Idle

Waiting for Dictionary Logs

The following subsections describe each state in more detail.

Initializing State

When you start SQL Apply by issuing an ALTER DATABASE START LOGICAL
STANDBY APPLY statement, it goes into the initializing state.

To determine the current state of SQL Apply, query the V$LOGSTDBY_STATE view.
For example:

SQL> SELECT SESSION_ID, STATE FROM V$LOGSTDBY_STATE;

SESSION_ID STATE
---------- -------------
1 INITIALIZING

The SESSION_ID column identifies the persistent LogMiner session created by SQL
Apply to mine the archived redo log files generated by the primary database.

Waiting for Dictionary Logs

The first time the SQL Apply is started, it needs to load the LogMiner dictionary
captured in the redo log files. SQL Apply stays in the WAITING FOR DICTIONARY
LOGS state until it has received all redo data required to load the LogMiner dictionary.

Monitoring a Logical Standby Database

Managing a Logical Standby Database 11-13

Loading Dictionary State

This loading dictionary state can persist for a while. Loading the LogMiner dictionary
on a large database can take a long time. Querying the V$LOGSTDBY_STATE view
returns the following output when loading the dictionary:

SQL> SELECT SESSION_ID, STATE FROM V$LOGSTDBY_STATE;

SESSION_ID STATE
---------- ------------------
1 LOADING DICTIONARY

Only the COORDINATOR process and the mining processes are spawned until the
LogMiner dictionary is fully loaded. Therefore, if you query the V
$LOGSTDBY_PROCESS at this point, you do not see any of the APPLIER processes. For
example:

SQL> SELECT SID, SERIAL#, SPID, TYPE FROM V$LOGSTDBY_PROCESS;

SID SERIAL# SPID TYPE
------ --------- --------- ---------------------
47 3 11438 COORDINATOR
50 7 11334 READER
45 1 11336 BUILDER
44 2 11338 PREPARER
43 2 11340 PREPARER

You can get more detailed information about the progress in loading the dictionary by
querying the V$LOGMNR_DICTIONARY_LOAD view. The dictionary load happens in
three phases:

1. The relevant archived redo log files or standby redo logs files are mined to gather
the redo changes relevant to load the LogMiner dictionary.

2. The changes are processed and loaded in staging tables inside the database.

3. The LogMiner dictionary tables are loaded by issuing a series of DDL statements.

For example:

SQL> SELECT PERCENT_DONE, COMMAND -
> FROM V$LOGMNR_DICTIONARY_LOAD -
> WHERE SESSION_ID = (SELECT SESSION_ID FROM V$LOGSTDBY_STATE);

PERCENT_DONE COMMAND
------------- -------------------------------
40 alter table SYSTEM.LOGMNR_CCOL$ exchange partition
 P101 with table SYS.LOGMNRLT_101_CCOL$ excluding
 indexes without validation

If the PERCENT_DONE or the COMMAND column does not change for a long time, query
the V$SESSION_LONGOPS view to monitor the progress of the DDL transaction in
question.

Applying State

In this state, SQL Apply has successfully loaded the initial snapshot of the LogMiner
dictionary, and is currently applying redo data to the logical standby database.

For detailed information about the SQL Apply progress, query the V
$LOGSTDBY_PROGRESS view:

Monitoring a Logical Standby Database

11-14 Concepts and Administration

SQL> ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY HH24:MI:SS';
SQL> SELECT APPLIED_TIME, APPLIED_SCN, MINING_TIME, MINING_SCN -
> FROM V$LOGSTDBY_PROGRESS;

APPLIED_TIME APPLIED_SCN MINING_TIME MINING_SCN
-------------------- ----------- -------------------- -----------
10-JAN-2005 12:00:05 346791023 10-JAN-2005 12:10:05 3468810134

All committed transactions seen at or before APPLIED_SCN (or APPLIED_TIME) on
the primary database have been applied to the logical standby database. The mining
engine has processed all redo records generated at or before MINING_SCN (and
MINING_TIME) on the primary database. At steady state, the value of MINING_SCN
(and MINING_TIME) is always ahead of APPLIED_SCN (and APPLIED_TIME).

Waiting On Gap State

This state occurs when SQL Apply has mined and applied all available redo records,
and is waiting for a new log file (or a missing log file) to be archived by the RFS
process.

SQL> SELECT STATUS FROM V$LOGSTDBY_PROCESS WHERE TYPE = 'READER';

STATUS
--
ORA-16240: waiting for log file (thread# 1, sequence# 99)

Idle State

SQL Apply enters this state once it has applied all redo generated by the primary
database.

11.4.2 Automatic Deletion of Log Files
Foreign archived logs contain redo that was shipped from the primary database. There
are two ways to store foreign archive logs:

• In the fast recovery area

• In a directory outside of the fast recovery area

Foreign archived logs stored in the fast recovery area are always managed by SQL
Apply. After all redo records contained in the log have been applied at the logical
standby database, they are retained for the time period specified by the
DB_FLASHBACK_RETENTION_TARGET parameter (or for 1440 minutes if
DB_FLASHBACK_RETENTION_TARGET is not specified). You cannot override
automatic management of foreign archived logs that are stored in the fast recovery
area.

Foreign archived logs that are not stored in fast recovery area are by default managed
by SQL Apply. Under automatic management, foreign archived logs that are not
stored in the fast recovery area are retained for the time period specified by the
LOG_AUTO_DEL_RETENTION_TARGET parameter once all redo records contained in
the log have been applied at the logical standby database. You can override automatic
management of foreign archived logs not stored in fast recovery area by executing the
following PL/SQL procedure:

SQL> EXECUTE DBMS_LOGSTDBY.APPLY_SET('LOG_AUTO_DELETE', 'FALSE');

Monitoring a Logical Standby Database

Managing a Logical Standby Database 11-15

Note:

Use the DBMS_LOGTSDBY.APPLY_SET procedure to set this parameter. If you
do not specify LOG_AUTO_DEL_RETENTION_TARGET explicitly, it defaults to
DB_FLASHBACK_RETENTION_TARGET set in the logical standby database, or
to 1440 minutes in case DB_FLASHBACK_RETENTION_TARGET is not set.

If you are overriding the default automatic log deletion capability, periodically
perform the following steps to identify and delete archived redo log files that are no
longer needed by SQL Apply:

1. To purge the logical standby session of metadata that is no longer needed, enter
the following PL/SQL statement:

SQL> EXECUTE DBMS_LOGSTDBY.PURGE_SESSION;

This statement also updates the DBA_LOGMNR_PURGED_LOG view that displays
the archived redo log files that are no longer needed.

2. Query the DBA_LOGMNR_PURGED_LOG view to list the archived redo log files that
can be removed:

SQL> SELECT * FROM DBA_LOGMNR_PURGED_LOG;

 FILE_NAME

 /boston/arc_dest/arc_1_40_509538672.log
 /boston/arc_dest/arc_1_41_509538672.log
 /boston/arc_dest/arc_1_42_509538672.log
 /boston/arc_dest/arc_1_43_509538672.log
 /boston/arc_dest/arc_1_44_509538672.log
 /boston/arc_dest/arc_1_45_509538672.log
 /boston/arc_dest/arc_1_46_509538672.log
 /boston/arc_dest/arc_1_47_509538672.log

3. Use an operating system-specific command to delete the archived redo log files
listed by the query.

11.5 Customizing a Logical Standby Database
This section contains the following topics:

• Customizing Logging of Events in the DBA_LOGSTDBY_EVENTS View
(page 11-17)

• Using DBMS_LOGSTDBY.SKIP to Prevent Changes to Specific Schema Objects
(page 11-17)

• Setting up a Skip Handler for a DDL Statement (page 11-18)

• Modifying a Logical Standby Database (page 11-19)

• Adding or Re-Creating Tables On a Logical Standby Database (page 11-21)

Customizing a Logical Standby Database

11-16 Concepts and Administration

See Also:

The DBMS_LOGSTDBY package in Oracle Database PL/SQL Packages and Types
Reference

11.5.1 Customizing Logging of Events in the DBA_LOGSTDBY_EVENTS View
The DBA_LOGSTDBY_EVENTS view can be thought of as a circular log containing the
most recent interesting events that occurred in the context of SQL Apply. By default
the last 10,000 events are remembered in the event view. You can change the number
of events logged by invoking the DBMS_LOGSTDBY.APPLY_SET procedure. For
example, to ensure that the last 100,000 events are recorded, you can issue the
following statement:

SQL> EXECUTE DBMS_LOGSTDBY.APPLY_SET ('MAX_EVENTS_RECORDED', '100000');

Errors that cause SQL Apply to stop are always recorded in the
DBA_LOGSTDBY_EVENTS view (unless there is insufficient space in the SYSTEM
tablespace). These events are always put into the alert file as well, with the keyword
LOGSTDBY included in the text. When querying the view, select the columns in order
by EVENT_TIME, COMMIT_SCN, and CURRENT_SCN. This ordering ensures a
shutdown failure appears last in the view.

The following examples show DBMS_LOGSTDBY subprograms that specify events to be
recorded in the view.

Example 1: Determining if DDL Statements Have Been Applied

For example, to record applied DDL transactions to the DBA_LOGSTDBY_EVENTS
view, issue the following statement:

SQL> EXECUTE DBMS_LOGSTDBY.APPLY_SET ('RECORD_APPLIED_DDL', 'TRUE');

Example 2: Checking the DBA_LOGSTDBY_EVENTS View for Unsupported
Operations

To capture information about transactions running on the primary database that are
not supported by a logical standby database, issue the following statements:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;SQL> EXEC
DBMS_LOGSTDBY.APPLY_SET('RECORD_UNSUPPORTED_OPERATIONS', 'TRUE');SQL> ALTER DATABASE
START LOGICAL STANDBY APPLY IMMEDIATE;

Then, check the DBA_LOGSTDBY_EVENTS view for any unsupported operations.
Usually, an operation on an unsupported table is silently ignored by SQL Apply.
However, during rolling upgrade (while the standby database is at a higher version
and mining redo generated by a lower versioned primary database), if you performed
an unsupported operation on the primary database, the logical standby database may
not be the one to which you want to perform a switchover. Oracle Data Guard logs at
least one unsupported operation per table in the DBA_LOGSTDBY_EVENTS view.
Using SQL Apply to Upgrade the Oracle Database (page 13-1) provides detailed
information about rolling upgrades.

11.5.2 Using DBMS_LOGSTDBY.SKIP to Prevent Changes to Specific Schema Objects
By default, all supported tables in the primary database are replicated in the logical
standby database. You can change the default behavior by specifying rules to skip

Customizing a Logical Standby Database

Managing a Logical Standby Database 11-17

applying modifications to specific tables. For example, to omit changes to the
HR.EMPLOYEES table, you can specify rules to prevent application of DML and DDL
changes to the specific table. For example:

1. Stop SQL Apply:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;

2. Register the SKIP rules:

SQL> EXECUTE DBMS_LOGSTDBY.SKIP (stmt => 'DML', schema_name => 'HR', -
> object_name => 'EMPLOYEES');

SQL> EXECUTE DBMS_LOGSTDBY.SKIP (stmt => 'SCHEMA_DDL', schema_name => 'HR', -
> object_name => 'EMPLOYEES');

3. Start SQL Apply:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

11.5.3 Setting up a Skip Handler for a DDL Statement
You can create a procedure to intercept certain DDL statements and replace the
original DDL statement with a different one. For example, if the file system
organization in the logical standby database is different than that in the primary
database, you can write a DBMS_LOGSTDBY.SKIP procedure to transparently handle
DDL transactions with file specifications.

The following procedure can handle different file system organization between the
primary database and standby database, as long as you use a specific naming
convention for your file-specification string.

1. Create the skip procedure to handle tablespace DDL transactions:

CREATE OR REPLACE PROCEDURE SYS.HANDLE_TBS_DDL (
 OLD_STMT IN VARCHAR2,
 STMT_TYP IN VARCHAR2,
 SCHEMA IN VARCHAR2,
 NAME IN VARCHAR2,
 XIDUSN IN NUMBER,
 XIDSLT IN NUMBER,
 XIDSQN IN NUMBER,
 ACTION OUT NUMBER,
 NEW_STMT OUT VARCHAR2
) AS
BEGIN

-- All primary file specification that contains a directory
-- /usr/orcl/primary/dbs
-- should go to /usr/orcl/stdby directory specification

 NEW_STMT := REPLACE(OLD_STMT,
 '/usr/orcl/primary/dbs',
 '/usr/orcl/stdby');

 ACTION := DBMS_LOGSTDBY.SKIP_ACTION_REPLACE;

EXCEPTION
 WHEN OTHERS THEN
 ACTION := DBMS_LOGSTDBY.SKIP_ACTION_ERROR;

Customizing a Logical Standby Database

11-18 Concepts and Administration

 NEW_STMT := NULL;
END HANDLE_TBS_DDL;

2. Stop SQL Apply:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;

3. Register the skip procedure with SQL Apply:

SQL> EXECUTE DBMS_LOGSTDBY.SKIP (stmt => 'TABLESPACE', -
> proc_name => 'sys.handle_tbs_ddl');

4. Start SQL Apply:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

11.5.4 Modifying a Logical Standby Database
Logical standby databases can be used for reporting activities, even while SQL
statements are being applied. The database guard controls user access to tables in a
logical standby database, and the ALTER SESSION DISABLE GUARD statement is
used to bypass the database guard and allow modifications to the tables in the logical
standby database.

Note:

To use a logical standby database to host other applications that process data
being replicated from the primary database while creating other tables of their
own, the database guard must be set to STANDBY. For such applications to
work seamlessly, make sure that you are running with
PRESERVE_COMMIT_ORDER set to TRUE (the default setting for SQL Apply).
(See Oracle Database PL/SQL Packages and Types Reference for information about
the PRESERVE_COMMIT_ORDER parameter in the DBMS_LOGSTDBY PL/SQL
package.)

Issue the following SQL statement to set the database guard to STANDBY:

SQL> ALTER DATABASE GUARD STANDBY;

Under this guard setting, tables being replicated from the primary database
are protected from user modifications, but tables created on the standby
database can be modified by the applications running on the logical standby.

By default, a logical standby database operates with the database guard set to ALL,
which is its most restrictive setting, and does not allow any user changes to be
performed to the database. You can override the database guard to allow changes to
the logical standby database by executing the ALTER SESSION DISABLE GUARD
statement. Privileged users can issue this statement to turn the database guard off for
the current session.

The following sections provide some examples. The discussions in these sections
assume that the database guard is set to ALL or STANDBY.

11.5.4.1 Performing DDL on a Logical Standby Database

This section describes how to add a constraint to a table maintained through SQL
Apply.

Customizing a Logical Standby Database

Managing a Logical Standby Database 11-19

By default, only accounts with SYS privileges can modify the database while the
database guard is set to ALL or STANDBY. If you are logged in as SYSDG, SYSTEM, or
another privileged account, you cannot issue DDL statements on the logical standby
database without first bypassing the database guard for the session.

The following example shows how to stop SQL Apply, bypass the database guard,
execute SQL statements on the logical standby database, and then reenable the guard.
In this example, a soundex index is added to the surname column of SCOTT.EMP to
speed up partial match queries. A soundex index could be prohibitive to maintain on
the primary server.

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;
Database altered.

SQL> ALTER SESSION DISABLE GUARD;
PL/SQL procedure successfully completed.

SQL> CREATE INDEX EMP_SOUNDEX ON SCOTT.EMP(SOUNDEX(ENAME));
Table altered.

SQL> ALTER SESSION ENABLE GUARD;
PL/SQL procedure successfully completed.

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;
Database altered.

SQL> SELECT ENAME,MGR FROM SCOTT.EMP WHERE SOUNDEX(ENAME) = SOUNDEX('CLARKE');

ENAME MGR
---------- ----------
CLARK 7839

Oracle recommends that you do not perform DML operations on tables maintained by
SQL Apply while the database guard bypass is enabled. Doing so introduces
deviations between the primary and standby databases that make it impossible for the
logical standby database to be maintained.

11.5.4.2 Modifying Tables That Are Not Maintained by SQL Apply

Sometimes, a reporting application must collect summary results and store them
temporarily or track the number of times a report was run. Although the main
purpose of the application is to perform reporting activities, the application might
need to issue DML (insert, update, and delete) operations on a logical standby
database. It might even need to create or drop tables.

You can set up the database guard to allow reporting operations to modify data as
long as the data is not being maintained through SQL Apply. To do this, you must:

• Specify the set of tables on the logical standby database to which an application can
write data by executing the DBMS_LOGSTDBY.SKIP procedure. Skipped tables are
not maintained through SQL Apply.

• Set the database guard to protect only standby tables.

In the following example, it is assumed that the tables to which the report is writing
are also on the primary database.

The example stops SQL Apply, skips the tables, and then restarts SQL Apply. The
reporting application writes to TESTEMP% in HR. The tables are no longer maintained
through SQL Apply.

Customizing a Logical Standby Database

11-20 Concepts and Administration

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;
Database altered.

SQL> EXECUTE DBMS_LOGSTDBY.SKIP(stmt => 'SCHEMA_DDL',-
 schema_name => 'HR', -
 object_name => 'TESTEMP%');
PL/SQL procedure successfully completed.

SQL> EXECUTE DBMS_LOGSTDBY.SKIP('DML','HR','TESTEMP%');
PL/SQL procedure successfully completed.

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;
Database altered.

Once SQL Apply starts, it needs to update metadata on the standby database for the
newly specified tables added in the skip rules. Attempts to modify the newly skipped
table until SQL Apply has had a chance to update the metadata fail. You can find out if
SQL Apply has successfully taken into account the SKIP rule you just added by
issuing the following query:

SQL> SELECT VALUE FROM SYSTEM.LOGSTDBY$PARAMETERS WHERE NAME = 'GUARD_STANDBY';

VALUE

Ready

When the VALUE column displays Ready, SQL Apply has successfully updated all
relevant metadata for the skipped table, and it is safe to modify the table.

See Also:

DDL Statements Supported by a Logical Standby Database (page C-19) and
the DBMS_LOGSTDBY package in Oracle Database PL/SQL Packages and Types
Reference

11.5.5 Adding or Re-Creating Tables On a Logical Standby Database
Typically, you use the DBMS_LOGSTDBY.INSTANTIATE_TABLE procedure to re-
create a table after an unrecoverable operation. You can also use this procedure to
enable SQL Apply on a table that was formerly skipped.

Before you can create a table, it must meet the requirements described in Ensure Table
Rows in the Primary Database Can Be Uniquely Identified (page 4-2). Then, you can
use the following steps to re-create a table named HR.EMPLOYEES and resume SQL
Apply. The directions assume that there is already a database link BOSTON defined to
access the primary database.

The following list shows how to re-create a table and restart SQL Apply on that table:

1. Stop SQL Apply:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;

2. Ensure no operations are being skipped for the table in question by querying the
DBA_LOGSTDBY_SKIP view:

SQL> SELECT * FROM DBA_LOGSTDBY_SKIP;

ERROR STATEMENT_OPT OWNER NAME PROC

Customizing a Logical Standby Database

Managing a Logical Standby Database 11-21

----- ------------------- ------------- ---------------- -----
N SCHEMA_DDL HR EMPLOYEES
N DML HR EMPLOYEES
N SCHEMA_DDL OE TEST_ORDER
N DML OE TEST_ORDER

Because you already have skip rules associated with the table that you want to re-
create on the logical standby database, you must first delete those rules. You can
accomplish that by calling the DBMS_LOGSTDBY.UNSKIP procedure. For
example:

SQL> EXECUTE DBMS_LOGSTDBY.UNSKIP(stmt => 'DML', -
> schema_name => 'HR', -
> object_name => 'EMPLOYEES');

SQL> EXECUTE DBMS_LOGSTDBY.UNSKIP(stmt => 'SCHEMA_DDL', -
> schema_name => 'HR', -
> object_name => 'EMPLOYEES');

3. Re-create the table HR.EMPLOYEES with all its data in the logical standby
database by using the DBMS_LOGSTDBY.INSTANTIATE_TABLE procedure. For
example:

SQL> EXECUTE DBMS_LOGSTDBY.INSTANTIATE_TABLE(schema_name => 'HR', -
> table_name => 'EMPLOYEES', -
> dblink => 'BOSTON');

4. Start SQL Apply:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

See Also:

Oracle Database PL/SQL Packages and Types Reference for information about the
DBMS_LOGSTDBY.UNSKIP and the DBMS_LOGSTDBY.INSTANTIATE_TABLE
procedures

To ensure a consistent view across the newly instantiated table and the rest of the
database, wait for SQL Apply to catch up with the primary database before querying
this table. You can do this by performing the following steps:

1. On the primary database, determine the current SCN by querying the V
$DATABASE view:

SQL> SELECT CURRENT_SCN FROM V$DATABASE@BOSTON;

CURRENT_SCN

345162788

2. Make sure SQL Apply has applied all transactions committed before the
CURRENT_SCN returned in the previous query:

SQL> SELECT APPLIED_SCN FROM V$LOGSTDBY_PROGRESS;

APPLIED_SCN

345161345

Customizing a Logical Standby Database

11-22 Concepts and Administration

When the APPLIED_SCN returned in this query is greater than the CURRENT_SCN
returned in the first query, it is safe to query the newly re-created table.

11.6 Managing Specific Workloads In the Context of a Logical Standby
Database

This section contains the following topics:

• Importing a Transportable Tablespace to the Primary Database (page 11-23)

• Using Materialized Views (page 11-23)

• How Triggers and Constraints Are Handled on a Logical Standby Database
(page 11-24)

• Using Triggers to Replicate Unsupported Tables (page 11-25)

• Recovering Through the Point-in-Time Recovery Performed at the Primary
(page 11-27)

• Running an Oracle Streams Capture Process on a Logical Standby Database
(page 11-28)

11.6.1 Importing a Transportable Tablespace to the Primary Database
Perform the following steps to import a tablespace to the primary database.

1. Disable the guard setting so that you can modify the logical standby database:

SQL> ALTER DATABASE GUARD STANDBY;

2. Import the tablespace at the logical standby database.

3. Enable the database guard setting:

SQL> ALTER DATABASE GUARD ALL;

4. Import the tablespace at the primary database.

11.6.2 Using Materialized Views
Logical Standby automatically skips DDL statements related to materialized views:

• CREATE, ALTER, or DROP MATERIALIZED VIEW

• CREATE, ALTER or DROP MATERIALIZED VIEW LOG

New materialized views that are created, altered, or dropped on the primary database
after the logical standby database has been created are not created on the logical
standby database. However, materialized views created on the primary database prior
to the logical standby database being created are present on the logical standby
database.

Logical Standby supports the creation and maintenance of new materialized views
locally on the logical standby database in addition to other kinds of auxiliary data
structure. For example, online transaction processing (OLTP) systems frequently use
highly normalized tables for update performance but these can lead to slower
response times for complex decision support queries. Materialized views that
denormalize the replicated data for more efficient query support on the logical

Managing Specific Workloads In the Context of a Logical Standby Database

Managing a Logical Standby Database 11-23

standby database can be created, as follows (connect as user SYS before issuing these
statements):

SQL> ALTER SESSION DISABLE GUARD;

SQL> CREATE MATERIALIZED VIEW LOG ON SCOTT.EMP -
> WITH ROWID (EMPNO, ENAME, MGR, DEPTNO) INCLUDING NEW VALUES;

SQL> CREATE MATERIALIZED VIEW LOG ON SCOTT.DEPT -
> WITH ROWID (DEPTNO, DNAME) INCLUDING NEW VALUES;

SQL> CREATE MATERIALIZED VIEW SCOTT.MANAGED_BY -
> REFRESH ON DEMAND -
> ENABLE QUERY REWRITE -
> AS SELECT E.ENAME, M.ENAME AS MANAGER -
> FROM SCOTT.EMP E, SCOTT.EMP M WHERE E.MGR=M.EMPNO;

SQL> CREATE MATERIALIZED VIEW SCOTT.IN_DEPT -
> REFRESH FAST ON COMMIT -
> ENABLE QUERY REWRITE -
> AS SELECT E.ROWID AS ERID, D.ROWID AS DRID, E.ENAME, D.DNAME -
> FROM SCOTT.EMP E, SCOTT.DEPT D WHERE E.DEPTNO=D.DEPTNO;

On a logical standby database:

• An ON-COMMIT materialized view is refreshed automatically on the logical
standby database when the transaction commit occurs.

• An ON-DEMAND materialized view is not automatically refreshed: the
DBMS_MVIEW.REFRESH procedure must be executed to refresh it.

For example, issuing the following command would refresh the ON-DEMAND
materialized view created in the previous example:

SQL> ALTER SESSION DISABLE GUARD;

SQL> EXECUTE DBMS_MVIEW.REFRESH (LIST => 'SCOTT.MANAGED_BY', METHOD => 'C');

If DBMS_SCHEDULER jobs are being used to periodically refresh on-demand
materialized views, the database guard must be set to STANDBY. (It is not possible to
use the ALTER SESSION DISABLE GUARD statement inside a PL/SQL block and
have it take effect.)

11.6.3 How Triggers and Constraints Are Handled on a Logical Standby Database
By default, triggers and constraints are automatically enabled and handled on logical
standby databases.

For triggers and constraints on tables maintained by SQL Apply:

• Constraints — Check constraints are evaluated on the primary database and do not
need to be re-evaluated on the logical standby database.

• Triggers — The effects of the triggers executed on the primary database are logged
and applied on the standby database.

For triggers and constraints on tables not maintained by SQL Apply:

• Constraints are evaluated

• Triggers are fired

Managing Specific Workloads In the Context of a Logical Standby Database

11-24 Concepts and Administration

11.6.4 Using Triggers to Replicate Unsupported Tables
DML triggers created on a table have their
DBMS_DDL.SET_TRIGGER_FIRING_PROPERTY fire_once parameter set to TRUE
by default. The triggers fire only when the table is modified by a user process. They
are automatically disabled inside SQL Apply processes, and thus do not fire when a
SQL Apply process modifies the table. There are two ways to fire a trigger as a result
of SQL Apply process making a change to a maintained table:

• Set the fire_once parameter of a trigger to FALSE, which allows it to fire in either
the context of a user process or a SQL Apply process

• Set the apply_server_only parameter to TRUE which results in the trigger firing
only in the context of a SQL Apply process and not in the context of a user process

fire_once apply_server_only description

TRUE FALSE This is the default property setting for a DML trigger.
The trigger fires only when a user process modifies the
base table.

FALSE FALSE The trigger fires in the context of a user process and in
the context of a SQL Apply process modifying the base
table. You can distinguish the two contexts by using
the DBMS_LOGSTDBY.IS_APPLY_SERVER function.

TRUE/
FALSE

TRUE The trigger only fires when a SQL Apply process
modifies the base table. The trigger does not fire when
a user process modifies the base table. Thus, the
apply_server_only property overrides the
fire_once parameter of a trigger.

Tables that are unsupported due to simple object type columns can be replicated by
creating triggers that fire in the context of a SQL Apply process (either by setting the
fire_once parameter of such a trigger to FALSE or by setting the apply_server_only
parameter of such a trigger to TRUE). A regular DML trigger can be used on the
primary database to flatten the object type into a table that can be supported. The
trigger that fires in the context of a SQL Apply process on the logical standby
reconstitutes the object type and updates the unsupported table in a transactional
manner.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for descriptions of the
DBMS_DDL.SET_TRIGGER_FIRING_PROPERTY procedure and the
DBMS_LOGSTDBY.IS_APPLY_SERVER function

The following example shows how a table with a simple object type could be
replicated using triggers. This example shows how to handle inserts; the same
principle can be applied to updating and deleting. Nested tables and VARRAYs can also
be replicated using this technique with the additional step of a loop to normalize the
nested data.

-- simple object type
create or replace type Person as object

Managing Specific Workloads In the Context of a Logical Standby Database

Managing a Logical Standby Database 11-25

(
 FirstName varchar2(50),
 LastName varchar2(50),
 BirthDate Date
)

-- unsupported object table
create table employees
(
 IdNumber varchar2(10) ,
 Department varchar2(50),
 Info Person
)

-- supported table populated via trigger
create table employees_transfer
(
 t_IdNumber varchar2(10),
 t_Department varchar2(50),
 t_FirstName varchar2(50),
 t_LastName varchar2(50),
 t_BirthDate Date
)
--
-- create this trigger to flatten object table on the primary
-- this trigger will not fire on the standby
--
create or replace trigger flatten_employees
 after insert on employees for each row
declare
begin
 insert into employees_transfer
 (t_IdNumber, t_Department, t_FirstName, t_LastName, t_BirthDate)
 values
 (:new.IdNumber, :new.Department,
 :new.Info.FirstName,:new.Info.LastName, :new.Info.BirthDate);
end

--
-- Option#1 (Better Option: Create a trigger and
-- set its apply-server-only property to TRUE)
-- create this trigger at the logical standby database
-- to populate object table on the standby
-- this trigger only fires when apply replicates rows
-- to the standby
--
create or replace trigger reconstruct_employees_aso
 after insert on employees_transfer for each row
begin

 insert into employees (IdNumber, Department, Info)
 values (:new.t_IdNumber, :new.t_Department,
Person(:new.t_FirstName, :new.t_LastName, :new.t_BirthDate));

end

-- set this trigger to fire from the apply server
execute dbms_ddl.set_trigger_firing_property(-
trig_owner => 'scott', -
trig_name => 'reconstruct_employees_aso',
property => dbms_ddl.apply_server_only,

Managing Specific Workloads In the Context of a Logical Standby Database

11-26 Concepts and Administration

setting => TRUE);

--
-- Option#2 (Create a trigger and set
-- its fire-once property to FALSE)
-- create this trigger at the logical standby database
-- to populate object table on the standby
-- this trigger will fire when apply replicates rows to -- the standby, but we will
need to make sure we are
-- are executing inside a SQL Apply process by invoking
-- dbms_logstdby.is_apply_server function
--
create or replace trigger reconstruct_employees_nfo
 after insert on employees_transfer for each row
begin
 if dbms_logstdby.is_apply_server() then
 insert into employees (IdNumber, Department, Info)
 values (:new.t_IdNumber, :new.t_Department,
Person(:new.t_FirstName, :new.t_LastName, :new.t_BirthDate));
 end if;
end

-- set this trigger to fire from the apply server
execute dbms_ddl.set_trigger_firing_property(-
trig_owner => 'scott', -
trig_name => 'reconstruct_employees_nfo',
property => dbms_ddl.fire_once,
setting => FALSE);

11.6.5 Recovering Through the Point-in-Time Recovery Performed at the Primary
When a logical standby database receives a new branch of redo data, SQL Apply
automatically takes the new branch of redo data. For logical standby databases, no
manual intervention is required if the standby database did not apply redo data past
the new resetlogs SCN (past the start of the new branch of redo data)

The following table describes how to resynchronize the standby database with the
primary database branch.

If the standby database. . . Then. . . Perform these steps. . .

Has not applied redo data past the
new resetlogs SCN (past the start
of the new branch of redo data)

SQL Apply automatically
takes the new branch of
redo data.

No manual intervention is necessary. SQL
Apply automatically resynchronizes the
standby database with the new branch of
redo data.

Has applied redo data past the
new resetlogs SCN (past the start
of the new branch of redo data)
and Flashback Database is enabled
on the standby database

The standby database is
recovered in the future of the
new branch of redo data.

1. Follow the procedure in Flashing Back a
Logical Standby Database to a Specific
Point-in-Time (page 15-8) to flash
back a logical standby database.

2. Restart SQL Apply to continue
application of redo onto the new reset
logs branch.

SQL Apply automatically resynchronizes the
standby database with the new branch.

Managing Specific Workloads In the Context of a Logical Standby Database

Managing a Logical Standby Database 11-27

If the standby database. . . Then. . . Perform these steps. . .

Has applied redo data past the
new resetlogs SCN (past the start
of the new branch of redo data)
and Flashback Database is not
enabled on the standby database

The primary database has
diverged from the standby
on the indicated primary
database branch.

Re-create the logical standby database
following the procedures in Creating a
Logical Standby Database (page 4-1).

Is missing archived redo log files
from the end of the previous
branch of redo data

SQL Apply cannot continue
until the missing log files are
retrieved.

Locate and register missing archived redo
log files from the previous branch.

See Oracle Database Backup and Recovery User's Guide for more information about
database incarnations, recovering through an OPEN RESETLOGS operation, and
Flashback Database.

11.6.6 Running an Oracle Streams Capture Process on a Logical Standby Database
You can run an Oracle Streams capture process on a logical standby database to
capture changes from any table that exists on the logical standby database (whether it
is a local table or a maintained table that is being replicated from the primary
database). When changes are captured to a maintained table, there is additional
latency as compared to running an Oracle Streams capture process at the primary
database. The additional latency is because of the fact that when you are running at a
logical standby, the Oracle Streams capture process must wait for the changes to be
shipped from the primary to the logical standby and applied by SQL Apply. In most
cases, if you are running real time apply, it is no more than a few seconds.

The Oracle Streams capture process is associated with the database where it was
created; the role of the database is irrelevant. For example, suppose you have a
primary database named Boston and a logical standby named London. You cannot
move the Oracle Streams capture process from one database to the other as you go
through role transitions. For instance, if you created an Oracle Streams capture process
on London when it was a logical standby, then it remains on London even when
London becomes the primary as a result of a role transition operation such as a
switchover or failover. For the Oracle Streams capture process to continue working
after a role transition, you must write a role transition trigger such as the following:

create or replace trigger streams_aq_job_role_change1
after DB_ROLE_CHANGE on database
declare
cursor capture_aq_jobs is
 select job_name, database_role
 from dba_scheduler_job_roles
 where job_name like 'AQ_JOB%';
u capture_aq_jobs%ROWTYPE;
my_db_role varchar2(16);
begin

 if (dbms_logstdby.db_is_logstdby() = 1) then my_db_role := 'LOGICAL STANDBY';
 else my_db_role := 'PRIMARY';
 end if;

 open capture_aq_jobs;
 loop
 fetch capture_aq_jobs into u;

Managing Specific Workloads In the Context of a Logical Standby Database

11-28 Concepts and Administration

 exit when capture_aq_jobs%NOTFOUND;

 if (u.database_role != my_db_role) then
 dbms_scheduler.set_attribute(u.job_name,
 'database_role',
 my_db_role);

 end if;
 end loop;
 close capture_aq_jobs;

exception
 when others then
 begin
 raise;
 end;
end;

11.7 Using Extended Datatype Support During Replication
Extended Datatype Support (EDS) provides a mechanism for logical standbys to
support certain data types that lack native redo-based support. For example, a table
with a top-level VARRAY column can be replicated using EDS.

You can query the DBA_LOGSTDBY_EDS_SUPPORTED view to find out which tables
are candidates for EDS.

EDS-based replication works seamlessly with role transitions. For example, if EDS-
based replication is enabled between a primary database and a target logical standby
database for a table named OE.CUSTOMERS, then after a switchover or failover
operation, the OE.CUSTOMERS table continues to be replicated using the EDS
framework. This is also true when a bystander standby is present and using EDS while
replicating a table.

11.7.1 How EDS-Based Replication Works
The DBMS_LOGSTDBY PL/SQL package provides procedures that add, remove, or
change EDS. EDS-based replication works through the use of triggers, a shadow table,
and in some cases a materialized view.

The shadow table is created in the same tablespace as the target table. It contains the
data from the base table that has been transformed into a format natively supported
by logical standby. A shadow table is not partitioned, even if the target table is. A
shadow table resides in the same partition as the base table. A shadow table contains
data only through the duration of the transaction that is modifying the source table.
As a result, shadow table size is minimal and does not depend on source table size.

A DML trigger is created on the base table and on the shadow table. The triggers are
created in the SYS schema, which owns them.

The first trigger (the base trigger) fires whenever a DML operation (INSERT, UPDATE,
or DELETE) takes place. The trigger transforms unsupported data types to logical
standby supported data types and then captures the transformed row in a shadow
table along with information about the type of DML operation.

The shadow table contains only logical standby supported data types; therefore it is
replicated natively. A second trigger (the shadow trigger) fires for any DML operation
done to the shadow table by an apply process on the logical standby. The shadow
trigger transforms the data back to its original form and applies it to the target table
according to whatever DML operation was recorded with the row.

Using Extended Datatype Support During Replication

Managing a Logical Standby Database 11-29

Note:

You cannot use SQL*Loader direct path loads for EDS tables. The triggers on
EDS tables cause the load to fail. Use conventional path instead.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information
about EDS-related procedures provided in the DBMS_LOGSTDBY PL/SQL
package

11.7.2 Enabling EDS-Based Replication At a Logical Standby
The following steps provide an example of how to enable EDS-based replication. The
procedure is split between the primary and standby databases. Be sure you are on the
correct database for each step.

1. On the primary database, identify which tables are candidates for EDS support by
querying the DBA_LOGSTDBY_EDS_SUPPORTED view as follows:

SQL> SELECT * FROM DBA_LOGSTDBY_EDS_SUPPORTED;

2. On the primary database, issue calls to the DBMS_LOGSTDBY.EDS_ADD_TABLE
procedure for any table names returned from the query you just made. For
example, suppose there is a table named OE.CUSTOMERS and it has an
SDO_GEOMETRY column which excludes the table from native log-based
replication. Execute the following command which would create triggers and a
shadow table:

SQL> EXECUTE DBMS_LOGSTDBY.EDS_ADD_TABLE(table_owner =>'OE',
table_name =>'CUSTOMERS');

The primary database starts generating extra information in the redo stream.

3. On the standby database, stop SQL Apply:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;

4. On the standby database, issue the same set of calls as in Step 2 to
DBMS_LOGSTDBY.EDS_ADD_TABLE, but add a database link to the primary:

SQL> EXECUTE DBMS_LOGSTDBY.EDS_ADD_TABLE(table_owner =>'OE',
table_name =>'CUSTOMERS',p_dblink => 'dblink_to_primary');

This statement enables EDS-based replication for the source table at the logical
standby and also imports the data associated with the base table (along with all
secondary objects such as indexes and constraints) to the standby.

5. On the standby database, restart SQL Apply:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

At this point, the OE.CUSTOMERS table is being replicated by the EDS facility.

If there is more than one logical standby in the configuration, then Steps 3 - 5 must be
repeated on each one.

Using Extended Datatype Support During Replication

11-30 Concepts and Administration

11.7.3 Removing EDS-Based Replication From a Logical Standby
Use the DBMS_LOGSTDBY.EDS_REMOVE_TABLE procedure to remove EDS-based
replication for a particular table at a logical standby.

If invoked on a standby, then this procedure removes support from only that standby.

If invoked on the primary, then this procedure removes support for that table on the
primary and on all standbys. It also drops all metadata related to EDS-based
replication at the primary database. Metadata related to EDS-based replication at
logical standby databases is dropped after redo associated with the
EDS_REMOVE_TABLE procedure is processed. Only EDS-based metadata and
supporting objects are dropped; the source table remains unchanged.

You may want to remove EDS-based replication for a set of tables if you only added
the support for the duration of a rolling upgrade.

11.7.4 How EDS-Based Replication Handles Skip Rules
EDS-based replication handles skip rules as follows:

• EDS-based replication assumes that there are no DDL skip rules associated with the
source table. It is expected that DDLs done on the source tables at the primary
database are replicated using the native redo-based mechanism.

• The presence of a DML skip rule on a source table that is being replicated using
EDS does not affect EDS-based replication.

• Attempts to create EDS-based replication on a table that matches a wild card skip
rule on a schema fail, as do attempts to add a wild card skip rule that matches an
existing message table created for EDS.

11.7.5 How EDS-Based Replication Handles DDL
Because EDS-based replication relies on triggers that are generated according to a
table's definition, it is possible that DDL operations might alter the table in such a way
that the triggers are no longer valid. They must be regenerated, either automatically or
manually, according to the table's new definition.

To enable (or disable) automatic DDL handling, you must use the
DBMS_LOGSTDBY.EDS_EVOLVE_AUTOMATIC procedure. When automatic DDL
handling is enabled, an EDS-specific DDL trigger fires after every DDL operation to
determine whether the DDL in question affects the viability of EDS-based replication
of any of the tables currently enabled for EDS. If it does, then a separate EVOLVING
trigger is generated on the table which ensures that no DML operations are allowed on
the affected base table until compensating actions are taken to repair the EDS-specific
metadata. Once the compensating actions are taken, the EVOLVING trigger is
dropped, allowing DDL operations on the table to resume.

Automatic DDL handling in the presence of EDS-based replication requires a DDL
trigger that fires on all DDL operations. In some situations it may be useful to take
compensating actions manually. In such cases, you can disable automatic DDL
handling and use the DBMS_LOGSTDBY.EDS_EVOLVE_MANUAL procedure to handle
DDL.

Using Extended Datatype Support During Replication

Managing a Logical Standby Database 11-31

11.7.5.1 Enabling and Disabling Automatic DDL Handling

To enable automatic DDL handling on all EDS-maintained tables, issue the following
statement once at the primary database, prior to the first call to
DBMS_LOGSTDBY.EDS_ADD_TABLE:

EXECUTE DBMS_LOGSTDBY.EDS_EVOLVE_AUTOMATIC('ENABLE');

To disable automatic DDL handling on all EDS-maintained tables, issue the following
statement:

EXECUTE DBMS_LOGSTDBY.EDS_EVOLVE_AUTOMATIC('DISABLE');

11.7.5.2 Manually Handling DDL

To manually handle DDL operations, you must call the
DBMS_LOGSTDBY.EDS_EVOLVE_MANUAL procedure before and after a DDL operation
that may affect the base table being replicated with EDS. Take the following steps to
handle DDL operations manually:

1. Call the EDS_EVOLVE_MANUAL procedure with the START option:

EXECUTE DBMS_LOGSTDBY.EDS_EVOLVE_MANUAL('START');

2. Perform the DDL operation.

3. Call the EDS_EVOLVE_MANUAL procedure with the FINISH option:

EXECUTE DBMS_LOGSTDBY.EDS_EVOLVE_MANUAL('FINISH');

Deviating from this order could result in errors and possible data loss.

If necessary, you can cancel manual DDL handling by invoking the procedure with the
CANCEL option:

EXECUTE DBMS_LOGSTDBY.EDS_EVOLVE_MANUAL('CANCEL');

See Also:

• Oracle Database PL/SQL Packages and Types Reference for more information
about EDS-related procedures in the DBMS_LOGSTDBY package

11.8 Tuning a Logical Standby Database
This section contains the following topics:

• Create a Primary Key RELY Constraint (page 11-33)

• Gather Statistics for the Cost-Based Optimizer (page 11-34)

• Adjust the Number of Processes (page 11-34)

• Adjust the Memory Used for LCR Cache (page 11-37)

• Adjust How Transactions are Applied On the Logical Standby Database
(page 11-37)

Tuning a Logical Standby Database

11-32 Concepts and Administration

11.8.1 Create a Primary Key RELY Constraint
On the primary database, if a table does not have a primary key or a unique index and
you are certain the rows are unique, then create a primary key RELY constraint. On the
logical standby database, create an index on the columns that make up the primary
key. The following query generates a list of tables with no index information that can
be used by a logical standby database to apply to uniquely identify rows. By creating
an index on the following tables, performance can be improved significantly.

SQL> SELECT OWNER, TABLE_NAME FROM DBA_TABLES -
> WHERE OWNER NOT IN (SELECT OWNER FROM DBA_LOGSTDBY_SKIP -
> WHERE STATEMENT_OPT = 'INTERNAL SCHEMA') -
> MINUS -
> SELECT DISTINCT TABLE_OWNER, TABLE_NAME FROM DBA_INDEXES -
> WHERE INDEX_TYPE NOT LIKE ('FUNCTION-BASED%') -
> MINUS -
> SELECT OWNER, TABLE_NAME FROM DBA_LOGSTDBY_UNSUPPORTED;

You can add a rely primary key constraint to a table on the primary database, as
follows:

1. Add the primary key rely constraint at the primary database:

SQL> ALTER TABLE HR.TEST_EMPLOYEES ADD PRIMARY KEY (EMPNO) RELY DISABLE;

This ensures that the EMPNO column, which can be used to uniquely identify the
rows in HR.TEST_EMPLOYEES table, is supplementally logged as part of any
updates done on that table.

Note that the HR.TEST_EMPLOYEES table still does not have any unique index
specified on the logical standby database. This may cause UPDATE statements to do
full table scans on the logical standby database. You can remedy that by adding a
unique index on the EMPNO column on the logical standby database.See Ensure
Table Rows in the Primary Database Can Be Uniquely Identified (page 4-2) and
Oracle Database SQL Language Reference for more information about RELY
constraints.

Perform the remaining steps on the logical standby database.

2. Stop SQL Apply:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;

3. Disable the guard so that you can modify a maintained table on the logical standby
database:

SQL> ALTER SESSION DISABLE GUARD;

4. Add a unique index on EMPNO column:

SQL> CREATE UNIQUE INDEX UI_TEST_EMP ON HR.TEST_EMPLOYEES (EMPNO);

5. Enable the guard:

SQL> ALTER SESSION ENABLE GUARD;

6. Start SQL Apply:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

Tuning a Logical Standby Database

Managing a Logical Standby Database 11-33

11.8.2 Gather Statistics for the Cost-Based Optimizer
Statistics should be gathered on the standby database because the cost-based
optimizer (CBO) uses them to determine the optimal query execution path. New
statistics should be gathered after the data or structure of a schema object is modified
in ways that make the previous statistics inaccurate. For example, after inserting or
deleting a significant number of rows into a table, collect new statistics on the number
of rows.

Statistics should be gathered on the standby database because DML and DDL
operations on the primary database are executed as a function of the workload. While
the standby database is logically equivalent to the primary database, SQL Apply might
execute the workload in a different way. This is why using the STATS pack on the
logical standby database and the V$SYSSTAT view can be useful in determining which
tables are consuming the most resources and table scans.

See Also:

• Ensure Table Rows in the Primary Database Can Be Uniquely Identified
(page 4-2)

11.8.3 Adjust the Number of Processes
The following sections describe:

• Adjusting the Number of APPLIER Processes (page 11-35)

• Adjusting the Number of PREPARER Processes (page 11-35)

There are three parameters that can be modified to control the number of processes
allocated to SQL Apply: MAX_SERVERS, APPLY_SERVERS, and
PREPARE_SERVERS. The following relationships must always hold true:

• APPLY_SERVERS + PREPARE_SERVERS = MAX_SERVERS - 3

This is because SQL Apply always allocates one process for the READER, BUILDER,
and ANALYZER roles.

• By default, MAX_SERVERS is set to 9, PREPARE_SERVERS is set to 1, and
APPLY_SERVERS is set to 5.

• Oracle recommends that you only change the MAX_SERVERS parameter through
the DBMS_LOGSTDBY.APPLY_SET procedure, and allow SQL Apply to distribute
the server processes appropriately between prepare and apply processes.

• SQL Apply uses a process allocation algorithm that allocates 1 PREPARE_SERVER
for every 20 server processes allocated to SQL Apply as specified by MAX_SERVER
and limits the number of PREPARE_SERVERS to 5. Thus, if you set MAX_SERVERS
to any value between 1 and 20, SQL Apply allocates 1 server process to act as a
PREPARER, and allocates the rest of the processes as APPLIERS while satisfying the
relationship previously described. Similarly, if you set MAX_SERVERS to a value
between 21 and 40, SQL Apply allocates 2 server processes to act as PREPARERS
and the rest as APPLIERS, while satisfying the relationship previously described.
You can override this internal process allocation algorithm by setting
APPLY_SERVERS and PREPARE_SERVERS directly, provided that the previously
described relationship is satisfied.

Tuning a Logical Standby Database

11-34 Concepts and Administration

11.8.3.1 Adjusting the Number of APPLIER Processes

Perform the following steps to find out whether adjusting the number of APPLIER
processes will help you achieve greater throughput:

1. Determine if APPLIER processes are busy by issuing the following query:

SQL> SELECT COUNT(*) AS IDLE_APPLIER -
> FROM V$LOGSTDBY_PROCESS -
> WHERE TYPE = 'APPLIER' and status_code = 16116;

IDLE_APPLIER

0

2. Once you are sure there are no idle APPLIER processes, issue the following query
to ensure there is enough work available for additional APPLIER processes if you
choose to adjust the number of APPLIERS:

SELECT NAME, VALUE FROM V$LOGSTDBY_STATS WHERE NAME = 'txns applied' OR NAME =
'distinct txns in queue';

These two statistics keep a cumulative total of transactions that are ready to be
applied by the APPLIER processes and the number of transactions that have
already been applied.

If the number (distinct txns in queue - txns applied) is higher than
twice the number of APPLIER processes available, an improvement in throughput
is possible if you increase the number of APPLIER processes.

Note:

The number is a rough measure of ready work. The workload may be such
that an interdependency between ready transactions prevents additional
available APPLIER processes from applying them. For instance, if the majority
of the transactions that are ready to be applied are DDL transactions, then
adding more APPLIER processes does not result in a higher throughput.

Suppose you want to adjust the number of APPLIER processes to 20 from the
default value of 5, while keeping the number of PREPARER processes to 1. Because
you must satisfy the following equation:

APPLY_SERVERS + PREPARE_SERVERS = MAX_SERVERS - 3

you must first set MAX_SERVERS to 24. Once you have done that, you can set the
number of APPLY_SERVERS to 20, as follows:

SQL> EXECUTE DBMS_LOGSTDBY.APPLY_SET('MAX_SERVERS', 24);
SQL> EXECUTE DBMS_LOGSTDBY.APPLY_SET('APPLY_SERVERS', 20);

11.8.3.2 Adjusting the Number of PREPARER Processes

In only rare cases do you need to adjust the number of PREPARER processes. Before
you decide to increase the number of PREPARER processes, ensure the following
conditions are true:

• All PREPARER processes are busy

Tuning a Logical Standby Database

Managing a Logical Standby Database 11-35

• The number of transactions ready to be applied is less than the number of
APPLIER processes available

• There are idle APPLIER processes

The following steps show how to determine these conditions are true:

1. Ensure all PREPARER processes are busy:

SQL> SELECT COUNT(*) AS IDLE_PREPARER -
> FROM V$LOGSTDBY_PROCESS -
> WHERE TYPE = 'PREPARER' and status_code = 16116;

IDLE_PREPARER

0

2. Ensure the number of transactions ready to be applied is less than the number of
APPLIER processes:

SQL> SELECT NAME, VALUE FROM V$LOGSTDBY_STATS WHERE NAME = 'txns applied' OR - >
NAME = 'distinct txns in queue';

NAME VALUE
--------------------- -------
txns applied 27892
distinct txns in queue 12896

SQL> SELECT COUNT(*) AS APPLIER_COUNT -
> FROM V$LOGSTDBY_PROCESS WHERE TYPE = 'APPLIER';

APPLIER_COUNT

20

Note: Issue this query several times to ensure this is not a transient event.

3. Ensure there are idle APPLIER processes:

SQL> SELECT COUNT(*) AS IDLE_APPLIER -
> FROM V$LOGSTDBY_PROCESS -
> WHERE TYPE = 'APPLIER' and status_code = 16116;

IDLE_APPLIER

19

In the example, all three conditions necessary for increasing the number of PREPARER
processes have been satisfied. Suppose you want to keep the number of APPLIER
processes set to 20, and increase the number of PREPARER processes from 1 to 3.
Because you always have to satisfy the following equation:

APPLY_SERVERS + PREPARE_SERVERS = MAX_SERVERS - 3

you first need to increase the number MAX_SERVERS from 24 to 26 to accommodate
the increased number of preparers. You can then increase the number of PREPARER
processes, as follows:

SQL> EXECUTE DBMS_LOGSTDBY.APPLY_SET('MAX_SERVERS', 26);
SQL> EXECUTE DBMS_LOGSTDBY.APPLY_SET('PREPARE_SERVERS', 3);

Tuning a Logical Standby Database

11-36 Concepts and Administration

11.8.4 Adjust the Memory Used for LCR Cache
For some workloads, SQL Apply may use a large number of pageout operations,
thereby reducing the overall throughput of the system. To find out whether increasing
memory allocated to LCR cache would be beneficial, perform the following steps:

1. Issue the following query to obtain a snapshot of pageout activity:

SQL> SELECT NAME, VALUE FROM V$LOGSTDBY_STATS WHERE NAME LIKE '%page%' -
> OR NAME LIKE '%uptime%' OR NAME LIKE '%idle%';

NAME VALUE
---------------------------- --------------
coordinator uptime (seconds) 894856
bytes paged out 20000
pageout time (seconds) 2
system idle time (seconds) 1000

2. Issue the query again in 5 minutes:

SQL> SELECT NAME, VALUE FROM V$LOGSTDBY_STATS WHERE NAME LIKE '%page%' -
> OR NAME LIKE '%uptime%' OR NAME LIKE '%idle%';

NAME VALUE
---------------------------- --------------
coordinator uptime (seconds) 895156
bytes paged out 1020000
pageout time (seconds) 100
system idle time (seconds) 1000

3. Compute the normalized pageout activity. For example:

Change in coordinator uptime (C)= (895156 – 894856) = 300 secs
Amount of additional idle time (I)= (1000 – 1000) = 0
Change in time spent in pageout (P) = (100 – 2) = 98 secs
Pageout time in comparison to uptime = P/(C-I) = 98/300 ~ 32.67%

Ideally, the pageout activity should not consume more than 5 percent of the total
uptime. If you continue to take snapshots over an extended interval and you find the
pageout activities continue to consume a significant portion of the apply time,
increasing the memory size may provide some benefits. You can increase the memory
allocated to SQL Apply by setting the memory allocated to LCR cache (for this
example, the SGA is set to 1 GB):

SQL> EXECUTE DBMS_LOGSTDBY.APPLY_SET('MAX_SGA', 1024);
PL/SQL procedure successfully completed

11.8.5 Adjust How Transactions are Applied On the Logical Standby Database
By default transactions are applied on the logical standby database in the exact order
in which they were committed on the primary database. The strict default order of
committing transactions allow any application to run transparently on the logical
standby database.

However, many applications do not require such strict ordering among all
transactions. Such applications do not require transactions containing non-
overlapping sets of rows to be committed in the same order that they were committed
at the primary database. This less strict ordering typically results in higher apply rates

Tuning a Logical Standby Database

Managing a Logical Standby Database 11-37

at the logical standby database. You can change the default order of committing
transactions by performing the following steps:

1. Stop SQL Apply:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;
Database altered

2. Issue the following to allow transactions to be applied out of order from how they
were committed on the primary databases:

SQL> EXECUTE DBMS_LOGSTDBY.APPLY_SET('PRESERVE_COMMIT_ORDER', 'FALSE');
PL/SQL procedure successfully completed

3. Start SQL Apply:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;
Database altered

You can change back the apply mode as follows:

1. Stop SQL Apply:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;
Database altered

2. Restore the default value for the PRESERVE_COMMIT_ORDER parameter:

SQL> EXECUTE DBMS_LOGSTDBY.APPLY_UNSET('PRESERVE_COMMIT_ORDER');
PL/SQL procedure successfully completed

3. Start SQL Apply:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;
Database altered

For a typical online transaction processing (OLTP) workload, the nondefault mode
can provide a 50 percent or better throughput improvement over the default apply
mode.

11.9 Backup and Recovery in the Context of a Logical Standby Database
You can back up your logical standby database using the traditional methods available
and then recover it by restoring the database backup and performing media recovery
on the archived logs, in conjunction with the backup. The following items are relevant
in the context of a logical standby database.

Considerations When Creating and Using a Local RMAN Recovery Catalog

If you plan to create the RMAN recovery catalog or perform any RMAN activity that
modifies the catalog, you must be running with GUARD set to STANDBY at the logical
standby database.

You can leave GUARD set to ALL, if the local recovery catalog is kept only in the logical
standby control file.

Considerations For Control File Backup

Oracle recommends that you take a control file backup immediately after instantiating
a logical standby database.

Backup and Recovery in the Context of a Logical Standby Database

11-38 Concepts and Administration

Considerations For Point-in-Time Recovery

When SQL Apply is started for the first time following point-in-time recovery, it must
be able to either find the required archived logs on the local system or to fetch them
from the primary database. Use the V$LOGSTDBY_PROCESS view to determine if any
archived logs need to be restored on the primary database.

Considerations For Tablespace Point-in-Time Recovery

If you perform point-in-time recovery for a tablespace in a logical standby database,
you must ensure one of the following:

• The tablespace contains no tables or partitions that are being maintained by the
SQL Apply process

• If the tablespace contains tables or partitions that are being maintained by the SQL
Apply process, then either use the DBMS_LOGSTDBY.INSTANTIATE_TABLE
procedure to reinstantiate all of the maintained tables contained in the recovered
tablespace at the logical standby database, or use DBMS_LOGSTDBY.SKIP
procedure to register all tables contained in the recovered tablespace to be skipped
from the maintained table list at the logical standby database.

Backup and Recovery in the Context of a Logical Standby Database

Managing a Logical Standby Database 11-39

Backup and Recovery in the Context of a Logical Standby Database

11-40 Concepts and Administration

12
Using RMAN to Back Up and Restore Files

You can create backup strategies using Oracle Recovery Manager (RMAN) with
Oracle Data Guard and standby databases. RMAN can perform backups with minimal
effect on the primary database and quickly recover from the loss of individual data
files, or the entire database. RMAN and Oracle Data Guard can be used together to
simplify the administration of an Oracle Data Guard configuration.

See the following topics:

• About RMAN File Management in an Oracle Data Guard Configuration
(page 12-2)

• About RMAN Configuration in an Oracle Data Guard Environment (page 12-3)

• Recommended RMAN and Oracle Database Configurations (page 12-4)

• Backup Procedures (page 12-7)

• Registering and Unregistering Databases in an Oracle Data Guard Environment
(page 12-11)

• Reporting in an Oracle Data Guard Environment (page 12-11)

• Performing Backup Maintenance in an Oracle Data Guard Environment
(page 12-11)

• Recovery Scenarios in an Oracle Data Guard Environment (page 12-14)

• Additional Backup Situations (page 12-17)

• Restoring and Recovering Files Over the Network (page 12-18)

• RMAN Support for CDBs In an Oracle Data Guard Environment (page 12-19)

Note:

Because a logical standby database is not a block-for-block copy of the
primary database, you cannot use a logical standby database to back up the
primary database.

Using RMAN to Back Up and Restore Files 12-1

See Also:

• Oracle Database Backup and Recovery User's Guide for more information
about RMAN concepts and about using RMAN in an Oracle Data Guard
environment

• Oracle Database Backup and Recovery Reference for detailed information about
RMAN commands

12.1 About RMAN File Management in an Oracle Data Guard
Configuration

RMAN uses a recovery catalog to track filenames for all database files in an Oracle
Data Guard environment. A recovery catalog is a database schema used by RMAN to
store metadata about one or more Oracle databases. The catalog also records where
the online redo logs, standby redo logs, tempfiles, archived redo logs, backup sets, and
image copies are created.

12.1.1 Interchangeability of Backups in an Oracle Data Guard Environment
RMAN commands use the recovery catalog metadata to behave transparently across
different physical databases in the Oracle Data Guard environment. For example, you
can back up a tablespace on a physical standby database and restore and recover it on
the primary database. Similarly, you can back up a tablespace on a primary database
and restore and recover it on a physical standby database.

Note:

Backups of logical standby databases are not usable at the primary database.

Backups of standby control files and nonstandby control files are interchangeable. For
example, you can restore a standby control file on a primary database and a primary
control file on a physical standby database. This interchangeability means that you can
offload control file backups to one database in an Oracle Data Guard environment.
RMAN automatically updates the filenames for database files during restore and
recovery at the databases.

12.1.2 Association of Backups in an Oracle Data Guard Environment
The recovery catalog tracks the files in the Oracle Data Guard environment by
associating every database file or backup file with a DB_UNIQUE_NAME. The database
that creates a file is associated with the file. For example, if RMAN backs up the
database with the unique name of standby1, then standby1 is associated with this
backup. A backup remains associated with the database that created it unless you use
the CHANGE ... RESET DB_UNIQUE_NAME to associate the backup with a different
database.

12.1.3 Accessibility of Backups in an Oracle Data Guard Environment
The accessibility of a backup is different from its association. In an Oracle Data Guard
environment, the recovery catalog considers disk backups as accessible only to the
database with which it is associated, whereas tape backups created on one database

About RMAN File Management in an Oracle Data Guard Configuration

12-2 Concepts and Administration

are accessible to all databases. If a backup file is not associated with any database, then
the row describing it in the recovery catalog view shows null for the SITE_KEY
column. By default, RMAN associates files whose SITE_KEY is null with the target
database.

RMAN commands such as BACKUP, RESTORE, and CROSSCHECK work on any
accessible backup. For example, for a RECOVER COPY operation, RMAN considers
only image copies that are associated with the database as eligible to be recovered.
RMAN considers the incremental backups on disk and tape as eligible to recover the
image copies. In a database recovery, RMAN considers only the disk backups
associated with the database and all files on tape as eligible to be restored.

To illustrate the differences in backup accessibility, assume that databases prod and
standby1 reside on different hosts. RMAN backs up data file 1 on prod to /
prmhost/disk1/df1.dbf on the production host and also to tape. RMAN backs up
data file 1 on standby1 to /sbyhost/disk2/df1.dbf on the standby host and also
to tape. If RMAN is connected to database prod, then you cannot use RMAN
commands to perform operations with the /sbyhost/disk2/df1.dbf backup
located on the standby host. However, RMAN does consider the tape backup made on
standby1 as eligible to be restored.

Note:

You can FTP a backup from a standby host to a primary host or vice versa,
connect as TARGET to the database on this host, and then CATALOG the
backup. After a file is cataloged by the target database, the file is associated
with the target database.

12.2 About RMAN Configuration in an Oracle Data Guard Environment
In an Oracle Data Guard configuration, the process of backing up control files, data
files, and archived logs can be offloaded to the standby system, thereby minimizing
the effect of backups on the production system. These backups can be used to recover
the primary or standby database.

RMAN uses the DB_UNIQUE_NAME initialization parameter to distinguish one
database site from another database site. Thus, it is critical that the uniqueness of
DB_UNIQUE_NAME be maintained in an Oracle Data Guard configuration.

Only the primary database must be explicitly registered using the RMAN REGISTER
DATABASE command. You do this after connecting RMAN to the recovery catalog and
primary database as target.

Use the RMAN CONFIGURE command to set the RMAN configurations. When the
CONFIGURE command is used with the FOR DB_UNIQUE_NAME option, it sets the
RMAN site-specific configuration for the database with the DB_UNIQUE_NAME you
specify.

For example, after connecting to the recovery catalog, you could use the following
commands at an RMAN prompt to set the default device type to SBT for the BOSTON
database that has a DBID of 1625818158. The RMAN SET DBID command is required
only if you are not connected to a database as target.

SET DBID 1625818158;
CONFIGURE DEFAULT DEVICE TYPE TO SBT FOR DB_UNIQUE_NAME BOSTON;

About RMAN Configuration in an Oracle Data Guard Environment

Using RMAN to Back Up and Restore Files 12-3

12.3 Recommended RMAN and Oracle Database Configurations
This section describes the following RMAN and Oracle Database configurations, each
of which can simplify backup and recovery operations:

• Oracle Database Configurations on Primary and Standby Databases (page 12-4)

• RMAN Configurations at the Primary Database (page 12-5)

• RMAN Configurations at a Standby Database Where Backups are Performed
(page 12-6)

• RMAN Configurations at a Standby Where Backups Are Not Performed
(page 12-7)

Configuration Assumptions

The configurations described in this section make the following assumptions:

• The standby database is a physical standby database, and backups are taken only
on the standby database. See Standby Databases Too Geographically Distant to
Share Backups (page 12-17) for procedural changes if backups are taken on both
primary and standby databases.

• An RMAN recovery catalog is required so that backups taken on one database
server can be restored to another database server. It is not sufficient to use only the
control file as the RMAN repository because the primary database has no
knowledge of backups taken on the standby database.

The RMAN recovery catalog organizes backup histories and other recovery-related
metadata in a centralized location. The recovery catalog is configured in a database
and maintains backup metadata. A recovery catalog does not have the space
limitations of the control file and can store more historical data about backups.

A catalog server, physically separate from the primary and standby sites, is
recommended in an Oracle Data Guard configuration because a disaster at either
site will not affect the ability to recover the latest backups.

See Also:

Oracle Database Backup and Recovery User's Guide for more information about
managing a recovery catalog

• All databases in the configuration use Oracle Database 11g Release 1 (11.1) or later.

• Oracle Secure Backup software or 3rd-party media management software is
configured with RMAN to make backups to tape.

12.3.1 Oracle Database Configurations on Primary and Standby Databases
The following Oracle Database configurations are recommended on every primary
and standby database in the Oracle Data Guard environment:

• Configure a fast recovery area for each database (the recovery area is local to a
database).

Recommended RMAN and Oracle Database Configurations

12-4 Concepts and Administration

The fast recovery area is a single storage location on a file system or Oracle
Automatic Storage Management (Oracle ASM) disk group where all files needed
for recovery reside. These files include the control file, archived logs, online redo
logs, flashback logs, and RMAN backups. As new backups and archived logs are
created in the fast recovery area, older files (which are either outside of the
retention period, or have been backed up to tertiary storage) are automatically
deleted to make room for them. In addition, notifications can be set up to alert the
DBA when space consumption in the fast recovery area is nearing its predefined
limit. The DBA can then take action, such as increasing the recovery area space
limit, adding disk hardware, or decreasing the retention period.

Set the following initialization parameters to configure the fast recovery area:

DB_RECOVERY_FILE_DEST = <mount point or Oracle ASM Disk Group>
DB_RECOVERY_FILE_DEST_SIZE = <disk space quota>

See Also:

Oracle Database Backup and Recovery User's Guide for more information about
configuring a fast recovery area

• Use a server parameter file (SPFILE) so that it can be backed up to save instance
parameters in backups.

• Enable Flashback Database on primary and standby databases.

When Flashback Database is enabled, Oracle Database maintains flashback logs in
the fast recovery area. These logs can be used to roll the database back to an earlier
point in time, without requiring a complete restore.

See Also:

Oracle Database Backup and Recovery User's Guide for more information about
enabling Flashback Database

12.3.2 RMAN Configurations at the Primary Database
To simplify ongoing use of RMAN, you can set a number of persistent configuration
settings for each database in the Oracle Data Guard environment. These settings
control many aspects of RMAN behavior. For example, you can configure the backup
retention policy, default destinations for backups to tape or disk, default backup
device type, and so on. You can use the CONFIGURE command to set and change
RMAN configurations. The following RMAN configurations are recommended at the
primary database:

1. Connect RMAN to the primary database and recovery catalog.

2. Configure the retention policy for the database as n days:

CONFIGURE RETENTION POLICY TO RECOVERY WINDOW OF <n> DAYS;

This configuration lets you keep the backups necessary to perform database
recovery to any point in time within the specified number of days.

Use the DELETE OBSOLETE command to delete any backups that are not required
(per the retention policy in place) to perform recovery within the specified number
of days.

Recommended RMAN and Oracle Database Configurations

Using RMAN to Back Up and Restore Files 12-5

3. Specify when archived logs can be deleted with the CONFIGURE ARCHIVELOG
DELETION POLICY command. For example, to delete logs after ensuring that they
shipped to all destinations, use the following configuration:

CONFIGURE ARCHIVELOG DELETION POLICY TO SHIPPED TO ALL STANDBY;

To delete logs after ensuring that they were applied on all standby destinations, use
the following configuration:

CONFIGURE ARCHIVELOG DELETION POLICY TO APPLIED ON ALL STANDBY;

4. Configure the connect string for the primary database and all standby databases, so
that RMAN can connect remotely and perform resynchronization when the
RESYNC CATALOG FROM DB_UNIQUE_NAME command is used. When you
connect to the target instance, you must provide a net service name. This
requirement applies even if the other database instance from where the
resynchronization is done is on the local host. The target and remote instances must
use the same SYSDBA (or SYSBACKUP) password, which means that both instances
must already have password files. You can create the password file with a single
password so you can start all the database instances with that password file. For
example, if the TNS alias to connect to a standby in Boston is boston_conn_str,
you can use the following command to configure the connect identifier for the
BOSTON database site:

CONFIGURE DB_UNIQUE_NAME BOSTON CONNECT IDENTIFIER 'boston_conn_str';

Note that the 'boston_conn_str' does not include a username and password. It
contains only the Oracle Net service name that can be used from any database site
to connect to the BOSTON database site.

After connect identifiers are configured for all standby databases, you can verify
the list of standbys by using the LIST DB_UNIQUE_NAME OF DATABASE
command.

See Also:

• Oracle Database Backup and Recovery User's Guide for more information
about RMAN configurations

• Oracle Database Backup and Recovery Reference for more information about
the RMAN CONFIGURE command

12.3.3 RMAN Configurations at a Standby Database Where Backups are Performed
The following RMAN configurations are recommended at a standby database where
backups are done:

1. Connect RMAN to the standby database (where backups are performed) as target,
and to the recovery catalog.

2. Enable automatic backup of the control file and the server parameter file:

CONFIGURE CONTROLFILE AUTOBACKUP ON;

3. Skip backing up data files for which there already exists a valid backup with the
same checkpoint:

Recommended RMAN and Oracle Database Configurations

12-6 Concepts and Administration

CONFIGURE BACKUP OPTIMIZATION ON;

4. Configure the tape channels to create backups as required by media management
software:

CONFIGURE CHANNEL DEVICE TYPE SBT PARMS '<channel parameters>';

5. Because the archived logs are backed up at the standby database, Oracle
recommends that you configure the BACKED UP option for the log deletion policy:

CONFIGURE ARCHIVELOG DELETION POLICY BACKED UP n TIMES TO DEVICE TYPE SBT;

See Also:

Oracle Database Backup and Recovery User's Guide for more information about
enabling deletion policies for archived redo logs

12.3.4 RMAN Configurations at a Standby Where Backups Are Not Performed
The following RMAN configurations are recommended at a standby database where
backups are not done:

1. Connect RMAN to the standby database as target, and to the recovery catalog.

2. Enable automatic deletion of archived logs once they are applied at the standby
database (this is also applicable to all terminal databases when the cascading or far
sync instance features are in use):

CONFIGURE ARCHIVELOG DELETION POLICY TO APPLIED ON ALL STANDBY;

12.4 Backup Procedures
This section describes the RMAN scripts and procedures used to back up Oracle
Database in an Oracle Data Guard configuration. The following topics are covered:

• Using Disk as Cache for Tape Backups (page 12-8)

• Performing Backups Directly to Tape (page 12-9)

Note:

Oracle's Maximum Availability Architecture (MAA) best practices
recommend that backups be taken at both the primary and the standby
databases to reduce MTTR, in case of double outages and to avoid introducing
new site practices upon switchover and failover.

Backups of Server Parameter Files

All backup operations can be offloaded to a single standby database, except backups
of the SPFILE. Backups of the SPFILE can only be restored to the database from which
they were backed up.

For databases that are not backed up, Oracle recommends that you at least back up the
SPFILE to a known local disk location. If the SPFILE backups need to be further
backed up to tape, you can copy them to the database site where backups to tape have

Backup Procedures

Using RMAN to Back Up and Restore Files 12-7

been configured. The SPFILE backups can then be cataloged at that database using the
following RMAN command:

CATALOG START WITH '<SPFILE backup directory>';

Then back up the SPFILE backups to tape:

BACKUP BACKUPSET ALL;

When the SPFILE needs to be restored for a specific database, the appropriate SPFILE
backup is restored from disk or tape.

12.4.1 Using Disk as Cache for Tape Backups
The fast recovery area on the standby database can serve as a disk cache for tape
backup. Disk is used as the primary storage for backups, with tape providing long
term, archival storage. Incremental tape backups are taken daily and full tape backups
are taken weekly. The commands used to perform these backups are described in the
following sections.

12.4.1.1 Commands for Daily Tape Backups Using Disk as Cache

When deciding on your backup strategy, Oracle recommends that you take advantage
of daily incremental backups. Data file image copies can be rolled forward with the
latest incremental backups, thereby providing up-to-date data file image copies at all
times. RMAN uses the resulting image copy for media recovery just as it would use a
full image copy taken at that system change number (SCN), without the overhead of
performing a full image copy of the database every day. An additional advantage is
that the time-to-recover is reduced because the image copy is updated with the latest
block changes and fewer redo logs are required to bring the database back to the
current state.

To implement daily incremental backups, a full database backup is taken on the first
day, followed by an incremental backup on day two. Archived redo logs can be used
to recover the database to any point in either day. For day three and onward, the
previous day's incremental backup is merged with the data file copy and a current
incremental backup is taken, allowing fast recovery to any point within the last day.
Redo logs can be used to recover the database to any point during the current day.

The script to perform daily backups looks as follows (the last line, DELETE
ARCHIVELOG ALL is only needed if the fast recovery area is not used to store logs):

RESYNC CATALOG FROM DB_UNIQUE_NAME ALL;
RECOVER COPY OF DATABASE WITH TAG 'OSS';
BACKUP DEVICE TYPE DISK INCREMENTAL LEVEL 1 FOR RECOVER OF COPY WITH TAG 'OSS'
DATABASE;
BACKUP DEVICE TYPE SBT ARCHIVELOG ALL;
BACKUP BACKUPSET ALL;
DELETE ARCHIVELOG ALL;

The standby control file is automatically backed up at the conclusion of the backup
operation because the control file auto backup is enabled.

Explanations for what each command in the script does are as follows:

• RESYNC CATALOG FROM DB_UNIQUE_NAME ALL

Resynchronizes the information from all other database sites (primary and other
standby databases) in the Oracle Data Guard setup that are known to recovery
catalog. For RESYNC CATALOG FROM DB_UNIQUE_NAME to work, RMAN must

Backup Procedures

12-8 Concepts and Administration

be connected to the target using the Oracle Net service name and all databases
must use the same password file.

• RECOVER COPY OF DATABASE WITH TAG 'OSS'

Rolls forward level 0 copy of the database by applying the level 1 incremental
backup taken the day before. In the example script just shown, the previous day's
incremental level 1 was tagged OSS. This incremental is generated by the BACKUP
DEVICE TYPE DISK ... DATABASE command. On the first day this command
is run there is no roll forward because there is no incremental level 1 yet. A level 0
incremental is created by the BACKUP DEVICE TYPE DISK ... DATABASE
command. Again on the second day there is no roll forward because there is only a
level 0 incremental. A level 1 incremental tagged OSS is created by the BACKUP
DEVICE TYPE DISK ... DATABASE command. On the third and following
days, the roll forward is performed using the level 1 incremental tagged OSS
created on the previous day.

• BACKUP DEVICE TYPE DISK INCREMENTAL LEVEL 1 FOR RECOVER OF
COPY WITH TAG 'OSS' DATABASE

Create a new level 1 incremental backup. On the first day this command is run, this
is a level 0 incremental. On the second and following days, this is a level 1
incremental.

• BACKUP DEVICE TYPE SBT ARCHIVELOG ALL

Backs up archived logs to tape according to the deletion policy in place.

• BACKUP BACKUPSET ALL

Backs up any backup sets created as a result of incremental backup creation.

• DELETE ARCHIVELOG ALL

Deletes archived logs according to the log deletion policy set by the CONFIGURE
ARCHIVELOG DELETION POLICY command. If the archived logs are in a fast
recovery area, then they are automatically deleted when more open disk space is
required. Therefore, you only need to use this command if you explicitly want to
delete logs each day.

12.4.1.2 Commands for Weekly Tape Backups Using Disk as Cache

To back up all recovery-related files to tape, use the following command once a week:

BACKUP RECOVERY FILES;

This ensures that all current incremental, image copy, and archived log backups on
disk are backed up to tape.

12.4.2 Performing Backups Directly to Tape
Oracle's Media Management Layer (MML) API lets third-party vendors build a media
manager, software that works with RMAN and the vendor's hardware to allow
backups to sequential media devices such as tape drives. A media manager handles
loading, unloading, and labeling of sequential media such as tapes. You must install
Oracle Secure Backup or third-party media management software to use RMAN with
sequential media devices.

Take the following steps to perform backups directly to tape, by default:

Backup Procedures

Using RMAN to Back Up and Restore Files 12-9

1. Connect RMAN to the standby database (as the target database) and recovery
catalog.

2. Execute the CONFIGURE command as follows:

CONFIGURE DEFAULT DEVICE TYPE TO SBT;

In this scenario, full backups are taken weekly, with incremental backups taken daily
on the standby database.

See Also:

Oracle Database Backup and Recovery User's Guide for more information about
how to configure RMAN for use with a media manager

12.4.2.1 Commands for Daily Backups Directly to Tape

Take the following steps to perform daily backups directly to tape:

1. Connect RMAN to the standby database (as target database) and to the recovery
manager.

2. Execute the following RMAN commands:

RESYNC CATALOG FROM DB_UNIQUE_NAME ALL;
BACKUP AS BACKUPSET INCREMENTAL LEVEL 1 DATABASE PLUS ARCHIVELOG;
DELETE ARCHIVELOG ALL;

These commands resynchronize the information from all other databases in the Oracle
Data Guard environment. They also create a level 1 incremental backup of the
database, including all archived logs. On the first day this script is run, if no level 0
backups are found, then a level 0 backup is created.

The DELETE ARCHIVELOG ALL command is necessary only if all archived log files
are not in a fast recovery area.

12.4.2.2 Commands for Weekly Backups Directly to Tape

One day a week, take the following steps to perform a weekly backup directly to tape:

1. Connect RMAN to the standby database (as target database) and to the recovery
catalog.

2. Execute the following RMAN commands:

RESYNC CATALOG FROM DB_UNIQUE_NAME ALL;
BACKUP AS BACKUPSET INCREMENTAL LEVEL 0 DATABASE PLUS ARCHIVELOG;
DELETE ARCHIVELOG ALL;

These commands resynchronize the information from all other databases in the Oracle
Data Guard environment, and create a level 0 database backup that includes all
archived logs.

The DELETE ARCHIVELOG ALL command is necessary only if all archived log files
are not in a fast recovery area.

Backup Procedures

12-10 Concepts and Administration

12.5 Registering and Unregistering Databases in an Oracle Data Guard
Environment

Only the primary database must be explicitly registered using the REGISTER
DATABASE command. You do this after connecting RMAN to the recovery catalog and
primary database as TARGET.

A new standby is automatically registered in the recovery catalog when you connect
to a standby database or when the CONFIGURE DB_UNIQUE_NAME command is used
to configure the connect identifier.

To unregister information about a specific standby database, you can use the
UNREGISTER DB_UNIQUE_NAME command. When a standby database is completely
removed from an Oracle Data Guard environment, the database information in the
recovery catalog can also be removed after you connect to another database in the
same Oracle Data Guard environment. The backups that were associated with the
database that was unregistered are still usable by other databases. You can associate
these backups with any other existing database by using the CHANGE BACKUP RESET
DB_UNIQUE_NAME command.

When the UNREGISTER DB_UNIQUE_NAME command is used with the INCLUDING
BACKUPS option, the metadata for all the backup files associated with the database
being unregistered is also unregistered from the recovery catalog.

12.6 Reporting in an Oracle Data Guard Environment
Use the RMAN LIST, REPORT, and SHOW commands with the FOR
DB_UNIQUE_NAME clause to view information about a specific database.

For example, after connecting to the recovery catalog, you could use the following
commands to display information for a database with a DBID of 1625818158 and to list
the database in the Oracle Data Guard environment. The SET DBID command is
required only if you are not connected to a database as TARGET. The last three
commands list archive logs, database file names, and RMAN configuration
information for a database with a DB_UNIQUE_NAME of BOSTON.

SET DBID 1625818158;
LIST DB_UNIQUE_NAME OF DATABASE;
LIST ARCHIVELOG ALL FOR DB_UNIQUE_NAME BOSTON;
REPORT SCHEMA FOR DB_UNIQUE_NAME BOSTON;
SHOW ALL FOR DB_UNIQUE_NAME BOSTON;

12.7 Performing Backup Maintenance in an Oracle Data Guard
Environment

The files in an Oracle Data Guard environment (data files, archived logs, backup
pieces, image copies, and proxy copies) are associated with a database through use of
the DB_UNIQUE_NAME parameter. Therefore, it is important that the value supplied
for DB_UNIQUE_NAME be unique for each database in an Oracle Data Guard
environment. This information, along with file-sharing attributes, is used to determine
which files can be accessed during various RMAN operations.

File sharing attributes state that files on disk are accessible only at the database with
which they are associated, whereas all files on tape are assumed to be accessible by all
databases. RMAN commands such as BACKUP and RESTORE, as well as other
maintenance commands, work according to this assumption. For example, during a

Registering and Unregistering Databases in an Oracle Data Guard Environment

Using RMAN to Back Up and Restore Files 12-11

roll-forward operation of an image copy at a database, only image copies associated
with the database are rolled forward. The incremental backups on disk associated with
that database and any incremental backups on tape are used to roll forward the image
copies. Similarly, during recovery operations, only disk backups associated with the
database and files on tape are considered as sources for backups.

See Also:

Oracle Database Backup and Recovery Reference for detailed information about
RMAN commands

12.7.1 Changing Metadata in the Recovery Catalog
The following list describes ways in which you can use the RMAN CHANGE command
with various operands to change metadata in the recovery catalog.

• Changing File Association From One Standby Database to Another

Use the CHANGE command with the RESET DB_UNIQUE_NAME option to alter the
association of files from one database to another within an Oracle Data Guard
environment. The CHANGE command is useful when disk backups or archived logs
are transferred from one database to another and you want to use them on the
database to which they were transferred. The CHANGE command can also change
the association of a file from one database to another database, without having to
directly connect to either database using the FOR DB_UNIQUE_NAME and RESET
DB_UNIQUE_NAME TO options.

• Changing the DB_UNIQUE_NAME Initialization Parameter for a Database

If the value of the DB_UNIQUE_NAME initialization parameter changes for a
database, then the same change must be made in the Oracle Data Guard
environment. The RMAN recovery catalog, after connecting to that database
instance, knows both the old and new value for DB_UNIQUE_NAME. To merge the
information for the old and new values within the recovery catalog schema, you
must use the RMAN CHANGE DB_UNIQUE_NAME command. If the value of the
DB_UNIQUE_NAME initialization parameter changes for a database, the same
change must be made in RMAN so that it is aware of the new DB_UNIQUE_NAME.
For example, perform the following steps to change the database with
DB_UNIQUE_NAME of BOSTON_A to BOSTON_B:

1. In the initialization parameter file or SQL, change the DB_UNIQUE_NAME
initialization parameter from BOSTON_A to BOSTON_B.

2. In RMAN, connect to any database in the Oracle Data Guard environment as
target database and connect to the recovery catalog. Then execute the CHANGE
command:

CHANGE DB_UNIQUE_NAME FROM BOSTON_A TO BOSTON_B;

• Making Backups Unavailable or Removing Their Metadata

Use CHANGE command options such as AVAILABLE, UNAVAILABLE, KEEP, and
UNCATALOG to make backups available or unavailable for restore and recovery
purposes, and to keep or remove their metadata.

Performing Backup Maintenance in an Oracle Data Guard Environment

12-12 Concepts and Administration

See Also:

Oracle Database Backup and Recovery Reference for more information about the
RMAN CHANGE command

12.7.2 Deleting Archived Logs or Backups
Use the DELETE command to delete backup sets, image copies, archived logs, or proxy
copies. To delete only files that are associated with a specific database, you must use
the FOR DB_UNIQUE_NAME option with the DELETE command.

File metadata is deleted for all successfully deleted files associated with the current
target database (or for files that are not associated with any known database). If a file
could not be successfully deleted, you can use the FORCE option to remove the file's
metadata.

When a file associated with another database is deleted successfully, its metadata in
the recovery catalog is also deleted. Any files that are associated with other databases,
and that could not be successfully deleted, are listed at the completion of the DELETE
command, along with instructions for you to perform the same operation at the
database with which the files are associated (files are grouped by database). The
FORCE option cannot be used to override this behavior. If you are certain that deleting
the metadata for the non-deletable files will not cause problems, you can use the
CHANGE RESET DB_UNIQUE_NAME command to change the metadata for association
of files with the database and use the DELETE command with the FORCE option to
delete the metadata for the file.

See Also:

Oracle Database Backup and Recovery Reference for more information about the
RMAN DELETE command

12.7.3 Validating Recovery Catalog Metadata
Use the CROSSCHECK command to validate and update file status in the recovery
catalog schema.

Metadata for all files associated with the current target database (or for any files that
are not associated with any database), is marked AVAILABLE or EXPIRED according
to the results of the CROSSCHECK operation.

If a file associated with another database is successfully inspected, its metadata in the
recovery catalog is also changed to AVAILABLE. Any files that are associated with
other databases, and that could not be inspected successfully, are listed at the
completion of the CROSSCHECK command, along with instructions for you to perform
the same operation at the database with which the files are associated (files are
grouped by site). If you are certain of the configuration and still want to change status
metadata for unavailable files, you can use the CHANGE RESET DB_UNIQUE_NAME
command to change metadata for association of files with the database and execute
the CROSSCHECK command to update status metadata to EXPIRED.

Performing Backup Maintenance in an Oracle Data Guard Environment

Using RMAN to Back Up and Restore Files 12-13

See Also:

Oracle Database Backup and Recovery Reference for more information about the
RMAN CROSSCHECK command

12.8 Recovery Scenarios in an Oracle Data Guard Environment
The following recovery scenarios are described in this section:

• Recovery from Loss of Files on the Primary or Standby Database (page 12-14)

• Recovery from Loss of Online Redo Log Files (page 12-14)

• Incomplete Recovery of the Primary Database (page 12-15)

• Actions Needed on Standby After TSPITR or Tablespace Plugin at Primary
(page 12-16)

12.8.1 Recovery from Loss of Files on the Primary or Standby Database
You can restore and recover files over the network by connecting to a physical standby
database that contains the required files. This can be useful when you want to restore
lost data files, control files, or tablespaces on a primary database using the
corresponding files on the physical standby database. You can also use the same
process to restore files on a physical standby database by using the primary database.

For an example of how to restore and recover files by connecting over the network, see
Oracle Database Backup and Recovery User's Guide.

Note:

In releases prior to Oracle Database 12c, to recover from loss of files on the
primary, you used the RMAN recovery catalog, and the RMAN BACKUP,
CATALOG DATAFILE, and SWITCH DATAFILE commands. To recover from
loss of files on the standby, you used the RESTORE and RECOVER commands.
Those methods are no longer necessary as of Oracle Database 12c. If you need
information about using them, refer to Oracle Database 11g documentation.

See Also:

• Oracle Database Backup and Recovery User's Guide for more information
about using RMAN to restore and recover files over the network

12.8.2 Recovery from Loss of Online Redo Log Files
If all online log members for the current ACTIVE group or for an inactive group which
has not yet been archived are lost, then you must fail over to the standby database.
Refer to Role Transitions (page 9-1) for the failover procedure.

For information about how to recover from the loss of online redo log files in other
circumstances, see Oracle Database Backup and Recovery User's Guide.

Recovery Scenarios in an Oracle Data Guard Environment

12-14 Concepts and Administration

12.8.3 Incomplete Recovery of the Primary Database
Incomplete recovery of the primary database is normally done in cases such as when
the database is logically corrupted (by a user or an application) or when a tablespace
or data file was accidentally dropped from database.

Depending on the current database checkpoint SCN on the standby database
instances, you can use one of the following procedures to perform incomplete
recovery of the primary database. All the procedures are in order of preference,
starting with the one that is the least time consuming.

Using Flashback Database

Using Flashback Database is the recommended procedure when the Flashback
Database feature is enabled on the primary database, none of the database files are
lost, and the point-in-time recovery is greater than the oldest flashback SCN or the
oldest flashback time. See Using Flashback Database After Issuing an Open Resetlogs
Statement (page 15-7) for the procedure to use Flashback Database to do point-in-
time recovery.

Using the standby database instance

This is the recommended procedure when the standby database is behind the desired
incomplete recovery time, and Flashback Database is not enabled on the primary or
standby databases:

1. Recover the standby database to the desired point in time. Be sure to stop the
managed redo process (MRP) before issuing the following command:

RECOVER DATABASE UNTIL TIME 'time';

Alternatively, incomplete recovery time can be specified using the SCN or log
sequence number:

RECOVER DATABASE UNTIL SCN incomplete recovery SCN';
RECOVER DATABASE UNTIL LOGSEQ incomplete recovery log sequence number THREAD
thread number;

2. Open the standby database in read-only mode to verify the state of database.

If the state is not what is desired, use the LogMiner utility to look at the archived
redo log files to find the right target time or SCN for incomplete recovery.
Alternatively, you can start by recovering the standby database to a point that you
know is before the target time, and then open the database in read-only mode to
examine the state of the data. Repeat this process until the state of the database is
verified to be correct. If you recover the database too far (past the SCN where the
error occurred) you cannot return it to an earlier SCN.

3. Activate the standby database using the SQL ALTER DATABASE ACTIVATE
STANDBY DATABASE statement. This converts the standby database to a primary
database, creates a new resetlogs branch, and opens the database. See Recovering
Through the OPEN RESETLOGS Statement (page 10-20) to learn how the standby
database reacts to the new reset logs branch.

Recovery Scenarios in an Oracle Data Guard Environment

Using RMAN to Back Up and Restore Files 12-15

Using the primary database instance

If all of the standby database instances have already been recovered past the desired
point in time and Flashback Database is not enabled on the primary or standby
database, then this is your only option.

Use the following procedure to perform incomplete recovery on the primary database:

1. Use LogMiner or another means to identify the time or SCN at which all the data in
the database is known to be good.

2. Using the time or SCN, issue the following RMAN commands to do incomplete
database recovery and open the database with the RESETLOGS option (after
connecting to catalog database and primary instance that is in MOUNT state):

RUN
{
SET UNTIL TIME 'time';
RESTORE DATABASE;
RECOVER DATABASE;
}
ALTER DATABASE OPEN RESETLOGS;

After this process, all standby database instances must be reestablished in the Oracle
Data Guard configuration.

12.8.4 Actions Needed on Standby After TSPITR or Tablespace Plugin at Primary
After an RMAN tablespace point-in-time recovery (TSPITR) is performed at the
primary, the recovered data files have a new system change number (SCN), and are
therefore treated like new data files at the primary. These data files cannot be
automatically created at the standby.

Likewise, when a new plugged in tablespace is added to the primary database, the
data files are treated like new data files at the primary.

The managed redo process (MRP) at the standby stops when the Redo Apply process
encounters creation of these new files. The required new data files must be copied and
restored to the standby. You can do this using either backups or a direct copy from the
primary. For example, to copy all files that belong to a tablespace that has undergone
an RMAN TSPITR, you can use the following RMAN command:

RMAN> RESTORE TABLESPACE <tbs_name1, tbs_name2> FROM SERVICE <tnsalias-of-primary>

The number of disk channels allocated is per RMAN configurations. So, if CONFIGURE
DEVICE TYPE DISK PARALLELISM 4 is executed, then 4 disk channels are used to
pull the files from the primary database.

When the new data files are available at the standby, restart the MRP to continue
applying the logs.

See Also:

• Oracle Database Backup and Recovery User's Guide for more information
about RMAN TSPITR

Recovery Scenarios in an Oracle Data Guard Environment

12-16 Concepts and Administration

12.9 Additional Backup Situations
The following sections describe how to modify the backup procedures for other
configurations, such as when the standby and primary databases cannot share backup
files; the standby instance is only used to remotely archive redo log files; or the
standby database filenames are different than the primary database.

12.9.1 Standby Databases Too Geographically Distant to Share Backups
If the standby databases are far apart from one another, the backups taken on them
may not be easily accessible by the primary system or other standby systems. Perform
a complete backup of the database on all systems to perform recovery operations. The
fast recovery area can reside locally on the primary and standby systems; it does not
have to be the same for the primary and standby databases.

In this scenario, you can still use the general strategies described in Recovery
Scenarios in an Oracle Data Guard Environment (page 12-14), with the following
exceptions:

• Backup files created by RMAN must be tagged with the local system name, and
with RESTORE operations that tag must be used to restrict RMAN from selecting
backups taken on the same host. In other words, the BACKUP command must use
the TAG system name option when creating backups; the RESTORE command must
use the FROM TAG system name option; and the RECOVER command must use the
FROM TAG system name ARCHIVELOG TAG system name option.

• Disaster recovery of the standby site:

1. Start the standby instance in the NOMOUNT state using the same parameter files
with which the standby was operating earlier.

2. Create a standby control file on the primary instance using the SQL ALTER
DATABASE CREATE STANDBY CONTROLFILE AS filename statement, and use
the created control file to mount the standby instance.

3. Issue the following RMAN commands to restore and recover the database files:

RESTORE DATABASE FROM TAG 'system name';
RECOVER DATABASE FROM TAG 'system name' ARCHIVELOG TAG 'system name';

4. Restart Redo Apply.

The standby instance fetches the remaining archived redo log files.

12.9.2 Standby Database Does Not Contain Data Files, Used as a FAL Server
Use the same procedure described in Backup Procedures (page 12-7), with the
exception that the RMAN commands that back up database files cannot be run against
the FAL server. The FAL server can be used as a backup source for all archived redo
log files, thus off-loading backups of archived redo log files to the FAL server.

Additional Backup Situations

Using RMAN to Back Up and Restore Files 12-17

12.9.3 Standby Database File Names Are Different From Primary Database

Note:

As of Oracle Database 11g, the recovery catalog can resynchronize the file
names from each standby database site. However, if the file names from a
standby database were never resynchronized for some reason, then you can
use the procedure described in this section to do so.

If the database filenames are not the same on the primary and standby databases that
were never resynchronized, then the RESTORE and RECOVER commands you use are
slightly different. To obtain the actual data file names on the standby database, query
the V$DATAFILE view and specify the SET NEWNAME option for all the data files in
the database:

RUN
{
SET NEWNAME FOR DATAFILE 1 TO 'existing file location for file#1 from V$DATAFILE';
SET NEWNAME FOR DATAFILE 2 TO 'existing file location for file#2 from V$DATAFILE';
…
…
 SET NEWNAME FOR DATAFILE n TO 'existing file location for file#n from V$DATAFILE';
 RESTORE {DATAFILE <n,m,…> | TABLESPACE tbs_name_1, 2, …| DATABASE;
SWITCH DATAFILE ALL;
RECOVER DATABASE {NOREDO};
}

Similarly, you use the SET NEWNAME option of the RMAN DUPLICATE command to
specify new filenames during standby database creation. Or you could set the
LOG_FILE_NAME_CONVERT and DB_FILE_NAME_CONVERT parameters.

See Also:

Creating a Standby Database That Uses OMF or Oracle ASM (page 15-12) for
information about precedence rules when both the DB_FILE_NAME_CONVERT
and DB_CREATE_FILE_DEST parameters are set on the standby

12.10 Restoring and Recovering Files Over the Network
As of Oracle Database 12c, RMAN lets you restore or recover files by connecting, over
the network, to a physical standby database that contains the required files. You can
restore an entire database, data files, control files, spfile, or tablespaces. Restoring files
over the network is very useful in scenarios where you need to synchronize the
primary and standby databases.

RMAN restores database files, over the network, from a physical standby database by
using the FROM SERVICE clause of the RESTORE command. The FROM SERVICE clause
provides the service name of the physical standby database from which the files must
be restored. During the restore operation, RMAN creates backup sets, on the physical
standby database, of the files that need to be restored and then transfers these backup
sets to the target database over the network.

Restoring and Recovering Files Over the Network

12-18 Concepts and Administration

Note:

In releases prior to Oracle Database 12c, to restore and recover files over the
network, you used the RMAN BACKUP INCREMENTAL FROM SCN command
to create a backup on the primary database that started at the current SCN of
the standby, and was then used to roll the standby database forward in time.
That manual, multi-step method is not necessary as of Oracle Database 12c. If
you need information about using that method, refer to Oracle Database 11g
documentation.

See Also:

• Oracle Database Backup and Recovery User's Guide for more information
about using RMAN to restore and recover files over the network

• My Oracle Support note 2005729.1 at http://support.oracle.com for
information about reducing transportable tablespace downtime using
cross-platform incremental backups.

12.11 RMAN Support for CDBs In an Oracle Data Guard Environment
In addition to supporting complete database recovery and complete data file recovery
at a standby, RMAN supports point-in-time recovery (PITR) of a multitenant container
database (CDB) at a standby. (Individual pluggable databases (PDBs) do not have
their own individual standbys.)

To perform a CDB PITR at a standby, connect to the CDB as root and issue the RMAN
BACKUP, RESTORE, and RECOVER commands as necessary.

Be aware that when a CDB PITR is performed on a standby, any pluggable databases
(PDBs) that were in a disabled state before the CDB PITR become enabled. To return a
PDB to a disabled state, connect to it, ensure it is closed (the OPEN_MODE column in the
V$PDBS view shows a value of MOUNTED), and then execute the SQL statement ALTER
PLUGGABLE DATABASE DISABLE RECOVERY.

The ALTER PLUGGABLE DATABASE DISABLE RECOVERY statement takes all data files
belonging to the PDB offline and disables recovery for the PDB. The data files that
belong to the PDB are not part of any recovery session until the PDB is enabled again.
Any new data files created while recovery is disabled are created as unnamed files and
are marked offline.

To bring all data files that belong to a PDB back online and enable it for recovery,
connect to it, ensure it is closed (the OPEN_MODE column in the V$PDBS view shows a
value of MOUNTED), and issue the SQL statement ALTER PLUGGABLE DATABASE
ENABLE RECOVERY.

To check whether recovery is enabled or disabled on a PDB, query the V$PDBS view
as follows:

SQL> SELECT RECOVERY_STATUS FROM V$PDBS;

Flashing Back a PDB

As of Oracle Database 12c Release 2 (12.2.0.1), you can use the FLASHBACK
PLUGGABLE DATABASE command (available through SQL or Recovery Manager) to
perform a flashback operation on a specific PDB. You can flashback to a specific

RMAN Support for CDBs In an Oracle Data Guard Environment

Using RMAN to Back Up and Restore Files 12-19

http://support.oracle.com

restore point — an alias for system change number (SCN)— in the past without
affecting other PDBs in a CDB. (Performing such an operation on a PDB is analogous
to FLASHBACK DATABASE in a non-CDB.)

You can also flashback a PDB on a standby. In effect, flashing back a PDB on a standby
rewinds the data files for the PDB to a previous point in time, as if restoring a backup
of the PDB. Flashing back a PDB on a standby allows the standby to quickly follow the
primary after you perform a PDB PITR/flashback operation on the primary, as
described in Actions Needed On a Standby After a PDB PITR On a Primary
(page 15-22).

Note:

Files that are brought online or offline as a result of an ALTER PLUGGABLE
DATABASE [ENABLE | DISABLE] operation remain in that state even if you
flashback the database to a point before the operation was performed.

See Also:

• Actions Needed On a Standby After a PDB PITR On a Primary
(page 15-22) for information about actions needed on a standby after a
PDB PITR on a primary

• Actions Needed on Standby After TSPITR or Tablespace Plugin at Primary
(page 12-16) for information about actions needed on a standby after
TSPITR or tablespace plugin at the primary

RMAN Support for CDBs In an Oracle Data Guard Environment

12-20 Concepts and Administration

13
Using SQL Apply to Upgrade the Oracle

Database

You can use a logical standby database to perform a rolling upgrade of Oracle Database
software. During a rolling upgrade, you can run different releases of Oracle Database
on the primary and logical standby databases while you upgrade them, one at a time,
incurring minimal downtime on the primary database.

For databases originating with the first patch set of Oracle Database 12c Release 1
(12.1), the preferred method for performing a rolling upgrade with an existing
physical standby database is to use the DBMS_ROLLING PL/SQL package, as
described in Using DBMS_ROLLING to Perform a Rolling Upgrade (page 14-1).

The following topics describe how to minimize downtime while upgrading an Oracle
database:

• Benefits of a Rolling Upgrade Using SQL Apply (page 13-1)

• Requirements to Perform a Rolling Upgrade Using SQL Apply (page 13-2)

• Figures and Conventions Used in the Upgrade Instructions (page 13-2)

• Performing a Rolling Upgrade By Creating a New Logical Standby Database
(page 13-3)

• Performing a Rolling Upgrade With an Existing Logical Standby Database
(page 13-4)

• Performing a Rolling Upgrade With an Existing Physical Standby Database
(page 13-10)

Note:

These topics describe an alternative to the usual upgrade procedure involving
longer downtime, as described in Upgrading and Downgrading Databases in
an Oracle Data Guard Configuration (page B-1). Do not attempt to combine
steps from the two procedures.

13.1 Benefits of a Rolling Upgrade Using SQL Apply
Performing a rolling upgrade with SQL Apply has the following advantages:

• Your production database incurs very little downtime. The overall downtime can
be as little as the time it takes to perform a switchover.

• You eliminate application downtime due to PL/SQL recompilation.

Using SQL Apply to Upgrade the Oracle Database 13-1

• You can validate the upgraded database release without affecting the primary
database.

• A logical standby accepts archived logs while the upgrade is taking place, which
provides an added level of disaster protection.

Note:

• As of Oracle Database 12c Release 1 (12.1), Oracle XML DB Repository
supports Oracle Data Guard rolling upgrades. See Oracle XML DB
Developer's Guide for more information about considerations and
restrictions to keep in mind with regard to this support.

• As of Oracle Database 12c Release 1 (12.1), you can upgrade databases that
use Oracle Database Vault to new Oracle Database releases and patch sets
by using Oracle Data Guard database rolling upgrades with a transient
logical standby and the PL/SQL package, DBMS_ROLLING.

• As of Oracle Database 12c Release 1 (12.1), you can upgrade databases that
use Oracle Label Security (OLS) to new Oracle Database releases and patch
sets by using Oracle Data Guard database rolling upgrades using a
transient logical standby database and the PL/SQL package,
DBMS_ROLLING.

13.2 Requirements to Perform a Rolling Upgrade Using SQL Apply
The rolling upgrade procedure requires the following:

• If the database is part of an Oracle Data Guard broker configuration, then disable
the broker configuration before the rolling upgrade. See Oracle Data Guard Broker
for information about disabling a broker configuration.

• The Oracle Data Guard protection mode must be set to either maximum
availability or maximum performance. Query the PROTECTION_LEVEL column in
the V$DATABASE view to find out the current protection mode setting.

• To ensure the primary database can proceed while the logical standby database is
being upgraded, the LOG_ARCHIVE_DEST_n initialization parameter for the
logical standby database destination must not be set to MANDATORY.

• The COMPATIBLE initialization parameter set on the primary database must match
the software release prior to the upgrade. Therefore, a rolling upgrade from release
x to release y requires that the COMPATIBLE initialization parameter be set to
release x on the primary database. The rolling upgrade standby database must
have its COMPATIBLE initialization parameter set to x or higher.

13.3 Figures and Conventions Used in the Upgrade Instructions
Figure 13-1 (page 13-3) shows an Oracle Data Guard configuration before the
upgrade begins, with the primary and logical standby databases both running the
same Oracle Database software release.

Requirements to Perform a Rolling Upgrade Using SQL Apply

13-2 Concepts and Administration

Figure 13-1 Oracle Data Guard Configuration Before Upgrade

Database
Clients

Database
Release x

Data Guard
SQL Apply

Database
Release x

A (Primary) B (Standby)

During the upgrade process, the Oracle Data Guard configuration operates with
mixed database releases at several points in this process. Data protection is not
available across releases. During these steps, consider having a second standby
database in the Oracle Data Guard configuration to provide data protection.

The steps and figures describing the upgrade procedure refer to the databases as
Database A and Database B rather than as the primary database and standby database.
This is because the databases switch roles during the upgrade procedure. Initially,
Database A is the primary database and Database B is the logical standby database, as
shown in Figure 13-1 (page 13-3).

The following sections describe scenarios in which you can use the SQL Apply rolling
upgrade procedure:

• Performing a Rolling Upgrade By Creating a New Logical Standby Database
(page 13-3)

• Performing a Rolling Upgrade With an Existing Logical Standby Database
(page 13-4)

• Performing a Rolling Upgrade With an Existing Physical Standby Database
(page 13-10)

13.4 Performing a Rolling Upgrade By Creating a New Logical Standby
Database

This scenario assumes that you do not have an existing Oracle Data Guard
configuration, but you are going to create a logical standby database solely for the
purpose of performing a rolling upgrade of the Oracle Database.

Table 13-1 (page 13-3) lists the steps to prepare the primary and standby databases
for upgrading.

Table 13-1 Steps to Perform a Rolling Upgrade by Creating a New Logical Standby

Step Description

Step 1 Identify unsupported data types and storage attributes

Step 2 Create a logical standby database

Performing a Rolling Upgrade By Creating a New Logical Standby Database

Using SQL Apply to Upgrade the Oracle Database 13-3

Table 13-1 (Cont.) Steps to Perform a Rolling Upgrade by Creating a New Logical
Standby

Step Description

Step 3 Perform a rolling upgrade

1. Identify unsupported database objects on the primary database and decide how to
handle them by doing the following:

• Review the list of supported data types and storage attributes provided in Data
Type and DDL Support on a Logical Standby Database (page C-1).

• Query the DBA_LOGSTDBY_UNSUPPORTED and DBA_LOGSTDBY_SKIP views
on the primary database. Changes that are made to the listed tables and
schemas on the primary database are not applied on the logical standby
database. Use the following query to see a list of unsupported tables:

SQL> SELECT DISTINCT OWNER, TABLE_NAME FROM DBA_LOGSTDBY_UNSUPPORTED;

Use the following query to see a list of unsupported internal schemas:

SQL> SELECT OWNER FROM DBA_LOGSTDBY_SKIP -
> WHERE STATEMENT_OPT = 'INTERNAL SCHEMA';

2. Create a logical standby database, following the instructions in Creating a Logical
Standby Database (page 4-1).

Note:

Before you start SQL Apply for the first time, make sure you capture
information about transactions running on the primary database that will not
be supported by a logical standby database. Run the following procedures to
capture and record the information as events in the DBA_LOGSTDBY_EVENTS
view:

EXECUTE DBMS_LOGSTDBY.APPLY_SET('MAX_EVENTS_RECORDED',
 DBMS_LOGSTDBY.MAX_EVENTS);

EXECUTE DBMS_LOGSTDBY.APPLY_SET('RECORD_UNSUPPORTED_OPERATIONS',
 'TRUE');

Oracle recommends configuring a standby redo log on the logical standby database
to minimize downtime.

3. Perform a rolling upgrade now that you have created a logical standby database.
Follow the procedure described in Performing a Rolling Upgrade With an Existing
Logical Standby Database (page 13-4), which assumes that you have a logical
standby running the same Oracle software.

13.5 Performing a Rolling Upgrade With an Existing Logical Standby
Database

This section provides a step-by-step procedure for upgrading the logical standby
database and the primary database. Table 13-2 (page 13-5) lists the steps.

Performing a Rolling Upgrade With an Existing Logical Standby Database

13-4 Concepts and Administration

Table 13-2 Steps to Perform a Rolling Upgrade With an Existing Logical Standby

Step Description

Step 1 Prepare for rolling upgrade

Step 2 Upgrade the logical standby database

Step 3 Restart SQL Apply on the upgraded logical standby database

Step 4 Monitor events on the upgraded standby database

Step 5 Begin a switchover

Step 6 Import any tables that were modified during the upgrade

Step 7 Complete the switchover and activate user applications

Step 8 Upgrade the old primary database

Step 9 Start SQL Apply on the old primary database

Step 10 Optionally, raise the compatibility level on both databases

Step 11 Monitor events on the new logical standby database

Step 12 Optionally, perform another switchover

1. Follow these steps to prepare to perform a rolling upgrade of Oracle Software:

a. Stop SQL Apply by issuing the following statement on the logical standby
database (Database B):

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;

b. Set compatibility, if needed, to the highest value.

Ensure the COMPATIBLE initialization parameter specifies the release number
for the Oracle Database software running on the primary database prior to
the upgrade.

For example, if the primary database is running release 11.1, then set the
COMPATIBLE initialization parameter to 11.1 on both databases. Be sure to set
the COMPATIBLE initialization parameter on the standby database first before
you set it on the primary database.

2. Upgrade Oracle database software on the logical standby database (Database B) to
release y. While the logical standby database is being upgraded, it does not accept
redo data from the primary database.

To upgrade Oracle Database software, refer to the Oracle Database Upgrade Guide
for the applicable Oracle Database release.

Figure 13-2 (page 13-6) shows Database A running release x, and Database B
running release y. During the upgrade, redo data accumulates on the primary
system.

Performing a Rolling Upgrade With an Existing Logical Standby Database

Using SQL Apply to Upgrade the Oracle Database 13-5

Figure 13-2 Upgrade the Logical Standby Database Release

Database
Clients

Database
Release x

Database
Release y

A (Primary) B (Standby)

3. Restart SQL Apply and operate with release x on Database A and release y on
Database B. To start SQL Apply, issue the following statement on Database B:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

The redo data that was accumulating on the primary system is automatically
transmitted and applied on the newly upgraded logical standby database. The
Oracle Data Guard configuration can run the mixed releases shown in Figure 13-3
(page 13-6) for an arbitrary period while you verify that the upgraded Oracle
Database software release is running properly in the production environment.

Figure 13-3 Running Mixed Releases

Database
Clients

Data Guard
SQL Apply

Database
Release x

Database
Release y

A (Primary) B (Standby)

To monitor how quickly Database B is catching up to Database A, query the V
$LOGSTDBY_PROGRESS view on Database B. For example:

SQL> ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YY HH24:MI:SS';
Session altered.

SQL> SELECT SYSDATE, APPLIED_TIME FROM V$LOGSTDBY_PROGRESS;

SYSDATE APPLIED_TIME
------------------ ------------------
27-JUN-05 17:07:06 27-JUN-05 17:06:50

4. It is recommended that you frequently query the DBA_LOGSTDBY_EVENTS view
to learn if there are any DDL and DML statements that have not been applied on

Performing a Rolling Upgrade With an Existing Logical Standby Database

13-6 Concepts and Administration

Database B. The examples at the end of this section demonstrate how monitoring
events can alert you to potential differences in the two databases.

SQL> SET LONG 1000
SQL> SET PAGESIZE 180
SQL> SET LINESIZE 79
SQL> SELECT EVENT_TIMESTAMP, EVENT, STATUS FROM DBA_LOGSTDBY_EVENTS -
> ORDER BY EVENT_TIMESTAMP;

EVENT_TIMESTAMP

EVENT
--
STATUS
--
…
24-MAY-05 05.18.29.318912 PM
CREATE TABLE SYSTEM.TST (one number)
ORA-16226: DDL skipped due to lack of support

24-MAY-05 05.18.29.379990 PM
"SYSTEM"."TST"
ORA-16129: unsupported dml encountered

In the preceding example:

• The ORA-16226 error shows a DDL statement that could not be supported. In
this case, it could not be supported because it belongs to an internal schema.

• The ORA-16129 error shows that a DML statement was not applied.

These types of errors indicate that not all of the changes that occurred on Database
A have been applied to Database B. At this point, you must decide whether or not
to continue with the upgrade procedure. If you are certain that this difference
between the logical standby database and the primary database is acceptable, then
continue with the upgrade procedure. If not, discontinue and reinstantiate
Database B and perform the upgrade procedure at another time.

5. When you are satisfied that the upgraded database software is operating properly,
perform a switchover to reverse the database roles by issuing the following
statement on Database A:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO LOGICAL STANDBY;

This statement must wait for existing transactions to complete. To minimize the
time it takes to complete the switchover, users still connected to Database A
should log off immediately and reconnect to Database B.

Note:

The usual two-phased prepared switchover described in Performing a
Switchover to a Logical Standby Database (page 9-15) cannot be used because
it requires both primary and standby databases to be running the same
version of the Oracle software and at this point, the primary database is
running a lower version of the Oracle software. Instead, the single-phased
unprepared switchover procedure documented above is used. The
unprepared switchover should only be used in the context of a rolling
upgrade using a logical standby database.

Performing a Rolling Upgrade With an Existing Logical Standby Database

Using SQL Apply to Upgrade the Oracle Database 13-7

Note:

If you suspended activity to unsupported tables or packages on Database A
when it was the primary database, you must continue to suspend the same
activities on Database B while it is the primary database if you eventually plan
to switch back to Database A.

6. Step 4 described how to list unsupported tables that are being modified. If
unsupported DML statements were issued on the primary database, then import
the latest version of those tables using an import utility such as Oracle Data
Pump.

For example, the following import command truncates the scott.emp table and
populates it with data matching the former primary database (A):

impdp SYSTEM NETWORK_LINK=databasea TABLES=scott.emp TABLE_EXISTS_ACTION=TRUNCATE

This command prompts you for the impdp password before executing.

7. When you are satisfied that the upgraded database software is operating properly,
complete the switchover to reverse the database roles:

a. On Database B, query the SWITCHOVER_STATUS column of the V$DATABASE
view, as follows:

SQL> SELECT SWITCHOVER_STATUS FROM V$DATABASE;

SWITCHOVER_STATUS

TO PRIMARY

b. When the SWITCHOVER_STATUS column displays TO PRIMARY, complete
the switchover by issuing the following statement on Database B:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY;

Note:

The usual two-phased prepared switchover described in Performing a
Switchover to a Logical Standby Database (page 9-15) cannot be used because
it requires both primary and standby databases to be running the same
version of the Oracle software and at this point, the primary database is
running a lower version of the Oracle software. Instead, the single-phased
unprepared switchover procedure documented above is used. The
unprepared switchover should only be used in the context of a rolling
upgrade using a logical standby database.

c. Activate the user applications and services on Database B, which is now
running in the primary database role.

After the switchover, you cannot send redo data from the new primary database
(B) that is running the new database software release to the new standby database
(A) that is running an older software release. This means the following:

• Redo data is accumulating on the new primary database.

• The new primary database is unprotected at this time.

Performing a Rolling Upgrade With an Existing Logical Standby Database

13-8 Concepts and Administration

Figure 13-4 (page 13-9) shows Database B, the former standby database
(running release y), is now the primary database, and Database A, the former
primary database (running release x), is now the standby database. The users are
connected to Database B.

If Database B can adequately serve as the primary database and your business
does not require a logical standby database to support the primary database, then
you have completed the rolling upgrade process. Allow users to log in to
Database B and begin working there, and discard Database A when it is
convenient. Otherwise, continue with Step 8.

Figure 13-4 After a Switchover

Database
Clients

Database
Release x

Database
Release y

A (Standby) B (Primary)

8. Database A is still running release x and cannot apply redo data from Database B
until you upgrade it and start SQL Apply.

For more information about upgrading Oracle Database software, see the Oracle
Database Upgrade Guide.

Figure 13-5 (page 13-9) shows the system after both databases have been
upgraded.

Figure 13-5 Both Databases Upgraded

Database
Clients

Data Guard
SQL Apply

Database
Release y

Database
Release y

A (Standby) B (Primary)

9. Issue the following statement to start SQL Apply on Database A and, if necessary,
create a database link to Database B:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE NEW PRIMARY db_link_to_b;

Performing a Rolling Upgrade With an Existing Logical Standby Database

Using SQL Apply to Upgrade the Oracle Database 13-9

Note:

You must create a database link (if one has not already been set up) and to use
the NEW PRIMARY clause, because in Step 4 the single-phased unprepared
switchover was used to turn Database A into a standby database.

You must connect as user SYSTEM or with an account with a similar level of
privileges.

When you start SQL Apply on Database A, the redo data that is accumulating on
the primary database (B) is sent to the logical standby database (A). The primary
database is protected against data loss once all the redo data is available on the
standby database.

10. Raise the compatibility level of both databases by setting the COMPATIBLE
initialization parameter. You must raise the compatibility level at the logical
standby database before you raise it at the primary database. Set the COMPATIBLE
parameter on the standby database before you set it on the primary database. See
Oracle Database Reference for more information about the COMPATIBLE
initialization parameter.

11. To ensure that all changes performed on Database B are properly applied to the
logical standby database (A), you should frequently query the
DBA_LOGSTDBY_EVENTS view, as you did for Database A in step 4.

If changes were made that invalidate Database A as a copy of your existing
primary database, you can discard Database A and create a new logical standby
database in its place. See Creating a Logical Standby Database (page 4-1) for
complete information.

12. Optionally, perform another switchover of the databases so Database A is once
again running in the primary database role (as shown in Figure 13-1 (page 13-3)).

Note:

You use the two-phased prepared switchover described in Performing a
Switchover to a Logical Standby Database (page 9-15) since at this time, both
Database A and Database B are running the same version of the Oracle
software.

13.6 Performing a Rolling Upgrade With an Existing Physical Standby
Database

The steps in this section show you how to perform a rolling upgrade of Oracle
software and then get back to your original configuration in which A is the primary
database and B is the physical standby database, and both of them are running the
upgraded Oracle software.

Note:

The steps in this section assume that you have a primary database (A) and a
physical standby database (B) already set up and using Oracle Database
release 11.1 or later.

Performing a Rolling Upgrade With an Existing Physical Standby Database

13-10 Concepts and Administration

Table 13-3 (page 13-11) summarizes the steps involved.

Table 13-3 Steps to Perform a Rolling Upgrade With an Existing Physical Standby

Step Description

Step 1 Prepare the primary database for a rolling upgrade (perform these steps on
Database A)

Step 2 Convert the physical standby database into a logical standby database (perform
these steps on Database B)

Step 3 Upgrade the logical standby database and catch up with the primary database
(perform these steps on Database B)

Step 4 Flashback Database A to the guaranteed restore point (perform these steps on
Database A)

Step 5 Mount Database A using the new version of Oracle software

Step 6 Convert Database A to a physical standby

Step 7 Start managed recovery on Database A

Step 8 Perform a switchover to make Database A the primary database

Step 9 Clean up the guaranteed restore point created in Database A

1. Prepare the primary database for a rolling upgrade (perform these steps on
Database A)

a. Enable Flashback Database, if it is not already enabled:

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP MOUNT;
SQL> ALTER DATABASE FLASHBACK ON;
SQL> ALTER DATABASE OPEN;

b. Create a guaranteed restore point:

SQL> CREATE RESTORE POINT pre_upgrade GUARANTEE FLASHBACK DATABASE;

c. (Optional) Identify unsupported data types by performing the following SQL
query on the primary database:

SELECT * FROM DBA_LOGSTDBY_EDS_SUPPORTED;

For any tables returned that have unsupported data types, you can use the
Extended Datatype Support (EDS) feature to replicate them. To do so, execute
the following PL/SQL procedure for each table to be replicated using EDS:

SQL> EXECUTE DBMS_LOGSTDBY.EDS_ADD_TABLE(schema_name, table_name);

Because these steps are done on the primary, there is no need to invoke the
procedure on the physical standby because the EDS objects created by
EDS_ADD_TABLE are replicated to the physical standby. Once the physical
standby is converted to a logical standby, EDS replication is enabled
automatically and the tables are maintained by SQL Apply.

Performing a Rolling Upgrade With an Existing Physical Standby Database

Using SQL Apply to Upgrade the Oracle Database 13-11

2. Convert the physical standby database into a logical standby database (perform
these steps on Database B).

a. Follow the steps outlined in Creating a Logical Standby Database (page 4-1)
except for the following difference. In Convert to a Logical Standby Database
(page 4-6) you must use a different command to convert the logical standby
database. Instead of ALTER DATABASE RECOVER TO LOGICAL STANDBY
db_name, issue the following command:

SQL> ALTER DATABASE RECOVER TO LOGICAL STANDBY KEEP IDENTITY;
SQL> ALTER DATABASE OPEN;

b. You must take the following actions before you start SQL Apply for the first
time:

i. Disable automatic deletion of foreign archived logs at the logical standby,
as follows:

SQL> EXECUTE DBMS_LOGSTDBY.APPLY_SET('LOG_AUTO_DELETE', 'FALSE');

Note:

Do not delete any remote archived logs processed by the logical standby
database (Database B). These remote archived logs are required later during
the rolling upgrade process. If you are using the recovery area to store the
remote archived logs, you must ensure that it has enough space to
accommodate these logs without interfering with the normal operation of the
logical standby database.

ii. Make sure you capture information about transactions running on the
primary database that will not be supported by a logical standby
database. Run the following procedures to capture and record the
information as events in the DBA_LOGSTDBY_EVENTS table:

SQL> EXECUTE DBMS_LOGSTDBY.APPLY_SET('MAX_EVENTS_RECORDED', -
> DBMS_LOGSTDBY.MAX_EVENTS);

SQL> EXECUTE DBMS_LOGSTDBY.APPLY_SET('RECORD_UNSUPPORTED_OPERATIONS',
'TRUE');

iii. Start SQL Apply for the first time, as follows:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

See Also:

• Customizing Logging of Events in the DBA_LOGSTDBY_EVENTS View
(page 11-17) for more information about the DBA_LOGSTDBY_EVENTS
view

• Oracle Database PL/SQL Packages and Types Reference for complete
information about the DBMS_LOGSTDBY package

3. You can now follow Steps 1 through 7 as described in Performing a Rolling
Upgrade With an Existing Logical Standby Database (page 13-4). At the end of

Performing a Rolling Upgrade With an Existing Physical Standby Database

13-12 Concepts and Administration

these steps, Database B is your primary database running the upgraded version of
the Oracle software, and Database A becomes your logical standby database.

If you executed DBMS_LOGSTDBY.EDS_ADD_TABLE in step 1, you can now
execute DBMS_LOGSTDBY.EDS_REMOVE_TABLE at the current primary database
(Database B).

Move on to the next step to turn Database A into the physical standby for
Database B.

4. Flashback Database A to the guaranteed restore point (perform these steps on
Database A).

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP MOUNT;
SQL> FLASHBACK DATABASE TO RESTORE POINT pre_upgrade;
SQL> SHUTDOWN IMMEDIATE;

5. At this point, switch Database A to use the higher version of the Oracle software.
You do not run the upgrade scripts, since Database A is turned into a physical
standby, and upgraded automatically as it applies the redo data generated by
Database B.

Mount Database A, as follows:

SQL> STARTUP MOUNT;

6. Convert Database A to a physical standby.

SQL> ALTER DATABASE CONVERT TO PHYSICAL STANDBY;
SQL> SHUTDOWN IMMEDIATE;

7. Start managed recovery on Database A.

Database A is upgraded automatically as it applies the redo data generated by
Database B. Managed recovery waits until the new incarnation branch from the
primary is registered before it starts applying redo.

SQL> STARTUP MOUNT;
SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE -
> DISCONNECT FROM SESSION;

Note:

When Redo Apply restarts, it waits for a new incarnation from the current
primary database (Database B) to be registered.

8. At this point, Database B is your primary database and Database A is your
physical standby, both running the higher version of the Oracle software. To make
Database A the primary database, follow the steps described in "Performing a
Switchover to a Physical Standby Database (page 9-9)".

9. To preserve disk space, drop the existing guaranteed restore point created in
Database A:

SQL> DROP RESTORE POINT PRE_UPGRADE;

Performing a Rolling Upgrade With an Existing Physical Standby Database

Using SQL Apply to Upgrade the Oracle Database 13-13

See Also:

The "Database Rolling Upgrade Using Transient Logical Standby: Oracle Data
Guard 11g" best practices white paper available on the Oracle Maximum
Availability Architecture (MAA) home page at:

http://www.oracle.com/goto/maa

Performing a Rolling Upgrade With an Existing Physical Standby Database

13-14 Concepts and Administration

http://www.oracle.com/goto/maa

14
Using DBMS_ROLLING to Perform a Rolling

Upgrade

The Rolling Upgrade Using Oracle Active Data Guard feature provides a streamlined
method of performing rolling upgrades. It is implemented using the DBMS_ROLLING
PL/SQL package, which enables you to upgrade the database software in an Oracle
Data Guard configuration in a rolling fashion. The Rolling Upgrade Using Oracle
Active Data Guard feature requires a license for the Oracle Active Data Guard option.

You can use this feature to perform database version upgrades starting with the first
patchset of Oracle Database 12c. You cannot use it to upgrade from any version earlier
than the first Oracle Database 12c patchset. This means that the manual Transient
Logical Standby upgrade procedure must still be used when upgrading from Oracle
Database 11g to Oracle Database12c, or when upgrading from the initial Oracle
Database 12c release to the first patchset of Oracle Database 12c.

The DBMS_ROLLING package performs Oracle Data Guard switchovers to minimize
downtime of the primary database service. Prior to using DBMS_ROLLING, the Oracle
Data Guard environment must be properly configured to accommodate switchovers.
The setup requirements differ depending on whether Oracle Data Guard broker is
active during execution of DBMS_ROLLING:

• If the broker is going to be active during DBMS_ROLLING, then see Oracle Data
Guard Broker for information about setting up the broker for a switchover.

• If the broker is not going to be active during DBMS_ROLLING, then see Role
Transitions Involving Logical Standby Databases (page 9-15). The absence of Oracle
Data Guard broker means that LOG_ARCHIVE_DEST_n parameters must be
properly configured on the target primary database so that redo shipping resumes
after the switchover.

Additionally, you can use this feature immediately for other database maintenance
tasks beginning with Oracle Database 12c Release 1 (12.1). The database where
maintenance is performed must be operating at a minimum of Oracle 12.1. Such
maintenance tasks include:

• Adding partitioning to non-partitioned tables

• Changing BasicFiles LOBs to SecureFiles LOBs

• Changing XMLType stored as CLOB to XMLtype stored as binary XML

• Altering tables to be OLTP-compressed

The topics covered in this section are as follows:

• Concepts New to Rolling Upgrades (page 14-2)

• DBMS_ROLLING Upgrades and CDBs (page 14-5)

Using DBMS_ROLLING to Perform a Rolling Upgrade 14-1

• Overview of Using DBMS_ROLLING (page 14-5)

• Planning a Rolling Upgrade (page 14-6)

• Performing a Rolling Upgrade (page 14-13)

• Monitoring a Rolling Upgrade (page 14-16)

• Rolling Back a Rolling Upgrade (page 14-16)

• Handling Role Changes That Occur During a Rolling Upgrade (page 14-17)

• Examples of Rolling Upgrades (page 14-17)

14.1 Concepts New to Rolling Upgrades
To upgrade the database software in an Oracle Data Guard configuration in a rolling
fashion, you first designate a physical standby as the future primary database.

Conceptually, the rolling upgrade process splits the Oracle Data Guard configuration
into two groups: the leading group (LG) and the trailing group (TG).

Databases in the leading group are upgraded first; hence the name leading group. The
leading group contains the designated future primary database, and the physical
standbys that you can configure to protect the designated future primary. The future
primary is first converted into a logical standby database and then the new database
software is installed on it and the upgrade process is run. Other standby databases in
the leading group also must have their software upgraded at this point.

The trailing group contains the original primary database and standby databases that
protect the original primary during the rolling upgrade process. While the databases
in the leading group are going through the upgrade process, user applications can still
be connected to the original primary and making changes. The trailing group
databases continue running the old database software until all the databases in the
leading group are upgraded and the future primary has caught up with the original
primary by applying the changes that were generated at the original primary database
during the upgrade window. At this point a switchover is done to transfer the primary
role to the designated future primary database, and the user applications are switched
over to the new primary database. New software is then installed on the databases
that are part of the trailing group, and they are reinstated into the configuration as
standbys to the new primary database.

The standbys in the respective groups are called the Leading Group Standbys (LGS)
and Trailing Group Standbys (TGS). Other than the designated future primary, all
other standbys in the leading group can only be physical standbys. The trailing group
can contain both physical and logical standbys; they are called Trailing Group Physical
(TGP) and Trailing Group Logical (TGL) in cases where it is necessary to make a
distinction between the standby types. The designated future primary is also called the
Leading Group Master (LGM) and the original primary database is called the Trailing
Group Master (TGM).

The DBMS_ROLLING package increases the robustness of the rolling upgrade process
as follows:

• It can handle failures during the rolling upgrade process. The original primary or
the TGM database can fail. You can initiate a regular failover operation to any other
physical standby in the trailing group, and then designate the new primary
database as the TGM.

Concepts New to Rolling Upgrades

14-2 Concepts and Administration

• It allows data protection of the LGM (the designated future primary) during the
rolling upgrade process. You can set up physical standbys for the LGM database,
and thus protect it during the upgrade process and also achieve Zero Data Loss
after the upgrade. After the LGM has been successfully upgraded, a failure in the
LGM can be accommodated by failing over to any of its physical standby
databases. You can then designate the failover target database to take over the role
of the LGM.

Table 14-1 (page 14-3) compares the characteristics of TGP standbys versus LGP
standbys before and after a switchover operation.

Table 14-1 Trailing Group Physicals (TGP) Versus Leading Group Physicals (LGP)

Standby Type Before Switchover After Switchover Notes

Trailing Group Physical
(TGP)

Low apply lag

Lower data loss risk

High apply lag

Higher data loss risk

Can fail over to the primary
role

Must flash back like the
original primary

Leading Group Physical
(LGP)

High apply lag

Higher data loss risk

Low apply lag

Lower data loss risk

Can fail over to the transient
logical standby role

Does not have to flash back
like the original primary

See Also:

• Oracle Database PL/SQL Packages and Types Reference for a description of the
DBMS_ROLLING PL/SQL package

• Unsupported Tables During Rolling Upgrades (page C-17) for
information about how to determine whether any of the tables involved in
the upgrade contain data types that are unsupported when performing an
upgrade using the DBMS_ROLLING PL/SQL package

• Additional PL/SQL Package Support Available Only in the Context of
DBMS_ROLLING Upgrades (page C-24) for information about PL/SQL
packages that are supported only in the context of a DBMS_ROLLING
upgrade

14.1.1 Data Guard Broker Support for DBMS_ROLLING Upgrades
As of Oracle Database 12c Release 2 (12.2.0.1), Data Guard broker can remain on
during a DBMS_ROLLING rolling upgrade; there is no longer any need to disable it.

However, the fast-start failover feature must be disabled before starting a
DBMS_ROLLING upgrade and any attempts to enable fast-start failover while the
rolling upgrade is in progress are rejected. In addition, while a rolling upgrade is in
progress, role changes are permissible only to the standby databases that are
protecting the current primary database. The broker reports the role of the rolling
upgrade target as Transient Logical Standby during a SHOW CONFIGURATION
command as well as reporting the configuration status as ROLLING DATABASE
MAINTENANCE IS IN PROGRESS. If there are standby databases protecting both the
original primary and the upgrade target, then this topology is reflected when the SHOW

Concepts New to Rolling Upgrades

Using DBMS_ROLLING to Perform a Rolling Upgrade 14-3

CONFIGURATION command is issued from the current primary as well as from the
upgrade target (before it has taken over as the primary database).

Broker support is enabled by default during execution of the
DBMS_ROLLING.BUILD_PLAN procedure if the broker is enabled at the time of the
call. When broker support is enabled, the broker sets up the redo transport
destinations as necessary from the original primary database as well as from the
rolling upgrade target, manages instance count on the upgrade target if it is an Oracle
RAC database, and notifies Oracle Clusterware and Global Data Services as
appropriate during the course of the rolling upgrade. Broker support can be manually
controlled using the DBMS_ROLLING parameter, DGBROKER.

Although role transitions are typically performed using the broker, the switchover
step in a rolling upgrade should continue to be performed using the
DBMS_ROLLING.SWITCHOVER procedure.

Information about the status of a rolling upgrade being done using the PL/SQL
package DBMS_ROLLING, is displayed in the output of the broker commands SHOW
CONFIGURATION and SHOW DATABASE.

The SHOW CONFIGURATION command shows Transient logical standby database as
the role of the upgrade target, and ROLLING DATABASE MAINTENANCE IN
PROGRESS as the configuration status. An example of this output is as follows:

Configuration - DRSolution
Protection Mode: MaxPerformance
Members:
North_Sales - Primary database
South_Sales - Transient logical standby database
Fast-Start Failover: DISABLED
Configuration Status:
ROLLING DATABASE MAINTENANCE IN PROGRESS

The SHOW DATABASE command shows a WARNING with an appropriate ORA error for
the upgrade target and the trailing or leading standbys, depending on the current
rolling upgrade progress. An example of this output is as follows:

Database - South_Sales
Role: Physical standby database
Intended State: APPLY-ON
Transport Lag: ***
Apply Lag: ***
Average Apply Rate: ***
Real Time Query: OFF
Instance(s):
South
Database Warning(s):
ORA-16866: database converted to transient logical standby database for rolling
database maintenance
Database Status:
WARNING

See Also:

• DBMS_ROLLING

• SHOW CONFIGURATION

• SHOW DATABASE

Concepts New to Rolling Upgrades

14-4 Concepts and Administration

14.2 DBMS_ROLLING Upgrades and CDBs
The steps to performing a rolling upgrade using DBMS_ROLLING on a multitenant
container database (CDB) are no different from non-CDB environments, but there are
additional requirements and considerations.

Requirements Specific to DBMS_ROLLING Upgrades on a CDB

The additional requirements when you use DBMS_ROLLING to perform a rolling
upgrade on a CDB are as follows.

• The TNS services referenced in the LOG_ARCHIVE_DEST_n parameters must be
services that resolve to the root container of the destination database. The process
assisting DBMS_ROLLING performs numerous operations which can only execute
from the root container.

• All container databases on the transient logical standby must be plugged in and
opened prior to calling DBMS_ROLLING.SWITCHOVER. This eliminates the
possibility that the logical standby apply engine will halt because it cannot apply to
a given PDB.

See Example 14-5 (page 14-17) for an example rolling upgrade using DBMS_ROLLING.

Additional Considerations for DBMS_ROLLING Upgrades on a CDB

Installing, upgrading, or patching of applications installed in application containers is
not supported while a DBMS_ROLLING upgrade is in progress.

• If DDL is executed to start the install, upgrade, or patching of an application
container while a DBMS_ROLLING upgrade is in progress, then an error is returned.
(The DBMS_ROLLING upgrade continues.)

• If an upgrade to an application container is in progress, then an attempt to start a
DBMS_ROLLING upgrade results in an error. (The application container upgrade
continues.)

• If a DBMS_ROLLING upgrade is performed and database compatibility is set to 12.2
or higher, then replication of application containers is supported. Except for
DBMS_ROLLING upgrades, logical standby does not offer any support for
application containers; such containers are skipped and a message is written to the
alert log indicating that application containers are being skipped.

• The CDB that you are upgrading using DBMS_ROLLING can contain pluggable
databases (PDBs) with different character sets.

14.3 Overview of Using DBMS_ROLLING
There are three stages to the rolling upgrade process using the DBMS_ROLLING
PL/SQL Package:

1. Specification: You first specify how you want to implement the rolling upgrade
process. It is mandatory that you designate a future primary database. This act
conceptually creates the leading and the trailing groups. At this point, the leading
group only contains the LGM. You can optionally specify other standbys to
protect the LGM.

You use the following procedures during the specification phase:

• DBMS_ROLLING.INIT_PLAN

DBMS_ROLLING Upgrades and CDBs

Using DBMS_ROLLING to Perform a Rolling Upgrade 14-5

• DBMS_ROLLING.SET_PARAMETER

2. Compilation: This is initiated by calling the DBMS_ROLLING.BUILD_PLAN
procedure. The BUILD_PLAN procedure communicates with all databases
participating in the rolling upgrade and assembles a rolling upgrade plan. The
BUILD_PLAN procedure is also called to alter an existing rolling upgrade plan.
Alterations are necessary after changes to DBMS_ROLLING parameters and after
changes to the topology as a result of failover. All participating databases must be
reachable during execution of the BUILD_PLAN procedure because numerous
validations are required to ensure a successful rolling upgrade.

3. Execution: Execution of the rolling upgrade has five stages.

Stage 1: The DBMS_ROLLING.START_PLAN procedure starts the execution of the
rolling upgrade. This converts the LGM database to a logical standby and starts
the SQL Apply process at the LGM.

Stage 2: You upgrade the database software at the databases that are part of the
leading group. You also run the upgrade scripts at the LGM. After this is done,
you must restart SQL Apply processes at the LGM database. (See Oracle Database
Upgrade Guide for information about upgrade scripts.) Leading group physical
standbys are also addressed during this stage by re-mounting them using the
higher version binaries. These databases are upgraded via recovery of the redo
from the LGM.

Stage 3: After the apply lag reaches a given threshold (set to 10 minutes by
default, but can be configured during the specification stage), the
DBMS_ROLLING.SWITCHOVER procedure proceeds with the switchover
operation. When the switchover is complete, the LGM becomes the primary
database.

Stage 4: The LGM is now the primary database running the new database
software and the databases in the leading group are protecting it. The TGM is
mounted and the databases in the trailing group are still running the older version
of the database software. You must prepare the TGM and TGS databases for
upgrade by upgrading the database software and re-mounting the databases on
the higher version binaries. (See Oracle Database Upgrade Guide for information
about upgrade scripts.)

Stage 5: Execute the DBMS_ROLLING.FINISH_PLAN procedure at the current
primary database (originally the LGM). It reinstates all the databases in the
trailing group to become the standbys of the current primary database, and
restarts the apply processes. The FINISH_PLAN procedure waits for all databases
in the trailing group to be upgraded to the new release (although the database
software for the trailing group databases was changed in Stage 4, the data
dictionary of the trailing group databases, except for any logical standbys in the
trailing group, are updated based on media recovery of the redo generated during
the upgrade at the LGM database).

After the rolling upgrade has been successfully executed, you can remove your rolling
upgrade specification by calling the DBMS_ROLLING.DESTROY_PLAN procedure.

14.4 Planning a Rolling Upgrade
Planning your rolling upgrade is essential to a successful upgrade experience. In the
planning phase you specify various upgrade parameters and build an upgrade plan.
The parameters and upgrade plan forecast all the operational details unique to your
environment. The upgrade plan performs site-specific validations to alert you to

Planning a Rolling Upgrade

14-6 Concepts and Administration

configuration and resource problems which could potentially disrupt the rolling
upgrade.

The tasks necessary to define upgrade parameters and build an upgrade plan are as
follows:

• Initialize the upgrade parameters

• View the current upgrade parameter values

• Modify the upgrade parameter values, as necessary

• Build the upgrade plan

• View the current upgrade plan

• Revise the upgrade plan, as necessary

The rest of this section describes each of these steps in detail. They must be performed
in the order presented.

1. Plan parameters must be initialized to system-generated default values before they
can be customized. To initialize plan parameters, call the
DBMS_ROLLING.INIT_PLAN procedure. This procedure identifies the
DB_UNIQUE_NAME of the future primary database (the leading group master or
LGM). The LGM is converted into a logical standby database as part of the
START_PLAN procedure call. The following is a sample call to the INIT_PLAN
procedure in which boston is identified as the future primary database:

DBMS_ROLLING.INIT_PLAN(future_primary=>'boston');

The INIT_PLAN procedure returns an initial set of system-generated plan
parameters. It adds each physical and logical standby database specified in the
DG_CONFIG init.ora parameter as a participant in the rolling upgrade. Other
databases (such as downstream databases serving GoldenGate downstream
deployment or snapshot standbys) are excluded automatically.

By default, standby databases other than the future primary are configured to
protect the primary database, and are configured as mandatory participants in the
rolling upgrade.

Once the database-related parameters have been defined, the INIT_PLAN
procedure defines operational parameters with system-supplied defaults. In most
cases, the plan parameters are ready for plan validation, but to ensure they meet
your needs, be sure to review each parameter.

Plan parameters are persisted in the database until you call the DESTROY_PLAN
procedure to remove all states related to the rolling upgrade.

2. After the INIT_PLAN procedure has completed, you can query the
DBA_ROLLING_PARAMETERS view to see the plan parameters and their current
values. Plan parameters are either global or local in scope. Global parameters are
attributes of the rolling upgrade as a whole and are independent of the database
participants. Global parameters have a NULL value in the SCOPE column. Local
parameters have a specific database name in the SCOPE column, with which they
are associated. The following is a sample query:

SQL> select scope, name, curval from dba_rolling_parameters order by scope, name;

SCOPE NAME CURVAL
-------------- ------------------------ ------------------------------

Planning a Rolling Upgrade

Using DBMS_ROLLING to Perform a Rolling Upgrade 14-7

seattle INVOLVEMENT FULL
seattle MEMBER NONE
boston INVOLVEMENT FULL
boston MEMBER TRAILING
oakland INVOLVEMENT FULL
oakland MEMBER TRAILING
atlanta INVOLVEMENT FULL
atlanta MEMBER LEADING
 ACTIVE_SESSIONS_TIMEOUT 3600
 ACTIVE_SESSIONS_WAIT 0
 BACKUP_CONTROLFILE rolling_change_backup.f
 DGBROKER 0
 DICTIONARY_LOAD_TIMEOUT 3600
 DICTIONARY_LOAD_WAIT 0
 DICTIONARY_PLS_WAIT_INIT 300
 DICTIONARY_PLS_WAIT_TIMEOUT 3600
 EVENT_RECORDS 10000
 FAILOVER 0
 GRP_PREFIX DBMSRU_
 IGNORE_BUILD_WARNINGS 0
 IGNORE_LAST_ERROR 0
 LAD_ENABLED_TIMEOUT 600
 LOG_LEVEL INFO
 READY_LGM_LAG_TIME 600
 READY_LGM_LAG_TIMEOUT 60
 READY_LGM_LAG_WAIT 0
 SWITCH_LGM_LAG_TIME 600
 SWITCH_LGM_LAG_TIMEOUT 60
 SWITCH_LGM_LAG_WAIT 1
 SWITCH_LGS_LAG_TIME 60
 SWITCH_LGS_LAG_TIMEOUT 60
 SWITCH_LGS_LAG_WAIT 0
 UPDATED_LGS_TIMEOUT 10800
 UPDATED_LGS_WAIT 1
 UPDATED_TGS_TIMEOUT 10800
 UPDATED_TGS_WAIT 1
35 rows selected.

In the sample output, the databases atlanta, boston, oakland, and seattle
were all discovered through the DG_CONFIG, and assigned parameters in the
current plan.

See Also:

• Oracle Database Reference for more information about the
DBA_ROLLING_PARAMETERS view

3. To modify any existing rolling upgrade parameter, use the
DBMS_ROLLING.SET_PARAMETER PL/SQL procedure. The following is an
example of using the SET_PARAMETER procedure:

DBMS_ROLLING.SET_PARAMETER(
 scope IN VARCHAR2,
 name IN VARCHAR2,
 value IN VARCHAR2);

Planning a Rolling Upgrade

14-8 Concepts and Administration

The scope identifies either a DB_UNIQUE_NAME value for local parameters or NULL
for global parameters. It is not necessary to provide a scope of NULL for parameters
that are not specific to a database.

The name is the name of the parameter to modify.

The value identifies the value for the specified parameter. A value of NULL reverts
the parameter back to its system-supplied default if one exists.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for a complete list of all
available rolling upgrade parameters

The following examples illustrate sample usage of some rolling upgrade
parameters.

4. After all the necessary parameters are specified, you build an upgrade plan. An
upgrade plan is a custom generated set of instructions which guides your Oracle
Data Guard configuration through a rolling upgrade. (The plan that is generated
differs based on whether or not the configuration is managed by Data Guard
broker.)

To build an upgrade plan, use the DBA_ROLLING.BUILD_PLAN PL/SQL
procedure. This procedure requires the configuration to be exactly as described by
the plan parameters with all of the instances started and reachable through the
network.

The procedure is called as follows:

DBMS_ROLLING.BUILD_PLAN;

There are no arguments to specify because the procedure gets all its input from the
DBA_ROLLING_PARAMETERS view. The procedure validates plan parameters and
performs site-specific validations of resources such as log transport and flash
recovery area settings. In general, configuration settings that do not meet the
criteria of best-practice values are treated as warnings and recorded in the
DBA_ROLLING_EVENTS view. By default, the IGNORE_BUILD_WARNINGS
parameter is set to 1, meaning warnings do not prevent an upgrade plan from
reaching a usable state. You can set this parameter to 0 for stricter rule enforcement
when plans are built.

Note:

The validations performed during plan generation are specific to rolling
upgrades. They are not a substitute for the recommended practice of running
the Pre-Upgrade Information Tool to evaluate upgrade readiness.

After generating the plan, move on to the following steps to view it, diagnose any
problems with it, and revise it if necessary.

5. After the BUILD_PLAN procedure successfully returns, the complete upgrade plan
is viewable in the DBA_ROLLING_PLAN view. Each record in the view identifies a
specific instruction that is scheduled for execution.

Planning a Rolling Upgrade

Using DBMS_ROLLING to Perform a Rolling Upgrade 14-9

The following output is an example of how a rolling upgrade plan would appear:

SQL> SELECT instid, target, phase, description FROM DBA_ROLLING_PLAN;

INSTID TARGET PHASE DESCRIPTION
------ ------------ ------- ---
 1 seattle START Verify database is a primary
 2 seattle START Verify MAXIMUM PROTECTION is disabled
 3 boston START Verify database is a physical standby
 4 boston START Verify physical standby is mounted
 5 oakland START Verify database is a physical standby
 6 oakland START Verify physical standby is mounted
 7 atlanta START Verify database is a physical standby
 8 atlanta START Verify physical standby is mounted
 9 seattle START Verify server parameter file exists and is modifiable
 10 boston START Verify server parameter file exists and is modifiable
 11 oakland START Verify server parameter file exists and is modifiable
 12 atlanta START Verify server parameter file exists and is modifiable
 13 seattle START Verify Data Guard Broker configuration is disabled
 14 boston START Verify Data Guard Broker configuration is disabled
 15 oakland START Verify Data Guard Broker configuration is disabled
 16 atlanta START Verify Data Guard Broker configuration is disabled
 17 seattle START Verify flashback database is enabled
 18 seattle START Verify available flashback restore points
 19 boston START Verify flashback database is enabled
 20 boston START Verify available flashback restore points
 21 oakland START Verify flashback database is enabled
 22 oakland START Verify available flashback restore points
 23 atlanta START Verify flashback database is enabled
 24 atlanta START Verify available flashback restore points
 25 boston START Scan LADs for presence of atlanta destination
 26 boston START Test if atlanta is reachable using configured TNS service
 27 boston START Stop media recovery
 28 oakland START Stop media recovery
 29 atlanta START Stop media recovery
 30 boston START Drop guaranteed restore point DBMSRU_INITIAL
 31 boston START Create guaranteed restore point DBMSRU_INITIAL
 32 oakland START Drop guaranteed restore point DBMSRU_INITIAL
 33 oakland START Create guaranteed restore point DBMSRU_INITIAL
 34 atlanta START Drop guaranteed restore point DBMSRU_INITIAL
 35 atlanta START Create guaranteed restore point DBMSRU_INITIAL
 36 seattle START Drop guaranteed restore point DBMSRU_INITIAL
 37 seattle START Create guaranteed restore point DBMSRU_INITIAL

INSTID TARGET PHASE DESCRIPTION
------ ------------ ------- --
 38 boston START Start media recovery
 39 boston START Verify media recovery is running
 40 oakland START Start media recovery
 41 oakland START Verify media recovery is running
 42 atlanta START Start media recovery
 43 atlanta START Verify media recovery is running
 44 seattle START Verify user_dump_dest has been specified
 45 seattle START Backup control file to rolling_change_backup.f
 46 boston START Verify user_dump_dest has been specified
 47 boston START Backup control file to rolling_change_backup.f
 48 oakland START Verify user_dump_dest has been specified
 49 oakland START Backup control file to rolling_change_backup.f
 50 atlanta START Verify user_dump_dest has been specified
 51 atlanta START Backup control file to rolling_change_backup.f
 52 seattle START Get current redo branch of the primary database

Planning a Rolling Upgrade

14-10 Concepts and Administration

 53 boston START Wait until recovery is active on the primary's redo branch
 54 boston START Stop media recovery
 55 seattle START Execute dbms_logstdby.build
 56 boston START Convert into a transient logical standby
 57 boston START Open database
 58 boston START Configure logical standby parameters
 59 boston START Start logical standby apply
 60 boston START Get redo branch of transient logical standby
 61 boston START Get reset scn of transient logical redo branch
 62 atlanta START Stop media recovery
 63 atlanta START Flashback database
 64 seattle START Disable log file archival to atlanta
 65 boston START Enable log file archival to atlanta
 66 boston START Wait for log archive destination to atlanta to reach a valid state
 67 atlanta START Wait until transient logical redo branch has been registered
 68 atlanta START Start media recovery
 69 atlanta START Wait until v$dataguard_stats has been initialized
 70 atlanta START Wait until recovery has started on the transient redo branch
 71 seattle START Log pre-switchover instructions to events table
 72 boston START Record start of user upgrade of boston
 73 boston SWITCH Verify database is in OPENRW mode
 74 boston SWITCH Record completion of user upgrade of boston

INSTID TARGET PHASE DESCRIPTION
------ ------------ ------- ---
 75 boston SWITCH Scan LADs for presence of seattle destination
 76 boston SWITCH Scan LADs for presence of oakland destination
 77 boston SWITCH Scan LADs for presence of atlanta destination
 78 boston SWITCH Test if seattle is reachable using configured TNS service
 79 boston SWITCH Test if oakland is reachable using configured TNS service
 80 boston SWITCH Test if atlanta is reachable using configured TNS service
 81 seattle SWITCH Enable log file archival to boston
 82 boston SWITCH Enable log file archival to atlanta
 83 boston SWITCH Start logical standby apply
 84 atlanta SWITCH Start media recovery
 85 atlanta SWITCH Wait until upgrade redo has been fully recovered
 86 boston SWITCH Wait until apply lag has fallen below 600 seconds
 87 seattle SWITCH Log post-switchover instructions to events table
 88 seattle SWITCH Switch database to a logical standby
 89 boston SWITCH Wait until end-of-redo has been applied
 90 oakland SWITCH Wait until end-of-redo has been applied
 91 seattle SWITCH Disable log file archival to oakland
 92 boston SWITCH Switch database to a primary
 93 oakland SWITCH Stop media recovery
 94 seattle SWITCH Synchronize plan with new primary
 95 seattle FINISH Verify only a single instance is active
 96 seattle FINISH Verify database is mounted
 97 seattle FINISH Flashback database
 98 seattle FINISH Convert into a physical standby
 99 oakland FINISH Verify database is mounted
 100 oakland FINISH Flashback database
 101 boston FINISH Verify database is open
 102 boston FINISH Save the DBID of the new primary
 103 boston FINISH Save the logminer session start scn
 104 seattle FINISH Wait until transient logical redo branch has been registered
 105 oakland FINISH Wait until transient logical redo branch has been registered
 106 seattle FINISH Start media recovery
 107 oakland FINISH Start media recovery
 108 seattle FINISH Wait until apply/recovery has started on the transient branch
 109 oakland FINISH Wait until apply/recovery has started on the transient branch
 110 seattle FINISH Wait until upgrade redo has been fully recovered

Planning a Rolling Upgrade

Using DBMS_ROLLING to Perform a Rolling Upgrade 14-11

INSTID TARGET PHASE DESCRIPTION
------ ------------ ------- --
 111 oakland FINISH Wait until upgrade redo has been fully recovered
 112 seattle FINISH Drop guaranteed restore point DBMSRU_INITIAL
 113 boston FINISH Drop guaranteed restore point DBMSRU_INITIAL
 114 oakland FINISH Drop guaranteed restore point DBMSRU_INITIAL
 115 atlanta FINISH Drop guaranteed restore point DBMSRU_INITIAL

115 rows selected.

SQL>

The columns in this view display the following information:

• INSTID - The Instruction ID, which is the order in which the instruction is to be
performed. Instructions are typically performed in groups.

• PHASE - Every instruction in the upgrade plan is associated with a particular
phase. A phase is a logical grouping of instructions which is performed by a
procedure in the DBMS_ROLLING PL/SQL package. When a DBMS_ROLLING
procedure is invoked, all of the associated instructions in the upgrade plan for
that phase are executed. Possible phases are as follows:

– START: Consists of activities related to setup such as taking restore points,
instantiation of the transient logical standby database, and configuration of
LGS databases. Activities in this phase are initiated when you call the
DBMS_ROLLING.START_PLAN procedure. See Step 1 in "Performing a
Rolling Upgrade (page 14-13)".

– SWITCH: Consists of activities related to the switchover of the transient
logical standby into the new primary database. Activities in this phase are
initiated when you call the DBMS_ROLLING.SWITCHOVER procedure. See
Step 3 in"Performing a Rolling Upgrade (page 14-13)"

– FINISH: Consists of activities related to configuring standby databases for
recovery of the upgrade redo. Activities in this phase are initiated when you
call the DBMS_ROLLING.FINISH_PLAN procedure. See Step 5 in
"Performing a Rolling Upgrade (page 14-13)".

• EXEC_STATUS - The overall status of the instruction.

• PROGRESS - The progress of an instruction's execution. A value of REQUESTING
indicates an instruction is being transmitted to a target database for execution.
A value of EXECUTING indicates the instruction is actively being executed. A
value of REPLYING indicates completion information is being returned.

• DESCRIPTION - The specific operation that is scheduled to be performed.

• TARGET - The site at which a given instruction is to be performed.

• EXEC_INFO - Additional contextual information related to the instruction.

See Also:

• Oracle Database Reference for more information about the
DBA_ROLLING_PLAN view

Planning a Rolling Upgrade

14-12 Concepts and Administration

6. Upgrade plans need to be revised after any change to the rolling upgrade or
database configuration. A configuration change could include any of the following:

• init.ora parameter file changes at any of the databases participating in the
rolling upgrade

• database role changes as a result of failover events

• rolling upgrade parameter changes

To revise an active upgrade plan, call the BUILD_PLAN procedure again. In some
cases, the BUILD_PLAN procedure may raise an error if a given change cannot be
accepted. For example, setting the ACTIVE_SESSIONS_WAIT parameter has no
effect if the switchover has already occurred.

It is recommended that you call the BUILD_PLAN procedure to process a group of
parameter changes rather than processing parameters individually.

Example 14-1 Setting Switchover to Enforce Apply Lag Requirements

The following example demonstrates how to configure the plan to wait for the apply
lag to fall below 60 seconds before switching over to the future primary:

DBMS_ROLLING.SET_PARAMETER('SWITCH_LGM_LAG_WAIT', '1');
DBMS_ROLLING.SET_PARAMETER('SWITCH_LGM_LAG_TIME', '60');

Example 14-2 Resetting Logging Back to Its Default Value

The following example demonstrates resetting the LOG_LEVEL global parameter back
to its default value.

DBMS_ROLLING.SET_PARAMETER (
 name=>'LOG_LEVEL',
 value=>NULL);

Example 14-3 Designating a Database as an Optional Participant

The following example demonstrates setting the INVOLVEMENT local parameter of
database atlanta to indicate that errors encountered on the database should not
impede the overall rolling upgrade.

DBMS_ROLLING.SET_PARAMETER (
 scope=>'atlanta',
 name=>'involvement',
 value=>'optional');

Example 14-4 Setting a Database to Protect the Transient Logical Standby

The following example demonstrates setting the MEMBER local parameter of database
atlanta to indicate it should protect the transient logical standby database during
the rolling upgrade.

DBMS_ROLLING.SET_PARAMETER (
 scope=>'atlanta',
 name=>'member',
 value=>'leading');

14.5 Performing a Rolling Upgrade
This section describes the steps involved in performing a rolling upgrade using the
DBMS_ROLLING PL/SQL package. Table 14-2 (page 14-14) provides a summary of

Performing a Rolling Upgrade

Using DBMS_ROLLING to Perform a Rolling Upgrade 14-13

the steps. These steps assume that you have first successfully built an upgrade plan as
described in "Planning a Rolling Upgrade (page 14-6)".

Table 14-2 Steps to Perform Rolling Upgrade Using DBMS_ROLLING

Step Description PHASE

Step 1 Call the DBMS_ROLLING.START_PLAN procedure to configure the
future primary and physical standbys designated to protect the
future primary.

START

Step 2 Manually upgrade the Oracle Database software at the future
primary database and standbys that protect it.

SWITCH
PENDING

Step 3 Call the DBMS_ROLLING.SWITCHOVER procedure to switch roles
between the current and future primary database.

SWITCH

Step 4 Manually restart the former primary and remaining standby
databases on the higher version of Oracle Database.

FINISH
PENDING

Step 5 Call the DBMS_ROLLING.FINISH_PLAN procedure to convert the
former primary to a physical standby, and to configure the
remaining standby databases for recovery of the upgrade redo.

FINISH

Activities that take place during each step belong to a specific phase of the rolling
upgrade as shown in the PHASE column of Table 14-2 (page 14-14). A rolling upgrade
operation is at a single phase at any given time. The current phase of a rolling upgrade
is reported in the PHASE column of the DBA_ROLLING_STATUS view.

The rest of this section describes each of the upgrade steps in detail.

1. Call the DBMS_ROLLING.START_PLAN procedure to configure the future primary
and physical standbys designated to protect the future primary.

The DBMS_ROLLING.START_PLAN procedure is the formal start of the rolling
upgrade. The goal of the START_PLAN procedure is to configure the transient
logical standby database and any physical standby databases that have been
designated to protect it. When invoked, the START_PLAN procedure executes all
instructions in the upgrade plan with a PHASE value of START_PLAN. The types
of instructions that are performed include:

• Backing up the control file for each database to a trace file

• Creating flashback database guaranteed restore points

• Building a LogMiner dictionary at the primary database

• Recovering the designated physical standby into a transient logical standby
database

• Loading the LogMiner dictionary into the logical standby database

• Configuring LGS databases with the transient logical standby database

Call the START_PLAN procedure as follows (no arguments are required):

SQL> EXECUTE DBMS_ROLLING.START_PLAN;

Performing a Rolling Upgrade

14-14 Concepts and Administration

2. Manually upgrade the Oracle Database software at the future primary database
and standbys that protect it.

After the START_PLAN procedure has completed, you must manually upgrade the
Oracle Database software at the future primary database and standbys which
protect the future primary database. This involves the following steps:

a. Upgrade the Oracle Database software of the transient logical (LGM) and
leading group standbys (LGS).

b. Start media recovery on the LGS databases.

c. Upgrade the transient logical standby database either manually or using the
Database Upgrade Assistant (DBUA).

d. Re-open the transient logical standby in read/write mode.

The transient logical standby and LGS databases are a functional group. The LGS
databases must be restarted on the higher version actively running media
recovery before the transient logical standby is upgraded. If the LGS databases are
not configured first, then the upgrade of the transient logical is not protected. At
the conclusion of this step, the upgrade of the transient logical is complete, and
media recovery is running on all LGS databases.

It is recommended that you wait until all LGS databases have been fully upgraded
before performing the switchover. An LGS database is fully upgraded when its
associated record in the DBA_ROLLING_DATABASES view reports a value of YES
in the UPDATED column.

3. Call the DBMS_ROLLING.SWITCHOVER procedure to switch roles between the
current and future primary database.

The SWITCHOVER procedure switches roles between the current and future
primary databases. The procedure times the switchover to occur when apply lag
is minimal which minimizes outage time of the primary service. The SWITCHOVER
procedure executes all instructions in the upgrade plan with a PHASE value of
SWITCHOVER. The types of instructions that are performed can include:

• Waiting for the apply lag at the Leading Group Master (LGM), which is
currently the transient logical standby, to fall below a threshold value

• Waiting for the apply lag at LGS databases to fall below a threshold value

• Switching the primary to the logical standby role

• Switching the Leading Group Master (LGM), which is currently a logical
standby, to the primary role

• Enabling log archive destinations at the Leading Group Master (LGM) after it
has become the new primary

Call the SWITCHOVER procedure as follows (no arguments are required):

SQL> EXECUTE DBMS_ROLLING.SWITCHOVER;

If a switchover error occurs after the switchover of the primary to the standby role
but before the transient logical could be successfully converted into the primary
role, then continue to execute the SWITCHOVER procedure at the former primary
site until successful completion.

Performing a Rolling Upgrade

Using DBMS_ROLLING to Perform a Rolling Upgrade 14-15

4. At this point, you must manually restart and mount the former primary and
remaining standby databases on the higher version of Oracle Database. Mounting
the standby databases is especially important because the DBMS_ROLLING
package needs to communicate with the standby database to continue the rolling
upgrade.

5. The overall goal of the FINISH_PLAN procedure is to configure the former
primary and TGP standbys as physical standbys which recover through the
upgrade redo. When invoked, the FINISH_PLAN procedure executes all
instructions in the upgrade plan with a PHASE value of FINISH. The types of
instructions that are performed include:

• Flashback of the former primary and TGP standbys

• Conversion of the former primary into a physical standby

• Startup of media recovery on the new redo branch

Call the FINISH_PLAN procedure as follows (no arguments are required):

SQL> EXECUTE DBMS_ROLLING.FINISH_PLAN;

14.6 Monitoring a Rolling Upgrade
There are several views available that provide information about the databases
involved in the rolling upgrade:

• DBA_ROLLING_STATUS

Provides information about the overall status of the upgrade.

• DBA_ROLLING_DATABASES

Provides information about the role, protection, and recovery state of each
database involved in the rolling upgrade.

• DBA_ROLLING_STATISTICS

Provides statistics such as start and finish times, how long services were offline,
and so on.

See Also:

• Oracle Database Reference for descriptions of these views

14.7 Rolling Back a Rolling Upgrade
To roll back a rolling upgrade procedure, you can call the
DBMS_ROLLING.ROLLBACK_PLAN procedure, as follows:

DBMS_ROLLING.ROLLBACK_PLAN;

The ROLLBACK_PLAN procedure has the following requirements:

• The ROLLBACK_PLAN procedure can only be called if the
DBMS_ROLLING.SWITCHOVER procedure has not been previously called.

Monitoring a Rolling Upgrade

14-16 Concepts and Administration

• Before you can use the ROLLBACK_PLAN procedure you must set the transient
logical standby database back to a mounted state because a flashback database is
imminent.

• If the Oracle Database software was already upgraded, then you must restart the
resultant physical standbys on the older version, and start media recovery.

14.8 Handling Role Changes That Occur During a Rolling Upgrade
If a situation arises in which a rolling upgrade is underway and you need to perform a
failover in your Oracle Data Guard configuration before the rollover completes, you
can do so only in the following circumstances:

• The failover was not performed while a DBMS_ROLLING procedure was in
progress.

• The failover was between a primary database and a physical standby database, and
was a no-data-loss failover.

• The failover was between a transient logical standby database and a physical
standby of the transient logical standby database.

A role change is a significant event that inevitably invalidates instructions in the
upgrade plan, which was tailored for a different configuration. To resume the rolling
upgrade, a new plan must be created. You must set the FAILOVER parameter to
indicate that the configuration has changed. This parameter is detected on the next
invocation of the BUILD_PLAN procedure, and the existing plan is amended
accordingly.

After the revised plan is built, you can resume the rolling upgrade.

14.9 Examples of Rolling Upgrades
This topic provides examples of a variety of rolling upgrade scenarios. At some point
in all of the scenarios, the same basic rolling upgrade steps are used. These steps are
shown in Example 14-5 (page 14-17). The rest of the examples refer back to this
example where appropriate rather than reiterating the same steps.

Some of the examples in this section instruct you to resume the rolling upgrade, which
means that you should continue where you left off. Resuming a rolling upgrade
involves identifying the current phase of the rolling upgrade and reperforming either
the PL/SQL procedure associated with the phase or the activities relevant to the
phase. The current phase of the rolling upgrade is shown in the PHASE column of the
DBA_ROLLING_STATUS view.

Note:

The scenarios provided in this section are only meant to be hypothetical
examples. You can use the Rolling Upgrade Using Oracle Active Data Guard
feature to perform database upgrades beginning with the first Oracle Database
12c patchset.

Example 14-5 Basic Rolling Upgrade Steps

1. Start the rolling upgrade:

SQL> EXECUTE DBMS_ROLLING.START_PLAN;

Handling Role Changes That Occur During a Rolling Upgrade

Using DBMS_ROLLING to Perform a Rolling Upgrade 14-17

2. Upgrade the transient logical standby and its protecting standbys.

a. Mount LGP standbys using the higher Oracle Database software version.

b. Start media recovery on Leading Group Physicals (LGP).

c. Open the Leading Group Master (LGM), which is the transient logical
standby, in upgrade mode using the higher Oracle Database software version.

d. Upgrade the Leading Group Master (LGM), which is the transient logical
standby, either manually or using the Database Upgrade Assistant (DBUA).

e. Restart the Leading Group Master (LGM), which is the transient logical
standby, in read/write mode.

3. Switchover to the Leading Group Master (LGM):

SQL> EXECUTE DBMS_ROLLING.SWITCHOVER;

4. Restart the databases in the trailing group. This includes the original primary
database and all its protecting standbys in the trailing group (TGP).

a. Mount the former primary using the higher Oracle Database version.

b. Mount the physical standbys of the former primary using the higher Oracle
Database version.

5. Finish the rolling upgrade:

SQL> EXECUTE DBMS_ROLLING.FINISH_PLAN;

Example 14-6 Rolling Upgrade Between Two Databases

The following example demonstrates a rolling upgrade on a two-site configuration
consisting of a primary database and a physical standby database. In this example,
seattle is the current primary and boston is the future primary. The seattle
database is automatically chosen as the Trailing Group Master (TGM) and participates
in the operation. By default, there is nothing that needs to be set for seattle.

1. Initialize the upgrade plan:

SQL> EXECUTE DBMS_ROLLING.INIT_PLAN(future_primary=>'boston');

2. Build the upgrade plan:

SQL> EXECUTE DBMS_ROLLING.BUILD_PLAN;

3. Perform the rolling upgrade as described in Example 14-5 (page 14-17).

Example 14-7 Rolling Upgrade Between Three Databases

The following example demonstrates a rolling upgrade on a three-site configuration
consisting of a primary databases and two physical standby databases. In this
example, seattle is the primary, boston is the future primary, and oakland is a
physical standby of seattle.

1. Initialize the upgrade plan:

SQL> EXECUTE DBMS_ROLLING.INIT_PLAN (future_primary => 'boston');

2. Build the upgrade plan:

SQL> EXECUTE DBMS_ROLLING.BUILD_PLAN;

Examples of Rolling Upgrades

14-18 Concepts and Administration

3. Perform the rolling upgrade as described in Example 14-5 (page 14-17).

Example 14-8 Rolling Upgrade Between Four Databases

The following example demonstrates a rolling upgrade on a four-site configuration
consisting of a primary database and three physical standby databases. In this
example, seattle is the primary database, boston is the future primary, oakland is
a physical standby of seattle, and atlanta is a physical standby of boston.

1. Initialize the upgrade plan:

SQL> EXECUTE DBMS_ROLLING.INIT_PLAN (future_primary => 'boston');

2. Configure atlanta as a standby in the leading group:

SQL> EXECUTE DBMS_ROLLING.SET_PARAMETER(scope=>'atlanta',name=>'member',
 value=>'leading');

3. Build the upgrade plan:

SQL> EXECUTE DBMS_ROLLING.BUILD_PLAN;

4. Perform the rolling upgrade as described in Example 14-5 (page 14-17).

Example 14-9 Rolling Upgrade on a Reader Farm

The following example demonstrates a rolling upgrade on a reader farm configuration
consisting of one primary database and nine physical standby databases. In this
example, eight physical standby databases are split into two groups of four in order
for physical standbys to be available as Oracle Active Data Guard standbys before and
after the switchover. In this example, seattle is the primary, boston is the future
primary, databases rf[a-d] are physical standbys of seattle, and databases rf[e-
h] are physical standbys of boston. The rolling upgrade is configured so that the
switchover to the new primary waits until the apply lag among the reader farm group
of the future primary database is less than 60 seconds.

1. Initialize the upgrade plan:

SQL> EXECUTE DBMS_ROLLING.INIT_PLAN (future_primary => 'boston');

2. Configure the reader farm group to protect the future primary:

SQL> EXECUTE DBMS_ROLLING.SET_PARAMETER(scope=>'rfe',name=>'member',
value=>'leading');

SQL> EXECUTE DBMS_ROLLING.SET_PARAMETER(scope=>'rff',name=>'member',
value=>'leading');

SQL> EXECUTE DBMS_ROLLING.SET_PARAMETER(scope=>'rfg',name=>'member',
value=>'leading');

SQL> EXECUTE DBMS_ROLLING.SET_PARAMETER(scope=>'rfh',name=>'member',
value=>'leading');

3. Set a maximum permitted apply lag of 60 seconds on the future primary's reader
farm:

SQL> EXECUTE DBMS_ROLLING.SET_PARAMETER(name=>'SWITCH_LGS_LAG_WAIT',
 value=>'1');

4. Build the upgrade plan:

SQL> EXECUTE DBMS_ROLLING.BUILD_PLAN;

Examples of Rolling Upgrades

Using DBMS_ROLLING to Perform a Rolling Upgrade 14-19

5. Perform the rolling upgrade as described in Example 14-5 (page 14-17).

Example 14-10 Rolling Upgrade for Application Testing

The following example demonstrates using rolling upgrade on a four-site
configuration to configure a transient logical standby and a physical of the transient
logical standby in order to validate an application on the higher version database. The
primary database is seattle, boston is the future primary, oakland is a physical
standby of seattle, and atlanta is physical standby of boston. So in this example,
seattle and oakland make up the trailing group, and boston and atlanta make
up the leading group. At the end of testing, boston and atlanta are restored back to
their original physical standby roles in order to resume protection of seattle.

1. Initialize the upgrade plan:

SQL> EXECUTE DBMS_ROLLING.INIT_PLAN (future_primary => 'boston');

2. Configure atlanta to protect the future primary:

SQL> EXECUTE DBMS_ROLLING.SET_PARAMETER(scope=>'atlanta',name=>'member',
 value=>'leading');

3. Build the upgrade plan:

SQL> EXECUTE DBMS_ROLLING.BUILD_PLAN;

4. Start the rolling upgrade:

SQL> EXECUTE DBMS_ROLLING.START_PLAN;

5. Upgrade boston and atlanta:

a. Mount atlanta using the higher database version.

b. Start media recovery on atlanta.

c. Open boston in upgrade mode using the higher database version.

d. Upgrade database boston either manually or using the Database Upgrade
Assistant (DBUA).

e. Restart boston in read/write mode.

6. Test the application, as necessary.

7. Rollback the configuration:

a. Restart boston in mounted mode

b. Roll back the upgrade:

SQL> EXECUTE DBMS_ROLLING.ROLLBACK_PLAN;

8. Start media recovery on boston and atlanta using the older database version:

a. Mount boston and atlanta using the lower database version.

b. Start media recovery on boston and atlanta.

Example 14-11 Resuming a Rolling Upgrade After a Failover to a New Primary

The following example demonstrates a no-data-loss failover of a physical standby to
the primary role followed by the reconfiguration of the rolling upgrade plan on a
three-site configuration. In this example, seattle is the primary, boston is the

Examples of Rolling Upgrades

14-20 Concepts and Administration

future primary, and oakland is a physical standby of seattle. Database oakland is
failed over to become the new primary. (The Trailing Group is (seattle, oakland)
and the Leading Group is boston.)

1. Recover remaining redo on oakland, and fail over to the new primary role:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY FINISH;

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY WITH SESSION SHUTDOWN;

SQL> STARTUP OPEN;

2. Configure log archive destinations on oakland, as necessary:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='service="boston" reopen=5
 2 LGWR ASYNC NET_TIMEOUT=180 valid_for=(ONLINE_LOGFILE, PRIMARY_ROLE)
 3 DB_UNIQUE_NAME="oakland"';

3. Set a parameter to indicate that a failover took place:

SQL> EXECUTE DBMS_ROLLING.SET_PARAMETER(name=>'failover', value=>'1');

4. Revise the upgrade plan:

SQL> EXECUTE DBMS_ROLLING.BUILD_PLAN;

5. Resume the rolling upgrade.

Example 14-12 Resuming a Rolling Upgrade After a Failover to a New Transient
Logical

The following example demonstrates a failover of a physical standby to the transient
logical role, followed by the reconfiguration of the rolling upgrade plan on a five-site
configuration. In this example, seattle is the primary, boston is the future primary,
oakland is a physical standby of seattle, and atlanta and miami are physical
standbys of boston. Database atlanta is failed over to become the new transient
logical standby.

1. Recover remaining redo on atlanta and failover to the new transient logical
role:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY FINISH;

SQL> ALTER DATABASE ACTIVATE STANDBY DATABASE;

SQL> ALTER DATABASE OPEN;

2. Configure log archive destinations on atlanta, as necessary:

SQL> alter system set log_archive_dest_2='service="seattle" reopen=5
 2 LGWR ASYNC NET_TIMEOUT=180 valid_for=(ONLINE_LOGFILE, PRIMARY_ROLE)
 3 DB_UNIQUE_NAME="atlanta"';

SQL> alter system set log_archive_dest_3='service="oakland" reopen=5
 2 LGWR ASYNC NET_TIMEOUT=180 valid_for=(ONLINE_LOGFILE, PRIMARY_ROLE)
 3 DB_UNIQUE_NAME="atlanta"';

SQL> alter system set log_archive_dest_3='service="miami" reopen=5
 2 LGWR ASYNC NET_TIMEOUT=180 valid_for=(ONLINE_LOGFILE, ALL_ROLES)
 3 DB_UNIQUE_NAME="atlanta"';

3. Specify atlanta as the new transient logical standby database:

Examples of Rolling Upgrades

Using DBMS_ROLLING to Perform a Rolling Upgrade 14-21

SQL> EXECUTE DBMS_ROLLING.SET_PARAMETER(name=>'failover', value=>'1');

4. Revise the upgrade plan:

SQL> EXECUTE DBMS_ROLLING.BUILD_PLAN;

5. Resume the rolling upgrade.

Examples of Rolling Upgrades

14-22 Concepts and Administration

15
Oracle Data Guard Scenarios

Sample scenarios are provided for different situations you might encounter while
administering your Oracle Data Guard configuration. Each of the following scenarios
can be adapted to your specific environment.

• Configuring Logical Standby Databases After a Failover (page 15-1)

• Converting a Failed Primary Into a Standby Database Using Flashback Database
(page 15-3)

• Using Flashback Database After Issuing an Open Resetlogs Statement (page 15-7)

• Recovering After the NOLOGGING Clause Is Specified (page 15-9)

• Creating a Standby Database That Uses OMF or Oracle ASM (page 15-12)

• Recovering From Lost-Write Errors on a Primary Database (page 15-14)

• Using the DBCOMP Procedure to Detect Lost Writes and Other Inconsistencies
(page 15-16)

• Converting a Failed Primary into a Standby Database Using RMAN Backups
(page 15-17)

• Changing the Character Set of a Primary Without Re-Creating Physical Standbys
(page 15-21)

• Actions Needed On a Standby After a PDB PITR or PDB Flashback On a Primary
(page 15-22)

15.1 Configuring Logical Standby Databases After a Failover
This section presents the steps required on a logical standby database after the
primary database has failed over to another standby database. After a failover has
occurred, a logical standby database cannot act as a standby database for the new
primary database until it has applied the final redo from the original primary
database. This is similar to the way the new primary database applied the final redo
during the failover. The steps you must perform depend on whether the new primary
database was a physical standby or a logical standby database prior to the failover:

• When the New Primary Database Was Formerly a Physical Standby Database
(page 15-2)

• When the New Primary Database Was Formerly a Logical Standby Database
(page 15-2)

Oracle Data Guard Scenarios 15-1

15.1.1 When the New Primary Database Was Formerly a Physical Standby Database
This steps in this scenario demonstrate how to configure a logical standby database to
support a new primary database that was a physical standby database before it
assumed the primary role. In this scenario, SAT is the logical standby database and
NYC is the primary database.

1. On the SAT database, issue the following statement to configure the
FAL_SERVER parameter to enable automatic recovery of log files.

SQL> ALTER SYSTEM SET FAL_SERVER='<tns_name_to_new_primary>';

2. Call the PREPARE_FOR_NEW_PRIMARY routine to verify that the logical
standby database is capable of serving as a standby database to the new primary
database. During this step, local copies of log files that pose a risk for data
divergence are deleted from the local database. These log files are then requested
for re-archival directly from the new primary database.

On the SAT database, issue the following statement:

SQL> EXECUTE DBMS_LOGSTDBY.PREPARE_FOR_NEW_PRIMARY(-
> former_standby_type => 'PHYSICAL' -
> dblink => 'nyc_link');

Note:

If the ORA-16109 message is returned and the 'LOGSTDBY:
prepare_for_new_primary failure -- applied too far, flashback required.'
warning is written in the alert.log, perform the following steps:

a. Flash back the database to the SCN as stated in the warning and then

b. Repeat this step before continuing.

See Flashing Back a Logical Standby Database to a Specific Applied SCN
(page 15-6) for an example of how to flash back a logical standby database
to an Apply SCN.

3. On the SAT database, issue the following statement to start SQL Apply:

SQL> SELECT PENDING_ROLE_CHANGE_TASKS FROM V$DATABASE;

Note:

A value of NONE must be returned before you attempt to reinstate an old
primary database.

15.1.2 When the New Primary Database Was Formerly a Logical Standby Database
This steps in this scenario demonstrate how to configure a logical standby database to
support a new primary database that was a logical standby database before it assumed
the primary role. In this scenario, SAT is the logical standby database and NYC is the
primary database.

1. Ensure the new primary database is ready to support logical standby databases.
On the NYC database, ensure the following query returns a value of NONE.

Configuring Logical Standby Databases After a Failover

15-2 Concepts and Administration

Otherwise the new primary database has not completed the work required to
enable support for logical standby databases. For example:

SQL> SELECT PENDING_ROLE_CHANGE_TASKS FROM V$DATABASE;

A value of NONE must be returned before you attempt to reinstate an old primary
database.

2. On the SAT database, issue the following statement to configure the
FAL_SERVER parameter to enable automatic recover of log files:

SQL> ALTER SYSTEM SET FAL_SERVER='<tns_name_to_new_primary>';

3. Call the PREPARE_FOR_NEW_PRIMARY routine to verify the logical standby
database is capable of being a standby to the new primary. During this step, local
copies of log files which pose a risk for data divergence are deleted from the local
database. These log files are then requested for re-archival directly from the new
primary database.

On the SAT database, issue the following statement:

SQL> EXECUTE DBMS_LOGSTDBY.PREPARE_FOR_NEW_PRIMARY(-
> former_standby_type => 'LOGICAL' -
> dblink => 'nyc_link');

Note:

If the ORA-16109 message is returned and the LOGSTDBY:
prepare_for_new_primary failure -- applied too far,
flashback required warning is written in the alert.log file, perform the
following steps:

a. Flash back the database to the SCN as stated in the warning and then

b. Repeat this step before continuing.

See Flashing Back a Logical Standby Database to a Specific Applied SCN
(page 15-6) for an example of how to flash back a logical standby database
to an Apply SCN.

4. On the SAT database, issue the following statements to start SQL Apply:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY NEW PRIMARY nyc_link;

This statement must always be issued without the real-time apply option enabled.
To enable real-time apply on the logical standby database, wait for the above
statement to complete successfully, and then issue the following statements:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;
SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

15.2 Converting a Failed Primary Into a Standby Database Using
Flashback Database

After a failover occurs, the original primary database can no longer participate in the
Oracle Data Guard configuration until it is repaired and established as a standby
database in the new configuration. To do this, you can use the Flashback Database
feature to recover the failed primary database to a point in time before the failover

Converting a Failed Primary Into a Standby Database Using Flashback Database

Oracle Data Guard Scenarios 15-3

occurred, and then convert it into a physical or logical standby database in the new
configuration. The following sections describe:

• Flashing Back a Failed Primary Database into a Physical Standby Database
(page 15-4)

• Flashing Back a Failed Primary Database into a Logical Standby Database
(page 15-5)

Note:

You must have already enabled Flashback Database on the original primary
database before the failover. See Oracle Database Backup and Recovery User's
Guide for more information.

• Flashing Back a Logical Standby Database to a Specific Applied SCN (page 15-6)

See Also:

Oracle Data Guard Broker for information about automatic reinstatement of the
failed primary database as a new standby database (as an alternative to using
Flashback Database)

15.2.1 Flashing Back a Failed Primary Database into a Physical Standby Database
The following steps assume that a failover has been performed to a physical standby
database and that Flashback Database was enabled on the old primary database at the
time of the failover. This procedure brings the old primary database back into the
Oracle Data Guard configuration as a physical standby database.

1. On the new primary database, issue the following query to determine the SCN at
which the old standby database became the new primary database:

SQL> SELECT TO_CHAR(STANDBY_BECAME_PRIMARY_SCN) FROM V$DATABASE;

2. Shut down the old primary database (if necessary), mount it, and flash it back to
the value for STANDBY_BECAME_PRIMARY_SCN that was determined in the
previous step.

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP MOUNT;
SQL> FLASHBACK DATABASE TO SCN standby_became_primary_scn;

3. To convert the database to a physical standby database, issue the following
statement on the old primary database:

SQL> ALTER DATABASE CONVERT TO PHYSICAL STANDBY;

4. To start transporting redo to the new physical standby database, perform the
following steps on the new primary database:

a. Issue the following query to see the current state of the archive destinations:

SQL> SELECT DEST_ID, DEST_NAME, STATUS, PROTECTION_MODE, DESTINATION, -
> ERROR,SRL FROM V$ARCHIVE_DEST_STATUS;

b. If necessary, enable the destination:

Converting a Failed Primary Into a Standby Database Using Flashback Database

15-4 Concepts and Administration

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_n=ENABLE;

c. Perform a log switch to ensure the standby database begins receiving redo
data from the new primary database, and verify it was sent successfully. Issue
the following SQL statements on the new primary database:

SQL> ALTER SYSTEM SWITCH LOGFILE;
SQL> SELECT DEST_ID, DEST_NAME, STATUS, PROTECTION_MODE, DESTINATION,-
> ERROR,SRL FROM V$ARCHIVE_DEST_STATUS;

On the new standby database, you may also need to change the
LOG_ARCHIVE_DEST_n initialization parameters so that redo transport
services do not transmit redo data to other databases.

5. Start Redo Apply on the new physical standby database:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DISCONNECT;

Redo Apply automatically stops each time it encounters a redo record that is
generated as the result of a role transition, so Redo Apply needs to be restarted
one or more times until it has applied beyond the SCN at which the new primary
database became the primary database. Once the failed primary database is
restored and is running in the standby role, you can optionally perform a
switchover to transition the databases to their original (pre-failure) roles. See
"Performing a Switchover to a Physical Standby Database (page 9-9)" for more
information.

15.2.2 Flashing Back a Failed Primary Database into a Logical Standby Database
These steps assume that the Oracle Data Guard configuration has already completed a
failover involving a logical standby database and that Flashback Database has been
enabled on the old primary database. This procedure brings the old primary database
back into the Oracle Data Guard configuration as a new logical standby database
without having to formally instantiate it from the new primary database.

1. Determine the flashback SCN and the recovery SCN. The flashback SCN is the SCN
to which the failed primary database is flashed back. The recovery SCN is the SCN
to which the failed primary database is recovered. Issue the following query on the
new primary to identify these SCNs:

SQL> SELECT merge_change# AS FLASHBACK_SCN, processed_change# AS RECOVERY_SCN -
> FROM DBA_LOGSTDBY_HISTORY -
> WHERE stream_sequence# = (SELECT MAX(stream_sequence#)-1 -
> FROM DBA_LOGSTDBY_HISTORY);

2. Flash back the failed primary database to the flashback SCN identified in the
previous step:

SQL> FLASHBACK DATABASE TO SCN flashback_scn;

3. Convert the failed primary into a physical standby, and remount the standby
database in preparation for recovery:

SQL> ALTER DATABASE CONVERT TO PHYSICAL STANDBY;

4. Configure the FAL_SERVER parameter to enable automatic recovery of log files.
Issue the following statement on the physical standby (failed primary):

SQL> ALTER SYSTEM SET FAL_SERVER='<tns_name_to_new_primary>';

Converting a Failed Primary Into a Standby Database Using Flashback Database

Oracle Data Guard Scenarios 15-5

5. Remove any archive logs created at the time of or, after the failover operation, from
the failed primary database. If the failed primary database was isolated from the
standby, it could have divergent archive logs that are not consistent with the
current primary database. To ensure these divergent archive logs are never
applied, they must be deleted from backups and the fast recovery area. You can use
the following RMAN command to delete the relevant archive logs from the fast
recovery area:

RMAN> DELETE FORCE ARCHIVELOG FROM SCN ARCHIVE_SCN;

Once deleted, these divergent logs and subsequent transactions can never be
recovered.

6. Recover until the recovery SCN identified in Step 1:

SQL> RECOVER MANAGED STANDBY DATABASE UNTIL CHANGE recovery_scn;

7. Enable the database guard:

SQL> ALTER DATABASE GUARD ALL;

8. Activate the physical standby to become a primary database:

SQL> ALTER DATABASE ACTIVATE STANDBY DATABASE;

9. Open the database:

SQL> ALTER DATABASE OPEN;

10. Create a database link to the new primary, and start SQL Apply:

SQL> CREATE PUBLIC DATABASE LINK mylink -
> CONNECT TO system IDENTIFIED BY password -
> USING 'service_name_of_new_primary_database';

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY NEW PRIMARY mylink;

The role reversal is now complete.

15.2.3 Flashing Back a Logical Standby Database to a Specific Applied SCN
One of the benefits of a standby database is that Flashback Database can be performed
on the standby database without affecting the primary database service. Flashing back
a database to a specific point in time is a straightforward task, however on a logical
standby database, you may want to flash back to a time just before a known
transaction was committed. Such a need can arise when configuring a logical standby
database with a new primary database after a failover.

The following steps describe how to use Flashback Database and SQL Apply to
recover to a known applied SCN.

1. Once you have determined the known SCN at the primary (APPLIED_SCN), issue
the following query to determine the corresponding SCN at the logical standby
database, to use for the flashback operation:

SQL> SELECT DBMS_LOGSTDBY.MAP_PRIMARY_SCN (PRIMARY_SCN => APPLIED_SCN) -
> AS TARGET_SCN FROM DUAL;

2. Issue the following SQL statements to flash back the logical standby database to the
specified SCN, and open the logical standby database with the RESETLOGS option:

Converting a Failed Primary Into a Standby Database Using Flashback Database

15-6 Concepts and Administration

SQL> SHUTDOWN;
SQL> STARTUP MOUNT EXCLUSIVE;
SQL> FLASHBACK DATABASE TO SCN <TARGET_SCN>;
SQL> ALTER DATABASE OPEN RESETLOGS;

3. Issue the following query to confirm SQL Apply has applied less than or up to the
APPLIED_SCN.

SQL> SELECT APPLIED_SCN FROM V$LOGSTDBY_PROGRESS;

15.3 Using Flashback Database After Issuing an Open Resetlogs
Statement

Suppose an error has occurred on the primary database in an Oracle Data Guard
configuration in which the standby database is using real-time apply. In this situation,
the same error is applied on the standby database.

However, if Flashback Database is enabled, you can revert the primary and standby
databases back to their pre-error condition by issuing the FLASHBACK DATABASE and
OPEN RESETLOGS statements on the primary database, and then issuing a similar
FLASHBACK STANDBY DATABASE statement on the standby database before
restarting apply services. (If Flashback Database is not enabled, you need to re-create
the standby database, as described in Creating a Physical Standby Database (page 3-1)
and Creating a Logical Standby Database (page 4-1), after the point-in-time recovery
was performed on the primary database.)

15.3.1 Flashing Back a Physical Standby Database to a Specific Point-in-Time
The following steps describe how to avoid re-creating a physical standby database
after you issued the OPEN RESETLOGS statement on the primary database.

1. Determine the SCN before the RESETLOGS operation occurred. For example, on
the primary database, use the following query to obtain the value of the system
change number (SCN) that is 2 SCNs before the RESETLOGS operation occurred on
the primary database:

SQL> SELECT TO_CHAR(RESETLOGS_CHANGE# - 2) FROM V$DATABASE;

2. On the standby database, obtain the current SCN with the following query:

SQL> SELECT TO_CHAR(CURRENT_SCN) FROM V$DATABASE;

3. If the value of CURRENT_SCN is larger than the value of resetlogs_change# - 2, issue
the following statement to flash back the standby database.

SQL> FLASHBACK STANDBY DATABASE TO SCN resetlogs_change# -2;

• If the value of CURRENT_SCN is less than the value of the resetlogs_change# - 2,
skip to Step 4.

• If the standby database's SCN is far enough behind the primary database's SCN,
and the new branch of redo from the OPEN RESETLOGS statement has been
registered at the standby, then apply services can continue through the OPEN
RESETLOGS statement without stopping. In this case, flashing back the database
is unnecessary because apply services do not stop upon reaching the OPEN
RESETLOGS statement in the redo data.

4. To start Redo Apply on the physical standby database, issue the following
statement:

Using Flashback Database After Issuing an Open Resetlogs Statement

Oracle Data Guard Scenarios 15-7

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DISCONNECT;

The standby database is now ready to receive and apply redo from the primary
database.

15.3.2 Flashing Back a Logical Standby Database to a Specific Point-in-Time
The following steps describe how to avoid re-creating a logical standby database after
you have flashed back the primary database and opened it by issuing an OPEN
RESETLOGS statement.

Note:

If SQL Apply detects the occurrence of a resetlogs operation at the primary
database, it automatically mines the correct branch of redo, if it is possible to
do so without having to flashback the logical standby database. Otherwise,
SQL Apply stops with an error ORA-1346: LogMiner processed redo
beyond specified reset log scn. In this section, it is assumed that
SQL Apply has already stopped with such an error.

1. On the primary database, use the following query to obtain the value of the system
change number (SCN) that is 2 SCNs before the RESETLOGS operation occurred on
the primary database:

SQL> SELECT TO_CHAR(RESETLOGS_CHANGE# - 2) AS FLASHBACK_SCN FROM V$DATABASE;

2. Determine the target SCN for flashback operation at the logical standby.

In this step, the FLASHBACK_SCN value for PRIMARY_SCN is from Step 1.

SQL> SELECT DBMS_LOGSTDBY.MAP_PRIMARY_SCN (PRIMARY_SCN => FLASHBACK_SCN) -
> AS TARGET_SCN FROM DUAL;

3. Issue the following SQL statements to flash back the logical standby database to the
specified SCN, and open the logical standby database with the RESETLOGS option:

SQL> SHUTDOWN;
SQL> STARTUP MOUNT EXCLUSIVE;
SQL> FLASHBACK DATABASE TO SCN <TARGET_SCN>;
SQL> ALTER DATABASE OPEN RESETLOGS;

4. Confirm that a log file from the primary's new branch is registered before SQL
apply is started. Issue the following query on the primary database:

SQL> SELECT resetlogs_id FROM V$DATABASE_INCARNATION WHERE status = 'CURRENT';

Issue the following query on the standby database:

SQL> SELECT * FROM DBA_LOGSTDBY_LOG WHERE resetlogs_id = resetlogs_id_at_primary;

If one or more rows are returned, it confirms that there are registered logfiles from
the primary's new branch.

5. Start SQL Apply:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

Using Flashback Database After Issuing an Open Resetlogs Statement

15-8 Concepts and Administration

15.4 Recovering After the NOLOGGING Clause Is Specified
Some SQL statements allow you to specify a NOLOGGING clause so that the operation
is not logged in the online redo log file. In actuality, a redo record is still written to the
online redo log file, but there is no data associated with the record. This can result in
log application or data access errors at the standby site and manual recovery might be
required to resume applying log files.

To avoid these problems, Oracle recommends that you always specify the FORCE
LOGGING clause in the CREATE DATABASE or ALTER DATABASE statements.

If the database FORCE LOGGING clause is not enabled, then the interaction between
logging and nologging clauses, specified at various different levels, is captured in the
V$DATABASE.FORCE_LOGGING column (for CDBs) or the
DBA_PDBS.FORCE_LOGGING column (for PDBs).

See Oracle Database Administrator’s Guide.

15.4.1 Recovery Steps for Logical Standby Databases
On logical standby databases, when SQL Apply encounters a redo record for an
operation performed with the NOLOGGING clause on a table that is not being skipped,
it stops with the following error:

ORA-16211 unsupported record found in the archived redo log

To recover after the NOLOGGING clause is specified, re-create one or more tables from
the primary database, as described in Adding or Re-Creating Tables On a Logical
Standby Database (page 11-21).

Note:

In general, use of the NOLOGGING clause is not recommended. Therefore, if
you know in advance that operations using the NOLOGGING clause will be
performed on certain tables in the primary database, then you might want to
prevent the application of SQL statements associated with these tables to the
logical standby database. You can do this by using the
DBMS_LOGSTDBY.SKIP procedure.

15.4.2 Recovery Steps for Physical Standby Databases
When the redo is applied to the physical standby database, a portion of the data file is
marked as being unrecoverable. When you either fail over to the physical standby
database, or open the standby database for read-only access, and attempt to read the
range of blocks that are marked as UNRECOVERABLE, you see error messages similar to
the following:

ORA-01578: ORACLE data block corrupted (file # 1, block # 2521)
ORA-01110: data file 1: '/oracle/dbs/stdby/tbs_1.dbf'
ORA-26040: Data block was loaded using the NOLOGGING option

To recover after the NOLOGGING clause is specified, you need to use Recovery
Manager (RMAN) to perform a RECOVER ... NONLOGGED BLOCK command. The
following steps describe a simple approach that recovers all nonlogged blocks. (See
follow-on sections for other approaches such as determining whether a backup is

Recovering After the NOLOGGING Clause Is Specified

Oracle Data Guard Scenarios 15-9

required after unrecoverable operations, and recovering parts of a physical standby
database.)

1. Stop recovery on the standby:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

2. Recover the nonlogged blocks by connecting RMAN to the standby and issue the
following command:

RMAN> RECOVER DATABASE NONLOGGED BLOCK;

If the presence of unrecoverable blocks is only found after a switchover, then you
can use these same two steps, but the primary database must be just mounted
(not open) and, RMAN must be connected to the primary.

It is possible that the RMAN RECOVER command may not be able to recover all
the nonlogged blocks. The reasons that this might happen are detailed in the alert
log of the database from which the RMAN command was executed. The most
common reason is that a block has been modified recently at the primary and not
yet written to its corresponding data file. This may mean that the block sent to the
standby is too old to replace the unrecoverable block on the standby. To resolve
this, issue the RECOVER command again at a later time after the block has been
written out to the data file.

The following is an example of an alert log entry for an execution of the RECOVER
command which left some blocks unrecovered:

Started Nonlogged Block Replacement recovery on file 7 (ospid 13005 rcvid
11319003446180375696)
Finished Nonlogged Block Replacement recovery on file 7. 5 blocks remain
 Statistics for replacement block source database (service=dg3tns)
 (Use of it stopped due to error 12942 received from it)
 Blocks requested 5, blocks received 0.

 Reason replacement blocks accepted or rejected Blocks Last block
 -- ---------- ----------
 Not received: Rejected by sender. Wrong state or SCN 5 21

In this case, the command was run on a standby and the primary did not send any
blocks but instead reported the following Oracle error: .

ORA-12942: database incarnation at source does not match

An examination of the alert logs would reveal that the primary had performed
FLASHBACK DATABASE and OPEN RESETLOGS commands, but the standby had not
been flashed back. This means the standby would now be on an orphaned branch of
redo and therefore the primary could not supply data blocks that would be known to
be the correct version.

Note: When a Data Guard configuration has more than one standby, an
RMAN RECOVER command that is run at a standby attempts to fetch blocks
from the primary only. When the RECOVER command is run at the primary it
attempts to fetch blocks from only the one standby that it determines to be
most likely to yield good blocks, which typically means the standby that is
closest to being in synch with the primary.

Recovering After the NOLOGGING Clause Is Specified

15-10 Concepts and Administration

15.4.3 Determining If a Backup Is Required After Unrecoverable Operations
If you performed unrecoverable operations on your primary database, determine if a
new backup operation is required by following these steps:

1. Query the V$DATAFILE view on the primary database to determine the system
change number (SCN) or the time at which the Oracle database generated the most
recent invalidated redo data.

2. Issue the following SQL statement on the primary database to determine if you
need to perform another backup:

SQL> SELECT UNRECOVERABLE_CHANGE#,-
> TO_CHAR(UNRECOVERABLE_TIME, 'mm-dd-yyyy hh:mi:ss') -
> FROM V$DATAFILE;

3. If the query in the previous step reports an unrecoverable time for a data file that is
more recent than the time when the data file was last backed up, then make
another backup of the data file in question.

See Oracle Database Reference for more information about the V$DATAFILE view.

15.4.4 Recovery Steps for Part of a Physical Standby Database
The RMAN RECOVER ... NONLOGGED BLOCK command can be used to recover
blocks that belong to a set of data files or a set of tablespaces or just a single pluggable
database (PDB) as well as the multitenant container database (CDB).

This ability may be useful if it is acceptable to have nonlogged blocks remain in some
data files, for example because it is explicitly known that the nonlogged blocks were
created as a result of loading rows into an object that has now been dropped.

The view V$NONLOGGED_BLOCK usually lists the ranges of known invalid blocks for
each data file and the entries are maintained as part of media recovery. However,
there are times when the information is not complete. Typically this is after upgrading
from a release prior to Oracle Database 12c Release 1 (12.1) or after restoring an
operating system backup of a data file. The next time media recovery is run, the stale
entries are removed and any newly invalidated blocks are recorded but any prior
invalid blocks do not have entries in V$NONLOGGED_BLOCK. The
FIRST_NONLOGGED_SCN column in the V$DATAFILE view can still be used to see
that there is at least one invalid block in a data file even when there are no V
$NONLOGGED_BLOCK entries for a data file.

The RMAN command VALIDATE ... NONLOGGED BLOCK can be used to bring the
entries in V$NONLOGGED_BLOCK back into synchronization with the data files. It does
this by determining if the existing ranges are complete and if not, it scans the
necessary data files to identify any invalid blocks and make sure they are captured by
an entry in V$NONLOGGED_BLOCK. The VALIDATE ... NONLOGGED BLOCK
command has the same options as the RECOVER ... NONLOGGED BLOCK command
to validate just a set of data files or a set of tablespaces or a PDB, as well as the CDB.

Recovering After the NOLOGGING Clause Is Specified

Oracle Data Guard Scenarios 15-11

Note: Entries in the V$NONLOGGED_BLOCK view represent a superset of the
invalid blocks, and some normal blocks that are close to an invalid block may
be included. For example, if there is an entry for file 7 that starts at block 100
and has 50 blocks in it, then none, some, or all of those 50 blocks are invalid.
After the VALIDATE command is run, there are no ranges that have no invalid
blocks in them and the first and last block of a range are also be invalid
blocks. However, there are limits to the total number of ranges that can be
held in the control file so sometimes it may be necessary to merge ranges for
the same file, causing regular blocks to be included in a range.

If only offline data files are to be validated or recovered then the database to which
they belong can be open at the time the RMAN command is run.

15.5 Creating a Standby Database That Uses OMF or Oracle ASM
Creating a Physical Standby Database (page 3-1) and Creating a Logical Standby
Database (page 4-1) described how to create physical and logical standby databases.
This section augments the discussions in those chapters with additional steps that
must be performed if the primary database uses Oracle Managed Files (OMF) or
Oracle Automatic Storage Management (Oracle ASM).

Note:

The discussion in this section is presented at a level of detail that assumes you
already know how to create a physical standby database and are an
experienced user of the RMAN, OMF, and Oracle ASM features. For more
information, see:

• Creating a Physical Standby Database (page 3-1), Creating a Logical
Standby Database (page 4-1), and Creating a Standby Database with
Recovery Manager (page E-1) for information about creating physical
and logical standby databases

• Oracle Database Administrator's Guide for information about OMF

• Oracle Automatic Storage Management Administrator's Guide for more
information about Oracle ASM

• Oracle Database Backup and Recovery User's Guide and Oracle Database Backup
and Recovery Reference for information about RMAN

Perform the following tasks to prepare for standby database creation:

1. Enable forced logging on the primary database.

2. Enable archiving on the primary database.

3. Set all necessary initialization parameters on the primary database.

4. Create an initialization parameter file for the standby database.

5. If the primary database is configured to use OMF, then Oracle recommends that
the standby database be configured to use OMF, too. To do this, set the
DB_CREATE_FILE_DEST and DB_CREATE_ONLINE_LOG_DEST_n initialization
parameters to appropriate values. Maintenance and future role transitions are

Creating a Standby Database That Uses OMF or Oracle ASM

15-12 Concepts and Administration

simplified if the same disk group names are used for both the primary and
standby databases.

Note:

If OMF parameters are set on the standby, then new files on that standby are
always created as OMF, regardless of how they were created on the primary.
Therefore, if both the DB_FILE_NAME_CONVERT and
DB_CREATE_FILE_DEST parameters are set on the standby, the
DB_CREATE_FILE_DEST parameter takes precedence.

6. Set the STANDBY_FILE_MANAGEMENT initialization parameter to AUTO.

7. Configure Oracle Net, as required, to allow connections to the standby database.

8. Configure redo transport authentication as described in Configure Redo
Transport Authentication (page 3-2).

9. Start the standby database instance without mounting the control file.

Perform the following tasks to create the standby database:

1. If the standby database is going to use Oracle ASM, create an Oracle ASM
instance if one does not already exist on the standby database system.

2. Use the RMAN BACKUP command to create a backup set that contains a copy of
the primary database's data files, archived log files, and a standby control file.

3. Use the RMAN DUPLICATE FOR STANDBY command to copy the data files,
archived redo log files and standby control file in the backup set to the standby
database's storage area.

The DUPLICATE FOR STANDBY command performs the actual data movement at
the standby instance. If the backup set is on tape, the media manager must be
configured so that the standby instance can read the backup set. If the backup set
is on disk, the backup pieces must be readable by the standby instance, either by
making their primary path names available through Network File Storage (NFS),
or by copying them to the standby system and using RMAN CATALOG
BACKUPPIECE command to catalog the backup pieces before restoring them.

After you successfully complete these steps, continue with the steps in Verify the
Physical Standby Database Is Performing Properly (page 3-12), to verify the
configuration of the physical standby database.

To create a logical standby database, continue with the standby database creation
process described in Creating a Logical Standby Database (page 4-1), but with the
following modifications:

1. For a logical standby database, setting the DB_CREATE_FILE_DEST parameter
does not force the creation of OMF filenames. However, if this parameter was set
on the primary database, it must also be set on the standby database.

2. After creating a logical standby control file on the primary system, do not use an
operating system command to copy this file to the standby system. Instead, use the
RMAN RESTORE CONTROLFILE command to restore a copy of the logical standby
control file to the standby system.

3. If the primary database uses OMF files, use RMAN to update the standby database
control file to use the new OMF files created on the standby database. To perform

Creating a Standby Database That Uses OMF or Oracle ASM

Oracle Data Guard Scenarios 15-13

this operation, connect only to the standby database, as shown in the following
example:

> RMAN TARGET sys@lstdby

target database Password: password

RMAN> CATALOG START WITH '+stby_diskgroup';
RMAN> SWITCH DATABASE TO COPY;

After you successfully complete these steps, continue with the steps in Open the
Logical Standby Database (page 4-9) to start, recover, and verify the logical standby
database.

15.6 Recovering From Lost-Write Errors on a Primary Database
During media recovery in an Oracle Data Guard configuration, a physical standby
database can be used to detect lost-write data corruption errors on the primary
database. This is done by comparing SCNs of blocks stored in the redo log on the
primary database to SCNs of blocks on the physical standby database. If the SCN of
the block on the primary database is lower than the SCN on the standby database,
then there was a lost-write error on the primary database.

In such a situation, if lost write detection (set with the DB_LOST_WRITE_PROTECT
initialization parameter) is enabled at both the primary and standby, then a recovery
attempt at the standby results in an ORA-752 error. If lost write detection is not
enabled, then a recovery attempt results in an ORA-600 [3020] error. However, not
all ORA-600 [3020] errors are due to lost writes at the primary. Therefore, before
following the guidelines given in this section, work with your Oracle Support
representative to determine whether the root cause for the ORA-600 [3020] error
was indeed a lost write that occurred on the primary. Also see "Resolving ORA-752 or
ORA-600 [3020] During Standby Recovery" in the My Oracle Support Note 1265884.1
at http://support.oracle.com.

Note:

Because lost-write errors are detected only when a block is read into the cache
by a primary and the corresponding redo is later compared to the block on the
standby, there may be undetected stale blocks on both the primary and the
standby that have not yet been read and verified. These stale blocks do not
affect operation of the current database because until those blocks are read, all
blocks that have been used up to the SCN of the currently applied redo on the
standby to do queries or updates were verified by the standby.

When a primary lost-write error is detected on the standby, one or more block error
messages similar to the following for each stale block are printed in the alert file of the
standby database:

Tue Dec 12 19:09:48 2006
STANDBY REDO APPLICATION HAS DETECTED THAT THE PRIMARY DATABASE
LOST A DISK WRITE OF BLOCK 26, FILE 7
NO REDO AT OR AFTER SCN 389667 CAN BE USED FOR RECOVERY.
.
.
.

Recovering From Lost-Write Errors on a Primary Database

15-14 Concepts and Administration

http://support.oracle.com

The alert file then shows that an ORA-00752 error is raised on the standby database
and the managed recovery is cancelled:

Slave exiting with ORA-752 exception
Errors in file /oracle/log/diag/rdbms/dgstwrite2/stwrite2/trace/
stwrite2_pr00_23532.trc:
ORA-00752: recovery detected a lost write of a data block
ORA-10567: Redo is inconsistent with data block (file# 7, block# 26)
ORA-10564: tablespace TBS_2
ORA-01110: data file 7: '/oracle/dbs/btbs_21.f'
ORA-10561: block type 'TRANSACTION MANAGED DATA BLOCK', data object# 57503
.
.
.

The standby database is then recovered to a consistent state, without any corruption to
its data files caused by this error, at the SCN printed in the alert file:

Recovery interrupted!
Recovered data files to a consistent state at change 389569

This last message may appear significantly later in the alert file and it may have a
lower SCN than the block error messages. Also, the primary database may operate
without visible errors even though its data files may already be corrupted.

The recommended procedure to recover from such errors is a failover to the physical
standby, as described in the following steps.

Steps to Failover to a Physical Standby After Lost-Writes Are Detected on the
Primary

1. Shut down the primary database. All data at or after the SCN printed in the block
error messages is lost.

2. Issue the following SQL statement on the standby database to convert it to a
primary:

SQL> ALTER DATABASE ACTIVATE STANDBY DATABASE;

Database altered.

Tue Dec 12 19:15:23 2006
alter database activate standby database
ALTER DATABASE ACTIVATE [PHYSICAL] STANDBY DATABASE (stwrite2)
RESETLOGS after incomplete recovery UNTIL CHANGE 389569
Resetting resetlogs activation ID 612657558 (0x24846996)
Online log /oracle/dbs/bt_log1.f: Thread 1 Group 1 was previously cleared
Online log /oracle/dbs/bt_log2.f: Thread 1 Group 2 was previously cleared
Standby became primary SCN: 389567
Tue Dec 12 19:15:23 2006
Setting recovery target incarnation to 3
Converting standby mount to primary mount.
ACTIVATE STANDBY: Complete - Database mounted as primary (stwrite2)
Completed: alter database activate standby database

3. Back up the new primary. Performing a backup immediately is a necessary safety
measure, because you cannot recover changes made after the failover without a
complete backup copy of the database. As a result of the failover, the original
primary database can no longer participate in the Oracle Data Guard

Recovering From Lost-Write Errors on a Primary Database

Oracle Data Guard Scenarios 15-15

configuration, and all other standby databases now receive and apply redo data
from the new primary database.

4. Open the new primary database.

5. An optional step is to recreate the failed primary as a physical standby. You can
do this using the database backup taken at the new primary in step 3. (You cannot
use flashback database or the Oracle Data Guard broker to reinstantiate the old
primary database in this situation.) Be aware that a physical standby created using
the backup taken from the new primary has the same data files as the old standby.
Therefore, any undetected lost writes that the old standby had before it was
activated are not detected by the new standby, since the new standby compares
the same blocks. Any new lost writes that happen on either the primary or the
standby are detected.

See Also:

Oracle Database Backup and Recovery User's Guide for more information about
enabling lost-write detection

15.7 Using the DBCOMP Procedure to Detect Lost Writes and Other
Inconsistencies

You can use the PL/SQL procedure, DBMS_DBCOMP.DBCOMP, to detect lost writes and
also to detect inconsistencies between a primary database and physical standby
databases.

The DBMS_DBCOMP.DBCOMP procedure compares the same data blocks on the primary
and physical standby databases. The procedure can be executed at any time. (It does
not require that the DB_LOST_WRITE_PROTECT initialization parameter be enabled.)

You can monitor the progress of an on-going block comparison operation by querying
the V$SESSION_LONGOPS view.

Note: Logical standby databases, far sync instances, and cascaded standbys
cannot be the target database for the DBMS_DBCOMP.DBCOMP procedure.

The DBMS_DBCOMP.DBCOMP procedure assumes that there is one primary database
and one or more physical standby databases. The databases should be at least
mounted before block comparison.

In the following example situations, assume that there is a primary database with a
unique name of dgmain, and that physical standby databases are named dgmainb,
dgmainc, dgmaind, and so on.

Example 15-1 Primary and All Standbys Are Mounted or Open and DBCOMP Is
Executed From the Primary

In this situation, when the DBCOMP procedure is executed from the primary database,
the specified data files are compared block by block between the primary and every
physical standby database. For example, suppose that you perform the following
query:

SQL> exec sys.dbms_dbcomp.dbcomp(‘1’,’BlockCompare’,:retval);

Using the DBCOMP Procedure to Detect Lost Writes and Other Inconsistencies

15-16 Concepts and Administration

The generated output files are BlockCompare_dgmainb_1 and
BlockCompare_dgmainc_d_1.

Example 15-2 Primary and All Standbys Are Mounted or Open and DBCOMP Is
Executed From a Standby

In this situation, when the DBCOMP procedure is executed from one of the standby
databases (for example, dgmainb), the specified data files are compared only between
the primary and that particular standby database. Other standby databases are not
considered. For example, suppose that you perform the following query:

SQL> exec sys.dbms_dbcomp.dbcomp(‘1’,’BlockCompare’,:retval);

The generated output file is BlockCompare_dgmain_1.

Example 15-3 Primary Is Mounted or Open, But Not All Standbys Are, and DBCOMP
is Executed From the Primary

In this situation, when theDBCOMP procedure is executed on the primary, the specified
data files are compared between the primary database and the mounted or open
physical standby databases. For those standby databases that are neither mounted nor
open, no action is taken.

Example 15-4 Primary Is Mounted or Open, But Not All Standbys Are, and DBCOMP
is Executed From a Standby

In this situation, the specified data files are compared between the primary and the
standby from which the DBCOMP procedure is executed.

Example 15-5 Primary is Not Mounted, But Multiple Standbys Are Mounted or Open

Because the primary database is neither mounted nor open, theDBCOMP procedure
cannot find an appropriate pair of primary and physical standby databases to
compare. An ORA error message is not returned, but a message similar to the following
is printed out in the corresponding output file: Remote database is not in the
primary role.

Example 15-6 Primary Is Mounted or Open, But No Standbys Are Mounted or Open

Because no appropriate pair of primary and physical standby databases are found, a
message is printed out in the corresponding output file, but no ORA error is returned.

Related Topics:

Oracle Database PL/SQL Packages and Types Reference

15.8 Converting a Failed Primary into a Standby Database Using RMAN
Backups

To convert a failed primary database, Oracle recommends that you enable the
Flashback Database feature on the primary and follow the procedure described in
either Flashing Back a Failed Primary Database into a Physical Standby Database
(page 15-4) or Flashing Back a Failed Primary Database into a Logical Standby
Database (page 15-5). The procedures in those sections describe the fastest ways to
convert a failed primary into either a physical or logical standby. However, if
Flashback Database was not enabled on the failed primary, you can still convert the
failed primary into either a physical or logical standby using a local backup of the
failed primary, as described in the following sections:

Converting a Failed Primary into a Standby Database Using RMAN Backups

Oracle Data Guard Scenarios 15-17

• Converting a Failed Primary into a Physical Standby Using RMAN Backups
(page 15-18)

• Converting a Failed Primary into a Logical Standby Using RMAN Backups
(page 15-20)

15.8.1 Converting a Failed Primary into a Physical Standby Using RMAN Backups
The steps in this section describe how to convert a failed primary into a physical
standby by using RMAN backups. This procedure requires that the COMPATIBLE
initialization parameter of the old primary be set to at least 11.0.0.

1. On the new primary database, issue the following query to determine the SCN at
which the old standby database became the new primary database:

SQL> SELECT TO_CHAR(STANDBY_BECAME_PRIMARY_SCN) FROM V$DATABASE;

2. Restore the database with a backup taken before the old primary had reached the
SCN at which the standby became the new primary
(standby_became_primary_scn). Then, perform a point-in-time recovery to
recover the old primary to that same point.

Issue the following RMAN commands:

RMAN> RUN
 {
 SET UNTIL SCN <standby_became_primary_scn + 1>;
 RESTORE DATABASE;
 RECOVER DATABASE;
 }

With user-managed recovery, you can first restore the database manually.
Typically, a backup taken a couple of hours before the failover would be old
enough. You can then recover the failed primary using the following command:

SQL> RECOVER DATABASE USING BACKUP CONTROLFILE UNTIL CHANGE -
> <standby_became_primary_scn + 1>;

Unlike a reinstantiation that uses Flashback Database, this procedure adds one to
standby_became_primary_scn. For data files, flashing back to an SCN is
equivalent to recovering up until that SCN plus one.

3. Perform the following steps on the old primary database:

a. Issue the following statement on the old primary database:

SQL> ALTER DATABASE CONVERT TO PHYSICAL STANDBY;

b. Shut down and restart the database:

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP MOUNT;

4. Issue the following command:

SQL> ALTER DATABASE OPEN READ ONLY;

The goal of this step is to synchronize the control file with the database by using a
dictionary check. After this command, check the alert log for any actions
suggested by the dictionary check. Typically, no user action is needed if the old

Converting a Failed Primary into a Standby Database Using RMAN Backups

15-18 Concepts and Administration

primary was not in the middle of adding or dropping data files during the
failover.

5. If you have purchased a license for the Oracle Active Data Guard option and
would like to operate your physical standby database in active query mode, skip
this step. Otherwise, bring your standby database to the mount state.

For example:

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP MOUNT;

6. Before the new standby database was created, the new primary database probably
stopped transmitting redo to the remote destination. To restart redo transport
services, perform the following steps on the new primary database:

a. Issue the following query to see the current state of the archive destinations:

SQL> SELECT DEST_ID, DEST_NAME, STATUS, PROTECTION_MODE, DESTINATION, -
> ERROR,SRL FROM V$ARCHIVE_DEST_STATUS;

b. If necessary, enable the destination:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_n=ENABLE;

c. Perform a log switch to ensure the standby database begins receiving redo
data from the new primary database, and verify it was sent successfully.

Note:

This is an important step in order for the old primary to become a new
standby following the new primary. If this step is not done, the old primary
may recover to an incorrect database branch. The only way to correct the
problem then is to convert the old primary again.

At the SQL prompt, enter the following statements:

SQL> ALTER SYSTEM SWITCH LOGFILE;
SQL> SELECT DEST_ID, DEST_NAME, STATUS, PROTECTION_MODE, DESTINATION, -
> ERROR,SRL FROM V$ARCHIVE_DEST_STATUS;

On the new standby database, you may also need to change the
LOG_ARCHIVE_DEST_n initialization parameters so that redo transport
services do not transmit redo data to other databases. This step can be
skipped if both the primary and standby database roles were set up with the
VALID_FOR attribute in one server parameter file (SPFILE). By doing this, the
Oracle Data Guard configuration operates properly after a role transition.

7. Start Redo Apply on the new physical standby database, as follows:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DISCONNECT;

Once the failed primary database is restored and is running in the standby role,
you can optionally perform a switchover to transition the databases to their
original (pre-failure) roles. See "Performing a Switchover to a Physical Standby
Database (page 9-9)" for more information.

Converting a Failed Primary into a Standby Database Using RMAN Backups

Oracle Data Guard Scenarios 15-19

15.8.2 Converting a Failed Primary into a Logical Standby Using RMAN Backups
The steps in this section describe how to convert a failed primary into a logical
standby using RMAN backups.

1. On the new primary database, issue the following query to determine the SCN to
which you want to recover the failed primary database:

SQL> SELECT APPLIED_SCN RECOVERY_SCN FROM V$LOGSTDBY_PROGRESS;

Also on the new primary database, determine the SCN to use in dealing with
archive logs, as follows:

a. Ensure all standby redo logs have been archived. Issue the following query,
looking for a value of NONE to be returned. Depending on the size of the
database and the number of logs needing to be archived, it could take some
time before a status of NONE is returned.

SQL> SELECT PENDING_ROLE_CHANGE_TASKS FROM V$DATABASE;

b. After a status of NONE has been returned, run the following query to retrieve
the SCN for dealing with archive logs as part of this recovery:

SQL> SELECT VALUE ARCHIVE_SCN FROM SYSTEM.LOGSTDBY$PARAMETERS -
> WHERE NAME='STANDBY_BECAME_PRIMARY_SCN';

2. Remove any archive logs created at the time of, or after the failover operation,
from the failed primary database. If the failed primary database was isolated from
the standby, it could have divergent archive logs that are not consistent with the
current primary database. To ensure these divergent archive logs are never
applied, they must be deleted from backups and the fast recovery area. You can
use the following RMAN command to delete the relevant archive logs from the
fast recovery area:

RMAN> DELETE ARCHIVELOG FROM SCN ARCHIVE_SCN;

Once deleted, these divergent logs and subsequent transactions can never be
recovered.

3. On the new primary database, issue the following query to determine the
minimum set of log files that must be copied to the failed primary database before
recovering from a backup:

SQL> SELECT file_name FROM DBA_LOGSTDBY_LOG WHERE next_change# > ARCHIVE_SCN;

Retrieve the required standby logs, copy the backup set to the new standby and
restore it to the new standby fast recovery area. Because these logs are coming
from standby redo logs, they are not part of the standby's standard archives. The
RMAN utility is able to use a partial file name to retrieve the files from the correct
location.

The following is a sample use of the RMAN BACKUP command:

RMAN> BACKUP AS COPY DEVICE TYPE DISK FORMAT '/tmp/test/%U'
> ARCHIVELOG LIKE '<partial file names from above>%';

The following is a sample use of the RMAN RESTORE command:

RMAN> CATALOG START WITH '/tmp/test';
RMAN> RESTORE ARCHIVELOG FROM SEQUENCE 33 UNTIL SEQUENCE 35;

Converting a Failed Primary into a Standby Database Using RMAN Backups

15-20 Concepts and Administration

4. Restore a backup of all the original primary's data files and recover to
RECOVERY_SCN + 1. Oracle recommends that you leverage the current control
file.

a. Start up the database in restricted mode to protect it from rogue transactions
until the GUARD ALL command can be issued after the database has been
opened.

b. Use the backup to restore the data files of the failed primary database.

c. Turn off flashback database, if it is enabled (necessary for the USING BACKUP
CONTROLFILE clause).

d. Perform point-in-time recovery to RECOVERY_SCN +1 in SQL*Plus.

Whether you are using a current control file or a backup control file, you must
specify the USING BACKUP CONTROLFILE clause to allow you to point to the
archive logs being restored. Otherwise, the recovery process could attempt to
access online redo logs instead of the logs retrieved in Step 3. When prompted for
the sequences retrieved in Step 3, ensure you specify the file names of the restored
archive log copies, as follows:

SQL> RECOVER DATABASE UNTIL CHANGE RECOVERY_SCN + 1 USING BACKUP CONTROLFILE;

5. Open the database with the RESETLOGS option:

SQL> ALTER DATABASE OPEN RESETLOGS;

6. Enable Database Guard

SQL> ALTER DATABASE GUARD ALL;

7. Create a database link to the new primary database and start SQL Apply:

SQL> CREATE PUBLIC DATABASE LINK myLink -
> CONNECT TO SYSTEM IDENTIFIED BY password -
> USING 'service name of new primary database';

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY NEW PRIMARY myLink;

At this point, you can disable restricted session (ALTER SYSTEM DISABLE
RESTRICTED SESSION) or, if you need to restart the database to re-enable
Flashback from Step 4c, let this restart turn off RESTRICTED SESSION.

15.9 Changing the Character Set of a Primary Without Re-Creating
Physical Standbys

Oracle Data Guard allows you to change both the database character set and the
national character set of a primary database without requiring you to recreate any
physical standby databases in the configuration. You can continue to use your
physical standby database with minimal disruption while performing character set
conversion of a primary database.

The character set migration process consists of preparatory steps such as scanning for
possible issues and identifying methods to solve them. During the execution of these
preparatory steps the Oracle Data Guard configuration can operate unchanged and no
extra steps are required to maintain the physical standby. After the preparatory steps
are completed, the actual conversion is performed which may involve changes to both
system data (metadata) and user data. Several procedures specific to Oracle Data

Changing the Character Set of a Primary Without Re-Creating Physical Standbys

Oracle Data Guard Scenarios 15-21

Guard must be run as part of the conversion. The steps to run these procedures are
interspersed with the steps performed by the Database Migration Assistant for
Unicode (DMU) or other appropriate character set migration tool.

For a detailed description of the steps involved in this process, see My Oracle Support
note 1124165.1 at http://support.oracle.com.

15.10 Actions Needed On a Standby After a PDB PITR or PDB Flashback
On a Primary

After you perform a PDB PITR or PDB Flashback on a primary, you can either restore
the PDB or flashback the PDB on the standby to let the standby follow the primary.

When a PDB PITR or PDB flashback is performed on the primary, and redo for the
start of the operation is encountered for the first time, the MRP at the standby
terminates with error ORA-39874, followed by the supplemental error ORA-39873.
The following is an example of the messages that may appear in the alert log:

Recovery of pluggable database PDB1 aborted due to pluggable database open
resetlog marker.
To continue recovery, restore all data files for this PDB to
checkpoint SCN lower than 1437261, or timestamp before 11/15/2012 16:38:49,
and restart recovery
MRP0: Background Media Recovery terminated with error 39874

ORA-39874: Pluggable Database PDB1 recovery halted
ORA-39873: Restore all data files to a checkpoint SCN lower than 1437261.

Before media recovery on the standby can continue any further, you must restore all
data files for that PDB. You can do this in two ways:

• If flashback is enabled on the standby, then you can use PDB flashback on the
standby and then restart standby managed recover. See “Performing Recovery
When Flashback is Enabled” below.

• If flashback in not enabled on the standby, then recovery can be done from a
backup taken at a time prior to the point-in-time the PDB was recovered on the
primary. See “Performing Recovery When Flashback is Not Enabled” below.

With either method, a PDB that has undergone PDB PITR or flashback on the primary
cannot be opened on a standby until it has caught up with the primary.

Performing Recovery When Flashback Is Enabled

If flashback is enabled on the standby, you can flashback the PDB on the standby and
then restart standby managed recovery.

1. Determine the affected PDB and PITR SCN.

The name of the PDB for which recovery was halted is shown in the ORA-39874
message and the PITR SCN is shown in the ORA-39873 message.

2. Close the standby database, if it is still open:

SQL> ALTER DATABASE CLOSE;

3. Flashback the pluggable database on the standby:

SQL> FLASHBACK PLUGGABLE DATABASE pdb1 TO SCN 1437260;

Actions Needed On a Standby After a PDB PITR or PDB Flashback On a Primary

15-22 Concepts and Administration

http://support.oracle.com

The SCN for the FLASHBACK PLUGGABLE DATABASE command is 1437260,
not 1437261 as in the following example, because TO SCN and UNTIL SCN have
different semantics.

4. Restart media recovery on the standby:

SQL> RECOVER MANAGED STANDBY DATABASE DISCONNECT;

Performing Recovery When Flashback Is Not Enabled

1. Determine the affected PDB and PITR SCN.

The name of the PDB for which recovery was halted is shown in the ORA-39874
message and the PITR SCN is shown in the ORA-39873 message.

2. Close the standby database, if it is still open:

SQL> ALTER DATABASE CLOSE;

3. Restore the PDB data files:

RMAN> RESTORE PLUGGABLE DATABASE pdb1 UNTIL SCN 1437261;

The UNTIL SCN syntax allows RMAN to automatically choose a suitable backup to
restore from. After the data files have been restored at the standby, restart MRP to
continue applying the redo logs.

4. Restart media recovery on the standby:

SQL> RECOVER MANAGED STANDBY DATABASE DISCONNECT;

See Also:

• Oracle Database Backup and Recovery User's Guide for more information
about performing point-in-time recovery of PDBs

Actions Needed On a Standby After a PDB PITR or PDB Flashback On a Primary

Oracle Data Guard Scenarios 15-23

Actions Needed On a Standby After a PDB PITR or PDB Flashback On a Primary

15-24 Concepts and Administration

Part II
Reference

The following topics provide reference material to be used in conjunction with the
Oracle Data Guard standby database features. For more detailed reference material,
refer to the Oracle Database documentation set.

• Initialization Parameters (page 16-1)

• LOG_ARCHIVE_DEST_n Parameter Attributes (page 17-1)

• SQL Statements Relevant to Oracle Data Guard (page 18-1)

• Views Relevant to Oracle Data Guard (page 19-1)

16
Initialization Parameters

Table 16-1 (page 16-1) lists the initialization parameters that affect databases in an
Oracle Data Guard environment and indicates if the parameter applies to the primary
database role, the standby database role, or both. The table also includes notes and
recommendations specific to setting the parameters in an Oracle Data Guard
environment. Oracle Database Reference provides complete initialization parameter
information, including how to update initialization parameters by issuing the ALTER
SYSTEM SET statement (for example, ALTER SYSTEM SET LOG_ARCHIVE_TRACE)
or by editing the initialization parameter files. See the Oracle operating system-specific
documentation for more information about setting initialization parameters.

Table 16-1 Initialization Parameters for Instances in an Oracle Data Guard Configuration

Parameter Applicable To Notes and Recommendations

COMPATIBLE = release_number Primary

Logical Standby

Physical Standby

Snapshot Standby

Specify the same value on the primary and standby
databases if you expect to do a switchover. If the
values differ, redo transport services may be unable
to transmit redo data from the primary database to
the standby databases. See Create a Parameter File
for the Standby Database (page 3-8) for an example.

A logical standby database can have a higher
COMPATIBLE setting than the primary database if a
switchover is not expected.

For rolling upgrades using SQL Apply, set this
parameter according to the guidelines described in
Performing a Rolling Upgrade By Creating a New
Logical Standby Database (page 13-3).

CONTROL_FILE_RECORD_KEEP_
TIME = number_of_days

Primary

Logical Standby

Physical Standby

Snapshot Standby

Optional. Use this parameter to avoid overwriting a
reusable record in the control file (that contains
needed information such as an archived redo log
file) for the specified number of days (from 0 to 365).

CONTROL_FILES =
'control_file_name',
'control_file_name', '...'

Primary

Logical Standby

Physical Standby

Snapshot Standby

Required. Specify the path name and filename for
one or more control files. The control files must
already exist on the database. Oracle recommends
using 2 control files. If another copy of the current
control file is available, then an instance can be
easily restarted after copying the good control file to
the location of the bad control file. See Create a
Parameter File for the Standby Database (page 3-8)
for an example.

Initialization Parameters 16-1

Table 16-1 (Cont.) Initialization Parameters for Instances in an Oracle Data Guard Configuration

Parameter Applicable To Notes and Recommendations

DB_FILE_NAME_CONVERT =
'location_of_primary_database_dataf
ile','location_of_standby_database_
datafile'

Physical Standby

Snapshot Standby

This parameter must specify paired strings. The first
string is a sequence of characters to be looked for in
a primary database filename. If that sequence of
characters is matched, it is replaced by the second
string to construct the standby database filename.
You can specify multiple pairs of filenames.

DB_UNIQUE_NAME = Unique name
for the database

Primary

Logical Standby

Physical Standby

Snapshot Standby

Recommended, but required if you specify the
LOG_ARCHIVE_CONFIG parameter. Specifies a
unique name for this database. This name does not
change even if the primary and standby databases
reverse roles. The DB_UNIQUE_NAME parameter
defaults to the value of the DB_NAME parameter.

FAL_CLIENT =
Oracle_Net_service_name

Physical Standby

Snapshot Standby

This parameter is no longer required. If it is not set,
the fetch archive log (FAL) server obtains the client's
network address from the LOG_ARCHIVE_DEST_n
parameter that corresponds to the client's
DB_UNIQUE_NAME.

FAL_SERVER =
Oracle_Net_service_name

Physical Standby

Snapshot Standby

Specifies one or more Oracle Net service names for
the databases from which this standby database can
fetch (request) missing archived redo log files.

INSTANCE_NAME Primary

Logical Standby

Physical Standby

Snapshot Standby

Optional. If this parameter is defined and the
primary and standby databases reside on the same
host, specify a different name for the standby
database than you specify for the primary database.
See Create a Parameter File for the Standby
Database (page 3-8) for an example.

LOG_ARCHIVE_CONFIG
='DG_CONFIG=(db_unique_name,
db_unique_name, ...)'

Primary

Logical Standby

Physical Standby

Snapshot Standby

Highly recommended. The DG_CONFIG attribute of
this parameter must be explicitly set on each
database in an Oracle Data Guard configuration to
enable full Oracle Data Guard functionality. Set
DG_CONFIG to a text string that contains the
DB_UNIQUE_NAME of each database in the
configuration, with each name in this list separated
by a comma.

LOG_ARCHIVE_DEST_n =
{LOCATION=path_name |
SERVICE=service_name, attribute,
attribute, ...}

Primary

Logical Standby

Physical Standby

Snapshot Standby

Required. Define up to thirty (where n = 1, 2, 3, ...
31) destinations, each of which must specify either
the LOCATION or SERVICE attribute. Specify a
corresponding LOG_ARCHIVE_DEST_STATE_n
parameter for every LOG_ARCHIVE_DEST_n
parameter.

LOG_ARCHIVE_DEST_STATE_n =
{ENABLE|DEFER|ALTERNATE}

Primary

Logical Standby

Physical Standby

Snapshot Standby

Required. Specify a LOG_ARCHIVE_DEST_STATE_n
parameter to enable or disable redo transport
services to transmit redo data to the specified (or to
an alternate) destination. Define a
LOG_ARCHIVE_DEST_STATE_n parameter for
every LOG_ARCHIVE_DEST_n parameter. See also
LOG_ARCHIVE_DEST_n Parameter Attributes
(page 17-1).

16-2 Concepts and Administration

Table 16-1 (Cont.) Initialization Parameters for Instances in an Oracle Data Guard Configuration

Parameter Applicable To Notes and Recommendations

LOG_ARCHIVE_FORMAT=log%d_
%t_%s_%r.arc

Primary

Logical Standby

Physical Standby

Snapshot Standby

The LOG_ARCHIVE_FORMAT and
LOG_ARCHIVE_DEST_n parameters are
concatenated together to generate fully qualified
archived redo log filenames on a database.

LOG_ARCHIVE_MAX_PROCESSES
=integer

Primary

Logical Standby

Physical Standby

Snapshot Standby

Optional. Specify the number (from 1 to 30) of
archiver (ARCn) processes you want Oracle software
to invoke initially. The default value is 4.

LOG_ARCHIVE_MIN_SUCCEED_D
EST

Primary

Logical Standby

Physical Standby

Snapshot Standby

Optional. This parameter specifies the number of
local or remote MANDATORY destinations, or local
OPTIONAL destinations, that a logfile group must
be archived to before it can be re-used.

LOG_ARCHIVE_TRACE=integer Primary

Logical Standby

Physical Standby

Snapshot Standby

Optional. Set this parameter to trace the
transmission of redo data to the standby site. The
valid integer values are described in Setting Archive
Tracing (page F-1).

LOG_FILE_NAME_CONVERT =
'location_of_primary_database_redo
_logs','location_of_standby_databa
se_redo_logs'

Logical Standby

Physical Standby

Snapshot Standby

This parameter converts the path names of the
primary database online redo log file to path names
on the standby database. See Create a Parameter File
for the Standby Database (page 3-8) for an example.

REMOTE_LOGIN_PASSWORDFILE
= {EXCLUSIVE|SHARED}

Primary

Logical Standby

Physical Standby

Snapshot Standby

Optional if operating system authentication is used
for administrative users and SSL is used for redo
transport authentication. Otherwise, this parameter
must be set to EXCLUSIVE or SHARED on every
database in an Oracle Data Guard configuration.

SHARED_POOL_SIZE = bytes Primary

Logical Standby

Physical Standby

Snapshot Standby

Optional. Use to specify the system global area
(SGA) to stage the information read from the online
redo log files. The more SGA that is available, the
more information that can be staged.

STANDBY_ARCHIVE_DEST =
filespec

Logical Standby

Physical Standby

Snapshot Standby

This parameter has been deprecated and is
maintained for backward compatibility only.

STANDBY_FILE_MANAGEMENT =
{AUTO | MANUAL}

Primary

Physical Standby

Snapshot Standby

Set the STANDBY_FILE_MANAGEMENT parameter to
AUTO so that when data files are added to or
dropped from the primary database, corresponding
changes are made in the standby database without
manual intervention. If the directory structures on
the primary and standby databases are different,
you must also set the DB_FILE_NAME_CONVERT
initialization parameter to convert the filenames of
one or more sets of data files on the primary
database to filenames on the (physical) standby
database.

Initialization Parameters 16-3

16-4 Concepts and Administration

17
LOG_ARCHIVE_DEST_n Parameter

Attributes

The LOG_ARCHIVE_DEST_n initialization parameter, (where n is an integer between 1
and 31) has the following attributes:

• AFFIRM and NOAFFIRM (page 17-2)

• ALTERNATE (page 17-3)

• COMPRESSION (page 17-5)

• DB_UNIQUE_NAME (page 17-6)

• DELAY (page 17-7)

• ENCRYPTION (page 17-9)

• GROUP (page 17-10)

• LOCATION and SERVICE (page 17-11) (LOCATION is not supported for
LOG_ARCHIVE_DEST_11 through LOG_ARCHIVE_DEST_31)

• MANDATORY (page 17-12) (not supported for LOG_ARCHIVE_DEST_11 through
LOG_ARCHIVE_DEST_31)

• MAX_CONNECTIONS (page 17-14)

• MAX_FAILURE (page 17-15)

• NET_TIMEOUT (page 17-17)

• NOREGISTER (page 17-17)

• PRIORITY (page 17-18)

• REOPEN (page 17-19)

• SYNC and ASYNC (page 17-20) (SYNC is not supported for
LOG_ARCHIVE_DEST_11 through LOG_ARCHIVE_DEST_31)

• TEMPLATE (page 17-21)

• VALID_FOR (page 17-22)

Usage Notes

• Each database in an Oracle Data Guard configuration typically has one destination
with the LOCATION attribute for the archival of the online and standby redo logs

LOG_ARCHIVE_DEST_n Parameter Attributes 17-1

and one destination with the REMOTE attribute for every other database in the
configuration.

• If configured, each LOG_ARCHIVE_DEST_1 through LOG_ARCHIVE_DEST_10
destination must contain either a LOCATION or SERVICE attribute to specify a local
disk directory or a remotely accessed database, respectively. Each
LOG_ARCHIVE_DEST_11 through LOG_ARCHIVE_DEST_31 destination must
contain a SERVICE attribute.

All other attributes are optional.

• LOG_ARCHIVE_DEST_11 through LOG_ARCHIVE_DEST_31 can only be used
when the COMPATIBLE initialization parameter is set to 11.2.0.0 or later.

Note:

Several attributes of the LOG_ARCHIVE_DEST_n initialization parameter have
been deprecated. These attributes are supported for backward compatibility
only and are documented in the Oracle Database Reference.

See Also:

Redo Transport Services (page 7-1) for more information about defining
LOG_ARCHIVE_DEST_n destinations and setting up redo transport services

17.1 AFFIRM and NOAFFIRM
The AFFIRM and NOAFFIRM attributes control whether a redo transport destination
acknowledges received redo data before or after writing it to the standby redo log:

• AFFIRM—specifies that a redo transport destination acknowledges received redo
data after writing it to the standby redo log.

• NOAFFIRM—specifies that a redo transport destination acknowledges received redo
data before writing it to the standby redo log.

Category AFFIRM NOAFFIRM

Data type Keyword Keyword

Valid values Not applicable Not applicable

Default Value Not applicable Not applicable

Requires attributes SERVICE SERVICE

Conflicts with attributes NOAFFIRM AFFIRM

Corresponds to AFFIRM column of the V
$ARCHIVE_DEST view

AFFIRM column of the V
$ARCHIVE_DEST view

AFFIRM and NOAFFIRM

17-2 Concepts and Administration

Usage Notes

• If neither the AFFIRM nor the NOAFFIRM attribute is specified, then the default is
AFFIRM when the SYNC attribute is specified and NOAFFIRM when the ASYNC
attribute is specified.

• Specification of the AFFIRM attribute without the SYNC attribute is deprecated and
will not be supported in future releases.

See also:

SYNC and ASYNC (page 17-20) attributes

Example

The following example shows the AFFIRM attribute for a remote destination.

LOG_ARCHIVE_DEST_3='SERVICE=stby1 SYNC AFFIRM'
LOG_ARCHIVE_DEST_STATE_3=ENABLE

17.2 ALTERNATE
The ALTERNATE attribute specifies an alternate archiving destination to be used when
the original destination fails.

Note: As of Oracle Database 12c Release 2 (12.2.0.1), you can expand the
number of alternate archive destinations and functionality by using the GROUP
and PRIORITY attributes in place of the ALTERNATE attribute for remote log
archive destinations. This new method cannot be used in conjunction with the
ALTERNATE attribute method. For more information, see Alternate
Destinations (page 5-5).

The ALTERNATE attribute is reserved for configuring alternate local archiving
destinations. For backwards compatibility, examples of using ALTERNATE for
remote log archiving destination are provided in Using the ALTERNATE
Attribute to Configure Remote Alternate Destinations (page H-1).

Category ALTERNATE=LOG_ARCHIVE_DEST_n

Data Type String

Valid Value A LOG_ARCHIVE_DEST_n destination, where n is a
value from 1 through 10.

Default Value None. If an alternate destination is not specified, then
redo transport services do not automatically change to
another destination.

Requires attributes None1

Conflicts with attributes GROUP and PRIORITY2

Corresponds to ALTERNATE and STATUS columns of the V
$ARCHIVE_DEST view

ALTERNATE

LOG_ARCHIVE_DEST_n Parameter Attributes 17-3

1 Although it is not mandatory that MAX_FAILURE be used with ALTERNATE, a non-zero
MAX_FAILURE value is required for an alternate to become active. Using ALTERNATE with the default
value of MAX_FAILURE (zero), does not result in any change in behavior.

2 If the REOPEN attribute is specified with a non-zero value, then an alternate is not activated until the
number of failures is greater than or equal to the value of MAX_FAILURE, with a minimum time period
between attempts equal to the value of REOPEN (in seconds).

Usage Notes

• The ALTERNATE attribute is optional. If an alternate destination is not specified,
then archiving services do not automatically change to another destination if the
original destination fails.

• You can specify only one alternate destination for each local
LOG_ARCHIVE_DEST_n parameter (LOCATION=…).

• An alternate destination should specify a different disk location on the same local
primary or standby database system, as shown in the examples below.

• To configure an alternate destination, set its LOG_ARCHIVE_DEST_STATE_n
parameter to ALTERNATE.

• To manually enable an alternate destination, set its
LOG_ARCHIVE_DEST_STATE_n parameter to ENABLE.

• If no enabled destinations reference an alternate destination, then the alternate
destination is assumed to be deferred, because there is no automatic method of
enabling the alternate destination. However, you can enable (or defer) alternate
destinations at runtime using the ALTER SYSTEM statement.

• Any destination can be designated as an alternate destination, given the following
restrictions:

– At least one local destination is enabled.

– The number of enabled destinations must meet the defined
LOG_ARCHIVE_MIN_SUCCEED_DEST parameter value.

– A destination cannot be its own alternate.

• When a destination fails, its alternate destination is enabled on the next archival
operation. There is no support for enabling the alternate destination in the middle
of the archival operation because that would require rereading already processed
blocks.

• If an alternate destination is not specified, or if MAX_FAILURE is set to zero (the
default), then archiving services do not automatically change to another destination
if the original destination fails.

Examples

The examples in this section are included to illustrate basic concepts and are not meant
to be used exactly as shown. They will be different in your configuration depending
on your local archiving setup.

The following example shows a sample initialization parameter file in which a local
archiving destination LOG_ARCHIVE_DEST_1 automatically fails over to the alternate
destination LOG_ARCHIVE_DEST_2 on the next archival operation if an error occurs,
such as a write failure or an allocation failure if the device were to become full.

ALTERNATE

17-4 Concepts and Administration

Example 17-1 Automatically Failing Over to an Alternate Local Destination

LOG_ARCHIVE_DEST_1='LOCATION=/disk1 MANDATORY MAX_FAILURE=1
ALTERNATE=LOG_ARCHIVE_DEST_2'

LOG_ARCHIVE_DEST_STATE_1=ENABLE

LOG_ARCHIVE_DEST_STATE_2=ALTERNATE

LOG_ARCHIVE_DEST_2='LOCATION=/disk2 MANDATORY'

To resume archiving to the original destination, LOG_ARCHIVE_DEST_1, you must re-
enable it manually. Then you must reset LOG_ARCHIVE_DEST_2 to its former
alternate state to avoid having two active local archiving destinations. To do this, set
the LOG_ARCHIVE_DEST_STATE_n parameters back to their original values, as
follows:

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_1=ENABLE

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ALTERNATE

You can automate this fallback mechanism. Pair the original destination and the
alternate destination by specifying an ALTERNATE attribute that points back to the
preferred destination, as shown in the sample initialization parameter file in
Example 17-2 (page 17-5).

Example 17-2 Automatic Local Alternate Fallback

LOG_ARCHIVE_DEST_1='LOCATION=/disk1 MANDATORY MAX_FAILURE=1
ALTERNATE=LOG_ARCHIVE_DEST_2'

LOG_ARCHIVE_DEST_STATE_1=ENABLE

LOG_ARCHIVE_DEST_STATE_2=ALTERNATE

LOG_ARCHIVE_DEST_2='LOCATION=/disk2 MANDATORY
ALTERNATE=LOG_ARCHIVE_DEST_1'

If LOG_ARCHIVE_DEST_1 becomes available again, then Oracle Data Guard
automatically sets it to become the active local archiving destination and resets
LOG_ARCHIVE_DEST_2 as its alternate.

17.3 COMPRESSION
The COMPRESSION attribute is used to specify whether redo data is compressed before
transmission to a redo transport destination.

Note:

Redo transport compression is a feature of the Oracle Advanced Compression
option. You must purchase a license for this option before using the redo
transport compression feature.

Category COMPRESSION=[ENABLE | DISABLE | ZLIB | LZO]

Data Type Boolean

COMPRESSION

LOG_ARCHIVE_DEST_n Parameter Attributes 17-5

Category COMPRESSION=[ENABLE | DISABLE | ZLIB | LZO]

Valid values ENABLE, DISABLE, ZLIB, or LZO

Default value DISABLE

Requires attributes None

Conflicts with attributes None

Corresponds to COMPRESSION column of the V$ARCHIVE_DEST view

Usage Notes

• The ENABLE option enables compression and uses the ZLIB compression algorithm
by default.

• The COMPRESSION attribute is optional. If it is not specified, the default
compression behavior is DISABLE.

• For Oracle Data Guard SYNC connection strings that also use the Oracle Data
Guard COMPRESSION attribute, be sure the SQLNET.COMPRESSION configuration
parameter is set to disabled (set to off) in the sqlnet.ora file. See Oracle Database
Net Services Reference for more information about the SQLNET.COMPRESSION
parameter.

Example

The following example shows the COMPRESSION attribute with the
LOG_ARCHIVE_DEST_n parameter. Since the ENABLE option is specified, the ZLIB
compression algorithm is used.

LOG_ARCHIVE_DEST_3='SERVICE=denver SYNC COMPRESSION=ENABLE'
LOG_ARCHIVE_DEST_STATE_3=ENABLE

17.4 DB_UNIQUE_NAME
The DB_UNIQUE_NAME attribute specifies a unique name for the database at this
destination.

Category DB_UNIQUE_NAME=name

Data Type String

Valid values The name must match the value that was defined for this
database with the DB_UNIQUE_NAME parameter.

Default value None

Requires attributes None

Conflicts with attributes None

Corresponds to DB_UNIQUE_NAME column of the V$ARCHIVE_DEST
view

DB_UNIQUE_NAME

17-6 Concepts and Administration

Usage Notes

• This attribute is optional if:

– The LOG_ARCHIVE_CONFIG=DG_CONFIG initialization parameter is not
specified.

– This is a local destination (specified with the LOCATION attribute).

• This attributes is required if the LOG_ARCHIVE_CONFIG=DG_CONFIG initialization
parameter is specified and if this is a remote destination (specified with the
SERVICE attribute).

• Use the DB_UNIQUE_NAME attribute to clearly identify the relationship between a
primary and standby databases. This attribute is particularly helpful if there are
multiple standby databases in the Oracle Data Guard configuration.

• The name specified by the DB_UNIQUE_NAME must match one of the
DB_UNIQUE_NAME values in the DG_CONFIG list. Redo transport services validate
that the DB_UNIQUE_NAME attribute of the database at the specified destination
matches the DB_UNIQUE_NAME attribute or the connection to that destination is
refused.

• The name specified by the DB_UNIQUE_NAME attribute must match the name
specified by the DB_UNIQUE_NAME initialization parameter of the database
identified by the destination.

Example

In the following example, the DB_UNIQUE_NAME parameter specifies boston
(DB_UNIQUE_NAME=boston), which is also specified with the DB_UNIQUE_NAME
attribute on the LOG_ARCHIVE_DEST_1 parameter. The DB_UNIQUE_NAME attribute
on the LOG_ARCHIVE_DEST_2 parameter specifies the chicago destination. Both
boston and chicago are listed in the LOG_ARCHIVE_CONFIG=DG_CONFIG
parameter.

DB_UNIQUE_NAME=boston
LOG_ARCHIVE_CONFIG='DG_CONFIG=(chicago,boston,denver)'
LOG_ARCHIVE_DEST_1='LOCATION=/arch1/
 VALID_FOR=(ALL_LOGFILES,ALL_ROLES)
 DB_UNIQUE_NAME=boston'
LOG_ARCHIVE_DEST_2='SERVICE=Sales_DR
 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
 DB_UNIQUE_NAME=chicago'

17.5 DELAY
The DELAY attribute specifies a minimum time lag between when redo data from the
primary site is archived on a standby site and when the archived redo log file is
applied to the standby database or any standbys cascaded from it.

Category DELAY[=minutes]

Data Type Numeric

Valid values >=0 minutes

Default Value 30 minutes

DELAY

LOG_ARCHIVE_DEST_n Parameter Attributes 17-7

Category DELAY[=minutes]

Requires attributes SERVICE

Conflicts with attributes LOCATION, VALID_FOR=(*,STANDBY_ROLE)

Corresponds to DELAY_MINS and DESTINATION columns of the
V$ARCHIVE_DEST view

Usage Notes

• The DELAY attribute is optional. By default there is no delay.

• The DELAY attribute indicates the archived redo log files at the standby destination
are not available for recovery until the specified time interval has expired. The time
interval is expressed in minutes, and it starts when the redo data is successfully
transmitted to, and archived at, the standby site.

• The DELAY attribute may be used to protect a standby database from corrupted or
erroneous primary data. However, there is a tradeoff because during failover it
takes more time to apply all of the redo up to the point of corruption.

• The DELAY attribute does not affect the transmittal of redo data to a standby
destination.

• If you have real-time apply enabled, then any delay that you set is ignored.

• Changes to the DELAY attribute take effect the next time redo data is archived (after
a log switch). In-progress archiving is not affected.

• You can override the specified delay interval at the standby site, as follows:

– For a physical standby database:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE NODELAY;

– For a logical standby database:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY NODELAY;

• The DELAY value that a cascaded standby uses is the value that was set for the
LOG_ARCHIVE_DEST_n parameter on the primary that shipped the redo to the
cascading standby.

See Also:

Oracle Database SQL Language Reference for more information about these
ALTER DATABASE statements

Example

You can use the DELAY attribute to set up a configuration where multiple standby
databases are maintained in varying degrees of synchronization with the primary
database. However, this protection incurs some overhead during failover, because it
takes Redo Apply more time to apply all the redo up to the corruption point.

DELAY

17-8 Concepts and Administration

For example, assume primary database A has standby databases B and C. Standby
database B is set up as the disaster recovery database and therefore has no time lag.
Standby database C is set up with a 2-hour delay, which is enough time to allow user
errors to be discovered before they are propagated to the standby database.

The following example shows how to specify the DELAY attribute for this
configuration:

LOG_ARCHIVE_DEST_1='LOCATION=/arch/dest MANDATORY'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_2='SERVICE=stbyB SYNC AFFIRM'
LOG_ARCHIVE_DEST_STATE_2=ENABLE
LOG_ARCHIVE_DEST_3='SERVICE=stbyC DELAY=120'
LOG_ARCHIVE_DEST_STATE_3=ENABLE

Note:

Alternatively, you can use Flashback Database to revert the database to a
point-in-time or SCN in a different database incarnation as long as there is
sufficient flashback log data. Using Flashback Database is described in Oracle
Database Backup and Recovery User's Guide.

17.6 ENCRYPTION
The ENCRYPTION attribute is used to specify whether redo data is encrypted before
transmission to a Zero Data Loss Recovery Appliance (Recovery Appliance).

Note:

Redo transport encryption is allowed only for connections to a Recovery
Appliance. Attempting to configure encryption on a log archive destination
other than a Recovery Appliance results in an error.

Category ENCRYPTION=ENABLE or DISABLE

Data type Boolean

Valid values ENABLE or DISABLE

Default value DISABLE

Requires attributes SERVICE

Conflicts with attributes COMPRESSION, SYNC, LOCATION, and
MAX_CONNECTIONS

Corresponds to ENCRYPTION column of the V$ARCHIVE_DEST view

Usage Notes

• The ENCRYPTION attribute is optional. If it is not specified, then the default
encryption behavior is DISABLE.

• To use the ENCRYPTION attribute, you must set the COMPATIBLE initialization
parameter to 11.2.0.4 or higher on the protected database.

ENCRYPTION

LOG_ARCHIVE_DEST_n Parameter Attributes 17-9

See Also:

• Zero Data Loss Recovery Appliance Administrator's Guide

Example

The following example shows the ENCRYPTION attribute specified on the
LOG_ARCHIVE_DEST_n parameter.

LOG_ARCHIVE_DEST_3='SERVICE=denver ENCRYPTION=ENABLE'
LOG_ARCHIVE_DEST_STATE_3=ENABLE

17.7 GROUP
The GROUP attribute is used to specify membership in a specific collection of log
archive destinations. Groups are numbered 1 through 8. The default group (GROUP=0)
is special in that it cannot be assigned. The default group is populated with all
destinations that are not explicitly assigned to a group.

Category GROUP=integer

Data Type Integer

Valid Value 1 through 8

Default Value 0

Requires Attributes SERVICE

Conflicts with Attributes ALTERNATE

Corresponds to Not applicable

Usage Notes

• None

Examples

The following example is given to illustrate basic concepts and is not meant to be used
exactly as shown. Depending on your configuration, there may be other parameters,
such as DB_UNIQUE_NAME, that are required.

LOG_ARCHIVE_DEST_1='SERVICE=FS1 GROUP=1'
LOG_ARCHIVE_DEST_2='SERVICE=FS2 GROUP=1'
LOG_ARCHIVE_DEST_3='SERVICE=FS3 GROUP=2'
LOG_ARCHIVE_DEST_4='SERVICE=FS4 GROUP=2'

See Also:

• Assigning Log Archive Destinations to a Group (page 5-6)

GROUP

17-10 Concepts and Administration

17.8 LOCATION and SERVICE
Each destination must specify either the LOCATION or the SERVICE attribute to
identify either a local disk directory or a remote database destination where redo
transport services can transmit redo data.

LOG_ARCHIVE_DEST_1 through LOG_ARCHIVE_DEST_10 destinations can contain
either a LOCATION attribute or a SERVICE attribute.

LOG_ARCHIVE_DEST_11 through LOG_ARCHIVE_DEST_31 destinations can only
contain a SERVICE attribute.

Category LOCATION=local_disk_directory or
USE_DB_RECOVERY_FILE_DEST

SERVICE=net_service_name

Data type String value String value

Valid values Not applicable Not applicable

Default Value None None

Requires
attributes

Not applicable Not applicable

Conflicts with
attributes

SERVICE, DELAY, NOREGISTER,
SYNC, ASYNC, NET_TIMEOUT,
AFFIRM,NOAFFIRM, COMPRESSION,
MAX_CONNECTIONS

LOCATION

Corresponds to DESTINATION and TARGET columns
of the V$ARCHIVE_DEST view

DESTINATION and TARGET
columns of the V
$ARCHIVE_DEST view

Usage Notes

• Either the LOCATION or the SERVICE attribute must be specified. There is no
default.

• The LOG_ARCHIVE_DEST_11 through LOG_ARCHIVE_DEST_31 parameters do
not support the LOCATION attribute.

• If you are specifying multiple attributes, specify the LOCATION or SERVICE
attribute first in the list of attributes.

• You must specify at least one local disk directory with the LOCATION attribute.
This ensures that local archived redo log files are accessible if media recovery of a
database becomes necessary. You can specify up to thirty additional local or remote
destinations.

• For the LOCATION attribute, you can specify one of the following:

– LOCATION= local_disk_directory

This specifies a unique directory path name for a disk directory on the system
that hosts the database. This is the local destination for archived redo log files.

– LOCATION=USE_DB_RECOVERY_FILE_DEST

LOCATION and SERVICE

LOG_ARCHIVE_DEST_n Parameter Attributes 17-11

To configure a fast recovery area, specify the directory or Oracle Storage
Manager disk group to serve as the fast recovery area using the
DB_RECOVERY_FILE_DEST initialization parameter.

• When you specify a SERVICE attribute:

– You identify remote destinations by specifying the SERVICE attribute with a
valid Oracle Net service name (SERVICE= net_service_name) that identifies
the remote Oracle database instance to which the redo data is sent.

The Oracle Net service name that you specify with the SERVICE attribute is
translated into a connection descriptor that contains the information necessary
for connecting to the remote database.

See Also:

Oracle Database Net Services Administrator's Guide for details about setting up
Oracle Net service names

– Transmitting redo data to a remote destination requires a network connection
and an Oracle database instance associated with the remote destination to
receive the incoming redo data.

• To verify the current settings for LOCATION and SERVICE attributes, query the V
$ARCHIVE_DEST fixed view:

– The TARGET column identifies if the destination is local or remote to the
primary database.

– The DESTINATION column identifies the values that were specified for a
destination. For example, the destination parameter value specifies the Oracle
Net service name identifying the remote Oracle instance where the archived
redo log files are located.

Examples

The following example shows how to specify the LOCATION attribute:

LOG_ARCHIVE_DEST_2='LOCATION=/disk1/oracle/oradata/payroll/arch/'
LOG_ARCHIVE_DEST_STATE_2=ENABLE

The following example shows how to specify the SERVICE attribute:

LOG_ARCHIVE_DEST_3='SERVICE=stby1'
LOG_ARCHIVE_DEST_STATE_3=ENABLE

17.9 MANDATORY
The MANDATORY attribute specifies that filled online log files must be successfully
archived to the destination before they can be reused.

Category MANDATORY

Data type Keyword

Valid values Not applicable

MANDATORY

17-12 Concepts and Administration

Category MANDATORY

Default value Not applicable

Requires attributes Not applicable

Conflicts with attributes Optional

Corresponds to BINDING column of the V$ARCHIVE_DEST
view

Usage Notes

• The LOG_ARCHIVE_DEST_11 through LOG_ARCHIVE_DEST_31 parameters do
not support the MANDATORY attribute.

• If MANDATORY is not specified, then, by default, the destination is considered to be
optional.

At least one destination must succeed, even if all destinations are optional. If
archiving to an optional destination fails, the online redo log file is still available for
reuse and may be overwritten eventually. However, if the archival operation of a
mandatory destination fails, online redo log files cannot be overwritten.

• The LOG_ARCHIVE_MIN_SUCCEED_DEST=n parameter (where n is an integer from
1 to 10) specifies the number of destinations that must archive successfully before
online redo log files can be overwritten.

All MANDATORY destinations and optional local destinations contribute to satisfying
the LOG_ARCHIVE_MIN_SUCCEED_DEST=n count. If the value set for the
LOG_ARCHIVE_MIN_SUCCEED_DEST parameter is met, the online redo log file is
available for reuse. For example, you can set the parameter as follows:

Database must archive to at least two locations before
overwriting the online redo log files.
LOG_ARCHIVE_MIN_SUCCEED_DEST = 2

• You must have at least one local destination, which you can declare MANDATORY or
leave as optional.

At least one local destination is operationally treated as mandatory, because the
minimum value for the LOG_ARCHIVE_MIN_SUCCEED_DEST parameter is 1.

• The failure of any mandatory destination makes the
LOG_ARCHIVE_MIN_SUCCEED_DEST parameter irrelevant.

• The LOG_ARCHIVE_MIN_SUCCEED_DEST parameter value cannot be greater than
the number of mandatory destinations plus the number of optional local
destinations.

• The BINDING column of the V$ARCHIVE_DEST fixed view specifies how failure
affects the archival operation

Example

The following example shows the MANDATORY attribute:

LOG_ARCHIVE_DEST_1='LOCATION=/arch/dest MANDATORY'
LOG_ARCHIVE_DEST_STATE_1=ENABLE

MANDATORY

LOG_ARCHIVE_DEST_n Parameter Attributes 17-13

LOG_ARCHIVE_DEST_3='SERVICE=denver MANDATORY'
LOG_ARCHIVE_DEST_STATE_3=ENABLE

17.10 MAX_CONNECTIONS
The MAX_CONNECTIONS attribute enables multiple network connections to be used
when sending an archived redo log file to a redo transport destination. Using multiple
network connections can improve redo transport performance over high-latency
network links.

Category Description

Data type Integer

Valid values 1 to 20

Default value 1

Requires attributes None

Conflicts with attributes None

Corresponds to MAX_CONNECTIONS column of the V$ARCHIVE_DEST
view of the primary database

Usage Notes

• The MAX_CONNECTIONS attribute is optional. If it is specified, it is only used when
redo transport services use ARCn processes for archival.

– If MAX_CONNECTIONS is set to 1 (the default), redo transport services use a
single ARCn process to transmit redo data to the remote destination.

– If MAX_CONNECTIONS is set to a value greater than 1, redo transport services
use multiple ARCn processes to transmit redo in parallel to archived redo log
files at the remote destination. Each archiver (ARCn) process uses a separate
network connection.

• With multiple ARCn processes, redo transmission occurs in parallel, thus
increasing the speed at which redo is transmitted to the remote destination.

• Redo that is received from an ARCn process is written directly to an archived redo
log file. Therefore, it cannot be applied in real-time as it is received.

• The actual number of archiver processes in use at any given time may vary based
on the archiver workload and the value of the LOG_ARCHIVE_MAX_PROCESSES
initialization parameter. For example, if the total of MAX_CONNECTIONS attributes
on all destinations exceeds the value of LOG_ARCHIVE_MAX_PROCESSES, then
Oracle Data Guard uses as many ARCn processes as possible, but the number may
be less than what is specified by the MAX_CONNECTIONS attribute.

• When using multiple ARCn processes in an Oracle RAC environment, configure
the primary instance to transport redo data to a single standby database instance. If
redo transport services are not configured as such, then archival returns to the
default behavior for remote archival, which is to transport redo data using a single
ARCn process.

MAX_CONNECTIONS

17-14 Concepts and Administration

Example

The following example shows the MAX_CONNECTIONS attribute:

LOG_ARCHIVE_DEST_1='LOCATION=/arch/dest'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_3='SERVICE=denver MAX_CONNECTIONS=3'
LOG_ARCHIVE_DEST_STATE_3=ENABLE

17.11 MAX_FAILURE
The MAX_FAILURE attribute controls the consecutive number of times at a log switch
that redo transport services attempts to reestablish communication and transmit redo
data to a failed destination before the primary database gives up on the destination.
The MAX_FAILURE attribute is handled differently in Oracle Database 12c Release 1
(12.1) and Oracle Database 12c Release 2 (12.2). It is important to understand the
differences. See the Usage Notes below.

Category MAX_FAILURE=count

Data type Numeric

Valid value >=0

Default value For default group destinations the default value is 0. For
non-default log archive destination group destinations,
the default value is 1.

Requires attributes REOPEN

Conflicts with attributes None

Corresponds to MAX_FAILURE, FAILURE_COUNT, and REOPEN_SECS
columns of the V$ARCHIVE_DEST view

Usage Notes for MAX_FAILURE in Oracle Database 12c Release 2 (12.2)

• For redo destinations that use the new GROUP and PRIORITY attributes, if the error
count reaches the value specified for the MAX_FAILURE attribute, then the
destination enters the ERROR state where it remains until it is found to be
accessible. It is checked periodically depending on the value specified for the
REOPEN attribute.

• For default destinations in log archive groups (those redo destinations that do not
use the new GROUP and PRIORITY attributes), the behavior of the MAX_FAILURE
attribute is the same as it is in Oracle Database 12c Release 1 (12.1.0.1)

Usage Notes for MAX_FAILURE in Oracle Database 12c Release 1 (12.1)

• The MAX_FAILURE attribute is optional. By default, there are an unlimited number
of archival attempts to the failed destination.

• This attribute is useful for providing failure resolution for destinations to which
you want to retry transmitting redo data after a failure, but not retry indefinitely.

• When you specify the MAX_FAILURE attribute, you must also set the REOPEN
attribute. Once the specified number of consecutive attempts at log switch is
exceeded, the destination is treated as if the REOPEN attribute was not specified.

MAX_FAILURE

LOG_ARCHIVE_DEST_n Parameter Attributes 17-15

• You can view the failure count in the FAILURE_COUNT column of the V
$ARCHIVE_DEST fixed view. The related column REOPEN_SECS identifies the
REOPEN attribute value.

Note:

Once the failure count for the destination reaches the specified MAX_FAILURE
attribute value, the only way to reuse the destination is to set the
LOG_ARCHIVE_DEST_n parameter. This has the effect of resetting the failure
count to zero (0).

• The failure count is reset to zero (0) whenever the destination is modified by an
ALTER SYSTEM SET statement. This avoids the problem of setting the
MAX_FAILURE attribute to a value less than the current failure count value.

• Once the failure count is greater than or equal to the value set for the
MAX_FAILURE attribute, the REOPEN attribute value is implicitly set to zero, which
causes redo transport services to transport redo data to an alternate destination
(defined with the ALTERNATE attribute) on the next archival operation.

• Redo transport services attempt to archive to the failed destination indefinitely if
you do not specify the MAX_FAILURE attribute (or if you specify
MAX_FAILURE=0), and you specify a nonzero value for the REOPEN attribute. If the
destination has the MANDATORY attribute, the online redo log file is not reusable
until it has been archived to this destination.

• For log archive destinations not configured as a preferred alternate, if the error
count reaches the value specified for the MAX_FAILURE attribute, then the
destination is disabled and there is no further access until the destination is
manually reenabled.

• For log archive destinations configured as a preferred alternate, if the error count
reaches the value specified for the MAX_FAILURE attribute, then the alternate
destination is enabled and the failing destination is switched to the ALTERNATE
state. Because this destination is a preferred alternate, it is checked periodically
(depending on the value of the REOPEN attribute).

• For log archive destinations configured as a non-preferred alternate, if the error
count reaches the value specified for the MAX_FAILURE attribute, then the
destination is disabled and there is no further access until the destination is
manually (re)enabled. Also, the previously preferred destination (currently
unavailable and in the ALTERNATE state) remains in the ALTERNATE state and does
not return to service until it is explicitly manually (re)enabled.

Example

The following example allows redo transport services to try reconnecting up to three
consecutive times at log switch to the failed destination, as long as each log switch is
more than 5 seconds apart. If the archival operation fails after the third attempt, then
the destination is treated as if the REOPEN attribute was not specified and the
destination is marked as permanently failed until reset.

LOG_ARCHIVE_DEST_1='LOCATION=/arc_dest REOPEN=5 MAX_FAILURE=3'
LOG_ARCHIVE_DEST_STATE_1=ENABLE

MAX_FAILURE

17-16 Concepts and Administration

17.12 NET_TIMEOUT
The NET_TIMEOUT attribute specifies the number of seconds that the LGWR
background process blocks waiting for a redo transport destination to acknowledge
redo data sent to it. If an acknowledgement is not received within NET_TIMEOUT
seconds, an error is logged and the redo transport session to that destination is
terminated.

Category NET_TIMEOUT=seconds

Data type Numeric

Valid values 11 to 1200

Default value 30 seconds

Requires attributes SYNC

Conflicts with attributes ASYNC (If you specify the ASYNC attribute, redo
transport services ignores it; no error is returned.)

Corresponds to NET_TIMEOUT column of the V$ARCHIVE_DEST
view of the primary database

1 Although a minimum value of 1 second is allowed, Oracle recommends a minimum value of 8 to 10
seconds to avoid disconnecting from the standby database due to transient network errors.

Usage Notes

• The NET_TIMEOUT attribute is optional. However, if you do not specify the
NET_TIMEOUT attribute it is set to 30 seconds, but the primary database can
potentially stall. To avoid this situation, specify a small, nonzero value for the
NET_TIMEOUT attribute so the primary database can continue operation after the
user-specified timeout interval expires when waiting for status from the network
server.

• As of Oracle Database 12c Release 12.2 (12.2.0.1), there is a new database
initialization parameter, DATA_GUARD_SYNC_LATENCY, which is global for all
synchronous standby destinations. It defines the maximum amount of time (in
seconds) that the primary database may wait before disconnecting subsequent
destinations after at least one synchronous standby has acknowledged receipt of
the redo. See Oracle Database Reference.

Example

The following example shows how to specify a 10-second network timeout value on
the primary database with the NET_TIMEOUT attribute.

LOG_ARCHIVE_DEST_2='SERVICE=stby1 SYNC NET_TIMEOUT=10'
LOG_ARCHIVE_DEST_STATE_2=ENABLE

17.13 NOREGISTER
The NOREGISTER attribute indicates that the location of the archived redo log file
should not be recorded at the corresponding destination.

NET_TIMEOUT

LOG_ARCHIVE_DEST_n Parameter Attributes 17-17

Category NOREGISTER

Data type Keyword

Valid values Not applicable

Default value Not applicable

Requires attributes SERVICE

Conflicts with attributes LOCATION

Corresponds to DESTINATION and TARGET columns of the V
$ARCHIVE_DEST view

Usage Notes

• The NOREGISTER attribute is optional if the standby database destination is a part
of an Oracle Data Guard configuration.

• The NOREGISTER attribute is required if the destination is not part of an Oracle Data
Guard configuration.

• This attribute pertains to remote destinations only. The location of each archived
redo log file is always recorded in the primary database control file.

Example

The following example shows the NOREGISTER attribute:

LOG_ARCHIVE_DEST_5='NOREGISTER'

17.14 PRIORITY
The PRIORITY attribute is used to specify preference within a collection of log archive
destinations. Priorities are numbered 1 through 8. A lower value represents a higher
priority. The lowest priority (PRIORITY=8) is special in the sense that if that priority is
active then all destinations at that priority are made active. If any higher priority
destination returns to service, then that destination is made active and all low priority
destinations are made inactive.

Category Priority=integer

Data Type Integer

Valid Value 1 through 8

Default Value 1

Requires attributes SERVICE

Conflicts with attributes ALTERNATE

Corresponds to Not applicable

PRIORITY

17-18 Concepts and Administration

Usage Notes

• The PRIORITY attribute is always used in conjunction with the GROUP attribute to
provide an orderly enabling and fallback of members (redo destinations) of the
group.

Example

The following example is given to illustrate basic concepts and is not meant to be used
exactly as shown. Depending on your configuration, there may be other parameters,
such as DB_UNIQUE_NAME, that are required. A sample log archive destination setup
that defines priorities is as follows:

LOG_ARCHIVE_DEST_1='SERVICE=FS1 SYNC GROUP=1 PRIORITY=1'
LOG_ARCHIVE_DEST_2='SERVICE=FS2 SYNC GROUP=1 PRIORITY=1'
LOG_ARCHIVE_DEST_3='SERVICE=FS3 ASYNC GROUP=1 PRIORITY=2'
LOG_ARCHIVE_DEST_4='SERVICE=TS ASYNC GROUP=1 PRIORITY=3'

This declaration results in the following behavior:

• The primary ships to either of two preferred far sync instances, FS1 or FS2.

• If both FS1 and FS2 become unavailable, then the primary ships to FS3 (in this
case via ASYNC).

• If either FS1 or FS2 become available while the primary is shipping to FS3, then
the primary fails back to the available preferred log archive destination.

• If all three higher priority log archive destinations fail, the primary begins shipping
to TS (Terminal Standby). While shipping to TS, if FS1, FS2, or FS3 become
available, then the primary switches to the newly available higher priority
destination.

See Also:

• Assigning Priorities to Log Archive Destinations in a Group (page 5-6)

17.15 REOPEN
The REOPEN attribute specifies the minimum number of seconds before redo transport
services try to reopen a failed destination.

Category REOPEN [=seconds]

Data Type Numeric

Valid values >=0 seconds

Default Value 300 seconds

Requires attributes None

Conflicts with attributes Not applicable

Corresponds to REOPEN_SECS and MAX_FAILURE columns of
the V$ARCHIVE_DEST view

REOPEN

LOG_ARCHIVE_DEST_n Parameter Attributes 17-19

Usage Notes

• The REOPEN attribute is optional.

• Redo transport services attempt to reopen failed destinations at log switch time.

• Redo transport services check if the time of the last error plus the REOPEN interval
is less than the current time. If it is, redo transport services attempt to reopen the
destination.

• REOPEN applies to all errors, not just connection failures. These errors include, but
are not limited to, network failures, disk errors, and quota exceptions.

• If you specify REOPEN for an optional destination, then it is possible for the Oracle
database to overwrite online redo log files if there is an error. If you specify
REOPEN for a MANDATORY destination, then redo transport services stall the
primary database when it is not possible to successfully transmit redo data. When
this situation occurs, consider the following options:

– Change the destination by deferring the destination, specifying the destination
as optional, or changing the SERVICE attribute value.

– Specify an alternate destination.

– Disable the destination.

Example

The following example shows the REOPEN attribute.

LOG_ARCHIVE_DEST_3='SERVICE=stby1 MANDATORY REOPEN=60'
LOG_ARCHIVE_DEST_STATE_3=ENABLE

17.16 SYNC and ASYNC
The SYNC and ASYNC attributes specify whether the synchronous (SYNC) or
asynchronous (ASYNC) redo transport mode is to be used.

Category SYNC ASYNC

Data type Keyword Keyword

Valid values Not applicable Not applicable

Default value Not applicable None

Requires attributes None None

Conflicts with attributes ASYNC, LOCATION SYNC, LOCATION

Corresponds to TRANSMIT_MODE column of
the V$ARCHIVE_DEST view

TRANSMIT_MODE column of
the V$ARCHIVE_DEST view

Usage Notes

• The LOG_ARCHIVE_DEST_11 through LOG_ARCHIVE_DEST_31 parameters do
not support the SYNC attribute.

SYNC and ASYNC

17-20 Concepts and Administration

• The redo data generated by a transaction must have been received by every
enabled destination that has the SYNC attribute before that transaction can commit.

• On primary databases and logical standbys, destinations 1 through 10 default to
ASYNC (real-time cascading).

On physical standbys, snapshot standbys, and far sync instances, destinations 1
through 10 default to ARCH transport mode. (Note that the ARCH attribute is
deprecated; the use of ARCH in this situation simply indicates non-real-time
cascading.)

Destinations 11 through 31 always default to ASYNC.

See Also:

• Oracle Database Reference for more information about
LOG_ARCHIVE_DEST_n deprecated attributes

Example

The following example shows the SYNC attribute with the LOG_ARCHIVE_DEST_n
parameter.

LOG_ARCHIVE_DEST_3='SERVICE=stby1 SYNC'
LOG_ARCHIVE_DEST_STATE_3=ENABLE

17.17 TEMPLATE
The TEMPLATE attribute defines a directory specification and format template for
names of archived redo log files at the destination. The template is used to generate a
filename that is different from the default filename format defined by the
LOG_ARCHIVE_FORMAT initialization parameter at the redo destination.

Category TEMPLATE=filename_template_%t_%s_%r

Data Type String value

Valid values Not applicable

Default value None

Requires attributes ... SERVICE

Conflicts with attributes ... LOCATION

Corresponds to ... REMOTE_TEMPLATE and REGISTER columns of the V
$ARCHIVE_DEST view

Usage Notes

• The TEMPLATE attribute is optional. If TEMPLATE is not specified, archived redo
logs are named using the value of the LOG_ARCHIVE_FORMAT initialization
parameter.

• The TEMPLATE attribute overrides the LOG_ARCHIVE_FORMAT initialization
parameter setting at the remote archival destination.

TEMPLATE

LOG_ARCHIVE_DEST_n Parameter Attributes 17-21

• The TEMPLATE attribute is valid only with remote destinations (specified with the
SERVICE attribute).

• The value you specify for filename_template must contain the %s, %t, and %r
directives described in Table 17-1 (page 17-22).

Table 17-1 Directives for the TEMPLATE Attribute

Directive Description

%t Substitute the instance thread number.

%T Substitute the instance thread number, zero filled.

%s Substitute the log file sequence number.

%S Substitute the log file sequence number, zero filled.

%r Substitute the resetlogs ID.

%R Substitute the resetlogs ID, zero filled.

• The filename_template value is transmitted to the destination, where it is translated
and validated before creating the filename.

17.18 VALID_FOR
The VALID_FOR attribute specifies whether redo data gets written to a destination,
based on the following factors:

• Whether the database is currently running in the primary or the standby role

• Whether online redo log files, standby redo log files, or both are currently being
archived on the database at this destination

Category VALID_FOR=(redo_log_type, database_role)

Data Type String value

Valid values Not applicable

Default Value VALID_FOR=(ALL_LOGFILES, ALL_ROLES)

Requires attributes None

Conflicts with attributes None

Corresponds to VALID_NOW, VALID_TYPE, and VALID_ROLE columns in
the V$ARCHIVE_DEST view

Usage Notes

• The VALID_FOR attribute is optional. However, Oracle recommends that the
VALID_FOR attribute be specified for each redo transport destination at each
database in an Oracle Data Guard configuration so that redo transport continues
after a role transition to any standby database in the configuration.

VALID_FOR

17-22 Concepts and Administration

• To configure these factors for each LOG_ARCHIVE_DEST_n destination, you
specify this attribute with a pair of keywords:
VALID_FOR=(redo_log_type,database_role):

– The redo_log_type keyword identifies the destination as valid for archiving one
of the following:

⁎ ONLINE_LOGFILE—This destination is valid only when archiving online
redo log files.

⁎ STANDBY_LOGFILE—This destination is valid only when archiving standby
redo log files.

⁎ ALL_LOGFILES— This destination is valid when archiving either online
redo log files or standby redo log files.

– The database_role keyword identifies the role in which this destination is valid
for archiving:

⁎ PRIMARY_ROLE—This destination is valid only when the database is
running in the primary role.

⁎ STANDBY_ROLE—This destination is valid only when the database is
running in the standby role.

⁎ ALL_ROLES—This destination is valid when the database is running in
either the primary or the standby role.

• If you do not specify the VALID_FOR attribute for a destination, by default,
archiving online redo log files and standby redo log files is enabled at the
destination, regardless of whether the database is running in the primary or the
standby role. This default behavior is equivalent to setting the
(ALL_LOGFILES,ALL_ROLES) keyword pair on the VALID_FOR attribute.

• The VALID_FOR attribute enables you to use the same initialization parameter file
for both the primary and standby roles.

Example

The following example shows the default VALID_FOR keyword pair:

LOG_ARCHIVE_DEST_1='LOCATION=/disk1/oracle/oradata VALID_FOR=(ALL_LOGFILES, ALL_ROLES)'

When this database is running in either the primary or standby role, destination 1
archives all log files to the /disk1/oracle/oradata local directory location.

VALID_FOR

LOG_ARCHIVE_DEST_n Parameter Attributes 17-23

VALID_FOR

17-24 Concepts and Administration

18
SQL Statements Relevant to Oracle Data

Guard

There are many SQL and SQL*Plus statements that are useful for performing
operations on standby databases in an Oracle Data Guard environment. See the
following topics:

• ALTER DATABASE Statements (page 18-1)

• ALTER SESSION Statements (page 18-4)

• ALTER SYSTEM Statements (page 18-5)

Refer to the Oracle Database SQL Language Reference for complete syntax and
descriptions of all SQL statements.

See Initialization Parameters (page 16-1) for a list of initialization parameters that you
can set and dynamically update using the ALTER SYSTEM SET statement.

18.1 ALTER DATABASE Statements
Table 18-1 (page 18-1) describes ALTER DATABASE statements that are relevant to
Oracle Data Guard.

Table 18-1 ALTER DATABASE Statements Used in Data Guard Environments

ALTER DATABASE Statement Description

ACTIVATE [PHYSICAL|LOGICAL] STANDBY
DATABASE FINISH APPLY]

Performs a failover. The standby database must be mounted
before it can be activated with this statement.

Note: Do not use the ALTER DATABASE ACTIVATE
STANDBY DATABASE statement to failover because it causes
data loss. Instead, use the following best practices:

• For physical standby databases, use the ALTER
DATABASE RECOVER MANAGED STANDBY DATABASE
statement with the FINISH keyword to perform the role
transition as quickly as possible with little or no data loss
and without rendering other standby databases unusable.

• For logical standby databases, use the ALTER DATABASE
PREPARE TO SWITCHOVER and ALTER DATABASE
COMMIT TO SWITCHOVER statements.

ADD [STANDBY] LOGFILE [THREAD integer]
[GROUP integer] filespec

Adds one or more online redo log file groups or standby redo
log file groups to the specified thread, making the log files
available to the instance to which the thread is assigned.

See Add or Drop a Redo Log File Group (page 10-18) for an
example of this statement.

SQL Statements Relevant to Oracle Data Guard 18-1

Table 18-1 (Cont.) ALTER DATABASE Statements Used in Data Guard Environments

ALTER DATABASE Statement Description

ADD [STANDBY] LOGFILE MEMBER
'filename' [REUSE] TO logfile-descriptor

Adds new members to existing online redo log file groups or
standby redo log file groups.

[ADD|DROP] SUPPLEMENTAL LOG DATA
{PRIMARY KEY|UNIQUE INDEX} COLUMNS

This statement is for logical standby databases only.

Use it to enable full supplemental logging before you create a
logical standby database. This is necessary because
supplemental logging is the source of change to a logical
standby database. To implement full supplemental logging,
you must specify either the PRIMARY KEY COLUMNS or the
UNIQUE INDEX COLUMNS keyword on this statement.

COMMIT TO SWITCHOVER Performs a switchover to:

• Change the current primary database to the standby
database role

• Change one standby database to the primary database
role.

When switching over to a physical standby database, as of
Oracle Database 12c Release 1 (12.1), the COMMIT TO
SWITCHOVER statement has been replaced with the
SWITCHOVER TO statement. The COMMIT TO SWITCHOVER
statement is still supported, but Oracle recommends that you
use the new SWITCHOVER TO statement.

Note: On logical standby databases, you issue the ALTER
DATABASE PREPARE TO SWITCHOVER statement to
prepare the database for the switchover before you issue the
ALTER DATABASE COMMIT TO SWITCHOVER statement.

See Performing a Switchover to a Physical Standby Database
Using Old Syntax (page G-2) and Performing a Failover to
a Physical Standby Database Using Old Syntax (page G-4)
for examples of this statement.

CONVERT TO [[PHYSICAL|SNAPSHOT]
STANDBY] DATABASE

Converts a physical standby database into a snapshot
standby database and vice versa.

CREATE [PHYSICAL|LOGICAL] STANDBY
CONTROLFILE AS 'filename' [REUSE]

Creates a control file to be used to maintain a physical or a
logical standby database. Issue this statement on the primary
database.

See Create a Control File for the Standby Database (page 3-7)
for an example of this statement.

DROP [STANDBY] LOGFILE logfile_descriptor Drops all members of an online redo log file group or
standby redo log file group.

See Add or Drop a Redo Log File Group (page 10-18) for an
example of this statement.

DROP [STANDBY] LOGFILE MEMBER
'filename'

Drops one or more online redo log file members or standby
redo log file members.

FAILOVER TO target_db_name This statement is for physical standby databases only.

It initiates a failover to the specified host database.

ALTER DATABASE Statements

18-2 Concepts and Administration

Table 18-1 (Cont.) ALTER DATABASE Statements Used in Data Guard Environments

ALTER DATABASE Statement Description

[NO]FORCE LOGGING Controls whether or not the Oracle database logs all changes
in the database except for changes to temporary tablespaces
and temporary segments. The [NO]FORCE LOGGING clause
is required to prevent inconsistent standby databases.

The primary database must at least be mounted (and it can
also be open) when you issue this statement. See Enable
Forced Logging (page 3-2) for an example of this statement.

GUARD Controls user access to tables in a logical standby database.
Possible values are ALL, STANDBY, and NONE. See
Controlling User Access to Tables in a Logical Standby
Database (page 11-6) for more information.

MOUNT [STANDBY DATABASE] Mounts a standby database, allowing the standby instance to
receive redo data from the primary instance.

OPEN Opens a previously started and mounted database:

• Physical standby databases are opened in read-only
mode, restricting users to read-only transactions and
preventing the generating of redo data.

• Logical standby database are opened in read/write mode.

PREPARE TO SWITCHOVER This statement is for logical standby databases only.

It prepares the primary database and the logical standby
database for a switchover by building the LogMiner
dictionary before the switchover takes place. After the
dictionary build has completed, issue the ALTER DATABASE
COMMIT TO SWITCHOVER statement to switch the roles of
the primary and logical standby databases.

See Performing a Switchover to a Logical Standby Database
(page 9-15) for examples of this statement.

RECOVER MANAGED STANDBY DATABASE
[{ DISCONNECT [FROM SESSION] |
PARALLEL n| NODELAY | UNTIL CHANGE
integer }...]

This statement starts and controls Redo Apply on physical
standby databases. You can use the RECOVER MANAGED
STANDBY DATABASE clause on a physical standby database
that is mounted, open, or closed. See Step 3 in Start the
Physical Standby Database (page 3-11) and Applying Redo
Data to Physical Standby Databases (page 8-4) for examples.

Note: Several clauses and keywords were deprecated and are
supported for backward compatibility only. See Oracle
Database SQL Language Reference for more information about
these deprecated clauses.

RECOVER MANAGED STANDBY DATABASE CANCEL The CANCEL clause cancels Redo Apply on a physical
standby database after applying the current archived redo
log file.

Note: Several clauses and keywords were deprecated and are
supported for backward compatibility only. See Oracle
Database SQL Language Reference for more information about
these clauses.

ALTER DATABASE Statements

SQL Statements Relevant to Oracle Data Guard 18-3

Table 18-1 (Cont.) ALTER DATABASE Statements Used in Data Guard Environments

ALTER DATABASE Statement Description

RECOVER MANAGED STANDBY DATABASE FINISH The FINISH clause initiates failover on the target physical
standby database and recovers the current standby redo log
files. Use the FINISH clause only in the event of the failure of
the primary database. This clause overrides any delay
intervals specified.

Note: Several clauses and keywords were deprecated and are
supported for backward compatibility only. See Oracle
Database SQL Language Reference for more information about
these clauses.

REGISTER [OR REPLACE] [PHYSICAL|
LOGICAL] LOGFILE filespec

Allows the registration of manually copied archived redo log
files.

Note: Issue this command only after manually copying the
corresponding archived redo log file to the standby database.
Issuing this command while the log file is in the process of
being copied or when the log file does not exist may result in
errors on the standby database at a later time.

RECOVER TO LOGICAL STANDBY
new_database_name

Instructs apply services to continue applying changes to the
physical standby database until you issue the command to
convert the database to a logical standby database. See
Convert to a Logical Standby Database (page 4-6) for more
information.

RESET DATABASE TO INCARNATION integer Resets the target recovery incarnation for the database from
the current incarnation to a different incarnation.

SET STANDBY DATABASE TO MAXIMIZE
{PROTECTION|AVAILABILITY|PERFORMANCE}

Use this clause to specify the level of protection for the data
in your Oracle Data Guard configuration. You specify this
clause from the primary database.

START LOGICAL STANDBY APPLY INITIAL
[scn-value]] [NEW PRIMARY dblink]

This statement is for logical standby databases only.

It starts SQL Apply on a logical standby database. See
Starting SQL Apply (page 8-6) for examples of this statement.

{STOP|ABORT} LOGICAL STANDBY APPLY This statement is for logical standby databases only.

Use the STOP clause to stop SQL Apply on a logical standby
database in an orderly fashion. Use the ABORT clause to stop
SQL Apply abruptly. See Performing a Failover to a Logical
Standby Database (page 9-17) for an example of this
statement.

SWITCHOVER TO target_db_name This statement is for physical standby databases only.

It initiates a switchover on the primary database to the
specified physical standby database.

18.2 ALTER SESSION Statements
Table 18-2 (page 18-5) describes the ALTER SESSION statements that are relevant to
Oracle Data Guard.

ALTER SESSION Statements

18-4 Concepts and Administration

Table 18-2 ALTER SESSION Statements Used in Oracle Data Guard Environments

ALTER SESSION Statement Description

ALTER SESSION [ENABLE|DISABLE] GUARD This statement is for logical standby databases only.

This statement allows privileged users to turn the database
guard on and off for the current session.

See Modifying a Logical Standby Database (page 11-19) for
more information.

ALTER SESSION SYNC WITH PRIMARY This statement is for physical standby databases only.

This statement synchronizes a physical standby database
with the primary database, by blocking until all redo data
received by the physical standby at the time of statement
invocation has been applied.

See Forcing Redo Apply Synchronization in a Real-time
Query Environment (page 10-5) for more information.

18.3 ALTER SYSTEM Statements
Table 18-3 (page 18-5) describes the ALTER SYSTEM statements that are relevant to
Oracle Data Guard.

Table 18-3 ALTER SYSTEM Statements Used in Oracle Data Guard Environments

ALTER SYSTEM Statement Description

ALTER SYSTEM FLUSH REDO TO
target_db_name [[NO] CONFIRM APPLY]

This statement flushes redo data from a primary database to
a standby database and optionally waits for the flushed redo
data to be applied to a physical or logical standby database.

This statement must be issued on a mounted, but not open,
primary database.

ALTER SYSTEM Statements

SQL Statements Relevant to Oracle Data Guard 18-5

ALTER SYSTEM Statements

18-6 Concepts and Administration

19
Views Relevant to Oracle Data Guard

There are a number of views that are especially useful when monitoring an Oracle
Data Guard environment.

Table 19-1 (page 19-1) describes the views and indicates if a view applies to physical
standby databases, logical standby databases, snapshot standby databases, or primary
databases. See Oracle Database Reference for complete information about views.

Table 19-1 Views That Are Pertinent to Oracle Data Guard Configurations

View Database Description

DBA_LOGSTDBY_EVENTS Logical only Contains information about the activity of a logical standby
database. It can be used to determine the cause of failures that
occur when SQL Apply is applying redo to a logical standby
database.

DBA_LOGSTDBY_HISTORY Logical only Displays the history of switchovers and failovers for logical
standby databases in an Oracle Data Guard configuration. It does
this by showing the complete sequence of redo log streams
processed or created on the local system, across all role transitions.
(After a role transition, a new log stream is started and the log
stream sequence number is incremented by the new primary
database.)

DBA_LOGSTDBY_LOG Logical only Shows the log files registered for logical standby databases.

DBA_LOGSTDBY_NOT_UNI
QUE

Logical only Identifies tables that have no primary and no non-null unique
indexes.

DBA_LOGSTDBY_PARAMET
ERS

Logical only Contains the list of parameters used by SQL Apply.

DBA_LOGSTDBY_SKIP Logical only Lists the tables to be skipped by SQL Apply.

DBA_LOGSTDBY_SKIP_TR
ANSACTION

Logical only Lists the skip settings chosen.

DBA_LOGSTDBY_UNSUPPO
RTED

Logical only Identifies the schemas and tables (and columns in those tables) that
contain unsupported data types. Use this view when you are
preparing to create a logical standby database.

DBA_ROLLING_UNSUPPOR
TED

Logical only Displays the schemas, tables, and columns in those tables, that
contain unsupported data types for a rolling upgrade operation for
a logical standby database using the DBMS_ROLLING PL/SQL
package. Use this view before you perform a rolling upgrade using
DBMS_ROLLING to determine what is unsupported.

Views Relevant to Oracle Data Guard 19-1

Table 19-1 (Cont.) Views That Are Pertinent to Oracle Data Guard Configurations

View Database Description

V$ARCHIVE_DEST Primary,
physical,
snapshot,
and logical

Describes all of the destinations in the Oracle Data Guard
configuration, including each destination's current value, mode,
and status.

Note: The information in this view does not persist across an
instance shutdown.

V
$ARCHIVE_DEST_STATUS

Primary,
physical,
snapshot,
and logical

Displays runtime and configuration information for the archived
redo log destinations.

Note: The information in this view does not persist across an
instance shutdown.

V$ARCHIVE_GAP Physical,
snapshot,
and logical

Displays information to help you identify a gap in the archived
redo log files.

V$ARCHIVED_LOG Primary,
physical,
snapshot,
and logical

Displays archive redo log information from the control file,
including names of the archived redo log files.

V$DATABASE Primary,
physical,
snapshot,
and logical

Provides database information from the control file. Includes
information about fast-start failover (available only with the Oracle
Data Guard broker).

V
$DATABASE_INCARNATIO
N

Primary,
physical,
snapshot,
and logical

Displays information about all database incarnations. Oracle
Database creates a new incarnation whenever a database is opened
with the RESETLOGS option. Records about the current and the
previous incarnation are also contained in the V$DATABASE view.

V$DATAFILE Primary,
physical,
snapshot,
and logical

Provides data file information from the control file.

V$DATAGUARD_CONFIG Primary,
physical,
snapshot,
and logical

Lists the unique database names defined with the
DB_UNIQUE_NAME and LOG_ARCHIVE_CONFIG initialization
parameters.

V$DATAGUARD_STATS Primary,
physical,
snapshot,
and logical

Displays various Oracle Data Guard statistics, including apply lag
and transport lag. This view can be queried on any instance of a
standby database. No rows are returned if queried on a primary
database. See also Choosing a Target Standby Database for a Role
Transition (page 9-3) for an example and more information.

V$DATAGUARD_STATUS Primary,
physical,
snapshot,
and logical

Displays and records events that would typically be triggered by
any message to the alert log or server process trace files.

V$FS_FAILOVER_STATS Primary Displays statistics about fast-start failover occurring on the system.

19-2 Concepts and Administration

Table 19-1 (Cont.) Views That Are Pertinent to Oracle Data Guard Configurations

View Database Description

V$LOG Primary,
physical,
snapshot,
and logical

Contains log file information from the online redo log files.

V$LOGFILE Primary,
physical,
snapshot,
and logical

Contains information about the online redo log files and standby
redo log files.

V$LOG_HISTORY Primary,
physical,
snapshot,
and logical

Contains log history information from the control file.

V$LOGSTDBY_PROCESS Logical only Provides dynamic information about what is happening with SQL
Apply. This view is very helpful when you are diagnosing
performance problems during SQL Apply on the logical standby
database, and it can be helpful for other problems.

V$LOGSTDBY_PROGRESS Logical only Displays the progress of SQL Apply on the logical standby
database.

V$LOGSTDBY_STATE Logical only Consolidates information from the V$LOGSTDBY_PROCESS and V
$LOGSTDBY_STATS views about the running state of SQL Apply
and the logical standby database.

V$LOGSTDBY_STATS Logical only Displays LogMiner statistics, current state, and status information
for a logical standby database during SQL Apply. If SQL Apply is
not running, the values for the statistics are cleared.

V
$LOGSTDBY_TRANSACTIO
N

Logical only Displays information about all active transactions being processed
by SQL Apply on the logical standby database.

V$MANAGED_STANDBY Physical and
snapshot

Displays current status information for Oracle database processes
related to physical standby databases.

Note: The information in this view does not persist across an
instance shutdown.

V
$REDO_DEST_RESP_HIST
OGRAM

Primary Contains the response time information for destinations that are
configured for SYNC transport.

Note: The information in this view does not persist across an
instance shutdown.

V
$STANDBY_EVENT_HISTO
GRAM

Physical Contains a histogram of apply lag values for the physical standby.
An entry is made in the corresponding apply lag bucket by the
Redo Apply process every second. (This view returns rows only on
a physical standby database that has been open in real-time query
mode.)

Note: The information in this view does not persist across an
instance shutdown.

Views Relevant to Oracle Data Guard 19-3

Table 19-1 (Cont.) Views That Are Pertinent to Oracle Data Guard Configurations

View Database Description

V$STANDBY_LOG Physical,
snapshot,
and logical

Contains log file information from the standby redo log files.

19-4 Concepts and Administration

Part III
Appendixes

This part contains the following appendixes:

• Troubleshooting Oracle Data Guard (page A-1)

• Upgrading and Downgrading Databases in an Oracle Data Guard Configuration
(page B-1)

• Data Type and DDL Support on a Logical Standby Database (page C-1)

• Oracle Data Guard and Oracle Real Application Clusters (page D-1)

• Creating a Standby Database with Recovery Manager (page E-1)

• Setting Archive Tracing (page F-1)

• Performing Role Transitions Using Old Syntax (page G-1)

• Using the ALTERNATE Attribute to Configure Remote Alternate Destinations
(page H-1)

A
Troubleshooting Oracle Data Guard

See the following topics for information that can help you troubleshoot a standby
database:

• Common Problems (page A-1)

• Log File Destination Failures (page A-3)

• Handling Logical Standby Database Failures (page A-4)

• Problems Switching Over to a Physical Standby Database (page A-4)

• Problems Switching Over to a Logical Standby Database (page A-7)

• What to Do If SQL Apply Stops (page A-10)

• Network Tuning for Redo Data Transmission (page A-11)

• Slow Disk Performance on Standby Databases (page A-11)

• Log Files Must Match to Avoid Primary Database Shutdown (page A-12)

• Troubleshooting a Logical Standby Database (page A-12)

A.1 Common Problems
If you encounter a problem when using a standby database, it is probably because of
one of the following reasons:

• Renaming Data Files with the ALTER DATABASE Statement (page A-1)

• Standby Database Does Not Receive Redo Data from the Primary Database
(page A-2)

• You Cannot Mount the Physical Standby Database (page A-3)

A.1.1 Renaming Data Files with the ALTER DATABASE Statement
You cannot rename the data file on the standby site when the
STANDBY_FILE_MANAGEMENT initialization parameter is set to AUTO. When you set
the STANDBY_FILE_MANAGEMENT initialization parameter to AUTO, use of the
following SQL statements is not allowed:

• ALTER DATABASE RENAME

• ALTER DATABASE ADD/DROP LOGFILE

• ALTER DATABASE ADD/DROP STANDBY LOGFILE MEMBER

Troubleshooting Oracle Data Guard A-1

• ALTER DATABASE CREATE DATAFILE AS

If you attempt to use any of these statements on the standby database, an error is
returned. For example:

SQL> ALTER DATABASE RENAME FILE '/disk1/oracle/oradata/payroll/t_db2.log' to 'dummy';

alter database rename file '/disk1/oracle/oradata/payroll/t_db2.log' to 'dummy'
*
ERROR at line 1:
ORA-01511: error in renaming log/datafiles
ORA-01270: RENAME operation is not allowed if STANDBY_FILE_MANAGEMENT is auto

See Adding a Data File or Creating a Tablespace (page 10-14) to learn how to add data
files to a physical standby database.

A.1.2 Standby Database Does Not Receive Redo Data from the Primary Database
If the standby site is not receiving redo data, query the V$ARCHIVE_DEST view and
check for error messages. For example, enter the following query:

SQL> SELECT DEST_ID "ID", -
> STATUS "DB_status", -
> DESTINATION "Archive_dest", -
> ERROR "Error" -
> FROM V$ARCHIVE_DEST WHERE DEST_ID <=5;

ID DB_status Archive_dest Error
-- --------- ------------------------------ ------------------------------------
 1 VALID /vobs/oracle/work/arc_dest/arc
 2 ERROR standby1 ORA-16012: Archivelog standby database identifier mismatch
 3 INACTIVE
 4 INACTIVE
 5 INACTIVE
5 rows selected.

If the output of the query does not help you, then check the following list of possible
issues. If any of the following conditions exist, then redo transport services fail to
transmit redo data to the standby database:

• The service name for the standby instance is not configured correctly in the
tnsnames.ora file for the primary database.

• The Oracle Net service name specified by the LOG_ARCHIVE_DEST_n parameter
for the primary database is incorrect.

• The LOG_ARCHIVE_DEST_STATE_n parameter for the standby database is not set
to the value ENABLE.

• The listener.ora file has not been configured correctly for the standby
database.

• The listener is not started at the standby site.

• The standby instance is not started.

• You have added a standby archiving destination to the primary SPFILE or text
initialization parameter file, but have not yet enabled the change.

• Redo transport authentication has not been configured properly. See section 3.1.2
for redo transport authentication configuration requirements.

Common Problems

A-2 Concepts and Administration

• You used an invalid backup as the basis for the standby database (for example, you
used a backup from the wrong database, or did not create the standby control file
using the correct method).

A.1.3 You Cannot Mount the Physical Standby Database
You cannot mount the standby database if the standby control file was not created
with the ALTER DATABASE CREATE [LOGICAL] STANDBY CONTROLFILE ...
statement or RMAN command. You cannot use the following types of control file
backups:

• An operating system-created backup

• A backup created using an ALTER DATABASE statement without the PHYSICAL
STANDBY or LOGICAL STANDBY option

A.2 Log File Destination Failures
If you specify REOPEN for a MANDATORY destination, redo transport services stall the
primary database when redo data cannot be successfully transmitted.

The REOPEN attribute is required when you use the MAX_FAILURE attribute.
Example A-1 (page A-3) shows how to set a retry time of 5 seconds and limit retries
to 3 times.

Example A-1 Setting a Retry Time and Limit

LOG_ARCHIVE_DEST_1='LOCATION=/arc_dest REOPEN=5 MAX_FAILURE=3'

Use the ALTERNATE attribute of the LOG_ARCHIVE_DEST_n parameter to specify
alternate archive destinations. An alternate archiving destination can be used when
the transmission of redo data to a standby database fails. If transmission fails and the
REOPEN attribute was not specified or the MAX_FAILURE attribute threshold was
exceeded, redo transport services attempts to transmit redo data to the alternate
destination on the next archival operation.

Use the NOALTERNATE attribute to prevent the original archive destination from
automatically changing to an alternate archive destination when the original archive
destination fails.

Example A-2 (page A-3) shows how to set the initialization parameters so that a
single, mandatory, local destination automatically fails over to a different destination
if any error occurs.

Example A-2 Specifying an Alternate Destination

LOG_ARCHIVE_DEST_1='LOCATION=/disk1 MANDATORY ALTERNATE=LOG_ARCHIVE_DEST_2'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_2='LOCATION=/disk2 MANDATORY'
LOG_ARCHIVE_DEST_STATE_2=ALTERNATE

If the LOG_ARCHIVE_DEST_1 destination fails, the archiving process automatically
switches to the LOG_ARCHIVE_DEST_2 destination at the next log file switch on the
primary database.

Log File Destination Failures

Troubleshooting Oracle Data Guard A-3

A.3 Handling Logical Standby Database Failures
An important tool for handling logical standby database failures is the
DBMS_LOGSTDBY.SKIP_ERROR procedure. Depending on how important a table is,
you might want to do one of the following:

• Ignore failures for a table or specific DDL

• Associate a stored procedure with a filter so at runtime a determination can be
made about skipping the statement, executing this statement, or executing a
replacement statement

Taking one of these actions prevents SQL Apply from stopping. Later, you can query
the DBA_LOGSTDBY_EVENTS view to find and correct any problems that exist. See
Oracle Database PL/SQL Packages and Types Reference for more information about using
the DBMS_LOGSTDBY package with PL/SQL callout procedures.

A.4 Problems Switching Over to a Physical Standby Database
In most cases, following the steps described in Role Transitions (page 9-1) results in a
successful switchover. However, if the switchover is unsuccessful, the following
sections may help you to resolve the problem:

• Switchover Fails Because Redo Data Was Not Transmitted (page A-4)

• Switchover Fails with the ORA-01102 Error (page A-5)

• Redo Data Is Not Applied After Switchover (page A-5)

• Roll Back After Unsuccessful Switchover and Start Over (page A-6)

A.4.1 Switchover Fails Because Redo Data Was Not Transmitted
If the switchover does not complete successfully, you can query the SEQUENCE#
column in the V$ARCHIVED_LOG view to see if the last redo data transmitted from the
original primary database was applied on the standby database. If the last redo data
was not transmitted to the standby database, you can manually copy the archived
redo log file containing the redo data from the original primary database to the old
standby database and register it with the SQL ALTER DATABASE REGISTER
LOGFILE file_specification statement. If you then start apply services, the archived redo
log file is applied automatically. Query the SWITCHOVER_STATUS column in the V
$DATABASE view. A switchover to the primary role is now possible if the
SWITCHOVER_STATUS column returns TO PRIMARY or SESSIONS ACTIVE.

SQL> SELECT SWITCHOVER_STATUS FROM V$DATABASE;

SWITCHOVER_STATUS

TO PRIMARY
1 row selected

See Views Relevant to Oracle Data Guard (page 19-1) for information about other
valid values for the SWITCHOVER_STATUS column of the V$DATABASE view.

To continue with the switchover, follow the instructions in Performing a Switchover to
a Physical Standby Database (page 9-9) for physical standby databases or Performing a

Handling Logical Standby Database Failures

A-4 Concepts and Administration

Switchover to a Logical Standby Database (page 9-15) for logical standby databases,
and try again to switch the target standby database to the primary role.

A.4.2 Switchover Fails with the ORA-01102 Error
Suppose the standby database and the primary database reside on the same site. After
the ALTER DATABASE SWITCHOVER TO target_db_name statement is successfully
executed, shut down and restart the physical standby database and the primary
database.

Note:

It is not necessary to shut down and restart the physical standby database if it
has not been opened read-only since the instance was started.

However, the startup of the second database fails with ORA-01102 error "cannot
mount database in EXCLUSIVE mode."

This could happen during the switchover if you did not set the DB_UNIQUE_NAME
parameter in the initialization parameter file that is used by the standby database (the
original primary database). If the DB_UNIQUE_NAME parameter of the standby
database is not set, the standby and the primary databases both use the same mount
lock and cause the ORA-01102 error during the startup of the second database.

Action: Add DB_UNIQUE_NAME=unique_database_name to the initialization
parameter file used by the standby database, and shut down and restart the standby
and primary databases.

A.4.3 Redo Data Is Not Applied After Switchover
The archived redo log files are not applied to the new standby database after the
switchover.

This might happen because some environment or initialization parameters were not
properly set after the switchover.

Action:

• Check the tnsnames.ora file at the new primary site and the listener.ora file
at the new standby site. There should be entries for a listener at the standby site
and a corresponding service name at the primary site.

• Start the listener at the standby site if it has not been started.

• Check if the LOG_ARCHIVE_DEST_n initialization parameter was set to properly
transmit redo data from the primary site to the standby site. For example, query the
V$ARCHIVE_DEST fixed view at the primary site as follows:

SQL> SELECT DEST_ID, STATUS, DESTINATION FROM V$ARCHIVE_DEST;

If you do not see an entry corresponding to the standby site, you need to set
LOG_ARCHIVE_DEST_n and LOG_ARCHIVE_DEST_STATE_n initialization
parameters.

• Set the STANDBY_ARCHIVE_DEST and LOG_ARCHIVE_FORMAT initialization
parameters correctly at the standby site so that the archived redo log files are
applied to the desired location. (Note that the STANDBY_ARCHIVE_DEST
parameter has been deprecated and is supported for backward compatibility only.)

Problems Switching Over to a Physical Standby Database

Troubleshooting Oracle Data Guard A-5

• At the standby site, set the DB_FILE_NAME_CONVERT and
LOG_FILE_NAME_CONVERT initialization parameters. Set the
STANDBY_FILE_MANAGEMENT initialization parameter to AUTO to enable the
standby site to automatically add new data files that are created at the primary site.

A.4.4 Roll Back After Unsuccessful Switchover and Start Over
For physical standby databases in situations where an error occurred and it is not
possible to continue with the switchover, it might still be possible to revert the new
physical standby database back to the primary role by using the following steps. (This
functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2).)

1. Shut down and mount the new standby database (old primary).

2. Start Redo Apply on the new standby database.

3. Verify that the new standby database is ready to be switched back to the primary
role. Query the SWITCHOVER_STATUS column of the V$DATABASE view on the
new standby database. For example:

SQL> SELECT SWITCHOVER_STATUS FROM V$DATABASE;

SWITCHOVER_STATUS

TO_PRIMARY
1 row selected

A value of TO PRIMARY or SESSIONS ACTIVE indicates that the new standby
database is ready to be switched to the primary role. Continue to query this column
until the value returned is either TO PRIMARY or SESSIONS ACTIVE.

4. Issue the following statement to convert the new standby database back to the
primary role:

SQL> ALTER DATABASE SWITCHOVER TO target_db_name [FORCE];

If this statement is successful, then the database runs in the primary database role,
and you do not need to perform any more steps.

If this statement is unsuccessful, then continue with Step 5.

5. When the switchover to change the role from primary to physical standby was
initiated, a trace file was written in the log directory. This trace file contains the
SQL statements required to re-create the original primary control file. Locate the
trace file and extract the SQL statements into a temporary file. Execute the
temporary file from SQL*Plus. This reverts the new standby database back to the
primary role.

6. Shut down the original physical standby database.

7. Create a new standby control file. This is necessary to resynchronize the primary
database and physical standby database. Copy the physical standby control file to
the original physical standby system. Create a Control File for the Standby
Database (page 3-7) describes how to create a physical standby control file.

8. Restart the original physical standby instance.

If this procedure is successful and archive gap management is enabled, then the
FAL processes start and re-archive any missing archived redo log files to the

Problems Switching Over to a Physical Standby Database

A-6 Concepts and Administration

physical standby database. Force a log switch on the primary database and
examine the alert logs on both the primary database and physical standby database
to ensure the archived redo log file sequence numbers are correct.

See Manual Gap Resolution (page 7-14) for information about archive gap
management and Setting Archive Tracing (page F-1) for information about
locating the trace files.

9. Try the switchover again.

At this point, the Oracle Data Guard configuration has been rolled back to its initial
state, and you can try the switchover operation again (after correcting any
problems that might have led to the initial unsuccessful switchover).

A.5 Problems Switching Over to a Logical Standby Database
A switchover operation involving a logical standby database usually consists of two
phases: preparing and committing. The exceptions to this are for rolling upgrades of
Oracle software using a logical standby database or if you are using Oracle Data
Guard broker. If you experience failures in the context of doing a rolling upgrade
using a logical standby database or during a switchover operation initiated by Oracle
Data Guard broker, then go directly to Failures During the Commit Phase of a
Switchover Operation (page A-8).

Note:

Oracle recommends that Flashback Database be enabled for all databases in an
Oracle Data Guard configuration. The steps in this section assume that you
have Flashback Database enabled on all databases in your Oracle Data Guard
configuration.

A.5.1 Failures During the Prepare Phase of a Switchover Operation
If a failure occurs during the preparation phase of a switchover operation, then cancel
the switchover and retry the switchover operation from the very beginning.

A.5.1.1 Failure While Preparing the Primary Database

If you encounter failure while executing the ALTER DATABASE PREPARE TO
SWITCHOVER TO LOGICAL STANDBY statement, you can cancel the prepare phase of
a switchover by issuing the following SQL statement at the primary database:

SQL> ALTER DATABASE PREPARE TO SWITCHOVER TO LOGICAL STANDBY CANCEL;

You can now retry the switchover operation from the beginning.

A.5.1.2 Failure While Preparing the Logical Standby Database

If you encounter failure while executing the ALTER DATABASE PREPARE TO
SWITCHOVER TO PRIMARY statement, you need to cancel the prepare operation at
the primary database and at the target standby database. Take the following steps:

1. At the primary database, cancel the statement you had issued to prepare for the
switchover:

SQL> ALTER DATABASE PREPARE TO SWITCHOVER TO LOGICAL STANDBY CANCEL;

Problems Switching Over to a Logical Standby Database

Troubleshooting Oracle Data Guard A-7

2. At the logical standby database that was the target of the switchover, cancel the
statement you had issued to prepare to switch over:

SQL> ALTER DATABASE PREPARE TO SWITCHOVER TO PRIMARY CANCEL;

You can now retry the switchover operation from the beginning.

A.5.2 Failures During the Commit Phase of a Switchover Operation
Although committing to a switchover involves a single SQL statement, internally a
number of operations are performed. The corrective actions that you need to take
depend on the state of the commit to switchover operation when the error was
encountered.

A.5.2.1 Failure to Convert the Original Primary Database

If you encounter failures while executing the ALTER DATABASE COMMIT TO
SWITCHOVER TO LOGICAL STANDBY statement, you can take the following steps:

1. Check the DATABASE_ROLE column of the V$DATABASE fixed view on the
original primary database:

SQL> SELECT DATABASE_ROLE FROM V$DATABASE;

• If the column contains a value of LOGICAL STANDBY, the switchover
operation has completed, but has failed during a post-switchover task. In this
situation, Oracle recommends that you shut down and reopen the database.

• If the column contains a value of PRIMARY, proceed to Step 2.

2. Perform the following query on the original primary:

SQL> SELECT COUNT(*) FROM SYSTEM.LOGSTDBY$PARAMETERS -
> WHERE NAME = 'END_PRIMARY';

• If the query returns a 0, the primary is in a state identical to that it was in
before the commit to switchover command was issued. You do not need to
take any corrective action. You can proceed with the commit to switchover
operation or cancel the switchover operation as outlined in Failure While
Preparing the Logical Standby Database (page A-7).

• If the query returns a 1, the primary is in an inconsistent state, and you need to
proceed to Step 3.

3. Take corrective action at the original primary database to maintain its ability to be
protected by existing or newly instantiated logical standby databases.

You can either fix the underlying cause of the error raised during the commit to
switchover operation and reissue the SQL statement (ALTER DTABASE COMMIT
TO SWITCHOVER TO LOGICAL STANDBY) or you can take the following steps:

a. From the alert log of the instance where you initiated the commit to
switchover command, determine the SCN needed to flash back to the original
primary. This information is displayed after the ALTER DATABASE COMMIT
TO SWITCHOVER TO LOGICAL STANDBY SQL statement:

LOGSTDBY: Preparing the COMMIT TO SWITCHOVER TO LOGICAL STANDBY DDL at scn
[flashback_scn].

b. Shut down all instances of the primary database:

Problems Switching Over to a Logical Standby Database

A-8 Concepts and Administration

SQL> SHUTDOWN IMMEDIATE;

c. Mount the primary database in exclusive mode:

SQL> STARTUP MOUNT;

d. Flash back the database to the SCN taken from the alert log:

SQL> FLASHBACK DATABASE TO BEFORE SCN <flashback_scn>;

e. Open the primary database:

SQL> STARTUP;

f. Lower the database guard at the original primary database:

SQL> ALTER DATABASE GUARD NONE;

At this point the primary is in a state identical to that it was in before the commit
switchover command was issued. You do not need to take any corrective action.
you can proceed with the commit to switchover operation or cancel the
switchover operation as outlined in Failure While Preparing the Primary Database
(page A-7).

A.5.2.2 Failure to Convert the Target Logical Standby Database

If you encounter failures while executing the ALTER DATABASE COMMIT TO
SWITCHOVER TO PRIMARY statement, take the following steps:

1. Check the DATABASE_ROLE column of the V$DATABASE fixed view on the target
standby database:

SQL> SELECT DATABASE_ROLE FROM V$DATABASE;

• If the column contains a value PRIMARY, the switchover operation has
completed, but has failed during a post-switchover task. In this situation, you
must perform the following steps:

a. Shut down and reopen the database.

b. Issue an ALTER DATABASE GUARD NONE command to remove write
restrictions to the database.

• If the column contains a value of LOGICAL STANDBY, proceed to Step 2.

2. Perform the following query on the target logical standby:

SQL> SELECT COUNT(*) FROM SYSTEM.LOGSTDBY$PARAMETERS -
> WHERE NAME = 'BEGIN_PRIMARY';

• If the query returns a 0, the logical standby is in a state identical to that it was
in before the commit to switchover command was issued. You do not need to
take any corrective action. You can proceed with the commit to switchover
operations or cancel the switchover operation as outlined in Failure While
Preparing the Logical Standby Database (page A-7).

• If the query returns a 1, then the logical standby is in an inconsistent state.
Proceed to Step 3.

3. Take corrective action at the logical standby to maintain its ability to either
become the new primary or become a bystander to a different new primary.

Problems Switching Over to a Logical Standby Database

Troubleshooting Oracle Data Guard A-9

You can either fix the underlying cause of the error raised during the commit to
switchover operation and reissue the SQL statement (ALTER DATABASE COMMIT
TO SWITCHOVER TO PRIMARY) or you can take the following steps to flash back
the logical standby database to a point of consistency just prior to the commit to
switchover attempt:

a. From the alert log of the instance where you initiated the commit to
switchover command, determine the SCN needed to flash back to the logical
standby. This information is displayed after the ALTER DATABASE COMMIT
TO SWITCHOVER TO PRIMARY SQL statement:

LOGSTDBY: Preparing the COMMIT TO SWITCHOVER TO PRIMARY DDL at scn
[flashback_scn].

b. Shut down all instances of the target standby database:

SQL> SHUTDOWN IMMEDIATE;

c. Mount the target logical standby database:

SQL> STARTUP MOUNT;

d. Flash back the target logical standby to the desired SCN:

SQL> FLASHBACK DATABASE TO BEFORE SCN <flashback_scn>;

e. Open the database (in case of an Oracle RAC, open all instances);

SQL> STARTUP OPEN;

At this point the target standby is in a state identical to that it was in before the
commit to switchover command was issued. You do not need to take any further
corrective action. You can proceed with the commit to switchover operation.

A.6 What to Do If SQL Apply Stops
Apply services cannot apply unsupported DML statements, DDL statements, and
Oracle supplied packages to a logical standby database running SQL Apply.

When an unsupported statement or package is encountered, SQL Apply stops. You
can take the actions described in Table A-1 (page A-10) to correct the situation and
start SQL Apply on the logical standby database again.

Table A-1 Fixing Typical SQL Apply Errors

If... Then...

You suspect an unsupported statement or
Oracle supplied package was encountered

Find the last statement in the DBA_LOGSTDBY_EVENTS view. It
shows the statement and error that caused SQL Apply to fail. If
an incorrect SQL statement caused SQL Apply to fail,
transaction information, as well as the statement and error
information, can be viewed. The transaction information can be
used with LogMiner tools to understand the cause of the
problem.

An error requiring database management
occurred, such as running out of space in a
particular tablespace

Fix the problem and resume SQL Apply using the ALTER
DATABASE START LOGICAL STANDBY APPLY statement.

What to Do If SQL Apply Stops

A-10 Concepts and Administration

Table A-1 (Cont.) Fixing Typical SQL Apply Errors

If... Then...

An error occurred because a SQL statement
was entered incorrectly, such as an incorrect
standby database filename being entered in a
tablespace statement

Enter the correct SQL statement and use the
DBMS_LOGSTDBY.SKIP_TRANSACTION procedure to ensure
the incorrect statement is ignored the next time SQL Apply is
run. Then, restart SQL Apply using the ALTER DATABASE
START LOGICAL STANDBY APPLY statement.

An error occurred because skip parameters
were incorrectly set up, such as specifying that
all DML for a given table be skipped but
CREATE, ALTER, and DROP TABLE statements
were not specified to be skipped

Issue the
DBMS_LOGSTDBY.SKIP('TABLE','schema_name','table
_name',null) procedure, then restart SQL Apply.

See Views Relevant to Oracle Data Guard (page 19-1) for information about querying
the DBA_LOGSTDBY_EVENTS view to determine the cause of failures.

A.7 Network Tuning for Redo Data Transmission
For optimal performance, set the Oracle Net SDU parameter to its maximum value of
65535 bytes in each Oracle Net connect descriptor used by redo transport services.

The following example shows a database initialization parameter file segment that
defines a remote destination netserv:

LOG_ARCHIVE_DEST_3='SERVICE=netserv'

The following example shows the definition of that service name in the
tnsnames.ora file:

netserv=(DESCRIPTION=(SDU=32768)(ADDRESS=(PROTOCOL=tcp)(HOST=host) (PORT=1521))
(CONNECT_DATA=(SERVICE_NAME=srvc)))

The following example shows the definition in the listener.ora file:

LISTENER=(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(PROTOCOL=tcp)
(HOST=host)(PORT=1521))))

SID_LIST_LISTENER=(SID_LIST=(SID_DESC=(SDU=32768)(SID_NAME=sid)
(GLOBALDBNAME=srvc)(ORACLE_HOME=/oracle)))

If you archive to a remote site using a high-latency or high-bandwidth network link,
you can improve performance by using the SQLNET.SEND_BUF_SIZE and
SQLNET.RECV_BUF_SIZE Oracle Net profile parameters to increase the size of the
network send and receive I/O buffers.

See Oracle Database Net Services Administrator's Guide for information about other ways
to change the Oracle NET SDU parameter.

A.8 Slow Disk Performance on Standby Databases
If asynchronous I/O on the file system itself is showing performance problems, try
mounting the file system using the Direct I/O option or setting the
FILESYSTEMIO_OPTIONS=SETALL initialization parameter. The maximum I/O size
setting is 1 MB.

Network Tuning for Redo Data Transmission

Troubleshooting Oracle Data Guard A-11

A.9 Log Files Must Match to Avoid Primary Database Shutdown
If you have configured a standby redo log on one or more standby databases in the
configuration, ensure the size of the standby redo log files on each standby database
exactly matches the size of the online redo log files on the primary database.

At log switch time, if there are no available standby redo log files that match the size
of the new current online redo log file on the primary database:

• The primary database shuts down if it is operating in maximum protection mode,

or

• The RFS process on the standby database creates an archived redo log file on the
standby database and writes the following message in the alert log:

No standby log files of size <#> blocks available.

For example, if the primary database uses two online redo log groups whose log files
are 100K, then the standby database should have 3 standby redo log groups with log
file sizes of 100K.

Also, whenever you add a redo log group to the primary database, you must add a
corresponding standby redo log group to the standby database. This reduces the
probability of adverse effects on the primary database because a standby redo log file
of the required size is not available at log switch time.

A.10 Troubleshooting a Logical Standby Database
This section contains the following topics:

• Recovering from Errors (page A-12)

• Troubleshooting SQL*Loader Sessions (page A-14)

• Troubleshooting Long-Running Transactions (page A-15)

• Troubleshooting ORA-1403 Errors with Flashback Transactions (page A-18)

A.10.1 Recovering from Errors
Logical standby databases maintain user tables, sequences, and jobs. To maintain
other objects, you must reissue the DDL statements seen in the redo data stream.

If SQL Apply fails, an error is recorded in the DBA_LOGSTDBY_EVENTS table. The
following sections demonstrate how to recover from two such errors.

A.10.1.1 DDL Transactions Containing File Specifications

DDL statements are executed the same way on the primary database and the logical
standby database. If the underlying file structure is the same on both databases, then
the DDL executes on the standby database as expected.

If an error was caused by a DDL transaction containing a file specification that did not
match in the logical standby database environment, perform the following steps to fix
the problem:

1. Use the ALTER SESSION DISABLE GUARD statement to bypass the database
guard so you can make modifications to the logical standby database:

Log Files Must Match to Avoid Primary Database Shutdown

A-12 Concepts and Administration

SQL> ALTER SESSION DISABLE GUARD;

2. Execute the DDL statement, using the correct file specification, and then reenable
the database guard. For example:

SQL> ALTER TABLESPACE t_table ADD DATAFILE '/dbs/t_db.f' SIZE 100M REUSE;
SQL> ALTER SESSION ENABLE GUARD;

3. Start SQL Apply on the logical standby database and skip the failed transaction.

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE -
> SKIP FAILED TRANSACTION;

In some situations, the problem that caused the transaction to fail can be corrected and
SQL Apply restarted without skipping the transaction. An example of this might be
when available space is exhausted. (Do not let the primary and logical standby
databases diverge when skipping DDL transactions. If possible, manually execute a
compensating transaction in place of the skipped transaction.)

The following example shows SQL Apply stopping, the error being corrected, and
then restarting SQL Apply:

SQL> SET LONG 1000
SQL> ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YY HH24:MI:SS';

Session altered.

SQL> SELECT EVENT_TIME, COMMIT_SCN, EVENT, STATUS FROM DBA_LOGSTDBY_EVENTS;

EVENT_TIME COMMIT_SCN
------------------ ---------------
EVENT

STATUS

22-OCT-03 15:47:58

ORA-16111: log mining and apply setting up

22-OCT-03 15:48:04 209627
insert into "SCOTT"."EMP"
values
 "EMPNO" = 7900,
 "ENAME" = 'ADAMS',
 "JOB" = 'CLERK',
 "MGR" IS NULL,
 "HIREDATE" = TO_DATE('22-OCT-03', 'DD-MON-RR'),
 "SAL" = 950,
 "COMM" IS NULL,
 "DEPTNO" IS NULL
ORA-01653: unable to extend table SCOTT.EMP by %200 bytes in tablespace T_TABLE

In the example, the ORA-01653 message indicates that the tablespace was full and
unable to extend itself. To correct the problem, add a new data file to the tablespace.
For example:

SQL> ALTER TABLESPACE t_table ADD DATAFILE '/dbs/t_db.f' SIZE 60M;
Tablespace altered.

Then, restart SQL Apply:

Troubleshooting a Logical Standby Database

Troubleshooting Oracle Data Guard A-13

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;
Database altered.

When SQL Apply restarts, the transaction that failed is reexecuted and applied to the
logical standby database.

A.10.1.2 Recovering from DML Failures

Do not use the SKIP_TRANSACTION procedure to filter DML failures. Not only is the
DML that is seen in the events table skipped, but so is all the DML associated with the
transaction.

DML failures usually indicate a problem with a specific table. For example, assume the
failure is an out-of-storage error that you cannot resolve immediately. The following
steps demonstrate one way to respond to this problem.

1. Bypass the table, but not the transaction, by adding the table to the skip list:

SQL> EXECUTE DBMS_LOGSTDBY.SKIP('DML','SCOTT','EMP');
SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

From this point on, DML activity for the SCOTT.EMP table is not applied. After you
correct the storage problem, you can fix the table, provided you set up a database
link to the primary database that has administrator privileges to run procedures in
the DBMS_LOGSTDBY package.

2. Using the database link to the primary database, drop the local SCOTT.EMP table
and then re-create it, and pull the data over to the standby database.

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;
SQL> EXECUTE DBMS_LOGSTDBY.INSTANTIATE_TABLE('SCOTT','EMP','PRIMARYDB');
SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

3. To ensure a consistent view across the newly instantiated table and the rest of the
database, wait for SQL Apply to catch up with the primary database before
querying this table. Refer to Adding or Re-Creating Tables On a Logical Standby
Database (page 11-21) for a detailed example.

A.10.2 Troubleshooting SQL*Loader Sessions
Oracle SQL*Loader provides a method of loading data from different sources into the
Oracle Database. This section analyzes some of the features of the SQL*Loader utility
as it pertains to SQL Apply.

Regardless of the method of data load chosen, the SQL*Loader control files contain an
instruction on what to do to the current contents of the Oracle table into which the
new data is to be loaded, via the keywords of APPEND and REPLACE. The following
examples show how to use these keywords on a table named LOAD_STOK:

• When using the APPEND keyword, the new data to be loaded is appended to the
contents of the LOAD_STOK table:

LOAD DATA
INTO TABLE LOAD_STOK APPEND

• When using the REPLACE keyword, the contents of the LOAD_STOK table are
deleted prior to loading new data. Oracle SQL*Loader uses the DELETE statement
to purge the contents of the table, in a single transaction:

LOAD DATA
INTO TABLE LOAD_STOK REPLACE

Troubleshooting a Logical Standby Database

A-14 Concepts and Administration

Rather than using the REPLACE keyword in the SQL*Loader script, Oracle
recommends that prior to loading the data, you issue the SQL*Plus TRUNCATE TABLE
command against the table on the primary database. This has the same effect of
purging both the primary and standby databases copy of the table in a manner that is
both fast and efficient because the TRUNCATE TABLE command is recorded in the
online redo log files and is issued by SQL Apply on the logical standby database.

The SQL*Loader script may continue to contain the REPLACE keyword, but it now
attempts to DELETE zero rows from the object on the primary database. Because no
rows were deleted from the primary database, there is no redo recorded in the redo
log files. Therefore, no DELETE statement is issued against the logical standby
database.

Issuing the REPLACE keyword without the SQL statement TRUNCATE TABLE
provides the following potential problems for SQL Apply when the transaction needs
to be applied to the logical standby database.

• If the table currently contains a significant number of rows, then these rows need to
be deleted from the standby database. Because SQL Apply is not able to determine
the original syntax of the statement, SQL Apply must issue a DELETE statement for
each row purged from the primary database.

For example, if the table on the primary database originally had 10,000 rows, then
Oracle SQL*Loader issues a single DELETE statement to purge the 10,000 rows. On
the standby database, SQL Apply does not know that all rows are to be purged,
and instead must issue 10,000 individual DELETE statements, with each statement
purging a single row.

• If the table on the standby database does not contain an index that can be used by
SQL Apply, then the DELETE statement issues a Full Table Scan to purge the
information.

Continuing with the previous example, because SQL Apply has issued 10,000
individual DELETE statements, this could result in 10,000 Full Table Scans being
issued against the standby database.

A.10.3 Troubleshooting Long-Running Transactions
One of the primary causes for long-running transactions in a SQL Apply environment
is because of Full Table Scans. Additionally, long-running transactions could be the
result of SQL statements being replicated to the standby database, such as when
creating or rebuilding an index.

Identifying Long-Running Transactions

If SQL Apply is executing a single SQL statement for a long period of time, then a
warning message similar to the following is reported in the alert log of the SQL Apply
instance:

Mon Feb 17 14:40:15 2003
WARNING: the following transaction makes no progress
WARNING: in the last 30 seconds for the given message!
WARNING: xid =
0x0016.007.000017b6 cscn = 1550349, message# = 28, slavid = 1
knacrb: no offending session found (not ITL pressure)

Note the following about the warning message:

Troubleshooting a Logical Standby Database

Troubleshooting Oracle Data Guard A-15

• This warning is similar to the warning message returned for interested transaction
list (ITL) pressure, with the exception being the last line that begins with knacrb.
The final line indicates:

– A Full Table Scan may be occurring

– This issue has nothing to do with interested transaction list (ITL) pressure

• This warning message is reported only if a single statement takes more than 30
seconds to execute.

It may not be possible to determine the SQL statement being executed by the long-
running statement, but the following SQL statement may help in identifying the
database objects on which SQL Apply is operating:

SQL> SELECT SAS.SERVER_ID -
> , SS.OWNER -
> , SS.OBJECT_NAME -
> , SS.STATISTIC_NAME -
> , SS.VALUE -
> FROM V$SEGMENT_STATISTICS SS -
> , V$LOCK L -
> , V$STREAMS_APPLY_SERVER SAS -
> WHERE SAS.SERVER_ID = &SLAVE_ID -
> AND L.SID = SAS.SID -
> AND L.TYPE = 'TM' -
> AND SS.OBJ# = L.ID1;

Additionally, you can issue the following SQL statement to identify the SQL statement
that has resulted in a large number of disk reads being issued per execution:

SQL> SELECT SUBSTR(SQL_TEXT,1,40) -
> , DISK_READS -
> , EXECUTIONS -
> , DISK_READS/EXECUTIONS -
> , HASH_VALUE -
> , ADDRESS -
> FROM V$SQLAREA -
> WHERE DISK_READS/GREATEST(EXECUTIONS,1) > 1 -
> AND ROWNUM < 10 -
> ORDER BY DISK_READS/GREATEST(EXECUTIONS,1) DESC;

Oracle recommends that all tables have primary key constraints defined, which
automatically means that the column is defined as NOT NULL. For any table where a
primary-key constraint cannot be defined, define an index on an appropriate column
that is defined as NOT NULL. If a suitable column does not exist on the table, then the
table should be reviewed and, if possible, skipped by SQL Apply. The following steps
describe how to skip all DML statements issued against the FTS table on the SCOTT
schema:

1. Stop SQL Apply:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;
Database altered

2. Configure the skip procedure for the SCOTT.FTS table for all DML transactions:

SQL> EXECUTE DBMS_LOGSTDBY.SKIP(stmt => 'DML' , -
> schema_name => 'SCOTT' , -
> object_name => 'FTS');
PL/SQL procedure successfully completed

Troubleshooting a Logical Standby Database

A-16 Concepts and Administration

3. Start SQL Apply:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;
Database altered

Troubleshooting ITL Pressure

Interested transaction list (ITL) pressure is reported in the alert log of the SQL Apply
instance. The following shows an example of the warning messages.

Tue Apr 22 15:50:42 2003
WARNING: the following transaction makes no progress
WARNING: in the last 30 seconds for the given message!
WARNING: xid =
0x0006.005.000029fa cscn = 2152982, message# = 2, slavid = 17

Real-Time Analysis

The messages shown in the above output indicate that the SQL Apply process
(slavid) #17 has not made any progress in the last 30 seconds. To determine the SQL
statement being issued by the Apply process, issue the following query:

SQL> SELECT SA.SQL_TEXT -
> FROM V$SQLAREA SA -
 > , V$SESSION S -
 > , V$STREAMS_APPLY_SERVER SAS -
 > WHERE SAS.SERVER_ID = &SLAVEID -
 > AND S.SID = SAS.SID -
 > AND SA.ADDRESS = S.SQL_ADDRESS

SQL_TEXT
--
insert into "APP"."LOAD_TAB_1" p("PK","TEXT")values(:1,:2)

An alternative method to identifying ITL pressure is to query the V$LOCK view, as
shown in the following example. Any session that has a request value of 4 on a TX
lock, is waiting for an ITL to become available.

SQL> SELECT SID,TYPE,ID1,ID2,LMODE,REQUEST -
> FROM V$LOCK -
> WHERE TYPE = 'TX'

SID TY ID1 ID2 LMODE REQUEST
---------- -- ---------- ---------- ---------- ----------
 8 TX 327688 48 6 0
 10 TX 327688 48 0 4

In this example, SID 10 is waiting for the TX lock held by SID 8.

Post-Incident Review

Pressure for a segment's ITL is unlikely to last for an extended period of time. In
addition, ITL pressure that lasts for less than 30 seconds is not reported in the standby
databases alert log. Therefore, to determine which objects have been subjected to ITL
pressure, issue the following statement:

SQL> SELECT OWNER, OBJECT_NAME, OBJECT_TYPE -
> FROM V$SEGMENT_STATISTICS -
> WHERE STATISTIC_NAME = 'ITL waits' -
> AND VALUE > 0 -
> ORDER BY VALUE;

Troubleshooting a Logical Standby Database

Troubleshooting Oracle Data Guard A-17

This statement reports all database segments that have had ITL pressure at some time
since the instance was last started.

Note:

This SQL statement is not limited to a logical standby databases in the Oracle
Data Guard environment. It is applicable to any Oracle database.

Resolving ITL Pressure

To increase the INITRANS integer for a particular database object, it is necessary to
first stop SQL Apply.

See Also:

Oracle Database SQL Language Reference for more information about specifying
the INITRANS integer, which is the initial number of concurrent transaction
entries allocated within each data block allocated to the database object

The following example shows the necessary steps to increase the INITRANS for table
load_tab_1 in the schema app.

1. Stop SQL Apply:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;
Database altered.

2. Temporarily bypass the database guard:

SQL> ALTER SESSION DISABLE GUARD;
Session altered.

3. Increase the INITRANS on the standby database. For example:

SQL> ALTER TABLE APP.LOAD_TAB_1 INITRANS 30;
Table altered

4. Reenable the database guard:

SQL> ALTER SESSION ENABLE GUARD;
Session altered

5. Start SQL Apply:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;
Database altered.

Also, consider modifying the database object on the primary database, so that in the
event of a switchover, the error does not occur on the new standby database.

A.10.4 Troubleshooting ORA-1403 Errors with Flashback Transactions
If SQL Apply returns the ORA-1403: No Data Found error, then it may be possible
to use Flashback Transaction to reconstruct the missing data. This is reliant upon the
UNDO_RETENTION initialization parameter specified on the standby database instance.

Under normal circumstances, the ORA-1403 error is not seen in a logical standby
database environment. The error occurs when data in a table that is being managed by

Troubleshooting a Logical Standby Database

A-18 Concepts and Administration

SQL Apply is modified directly on the standby database and then the same data is
modified on the primary database. When the modified data is updated on the primary
database and is subsequently received on the logical standby database, SQL Apply
verifies the original version of the data is present on the standby database before
updating the record. When this verification fails, the ORA-1403: No Data Found
error is returned.

The Initial Error

When SQL Apply verification fails, the error message is reported in the alert log of the
logical standby database and a record is inserted in the DBA_LOGSTDBY_EVENTS
view. The information in the alert log is truncated, while the error is reported in it's
entirety in the database view. For example:

LOGSTDBY stmt: UPDATE "SCOTT"."MASTER"
 SET
 "NAME" = 'john'
 WHERE
 "PK" = 1 and
 "NAME" = 'andrew' and
 ROWID = 'AAAAAAAAEAAAAAPAAA'
LOGSTDBY status: ORA-01403: no data found
LOGSTDBY PID 1006, oracle@staco03 (P004)
LOGSTDBY XID 0x0006.00e.00000417, Thread 1, RBA 0x02dd.00002221.10

The Investigation

The first step is to analyze the historical data of the table that caused the error. This
can be achieved using the VERSIONS clause of the SELECT statement. For example,
you can issue the following query on the primary database:

SELECT VERSIONS_XID
 , VERSIONS_STARTSCN
 , VERSIONS_ENDSCN
 , VERSIONS_OPERATION
 , PK
 , NAME
 FROM SCOTT.MASTER
 VERSIONS BETWEEN SCN MINVALUE AND MAXVALUE
 WHERE PK = 1
 ORDER BY NVL(VERSIONS_STARTSCN,0);

VERSIONS_XID VERSIONS_STARTSCN VERSIONS_ENDSCN V PK NAME
---------------- ----------------- --------------- - --- -------
03001900EE070000 3492279 3492290 I 1 andrew
02000D00E4070000 3492290 D 1 andrew

Depending upon the amount of undo retention that the database is configured to
retain (UNDO_RETENTION) and the activity on the table, the information returned
might be extensive and you may need to change the versions between syntax to
restrict the amount of information returned. From the information returned, you can
see that the record was first inserted at SCN 3492279 and then was deleted at SCN
3492290 as part of transaction ID 02000D00E4070000. Using the transaction ID, query
the database to find the scope of the transaction. This is achieved by querying the
FLASHBACK_TRANSACTION_QUERY view.

SELECT OPERATION
 , UNDO_SQL
 FROM FLASHBACK_TRANSACTION_QUERY
 WHERE XID = HEXTORAW('02000D00E4070000');

Troubleshooting a Logical Standby Database

Troubleshooting Oracle Data Guard A-19

OPERATION UNDO_SQL
---------- --
DELETE insert into "SCOTT"."MASTER"("PK","NAME") values
 ('1','andrew');
BEGIN

There is always one row returned representing the start of the transaction. In this
transaction, only one row was deleted in the master table. The UNDO_SQL column,
when executed, restores the original data into the table.

SQL> INSERT INTO "SCOTT"."MASTER"("PK","NAME") VALUES ('1','ANDREW');SQL> COMMIT;

When you restart SQL Apply, the transaction is applied to the standby database:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

Troubleshooting a Logical Standby Database

A-20 Concepts and Administration

B
Patching, Upgrading, and Downgrading

Databases in an Oracle Data Guard
Configuration

The following topics describe how to upgrade and downgrade an Oracle database
when a physical or logical standby database is present in the Oracle Data Guard
configuration:

• Before You Upgrade the Oracle Database Software (page B-1)

• Patching Oracle Database with Standby First Patching (page B-2)

• Upgrading Oracle Database with a Physical Standby Database in Place (page B-3)

• Upgrading Oracle Database with a Logical Standby Database in Place (page B-4)

• Modifying the COMPATIBLE Initialization Parameter After Upgrading
(page B-5)

• Downgrading Oracle Database with No Logical Standby in Place (page B-6)

• Downgrading Oracle Database with a Logical Standby in Place (page B-6)

B.1 Before You Patch or Upgrade the Oracle Database Software
Consider the following points before beginning to patch or upgrade your Oracle
Database software:

• If you are using the Oracle Data Guard broker to manage your configuration,
follow the instructions in the Oracle Data Guard Broker manual for information
about removing or disabling the broker configuration.

• The procedures described in these topics are to be used in conjunction with the
ones contained in the Oracle Database Upgrade Guide.

• Check for nologging operations. If nologging operations have been performed then
you must update the standby database. See Recovering After the NOLOGGING
Clause Is Specified (page 15-9) for details.

• Make note of any tablespaces or data files that need recovery due to OFFLINE
IMMEDIATE. Tablespaces or data files should be recovered and either online or
offline prior to upgrading.

• In an Oracle Data Guard configuration, all physical and snapshot standby
databases must use a copy of the password file from the primary database. As of
Oracle Database 12c Release 2 (12.2.0.1) , password file changes done on the
primary database are automatically propagated to standby databases. (Password

Patching, Upgrading, and Downgrading Databases in an Oracle Data Guard Configuration B-1

file changes include when an administrative privilege (SYSDG, SYSOPER, SYSDBA,
and so on) is granted or revoked, and when the password of any user with
administrative privileges is changed.)

Far sync instances are an exception to the automatic updating feature. Updated
password files must still be manually copied to far sync instances because far sync
instances receive redo, but do not apply it. When a password file is manually
updated at a far sync instance, the redo containing the same password changes
from the primary database is automatically propagated to any standby databases
that are set up to receive redo from that far sync instance. The password file is
updated on the standby when the redo is applied.

Note:

If there are cascaded standbys in your configuration then those cascaded
standbys must follow the same rules as any other standby but should be shut
down last and restarted in the new home first.

B.2 Patching Oracle Database with Standby First Patching
Oracle Data Guard Standby-First Patch Apply provides support for different database
home software between a primary database and its physical standby database(s) for
the purpose of applying and validating Oracle patches and patch bundles in rolling
fashion with minimal risk to the primary database. For example, with Data Guard
Standby-First Patch Apply you apply a database home patch first to a physical
standby database. The standby is used to run read-only workload, or read-write
workload if it is a snapshot standby, for testing and evaluation of the patch. After
passing evaluation, the patch is then installed on the primary system with greater
assurance of the effectiveness and stability of the database home patch.

Oracle Data Guard Standby-First Patch Apply is supported only for certified interim
patches and patch bundles (for example, Patch Set Update, or Database Patch for
Exadata) for Oracle Database 11.2.0.1 and later, on both Oracle Engineered Systems
(e.g. Exadata, SuperCluster) and non-Engineered Systems. A patch and patch bundle
that is Data Guard Standby-First certified states the following in the patch README:

Data Guard Standby-First Installable

The following types of patches are candidates to be Data Guard Standby-First
certified:

• Database home interim patches

• Exadata bundle patches (e.g. Monthly and quarterly database patches for Exadata)

• Database patch set updates

Patches and patch bundles that update modules that may potentially disrupt the
interoperability between primary and physical standby systems running different
database home software are not certified “Data Guard Standby-First Installable” and
do not state so in the patch README.

Oracle patch sets and major release upgrades do not qualify for Data Guard Standby-
First Patch Apply. For example, upgrades from 11.2.0.2 to 11.2.0.3 or 11.2 to 12.1 do not
qualify. Use the Data Guard transient logical standby rolling upgrade process for
database patch sets and major releases.

Patching Oracle Database with Standby First Patching

B-2 Concepts and Administration

Additionally, as of Oracle Database 11g Release 2 (11.2.0.1), a physical standby
database can be used to install eligible one-off patches, patch set updates (PSUs), and
critical patch updates (CPUs), in rolling fashion. For more information about this
functionality, see the My Oracle Support note 1265700.1 at http://
support.oracle.com.

B.3 Upgrading Oracle Database with a Physical Standby Database in
Place

Perform the following steps to upgrade to Oracle Database 12c Release 2 (12.2) when a
physical standby database is present in the configuration:

1. Review and perform the steps listed in the "Preparing to Upgrade" chapter of the
Oracle Database Upgrade Guide.

2. Install the new release of the Oracle software into a new Oracle home on the
physical standby database and primary database systems, as described in the
Oracle Database Upgrade Guide.

3. Shut down the primary database.

4. Shut down the physical standby database(s).

5. Stop all listeners, agents, and other processes running in the Oracle homes that are
to be upgraded. Perform this step on all nodes in an Oracle Real Application
Clusters (Oracle RAC) environment.

6. If Oracle Automatic Storage Management (Oracle ASM) is in use, shut down all
databases that use Oracle ASM, and then shut down all Oracle ASM instance(s).

7. In the new Oracle home, restart all listeners, agents, and other processes that were
stopped in step 5.

8. Mount the physical standby database(s) on the new Oracle home (upgraded
version). See Start the Physical Standby Database (page 3-11) for information on
how to start a physical standby database.

Note:

Do not open the standby database(s) until the primary database upgrade is
completed.

9. Start Redo Apply on the physical standby database(s). See Start the Physical
Standby Database (page 3-11) for information on how to start Redo Apply.

10. Upgrade the primary database as described in the Oracle Database Upgrade Guide.
The physical standby database(s) is upgraded when the redo generated by the
primary database as it is upgraded is applied.

11. Open the upgraded primary database.

12. If Oracle Active Data Guard was being used prior to the upgrade, then refer to
Real-time query (page 10-3) for information about how to reenable it after
upgrading.

Upgrading Oracle Database with a Physical Standby Database in Place

Patching, Upgrading, and Downgrading Databases in an Oracle Data Guard Configuration B-3

http://support.oracle.com
http://support.oracle.com

13. Optionally, modify the COMPATIBLE initialization parameter, following the
procedure described in Modifying the COMPATIBLE Initialization Parameter After
Upgrading (page B-5).

Note:

On Windows platforms, it is necessary to use the ORADIM utility to delete the
database service (for the old database version) and to create a new database
service for the new database version. The OracleService<SID> must be
replaced on both the primary and standby servers.

B.4 Upgrading Oracle Database with a Logical Standby Database in Place

Note:

This topic describes the traditional method for upgrading your Oracle
Database software with a logical standby database in place. A second method
in Using SQL Apply to Upgrade the Oracle Database (page 13-1) describes
how to upgrade with a logical standby database in place in a rolling fashion to
minimize downtime. Use the steps from only one method to perform the
complete upgrade. Do not attempt to use both methods or to combine the
steps from the two methods as you perform the upgrade process.

The procedure described in this section assumes that the primary database is
running in MAXIMUM PERFORMANCE data protection mode.

Perform the following steps to upgrade to Oracle Database 12c Release 2 (12.2) when a
logical standby database is present in the configuration:

1. Review and perform the steps listed in the "Preparing to Upgrade" chapter of the
Oracle Database Upgrade Guide.

2. Set the data protection mode to MAXIMUM PERFORMANCE at the primary database,
if needed:

SQL> ALTER DATABASE SET STANDBY DATABASE TO MAXIMIZE PERFORMANCE;

3. On the primary database, stop all user activity and defer the remote archival
destination associated with the logical standby database (for this procedure, it is
assumed that LOG_ARCHIVE_DEST_2 is associated with the logical standby
database):

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=DEFER SCOPE=BOTH;
SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

4. Stop SQL Apply on the logical standby database:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;

5. On the primary database install the newer release of the Oracle software as
described in the Oracle Database Upgrade Guide.

6. On the logical standby database, install the newer release of the Oracle software as
described in Oracle Database Upgrade Guide.

Upgrading Oracle Database with a Logical Standby Database in Place

B-4 Concepts and Administration

Note:

Steps 5 and 6 can be performed concurrently (in other words, the primary and
the standby databases can be upgraded concurrently) to reduce downtime
during the upgrade procedure.

7. On the upgraded logical standby database, restart SQL Apply. If you are using
Oracle RAC, start up the other standby database instances:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

8. Open the upgraded primary database and allow users to connect. If you are using
Oracle RAC, start up the other primary database instances.

Also, enable archiving to the upgraded logical standby database, as follows:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

9. Optionally, reset to the original data protection mode if you changed it in Step 2.

10. Optionally, modify the COMPATIBLE initialization parameter, following the
procedure described in Modifying the COMPATIBLE Initialization Parameter After
Upgrading (page B-5).

B.5 Modifying the COMPATIBLE Initialization Parameter After Upgrading
When you upgrade to a new release of Oracle Database, certain new features might
make your database incompatible with your previous release. Oracle Database enables
you to control the compatibility of your database with the COMPATIBLE initialization
parameter.

After the upgrade is complete, you can increase the setting of the COMPATIBLE
initialization parameter to the maximum level for the new Oracle Database release.
When you are certain that you no longer need the ability to downgrade your database
back to its original version, set the COMPATIBLE initialization parameter based on the
compatibility level you want for your new database.

In an Oracle Data Guard configuration, if you decide to increase the setting of the
COMPATIBLE initialization parameter after upgrading, then it is important that you
perform the following steps in the order shown (be sure the standby database has a
COMPATIBLE setting equal to, or higher than, the primary):

1. Increase the value of the COMPATIBLE initialization parameter on all standby
databases in the configuration first, as follows:

a. Ensure that apply is current on the standby database(s).

b. On one instance of each standby database, execute the following SQL
statement:

ALTER SYSTEM SET COMPATIBLE=<value> SCOPE=SPFILE;

c. If Redo Apply or SQL Apply is running, then stop them.

d. Restart all instances of the standby database(s).

e. If you previously stopped Redo Apply or SQL Apply, then restart them.

Modifying the COMPATIBLE Initialization Parameter After Upgrading

Patching, Upgrading, and Downgrading Databases in an Oracle Data Guard Configuration B-5

2. Increase the value of the COMPATIBLE initialization parameter on the primary
database, as follows:

a. On one instance of the primary database, execute the following SQL
statement:

ALTER SYSTEM SET COMPATIBLE=<value> SCOPE=SPFILE;

b. Restart all instances of the primary database.

See Also:

• Oracle Database Upgrade Guide for more information about compatibility
settings

B.6 Downgrading Oracle Database with No Logical Standby in Place
Perform the following steps to downgrade Oracle Database in an Oracle Data Guard
configuration that does not contain a logical standby database:

1. Ensure that all physical standby databases are mounted, but not open. Do not open
the standby database(s) until all redo generated by the downgrade of the primary
database has been applied.

2. Start Redo Apply, in real-time apply mode, on the physical standby database(s).

3. Downgrade the primary database using the procedure described in Oracle Database
Upgrade Guide, keeping the following in mind:

• At each step of the downgrade procedure where a script is executed, execute the
script only at the primary database. Do not perform the next downgrade step
until all redo generated by the execution of the script at the primary database
has been applied to each physical standby database.

• At each step of the downgrade procedure where an action other than running a
script is performed, perform the step at the primary database first and then at
each physical standby database. Do not perform the next downgrade step at the
primary database until the action has been performed at each physical standby
database.

4. If it becomes necessary to perform a failover during a downgrade, perform the
failover and then continue with the downgrade procedure at the new primary
database.

B.7 Downgrading Oracle Database with a Logical Standby in Place
Perform the following steps to downgrade Oracle Database in an Oracle Data Guard
configuration that contains a logical standby database or a mixture of logical and
physical standby databases.

1. Issue the following command at the primary database (database P, for the sake of
this discussion) before you downgrade it:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO LOGICAL STANDBY;

Database P is no longer in the primary database role.

Downgrading Oracle Database with No Logical Standby in Place

B-6 Concepts and Administration

2. Wait for all standby databases in the configuration to finish applying all available
redo. To determine whether each standby database has finished applying all
available redo, run the following query at each standby database:

SQL> SELECT SWITCHOVER_STATUS FROM V$DATABASE;

SWITCHOVER_STATUS

TO PRIMARY

Do not continue on to step 3 until the query returns a value of TO PRIMARY for all
standby databases in the configuration.

3. Downgrade the logical standby databases using the procedures described in Oracle
Database Upgrade Guide, keeping the following in mind:

• At each step of the downgrade procedure where a script is executed, execute the
script only at the logical standby databases. Do not perform the next downgrade
step until all redo generated by executing the script at the logical standby
database that was most recently in the primary role (database P) has been
applied to each physical standby database.

• At each step of the downgrade procedure where an action other than running a
script is performed, first perform the step at the logical standby database that
was most recently in the primary role (database P), and then perform the step at
each physical standby database. Do not perform the next downgrade step at the
logical standby database that was most recently in the primary role (database P)
until the action has been performed at each physical standby database.

4. After the logical standby that was most recently in the primary role (database P)
has been successfully downgraded, open it, and issue the following command:

SQL> ALTER DATABASE ACTIVATE LOGICAL STANDBY DATABASE;

Database P is now back in the primary role.

5. At each of the logical standby databases in the configuration, issue the following
command (note that the command requires that a database link back to the primary
exist in all of the logical standby databases):

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE NEW PRIMARY
prim_db_link;

Downgrading Oracle Database with a Logical Standby in Place

Patching, Upgrading, and Downgrading Databases in an Oracle Data Guard Configuration B-7

Downgrading Oracle Database with a Logical Standby in Place

B-8 Concepts and Administration

C
Data Type and DDL Support on a Logical

Standby Database

When setting up a logical standby database, you must ensure the logical standby
database can maintain the datatypes and tables in your primary database. The
following topics describe the various database objects, storage types, and PL/SQL
supplied packages that are supported and unsupported by logical standby databases:

• Datatype Considerations (page C-1)

• Support for Data Types That Lack Native Redo-Based Support (page C-4)

• Support for Transparent Data Encryption (TDE) (page C-5)

• Support for Tablespace Encryption (page C-5)

• Support For Row-level Security and Fine-Grained Auditing (page C-6)

• Oracle Label Security (page C-7)

• Oracle E-Business Suite (page C-8)

• Supported Table Storage Types (page C-8)

• Unsupported Table Storage Types (page C-9)

• PL/SQL Supplied Packages Considerations (page C-10)

• Unsupported Tables (page C-16)

• Skipped SQL Statements on a Logical Standby Database (page C-18)

• DDL Statements Supported by a Logical Standby Database (page C-19)

• Distributed Transactions and XA Support (page C-23)

• Support for SecureFiles LOBs (page C-23)

• Support for Database File System (DBFS) (page C-24)

• Character Set Considerations (page C-24)

• Additional PL/SQL Package Support Available Only in the Context of
DBMS_ROLLING Upgrades (page C-24)

C.1 Datatype Considerations
The following sections list the supported and unsupported database objects:

• Supported Datatypes in a Logical Standby Database (page C-2)

Data Type and DDL Support on a Logical Standby Database C-1

• Unsupported Datatypes in a Logical Standby Database (page C-4)

C.1.1 Supported Datatypes in a Logical Standby Database

Note:

As of Oracle Database 12c Release 1 (12.1), the maximum size of the
VARCHAR2, NVARCHAR2, and RAW datatypes has been increased to 32 KB when
the COMPATIBLE initialization parameter is set to 12.0 or later and the
MAX_STRING_SIZE initialization parameter is set to EXTENDED. Logical
standby databases support this increased size in most cases. See "Ensure Table
Rows in the Primary Database Can Be Uniquely Identified (page 4-2)" for
known restrictions.

Logical standby databases support the following datatypes:

• Abstract Data Types (ADTs) and ADT tables

– ADTs cannot contain any data types that are not supported as a top-level
column type (for example, nested tables, PKREFs, BFILE, unsupported opaque
types).

– For a table with ADT columns to be supported there must be a primary key (or
at least a unique constraint or unique index) that consists solely of scalar top-
level columns (scalar ADT attributes cannot be part of such a candidate key).

• BINARY_DOUBLE

• BINARY_FLOAT

• BLOB, CLOB, and NCLOB stored as BasicFile and SecureFiles. SecureFiles can be
compressed, encrypted, or deduplicated. SecureFiles support requires that the
primary database be running at a compatibility of 11.2 or higher. See Support for
SecureFiles LOBs (page C-23)

• CHAR

• DATE

• INTERVAL YEAR TO MONTH

• INTERVAL DAY TO SECOND

• LONG

• LONG RAW

• NCHAR

• NUMBER

• NVARCHAR2

• Objects stored as VARRAYs (except for Collections)

• Oracle Text

• RAW

Datatype Considerations

C-2 Concepts and Administration

• Multimedia (See exceptions listed in Unsupported Datatypes in a Logical Standby
Database (page C-4).):

– ORDAudio

– ORDDataSource (internal)

– ORDDicom

– ORDDoc

– ORDImage

– ORDSource (internal)

– ORDVideo

• Spatial (See exceptions listed in Unsupported Datatypes in a Logical Standby
Database (page C-4).)

• TIMESTAMP

• TIMESTAMP WITH TIMEZONE

• TIMESTAMP WITH LOCAL TIMEZONE

• VARCHAR and VARCHAR2

• XMLType data for all storage models, assuming the following primary database
compatibility requirements:

– XMLType stored in CLOB format requires that the primary database be run at a
compatibility setting of 11.0 or higher (XMLType stored as CLOB is deprecated as
of Oracle Database 12c Release 1 (12.1).)

– XMLType stored in object-relational format or as binary XML requires that the
primary database be running Oracle Database 11g Release 2 (11.2.0.3) or higher
with a redo compatibility setting of 11.2.0.3 or higher

Note:

SQL Apply does not support statements that have function calls that perform
DML on ADT, LOB, or XMLType columns.

C.1.1.1 Compatibility Requirements

SQL Apply support for the following has compatibility requirements on the primary
database:

• Multibyte CLOB support requires primary database to run at a compatibility of 10.1
or higher.

• IOT support without LOBs and Overflows requires primary database to run at a
compatibility of 10.1 or higher.

• IOT support with LOB and Overflow requires primary database to run at a
compatibility of 10.2 or higher.

• TDE support requires primary database to run at a compatibility of 11.1 or higher.

Datatype Considerations

Data Type and DDL Support on a Logical Standby Database C-3

• Basic compression and advanced row compression require the primary database to
run at a compatibility of 11.1 or higher.

• Hybrid Columnar Compression support is dependent on the underlying storage
system.

See Also:

• Oracle Database Concepts for more information about Hybrid Columnar
Compression

C.1.1.2 Opaque Type Restrictions

• SYS.ANYDATA is supported as long as the instance does not store user-defined
opaque data types or BFILEs.

• SYS.ANYDATASET, SYS.ANYTYPE, and user-defined opaque types are not
supported.

C.1.2 Unsupported Datatypes in a Logical Standby Database
The following data types are not supported by logical standby databases. If a table
contains columns having any of these unsupported data types, then the entire table is
ignored by SQL Apply. (See Support for Data Types That Lack Native Redo-Based
Support (page C-4) for information about support for data types that lack native
redo-based support.)

• BFILE

• ROWID, UROWID

• Nested tables

• Objects with nested tables

• Identity columns

C.2 Support for Data Types That Lack Native Redo-Based Support
The Extended Datatype Support (EDS) feature provides a mechanism for logical
standbys to support certain data types that lack native redo-based support. For
example, tables with SDO_GEOMETRY columns can be replicated using EDS. (Source
tables must have a primary key.)

You can query the DBA_LOGSTDBY_EDS_SUPPORTED view to find out which tables
are candidates for EDS.

See Also:

• Using Extended Datatype Support During Replication (page 11-29) for
more information about EDS

Support for Data Types That Lack Native Redo-Based Support

C-4 Concepts and Administration

C.3 Support for Transparent Data Encryption (TDE)
Oracle Data Guard SQL Apply can be used to provide data protection for a primary
database with Transparent Data Encryption (TDE) enabled. Consider the following
when using a logical standby database to provide data protection for applications with
advanced security requirements:

• Tables with Transparent Data Encryption using server held keys are replicated on a
logical standby database when both the primary and the standby databases are
running at a compatibility level of 11.1 or higher.

• Transparent Data Encryption in the context of Hardware Security Modules is
supported for logical standby databases in Oracle Database 11g Release 2 (11.2) and
later.

You must consider the following restrictions when, in the context of a logical standby
database, you want to replicate tables that have encrypted columns:

1. To translate encrypted redo records, SQL Apply must have access to an open
wallet containing the Transparent Data Encryption keys. Therefore, you must
copy the wallet containing the keys from the primary database to the standby
database after it has been created.

2. The wallet must be copied from the primary database to the logical standby
database every time the master key is changed.

3. Oracle recommends that you not rekey the master key at the logical standby
database while the logical standby database is replicating encrypted tables from
the primary database. Doing so may cause SQL Apply to halt when it encounters
an encrypted redo record.

4. You can rekey the encryption key of a replicated table at the logical standby
database. This requires that you lower the guard setting to NONE before you issue
the rekey command.

5. Replicated encrypted tables can use a different encryption scheme for columns
than the one used in the primary database. For example, if the SALARY column of
the HR.EMPLOYEES table is encrypted at the primary database using the AES192
encryption algorithm, it can be encrypted at the logical standby using the AES256
encryption algorithm. Or, the SALARY column can remain unencrypted at the
logical standby database.

C.4 Support for Tablespace Encryption
Oracle Data Guard SQL Apply can be used to provide data protection for a primary
database that has tablespace encryption enabled. In such a case, restrictions 1, 2, and 3
listed in Support for Transparent Data Encryption (TDE) (page C-5) apply.

Encryption, re-keying, or decryption of a tablespace on a primary does not trigger the
need for the same operation on a logical standby. However, a logical standby must
have the capability of re-keying as well.

Support for Transparent Data Encryption (TDE)

Data Type and DDL Support on a Logical Standby Database C-5

Note:

In some cases, when SQL Apply mines and applies redo records for changes
made to tables in encrypted tablespaces, records of user data in unencrypted
form may be kept for a long period of time. If this is not acceptable, then issue
the following command to move all metadata tables pertaining to the mining
component of SQL Apply to an encrypted tablespace:

SQL> DBMS_LOGMNR_D.SET_TABLESPACE(NEW_TABLESPACE => 'ENCRYPTED_LOGMNR_TS');

C.5 Support For Row-level Security and Fine-Grained Auditing
As of Oracle Database 11g, Logical Standby can automatically replicate the security
environment provided through the DBMS_RLS and DBMS_FGA PL/SQL packages. This
support simplifies management of security considerations when a server fails over to
the standby since the security environment is transparently maintained. It also ensures
that access control policies applied to the primary data can be automatically
forwarded to the standby, and the standby data transparently given the same level of
protection. If a standby server is newly created with 11g, this replication is enabled by
default; otherwise it has to be enabled by the DBA at an appropriate time.

Support for the replication of these PL/SQL packages requires that both the primary
and the standby be running with a compatibility setting of 11.1 or higher.

It also requires that the table referenced be a Logical Standby maintained object. For
example, a table with a rowid column does not have its data maintained by Logical
Standby, so DBMS_RLS and DBMS_FGA calls referencing that table are not maintained.

C.5.1 Row-level Security
Row-Level Security, also known as Virtual Private Database (VPD), is a feature that
enforces security at a fine level of granularity, when accessing tables, views, or
synonyms. When a user directly or indirectly accesses a table, view, or synonym
protected with a VPD policy, the server dynamically modifies the SQL statement of
the user. The modification creates a WHERE condition (known as a predicate) returned
by a function implementing the security policy. The statement is modified
dynamically, transparently to the user, using any condition that can be expressed in,
or returned by, a function. VPD policies can be applied to SELECT, INSERT, UPDATE,
INDEX, and DELETE statements. VPD is implemented by using the DBMS_RLS package
to apply security policies.

When a DBMS_RLS procedure is executed on the primary, additional information is
captured in the redo that allows the procedure call to be logically reconstructed and
executed on the standby. Logical Standby supports replication of ancillary objects for
VPD such as Contexts, Database Logon Triggers, and their supporting packages. You
must ensure that these objects are placed in maintained schemas and that no DDL
skips have been configured that would stop their replication.

C.5.2 Fine-Grained Auditing
Fine-grained auditing provides a way to audit select statements. The DBMS_FGA
package enables all select statements that access a table to be captured, together with
what data was accessed. An FGA policy may be applied to a particular column or even
to only those select statements that return rows for which a specified predicate returns
TRUE.

Support For Row-level Security and Fine-Grained Auditing

C-6 Concepts and Administration

When a DBMS_FGA procedure is executed on the primary, additional information is
captured to the redo that allows the procedure call to be logically reconstructed and
executed on the standby.

C.5.3 Skipping and Enabling PL/SQL Replication
PL/SQL can be configured with skip and skip_error rules exactly as DDL statements
except that wildcarding on the package and procedure are not supported. For example
to skip all aspects of VPD, do the following:

DBMS_LOGSTDBY.Skip (
stmt => 'PL/SQL',
schema_name => 'SYS',
object_name =>'DBMS_RLS',
use_like => FALSE);

The schema specified is the schema in which the package is defined. To skip an
individual procedure in a package, the syntax is as follows:

DBMS_LOGSTDBY.Skip (
stmt => 'PL/SQL',
schema_name => 'SYS',
object_name =>'DBMS_RLS.ADD_POLICY',
use_like => FALSE);

To skip VPD on certain schemas or tables, a skip procedure must be used. The skip
procedure is passed the fully qualified PL/SQL statement that is to be executed, for
example:

DBMS_RLS.DROP_POLICY(
object_schema => 'SCOTT,
object_name => 'EMP',
policy_name => 'MYPOLICY');

The procedure could then parse the statement to decide whether to skip it, to apply it,
or to stop apply and let the DBA take a compensating action.

Unlike DDL, skip procedures on PL/SQL do not support returning a replacement
statement.

C.6 Oracle Label Security
As of Oracle Database 12c Release 2 (12.2), you can upgrade databases that use Oracle
Label Security (OLS) to new Oracle Database releases and patch sets using Oracle Data
Guard database rolling upgrades with a transient logical standby database and the
PL/SQL package, DBMS_ROLLING.

C.7 Oracle Database Vault
Oracle Data Guard rolling upgrades support databases that use Oracle Database
Vault.

As of Oracle Database 12c Release 2 (12.2.0.1), you can upgrade databases that use
Oracle Database Vault to new Oracle Database releases and patch sets by using Oracle
Data Guard database rolling upgrades with a transient logical standby and the
PL/SQL package, DBMS_ROLLING.

Oracle Label Security

Data Type and DDL Support on a Logical Standby Database C-7

C.8 Oracle E-Business Suite
Logical standby databases do not fully support an Oracle E-Business Suite
implementation because there are tables that contain unsupported data types.
However, using SKIP rules, it is possible for you to replicate a subset of the E-Business
Suite schemas and tables to offload applications to the logical standby.

See Also:

The My Oracle Support note 851603.1 at http://support.oracle.com for
additional information about using Logical standby with Oracle E-Business
Suite

C.9 Supported Table Storage Types
Logical standby databases support the following table storage types:

• Cluster tables (including index clusters and heap clusters).

• Index-organized tables (partitioned and nonpartitioned, including overflow
segments).

• Heap-organized tables (partitioned and nonpartitioned).

• Advanced row compression and basic table compression. Both of these options
require that the compatibility setting of the primary database be set to 11.1.0 or
higher.

• Tables containing LOB columns stored as SecureFiles, when compatibility is set to
11.2 or higher.

• Tables using Hybrid Columnar Compression, when compatibility is set to 11.2.0.2
or higher.

See Also:

– Oracle Database Concepts for more information about Hybrid Columnar
Compression

• Tables with virtual columns (provided the table has no other columns or properties
not supported by logical standby)

• If there is no primary key and no non-null unique constraint or index, then all
columns with a declared maximum length of 4000 bytes are logged as part of the
UPDATE statement to help identify the modified row. For the purpose of row
identification, logical standby requires that a table have at least one visible (not
virtual) column of one of the following datatypes:

– CHAR

– VARCHAR

– VARCHAR2 (with a declared column length <= 4000 bytes)

Oracle E-Business Suite

C-8 Concepts and Administration

http://support.oracle.com

– NVARCHAR

– NVARCHAR2 (with a declared column length <= 4000 bytes)

– NUMBER

– DATE

– RAW

– BINARY FLOAT

– BINARY DOUBLE

– TIMESTAMP

– TIMESTAMP WITH TIME ZONE

– TIMESTAMP WITH LOCAL TIME ZONE

– INTERVAL YEAR TO MONTH

– INTERVAL DAY TO SECOND

See Also:

– Ensure Table Rows in the Primary Database Can Be Uniquely Identified
(page 4-2)

C.10 Unsupported Table Storage Types
Logical standby does not support tables that contain only the following datatypes:

• LOB (CLOB, NCLOB, BLOB)

• LONG

• LONG RAW

• OBJECT TYPE

• COLLECTIONS

• XML

• VARCHAR2 (with a declared column length > 4000 bytes)

• NVARCHAR2 (with a declared column length > 4000 bytes)

• RAW (with a declared column length > 4000 bytes)

See Also:

• Support for SecureFiles LOBs (page C-23)

• Ensure Table Rows in the Primary Database Can Be Uniquely Identified
(page 4-2)

Unsupported Table Storage Types

Data Type and DDL Support on a Logical Standby Database C-9

C.11 PL/SQL Supplied Packages Considerations
This section discusses the following considerations regarding PL/SQL supplied
packages:

• Supported PL/SQL Supplied Packages (page C-10)

• Unsupported PL/SQL Supplied Packages (page C-10)

• Handling XML and XDB PL/SQL Packages in Logical Standby (page C-11)

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information
about Oracle PL/SQL supplied packages

C.11.1 Supported PL/SQL Supplied Packages
Oracle PL/SQL supplied packages that do not modify system metadata or user data
leave no footprint in the archived redo log files, and hence are safe to use on the
primary database. Examples of such packages are DBMS_OUTPUT, DBMS_RANDOM,
DBMS_PIPE, DBMS_DESCRIBE, DBMS_TRACE, DBMS_METADATA, DBMS_CRYPTO.

Oracle PL/SQL supplied packages that do not modify system metadata but may
modify user data are supported by SQL Apply, as long as the modified data belongs to
the supported data types listed in Supported Datatypes in a Logical Standby Database
(page C-2). Examples of such packages are DBMS_LOB, DBMS_SQL, and
DBMS_TRANSACTION.

Oracle Data Guard logical standby supports replication of actions performed through
the following packages: DBMS_DDL, DBMS_FGA, SDO_META, DBMS_REDACT,
DBMS_REDEFINITION, DBMS_RLS, DBMS_SQL_TRANSLATOR, DBMS_XDS,
DBMS_XMLINDEX and DBMS_XMLSCHEMA.

To identify which packages are supported in logical standby, you can query the
DBA_LOGSTDBY_PLSQL_SUPPORT view. For example, you can run the following
query to find out which packages are supported in a generic logical standby:

SQL> SELECT OWNER, PKG_NAME FROM DBA_LOGSTDBY_PLSQL_SUPPORT -
> where support_level = 'ALWAYS';

To identify which packages are supported in the context of rolling upgrades done
using the DBMS_ROLLING package, you can query the
DBA_LOGSTDBY_PLSQL_SUPPORT view, as follows:

SQL> SELECT OWNER, PKG_NAME FROM DBA_LOGSTDBY_PLSQL_SUPPORT -
> where support_level = 'DBMS_ROLLING';

C.11.2 Unsupported PL/SQL Supplied Packages
Oracle PL/SQL supplied packages that modify system metadata typically are not
supported by SQL Apply, and therefore their effects are not visible on the logical
standby database. Examples of such packages are DBMS_JAVA, DBMS_REGISTRY,
DBMS_ALERT, DBMS_SPACE_ADMIN, DBMS_REFRESH, and DBMS_AQ.

Additionally, the DBMS_RESOURCE_MANAGER package is not supported for physical
standby rolling upgrades.

PL/SQL Supplied Packages Considerations

C-10 Concepts and Administration

C.11.2.1 Support for DBMS_JOB

Specific support for DBMS_JOB has been provided. Jobs created on the primary
database are replicated on the standby database, but are not run as long as the standby
maintains its standby role. In the event of a switchover or failover, jobs scheduled on
the original primary database automatically begin running on the new primary
database.

You can also create jobs at the logical standby. These jobs only run as long as the
logical standby maintains it standby role.

C.11.2.2 Support for DBMS_SCHEDULER

Specific support for DBMS_SCHEDULER has been provided to allow jobs to be run on a
standby database. A new attribute of a scheduler job has been created in Oracle
Database 11g called database_role whose contents match the database_role
attribute of V$DATABASE. When a scheduler job is created, it defaults to the local role,
so a job created on the standby defaults to a database_role of LOGICAL STANDBY.
The job scheduler executes only jobs specific to the current role. On switchover or
failover, the scheduler automatically switches to running jobs specific to the new role.

Scheduler jobs are not replicated to the standby, except in the context of a rolling
upgrade done using the DBMS_ROLLING PL/SQL package. However, existing jobs can
be activated under the new role by using the DBMS_SCHEDULER.Set_Attribute
procedure. Alternatively, jobs that should run in both roles can be cloned and the copy
made specific to the other role. The DBA_SCHEDULER_JOB_ROLES view shows which
jobs are specific to which role.

Scheduler jobs obey the database guard when they run on a logical standby database.
Thus, to run jobs that need to modify unmaintained tables, set the database guard to
STANDBY. (It is not possible to use the ALTER SESSION DISABLE GUARD statement
inside a PL/SQL block and have it take effect.)

C.11.3 Handling XML and XDB PL/SQL Packages in Logical Standby
Logical Standby supports XMLType data for all storage models, with the following
compatibility requirements:

• XMLType stored in CLOB format requires that the primary database be run at a
compatibility setting of 11.0 or higher (XMLType stored as CLOB is deprecated as of
Oracle Database 12c Release 1 (12.1).)

• XMLType stored in object-relational format or as binary XML requires that the
primary database be running Oracle Database 11g Release 2 (11.2.0.3) or higher
with a redo compatibility setting of 11.2.0.3 or higher

There are several PL/SQL packages used in conjunction with XML that are not fully
supported.

The PL/SQL packages and procedures that are supported by Logical Standby only
modify in-memory structures; they do not modify data stored in the database. These
packages do not generate redo and therefore are not replicated to a Logical Standby.

Certain PL/SQL packages and procedures related to XML and XDB that are not
supported by Logical Standby, but that require corresponding invocations at the
logical standby database for replication activities to continue, are instrumented such
that invocations of these procedures at the primary database generate additional redo
records indicating procedure invocation. When SQL Apply encounters such redo
records, it stops and writes an error message in the DBA_LOGSTDBY_EVENTS table,

PL/SQL Supplied Packages Considerations

Data Type and DDL Support on a Logical Standby Database C-11

indicating the procedure name. This allows the DBA to invoke the corresponding
procedure at the logical standby database at the appropriate time so that subsequent
redo records generated at the primary database can be applied successfully at the
logical standby database. See The DBMS_XMLSCHEMA Schema (page C-12) through
Compensating for Ordering Sensitive Unsupported PL/SQL (page C-14) for more
information about dealing with these unsupported procedures.

The following packages contain unsupported procedures:

• DBMS_XMLSCHEMA (Supported if compatibility is set to 12.0.0 or higher.)

• DBMS_XMLINDEX

In addition to these packages, Logical Standby does not support any modifications to
the XDB schema. The objects within the XDB schema are considered to be system
metadata and direct modifications to them are not replicated.

Tables managed by the Oracle XML DB Repository, also known as hierarchy-enabled
tables, are not supported by Logical Standby. These tables are used to store XML data
and can be accessed using the FTP and HTTP protocols, as well as the normal SQL
access. For more information on these tables, refer to the Oracle XML DB Developer's
Guide.

C.11.3.1 The DBMS_XMLSCHEMA Schema

The following procedures within the DBMS_XMLSCHEMA package are unsupported and
cannot be replicated by Logical Standby. Logical Standby stops when it encounters
calls to these procedures to provide the user an opportunity to take a compensating
action for these calls. Sections Dealing With Unsupported PL/SQL Procedures
(page C-13) through Compensating for Ordering Sensitive Unsupported PL/SQL
(page C-14) provide more information on the alternatives available for dealing with
these unsupported procedures.

• COPYEVOLVE

• INPLACEEVOLVE

• COMPILESCHEMA

The XDB schema is an Oracle-managed schema. Any changes to this schema are
automatically skipped by Logical Standby. The following procedure makes changes to
the XDB schema which do not get replicated:

• GENERATEBEAN

The following procedures and functions do not generate redo and therefore do not
stop Logical Standby:

• GENERATESCHEMAS

• GENERATESCHEMA

Note:

As of Oracle Database 12c Release 1 (12.1), the GENERATESCHEMAS and
GENERATESCHEMA procedures are deprecated.

PL/SQL Supplied Packages Considerations

C-12 Concepts and Administration

C.11.3.2 The DBMS_XMLINDEX Package

All procedures in DBMS_XMLINDEX package are supported except for the following:

• DBMS_XMLINDEX.REGISTERPARAMETER

• DBMS_XMLINDEX.MODIFYPARAMETER

• DBMS_XMLINDEX.DROPPARAMETER

C.11.3.3 Dealing With Unsupported PL/SQL Procedures

There are a couple options for dealing with unsupported PL/SQL procedures. The
first option is to allow the Logical Standby apply process to stop and to manually
perform some compensating action. The second option is to take a preemptive action
and to skip the unsupported PL/SQL either by using Logical Standby skip
procedures. Each of these options is discussed in the following sections.

C.11.3.4 Manually Compensating for Unsupported PL/SQL

When Logical Standby encounters something that is unsupported, it stops the apply
process and records an error in the DBA_LOGSTDBY_EVENTS table. You can query this
table to determine what action caused the standby to stop and what action, if any,
needs to be taken to compensate.

The following example shows a sample of what this query and its output might look
like:

select status, event from dba_logstdby_events
 where commit_scn >= (select applied_scn from dba_logstdby_progress) and
 status_code = 16265
 order by commit_scn desc;

STATUS
--
EVENT
--
ORA-16265: Unsupported PL/SQL procedure encountered
begin
"XDB"."DBMS_XMLSCHEMA"."REGISTERPARAMETER" (
 "NAME" => 'myIndexParam',
 "PARAMETER" => 'PATH TABLE

ORA-16265: Unsupported PL/SQL procedure encountered
begin
"XDB"."DBMS_XMLSCHEMA"."REGISTERPARAMETER" (
 "NAME" => 'myIndexParam',
 "PARAMETER" => 'PATH TABLE

2 rows selected.

Two rows with the same information are returned because Logical Standby
automatically retries the failed transaction. The results show that the standby was
stopped when a call to DBMS_XMLSCHEMA.REGISTERSCHEMA was encountered for
the xmlplsqlsch2 schema. You can use this information to transfer any needed files
from the primary and register the schema on the standby.

Once the schema has been successfully registered on the standby, the apply process on
the Logical Standby can be restarted. This must be performed using the SKIP FAILED
TRANSACTION option, for example:

PL/SQL Supplied Packages Considerations

Data Type and DDL Support on a Logical Standby Database C-13

alter database start logical standby apply skip failed transaction'

Logical Standby skips past the offending transaction and continues applying redo
from the primary.

The general procedure for manually replicating unsupported PL/SQL follows these
steps:

1. Some unsupported PL/SQL is executed on the primary database.

2. The standby database encounters the unsupported PL/SQL and stops Apply.

3. You examine the DBA_LOGSTDBY_EVENTS table to determine what caused Apply
to stop.

4. You execute some compensating actions on the standby for the unsupported PL/
SQL.

5. You restart apply on the standby.

C.11.3.5 Compensating for Ordering Sensitive Unsupported PL/SQL

Although the previous approach is useful, it cannot be used in all cases. It can only be
safely used when the time that the PL/SQL is executed relative to other transactions is
not critical. One case that this should not be used for is that of
DBMS_XMLSCHEMA.copyEvolve.

This procedure evolves, or changes, a schema and can modify tables by adding and or
removing columns and it can also change whether or not XML documents are valid.
The timing of when this procedure should be executed on the Logical Standby is
critical. The only time guaranteed to be safe is when apply has stopped on the Logical
Standby when it sees that this procedure was executed on the primary database.

Before evolving a schema, it is also important to quiesce any traffic on the primary that
may be using the schema. Otherwise, a transaction that is executed close in time to the
evolveSchema on the primary may be executed in a different order on the Logical
Standby because the dependency between the two transactions is not apparent to the
Logical Standby. Therefore, when ordering sensitive PL/SQL is involved, you should
follow these steps:

1. Quiesce changes to dependent tables on the primary.

2. Execute the CopyEvolve on the primary.

3. Wait for the standby to stop on the CopyEvolve PL/SQL.

4. Apply the compensating CopyEvolve on the standby.

5. Restart apply on the standby.

Example C-1 (page C-14) shows a sample of the procedures that could be used to
determine how to handle RegisterSchema calls.

Example C-1 PL/SQL Skip Procedure for RegisterSchema

-- Procedures to determine how to handle registerSchema calls

-- This procedure extracts the schema URL, or name, from the statement
-- string that is passed into the skip procedure.

Create or replace procedure sec_mgr.parse_schema_str(
 statement in varchar2,

PL/SQL Supplied Packages Considerations

C-14 Concepts and Administration

 schema_name out varchar2)
Is
 pos1 number;
 pos2 number;
 workingstr varchar2(32767);
Begin

-- Find the correct argument
pos1 := instr(statement, '"SCHEMAURL" => ''');
workingstr := substr(statement, pos1 + 16);

-- Find the end of the schema name
pos1 := instr(workingstr, '''');

-- Get just the schema name
workingstr := substr(workingstr, 1, pos1 - 1);

schema_name := workingstr;

End parse_schema_str;
/
show errors

-- This procedure checks if a schema is already registered. If so,
-- it returns the value DBMS_LOGSTDBY.SKIP_ACTION_SKIP to indicate that
-- the PL/SQL should be skipped. Otherwise, the value
-- DBMS_LOGSTDBY.SKIP_ACTION_SKIP is returned and Logical Standby apply
-- will halt to allow the DBA to deal with the registerSchema call.

Create or replace procedure sec_mgr.skip_registerschema(
 statement in varchar2,
 package_owner in varchar2,
 package_name in varchar2,
 procedure_name in varchar2,
 current_user in varchar2,
 xidusn in number,
 xidslt in number,
 xidsqn in number,
 exit_status in number,
 skip_action out number)
Is
 schema_exists number;
 schemastr varchar2(2000);
Begin

 skip_action := DBMS_LOGSTDBY.SKIP_ACTION_SKIP;

 -- get the schame name from statement
 parse_schema_str(statement, schemastr);

 -- see if the schema is already registered
 select count(*) into schema_exists from sys.all_xml_schemas s
 where s.schema_url = schemastr and
 s.owner = current_user;

 IF schema_exists = 0 THEN
 -- if the schema is not registered, then we must stop apply
 skip_action := DBMS_LOGSTDBY.SKIP_ACTION_APPLY;
 ELSE
 -- if the schema is already registered, then we can skip this statement

PL/SQL Supplied Packages Considerations

Data Type and DDL Support on a Logical Standby Database C-15

 skip_action := DBMS_LOGSTDBY.SKIP_ACTION_SKIP;
 END IF;

End skip_registerschema;
/
show errors

-- Register the skip procedure to deal with the unsupported registerSchema
-- PL/SQL.
Begin
 sys.dbms_logstdby.skip(stmt => 'PL/SQL',
 schema_name => 'XDB',
 object_name => 'DBMS_XMLSCHEMA.REGISTERSCHEMA',
 proc_name => 'SEC_MGR.SKIP_REGISTERSCHEMA',
 use_like => FALSE);
 End;
 /
show errors

C.12 Unsupported Tables
It is important to identify unsupported database objects on the primary database
before you create a logical standby database because changes made to unsupported
data types and tables on the primary database are automatically skipped by SQL
Apply on the logical standby database. Moreover, no error message is returned.

There are three types of objects on a database, from the perspective of logical standby
support:

• Objects that are explicitly maintained by SQL Apply

• Objects that are implicitly maintained by SQL Apply

• Objects that are not maintained by SQL Apply

Some schemas that ship with the Oracle database (for example, SYSTEM) contain
objects that are implicitly maintained by SQL Apply. However, if you put a user-
defined table in SYSTEM, then it is not maintained even if it has columns of supported
data types. To discover which objects are not maintained by SQL Apply, you must run
two queries. The first query is as follows:

SQL> SELECT OWNER FROM DBA_LOGSTDBY_SKIP WHERE STATEMENT_OPT = 'INTERNAL SCHEMA';

This returns all schemas that are considered to be internal. User tables placed in these
schemas are not replicated on a logical standby database and do not show up in the
DBA_LOGSTDBY_UNSUPPORTED view. Tables in these schemas that are created by
Oracle are maintained on a logical standby, if the feature implemented in the schema
is supported in the context of logical standby.

The second query you must run is as follows. It returns tables that do not belong to
internal schemas and are not maintained by SQL Apply because of unsupported data
types:

SQL> SELECT DISTINCT OWNER,TABLE_NAME FROM DBA_LOGSTDBY_UNSUPPORTED -
> ORDER BY OWNER,TABLE_NAME;

OWNER TABLE_NAME
----------- --------------------------
HR COUNTRIES
OE ORDERS

Unsupported Tables

C-16 Concepts and Administration

OE CUSTOMERS
OE WAREHOUSES

To view the column names and data types for one of the tables listed in the previous
query, use a SELECT statement similar to the following:

SQL> SELECT COLUMN_NAME,DATA_TYPE FROM DBA_LOGSTDBY_UNSUPPORTED -
> WHERE OWNER='OE' AND TABLE_NAME = 'CUSTOMERS';

COLUMN_NAME DATA_TYPE
------------------------------- -------------------
CUST_ADDRESS CUST_ADDRESS_TYP
PHONE_NUMBERS PHONE_LIST_TYP
CUST_GEO_LOCATION SDO_GEOMETRY

If the primary database contains unsupported tables, SQL Apply automatically
excludes these tables when applying redo data to the logical standby database.

Note:

For the queries shown in this section, if you are working in a multitenant
container database (CDB) environment, then many DBA views have
analogous CDB views that you should use instead. For example, you would
query the CDB_LOGSTDBY_SKIP view instead of the DBA_LOGSTDBY_SKIP
view.

C.12.1 Unsupported Tables During Rolling Upgrades
Before you perform a rolling upgrade, determine whether any of the tables involved
contain data types that are unsupported on logical standby databases. To do this, you
can query either the DBA_LOGSTDBY_UNSUPPORTED view or the
DBA_ROLLING_UNSUPPORTED view, depending on the type of rolling upgrade being
performed.

If you are performing a rolling upgrade using the DBMS_ROLLING PL/SQL package,
as described in Using DBMS_ROLLING to Perform a Rolling Upgrade (page 14-1),
then query the DBA_ROLLING_UNSUPPORTED view.

If you are not using the DBMS_ROLLING package, but are instead following the
manual process outlined in Using SQL Apply to Upgrade the Oracle Database
(page 13-1), then query the DBA_LOGSTDBY_UNSUPPORTED view.

A rolling upgrade performed using DBMS_ROLLING supports more object types than a
manual rolling upgrade operation. For example, only upgrades performed with
DBMS_ROLLING support queue tables. Additionally, a rolling upgrade performed
using DBMS_ROLLING also supports more PL/SQL packages.

Unsupported Tables

Data Type and DDL Support on a Logical Standby Database C-17

See Also:

• Using SQL Apply to Upgrade the Oracle Database (page 13-1) for more
information about performing manual rolling upgrades

• Using DBMS_ROLLING to Perform a Rolling Upgrade (page 14-1) for
more information about performing rolling upgrades using the
DBMS_ROLLING PL/SQL package

• Additional PL/SQL Package Support Available Only in the Context of
DBMS_ROLLING Upgrades (page C-24) for information about PL/SQL
package support available only in the context of DBMS_ROLLING upgrades

• Oracle Database PL/SQL Packages and Types Reference for a description of the
DBMS_ROLLING PL/SQL package

• Oracle Database Reference for complete information about views

C.12.2 Unsupported Tables As a Result of DML Performed In a PL/SQL Function
If, during an insert or update DML operation on a supported table, an out-of-line
column (LOB, XMLType, or ADT) is modified through a PL/SQL function and that
function in turn performs DML on another table in the course of its execution, then the
redo patterns generated are unsupported by LogMiner. As a result, redo for such a
workload cannot be reliably mined using LogMiner.

C.13 Skipped SQL Statements on a Logical Standby Database
By default, the following SQL statements are automatically skipped by SQL Apply:

ALTER DATABASE

ALTER MATERIALIZED VIEW

ALTER MATERIALIZED VIEW LOG

ALTER SESSION

ALTER SYSTEM

CREATE CONTROL FILE

CREATE DATABASE

CREATE DATABASE LINK

CREATE PFILE FROM SPFILE

CREATE MATERIALIZED VIEW

CREATE MATERIALIZED VIEW LOG

CREATE SCHEMA AUTHORIZATION

CREATE SPFILE FROM PFILE

DROP DATABASE LINK

DROP MATERIALIZED VIEW

DROP MATERIALIZED VIEW LOG

EXPLAIN

LOCK TABLE

PURGE DBA_RECYCLEBIN

PURGE INDEX

SET CONSTRAINTS

SET ROLE

Skipped SQL Statements on a Logical Standby Database

C-18 Concepts and Administration

SET TRANSACTION

All other SQL statements executed on the primary database are applied to the logical
standby database.

C.14 DDL Statements Supported by a Logical Standby Database
Table C-1 (page C-19) lists the supported values for the stmt parameter of the
DBMS_LOGSTDBY.SKIP procedure. The left column of the table lists the keywords
that may be used to identify the set of SQL statements to the right of the keyword. In
addition, any of the SQL statements listed in the sys.audit_actions table (shown
in the right column of Table 1-13) are also valid values. Keywords are generally
defined by database object.

See Also:

Oracle Database PL/SQL Packages and Types Reference for complete information
about the DBMS_LOGSTDBY package and Setting up a Skip Handler for a DDL
Statement (page 11-18)

Table C-1 Values for stmt Parameter of the DBMS_LOGSTDBY.SKIP procedure

Keyword Associated SQL Statements

There is no keyword for
this group of SQL
statements.

GRANT
REVOKE
ANALYZE TABLE
ANALYZE INDEX
ANALYZE CLUSTER

CLUSTER
AUDIT CLUSTER
CREATE CLUSTER
DROP CLUSTER
TRUNCATE CLUSTER

CONTEXT
CREATE CONTEXT
DROP CONTEXT

DATABASE LINK
CREATE DATABASE LINK
CREATE PUBLIC DATABASE LINK
DROP DATABASE LINK
DROP PUBLIC DATABASE LINK

DIMENSION
ALTER DIMENSION
CREATE DIMENSION
DROP DIMENSION

DDL Statements Supported by a Logical Standby Database

Data Type and DDL Support on a Logical Standby Database C-19

Table C-1 (Cont.) Values for stmt Parameter of the DBMS_LOGSTDBY.SKIP
procedure

Keyword Associated SQL Statements

DIRECTORY
CREATE DIRECTORY
DROP DIRECTORY

DML Includes DML statements on a table (for example: INSERT,
UPDATE, and DELETE)

INDEX
ALTER INDEX
CREATE INDEX
DROP INDEX

NON_SCHEMA_DDL All DDL that does not pertain to a particular schema

Note: SCHEMA_NAME and OBJECT_NAME must be null

PROCEDURE1
ALTER FUNCTION
ALTER PACKAGE
ALTER PACKAGE BODY
ALTER PROCEDURE
CREATE FUNCTION
CREATE LIBRARY
CREATE PACKAGE
CREATE PACKAGE BODY
CREATE PROCEDURE
DROP FUNCTION
DROP LIBRARY
DROP PACKAGE
DROP PACKAGE BODY
DROP PROCEDURE

PROFILE
ALTER PROFILE
CREATE PROFILE
DROP PROFILE

PUBLIC DATABASE LINK
CREATE PUBLIC DATABASE LINK
DROP PUBLIC DATABASE LINK

PUBLIC SYNONYM
CREATE PUBLIC SYNONYM
DROP PUBLIC SYNONYM

ROLE
ALTER ROLE
CREATE ROLE
DROP ROLE
SET ROLE

DDL Statements Supported by a Logical Standby Database

C-20 Concepts and Administration

Table C-1 (Cont.) Values for stmt Parameter of the DBMS_LOGSTDBY.SKIP
procedure

Keyword Associated SQL Statements

ROLLBACK SEGMENT
ALTER ROLLBACK SEGMENT
CREATE ROLLBACK SEGMENT
DROP ROLLBACK SEGMENT

SCHEMA_DDL All DDL statements that create, modify, or drop schema objects (for
example: tables, indexes, and columns)

Note: SCHEMA_NAME and OBJECT_NAME must not be null

SEQUENCE
ALTER SEQUENCE
CREATE SEQUENCE
DROP SEQUENCE

SYNONYM
CREATE PUBLIC SYNONYM
CREATE SYNONYM
DROP PUBLIC SYNONYM
DROP SYNONYM

SYSTEM AUDIT
AUDIT SQL_statements
NOAUDIT SQL_statements

TABLE
CREATE TABLE
ALTER TABLE
DROP TABLE
TRUNCATE TABLE

TABLESPACE
CREATE TABLESPACE
DROP TABLESPACE
ALTER TABLESPACE

TRIGGER
ALTER TRIGGER
CREATE TRIGGER
DISABLE ALL TRIGGERS
DISABLE TRIGGER
DROP TRIGGER
ENABLE ALL TRIGGERS
ENABLE TRIGGER

TYPE
ALTER TYPE
ALTER TYPE BODY
CREATE TYPE
CREATE TYPE BODY
DROP TYPE
DROP TYPE BODY

DDL Statements Supported by a Logical Standby Database

Data Type and DDL Support on a Logical Standby Database C-21

Table C-1 (Cont.) Values for stmt Parameter of the DBMS_LOGSTDBY.SKIP
procedure

Keyword Associated SQL Statements

USER
ALTER USER
CREATE USER
DROP USER

VIEW
CREATE VIEW
DROP VIEW

1 Java schema objects (sources, classes, and resources) are considered the same as procedures for purposes
of skipping (ignoring) SQL statements.

See Also:

The following sections that provide usage examples of the SKIP and UNSKIP
options:

• Using DBMS_LOGSTDBY.SKIP to Prevent Changes to Specific Schema
Objects (page 11-17)

• Setting up a Skip Handler for a DDL Statement (page 11-18)

• Modifying a Logical Standby Database (page 11-19)

• Adding or Re-Creating Tables On a Logical Standby Database (page 11-21)

C.14.1 DDL Statements that Use DBLINKS
SQL Apply may not correctly apply DDL statements such as the following, that
reference a database link:

CREATE TABLE tablename AS SELECT * FROM bar@dblink

This is because the dblink at the logical standby database may not point to the same
database as the primary database. If SQL Apply fails while executing such a DDL
statement, then use the DBMS_LOGSTDBY.INSTANTIATE_TABLE procedure for the
table being created, and then restart SQL APPLY operations.

C.14.2 Replication of AUD$ and FGA_LOG$ on Logical Standbys
Auditing and fine-grained auditing are supported on logical standbys. Changes made
to the AUD$ and FGA_AUD$ tables at the primary database are replicated at the logical
standby.

Both the AUD$ table and the FGA_AUD$ table have a DBID column. If the DBID value
is that of the primary database, then the row was replicated to the logical standby
based on activities at the primary. If the DBID value is that of the logical standby
database, then the row was inserted as a result of local activities at the logical standby.

After the logical standby database assumes the primary role as a result of a role
transition (either a switchover or failover), the AUD$ and FGA_AUD$ tables at the new

DDL Statements Supported by a Logical Standby Database

C-22 Concepts and Administration

primary (originally the logical standby) and at the new logical standby (originally the
primary) are not necessarily synchronized. Therefore, it is possible that not all rows in
the AUD$ or FGA_AUD$ tables at the new primary database will be present in the new
logical standby database. However, all rows in AUD$ and FGA_LOG$ that were
inserted while the database was in a primary role are replicated and present in the
logical standby database.

C.15 Distributed Transactions and XA Support
You can perform distributed transactions using either of the following methods:

• Modify tables in multiple databases in a coordinated manner using database links.

• Use the XA interface, as exposed by the DBMS_XA package in supplied PL/SQL
packages or via OCI or JDBC libraries. The XA interface implements X/Open
Distributed Transaction Processing (DTP) architecture.

Changes made to the primary database during a distributed transaction using either of
these two methods are replicated to the logical standby database.

However, the distributed transaction state is not replicated. The logical standby
database does not inherit the in-doubt or prepared state of such a transaction, and it
does not replicate the changes using the same global transaction identifier used at the
primary database for the XA transactions. As a result, if you fail over to a logical
standby database before committing a distributed transaction, the changes are rolled
back at the logical standby. This rollback occurs even if the distributed transaction on
the primary database is in a prepared state and has successfully completed the first
phase of the two-phased commit protocol. Switchover operations wait for all active
distributed transactions to complete, and are not affected by this restriction.

XA transactions can be performed in two ways:

• tightly coupled, where different XA branches share locks

• loosely coupled, where different XA branches do not share locks

Replication of changes made by loosely coupled XA branches is supported regardless
of the COMPATIBLE parameter value. Replication of changes made by tightly coupled
branches on an Oracle RAC primary (introduced in 11g Release 1) is supported only
with COMPATIBLE=11.2 or higher.

C.16 Support for SecureFiles LOBs
SecureFiles LOBs are supported when the database compatibility level is set to 11.2 or
higher.

Transparent Data Encryption and data compression can be enabled on SecureFiles
LOB columns at the primary database.

Deduplication of SecureFiles LOB columns and SecureFiles Database File System
(DBFS) operations are fully supported. Fragment operations are only supported via
Extended Datatype Support (EDS).

If SQL Apply encounters redo generated by unsupported operations, it stops with an
ORA-16211: Unsupported record found in the archived redo log
error. To continue, add a skip rule for the affected table using DBMS_LOGSTDBY.SKIP
and restart SQL Apply.

Distributed Transactions and XA Support

Data Type and DDL Support on a Logical Standby Database C-23

C.17 Support for Database File System (DBFS)
Logical standby supports the Database File System (DBFS). DBFS creates a standard
file system interface on top of files and directories that are stored in database tables.,
which makes it easier for you to access and manage files stored in the database. See
Oracle Database SecureFiles and Large Objects Developer's Guide for more information
about DBFS.

C.18 Character Set Considerations
• It is not supported to have a Data Guard configuration in which the primary

database and logical standby database have different character sets.

• Configurations in which a multitenant container database (CDB) has a mixed
character set are only supported when using DBMS_ROLLING for rolling upgrades.
A mixed character set means that the CDB$ROOT and one or more of the CDB’s
pluggable databases (PDBs) have different character sets.

C.19 Additional PL/SQL Package Support Available Only in the Context of
DBMS_ROLLING Upgrades

Replication of the following packages is available only in the context of rolling
upgrades performed using the DBMS_ROLLING package:

• DBFS

– DBMS_DBFS_CONTENT_ADMIN

– DBMS_DBFS_SFS

– DBMS_DBFS_SFS_ADMIN

• Lightweight Security

– XS_ACL

– XS_DATA_SECURITY

– XS_NAMESPACE

– XS_PRINCIPAL

– XS_ROLESET

– XS_SECURITY_CLASS

• Oracle Streams Advanced Queuing (AQ)

– DBMS_AQ

– DBMS_AQJMS

– DBMS_AQADM (except for the following procedures: SCHEDULE_PROPAGATION,
RECOVER_PROPAGATION, UNSCHEDULE_PROPAGATION,
ALTER_PROPAGATION_SCHEDULE, ENABLE_PROPAGATION_SCHEDULE, and
DISABLE_PROPAGATION_SCHEDULE)

Support for Database File System (DBFS)

C-24 Concepts and Administration

• Oracle Text

– CTX_ADM

– CTX_ANL

– CTX_CLS

– CTX_DDL

– CTX_DOC

– CTX_ENTITY

– CTX_OUTPUT

– CTX_QUERY

– CTX_THES

– CTX_TREE

• Scheduler

– DBMS_SCHEDULER

• XDB-related

– DBMS_RESCONFIG

– DBMS_XDB_CONFIG (Certain procedures are not supported. See Oracle XML DB
Developer's Guide for more information.)

– DBMS_XDB_REPOS

– DBMS_XDBRESOURCE

– DBMS_XDB_VERSION

– DBMS_XDBZ (Certain procedures are not supported. See Oracle XML DB
Developer's Guide for more information.)

See Also:

• Using DBMS_ROLLING to Perform a Rolling Upgrade (page 14-1)

• Oracle Database Real Application Security Administrator's and Developer's
Guide for more information about the Lightweight Security packages

• Oracle Database PL/SQL Packages and Types Reference for more information
about DBMS_SCHEDULER, XDB-related, and DBFS-related packages

Additional PL/SQL Package Support Available Only in the Context of DBMS_ROLLING Upgrades

Data Type and DDL Support on a Logical Standby Database C-25

Additional PL/SQL Package Support Available Only in the Context of DBMS_ROLLING Upgrades

C-26 Concepts and Administration

D
Oracle Data Guard and Oracle Real

Application Clusters

An Oracle Data Guard configuration can consist of any combination of single-instance
and Oracle Real Application Clusters (Oracle RAC) multiple-instance databases. This
chapter summarizes the configuration requirements and considerations that apply
when using Oracle Data Guard with Oracle RAC databases. It contains the following
sections:

• Configuring Standby Databases in an Oracle RAC Environment (page D-1)

• Configuration Considerations in an Oracle RAC Environment (page D-4)

D.1 Configuring Standby Databases in an Oracle RAC Environment
You can configure a standby database to protect a primary database using Oracle
RAC. The following table describes the possible combinations of instances in the
primary and standby databases:

Instance Combinations Single-Instance Standby
Database

Multi-Instance
Standby Database

Single-instance primary database Yes No

Multi-instance primary database Yes Yes

In each scenario, each instance of the primary database transmits its redo data to an
instance of the standby database. As of Oracle Database 12c release 2 (12.2.0.1) you can
also perform multi-instance redo apply.

D.1.1 Setting Up Multi-Instance Redo Apply
As of Oracle Database 12c Release 2 (12.2.0.1), a new INSTANCES [ALL |
integer] clause is available on the SQL ALTER DATABASE RECOVER MANAGED
STANDBY DATABASE command, with the following restrictions:

• The clause is applicable only for Oracle Real Application Clusters (Oracle RAC) or
Oracle RAC One Node databases.

• Block Change tracking is not supported.

• In-Memory column store is not supported with multi-instance redo apply in an
Active Data Guard (ADG) environment.

The ALL option causes redo apply to run on all instances in an Oracle RAC standby
database that are in an open or mounted state at the time recovery is started. .All

Oracle Data Guard and Oracle Real Application Clusters D-1

instances must be in the same state — either open or mounted. A mix of states is not
allowed.

The integer option restricts the number of instances that redo apply uses to the
number you specify. For integer, specify an integer value from 1 to the number of
instances in the standby database. The database chooses the instances on which to
perform Redo Apply; you cannot specify particular instances.

The V$RECOVERY_PROGRESS view is only populated on the instance where recovery
was started (where the MRP0 process resides).

If you omit the INSTANCES clause, then recovery happens on only one instance
where the command was issued.

Because recovery processes ship redo among instances, redo apply performance is
directly related to network bandwidth and latency.

D.1.2 Setting Up a Multi-Instance Primary with a Single-Instance Standby
Figure D-1 (page D-2) illustrates an Oracle RAC database with two primary
database instances (a multi-instance primary database) transmitting redo data to a
single-instance standby database.

Figure D-1 Transmitting Redo Data from a Multi-Instance Primary Database

Standby
Database

Primary Database
Instance 2

32, 34, 36 33, 35, 37

Online Redo �
Log Files

Archived Redo�
Log Files

T1_L36T1_L34T1_L32

T1_L35T1_L33

Redo Data

Primary Database
Instance 1

1, 3, 5 2, 4, 6

Online Redo �
Log Files

Archived Redo�
Log Files

T2_L5T2_L3T2_L1

T2_L4T2_L2

Archived Redo�
Log Files

T1_L36T1_L34T1_L32

T1_L35T1_L33

Archived Redo�
Log Files

T2_L5T2_L3T2_L1

T2_L4T2_L2

Redo Data

Recover
Standby
Database

In this case, Instance 1 of the primary database archives redo data to local archived
redo log files 1, 2, 3, 4, 5 and transmits the redo data to the standby database
destination, while Instance 2 archives redo data to local archived redo log files 32, 33,
34, 35, 36 and transmits the redo data to the same standby database destination. The
standby database automatically determines the correct order in which to apply the
archived redo log files.

Although Figure D-1 (page D-2) does not show standby redo logs, it is a best practice
to configure standby redo logs at the standby for both instances of the primary (see
Managing Standby Redo Logs (page 7-7) for more information about standby redo

Configuring Standby Databases in an Oracle RAC Environment

D-2 Concepts and Administration

logs). The redo from the primary online redo log files at Instance 1 and Instance 2
would then be received first in the standby redo logs for Instance 1 and Instance 2,
respectively, and then archived.

To Configure a Primary Database in an Oracle RAC Environment

Before you create a standby database you must first ensure the primary database is
properly configured. To do so, you must perform some preparatory steps, after which
the database is prepared to serve as the primary database for one or more standby
databases.

Follow the instructions in Creating a Physical Standby Database (page 3-1) (for
physical standby database creation) or Creating a Logical Standby Database (page 4-1)
(for logical standby database creation) to configure each primary instance.

To Configure a Single Instance Standby Database

To specify the location of the archived redo log files and standby redo log files, define
the LOG_ARCHIVE_DEST_n and LOG_ARCHIVE_FORMAT parameters as described in
Creating a Physical Standby Database (page 3-1) (for physical standby database
creation) and Creating a Logical Standby Database (page 4-1) (for logical standby
database creation).

D.1.3 Setting Up Oracle RAC Primary and Standby Databases
This section describes how to configure an Oracle RAC primary database to send redo
data to an Oracle RAC standby database.

D.1.3.1 Configuring an Oracle RAC Standby Database to Receive Redo Data

Perform the following steps to configure an Oracle RAC standby database to receive
redo data from a primary database:

1. Create a standby redo log on the standby database. The redo log files in the
standby redo log must reside in a location that can be accessed by all of the standby
database instances, such as on a cluster file system or Oracle ASM instance. See
Managing Standby Redo Logs (page 7-7) for more information about creating a
standby redo log.

2. Configure standby redo log archival on each standby database instance. The
standby redo log must be archived to a location that can be accessed by all of the
standby database instances, and every standby database instance must be
configured to archive the standby redo log to the same location.

D.1.3.2 Configuring an Oracle RAC Primary Database to Send Redo Data

Configure each instance of the Oracle RAC primary database to send its redo data to
the Oracle RAC standby database. Configuring an Oracle Database to Send Redo Data
(page 7-4) describes how to configure an Oracle database instance to send redo data to
another database.

Oracle recommends the following best practices when configuring an Oracle RAC
primary database to send redo data to an Oracle RAC standby database:

1. Use the same LOG_ARCHIVE_DEST_n parameter on each primary database
instance to send redo data to a given standby database.

2. Set the SERVICE attribute of each LOG_ARCHIVE_DEST_n parameter that
corresponds to a given standby database to the same net service name.

Configuring Standby Databases in an Oracle RAC Environment

Oracle Data Guard and Oracle Real Application Clusters D-3

3. The net service name should resolve to an Oracle Net connect descriptor that
contains an address list, and that address list should contain connection data for
each standby database instance.

D.2 Configuration Considerations in an Oracle RAC Environment
This section contains the Oracle Data Guard configuration information that is specific
to Oracle RAC environments. It contains the following topics:

• Format for Archived Redo Log Filenames (page D-4)

• Data Protection Modes (page D-4)

D.2.1 Format for Archived Redo Log Filenames
The format for archived redo log filenames is in the form of log_%parameter, where
%parameter can include one or more of the parameters in Table D-1 (page D-4).

Table D-1 Directives for the LOG_ARCHIVE_FORMAT Initialization Parameter

Directives Description

%a Database activation ID.

%A Database activation ID, zero filled.

%d Database ID.

%D Database ID, zero filled.

%t Instance thread number.

%T Instance thread number, zero filled.

%s Log file sequence number.

%S Log file sequence number, zero filled.

%r Resetlogs ID.

%R Resetlogs ID, zero filled.

For example:

LOG_ARCHIVE_FORMAT = log%d_%t_%s_%r.arc

The thread parameters %t or %T are mandatory for Oracle RAC to uniquely identify
the archived redo log files with the LOG_ARCHIVE_FORMAT parameter.

D.2.2 Data Protection Modes
If any instance of an Oracle RAC primary database loses connectivity with a standby
database, all other primary database instances stop sending redo to the standby
database for the number of seconds specified on the LOG_ARCHIVE_DEST_n REOPEN
attribute, after which all primary database instances attempt to reconnect to the
standby database.

The following list describes the behavior of the protection modes in Oracle RAC
environments:

Configuration Considerations in an Oracle RAC Environment

D-4 Concepts and Administration

• Maximum protection configuration

If a lost destination is the last participating SYNC destination, then the instance loses
connectivity and is shut down. Other instances in an Oracle RAC configuration that
still have connectivity to the standby destinations recover the lost instance and
continue sending redo to their standby destinations. Only when every instance in
an Oracle RAC configuration loses connectivity to the last standby destination is
the primary database shut down.

• Maximum availability and maximum performance configurations

Other instances in an Oracle RAC configuration that still have connectivity to the
standby destination recover the lost instance and continue sending redo to their
standby destinations. When every instance in an Oracle RAC configuration loses
connectivity to the standby destination, the primary database continues operation
in maximum performance mode. The maximum performance mode ensures very
minimal data loss except when the entire standby fails.

The maximum availability protection mode ensures zero data loss except in the
case of certain double faults, such as failure of the primary database after the
failure of all standby databases.

Configuration Considerations in an Oracle RAC Environment

Oracle Data Guard and Oracle Real Application Clusters D-5

Configuration Considerations in an Oracle RAC Environment

D-6 Concepts and Administration

E
Creating a Standby Database with Recovery

Manager

See the following topics for information about how to use Oracle Recovery Manager to
create a standby database:

• Prerequisites (page E-1)

• Overview of Standby Database Creation with RMAN (page E-1)

• Using the DUPLICATE Command to Create a Standby Database (page E-4)

E.1 Prerequisites
Before you create a standby database with RMAN, you should have read the chapter
on database duplication in Oracle Database Backup and Recovery User's Guide. Because
you use the DUPLICATE command to create a standby database with RMAN, you
should also familiarize yourself with the DUPLICATE command entry in Oracle
Database Backup and Recovery Reference.

Also familiarize yourself with how to create a standby database in Creating a Physical
Standby Database (page 3-1) and Creating a Logical Standby Database (page 4-1) before
you attempt to create a standby database with RMAN.

E.2 Overview of Standby Database Creation with RMAN
This section explains the purpose and basic concepts involved in standby database
creation with RMAN.

E.2.1 Purpose of Standby Database Creation with RMAN
You can use either manual techniques or the RMAN DUPLICATE command to create a
standby database from backups of your primary database. Creating a standby
database with RMAN has the following advantages over manual techniques:

• RMAN can create a standby database by copying the files currently in use by the
primary database. No backups are required.

• RMAN can create a standby database by restoring backups of the primary database
to the standby site. Thus, the primary database is not affected during the creation
of the standby database.

• RMAN automates renaming of files, including Oracle Managed Files (OMF) and
directory structures.

• RMAN restores archived redo log files from backups and performs media recovery
so that the standby and primary databases are synchronized.

Creating a Standby Database with Recovery Manager E-1

E.2.2 Basic Concepts of Standby Creation with RMAN
The procedure for creating a standby database with RMAN is almost the same as for
creating a duplicate database. You need to amend the duplication procedures
described in Oracle Database Backup and Recovery User's Guide to account for issues
specific to a standby database.

To create a standby database with the DUPLICATE command you must connect as
target to the primary database and specify the FOR STANDBY option. You cannot
connect to a standby database and create an additional standby database. RMAN
creates the standby database by restoring and mounting a control file. RMAN can use
an existing backup of the primary database control file, so you do not need to create a
control file backup especially for the standby database.

A standby database, unlike a duplicate database created by DUPLICATE without the
FOR STANDBY OPTION, does not get a new DBID. Therefore, do not register the
standby database with your recovery catalog.

E.2.2.1 Active Database and Backup-Based Duplication

You must choose between active and backup-based duplication. If you specify FROM
ACTIVE DATABASE, then RMAN copies the data files directly from the primary
database to the standby database. The primary database must be mounted or open.

If you not specify FROM ACTIVE DATABASE, then RMAN performs backup-based
duplication. RMAN restores backups of the primary data files to the standby database.
All backups and archived redo log files needed for creating and recovering the
standby database must be accessible by the server session on the standby host. RMAN
restores the most recent data files unless you execute the SET UNTIL command.

E.2.2.2 DB_UNIQUE_NAME Values in an RMAN Environment

A standby database, unlike a duplicate database created by DUPLICATE without the
FOR STANDBY option, does not get a new DBID. When you use RMAN in an Oracle
Data Guard environment, connect it to a recovery catalog. The recovery catalog can
store the metadata for all primary and standby databases in the environment. Do not
explicitly register the standby database in the recovery catalog.

A database in an Oracle Data Guard environment is uniquely identified by means of
the DB_UNIQUE_NAME parameter in the initialization parameter file. The
DB_UNIQUE_NAME must be unique across all the databases with the same DBID for
RMAN to work correctly in an Oracle Data Guard environment.

See Also:

Oracle Database Backup and Recovery User's Guide for a conceptual overview of
RMAN operation in an Oracle Data Guard environment

E.2.2.3 Recovery of a Standby Database

By default, RMAN does not recover the standby database after creating it. RMAN
leaves the standby database mounted, but does not place the standby database in
manual or managed recovery mode. RMAN disconnects and does not perform media
recovery of the standby database.

For RMAN to recover the standby database after creating it, the standby control file
must be usable for the recovery. The following conditions must be met:

Overview of Standby Database Creation with RMAN

E-2 Concepts and Administration

• The end recovery time of the standby database must be greater than or equal to the
checkpoint SCN of the standby control file.

• An archived redo log file containing the checkpoint SCN of the standby control file
must be available at the standby site for recovery.

One way to ensure these conditions are met is to issue the ALTER SYSTEM ARCHIVE
LOG CURRENT statement after backing up the control file on the primary database. This
statement archives the online redo log files of the primary database. Then, either back
up the most recent archived redo log file with RMAN or move the archived redo log
file to the standby site.

Use the DORECOVER option of the DUPLICATE command to specify that you want
RMAN to recover the standby database. RMAN performs the following steps after
creating the standby database files:

1. RMAN begins media recovery. If recovery requires archived redo log files, and if
the log files are not already on disk, then RMAN attempts to restore backups.

2. RMAN recovers the standby database to the specified time, system change
number (SCN), or log file sequence number, or to the latest archived redo log file
generated if none of the preceding are specified.

3. RMAN leaves the standby database mounted after media recovery is complete,
but does not place the standby database in manual or managed recovery mode.

E.2.2.3.1 Standby Database Redo Log Files

RMAN automatically creates the standby redo log files on the standby database. After
the log files are created, the standby database maintains and archives them according
to the normal rules for log files.

If you use backup-based duplication, then the only option when naming the standby
redo log files on the standby database is the file names for the log files, as specified in
the standby control file. If the log file names on the standby must be different from the
primary file names, then one option is to specify file names for the standby redo logs
by setting LOG_FILE_NAME_CONVERT in the standby initialization parameter file.

Note the following restrictions when specifying file names for the standby redo log
files on the standby database:

• You must use the LOG_FILE_NAME_CONVERT parameter to name the standby redo
log files if the primary and standby databases use different naming conventions for
the log files.

• You cannot use the SET NEWNAME or CONFIGURE AUXNAME commands to rename
the standby redo log files.

• You cannot use the LOGFILE clause of the DUPLICATE command to specify file
names for the standby redo log files.

• For the standby redo log file names on the standby database to be the same as the
primary redo log file names, you must specify the NOFILENAMECHECK clause of
the DUPLICATE command. Otherwise, RMAN signals an error even if the standby
database is created on a different host.

E.2.2.4 Password Files for the Standby Database

If you are using active database duplication, then RMAN always copies the password
file to the standby host because the password file on the standby database must be an

Overview of Standby Database Creation with RMAN

Creating a Standby Database with Recovery Manager E-3

exact copy of the password file on the target database. In this case, the PASSWORD
FILE clause is not necessary. RMAN overwrites any existing password file for the
auxiliary instance. With backup-based duplication you must copy the password file
used on the primary to the standby, for Oracle Data Guard to ship logs.

E.3 Using the DUPLICATE Command to Create a Standby Database
The procedure for creating a standby database is basically identical to the duplication
procedure described in Oracle Database Backup and Recovery User's Guide.

E.3.1 Using Active Database Duplication to Create a Standby Database or Far Sync
Instance

You can use active database duplication to create either a standby database or a far
sync instance.

Creating a Standby Database with Active Database Duplication

To use the RMAN DUPLICATE command to create a standby database from files that
are active in the primary database, you must specify both the FOR STANDBY and
FROM ACTIVE DATABASE options. You can specify other options as well, such as
DORECOVER. For example:

DUPLICATE TARGET DATABASE FOR STANDBY FROM ACTIVE DATABASE DORECOVER;

Creating a Far Sync Instance with Active Database Duplication

As of Oracle Database 12c Release 12.2 (12.2.0.1), you can also use the RMAN
DUPLICATE command to create a far sync instance from files that are active in the
primary database. To do so, substitute FARSYNC in place of STANDBY on the command
line (do not specify the DORECOVER option; it is not allowed for far sync instances). For
example:

DUPLICATE TARGET DATABASE FOR FARSYNC FROM ACTIVE DATABASE;

Steps to Create a Standby Database or Far Sync Instance Using Active Database
Duplication

The following steps create a standby database from active database files, but you
could also use these steps to create a far sync instance from active database files. The
steps assume that the standby host (or far sync instance), and primary database host
have the same directory structure.

1. Prepare the auxiliary database instance as explained in Oracle Database Backup and
Recovery User's Guide.

Because you are using active database duplication, you must create a password file
for the auxiliary instance and establish Oracle Net connectivity. This is a temporary
password file which is overwritten during the duplicate operation.

2. Decide how to provide names for the standby control files, data files, online redo
logs, and tempfiles. This step is explained in Oracle Database Backup and Recovery
User's Guide.

In this scenario, the standby database files are named the same as the primary
database files.

Using the DUPLICATE Command to Create a Standby Database

E-4 Concepts and Administration

3. Start and configure RMAN as explained in Oracle Database Backup and Recovery
User's Guide.

4. Execute the DUPLICATE command.

The following example illustrates how to use DUPLICATE for active duplication.
This example requires the NOFILENAMECHECK option because the primary
database files have the same names as the standby database files. The SET clauses
for SPFILE are required for log shipping to work properly. The db_unique_name
must be set to ensure that the catalog and Oracle Data Guard can identify this
database as being different from the primary. Optionally, specify the DORECOVER
option to recover the database after standby creation (DORECOVER is not a valid
option for far sync instances).

DUPLICATE TARGET DATABASE
 FOR STANDBY
 FROM ACTIVE DATABASE
 DORECOVER
 SPFILE
 SET "db_unique_name"="foou" COMMENT "Is a duplicate"
 SET LOG_ARCHIVE_DEST_2="service=inst3 ASYNC REGISTER
 VALID_FOR=(online_logfile,primary_role)"
 SET FAL_SERVER="inst1" COMMENT "Is primary"
 NOFILENAMECHECK;

RMAN automatically copies the server parameter file to the standby host, starts the
auxiliary instance with the server parameter file, restores a backup control file, and
copies all necessary database files and archived redo logs over the network to the
standby host. RMAN recovers the standby database, but does not place it in
manual or managed recovery mode.

If you were creating a far sync instance rather than a standby, the command would
be the same except that STANDBY is replaced with FARSYNC, as follows:

DUPLICATE TARGET DATABASE
 FOR FARSYNC
 FROM ACTIVE DATABASE
 SPFILE
 SET "db_unique_name"="foou" COMMENT "Is a duplicate"
 SET LOG_ARCHIVE_DEST_2="service=inst3 ASYNC REGISTER
 VALID_FOR=(online_logfile,primary_role)"
 SET FAL_SERVER="inst1" COMMENT "Is primary"
 NOFILENAMECHECK;

E.3.2 Creating a Standby Database with Backup-Based Duplication
You can use backup—based duplication to create either a standby database or a far
sync instance.

Creating a Standby Database with Backup-Based Duplication

To create a standby database from backups, specify FOR STANDBY but do not specify
FROM ACTIVE DATABASE. You can specify other options as well, such as
DORECOVER. For example:

DUPLICATE TARGET DATABASE FOR STANDBY BACKUP LOCATION '+DATA/BACKUP' DORECOVER;

Using the DUPLICATE Command to Create a Standby Database

Creating a Standby Database with Recovery Manager E-5

Creating a Far Sync Instance with Backup-Based Duplication

As of Oracle Database 12c Release 12.2 (12.2.0.1), you can also use backup-based
duplication to create a Data Guard far sync instance using the RMAN DUPLICATE
command. To do so, substitute FARSYNC in place of STANDBY on the command line
(do not specify the DORECOVER option; it is not allowed for far sync instances). For
example:

DUPLICATE TARGET DATABASE FOR FARSYNC BACKUP LOCATION '+DATA/BACKUP';

Steps to Create a Standby Database or Far Sync Instance from Backups:

The following steps create a standby database from backup files, but you could also
use these steps to create a far sync instance from backup files. The steps assume that
the standby host (or far sync instance), and primary database host have the same
directory structure.

1. Make database backups and archived redo logs available to the auxiliary instance
on the duplicate host as explained in Oracle Database Backup and Recovery User's
Guide.

2. Prepare the auxiliary database instance as explained in Oracle Database Backup and
Recovery User's Guide.

3. Decide how to provide names for the standby control files, data files, online redo
logs, and tempfiles. This step is explained in Oracle Database Backup and Recovery
User's Guide.

In this scenario, the standby database files are named the same as the primary
database files.

4. Start and configure RMAN as explained in Oracle Database Backup and Recovery
User's Guide.

5. Execute the DUPLICATE command.

The following example illustrates how to use DUPLICATE for backup-based
duplication. This example requires the NOFILENAMECHECK option because the
primary database files have the same names as the standby database files.
Optionally, specify the DORECOVER option to recover the database after standby
creation (DORECOVER is not a valid option for far sync instances).

DUPLICATE TARGET DATABASE
 FOR STANDBY
 DORECOVER
 SPFILE
 SET "db_unique_name"="foou" COMMENT "Is a duplicate"
 SET LOG_ARCHIVE_DEST_2="service=inst3 ASYNC REGISTER
 VALID_FOR=(online_logfile,primary_role)"
 SET FAL_SERVER="inst1" COMMENT "Is primary"
 NOFILENAMECHECK;

RMAN automatically copies the server parameter file to the standby host, starts the
auxiliary instance with the server parameter file, and restores all necessary
database files and archived redo logs to the standby host. RMAN recovers the
standby database, but does not place it in manual or managed recovery mode.

Using the DUPLICATE Command to Create a Standby Database

E-6 Concepts and Administration

F
Setting Archive Tracing

The Oracle database uses the LOG_ARCHIVE_TRACE initialization parameter to enable
and control the generation of comprehensive trace information for log archiving and
redo transport activity.

The additional tracing that is output when LOG_ARCHIVE_TRACE is set to a non-zero
value can appear in trace files for an archive process, RFS process, LGWR process, SYNC
process, ASYNC process, foreground process, MRP process, recovery process, log apply
process, startup process, shutdown process, and other processes that use redo
transport services. Tracing information is written to the Automatic Diagnostic
Repository.

See Also:

• Oracle Database Reference for a complete description of the
LOG_ARCHIVE_TRACE initialization parameter and its valid values

• Oracle Database Administrator's Guide for more information about the
Automatic Diagnostic Repository

F.1 Setting the LOG_ARCHIVE_TRACE Initialization Parameter
The format for the LOG_ARCHIVE_TRACE parameter is as follows, where trace_level is
an integer:

LOG_ARCHIVE_TRACE=trace_level

To enable, disable, or modify the LOG_ARCHIVE_TRACE parameter, issue a SQL
statement similar to the following:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_TRACE=15;

You can combine tracing levels by setting the value of the LOG_ARCHIVE_TRACE
parameter to the sum of the individual levels. For instance, in the previous example,
setting the LOG_ARCHIVE_TRACE parameter to a value of 15 sets trace levels 1, 2, 4,
and 8.

For a complete list and description of valid LOG_ARCHIVE_TRACE values, see Oracle
Database Reference.

The following are examples of the ARC0 trace data generated on the primary site by
the archiving of log file 387 to two different destinations: the service standby1 and
the local directory /oracle/dbs.

Setting Archive Tracing F-1

Note:

The level numbers do not appear in the actual trace output; they are shown
here for clarification only.

Level Corresponding entry content (sample)
----- --------------------------------
(1) ARC0: Begin archiving log# 1 seq# 387 thrd# 1
(4) ARC0: VALIDATE
(4) ARC0: PREPARE
(4) ARC0: INITIALIZE
(4) ARC0: SPOOL
(8) ARC0: Creating archive destination 2 : 'standby1'
(16) ARC0: Issuing standby Create archive destination at 'standby1'
(8) ARC0: Creating archive destination 1 : '/oracle/dbs/d1arc1_387.log'
(16) ARC0: Archiving block 1 count 1 to : 'standby1'
(16) ARC0: Issuing standby Archive of block 1 count 1 to 'standby1'
(16) ARC0: Archiving block 1 count 1 to : '/oracle/dbs/d1arc1_387.log'
(8) ARC0: Closing archive destination 2 : standby1
(16) ARC0: Issuing standby Close archive destination at 'standby1'
(8) ARC0: Closing archive destination 1 : /oracle/dbs/d1arc1_387.log
(4) ARC0: FINISH
(2) ARC0: Archival success destination 2 : 'standby1'
(2) ARC0: Archival success destination 1 : '/oracle/dbs/d1arc1_387.log'
(4) ARC0: COMPLETE, all destinations archived
(16) ARC0: ArchivedLog entry added: /oracle/dbs/d1arc1_387.log
(16) ARC0: ArchivedLog entry added: standby1
(4) ARC0: ARCHIVED
(1) ARC0: Completed archiving log# 1 seq# 387 thrd# 1

(32) Propagating archive 0 destination version 0 to version 2
 Propagating archive 0 state version 0 to version 2
 Propagating archive 1 destination version 0 to version 2
 Propagating archive 1 state version 0 to version 2
 Propagating archive 2 destination version 0 to version 1
 Propagating archive 2 state version 0 to version 1
 Propagating archive 3 destination version 0 to version 1
 Propagating archive 3 state version 0 to version 1
 Propagating archive 4 destination version 0 to version 1
 Propagating archive 4 state version 0 to version 1

(64) ARCH: changing ARC0 KCRRNOARCH->KCRRSCHED
 ARCH: STARTING ARCH PROCESSES
 ARCH: changing ARC0 KCRRSCHED->KCRRSTART
 ARCH: invoking ARC0
 ARC0: changing ARC0 KCRRSTART->KCRRACTIVE
 ARCH: Initializing ARC0
 ARCH: ARC0 invoked
 ARCH: STARTING ARCH PROCESSES COMPLETE
 ARC0 started with pid=8
 ARC0: Archival started

The following is the trace data generated by the remote file server (RFS) process on the
standby site as it receives archived redo log file 387 in directory /stby and applies it
to the standby database:

level trace output (sample)
---- ------------------
(4) RFS: Startup received from ARCH pid 9272

Setting the LOG_ARCHIVE_TRACE Initialization Parameter

F-2 Concepts and Administration

(4) RFS: Notifier
(4) RFS: Attaching to standby instance
(1) RFS: Begin archive log# 2 seq# 387 thrd# 1
(32) Propagating archive 5 destination version 0 to version 2
(32) Propagating archive 5 state version 0 to version 1
(8) RFS: Creating archive destination file: /stby/parc1_387.log
(16) RFS: Archiving block 1 count 11
(1) RFS: Completed archive log# 2 seq# 387 thrd# 1
(8) RFS: Closing archive destination file: /stby/parc1_387.log
(16) RFS: ArchivedLog entry added: /stby/parc1_387.log
(1) RFS: Archivelog seq# 387 thrd# 1 available 04/02/99 09:40:53
(4) RFS: Detaching from standby instance
(4) RFS: Shutdown received from ARCH pid 9272

Setting the LOG_ARCHIVE_TRACE Initialization Parameter

Setting Archive Tracing F-3

Setting the LOG_ARCHIVE_TRACE Initialization Parameter

F-4 Concepts and Administration

G
Performing Role Transitions Using Old

Syntax

Prior to Oracle Database 12c Release 1 (12.1), the procedures for performing
switchovers and failovers to a physical standby database were different. These
procedures are still supported, but Oracle recommends you use the new procedures
described in "Role Transitions Involving Physical Standby Databases (page 9-8)".

If you are using a release prior to Oracle Database 12c Release 1 (12.1), then you must
use the old procedures.

The following topics are discussed:

• SQL Syntax for Role Transitions Involving Physical Standbys (page G-1)

• Role Transitions Involving Physical Standby Databases (page G-2)

• Troubleshooting Switchovers to Physical Standby Databases (page G-6)

G.1 SQL Syntax for Role Transitions Involving Physical Standbys
Oracle Database 12c Release 1 (12.1) introduces new SQL syntax for performing
switchover and failover operations to a physical standby database. Do not mix syntax
from the old procedures (described in this topic) and the new procedures (described in
Role Transitions (page 9-1)), unless you are specifically directed to do so.

Pre-12c Role Transition Syntax for
Physical Standby Databases

12c Role Transition Syntax for Physical
Standby Databases

To switchover to a physical standby
database, on the primary database:

SQL> ALTER DATABASE COMMIT TO
SWITCHOVER TO PHYSICAL STANDBY;

On the physical standby database:

SQL>ALTER DATABASE COMMIT TO
SWITCHOVER TO PRIMARY;

To switchover to a physical standby database:

SQL> ALTER DATABASE SWITCHOVER TO
target_db_name [FORCE] [VERIFY];

To failover to a physical standby database,
(step 6 and step 8 in "Performing a
Failover to a Physical Standby Database
Using Old Syntax (page G-4)"):

SQL> ALTER DATABASE RECOVER
MANAGED STANDBY DATABASE FINISH;

and

SQL> ALTER DATABASE COMMIT TO
SWITCHOVER TO PRIMARY;

To failover to a physical standby database, the
following statement replaces the two statements
previously required:

SQL> ALTER DATABASE FAILOVER TO
target_db_name;

Performing Role Transitions Using Old Syntax G-1

See Also:

• Oracle Database SQL Language Reference for more information about SQL
syntax

G.1.1 New Features When Using the Old Syntax
As of Oracle Database 12c Release 1 (12.1), you can issue the following statement
without having to include the WITH SESSION SHUTDOWN clause:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PHYSICAL STANDBY;

This statement results in active SQL sessions being killed automatically. The WITH
SESSION SHUTDOWN clause is no longer needed to kill active SQL sessions.

Additionally, when you perform a switchover from an Oracle RAC primary database
to a physical standby database, it is no longer necessary to shut down all but one
primary database instance. All the instances are shut down automatically after the
switchover is complete.

G.2 Role Transitions Involving Physical Standby Databases
The following sections describe how to perform switchovers and failovers to a
physical standby database using SQL syntax that was in place in releases prior to
Oracle Database 12c Release 1 (12.1).

These are the procedures that must be used if you are running a release prior to 12.1:

• Performing a Switchover to a Physical Standby Database Using Old Syntax
(page G-2)

• Performing a Failover to a Physical Standby Database Using Old Syntax
(page G-4)

See Also:

Role Transitions (page 9-1) for information about how to prepare for
switchovers and failovers

G.2.1 Performing a Switchover to a Physical Standby Database Using Old Syntax
This section describes how to perform a switchover to a physical standby database. A
switchover is initiated on the primary database and is completed on the target standby
database.

1. Verify that the primary database can be switched to the standby role.

Query the SWITCHOVER_STATUS column of the V$DATABASE view on the primary
database. For example:

SQL> SELECT SWITCHOVER_STATUS FROM V$DATABASE;

SWITCHOVER_STATUS

 TO STANDBY
 1 row selected

Role Transitions Involving Physical Standby Databases

G-2 Concepts and Administration

A value of TO STANDBY or SESSIONS ACTIVE indicates that the primary
database can be switched to the standby role. If neither of these values is returned,
a switchover is not possible because redo transport is either misconfigured or is not
functioning properly. See Redo Transport Services (page 7-1) for information about
configuring and monitoring redo transport.

2. Issue the following SQL statement on the primary database to switch it to the
standby role: Issue the following SQL statement on the primary database to switch
it to the standby role:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PHYSICAL STANDBY;

This statement converts the primary database into a physical standby database. The
current control file is backed up to the current SQL session trace file before the
switchover. This makes it possible to reconstruct a current control file, if necessary.

3. Mount the former primary database. For example: For example:

SQL> STARTUP MOUNT;

At this point in the switchover process, the original primary database is a physical
standby database.

4. Query the SWITCHOVER_STATUS column of the V$DATABASE view on the standby
database to verify that the switchover target is ready to be switched to the primary
role. For example:

SQL> SELECT SWITCHOVER_STATUS FROM V$DATABASE;

SWITCHOVER_STATUS

TO PRIMARY
1 row selected

A value of TO PRIMARY or SESSIONS ACTIVE indicates that the standby
database is ready to be switched to the primary role. If neither of these values is
returned, verify that Redo Apply is active and that redo transport is configured and
working properly. Continue to query this column until the value returned is either
TO PRIMARY or SESSIONS ACTIVE.

5. Issue the following SQL statement on the target physical standby database to
switch it to the primary role:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY WITH SESSION SHUTDOWN;

Note:

The WITH SESSION SHUTDOWN clause can be omitted from the switchover
statement if the query performed in step 4 returned a value of TO PRIMARY.

6. Open the new primary database:

SQL> ALTER DATABASE OPEN;

7. Start Redo Apply on the new physical standby database:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE -
> DISCONNECT FROM SESSION;

Role Transitions Involving Physical Standby Databases

Performing Role Transitions Using Old Syntax G-3

8. Restart Redo Apply if it has stopped at any of the other physical standby databases
in your Oracle Data Guard configuration:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE -
> DISCONNECT FROM SESSION;

G.2.2 Performing a Failover to a Physical Standby Database Using Old Syntax
This section describes how to perform a failover to a physical standby database.

1. If possible, mount the primary database and flush any unsent archived and current
redo from the primary database to the standby database. If this operation is
successful, a zero data loss failover is possible even if the primary database is not in
a zero data loss data protection mode.

Ensure that Redo Apply is active at the target standby database.

Mount, but do not open, the primary database. If the primary database cannot be
mounted, go to step 2.

Issue the following SQL statement at the primary database:

SQL> ALTER SYSTEM FLUSH REDO TO target_db_name;

For target_db_name, specify the DB_UNIQUE_NAME of the standby database that
is to receive the redo flushed from the primary database.

This statement flushes any unsent redo from the primary database to the standby
database, and waits for that redo to be applied to the standby database.

If this statement completes without any errors, go to step 5. If the statement
completes with any errors, or if it must be stopped because you cannot wait any
longer for the statement to complete, continue with step 2.

2. Verify that the standby database has the most recently archived redo log file for
each primary database redo thread.

To do this, query the V$ARCHIVED_LOG view on the target standby database to
obtain the highest log sequence number for each redo thread.

For example:

SQL> SELECT UNIQUE THREAD# AS THREAD, MAX(SEQUENCE#) -
> OVER (PARTITION BY thread#) AS LAST from V$ARCHIVED_LOG;

 THREAD LAST
---------- ----------
 1 100

If possible, copy the most recently archived redo log file for each primary database
redo thread to the standby database if it does not exist there, and register it. This
must be done for each redo thread.

For example:

SQL> ALTER DATABASE REGISTER PHYSICAL LOGFILE 'filespec1';

3. Query the V$ARCHIVE_GAP view on the target standby database to determine if
there are any redo gaps on the target standby database.

For example:

Role Transitions Involving Physical Standby Databases

G-4 Concepts and Administration

SQL> SELECT THREAD#, LOW_SEQUENCE#, HIGH_SEQUENCE# FROM V$ARCHIVE_GAP;

THREAD# LOW_SEQUENCE# HIGH_SEQUENCE#
---------- ------------- --------------
 1 90 92

In this example, the gap comprises archived redo log files with sequence numbers
90, 91, and 92 for thread 1.

If possible, copy any missing archived redo log files to the target standby database
from the primary database and register them at the target standby database. This
must be done for each redo thread.

For example:

SQL> ALTER DATABASE REGISTER PHYSICAL LOGFILE 'filespec1';

4. Repeat step 3 until all gaps are resolved. (The query executed in step 3 displays
information for the highest gap only, so after resolving a gap, you must repeat the
query until no more rows are returned.)

If, after performing steps 2 through step 4, you are not able to resolve all gaps in
the archived redo log files (for example, because you do not have access to the
system that hosted the failed primary database), then some data loss will occur
during the failover.

5. Issue the following SQL statement on the target standby database to stop Redo
Apply:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

6. Finish applying all received redo data:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE FINISH;

If this statement completes without any errors, then proceed to step 7.

If an error occurs, some received redo data was not applied. Try to resolve the
cause of the error and reissue the statement before proceeding to the next step.

If there is a redo gap that was not resolved in step 3 and step 4, then you receive an
error stating that there is a redo gap.

If the error condition cannot be resolved, a failover can still be performed (with
some data loss) by issuing the following SQL statement on the target standby
database:

SQL> ALTER DATABASE ACTIVATE PHYSICAL STANDBY DATABASE;

Proceed to step 9 when the ACTIVATE statement completes.

7. Verify that the target standby database is ready to become a primary database.

To do this, query the SWITCHOVER_STATUS column of the V$DATABASE view on
the target standby database. For example:

SQL> SELECT SWITCHOVER_STATUS FROM V$DATABASE;

SWITCHOVER_STATUS

TO PRIMARY
1 row selected

Role Transitions Involving Physical Standby Databases

Performing Role Transitions Using Old Syntax G-5

A value of either TO PRIMARY or SESSIONS ACTIVE indicates that the standby
database is ready to be switched to the primary role. If neither of these values is
returned, verify that Redo Apply is active and continue to query this view until
either TO PRIMARY or SESSIONS ACTIVE is returned.

8. Issue the following SQL statement on the target standby database to switch the
physical standby to the primary role:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY WITH SESSION SHUTDOWN;

Note:

The WITH SESSION SHUTDOWN clause can be omitted from the switchover
statement if the query of the SWITCHOVER_STATUS column performed in the
previous step returned a value of TO PRIMARY.

9. Open the new primary database:

SQL> ALTER DATABASE OPEN;

10. Oracle recommends that you now back up the new primary database.

11. Restart Redo Apply if it has stopped at any of the other physical standby databases
in your Oracle Data Guard configuration:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE -
> DISCONNECT FROM SESSION;

12. Optionally, restore the failed primary database.

After a failover, the original primary database can be converted into a physical
standby database of the new primary database using the method described in
Converting a Failed Primary Into a Standby Database Using Flashback Database
(page 15-3) or Converting a Failed Primary into a Standby Database Using RMAN
Backups (page 15-17), or it can be re-created as a physical standby database from a
backup of the new primary database using the method described in Step-by-Step
Instructions for Creating a Physical Standby Database (page 3-6).

Once the original primary database is running in the standby role, a switchover can
be performed to restore it to the primary role.

G.3 Troubleshooting Switchovers to Physical Standby Databases
If a switchover is unsuccessful, the following topics may help you to resolve the
problem:

Note:

The following troubleshooting topics apply only when you are performing
switchovers and failovers to a physical standby database using procedures
available in releases prior to Oracle Database 12c Release 1 (12.1).

• Switchover Fails Because Redo Data Was Not Transmitted (page G-7)

• Switchover Fails with the ORA-01102 Error (page G-7)

Troubleshooting Switchovers to Physical Standby Databases

G-6 Concepts and Administration

• Redo Data Is Not Applied After Switchover (page G-8)

• Roll Back After Unsuccessful Switchover and Start Over (page G-8)

G.3.1 Switchover Fails Because Redo Data Was Not Transmitted
If the switchover does not complete successfully, you can query the SEQUENCE#
column in the V$ARCHIVED_LOG view to see if the last redo data transmitted from the
original primary database was applied on the standby database. If the last redo data
was not transmitted to the standby database, you can manually copy the archived
redo log file containing the redo data from the original primary database to the old
standby database and register it with the SQL ALTER DATABASE REGISTER
LOGFILE file_specification statement. If you then start apply services, the archived redo
log file is applied automatically. Query the SWITCHOVER_STATUS column in the V
$DATABASE view. A switchover to the primary role is now possible if the
SWITCHOVER_STATUS column returns TO PRIMARY or SESSIONS ACTIVE:

SQL> SELECT SWITCHOVER_STATUS FROM V$DATABASE;

SWITCHOVER_STATUS

TO PRIMARY
1 row selected

See Views Relevant to Oracle Data Guard (page 19-1) for information about other
valid values for the SWITCHOVER_STATUS column of the V$DATABASE view.

To continue with the switchover, follow the instructions in Performing a Switchover to
a Physical Standby Database Using Old Syntax (page G-2) and try again to switch the
target standby database to the primary role.

G.3.2 Switchover Fails with the ORA-01102 Error
Suppose the standby database and the primary database reside on the same site. After
both the ALTER DATABASE COMMIT TO SWITCHOVER TO PHYSICAL STANDBY
and the ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY statements are
successfully executed, shut down and restart the physical standby database and the
primary database.

Note:

It is not necessary to shut down and restart the physical standby database if it
has not been opened read-only since the instance was started.

However, the startup of the second database fails with an ORA-01102 cannot
mount database in EXCLUSIVE mode error.

This could happen during the switchover if you did not set the DB_UNIQUE_NAME
parameter in the initialization parameter file that is used by the standby database (the
original primary database). If the DB_UNIQUE_NAME parameter of the standby
database is not set, the standby and the primary databases both use the same mount
lock and cause the ORA-01102 error during the startup of the second database.

Action: Add DB_UNIQUE_NAME=unique_database_name to the initialization
parameter file used by the standby database, and shut down and restart the standby
and primary databases.

Troubleshooting Switchovers to Physical Standby Databases

Performing Role Transitions Using Old Syntax G-7

G.3.3 Redo Data Is Not Applied After Switchover
The archived redo log files are not applied to the new standby database after the
switchover.

This might happen because some environment or initialization parameters were not
properly set after the switchover.

Action:

• Check the tnsnames.ora file at the new primary site and the listener.ora file
at the new standby site. There should be entries for a listener at the standby site
and a corresponding service name at the primary site.

• Start the listener at the standby site if it has not been started.

• Check if the LOG_ARCHIVE_DEST_n initialization parameter was set to properly
transmit redo data from the primary site to the standby site. For example, query the
V$ARCHIVE_DEST fixed view at the primary site as follows:

SQL> SELECT DEST_ID, STATUS, DESTINATION FROM V$ARCHIVE_DEST;

If you do not see an entry corresponding to the standby site, you need to set
LOG_ARCHIVE_DEST_n and LOG_ARCHIVE_DEST_STATE_n initialization
parameters.

• Set the STANDBY_ARCHIVE_DEST and LOG_ARCHIVE_FORMAT initialization
parameters correctly at the standby site so that the archived redo log files are
applied to the desired location. (Note that the STANDBY_ARCHIVE_DEST
parameter has been deprecated and is supported for backward compatibility only.)

• At the standby site, set the DB_FILE_NAME_CONVERT and
LOG_FILE_NAME_CONVERT initialization parameters. Set the
STANDBY_FILE_MANAGEMENT initialization parameter to AUTO to enable the
standby site to automatically add new data files that are created at the primary site.

G.3.4 Roll Back After Unsuccessful Switchover and Start Over
For physical standby databases in situations where an error occurred and it is not
possible to continue with the switchover, it might still be possible to revert the new
physical standby database back to the primary role by using the following steps. (This
functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2).)

1. Shut down and mount the new standby database (old primary).

2. Start Redo Apply on the new standby database.

3. Verify that the new standby database is ready to be switched back to the primary
role. Query the SWITCHOVER_STATUS column of the V$DATABASE view on the
new standby database. For example:

SQL> SELECT SWITCHOVER_STATUS FROM V$DATABASE;

SWITCHOVER_STATUS

TO_PRIMARY
1 row selected

Troubleshooting Switchovers to Physical Standby Databases

G-8 Concepts and Administration

A value of TO PRIMARY or SESSIONS ACTIVE indicates that the new standby
database is ready to be switched to the primary role. Continue to query this column
until the value returned is either TO PRIMARY or SESSIONS ACTIVE.

4. Issue the following statement to convert the new standby database back to the
primary role:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY WITH SESSION SHUTDOWN;

If this statement is successful, the database runs in the primary database role, and
you do not need to perform any more steps.

If this statement is unsuccessful, then continue with Step 5.

5. When the switchover to change the role from primary to physical standby was
initiated, a trace file was written in the log directory. This trace file contains the
SQL statements required to re-create the original primary control file. Locate the
trace file and extract the SQL statements into a temporary file. Execute the
temporary file from SQL*Plus. This reverts the new standby database back to the
primary role.

6. Shut down the original physical standby database.

7. Create a new standby control file. This is necessary to resynchronize the primary
database and physical standby database. Copy the physical standby control file to
the original physical standby system. Create a Control File for the Standby
Database (page 3-7) describes how to create a physical standby control file.

8. Restart the original physical standby instance.

If this procedure is successful and archive gap management is enabled, then the
FAL processes start and re-archive any missing archived redo log files to the
physical standby database. Force a log switch on the primary database and
examine the alert logs on both the primary database and physical standby database
to ensure the archived redo log file sequence numbers are correct.

See Manual Gap Resolution (page 7-14) for information about archive gap
management and Setting Archive Tracing (page F-1) for information about locating
the trace files.

9. Try the switchover again.

At this point, the Oracle Data Guard configuration has been rolled back to its initial
state and you can try the switchover operation again (after correcting any problems
that might have led to the initial unsuccessful switchover).

Troubleshooting Switchovers to Physical Standby Databases

Performing Role Transitions Using Old Syntax G-9

Troubleshooting Switchovers to Physical Standby Databases

G-10 Concepts and Administration

H
Using the ALTERNATE Attribute to

Configure Remote Alternate Destinations

As of Oracle Database 12c Release 2 (12.2), the preferred method for creating alternate
log archive destinations for remote standby databases and far sync instances that take
over if the active destination fails is to use the GROUP and PRIORITY attributes.

For local archiving locations (LOCATION=…), the ALTERNATE attribute is still used to
provide high availability if the original archiving directory becomes unavailable due
to disk or network issues that prevent access to the archiving location. But use of the
ALTERNATE attribute for remote log archive destinations (SERVICE=…) is maintained
only for backwards compatibility. The examples provided in the following sections for
using this method are a follow-on for creating a far sync instance, but they also apply
to cascading redo destinations.

After you perform the steps in Creating and Configuring a Far Sync Instance
(page 5-2), the far sync instance provides zero data loss capability for the configuration
to the terminal standby at a remote site over the WAN. For the configuration to remain
protected, but at a reduced protection level, in the event that communication with the
far sync instance is lost, you can optionally configure the terminal standby to
automatically become the alternate destination. This reduces the amount of data loss
by allowing Oracle Data Guard to ship redo asynchronously directly from the primary
to the terminal standby, temporarily bypassing the far sync instance.

See Also:

• Alternate Destinations (page 5-5)

H.1 Configuring an Alternate Destination
To configure an alternate destination, set the parameters on the primary database as
follows:

Primary Database chicago

LOG_ARCHIVE_DEST_STATE_2='ENABLE'

LOG_ARCHIVE_DEST_2='SERVICE=chicagoFS SYNC AFFIRM MAX_FAILURE=1
ALTERNATE=LOG_ARCHIVE_DEST_3
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) DB_UNIQUE_NAME=chicagoFS'

LOG_ARCHIVE_DEST_STATE_3='ALTERNATE'

LOG_ARCHIVE_DEST_3='SERVICE=boston ASYNC ALTERNATE=LOG_ARCHIVE_DEST_2
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) DB_UNIQUE_NAME=boston'

Using the ALTERNATE Attribute to Configure Remote Alternate Destinations H-1

This configuration enables Oracle Data Guard to continue sending redo,
asynchronously, to the terminal standby boston when it can no longer send the redo
directly to the far sync instance chicagoFS. When the far sync instance becomes
available again, Oracle Data Guard automatically resynchronizes the far sync instance
chicagoFS and returns to the original configuration in which the primary sends redo
to the far sync instance and the far sync instance forwards that redo to the terminal
standby. When the synchronization is complete, the alternate destination
(LOG_ARCHIVE_DEST_3 in the preceding example) again becomes dormant as the
alternate.

In the above case, the ALTERNATE remote destination is set up directly between two
databases using asynchronous redo transport, so in the event of a failure of the far
sync instance, the protection level of the configuration falls back down to maximum
performance, with data loss at failover time. For more protection from system or
network failures, an additional far sync instance can be configured that provides high
availability for the active far sync instance.

In the following configuration, one far sync instance is the preferred active far sync
instance and the other is the alternate far sync instance. Configuring an alternate far
sync instance provides continued protection for the configuration if the preferred far
sync instance fails for some reason, keeping the configuration at maximum
availability. The primary automatically starts shipping to the alternate far sync
instance if it detects a failure at the preferred far sync instance. If the preferred far sync
instance then re-establishes itself, the primary switches back to the preferred far sync
instance and puts the alternate far sync instance back into the alternate state.

In these types of configurations, the primary uses only one of the two far sync
instances to redistribute redo at any given time.

The second high availability far sync instance would be created using the same steps
as given in Creating and Configuring a Far Sync Instance (page 5-2), and then become
the alternate to the existing far sync instance instead of the terminal standby. When
complete, chicago would have the parameters configured as follows (assuming the
name chicagoFS1 as the new far sync instance name).

Primary Database chicago

LOG_ARCHIVE_CONFIG='DG_CONFIG=(chicago,chicagoFS,chicagoFS1,boston)'

LOG_ARCHIVE_DEST_STATE_2='ENABLE'

LOG_ARCHIVE_DEST_2='SERVICE=chicagoFS SYNC AFFIRM MAX_FAILURE=1
ALTERNATE=LOG_ARCHIVE_DEST_3
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) DB_UNIQUE_NAME=chicagoFS'

LOG_ARCHIVE_DEST_STATE_3='ALTERNATE'

LOG_ARCHIVE_DEST_3='SERVICE=chicagoFS1 SYNC AFFIRM ALTERNATE=LOG_ARCHIVE_DEST_2
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) DB_UNIQUE_NAME=chicagoFS1'

Primary Database boston

LOG_ARCHIVE_CONFIG='DG_CONFIG=(chicago,chicagoFS,chicagoFS1,boston)'

Oracle Data Guard can now continue to synchronously send redo to a far sync
instance, maintaining the required zero data loss protection mode of maximum
availability in the event that a far sync instance fails for some reason. As before, when
the failed far sync instance becomes available again, Oracle Data Guard automatically
resynchronizes it and returns to the original configuration in which the primary sends
redo to the first far sync instance, which then forwards that redo to the terminal

Configuring an Alternate Destination

H-2 Concepts and Administration

standby. When the synchronization is complete, the alternate destination
(LOG_ARCHIVE_DEST_3 in the preceding example) again becomes dormant as the
alternate. But if both far sync instances fail, then redo is not sent to the terminal
standby boston because there is no third alternate capability. That scenario can be
accomplished using the GROUP and PRIORITY attributes instead of the ALTERNATE
attribute.

See Also:

• ALTERNATE (page 17-3)

• GROUP (page 17-10)

• PRIORITY (page 17-18)

Configuring an Alternate Destination

Using the ALTERNATE Attribute to Configure Remote Alternate Destinations H-3

Configuring an Alternate Destination

H-4 Concepts and Administration

Index

A
activating

a logical standby database, 9-19
a physical standby database, 12-15

Active Data Guard
and physical standby databases, 2-1, 10-2
and the real-time query feature, 10-3

adding
datafiles, 10-14, A-13
indexes on logical standby databases, 11-19
new or existing standby databases, 1-7
online redo log files, 10-18
tablespaces, 10-14

adjusting
initialization parameter file

for logical standby database, 4-7
AFFIRM attribute, 17-2
ALTER DATABASE statement

ACTIVATE STANDBY DATABASE clause, 9-19,
12-15

ADD STANDBY LOGFILE clause, 18-1
ADD STANDBY LOGFILE MEMBER clause, 18-2,

A-1
ADD SUPPLEMENTAL LOG DATA clause, 18-2
COMMIT TO SWITCHOVER clause

troubleshooting, G-7
CREATE STANDBY CONTROLFILE clause

REUSE clause, 18-2
DROP STANDBY LOGFILE MEMBER clause,

18-2
GUARD clause, 11-6
MOUNT STANDBY DATABASE clause, 18-3
OPEN READ ONLY clause, 18-3
PREPARE TO SWITCHOVER clause, 9-15, 9-16,

18-3
RECOVER MANAGED STANDBY DATABASE

clause
canceling, 8-5
failover, 18-1

REGISTER LOGFILE clause, A-4, G-7
RENAME FILE clause, A-2
SET STANDBY DATABASE clause

ALTER DATABASE statement (continued)
SET STANDBY DATABASE clause (continued)
TO MAXIMIZE AVAILABILITY clause, 18-4
TO MAXIMIZE PERFORMANCE clause, 9-7
TO MAXIMIZE PROTECTION clause, 18-4

START LOGICAL STANDBY APPLY clause
IMMEDIATE keyword, 8-6
starting SQL Apply, 4-10

STOP LOGICAL STANDBY APPLY clause, 8-6,
9-19

ALTER SESSION DISABLE GUARD statement
overriding the database guard, 11-19

ALTER SESSION statement
ENABLE GUARD clause, 18-5

ALTER TABLESPACE statement, 10-16, A-13
alternate archive destinations

setting up initialization parameters for, A-3
ALTERNATE attribute

LOG_ARCHIVE_DEST_n initialization parameter,
A-3

application continuity
support in Oracle Data Guard, 1-9

apply lag
monitoring in a real-time query environment,

10-3
apply lag tolerance

configuring in a real-time query environment,
10-4

apply services
defined, 1-5, 8-1
delaying application of redo data, 8-3, 17-7
real-time apply

defined, 8-2
Redo Apply

defined, 8-1, 8-4
monitoring, 8-5
starting, 8-4
stopping, 8-5

SQL Apply
defined, 1-5, 8-1
monitoring, 8-6
starting, 8-6
stopping, 8-6

applying

Index-1

applying (continued)
redo data immediately, 8-2
redo data on standby database, 1-5, 8-1
SQL statements to logical standby databases, 8-5

applying state, 11-13
archive destinations

alternate, A-3
archived redo log files

accessing information about, 10-23
applying

Redo Apply technology, 1-5
SQL Apply technology, 1-5

delaying application
on the standby database, 8-3

deleting unneeded, 11-15
destinations

disabling, 7-4
enabling, 7-4

managing gaps
See also gap management, 1-15

redo data transmitted, 1-5, 8-1
registering

during failover, 9-18
standby databases and, 8-5, 8-6, 10-22
troubleshooting switchover problems, A-4, G-7

ARCHIVELOG mode
software requirements, 2-6

archiver processes (ARCn)
influenced by MAX_CONNECTIONS attribute,

17-14
archiving

real-time apply, 8-2
specifying

failure resolution policies for, 17-19
to failed destinations, 17-19

ASM
See Automatic Storage Management (ASM), 15-12

ASYNC attribute, 17-20
attributes

deprecated for the LOG_ARCHIVE_DEST_n
initialization parameter, 17-2

AUD$ table
replication on logical standbys, C-22

automatic block repair, 10-6
automatic detection of missing log files, 1-5, 1-15
automatic failover, 1-6
Automatic Storage Management (ASM)

creating a standby database that uses, 15-12
automatic switchover

See also switchovers, 9-2

B
BACKUP INCREMENTAL FROM SCN command

scenarios using, 12-14, 12-19
backup operations

after unrecoverable operations, 15-11

backup operations (continued)
configuring on a physical standby database, 1-4
offloading on the standby database, 1-15
primary databases, 1-2
used by the broker, 1-7
using RMAN, 12-1

basic readable standby database See simulating a
standby database environment, 2-5

batch processing
on a logical standby database, 11-4

benefits
Data Guard, 1-15
logical standby database, 2-2
of a rolling upgrade, 13-1
physical standby database, 2-1

block repair, automatic, 10-6
broker

command-line interface, 1-16
defined, 1-6
graphical user interface, 1-16

C

cascaded redo transport destinations, 7-8
cascading redo

non-real-time, 7-8
real-time, 7-8

cascading redo data
configuration requirements, 7-8
restrictions, 7-8

CDBs
creating a logical standby of, 4-12
creating a physical standby of, 3-14

character sets
changing on primary databases, 15-21
configurations with differing, C-24

checklist
tasks for creating physical standby databases, 3-6
tasks for creating standby databases, 4-3

checkpoints
V$LOGSTDBY_PROGRESS view, 11-4

chunking
transactions, 11-3

command-line interface
broker, 1-16

COMMIT TO SWITCHOVER clause
of ALTER DATABASE

troubleshooting, G-7
COMPATIBLE initialization parameter

setting after upgrading Oracle Database software,
B-5

setting for a rolling upgrade, 13-10
complementary technologies, 1-9
COMPRESSION attribute, 17-5
configuration options

creating with Data Guard broker, 1-6
overview, 1-1

Index-2

configuration options (continued)
physical standby databases

location and directory structure, 2-7
standby databases

delayed standby, 8-3
configuring

backups on standby databases, 1-4
disaster recovery, 1-4
initialization parameters

for alternate archive destinations, A-3
listener for physical standby databases, 5-3
no data loss, 1-6
physical standby databases, 2-7
reporting operations on a logical standby

database, 1-4
standby databases at remote locations, 1-4

constraints
handled on a logical standby database, 11-24

control files
copying, 3-10
creating for standby databases, 3-7

CONVERT TO SNAPSHOT STANDBY clause on the
ALTER DATABASE statement, 18-2

converting
a logical standby database to a physical standby

database
aborting, 4-7

a physical standby database to a logical standby
database, 4-6

COORDINATOR process
LSP background process, 11-2

copying
control files, 3-10

CREATE STANDBY CONTROLFILE clause
of ALTER DATABASE, 3-7, 18-2

CREATE TABLE AS SELECT (CTAS) statements
applied on a logical standby database, 11-5

creating
indexes on logical standby databases, 11-19

D
data availability

balancing against system performance
requirements, 1-15

Data Guard broker
defined, 1-6
distributed management framework, 9-1
failovers

fast-start, 9-1
manual, 1-7, 9-1

fast-start failover, 1-7
switchovers, 9-1

Data Guard configurations
archiving to standby destinations using the log

writer process, 8-2
defined, 1-1
protection modes, 1-7

Data Guard configurations (continued)
upgrading Oracle Database software, B-1

data loss
due to failover, 1-6
switchover and, 9-2

data protection
balancing against performance, 1-15
benefits, 1-15
flexibility, 1-15
provided by Data Guard, 1-1

data protection modes
enforced by redo transport services, 1-4
overview, 1-7

Data Pump utility
using transportable tablespaces with physical

standby databases, 10-16
database caching modes

force full database caching
status in Data Guard configurations, 10-7

database guard
overriding, 11-19

database incarnation
changes with OPEN RESETLOGS, 10-20

database roles
primary, 9-2
standby, 1-2, 9-2
transitions, 1-6

database schema
physical standby databases, 1-2

databases
failover and, 9-6
role transition and, 9-2
surviving disasters and data corruptions, 1-1
upgrading software versions, 13-1

datafiles
adding to primary database, 10-14
monitoring, 10-21
renaming on the primary database, 10-16

DB_FILE_NAME_CONVERT initialization parameter
setting at standby site after a switchover, A-6, G-8
setting on physical standby database, 3-9
when planning standby location and directory

structure, 2-8
DB_ROLE_CHANGE system event, 9-8
DB_UNIQUE_NAME attribute, 17-6
DB_UNIQUE_NAME initialization parameter

required with LOG_ARCHIVE_CONFIG
parameter, 16-2

setting database initialization parameters, 3-4
DBA_LOGMNR_PURGED_LOG view

list archived redo log files that can be deleted,
11-15

DBA_LOGSTDBY_EVENTS view, 11-7, 19-1, A-10
DBA_LOGSTDBY_HISTORY view, 19-1
DBA_LOGSTDBY_LOG view, 11-8, 19-1
DBA_LOGSTDBY_NOT_UNIQUE view, 19-1
DBA_LOGSTDBY_PARAMETERS view, 19-1

Index-3

DBA_LOGSTDBY_SKIP view, 19-1
DBA_LOGSTDBY_SKIP_TRANSACTION view, 19-1
DBA_LOGSTDBY_UNSUPPORTED view, 19-1
DBA_TABLESPACES view, 10-21
DBMS_LOGSTDBY package

INSTANTIATE_TABLE procedure, 11-22
SKIP procedure, A-11
SKIP_ERROR procedure, A-4
SKIP_TRANSACTION procedure, A-11

DBMS_LOGSTDBY.BUILD procedure
building a dictionary in the redo data, 4-5

DBMS_ROLLING package
used for rolling upgrades, 14-1

DDL statements
supported by SQL Apply, C-1

DDL Statements
that use DBLINKS, C-22

DDL transactions
applied on a logical standby database, 11-5
applying to a logical standby database, 11-5

DELAY attribute
LOG_ARCHIVE_DEST_n initialization parameter,

8-4
delaying

application of archived redo log files, 17-7
application of redo log files, 8-3

deleting
archived redo log files

indicated by the
DBA_LOGMNR_PURGED_LOG
view, 11-15

not needed by SQL Apply, 11-15
deprecated attributes

on the LOG_ARCHIVE_DEST_n initialization
parameter, 17-2

destinations
displaying with V$ARCHIVE_DEST view, 19-2
role-based definitions, 17-22

detecting
missing archived redo log files, 1-5, 1-15

DGMGRL command-line interface
invoking failovers, 1-7, 9-1
simplifying switchovers, 1-7, 9-1

dictionary
building a LogMiner, 4-5

direct path inserts
SQL Apply DML considerations, 11-4

directory locations
Optimal Flexible Architecture (OFA), 2-7
structure on standby databases, 2-7

disabling
a destination for archived redo log files, 7-4

disaster recovery
benefits, 1-15
configuring, 1-4
provided by Oracle Data Guard, 1-1
provided by standby databases, 1-4

disk I/O

disk I/O (continued)
controlling with the AFFIRM and NOAFFIRM

attributes, 17-2
distributed transactions, C-23
DML

batch updates on a logical standby database, 11-4
DML operations

on temporary tables, 10-8
DML transactions

applying to a logical standby database, 11-4
downgrading

Oracle Database software, B-6
DROP STANDBY LOGFILE MEMBER clause

of ALTER DATABASE, 18-2
dropping

online redo log files, 10-18

E
ENABLE GUARD clause

of ALTER SESSION, 18-5
enabling

database guard on logical standby databases, 18-5
destinations for archived redo log files, 7-4
real-time apply

on logical standby databases, 8-6
extended datatype support

during replication, 11-29

F
failovers

Data Guard broker, 1-7, 9-1
defined, 1-6, 9-2
displaying history with

DBA_LOGSTDBY_HISTORY, 19-1
fast-start failover, 9-1
flashing back databases after, 9-19
logical standby databases and, 9-17
manual versus automatic, 1-6
physical standby databases and, 18-1
preparing for, 9-7
simplifying with Data Guard broker, 9-1
transferring redo data before, 9-7
viewing characteristics for logical standby

databases, 11-8
with maximum performance mode, 9-7
with maximum protection mode, 9-7

failure resolution policies
specifying for redo transport services, 17-19

far sync instances
creating, 5-2
supported protection modes, 5-12

fast-start failover
automatic failover, 1-7, 9-1
monitoring, 10-21

FastSync mode, 6-2

Index-4

FGA_LOG$ table
replication on logical standbys, C-22

file specifications
renaming on the logical standby database, 11-18

Flashback Database
after a role transition, 9-19
after OPEN RESETLOGS, 15-7
after role transitions, 9-19
characteristics complementary to Data Guard,

1-10
physical standby database, 15-4

force full database caching mode
status in Data Guard configurations, 10-7

G
gap management

automatic detection and resolution, 1-5, 1-15
detecting missing log files, 1-15
registering archived redo log files

during failover, 9-18
Global Data Services, 1-11
global temporary tables

DML operations, 10-8

H
high availability

benefits, 1-15
provided by Oracle Data Guard, 1-1
provided by Oracle RAC and Data Guard, 1-9

I

idle state, 11-13
incarnation of a database

changed, 10-20
initialization parameters

DB_UNIQUE_NAME, 3-4, A-5, G-7
LOG_ARCHIVE_MIN_SUCCEED_DEST, 17-13
LOG_FILE_NAME_CONVERT, E-3
setting for both the primary and standby roles,

17-22
INITIALIZING state, 11-13
INSTANTIATE_TABLE procedure

of DBMS_LOGSTDBY, 11-22

K

KEEP IDENTITY clause, 4-7

L
latency

on logical standby databases, 11-4, 11-5
listener.ora file

redo transport services tuning and, A-11

listener.ora file (continued)
troubleshooting, A-2, A-11

loading dictionary state, 11-14
LOCATION attribute

setting
LOG_ARCHIVE_DEST_n initialization

parameter, A-3
log apply services

Redo Apply
monitoring, 10-22
starting, 10-1
stopping, 10-2

tuning for Redo Apply, 10-24
log writer process (LGWR)

ASYNC network transmission, 17-20
NET_TIMEOUT attribute, 17-17
SYNC network transmission, 17-20

LOG_ARCHIVE_CONFIG initialization parameter
example, 17-7
listing unique database names defined with, 19-2
relationship to DB_UNIQUE_NAME parameter,

16-2
LOG_ARCHIVE_DEST_n initialization parameter

AFFIRM attribute, 17-2
ALTERNATE attribute, 17-3, A-3
ASYNC attribute, 17-20
COMPRESSION attribute, 17-5
DB_UNIQUE_NAME attribute, 17-6
DELAY attribute, 8-4, 17-7
deprecated attributes, 17-2
LOCATION attribute, 17-11, A-3
MANDATORY attribute, 17-12
MAX_CONNECTIONS attribute, 17-14
MAX_FAILURE attribute, 17-15
NET_TIMEOUT attribute, 17-17
NOAFFIRM attribute, 17-2
NOALTERNATE attribute, A-3
NODELAY attribute, 8-4
NOREGISTER attribute, 17-17
REOPEN attribute, 17-19
SERVICE attribute, 17-11
SYNC attribute, 17-20
VALID_FOR attribute, 17-22

LOG_ARCHIVE_MAX_PROCESSES initialization
parameter

relationship to MAX_CONNECTIONS, 17-14
LOG_ARCHIVE_MIN_SUCCEED_DEST initialization

parameter, 17-13
LOG_FILE_NAME_CONVERT initialization

parameter
setting at standby site after a switchover, A-6, G-8
setting on physical standby databases, 3-9
when planning standby location and directory

structure, 2-8
logical change records (LCR)

exhausted cache memory, 11-4
staged, 11-2

Index-5

logical standby databases
adding

datafiles, A-13
indexes, 11-19
tables, 11-21

background processes, 11-2
benefits, 2-2
controlling user access to tables, 11-6
creating

converting from a physical standby database,
4-6

with Data Guard broker, 1-6
data types

supported, C-1, C-2
unsupported, C-4

database guard
overriding, 11-19

executing SQL statements on, 1-2
failovers

displaying history of, 19-1
handling failures, A-4
viewing characteristics with V

$LOGSTDBY_STATS, 11-8
logical standby process (LSP) and, 11-2
materialized views

support for, C-18
monitoring, 8-6, 19-1
renaming the file specification, 11-18
setting up a skip handler, 11-18
SQL Apply

resynchronizing with primary database
branch of redo, 11-27

skipping DDL statements, C-18
skipping SQL statements, C-18
starting real-time apply, 8-6
stopping, 8-6
technology, 8-1
transaction size considerations, 11-3

starting
real-time apply, 8-6

states
applying, 11-13
idle, 11-13
initializing, 11-13
loading dictionary, 11-14

support for primary databases with Transparent
Data Encryption, C-5

switchovers, 9-15
throughput and latency, 11-4, 11-5
upgrading

rolling upgrades, 2-6
logical standby process (LSP)

COORDINATOR process, 11-2
LogMiner dictionary

using DBMS_LOGSTDBY.BUILD procedure to
build, 4-5

when creating a logical standby database, 4-7

M
managed recovery operations

See Redo Apply
MANDATORY attribute, 17-12
MAX_CONNECTIONS attribute

configuring Oracle RAC for parallel archival,
17-14

reference, 17-14
MAX_FAILURE attribute, 17-15
maximum availability mode

introduction, 1-7
maximum performance mode

introduction, 1-7
maximum performance protection mode, 6-2
maximum protection mode

for Oracle Real Application Clusters, D-5
introduction, 1-7
standby databases and, 9-7

memory
exhausted LCR cache, 11-4

missing log sequence
detecting, 1-15
See also gap management, 1-15

modifying
a logical standby database, 11-19

monitoring
primary database events, 10-21
tablespace status, 10-21

MOUNT STANDBY DATABASE clause
of ALTER DATABASE, 18-3

multitenant container databases
See CDBs, 3-14, 4-12

N

NET_TIMEOUT attribute, 17-17
network connections

configuring multiple, 17-14
in an Oracle RAC environment, 17-14

network I/O operations
network timers

NET_TIMEOUT attribute, 17-17
tuning

redo transport services, A-11
network timeouts

acknowledging, 17-17
no data loss

data protection modes overview, 1-7
ensuring, 1-6
guaranteeing, 1-6
provided by maximum availability mode, 1-7
provided by maximum protection mode, 1-7

NOAFFIRM attribute, 17-2
NOALTERNATE attribute

LOG_ARCHIVE_DEST_n initialization parameter,
A-3

NODELAY attribute

Index-6

NODELAY attribute (continued)
LOG_ARCHIVE_DEST_n initialization parameter,

8-4
NOREGISTER attribute, 17-17

O
OMF

See Oracle Managed Files (OMF), 15-12
on-disk database structures

physical standby databases, 1-2
online data files

moving the location, 2-9
online redo log files

adding, 10-18
dropping, 10-18

OPEN READ ONLY clause
of ALTER DATABASE, 18-3

OPEN RESETLOGS
flashing back after, 15-7

OPEN RESETLOGS clause
database incarnation change, 10-20
recovery, 10-20

operational requirements, 2-5
Optimal Flexible Architecture (OFA)

directory structure, 2-7
ORA-01102 message

causing switchover failures, A-5, G-7
Oracle Database software

requirements for upgrading with SQL Apply,
13-2

upgrading, 2-6, B-1
upgrading with SQL Apply, 13-1

Oracle Enterprise Manager
invoking failovers, 1-7, 9-1
invoking switchovers, 1-7, 9-1

Oracle Managed Files (OMF)
creating a standby database that uses, 15-12

Oracle RAC One Node
supported by Oracle Data Guard, 1-10

Oracle Real Application Clusters
characteristics complementary to Data Guard, 1-9
configuring for multiple network connections,

17-14
primary databases and, 1-2, D-2
setting

maximum data protection, D-5
standby databases and, 1-2, D-1

Oracle Recovery Manager utility (RMAN)
backing up files on a physical standby database,

12-1
Oracle Sharding

supported by Oracle Active Data Guard, 1-11
Oracle Standard Edition

simulating a standby database environment, 2-5

P

pageout considerations, 11-4
pageouts

SQL Apply, 11-4
parallel DML (PDML) transactions

SQL Apply, 11-4, 11-5
patch set releases

upgrading, 2-6
performance

balancing against data availability, 1-15
balancing against data protection, 1-15

physical standby databases
and Oracle Active Data Guard, 2-1
applying redo data

Redo Apply technology, 8-4
applying redo log files

starting, 8-4
benefits, 2-1
configuration options, 2-7
converting datafile path names, 3-9
converting log file path names, 3-9
converting to a logical standby database, 4-6
creating

checklist of tasks, 3-6
configuring a listener, 5-3
directory structure, 2-7
with Data Guard broker, 1-6

defined, 1-2
failover

checking for updates, 9-8
flashing back after failover, 15-4
monitoring, 8-5, 10-22, 19-1
opening for read-only or read/write access, 10-2
read-only, 10-2
recovering through OPEN RESETLOGS, 10-20
Redo Apply, 1-5
resynchronizing with primary database branch of

redo, 10-20
role transition and, 9-8, G-1
rolling forward with BACKUP INCREMENTAL

FROM SCN command, 12-14, 12-19
shutting down, 10-2
starting

apply services, 8-4
tuning the log apply rate, 10-24
upgrading, B-3
using transportable tablespaces, 10-16

PL/SQL supplied packages
supported, C-10
unsupported, C-10

PREPARE TO SWITCHOVER clause
of ALTER DATABASE, 9-15, 9-16, 18-3

PREPARER process
staging LCRs in SGA, 11-2

primary database
configuring

Index-7

primary database (continued)
configuring (continued)
on Oracle Real Application Clusters, 1-2
single-instance, 1-2

datafiles
adding, 10-14

defined, 1-2
failover and, 9-2
gap resolution, 1-15
monitoring events on, 10-21
network connections

avoiding network hangs, 17-17
handling network timeouts, 17-17

Oracle Real Application Clusters and
setting up, D-2

preparing for
physical standby database creation, 3-2

prerequisite conditions for
logical standby database creation, 4-1

redo transport services on, 1-4
reducing workload on, 1-15
switchover, 9-4
tablespaces

adding, 10-14
primary databases

ARCHIVELOG mode, 2-6
software requirements, 2-5

primary key columns
logged with supplemental logging, 4-5, 11-4

processes
SQL Apply architecture, 11-1, 11-13

protection modes
maximum availability mode, 1-7
maximum performance, 6-2
maximum performance mode, 1-7
maximum protection mode, 1-7
monitoring, 10-21
setting on a primary database, 6-3

Q
queries

offloading on the standby database, 1-15

R
re-creating

a table on a logical standby database, 11-21
read-only operations

physical standby databases and, 10-2
real-time apply

defined, 8-2
starting

on logical standby, 8-6
starting on logical standby databases, 8-6
stopping

on logical standby, 8-6

real-time apply (continued)
stopping (continued)
on physical standby databases, 10-2

real-time cascading, 7-8
real-time query feature

and Oracle Active Data Guard, 10-2, 10-3
configuring apply lag tolerance, 10-4
forcing Redo Apply synchronization, 10-5
monitoring apply lag, 10-3
restrictions, 10-5
using, 10-3

RECOVER MANAGED STANDBY DATABASE
CANCEL clause

aborting, 4-7
RECOVER MANAGED STANDBY DATABASE clause

of ALTER DATABASE, 3-12, 4-10, 8-4, 18-1, 18-3
RECOVER TO LOGICAL STANDBY clause

converting a physical standby database to a
logical standby database, 4-7

recovering
from errors, A-12
logical standby databases, 11-27
physical standby databases

after an OPEN RESETLOGS, 10-20
through resetlogs, 10-20, 11-27

Recovery Manager
characteristics complementary to Data Guard,

1-11
standby database

creating, E-1
LOG_FILE_NAME_CONVERT initialization

parameter, E-3
preparing using RMAN, E-2

Redo Apply
defined, 1-5, 8-1
flashing back after failover, 15-4
starting, 3-11
stopping, 10-2
technology, 1-5
tuning the log apply rate, 10-24

redo data
applying

through Redo Apply technology, 1-5
through SQL Apply technology, 1-5
to standby database, 8-1
to standby databases, 1-2

applying during conversion of a physical standby
database to a logical standby database,
4-7

archiving on the standby system, 1-5, 8-1
building a dictionary in, 4-5
cascading, 7-8
transmitting, 1-2, 1-4

redo gaps
manual resolution, 7-14
reducing resolution time, 7-14

redo log files

Index-8

redo log files (continued)
delaying application, 8-3

redo logs
automatic application on physical standby

databases, 8-4
update standby database tables, 1-15

redo transport services
archive destinations

alternate, A-3
re-archiving to failed destinations, 17-19

authenticating sessions
using SSL, 7-3

configuring, 7-2
configuring security, 7-3
defined, 1-4
gap detection, 7-14
handling archive failures, 17-19
monitoring status, 7-12
network

tuning, A-11
protection modes

maximum availability mode, 1-7
maximum performance mode, 1-7
maximum protection mode, 1-7

receiving redo data, 7-7
sending redo data, 7-4
synchronous and asynchronous disk I/O, 17-2
wait events, 7-16

REGISTER LOGFILE clause
of ALTER DATABASE, A-4, G-7

REGISTER LOGICAL LOGFILE clause
of ALTER DATABASE, 9-18

registering
archived redo log files

during failover, 9-18
RELY constraint

creating, 4-3
remote file server process (RFS)

log writer process and, 8-2
RENAME FILE clause

of ALTER DATABASE, A-2
renaming

datafiles
on the primary database, 10-16
setting the

STANDBY_FILE_MANAGEMENT
parameter, 10-16

REOPEN attribute, 17-19
reporting operations

configuring, 1-4
offloading on the standby database, 1-15

requirements
of a rolling upgrade, 13-2

restart considerations
SQL Apply, 11-4

resynchronizing
logical standby databases with a new branch of

redo, 11-27

resynchronizing (continued)
physical standby databases with a new branch of

redo, 10-20
retrieving

missing archived redo log files, 1-5, 1-15
RMAN BACKUP INCREMENTAL FROM SCN

command, 12-14, 12-19
RMAN backups

accessibility in Data Guard environment, 12-2
association in Data Guard environment, 12-2
interchangeability in Data Guard environment,

12-2
role management services

defined, 9-1
role transition triggers

DB_ROLE_CHANGE system event, 9-8
role transitions

choosing a type of, 9-2
defined, 1-6
flashing back the databases after, 9-19
logical standby database and, 9-15
monitoring, 10-21
physical standby databases and, 9-8, G-1
reversals, 1-6, 9-2

role-based destinations
setting, 17-22

rollback
after switchover failures, A-6, G-8

rolling upgrade
software requirements, 2-6

rolling upgrades
benefits, 13-1
DBMS_ROLLING package, 14-1
patch set releases, 2-6
requirements, 13-2
setting the COMPATIBLE initialization

parameter, 13-10
use of KEEP IDENTITY clause, 4-7
using Active Data Guard, 14-1

S
schemas

identical to primary database, 1-2
sequences

unsupported on logical standby databases, C-16
using in Oracle Active Data Guard, 10-10

SERVICE attribute, 17-11
SET STANDBY DATABASE clause

of ALTER DATA, 18-4
of ALTER DATABASE, 9-7, 18-4

shutting down
physical standby database, 10-2

simulating
standby database environment, 2-5

skip handler
setting up on a logical standby database, 11-18

Index-9

SKIP procedure
of DBMS_LOGSTDBY, A-11

SKIP_ERROR procedure
of the DBMS_LOGSTDBY package, A-4

SKIP_TRANSACTION procedure
of DBMS_LOGSTDBY, A-11

snapshot standby databases
managing, 10-25

software requirements
rolling upgrades, 2-6

SQL Apply
after an OPEN RESETLOGS, 11-27
applying CREATE TABLE AS SELECT (CTAS)

statements, 11-5
applying DDL transactions, 11-5
applying DML transactions, 11-4
architecture, 11-1, 11-13
defined, 1-5, 8-1
deleting archived redo log files, 11-15
parallel DML (PDML) transactions, 11-4, 11-5
performing a rolling upgrade, 13-1
requirements for rolling upgrades, 13-2
restart considerations, 11-4
rolling upgrades, 2-6
starting

real-time apply, 8-6
stopping

real-time apply, 8-6
support for DDL statements, C-1
support for PL/SQL supplied packages, C-10
supported data types, C-2
transaction size considerations, 11-3
unsupported data types, C-4
unsupported PL/SQL supplied packages, C-10
what to do if it stops, A-10

SQL statements
executing on logical standby databases, 1-2, 1-5
skipping on logical standby databases, C-18

standby database
creating logical, 4-1

standby databases
about creating using RMAN, E-1
apply services on, 8-1
applying redo data on, 8-1
applying redo log files on, 1-5, 1-15
ARCn processes using multiple network

connections, 17-14
configuring

maximum number of, 2-1
on Oracle Real Application Clusters, 1-2, D-1
on remote locations, 1-4
single-instance, 1-2

creating
checklist of tasks, 4-3
directory structure considerations, 2-7
if primary uses ASM or OMF, 15-12

standby databases (continued)
creating (continued)
on remote host with same directory structure,

E-4
with a time lag, 8-3

defined, 2-1
failover

preparing for, 9-7
failover to, 9-6
LOG_FILE_NAME_CONVERT initialization

parameter, E-3
operational requirements, 2-5
preparing to use RMAN, E-2
recovering through OPEN RESETLOGS, 10-20
resynchronizing with the primary database, 1-15
software requirements, 2-5
starting apply services on physical, 8-4

standby redo log files
and real-time apply, 8-2

standby redo logs
creating and managing, 7-7

standby role, 1-2
STANDBY_FILE_MANAGEMENT initialization

parameter
when renaming datafiles, 10-16

START LOGICAL STANDBY APPLY clause
IMMEDIATE keyword, 8-6
of ALTER DATABASE, 4-10, 8-6, 13-6, A-10

starting
logical standby databases, 4-9
physical standby databases, 3-11
real-time apply

on logical standby databases, 8-6
Redo Apply, 10-1
SQL Apply, 4-10, 8-6

STOP LOGICAL STANDBY APPLY clause
of ALTER DATABASE, 8-6, 9-19

stopping
real-time apply

on logical standby databases, 8-6
real-time apply on physical standby databases,

8-5
Redo Apply, 8-5
SQL Apply, 8-6

streams capture
running on a logical standby, 11-28

supplemental logging
setting up to log primary key and unique-index

columns, 4-5, 11-4
supported data types

for logical standby databases, C-1, C-19
supported PL/SQL supplied packages, C-10
SWITCHOVER_STATUS column

of V$DATABASE view, A-4, G-7
switchovers

choosing a target standby database, 9-3
defined, 1-6, 9-2

Index-10

switchovers (continued)
displaying history with

DBA_LOGSTDBY_HISTORY, 19-1
fails with ORA-01102, A-5, G-7
flashing back databases after, 9-19
logical standby databases and, 9-15
manual versus automatic, 1-6
monitoring, 10-21
no data loss and, 9-2
preparing for, 9-4
seeing if the last archived redo log file was

transmitted, A-4, G-7
setting DB_FILE_NAME_CONVERT after, A-6,

G-8
setting LOG_FILE_NAME_CONVERT after, A-6,

G-8
simplifying with Data Guard broker, 1-7, 9-1
starting over, A-6, G-8
typical use for, 9-4

SYNC attribute, 17-20
system events

role transitions, 9-8
system global area (SGA)

logical change records staged in, 11-2
system resources

efficient utilization of, 1-15

T
tables

logical standby databases
adding on, 11-21
re-creating tables on, 11-21
unsupported on, C-16

tablespaces
adding

a new datafile, A-13
to primary database, 10-14

monitoring status changes, 10-21
moving between databases, 10-16

target standby database
for switchover, 9-3

terminal destinations
configuring, 7-9

terminating
network connection, 17-17

throughput
on logical standby databases, 11-4, 11-5

time lag
delaying application of archived redo log files,

8-3, 17-7
in standby database, 8-3

TIME_COMPUTED column, 9-4
TIME_COMPUTED column of the V

$DATAGUARD_STATS view, 9-4
tnsnames.ora file

redo transport services tuning and, A-11

tnsnames.ora file (continued)
troubleshooting, A-2, A-5, A-11, G-8

transaction size considerations
SQL Apply, 11-3

Transparent Data Encryption
support by SQL Apply, C-5

transportable tablespaces
using with a physical standby database, 10-16

triggers
handled on a logical standby database, 11-24
role transitions, 9-8

troubleshooting
if SQL Apply stops, A-10
last redo data was not transmitted, A-4, G-7
listener.ora file, A-2, A-11
logical standby database failures, A-4
SQL Apply, A-10
switchovers

ORA-01102 message, A-5, G-7
roll back and start over, A-6, G-8

tnsnames.ora file, A-2, A-5, A-11, G-8
tuning

log apply rate for Redo Apply, 10-24

U
unique-index columns

logged with supplemental logging, 4-5, 11-4
unrecoverable operations

backing up after, 15-11
unsupported PL/SQL supplied packages, C-10
upgrading

Oracle Database software
setting the COMPATIBLE initialization

parameter, B-5

V
V$ARCHIVE_DEST view

displaying information for all destinations, 19-2
V$ARCHIVE_DEST_STATUS view, 19-2
V$ARCHIVE_GAP view, 19-2
V$ARCHIVED_LOG view, 10-23, 19-2
V$DATABASE view

monitoring fast-start failover, 10-21
SWITCHOVER_STATUS column and, A-4, G-7

V$DATABASE_INCARNATION view, 19-2
V$DATAFILE view, 15-11, 19-2
V$DATAGUARD_CONFIG view

listing database names defined with
LOG_ARCHIVE_CONFIG, 19-2

V$DATAGUARD_STATS view, 9-4, 19-2
V$DATAGUARD_STATUS view, 10-23
V$FS_FAILOVER_STATS view, 19-2
V$LOG view, 19-3
V$LOG_HISTORY view, 10-23, 19-3
V$LOGFILE view, 19-3

Index-11

V$LOGSTDBY_PROCESS view, 11-9, 11-14, 11-35,
11-36, 19-3

V$LOGSTDBY_PROGRESS view
RESTART_SCN column, 11-4

V$LOGSTDBY_STATE view, 9-4, 11-11, 11-13, 19-3
V$LOGSTDBY_STATS view

failover characteristics, 11-8
V$LOGSTDBY_TRANSACTION view, 19-3
V$MANAGED_STANDBY view, 10-23, 19-3
V$REDO_DEST_RESP_HISTOGRAM

using to monitor synchronous redo transport
response time, 7-13

V$REDO_DEST_RESP_HISTOGRAM view, 19-3
V$STANDBY_EVENT_HISTOGRAM view, 19-3
V$STANDBY_LOG view, 19-4
VALID_FOR attribute, 17-22
verifying

logical standby databases, 4-11
physical standby databases, 3-12

versions
upgrading Oracle Database software, 13-1

views
DBA_LOGSTDBY_EVENTS, 11-7, 19-1, A-10
DBA_LOGSTDBY_HISTORY, 19-1
DBA_LOGSTDBY_LOG, 11-8, 19-1
DBA_LOGSTDBY_NOT_UNIQUE, 19-1
DBA_LOGSTDBY_PARAMETERS, 19-1
DBA_LOGSTDBY_SKIP, 19-1
DBA_LOGSTDBY_SKIP_TRANSACTION, 19-1
DBA_LOGSTDBY_UNSUPPORTED, 19-1

views (continued)
V$ARCHIVE_DEST, 19-2, A-2
V$ARCHIVE_DEST_STATUS, 19-2
V$ARCHIVED_GAP, 19-2
V$ARCHIVED_LOG, 10-23, 19-2
V$DATABASE, 19-2
V$DATABASE_INCARNATION, 19-2
V$DATAFILE, 15-11, 19-2
V$DATAGUARD_CONFIG, 19-2
V$DATAGUARD_STATS, 19-2
V$DATAGUARD_STATUS, 10-23
V$FS_FAILOVER_STATS, 19-2
V$LOG, 19-3
V$LOG_HISTORY, 10-23, 19-3
V$LOGFILE, 19-3
V$LOGSTDBY_PROCESS, 11-9, 19-3
V$LOGSTDBY_PROGRESS, 11-10, 19-3
V$LOGSTDBY_STATE, 11-11, 19-3
V$LOGSTDBY_STATS, 11-12, 19-3
V$LOGSTDBY_TRANSACTION, 19-3
V$MANAGED_STANDBY, 10-23, 19-3
V$REDO_DEST_RESP_HISTOGRAM, 19-3
V$STANDBY_EVENT_HISTOGRAM, 19-3
V$STANDBY_LOG, 19-4

W
wait events

for redo transport services, 7-16
WAITING FOR DICTIONARY LOGS state, 11-13

Index-12

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle Data Guard Concepts and Administration
	Changes in Oracle Database 12c Release 2 (12.2.0.1)

	Part I Concepts and Administration
	1 Introduction to Oracle Data Guard
	1.1 Oracle Data Guard Configurations
	1.1.1 Primary Database
	1.1.2 Standby Databases
	1.1.3 Far Sync Instances
	1.1.4 Zero Data Loss Recovery Appliance
	1.1.5 Configuration Example

	1.2 Oracle Data Guard Services
	1.2.1 Redo Transport Services
	1.2.2 Apply Services
	1.2.3 Role Transitions

	1.3 Oracle Data Guard Broker
	1.3.1 Using Oracle Enterprise Manager Cloud Control
	1.3.2 Using the Oracle Data Guard Command-Line Interface

	1.4 Oracle Data Guard Protection Modes
	1.5 Client Failover
	1.5.1 Application Continuity

	1.6 Oracle Data Guard and Complementary Technologies
	1.7 Oracle Active Data Guard Supports Oracle Sharding
	1.8 Summary of Oracle Data Guard Benefits

	2 Getting Started with Oracle Data Guard
	2.1 Standby Database Types
	2.1.1 Physical Standby Databases
	2.1.2 Logical Standby Databases
	2.1.3 Snapshot Standby Databases

	2.2 User Interfaces for Administering Oracle Data Guard Configurations
	2.3 Oracle Data Guard Operational Prerequisites
	2.3.1 Hardware and Operating System Requirements
	2.3.2 Oracle Software Requirements

	2.4 Standby Database Directory Structure Considerations
	2.5 Moving the Location of Online Data Files
	2.5.1 Restrictions When Moving the Location of Online Data Files

	3 Creating a Physical Standby Database
	3.1 Preparing the Primary Database for Standby Database Creation
	3.1.1 Enable Forced Logging
	3.1.2 Configure Redo Transport Authentication
	3.1.3 Configure the Primary Database to Receive Redo Data
	3.1.4 Set Primary Database Initialization Parameters
	3.1.5 Enable Archiving

	3.2 Step-by-Step Instructions for Creating a Physical Standby Database
	3.2.1 Creating a Physical Standby Task 1: Create a Backup Copy of the Primary Database Data Files
	3.2.2 Creating a Physical Standby Task 2: Create a Control File for the Standby Database
	3.2.3 Creating a Physical Standby Task 3: Create a Parameter File for the Standby Database
	3.2.4 Creating a Physical Standby Task 4: Copy Files from the Primary System to the Standby System
	3.2.5 Creating a Physical Standby Task 5: Set Up the Environment to Support the Standby Database
	3.2.6 Creating a Physical Standby Task 6: Start the Physical Standby Database
	3.2.7 Creating a Physical Standby Task 7: Verify the Physical Standby Database Is Performing Properly

	3.3 Creating a Physical Standby: Post-Creation Steps
	3.4 Using DBCA to Create a Data Guard Standby
	3.5 Creating a Physical Standby of a CDB
	3.6 Creating a PDB in a Primary Database

	4 Creating a Logical Standby Database
	4.1 Prerequisite Conditions for Creating a Logical Standby Database
	4.1.1 Determine Support for Data Types and Storage Attributes for Tables
	4.1.2 Ensure Table Rows in the Primary Database Can Be Uniquely Identified

	4.2 Step-by-Step Instructions for Creating a Logical Standby Database
	4.2.1 Creating a Logical Standby Task 1: Create a Physical Standby Database
	4.2.2 Creating a Logical Standby Task 2: Stop Redo Apply on the Physical Standby Database
	4.2.3 Creating a Logical Standby Task 3: Prepare the Primary Database to Support a Logical Standby Database
	4.2.3.1 Prepare the Primary Database for Role Transitions
	4.2.3.2 Build a Dictionary in the Redo Data

	4.2.4 Creating a Logical Standby Task 4: Transition to a Logical Standby Database
	4.2.4.1 Convert to a Logical Standby Database
	4.2.4.2 Adjust Initialization Parameters for the Logical Standby Database

	4.2.5 Creating a Logical Standby Task 5: Open the Logical Standby Database
	4.2.6 Creating a Logical Standby Task 6: Verify the Logical Standby Database Is Performing Properly

	4.3 Creating a Logical Standby: Post-Creation Steps
	4.4 Creating a Logical Standby of a CDB

	5 Using Far Sync Instances
	5.1 Creating a Far Sync Instance
	5.1.1 Creating and Configuring a Far Sync Instance

	5.2 Alternate Destinations
	5.2.1 Assigning Log Archive Destinations to a Group
	5.2.2 Assigning Priorities to Log Archive Destinations in a Group
	5.2.3 Shipping to Multiple Active Destinations in a Group
	5.2.4 Using Multiple Log Archive Destination Groups
	5.2.5 Determining the Availability Status of Log Archive Destinations

	5.3 Configuring Alternate Destinations
	5.3.1 Reduced Protection After a Far Sync Failure
	5.3.2 Far Sync Instance High Availability
	5.3.3 Maintaining Protection After a Role Change

	5.4 Supported Protection Modes for Far Sync Instances
	5.4.1 Far Sync Instances in Maximum Availability Mode Configurations
	5.4.2 Far Sync Instances in Maximum Performance Mode Configurations

	6 Oracle Data Guard Protection Modes
	6.1 Oracle Data Guard Protection Modes
	6.2 Setting the Data Protection Mode of a Primary Database

	7 Redo Transport Services
	7.1 Introduction to Redo Transport Services
	7.2 Configuring Redo Transport Services
	7.2.1 Redo Transport Security
	7.2.1.1 Redo Transport Authentication Using SSL
	7.2.1.2 Redo Transport Authentication Using a Password File

	7.2.2 Configuring an Oracle Database to Send Redo Data
	7.2.2.1 Viewing Attributes With V$ARCHIVE_DEST

	7.2.3 Configuring an Oracle Database to Receive Redo Data
	7.2.3.1 Managing Standby Redo Logs
	7.2.3.2 Cases Where Redo Is Written Directly To an Archived Redo Log File

	7.3 Cascaded Redo Transport Destinations
	7.3.1 Configuring a Terminal Destination
	7.3.2 Cascading Scenarios
	7.3.2.1 Cascading to a Physical Standby
	7.3.2.2 Cascading to Multiple Physical Standbys

	7.4 Data Protection Considerations for Cascading Standbys
	7.5 Validating a Configuration
	7.6 Monitoring Redo Transport Services
	7.6.1 Monitoring Redo Transport Status
	7.6.2 Monitoring Synchronous Redo Transport Response Time
	7.6.3 Redo Gap Detection and Resolution
	7.6.3.1 Manual Gap Resolution

	7.6.4 Redo Transport Services Wait Events

	7.7 Tuning Redo Transport

	8 Apply Services
	8.1 Introduction to Apply Services
	8.2 Apply Services Configuration Options
	8.2.1 Using Real-Time Apply to Apply Redo Data Immediately
	8.2.2 Specifying a Time Delay for the Application of Archived Redo Log Files
	8.2.2.1 Using Flashback Database as an Alternative to Setting a Time Delay

	8.3 Applying Redo Data to Physical Standby Databases
	8.3.1 Starting Redo Apply
	8.3.2 Stopping Redo Apply
	8.3.3 Monitoring Redo Apply on Physical Standby Databases

	8.4 Applying Redo Data to Logical Standby Databases
	8.4.1 Starting SQL Apply
	8.4.2 Stopping SQL Apply on a Logical Standby Database
	8.4.3 Monitoring SQL Apply on Logical Standby Databases

	8.5 Standby Considerations When Removing or Renaming a PDB at a Primary

	9 Role Transitions
	9.1 Introduction to Role Transitions
	9.1.1 Preparing for a Role Transition
	9.1.2 Choosing a Target Standby Database for a Role Transition
	9.1.3 Switchovers
	9.1.4 Failovers
	9.1.5 Role Transition Triggers

	9.2 Role Transitions Involving Physical Standby Databases
	9.2.1 Performing a Switchover to a Physical Standby Database
	9.2.2 Performing a Failover to a Physical Standby Database

	9.3 Role Transitions Involving Logical Standby Databases
	9.3.1 Performing a Switchover to a Logical Standby Database
	9.3.2 Performing a Failover to a Logical Standby Database

	9.4 Using Flashback Database After a Role Transition
	9.4.1 Using Flashback Database After a Switchover
	9.4.2 Using Flashback Database After a Failover

	10 Managing Physical and Snapshot Standby Databases
	10.1 Starting Up and Shutting Down a Physical Standby Database
	10.1.1 Starting Up a Physical Standby Database
	10.1.2 Shutting Down a Physical Standby Database

	10.2 Opening a Physical Standby Database
	10.2.1 Real-time Query
	10.2.1.1 Monitoring Apply Lag in a Real-time Query Environment
	10.2.1.2 Configuring Apply Lag Tolerance in a Real-time Query Environment
	10.2.1.3 Forcing Redo Apply Synchronization in a Real-time Query Environment
	10.2.1.4 Real-time Query Restrictions
	10.2.1.5 Automatic Block Media Recovery
	10.2.1.6 Manual Block Media Recovery
	10.2.1.7 Tuning Queries on a Physical Standby Database
	10.2.1.8 Adding Temp Files to a Physical Standby

	10.2.2 DML Operations on Temporary Tables on Oracle Active Data Guard Instances
	10.2.3 IM Column Store in an Active Data Guard Environment
	10.2.4 Using Sequences in Oracle Active Data Guard
	10.2.4.1 Session Sequences

	10.3 Primary Database Changes That Require Manual Intervention at a Physical Standby
	10.3.1 Adding a Data File or Creating a Tablespace
	10.3.2 Dropping Tablespaces and Deleting Data Files
	10.3.2.1 Using DROP TABLESPACE INCLUDING CONTENTS AND DATAFILES

	10.3.3 Using Transportable Tablespaces with a Physical Standby Database
	10.3.4 Renaming a Data File in the Primary Database
	10.3.5 Add or Drop a Redo Log File Group
	10.3.6 NOLOGGING or Unrecoverable Operations
	10.3.7 Refresh the Password File
	10.3.8 Reset the TDE Master Encryption Key

	10.4 Recovering Through the OPEN RESETLOGS Statement
	10.5 Monitoring Primary, Physical Standby, and Snapshot Standby Databases
	10.5.1 Using Views to Monitor Primary, Physical, and Snapshot Standby Databases
	10.5.1.1 V$DATABASE
	10.5.1.2 V$MANAGED_STANDBY
	10.5.1.3 V$ARCHIVED_LOG
	10.5.1.4 V$LOG_HISTORY
	10.5.1.5 V$DATAGUARD_STATUS
	10.5.1.6 V$ARCHIVE_DEST

	10.6 Tuning Redo Apply
	10.7 Tuning Databases in an Active Data Guard Environment with SQL Tuning Advisor
	10.8 Using Oracle Diagnostic Pack to Tune Oracle Active Data Guard Standbys
	10.9 Managing a Snapshot Standby Database
	10.9.1 Converting a Physical Standby Database into a Snapshot Standby Database
	10.9.2 Using a Snapshot Standby Database
	10.9.3 Converting a Snapshot Standby Database into a Physical Standby Database

	11 Managing a Logical Standby Database
	11.1 Overview of the SQL Apply Architecture
	11.1.1 Various Considerations for SQL Apply
	11.1.1.1 Transaction Size Considerations
	11.1.1.2 Pageout Considerations
	11.1.1.3 Restart Considerations
	11.1.1.4 DML Apply Considerations
	11.1.1.5 DDL Apply Considerations
	11.1.1.6 Password Verification Functions

	11.2 Controlling User Access to Tables in a Logical Standby Database
	11.3 Views Related to Managing and Monitoring a Logical Standby Database
	11.3.1 DBA_LOGSTDBY_EVENTS View
	11.3.2 DBA_LOGSTDBY_LOG View
	11.3.3 V$DATAGUARD_STATS View
	11.3.4 V$LOGSTDBY_PROCESS View
	11.3.5 V$LOGSTDBY_PROGRESS View
	11.3.6 V$LOGSTDBY_STATE View
	11.3.7 V$LOGSTDBY_STATS View

	11.4 Monitoring a Logical Standby Database
	11.4.1 Monitoring SQL Apply Progress
	11.4.2 Automatic Deletion of Log Files

	11.5 Customizing a Logical Standby Database
	11.5.1 Customizing Logging of Events in the DBA_LOGSTDBY_EVENTS View
	11.5.2 Using DBMS_LOGSTDBY.SKIP to Prevent Changes to Specific Schema Objects
	11.5.3 Setting up a Skip Handler for a DDL Statement
	11.5.4 Modifying a Logical Standby Database
	11.5.4.1 Performing DDL on a Logical Standby Database
	11.5.4.2 Modifying Tables That Are Not Maintained by SQL Apply

	11.5.5 Adding or Re-Creating Tables On a Logical Standby Database

	11.6 Managing Specific Workloads In the Context of a Logical Standby Database
	11.6.1 Importing a Transportable Tablespace to the Primary Database
	11.6.2 Using Materialized Views
	11.6.3 How Triggers and Constraints Are Handled on a Logical Standby Database
	11.6.4 Using Triggers to Replicate Unsupported Tables
	11.6.5 Recovering Through the Point-in-Time Recovery Performed at the Primary
	11.6.6 Running an Oracle Streams Capture Process on a Logical Standby Database

	11.7 Using Extended Datatype Support During Replication
	11.7.1 How EDS-Based Replication Works
	11.7.2 Enabling EDS-Based Replication At a Logical Standby
	11.7.3 Removing EDS-Based Replication From a Logical Standby
	11.7.4 How EDS-Based Replication Handles Skip Rules
	11.7.5 How EDS-Based Replication Handles DDL
	11.7.5.1 Enabling and Disabling Automatic DDL Handling
	11.7.5.2 Manually Handling DDL

	11.8 Tuning a Logical Standby Database
	11.8.1 Create a Primary Key RELY Constraint
	11.8.2 Gather Statistics for the Cost-Based Optimizer
	11.8.3 Adjust the Number of Processes
	11.8.3.1 Adjusting the Number of APPLIER Processes
	11.8.3.2 Adjusting the Number of PREPARER Processes

	11.8.4 Adjust the Memory Used for LCR Cache
	11.8.5 Adjust How Transactions are Applied On the Logical Standby Database

	11.9 Backup and Recovery in the Context of a Logical Standby Database

	12 Using RMAN to Back Up and Restore Files
	12.1 About RMAN File Management in an Oracle Data Guard Configuration
	12.1.1 Interchangeability of Backups in an Oracle Data Guard Environment
	12.1.2 Association of Backups in an Oracle Data Guard Environment
	12.1.3 Accessibility of Backups in an Oracle Data Guard Environment

	12.2 About RMAN Configuration in an Oracle Data Guard Environment
	12.3 Recommended RMAN and Oracle Database Configurations
	12.3.1 Oracle Database Configurations on Primary and Standby Databases
	12.3.2 RMAN Configurations at the Primary Database
	12.3.3 RMAN Configurations at a Standby Database Where Backups are Performed
	12.3.4 RMAN Configurations at a Standby Where Backups Are Not Performed

	12.4 Backup Procedures
	12.4.1 Using Disk as Cache for Tape Backups
	12.4.1.1 Commands for Daily Tape Backups Using Disk as Cache
	12.4.1.2 Commands for Weekly Tape Backups Using Disk as Cache

	12.4.2 Performing Backups Directly to Tape
	12.4.2.1 Commands for Daily Backups Directly to Tape
	12.4.2.2 Commands for Weekly Backups Directly to Tape

	12.5 Registering and Unregistering Databases in an Oracle Data Guard Environment
	12.6 Reporting in an Oracle Data Guard Environment
	12.7 Performing Backup Maintenance in an Oracle Data Guard Environment
	12.7.1 Changing Metadata in the Recovery Catalog
	12.7.2 Deleting Archived Logs or Backups
	12.7.3 Validating Recovery Catalog Metadata

	12.8 Recovery Scenarios in an Oracle Data Guard Environment
	12.8.1 Recovery from Loss of Files on the Primary or Standby Database
	12.8.2 Recovery from Loss of Online Redo Log Files
	12.8.3 Incomplete Recovery of the Primary Database
	12.8.4 Actions Needed on Standby After TSPITR or Tablespace Plugin at Primary

	12.9 Additional Backup Situations
	12.9.1 Standby Databases Too Geographically Distant to Share Backups
	12.9.2 Standby Database Does Not Contain Data Files, Used as a FAL Server
	12.9.3 Standby Database File Names Are Different From Primary Database

	12.10 Restoring and Recovering Files Over the Network
	12.11 RMAN Support for CDBs In an Oracle Data Guard Environment

	13 Using SQL Apply to Upgrade the Oracle Database
	13.1 Benefits of a Rolling Upgrade Using SQL Apply
	13.2 Requirements to Perform a Rolling Upgrade Using SQL Apply
	13.3 Figures and Conventions Used in the Upgrade Instructions
	13.4 Performing a Rolling Upgrade By Creating a New Logical Standby Database
	13.5 Performing a Rolling Upgrade With an Existing Logical Standby Database
	13.6 Performing a Rolling Upgrade With an Existing Physical Standby Database

	14 Using DBMS_ROLLING to Perform a Rolling Upgrade
	14.1 Concepts New to Rolling Upgrades
	14.1.1 Data Guard Broker Support for DBMS_ROLLING Upgrades

	14.2 DBMS_ROLLING Upgrades and CDBs
	14.3 Overview of Using DBMS_ROLLING
	14.4 Planning a Rolling Upgrade
	14.5 Performing a Rolling Upgrade
	14.6 Monitoring a Rolling Upgrade
	14.7 Rolling Back a Rolling Upgrade
	14.8 Handling Role Changes That Occur During a Rolling Upgrade
	14.9 Examples of Rolling Upgrades

	15 Oracle Data Guard Scenarios
	15.1 Configuring Logical Standby Databases After a Failover
	15.1.1 When the New Primary Database Was Formerly a Physical Standby Database
	15.1.2 When the New Primary Database Was Formerly a Logical Standby Database

	15.2 Converting a Failed Primary Into a Standby Database Using Flashback Database
	15.2.1 Flashing Back a Failed Primary Database into a Physical Standby Database
	15.2.2 Flashing Back a Failed Primary Database into a Logical Standby Database
	15.2.3 Flashing Back a Logical Standby Database to a Specific Applied SCN

	15.3 Using Flashback Database After Issuing an Open Resetlogs Statement
	15.3.1 Flashing Back a Physical Standby Database to a Specific Point-in-Time
	15.3.2 Flashing Back a Logical Standby Database to a Specific Point-in-Time

	15.4 Recovering After the NOLOGGING Clause Is Specified
	15.4.1 Recovery Steps for Logical Standby Databases
	15.4.2 Recovery Steps for Physical Standby Databases
	15.4.3 Determining If a Backup Is Required After Unrecoverable Operations
	15.4.4 Recovery Steps for Part of a Physical Standby Database

	15.5 Creating a Standby Database That Uses OMF or Oracle ASM
	15.6 Recovering From Lost-Write Errors on a Primary Database
	15.7 Using the DBCOMP Procedure to Detect Lost Writes and Other Inconsistencies
	15.8 Converting a Failed Primary into a Standby Database Using RMAN Backups
	15.8.1 Converting a Failed Primary into a Physical Standby Using RMAN Backups
	15.8.2 Converting a Failed Primary into a Logical Standby Using RMAN Backups

	15.9 Changing the Character Set of a Primary Without Re-Creating Physical Standbys
	15.10 Actions Needed On a Standby After a PDB PITR or PDB Flashback On a Primary

	Part II Reference
	16 Initialization Parameters
	17 LOG_ARCHIVE_DEST_n Parameter Attributes
	17.1 AFFIRM and NOAFFIRM
	17.2 ALTERNATE
	17.3 COMPRESSION
	17.4 DB_UNIQUE_NAME
	17.5 DELAY
	17.6 ENCRYPTION
	17.7 GROUP
	17.8 LOCATION and SERVICE
	17.9 MANDATORY
	17.10 MAX_CONNECTIONS
	17.11 MAX_FAILURE
	17.12 NET_TIMEOUT
	17.13 NOREGISTER
	17.14 PRIORITY
	17.15 REOPEN
	17.16 SYNC and ASYNC
	17.17 TEMPLATE
	17.18 VALID_FOR

	18 SQL Statements Relevant to Oracle Data Guard
	18.1 ALTER DATABASE Statements
	18.2 ALTER SESSION Statements
	18.3 ALTER SYSTEM Statements

	19 Views Relevant to Oracle Data Guard

	Part III Appendixes
	A Troubleshooting Oracle Data Guard
	A.1 Common Problems
	A.1.1 Renaming Data Files with the ALTER DATABASE Statement
	A.1.2 Standby Database Does Not Receive Redo Data from the Primary Database
	A.1.3 You Cannot Mount the Physical Standby Database

	A.2 Log File Destination Failures
	A.3 Handling Logical Standby Database Failures
	A.4 Problems Switching Over to a Physical Standby Database
	A.4.1 Switchover Fails Because Redo Data Was Not Transmitted
	A.4.2 Switchover Fails with the ORA-01102 Error
	A.4.3 Redo Data Is Not Applied After Switchover
	A.4.4 Roll Back After Unsuccessful Switchover and Start Over

	A.5 Problems Switching Over to a Logical Standby Database
	A.5.1 Failures During the Prepare Phase of a Switchover Operation
	A.5.1.1 Failure While Preparing the Primary Database
	A.5.1.2 Failure While Preparing the Logical Standby Database

	A.5.2 Failures During the Commit Phase of a Switchover Operation
	A.5.2.1 Failure to Convert the Original Primary Database
	A.5.2.2 Failure to Convert the Target Logical Standby Database

	A.6 What to Do If SQL Apply Stops
	A.7 Network Tuning for Redo Data Transmission
	A.8 Slow Disk Performance on Standby Databases
	A.9 Log Files Must Match to Avoid Primary Database Shutdown
	A.10 Troubleshooting a Logical Standby Database
	A.10.1 Recovering from Errors
	A.10.1.1 DDL Transactions Containing File Specifications
	A.10.1.2 Recovering from DML Failures

	A.10.2 Troubleshooting SQL*Loader Sessions
	A.10.3 Troubleshooting Long-Running Transactions
	A.10.4 Troubleshooting ORA-1403 Errors with Flashback Transactions

	B Patching, Upgrading, and Downgrading Databases in an Oracle Data Guard Configuration
	B.1 Before You Patch or Upgrade the Oracle Database Software
	B.2 Patching Oracle Database with Standby First Patching
	B.3 Upgrading Oracle Database with a Physical Standby Database in Place
	B.4 Upgrading Oracle Database with a Logical Standby Database in Place
	B.5 Modifying the COMPATIBLE Initialization Parameter After Upgrading
	B.6 Downgrading Oracle Database with No Logical Standby in Place
	B.7 Downgrading Oracle Database with a Logical Standby in Place

	C Data Type and DDL Support on a Logical Standby Database
	C.1 Datatype Considerations
	C.1.1 Supported Datatypes in a Logical Standby Database
	C.1.1.1 Compatibility Requirements
	C.1.1.2 Opaque Type Restrictions

	C.1.2 Unsupported Datatypes in a Logical Standby Database

	C.2 Support for Data Types That Lack Native Redo-Based Support
	C.3 Support for Transparent Data Encryption (TDE)
	C.4 Support for Tablespace Encryption
	C.5 Support For Row-level Security and Fine-Grained Auditing
	C.5.1 Row-level Security
	C.5.2 Fine-Grained Auditing
	C.5.3 Skipping and Enabling PL/SQL Replication

	C.6 Oracle Label Security
	C.7 Oracle Database Vault
	C.8 Oracle E-Business Suite
	C.9 Supported Table Storage Types
	C.10 Unsupported Table Storage Types
	C.11 PL/SQL Supplied Packages Considerations
	C.11.1 Supported PL/SQL Supplied Packages
	C.11.2 Unsupported PL/SQL Supplied Packages
	C.11.2.1 Support for DBMS_JOB
	C.11.2.2 Support for DBMS_SCHEDULER

	C.11.3 Handling XML and XDB PL/SQL Packages in Logical Standby
	C.11.3.1 The DBMS_XMLSCHEMA Schema
	C.11.3.2 The DBMS_XMLINDEX Package
	C.11.3.3 Dealing With Unsupported PL/SQL Procedures
	C.11.3.4 Manually Compensating for Unsupported PL/SQL
	C.11.3.5 Compensating for Ordering Sensitive Unsupported PL/SQL

	C.12 Unsupported Tables
	C.12.1 Unsupported Tables During Rolling Upgrades
	C.12.2 Unsupported Tables As a Result of DML Performed In a PL/SQL Function

	C.13 Skipped SQL Statements on a Logical Standby Database
	C.14 DDL Statements Supported by a Logical Standby Database
	C.14.1 DDL Statements that Use DBLINKS
	C.14.2 Replication of AUD$ and FGA_LOG$ on Logical Standbys

	C.15 Distributed Transactions and XA Support
	C.16 Support for SecureFiles LOBs
	C.17 Support for Database File System (DBFS)
	C.18 Character Set Considerations
	C.19 Additional PL/SQL Package Support Available Only in the Context of DBMS_ROLLING Upgrades

	D Oracle Data Guard and Oracle Real Application Clusters
	D.1 Configuring Standby Databases in an Oracle RAC Environment
	D.1.1 Setting Up Multi-Instance Redo Apply
	D.1.2 Setting Up a Multi-Instance Primary with a Single-Instance Standby
	D.1.3 Setting Up Oracle RAC Primary and Standby Databases
	D.1.3.1 Configuring an Oracle RAC Standby Database to Receive Redo Data
	D.1.3.2 Configuring an Oracle RAC Primary Database to Send Redo Data

	D.2 Configuration Considerations in an Oracle RAC Environment
	D.2.1 Format for Archived Redo Log Filenames
	D.2.2 Data Protection Modes

	E Creating a Standby Database with Recovery Manager
	E.1 Prerequisites
	E.2 Overview of Standby Database Creation with RMAN
	E.2.1 Purpose of Standby Database Creation with RMAN
	E.2.2 Basic Concepts of Standby Creation with RMAN
	E.2.2.1 Active Database and Backup-Based Duplication
	E.2.2.2 DB_UNIQUE_NAME Values in an RMAN Environment
	E.2.2.3 Recovery of a Standby Database
	E.2.2.3.1 Standby Database Redo Log Files

	E.2.2.4 Password Files for the Standby Database

	E.3 Using the DUPLICATE Command to Create a Standby Database
	E.3.1 Using Active Database Duplication to Create a Standby Database or Far Sync Instance
	E.3.2 Creating a Standby Database with Backup-Based Duplication

	F Setting Archive Tracing
	F.1 Setting the LOG_ARCHIVE_TRACE Initialization Parameter

	G Performing Role Transitions Using Old Syntax
	G.1 SQL Syntax for Role Transitions Involving Physical Standbys
	G.1.1 New Features When Using the Old Syntax

	G.2 Role Transitions Involving Physical Standby Databases
	G.2.1 Performing a Switchover to a Physical Standby Database Using Old Syntax
	G.2.2 Performing a Failover to a Physical Standby Database Using Old Syntax

	G.3 Troubleshooting Switchovers to Physical Standby Databases
	G.3.1 Switchover Fails Because Redo Data Was Not Transmitted
	G.3.2 Switchover Fails with the ORA-01102 Error
	G.3.3 Redo Data Is Not Applied After Switchover
	G.3.4 Roll Back After Unsuccessful Switchover and Start Over

	H Using the ALTERNATE Attribute to Configure Remote Alternate Destinations
	H.1 Configuring an Alternate Destination

	Index

