
Oracle® Database
2 Day + PHP Developer's Guide

12c Release 2 (12.2)

E50029-07

February 2017

Oracle Database 2 Day + PHP Developer's Guide, 12c Release 2 (12.2)

E50029-07

Copyright © 2010, 2017, Oracle and/or its affiliates. All rights reserved.

Primary Author: Tanmay Choudhury

Contributors: Christopher Jones, Simon Law, Glenn Stokol, Ligaya Turmelle, Johannes Schlüter

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface ... vii

Audience .. vii

Related Documents... vii

Conventions... vii

1 Introducing PHP with Oracle Database

1.1 Purpose... 1-1

1.2 Overview of the Sample Application... 1-1

1.3 Resources ... 1-2

2 Getting Started

2.1 What You Need .. 2-1

2.2 Installing Oracle Database... 2-1

2.2.1 Unlocking the HR User... 2-2

2.2.2 Database Resident Connection Pooling ... 2-3

2.2.3 Starting the DRCP Pool .. 2-6

2.3 Installing Apache HTTP Server .. 2-7

2.3.1 Installing Apache on Windows XP... 2-7

2.3.2 Installing Apache on Linux.. 2-8

2.4 Testing the Apache Installation .. 2-11

2.5 Installing PHP ... 2-12

2.5.1 Installing PHP on Windows .. 2-12

2.5.2 Installing PHP on Linux ... 2-13

2.5.3 Post PHP Installation Tasks on Windows and Linux .. 2-15

2.6 Testing the PHP Installation.. 2-16

2.6.1 Checking PHP Configuration with phpinfo() ... 2-16

2.6.2 Testing PHP Connections to Oracle.. 2-18

2.7 Installing the NetBeans IDE .. 2-20

2.7.1 Installing NetBeans IDE on Windows.. 2-20

2.7.2 Installing NetBeans IDE on Linux .. 2-21

2.7.3 Configuring NetBeans on Linux and Windows ... 2-21

2.7.4 Using NetBeans ... 2-22

iii

3 Building a Database Access Class

3.1 Connection Constants .. 3-1

3.2 Creating the Db class.. 3-2

3.3 General Example of Running SQL in PHP OCI8 ... 3-5

3.4 Running SQL with the Db Class... 3-6

3.5 Testing the Db Class ... 3-7

4 Building the AnyCo Application

4.1 A Cascading Style Sheet .. 4-1

4.2 Creating an Application Class for Sessions .. 4-2

4.3 Providing a Stateful Web Experience with PHP Sessions .. 4-4

4.4 Adding a Page Class... 4-5

4.5 Creating the Application Login Page .. 4-7

5 Paging Through Employee Data

5.1 Creating the Employee Listing ... 5-1

5.2 Running the Employee List ... 5-5

6 Showing Equipment Records by Using a REF CURSOR

6.1 Introduction to PL/SQL Packages and Package Bodies ... 6-1

6.2 Introduction to PL/SQL Stored Procedures ... 6-1

6.3 Introduction to REF CURSORs... 6-2

6.4 Creating the Equipment Table.. 6-2

6.5 Calling the REF CURSOR in PHP .. 6-3

7 Error Handling

7.1 Database Errors ... 7-1

7.2 Displaying a Custom Error Message ... 7-2

8 Query Performance and Prefetching

8.1 Prefetching Overview .. 8-1

8.2 Creating the Employee Report Page .. 8-1

8.3 Running the Equipment Report ... 8-3

8.4 Prefetching with a REF CURSOR ... 8-4

9 Inserting Data

9.1 Building the Insert Form.. 9-1

9.2 Running the Single Insert Form.. 9-4

9.3 Preventing CSRF with ac_add_one.php.. 9-5

10 Inserting Multiple Data Values

10.1 Creating the Multiple Insert Form ... 10-1

iv

10.2 Running the Multiple Insert Form ... 10-3

11 Using JSON and Generating a JPEG Image

11.1 Creating a Simple Web Service Returning JSON... 11-1

11.2 Creating a JPEG image... 11-2

12 Uploading and Displaying BLOBs

12.1 Creating a Table to Store the Logo ... 12-1

12.2 Uploading Images in PHP OCI8... 12-1

12.3 Fetching the Logo and Creating an Image .. 12-4

12.4 Displaying the Logo ... 12-6

13 Monitoring Database Usage of the Application

13.1 Overview of Metadata ... 13-1

13.2 Viewing Metadata... 13-1

13.3 More Uses of Metadata .. 13-2

13.4 Metadata and Persistent Connections ... 13-2

14 Building Global Applications

14.1 Establishing the Environment Between Oracle and PHP... 14-1

14.2 Manipulating Strings.. 14-2

14.3 Determining the Locale of the User ... 14-2

14.4 Developing Locale Awareness.. 14-3

14.5 Encoding HTML Pages .. 14-3

14.5.1 Specifying the Page Encoding for HTML Pages .. 14-4

14.5.2 Specifying the Page Encoding in PHP.. 14-4

14.6 Organizing the Content of HTML Pages for Translation .. 14-4

14.6.1 Strings in PHP ... 14-5

14.6.2 Static Files ... 14-5

14.6.3 Data from the Database .. 14-5

14.7 Presenting Data Using Conventions Expected by the User .. 14-5

14.7.1 Oracle Date Formats ... 14-5

14.7.2 Oracle Number Formats... 14-6

14.7.3 Oracle Linguistic Sorts.. 14-7

14.7.4 Oracle Error Messages .. 14-8

Index

v

vi

Preface

Oracle Database 2 Day + PHP Developer's Guide introduces developers to the use of PHP
to access Oracle Database.

This preface contains these topics:

• Audience (page vii)

• Related Documents (page vii)

• Conventions (page vii)

Audience
Oracle Database 2 Day + PHP Developer's Guide is an introduction to application
development using PHP and Oracle Database.

This document assumes that you have a cursory understanding of SQL, PL/SQL, and
PHP.

Related Documents
For more information, see these Oracle resources:

• Oracle Database 2 Day Developer's Guide

• Oracle Database SQL Language Reference

• Oracle Database PL/SQL Language Reference

• SQL*Plus User's Guide and Reference

• Oracle Database Globalization Support Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

vii

Convention Meaning

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

viii

1
Introducing PHP with Oracle Database

PHP is a popular scripting language that can be embedded in HTML, which makes it
particularly useful for Web development.

This chapter contains the following topics:

• Purpose (page 1-1)

• Overview of the Sample Application (page 1-1)

• Resources (page 1-2)

1.1 Purpose
This guide shows you how to create a web application using the PHP scripting
language and Oracle Database.

1.2 Overview of the Sample Application
This document guides you through the development of a sample application that
manages the tracking of company equipment for a fictitious company called AnyCo
Corp. For this introduction to the PHP language and the PHP OCI8 extension that
accesses the Oracle database, no PHP framework or abstraction layer is used.
However, frameworks are popular and they should be evaluated when building
applications. They provide functionality to do tasks the AnyCo application has to
manually implement, and they can provide a good application design paradigm.

The AnyCo application uses employee data from the EMPLOYEES table in the sample
HR schema provided with Oracle Database. See Oracle Database Sample Schemas for
information about this schema. A new table will be created for this application to hold
details about the company equipment allocated to each employee.

Figure 1-1 (page 1-1) shows the overview of the sample application.

Figure 1-1 Overview of the Sample Application

Introducing PHP with Oracle Database 1-1

The application will perform the following functions:

• Establish a connection to the database using the PHP OCI8 extension. An Oracle
connection pool is used to demonstrate how applications can be made scalable.

• Query the database employee and equipment data.

• Display and navigate through the data.

• Show how to insert and fetch records in various ways, including fetching using a
PL/SQL REF CURSOR.

• Show how to tune PHP fetching data from SQL queries.

• Show how to create and use a web service.

• Upload and display an image.

• Show how to monitor the application's use of database resources.

1.3 Resources
The following Oracle Technology Network Web sites provide additional information
you may find useful.

• Oracle Database home page on Oracle Technology Network

http://www.oracle.com/technetwork/database/express-edition/
downloads/index.html

• Oracle Database Documentation Library

http://www.oracle.com/pls/xe112/homepage

• The free book "Underground PHP and Oracle Manual" goes into detail about
using PHP with Oracle Database:

http://www.oracle.com/technetwork/topics/php/underground-
php-oracle-manual-098250.html

• PHP Developer Center with resources and a PHP forum at

http://www.oracle.com/technetwork/topics/php/whatsnew/
index.html

• NetBeans IDE learning trail for PHP development at

http://netbeans.org/kb/trails/php.html

• Oracle Database Documentation Library at

http://www.oracle.com/technetwork/indexes/documentation/
index.html

• PHP Scalability and High Availability white paper:

http://www.oracle.com/technetwork/topics/php/whatsnew/php-
scalability-ha-twp-128842.pdf

• PHP Web Auditing, Authorization and Monitoring with Oracle Database

http://www.oracle.com/technetwork/articles/dsl/php-web-
auditing-171451.html

Resources

1-2 2 Day + PHP Developer's Guide

http://www.oracle.com/technetwork/database/express-edition/downloads/index.html
http://www.oracle.com/technetwork/database/express-edition/downloads/index.html
http://www.oracle.com/pls/xe112/homepage
http://www.oracle.com/technetwork/topics/php/underground-php-oracle-manual-098250.html
http://www.oracle.com/technetwork/topics/php/underground-php-oracle-manual-098250.html
http://www.oracle.com/technetwork/topics/php/whatsnew/index.html
http://www.oracle.com/technetwork/topics/php/whatsnew/index.html
http://netbeans.org/kb/trails/php.html
http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/topics/php/whatsnew/php-scalability-ha-twp-128842.pdf
http://www.oracle.com/technetwork/topics/php/whatsnew/php-scalability-ha-twp-128842.pdf
http://www.oracle.com/technetwork/articles/dsl/php-web-auditing-171451.html
http://www.oracle.com/technetwork/articles/dsl/php-web-auditing-171451.html

• PHP Online manual at

http://www.php.net/manual/en/

Resources

Introducing PHP with Oracle Database 1-3

http://www.php.net/manual/en/

Resources

1-4 2 Day + PHP Developer's Guide

2
Getting Started

This chapter explains how to install and test Oracle Database and PHP environment.

This chapter contains the following topics:

• What You Need (page 2-1)

• Installing Oracle Database (page 2-1)

• Installing Apache HTTP Server (page 2-7)

• Testing the Apache Installation (page 2-11)

• Installing PHP (page 2-12)

• Testing the PHP Installation (page 2-16)

• Installing the NetBeans IDE (page 2-20)

2.1 What You Need
To install your Oracle Database and PHP environment, you need:

• Oracle Database 12cR1

• Apache Web Server. On Linux this is commonly available in the package
repository.

• PHP 5.3 or later. Several recent Linux distributions now include this version as a
package.

• A text editor for editing PHP files. A code editor such as NetBeans PHP edition
with a debugger is ideal, but not required.

2.2 Installing Oracle Database
If you have not already installed Oracle Database on your computer, you must do so.
The sample data used in this tutorial is installed by default. It is the HR component of
the Sample Schemas.

For information about installing Oracle Database, see the installation guide for your
operating system:

• Oracle Database Installation Guide for Microsoft Windows

• Oracle Database Installation Guide for Linux

This section contains the following topics:

• Unlocking the HR User (page 2-2)

Getting Started 2-1

• Database Resident Connection Pooling (page 2-3)

• Starting the DRCP Pool (page 2-6)

See Also:

• Oracle Database Sample Schemas guide for information about the HR sample
schema.

• Oracle SQL Developer web page

http://www.oracle.com/technetwork/developer-tools/sql-
developer/overview/index.html

2.2.1 Unlocking the HR User
The PHP application connects to the database as the HR user. You may need to unlock
the HR account before it can be used. Use SQL*Plus or SQL Developer to unlock the HR
user.

This section contains the following topics:

• Unlocking the HR User Using a Command Line (page 2-2)

• Unlocking the HR User Using SQL Developer: (page 2-2)

2.2.1.1 Unlocking the HR User Using a Command Line

Unlock the HR user using a command line as follows:

SQL> source /u01/app/oracle/product/12.1/bin/oracle_env.sh
SQL> sqlplus system/system_password
SQL> alter user hr identified by <password-for-hr> account unlock;

where, system_password is the password you entered during database
configuration, and password-for-hr is the password for the HR account.

2.2.1.2 Unlocking the HR User Using SQL Developer:

To unlock the sample user account using SQL Developer:

1. If you have not already created a database connection for the SYSTEM user, do so.

2. Open the database connection for the SYSTEM user.

3. In the Connection navigator under the connection for the SYSTEM user, expand
the Other Users node.

4. Under Other Users, right-click the node for the HR user and select Edit User.

5. In the Create/Edit User dialog box, uncheck (deselect) the option Account is
Locked.

a. For New Password and Confirm Password, enter the password that you want
for the HR user.

b. Uncheck (deselect) Password expired (User must change next login).

c. Uncheck (deselect) Account is Locked.

Installing Oracle Database

2-2 2 Day + PHP Developer's Guide

http://www.oracle.com/technetwork/developer-tools/sql-developer/overview/index.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/overview/index.html

6. Click Apply to alter the HR user so that the account is unlocked and not expired.

7. Click Close to close the dialog box.

For further information about unlocking an Oracle database account, refer Oracle
Database 2 Day DBA.

See Also:

• Oracle Database documentation

http://www.oracle.com/technetwork/indexes/
documentation/index.html

2.2.2 Database Resident Connection Pooling
The AnyCo sample application will use Database Resident Connection Pooling
(DRCP) to show how a PHP application can scale to support many users.

PHP cannot be assumed to be thread safe and is typically run in a multi-process mode,
for example with the Apache web server's pre-fork model or with FastCGI. Sharing
Oracle connections between active and idle PHP processes is not possible in the mid-
tier because there is no interprocess communication. DRCP works because the sharing
is handled by the database host machine. This also allows connection resources
created by multiple mid-tier hosts to be shared.

For best performance it is common for PHP OCI8 applications to use "persistent"
database connections. When PHP has completed an application script and sent its
output to the web user's browser, the script's underlying DB connection is not closed.
The connection remains cached in the still-running, now idle PHP/Apache process. It
can be reused by this PHP process in any subsequent PHP script connecting with the
same database credentials. This has great performance benefits. However without
DRCP, when there are large numbers of PHP processes the open database connections
may use a large amount of database host memory. This is despite many connections
being idle due to the user's "think-time" between making web page requests, or while
the PHP script runs non-database operations.

DRCP allows PHP applications to efficiently use database host memory to support
large numbers of web users. DRCP allows database resources to be used by only those
web users currently doing database operations. Benchmarks have shown DRCP can
support tens of thousands of web users on small, commodity Linux database hosts.

Installing Oracle Database

Getting Started 2-3

http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/indexes/documentation/index.html

Figure 2-1 Without DRCP, Idle Persistent Connections from PHP still Consume
Database Resources.

DRCP overcomes the database host memory pressure by maintaining a small pool of
database server processes on the host. These can be shared by all the PHP database
connections across all PHP processes and mid-tier servers when they are needed.

Installing Oracle Database

2-4 2 Day + PHP Developer's Guide

Figure 2-2 DRCP Architecture

If a PHP script connects to the database but there is no pooled server process available,
then it will wait until one is free. This prevents the database from being overloaded
and allows applications to continue running.

Once the DRCP pool is started, applications can choose at runtime whether to use it or
not. This is indicated in the PHP OCI8 connection string. Typically only short lived,
similar kinds of tasks should use DRCP. Batch processes should not use the pool.

The DRCP pool can be used in two variants. The basic method is that only the
processes are reused. The second method increases performance by also reusing the
"session" memory associated with each process. In PHP, only "persistent" connections
use the latter method. For web applications like PHP where each script is part of a
single application, this session memory sharing is generally perfectly acceptable.
However care must be taken that any retained session settings such as the date format
do not occur unexpectedly and that they do not constitute an information security
leak. DRCP allows the pool to be virtually sub-partitioned to reduce any issues like
this.

PHP OCI8 applications use the oci_pconnect() call to create a persistent database
connection. Applications can also connect to Oracle using oci_connect() or
oci_new_connect(), which create non-persistent connections. The
oci_new_connect() function always returns a new, transactionally independent
connection resource each time it is called. The oci_connect() and

Installing Oracle Database

Getting Started 2-5

oci_pconnect() functions will return their respective same PHP resource if a
running script calls them multiple times with the same connection credentials. For
each connection method, a rollback occurs at the end of each script, if necessary.

There are also differences in behavior between the three functions depending on
whether DRCP is being used.

Without DRCP, a persistent connection remains open even when the PHP script has
completed. A subsequent script connecting with the same credentials can immediately
reuse that connection. This is fast but the database host must have enough memory to
maintain the connections from each PHP process even when the processes are idle.
The oci_connect() and oci_new_connect() functions do not retain the
underlying connection to the database after the PHP script completes. This makes
connection slower to establish but memory use on the database host is capped by the
number of active web users.

When PHP connections uses DRCP, all three OCI8 connection functions benefit from
using established DRCP server processes from the DRCP pool. When each script
finishes (if not earlier), its database pooled server is returned to the DRCP pool for
reuse. A lightweight connection to the DRCP broker is retained, which aids re-
connection performance. An oci_pconnect() function will reuse the process session
memory, provide more efficiency and higher scalability. Each oci_connect() and
oci_new_connect() call will recreate the Oracle session memory in the reused
DRCP pooled process.

More information on DRCP and PHP is in the white paper:

http://www.oracle.com/technetwork/topics/php/whatsnew/php-
scalability-ha-twp-128842.pdf

2.2.3 Starting the DRCP Pool
The DRCP pool can be controlled in SQL*Plus with the pre-supplied PL/SQL
DBMS_CONNECTION_POOL package.

To start the pool on Oracle Linux, open a terminal window and connect as the root
user:

su -

Now, su to the Oracle account:

su - oracle
$ source /u01/app/oracle/product/12.1/bin/oracle_env.sh

Run SQL*Plus with the SYSDBA system privilege and invoke the
DBMS_CONNECTION_POOL.START_POOL() procedure:

$ sqlplus / as sysdba
SQL> execute dbms_connection_pool.start_pool()

The pool will now run with its default parameters.

To stop the pool, run:

SQL> execute dbms_connection_pool.stop_pool()

If DRCP is running when the database is restarted, then the pool will automatically
restart.

Pool parameters can be changed with DBMS_CONNECTION_POOL.ALTER_PARAM(),
for example:

Installing Oracle Database

2-6 2 Day + PHP Developer's Guide

http://www.oracle.com/technetwork/topics/php/whatsnew/php-scalability-ha-twp-128842.pdf
http://www.oracle.com/technetwork/topics/php/whatsnew/php-scalability-ha-twp-128842.pdf

SQL> execute dbms_connection_pool.alter_param(null, 'MAXSIZE', '10');

The pool should be restarted after changing parameters.

The current pool settings can be viewed by querying Oracle's data dictionary:

select * from DBA_CPOOL_INFO;

The overall DRCP Pool statistics can be seen in

select * from V$CPOOL_STATS;

By observing the statistics over time you can decide how to tune the pool parameters.

Each DRCP database connection can specify an arbitrary "connection class". In PHP
the connection class can be configured in PHP's php.ini initialization file or can be
set at run time. See "Post PHP Installation Tasks on Windows and Linux (page 2-15)".
The connection class helps partition the DRCP pool for different use cases.

The statistics for each connection class can be seen using:

select * from V$CPOOL_CC_STATS;

Not setting a connection class results in reduced sharing of the DRCP pool resources.
For general application, if V$CPOOL_CC_STATS shows a large number of system
generated connection class names, then check that your PHP configuration files on
each mid tier server is correctly setting the connection class.

The DRCP pool is sharable across all enabled applications, including those written in
PHP, Perl, and Python. Some tools like SQL*Plus are not DRCP enabled. If you use a
DRCP connection with SQL*Plus you will see entries in V$CPOOL_CC_STATS with the
class name SHARED. SQL*Plus will reuse the DRCP pool processes but will have to
recreate each process's session memory.

When you have built the AnyCo application and run it, you can examine the
monitoring views to see DRCP in action.

2.3 Installing Apache HTTP Server
The Apache HTTP server handles incoming user page requests and invokes PHP to
generate the application's HTML markup.

For information about downloading, installing, and using the Apache HTTP server,
see the Apache HTTP Server Project page at: http://httpd.apache.org/

This section contains the following topics:

• Installing Apache on Windows XP (page 2-7)

• Installing Apache on Linux (page 2-8)

2.3.1 Installing Apache on Windows XP

Note:

Windows XP is no longer officially supported by Microsoft. For the most
recent Windows installation information, see the Apache HTTP Server Project
page at: http://httpd.apache.org/

Installing Apache HTTP Server

Getting Started 2-7

http://httpd.apache.org/
http://httpd.apache.org/

PHP 5.3.6 is installed using the FastCGI model in Windows. Perform the following
steps to obtain Apache HTTP Server for Windows:

1. Enter the following URL in your Web browser:

http://httpd.apache.org/download.cgi

2. Click the httpd-2.2.17-win32-x86-no_ssl.msi.

3. Save the downloaded file in a temporary directory, such as c:\tmp and double
click to install it.

The software will install to a directory like: C:\Program Files\Apache
Software Foundation\Apache2.2.

The file name and extraction directory are based on the current version.
Throughout this procedure, ensure you use the directory name for the version you
are installing.

4. Download the Apache mod_fcgid FastCGI component from the following URL:

http://httpd.apache.org/download.cgi#mod_fcgid

5. Unzip it to the installed Apache 2.2 directory.

6. Edit C:\Program Files\Apache Software Foundation\Apache2.2\conf
\httpd.conf and add:

LoadModule fcgid_module modules/mod_fcgid.so

In httpd.conf locate the <Directory> section for htdocs and add ExecCGI to the
Options:

<Directory "C:/Program Files/Apache Software Foundation/Apache2.2/htdocs">
...
Options Indexes FollowSymLinks ExecCGI
...
</Directory>

You can use the Start menu option to start Apache. This opens a console window
showing any error messages. Error messages may also be written to C:\Program
Files\Apache Software Foundation\Apache2.2\logs\error.log.

You can also use the ApacheMonitor utility to start Apache. If you chose to install
Apache as a service for all users, it will appear as an icon in your System Tray.

If you have errors, double check your httpd.conf file

2.3.2 Installing Apache on Linux

Note:

Some information in this section refers to an old version of Apache. For the
most recent installation information, see the Apache HTTP Server Project page
at: http://httpd.apache.org/

This section describes how to install Apache HTTP Server on Linux.

Installing Apache HTTP Server

2-8 2 Day + PHP Developer's Guide

http://httpd.apache.org/download.cgi
http://httpd.apache.org/download.cgi#mod_fcgid
http://httpd.apache.org/

The file name and extraction directory are based on the current version. Throughout
this procedure, ensure you use the directory name for the version you are installing.

Apache is typically already installed on Linux or directly available in package
repositories.

This section contains the following topics:

• Using the Default HTTPD Package on Oracle Linux (page 2-9)

• Manually Installing Apache on Linux (page 2-9)

• Setting the Oracle Environment for Apache on Linux (page 2-10)

• Setting up a User Directory for the Example Project on Linux (page 2-10)

2.3.2.1 Using the Default HTTPD Package on Oracle Linux

1. On Oracle Linux install the httpd package with:

yum install httpd

or

up2date httpd

2. If you will be compiling PHP manually (see later), also install the httpd-devel
package:

yum install httpd-devel

or

up2date httpd-devel

3. Stop Apache as root by using:

service httpd stop

4. To start Apache run:

service httpd start

2.3.2.2 Manually Installing Apache on Linux

This section describes how to manually install Apache HTTP Server on Linux. The file
name and extraction directory are based on the current version. Throughout this
procedure, ensure you use the directory name for the version you are installing.

Perform the following steps to install the Apache HTTP Server:

1. Download the httpd server from apache.org, for example,
httpd-2.2.17.tar.bz2.

2. Go to the directory where you downloaded the httpd-2.2.17.tar.bz2 file.

3. Log in as the root user and run these commands:

tar -jxvf httpd-2.2.17.tar.bz2
cd httpd-2.2.17
export ORACLE_HOME=/usr/lib/oracle/app/oracle/product/11.2.0/server
./configure \
 --prefix=/usr/local/apache \

Installing Apache HTTP Server

Getting Started 2-9

 --enable-module=so
make
make install

The option --enable-module=so allows PHP to be compiled as a Dynamic
Shared Object (DSO). The --prefix option sets the Apache installation directory
used by the command make install

If you do not want to install and run Apache as a privileged user, set --prefix to a
directory such as $HOME/apache. Then, after installation completes, you will also
need to edit httpd.conf and modify the Listen parameter to change the port that
Apache listens on, because non-privileged users cannot use the default port 80.

Apache can be started with the apachectl script:

/usr/local/apache/bin/apachectl start

Stop Apache with:

/usr/local/apache/bin/apachectl stop

2.3.2.3 Setting the Oracle Environment for Apache on Linux

The Oracle environment must be set correctly before starting Apache so that PHP
OCI8 works correctly. In general you should set the same variables that are set by the
$ORACLE_HOME/bin/oracle_env.sh script. The necessary environment variables
can be set in Apache's environment configuration file.

On Oracle Linux with the default httpd package, this is /etc/sysconfig/httpd. If
you installed your own Apache using the instructions in the previous section it
is /usr/local/bin/envvars. Edit the file and add these lines:

export ORACLE_HOME=/u01/app/oracle/product/12.1
export LD_LIBRARY_PATH=$ORACLE_HOME/lib:$LD_LIBRARY_PATH

Stop and restart Apache so the environment variables are in effect.

2.3.2.4 Setting up a User Directory for the Example Project on Linux

The PHP files that will be created later need to be stored in a directory accessible by
Apache. One possible location is Apache's Document root directory /var/www/html
(or /usr/local/apache/htdocs, if you installed Apache manually). However, you
may find it easier to give Apache access to a sub-directory of your home directory.

1. Login as your normal user and make a working directory:

mkdir $HOME/public_html

You will also need to let the Apache processes access your files, for example with:

chmod 755 $HOME $HOME/public_html

2. Edit the httpd.conf file:

a. For Oracle Linux, edit /etc/httpd/conf/httpd.conf and locate the
mod_userdir.c section. Change it to:

<IfModule mod_userdir.c>
 #
 # UserDir is disabled by default since it can confirm the presence
 # of a user name on the system (depending on home directory
 # permissions).

Installing Apache HTTP Server

2-10 2 Day + PHP Developer's Guide

 #
 #UserDir disable
 #
 # To enable requests to /~user/ to serve the user's public_html
 # directory, remove the "UserDir disable" line above, and uncomment
 # the following line instead:
 #
 UserDir public_html
</IfModule>

b. If you installed Apache manually, edit /usr/local/apache/conf/
httpd.conf and locate the line:

Include conf/extra/httpd-userdir.conf

Make sure it is uncommented by removing a leading pound sign (#), if one
exists.

3. Restart Apache

This enables the Web browser to serve files from the $HOME/public_html
directory of users. For example, if you login as 'chris' then PHP files created in
$HOME/public_html would be accessible by the URL http://localhost/
~chris/

If you decide to create the PHP project files in public_html you will need to
change any URLs mentioned later in this manual. For example use http://
localhost/~user/ wherever the manual says to use http://localhost/.

2.4 Testing the Apache Installation
To test the Apache HTTP Server installation:

1. Start your Web browser on the computer on which you installed Apache.

2. Enter the following URL:

http://localhost/

Your Web browser will display a page similar to the following:

If this page does not appear check your Apache configuration. Common problems
are that Apache is not running, or that it is listening on a non-default port. The port
number is set by the Listen parameter in Apache's configuration file /etc/
httpd/conf/httpd.conf (or /usr/local/apache/conf/httpd.conf, or
C:\Program Files\Apache Software Foundation\Apache2.2\conf
\httpd.conf).

If your site uses a non-default port number you will need to change any URLs
mentioned later in this manual. For example if Apache listens on port 8888, then
use http://localhost:8888/ wherever the manual says to use http://
localhost/.

Testing the Apache Installation

Getting Started 2-11

2.5 Installing PHP
The application in this manual uses PHP 5.3, which has the OCI8 1.4 extension for
Oracle Database. New features in PHP 5.3 and OCI8 1.4 are used. PHP's GD extension
is used in Using JSON and Generating a JPEG Image (page 11-1).

This section contains the following topics:

• Installing PHP on Windows (page 2-12)

• Installing PHP on Linux (page 2-13)

• Post PHP Installation Tasks on Windows and Linux (page 2-15)

2.5.1 Installing PHP on Windows

Note:

Some information in this section may refer to an old version of PHP. For the
most recent information, see the Oracle Technology Network PHP site
(http://www.oracle.com/technetwork/database/database-
technologies/php/) for Downloads, Documentation (including white
papers and FAQs), Community (discussion forum and blog), and other
resources.

This section describes how to install PHP on Windows.

The file name and extraction directory are based on the current version. Throughout
this procedure, ensure you use the directory name for the version you are installing.

You must be the administrator user to install PHP. To install PHP, perform the
following steps:

1. Download the PHP 5.3.6 zip file from the following Web site:

http://windows.php.net/download/

Use the non-thread safe bundle because we will install it in FastCGI mode.

2. In Windows Explorer, go to the directory where you downloaded the PHP 5.3.6 zip
file.

3. Unzip the PHP package to a directory called C:\php-5.3.6

4. Copy php.ini-development to C:\php-5.3.6\php.ini

5. Edit php.ini to make the following changes:

• Add the line extension_dir = "C:\php-5.3.6\ext".

This is the directory containing the PHP extensions.

• Remove the semicolon from the beginning of the line

extension=php_oci8_11g.dll

Installing PHP

2-12 2 Day + PHP Developer's Guide

http://www.oracle.com/technetwork/database/database-technologies/php/
http://www.oracle.com/technetwork/database/database-technologies/php/
http://windows.php.net/download/

6. Edit C:\Program Files\Apache Software Foundation\Apache2.2\conf
\httpd.conf and add the following lines. Make sure you use forward slashes '/'
and not back slashes '\':

FcgidInitialEnv PHPRC "c:/php-5.3.6"
AddHandler fcgid-script .php
FcgidWrapper "c:/php-5.3.6/php-cgi.exe" .php

Make sure mod_fcgid.so is loaded and the ExecCGI option set as described
previously in the section Installing Apache on Windows XP (page 2-7).

7. Restart the Apache Server so that you can test your PHP installation.

If you have errors, double check your httpd.conf and php.ini files. Make sure
you rebooted the machine after installing Oracle Database so that the PATH
environment variable includes the Oracle libraries.

2.5.2 Installing PHP on Linux

Note:

Some information in this section may refer to an old version of PHP. For the
most recent information, see the Oracle Technology Network PHP site
(http://www.oracle.com/technetwork/database/database-
technologies/php/) for Downloads, Documentation (including white
papers and FAQs), Community (discussion forum and blog), and other
resources.

If your Linux distribution has PHP 5.3 packages it is easiest to use them. Alternatively
you can build PHP from source code.

This section contains the following topics:

• Installing PHP and OCI8 on Oracle Linux (page 2-13)

• Adding the OCI8 Extension to an Existing PHP Installation on Linux (page 2-14)

• Manually Building PHP and OCI8 Together on Linux (page 2-14)

2.5.2.1 Installing PHP and OCI8 on Oracle Linux

On Oracle Linux install PHP 5.3 with:

yum install php53 php53-gd

or

up2date php53 php53-gd

If you do not have an Oracle Unbreakable Linux Network (ULN) subscription, you
will need to install OCI8 manually as covered in the next section Adding the OCI8
Extension to an Existing PHP Installation on Linux (page 2-14).

If you are a subscriber to ULN then you have access to an OCI8 RPM in the Oracle
Software for Enterprise Linux 5 channel. Add this channel and then run:

yum install php53-oci8-11gR2

or

Installing PHP

Getting Started 2-13

http://www.oracle.com/technetwork/database/database-technologies/php/
http://www.oracle.com/technetwork/database/database-technologies/php/

up2date php53-oci8-11gR2

Installing the php53-oci8-11gR2 package will also install Oracle Instant Client
libraries.

Restart Apache. If there are errors, they will display on your screen. They may also be
written to /var/log/httpd/error_log. If you have problems, double check your
httpd.conf and php.ini files.

2.5.2.2 Adding the OCI8 Extension to an Existing PHP Installation on Linux

If you have an existing PHP 5.3 installation without OCI8 you can add the latest PHP
OCI8 extension by using PHP's PECL library, http://pecl.php.net/oci8. In
general this can be used to add OCI8 to PHP 4.3.9 onwards. Note the example code in
this manual requires PHP 5.3.

You will need PHP development files such as the phpize command. On Oracle Linux
this can be found in the php53-devel package.

To install OCI8 perform the following steps:

1. Download and extract the latest OCI8 package, for example: http://
pecl.php.net/get/oci8-1.4.5.tgz

2. Run the following commands:

cd oci8-1.4.5
phpize
export ORACLE_HOME=/u01/app/oracle/product/12.1
./configure --with-oci8
make install

PHP OCI8 is built as a shared library. This makes it easy to upgrade without
interfering with the rest of the PHP installation.

To get PHP to load the library, edit /etc/php.ini and add:

extension=oci8.so

2.5.2.3 Manually Building PHP and OCI8 Together on Linux

This section describes how to build PHP from source code on Linux. The file name and
extraction directory are based on the current version. Throughout this procedure,
ensure you use the directory name for the version you are installing.

The instructions here result in a PHP binary with the OCI8 extension statically built in.
A variant you might want to consider is to build PHP without OCI8, and then add
OCI8 from PECL, as described in the previous section.

Perform the following steps to install PHP:

1. Download the most recent version of the PHP source code from http://
www.php.net/downloads.php.

2. Login as the root user and run these commands. (They refer to PHP 5.3.6, but adapt
them if you downloaded another version.)

tar -jxvf php-5.3.6.tar.bz2
cd php-5.3.6
export ORACLE_HOME=/u01/app/oracle/product/12.1
./configure \
--with-oci8 \

Installing PHP

2-14 2 Day + PHP Developer's Guide

http://www.php.net/downloads.php
http://www.php.net/downloads.php

--with-apxs2=/usr/local/apache/bin/apxs \
--with-config-file-path=/usr/local/apache/conf

If your Apache installation is not in /usr/local/apache then use the
appropriate paths for your system. If you want to install PHP into a non-standard
location, such as under your home directory, add the --prefix option when
running 'configure'. For example, --prefix=$HOME/php53.

3. Build and install PHP:

make
make install

4. Copy PHP's supplied initialization development file:

cp php.ini-development /usr/local/apache/conf/php.ini

5. Edit Apache's configuration file /usr/local/apache/conf/httpd.conf

If a LoadModule line was not inserted by the PHP install, add it with:

LoadModule php5_module modules/libphp5.so

Add the following lines to httpd.conf:

#
This next section will call PHP for .php files
#
AddType application/x-httpd-php .php

6. Restart the Apache Server:

/usr/local/apache/bin/apachectl stop
/usr/local/apache/bin/apachectl start

If there are errors, they will display on your screen. They may also be written
to /usr/local/apache/logs/error_log. If you have problems, double check
your httpd.conf and php.ini files.

2.5.3 Post PHP Installation Tasks on Windows and Linux
Once PHP is installed, make sure the php.ini configuration file has the following
settings.

1. Setting the timezone is a new requirement of PHP 5.3.

date.timezone = America/Los_Angeles

2. For testing it is helpful to set PHP's display_errors to show messages in the
output text, instead of hiding them in Apache log files. In php.ini locate the
display_errors setting and change it to On if necessary. If the directive does not
exist, add the line:

display_errors = On

3. The DRCP connection class should be configured in php.ini. The name is a user-
chosen string to distinguish this application from any others that also use DRCP. If
the class is not set, Oracle will not be able to share the DRCP pool effectively.

Add a class name entry, such as:

oci8.connection_class = ACXE

Installing PHP

Getting Started 2-15

Save the configuration file.

If you are on Linux, make sure you have also done the steps in the earlier section
Setting the Oracle Environment for Apache on Linux (page 2-10).

4. Restart Apache.

2.6 Testing the PHP Installation
This section contains the following topics:

• Checking PHP Configuration with phpinfo() (page 2-16)

• Testing PHP Connections to Oracle (page 2-18)

2.6.1 Checking PHP Configuration with phpinfo()
First, review the Apache error file error_log (in /var/log/httpd, /usr/local/
apache/logs or C:\Program Files\Apache Software Foundation\Apache2.2\logs) to
confirm there are no startup errors from Apache or PHP.

Decide where you want to create the PHP project files. This directory should be
Apache accessible. For example on Linux you could use the Apache document root
(/var/www/html or /usr/local/apache/htdocs) or $HOME/public_html if you
configured a user directory. On Windows use the Apache document root C:\Program
Files\Apache Software Foundation\Apache2.2\htdocs

In an editor create a new PHP file pi.php containing:

<?php
 phpinfo();
?>

Load this file in a browser:

http://localhost/pi.php

Check the following:

• If you use a non default port such as 8888 change the URL to include it, for
example http://localhost:8888/pi.php

• If your file is in $HOME/public_html then change the URL to include your user
name, for example http://localhost/~chris/pi.php

• Or use both, for example http://localhost:8888/~chris/pi.php

You should see a page like:

Testing the PHP Installation

2-16 2 Day + PHP Developer's Guide

If you see the text of the file echoed back it means you did not configure Apache to
send PHP files to PHP. Apache's http.conf file needs a line AddType
application/x-httpd-php .php on Linux or AddHandler fcgid-
script .php on Windows.

Correct phpinfo() output shows the php.ini location and if it was loaded. If it shows
no php.ini loaded, then revisit some of the earlier steps, copy a sample php.ini
file to the correct location and follow the steps in the section "Post PHP Installation
Tasks on Windows and Linux (page 2-15)".

Scroll down to the OCI8 section. You should see

Testing the PHP Installation

Getting Started 2-17

If there is no OCI8 section, check that you installed OCI8. If you installed it as a shared
library, check php.ini has extension=oci8.so or
extension=php_oci8_11g.dll on Windows, and that the phpinfo() output
shows extension_dir set to the directory where the OCI8 library was installed.

2.6.2 Testing PHP Connections to Oracle
To check that the OCI8 extension works, create a new PHP file testoci8.php
containing:

<?php

$c = oci_connect('hr', 'welcome', 'localhost');
if (!$c) {
 $m = oci_error();
 trigger_error('Could not connect to database: '. $m['message'], E_USER_ERROR);
}
$s = oci_parse($c, "SELECT * FROM employees");
if (!$s) {
 $m = oci_error($c);
 trigger_error('Could not parse statement: '. $m['message'], E_USER_ERROR);
}
$r = oci_execute($s);
if (!$r) {
 $m = oci_error($s);
 trigger_error('Could not execute statement: '. $m['message'], E_USER_ERROR);
}
$r = oci_fetch_all($s, $res);
if (!$r) {
 $m = oci_error($s);
 trigger_error('Could not fetch rows: '. $m['message'], E_USER_ERROR);
}

Testing the PHP Installation

2-18 2 Day + PHP Developer's Guide

echo "<table border='1'>\n";
foreach ($res as $row) {
 echo "<tr>\n";
 foreach ($row as $item) {
 echo " <td>".($item!==null?htmlentities($item,
 ENT_QUOTES):" ")."</td>\n";
 }
 echo "</tr>\n";
}
echo "</table>\n";

?>

Everything between the <?php ?> tags will be processed by PHP and its output sent
to the user's browser. Text outside of the tags will be sent to the user's browser
verbatim. This includes leading and trailing white space. Files can have multiple sets
of tags. Some applications use this to embed snippets of PHP inside HTML content.
However a PHP-centric application will commonly use PHP echo or print statements
to print out any needed HTML tags.

How the OCI8 function calls work is described in the section General Example of
Running SQL in PHP OCI8 (page 3-5) and throughout the remainder of this manual.

Load the following file in a browser:

http://localhost/testoci8.php

Depending how you installed Apache, you may need to use one of these alternatives:

• http://localhost:8888/testoci8.php

• http://localhost/~chris/testoci8.php

• http://localhost:8888/~chris/testoci8.php

You should see:

If you get a blank screen, check php.ini has display_errors = On. Reload the
page and see if there was an error.

If you get an error ORA-28000: the account is locked, then unlock the HR
account using the steps given previously in section Unlocking the HR User (page 2-2).

Testing the PHP Installation

Getting Started 2-19

If you get a startup error on Linux like

Warning: oci_connect():OciEnvNlsCreate() failed then check that
ORACLE_HOME was set correctly before Apache was started.

If you get an error like ORA-12541: TNS:no listener review the Oracle Database
installation log and find the port that Oracle Database listener was installed with. For
example if you used 1522 then change the connect call in testoci8.php to:

$c = oci_connect('hr', 'welcome', 'localhost:1522');

If you get an error ORA-01017: invalid username/password, then change the
oci_connect() call to use the password you assigned to HR in the section Unlocking
the HR User (page 2-2).

2.7 Installing the NetBeans IDE
NetBeans is an extremely popular IDE for PHP web projects and has excellent coding
features. A number of programming and mark-up languages, including HTML,
JavaScript, and CSS editing features are supported. The latest version of NetBeans
understands PHP 5.3 language constructs. NetBeans has PHP framework support,
integration with tools like PHPUnit for testing, and integration with PHPDocumentor
for documentation generation. It can be configured with an optional PHP debugger
extension, which is very useful for PHP development. NetBeans also offers a SQL
editor that works with Oracle database.

For more information and to download NetBeans, see https://netbeans.org/.

This section contains the following topics:

• Installing NetBeans IDE on Windows (page 2-20)

• Installing NetBeans IDE on Linux (page 2-21)

• Configuring NetBeans on Linux and Windows (page 2-21)

• Using NetBeans (page 2-22)

Note:

The instructions in these topics refer to NetBeans 7.0. If you plan to use a later
version of NetBeans, see the appropriate information at see https://
netbeans.org/, and especially the Documentation, Training, and Support
page at https://netbeans.org/kb/index.html.

2.7.1 Installing NetBeans IDE on Windows
To install NetBeans IDE on Windows, perform the following steps:

1. Download NetBeans 7.0 with the Java SE Development Kit from the following
location:

http://www.oracle.com/technetwork/java/javase/downloads/jdk-
netbeans-jsp-142931.html

2. In Windows Explorer, locate the downloaded file jdk-6u25-nb-7_0-windows-
ml.exe and run it by double clicking it.

Installing the NetBeans IDE

2-20 2 Day + PHP Developer's Guide

https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
https://netbeans.org/kb/index.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk-netbeans-jsp-142931.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk-netbeans-jsp-142931.html

3. After installation, start NetBeans by navigating to Start, then All Programs, then
NetBeans, and then NetBeans IDE 7.0.

4. From Run Tools, select Plugins.

5. Go to the Available Plugins tab and select all the options in the PHP category.

6. Click Install and agree to the license and location.

7. Restart the IDE when prompted.

2.7.2 Installing NetBeans IDE on Linux
To install NetBeans IDE on Linux, perform the following steps:

1. Download the NetBeans 7.0 PHP bundle from the following Web site:

http://netbeans.org/downloads/

2. On Linux open a terminal window and run the installer:

sh netbeans-7.0-ml-php-linux.sh

3. If your JDK is not installed in a default location, specify the path when installing,
for example:

sh netbeans-6.9-ml-php-linux.sh --javahome $HOME/jdk1.6.0_24

4. Accept the license

5. Confirm the install directory.

6. Confirm the location of your JDK.

NetBeans will install.

If you do not already have a JDK on your machine, download a bundle of NetBeans
7.0 that includes the JDK from

http://www.oracle.com/technetwork/java/javase/downloads/jdk-
netbeans-jsp-142931.html

This bundle does not have PHP enabled. To enable PHP, go to Tools and run Plugins.
Go to the Available Plugins tab and select all the options in the "PHP" category. Click
Install and agree to the license and location. Restart the IDE when prompted.

2.7.3 Configuring NetBeans on Linux and Windows
Perform the following steps to configure NetBeans on Linux and Windows.

1. Start NetBeans by using the desktop icon or menu entry. Navigate to Tools and
then Options.

2. In the General options choose your preferred browser.

3. In the PHP options, go to the General tab.

4. Set the PHP 5 interpreter to your PHP command line executable, for
example /usr/bin/php, /usr/local/bin/php, or C:\php-5.3.6\php.exe.

Installing the NetBeans IDE

Getting Started 2-21

http://netbeans.org/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/jdk-netbeans-jsp-142931.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk-netbeans-jsp-142931.html

2.7.4 Using NetBeans
Create a new PHP Project as follows:

1. Navigating to File, then New Project, or clicking the New Project Icon, or using
Ctrl + Shift + N.

2. Choose PHP and PHP Application.

3. Change the Project name to ACXE.

4. Choose your folder where the source files will be kept. For ease of install, use a
directory that Apache can access such as /home/chris/public_html/ACXE.

5. Set the PHP Version to PHP 5.3

6. Set the project URL to map the directory where the sources are located. For
example, http://localhost:8888/~chris/ACXE/, if you use a non default
Apache port. Do not use a framework.

7. The project will be created and an index.php file will be set to the default NetBeans
template.

8. Put some content in index.php to verify it can be run. Inside the <?php ?> tags,
replace the comment line // put your code here with

echo "hi";

9. Run the file by selecting Run Project from Run, or press F6. A browser window
will open with the newly added message:

Installing the NetBeans IDE

2-22 2 Day + PHP Developer's Guide

10. If the URL is not correct and does not map to the file on disk, right click on the
project name in the Project navigator and select Properties. Select Run
Configuration and change the Project URL.

Throughout the rest of this manual you can add files to the ACXE project as needed by
selecting the project name in the Project navigator and then going to File then New
File, or using the New File icon, or Ctrl + N.

Installing the NetBeans IDE

Getting Started 2-23

Installing the NetBeans IDE

2-24 2 Day + PHP Developer's Guide

3
Building a Database Access Class

The Oracle database functionality for the AnyCo application will be abstracted into a
class that handles all PHP OCI8 access.

This chapter contains the following topics:

• Connection Constants (page 3-1)

• Creating the Db class (page 3-2)

• General Example of Running SQL in PHP OCI8 (page 3-5)

• Running SQL with the Db Class (page 3-6)

• Testing the Db Class (page 3-7)

3.1 Connection Constants
Create a PHP file ac_cred.inc.php. The '.inc' component of the name is a common
convention indicating that the file only contains definitions such as functions or
classes. Giving it a final .php extension means that if a user somehow makes a HTTP
request for that file, the web server will not send its text to the user (a security risk) but
will run it as a PHP script. Because the file only contains definitions there will be no
output sent to the user. This will prevent undesirable results or code exposure.

The ac_cred.inc.php file should initially look like:

<?php

/**
 * ac_cred.inc.php: Secret Connection Credentials for a database class
 * @package Oracle
 */

/**
 * DB user name
 */
define('SCHEMA', 'hr');

/**
 * DB Password.
 *
 * Note: In practice keep database credentials out of directories
 * accessible to the web server.
 */
define('PASSWORD', 'welcome');

/**
 * DB connection identifier
 */

Building a Database Access Class 3-1

define('DATABASE', 'localhost:pooled');

/**
 * DB character set for returned data
 */
define('CHARSET', 'UTF8');

/**
 * Client Information text for DB tracing
 */
define('CLIENT_INFO', 'AnyCo Corp.');

?>

To connect to an Oracle DB requires a user name, password, and a string identifying
the DB to which to connect. These are set as the constants SCHEMA, PASSWORD, and
DATABASE using PHP's define() command. A character set is an optional but
recommended connection parameter. Here UTF8 is chosen in the CHARSET constant.

Most PHP applications connect to the DB using one constant database account. In this
example the database user is HR. This has some security implications that should not
be discounted. Even though the file has the .php extension, in practice it is
recommended to keep any files containing credentials or other sensitive information
out of directories that Apache can access, and use PHP's require() command to
load them. To avoid hard coding credentials in a file, some sites require applications
read the values from environment variables set prior to starting Apache.

The database connection syntax used in DATABASE is Oracle's "Easy Connect" syntax.
This specifies the host name where the database is running and identifies the service
name of the database. Here the machine is given as localhost, meaning that PHP
and the database need to be on the same machine. The :pooled suffix says that the
connection should use the DRCP pool. If you did not start the DRCP pool in the
section "Post PHP Installation Tasks on Windows and Linux (page 2-15)", then omit
this suffix and change DATABASE to localhost. This is the only application change
that is necessary to determine whether or not to use DRCP.

A connection identifier could also be an Oracle Net tnsnames.ora alias, depending
on your site standards.

The CLIENT_INFO constant will be used for end-to-end application tracing in the
database. This is discussed in Monitoring Database Usage of the Application
(page 13-1).

3.2 Creating the Db class
Create a new PHP file ac_db.inc.php to hold a database access class. Initially the
file contains:

<?php

/**
 * ac_db.inc.php: Database class using the PHP OCI8 extension
 * @package Oracle
 */

namespace Oracle;

require('ac_cred.inc.php');

/**

Creating the Db class

3-2 2 Day + PHP Developer's Guide

 * Oracle Database access methods
 * @package Oracle
 * @subpackage Db
 */
class Db {

 /**
 * @var resource The connection resource
 * @access protected
 */
 protected $conn = null;
 /**
 * @var resource The statement resource identifier
 * @access protected
 */
 protected $stid = null;
 /**
 * @var integer The number of rows to prefetch with queries
 * @access protected
 */
 protected $prefetch = 100;

}

?>

The ac_db.inc.php file sets the namespace to Oracle, defining the namespace of
classes declared or used in the file. This avoids clashes if there are different
implementations of classes in an application that happen to have the same name.

The database credentials are included with require(). If a required file does not
exist a compilation error will occur. PHP also has an include() function that will not
display an error for a missing file. Variants require_once() and include_once()
can be used to prevent a sub file from being included more than once.

The Db class attributes will be discussed soon.

The comments are in a format that the open source tool PHPDocumentor will parse,
for example @package defines the overall package that this file belongs to. NetBeans
7.0 can use these tags to automatically generate application documentation.

Add the following two methods into the Db class, between the $prefetch attribute
and the closing brace:

 /**
 * Constructor opens a connection to the database
 * @param string $module Module text for End-to-End Application Tracing
 * @param string $cid Client Identifier for End-to-End Application Tracing
 */
 function __construct($module, $cid) {
 $this->conn = @oci_pconnect(SCHEMA, PASSWORD, DATABASE, CHARSET);
 if (!$this->conn) {
 $m = oci_error();
 throw new \Exception('Cannot connect to database: ' . $m['message']);
 }
 // Record the "name" of the web user, the client info and the module.
 // These are used for end-to-end tracing in the DB.
 oci_set_client_info($this->conn, CLIENT_INFO);
 oci_set_module_name($this->conn, $module);
 oci_set_client_identifier($this->conn, $cid);
 }

Creating the Db class

Building a Database Access Class 3-3

 /**
 * Destructor closes the statement and connection
 */
 function __destruct() {
 if ($this->stid)
 oci_free_statement($this->stid);
 if ($this->conn)
 oci_close($this->conn);
 }

When a PHP object instance is created its __construct() method will be called. The
Db class constructor opens a connection to Oracle Database and keeps the connection
resource in the $conn attribute for use when running statements. If connection does
not succeed an error is generated. This error will be displayed to the user if PHP's
php.ini parameter display_errors is On and sent to the Apache log files if
log_errors is On. In the section "Post PHP Installation Tasks on Windows and Linux
(page 2-15)", display_errors was set to On to help development. A production
application should never display errors to the user because this is an information
security leak.

The constructor passes the connection credentials to an oci_pconnect() function.
The AnyCo application uses oci_pconnect() to create a "persistent" DRCP
connection, as described in Database Resident Connection Pooling (page 2-3).

The character set is also passed to oci_pconnect(). It specifies the character set that
data will be in when returned from Oracle to PHP. Setting it is optional but
recommended. If the character set is not passed to oci_pconnect(), then PHP will
determine the character set from the environment settings, which can be slower and
may lead to an unexpected value being used.

A consequence of using the one database user name is that all statements in the
application are recorded in the database as being run by HR. This makes analysis and
tracing difficult or impossible. The oci_set_client_identifier() function
allows an arbitrary string to be recorded with the connection and processed statement
details in the database. By setting the identifier to the name of the web user this allows
DBAs to explicitly associate an end user with database usage. The following article
describes in detail where client identifiers can be used in Oracle Database:

http://www.oracle.com/technetwork/articles/dsl/php-web-
auditing-171451.html

Also to aid database tracing, two other pieces of metadata are set for each connection:
the Client Information and the Module Name. Monitoring Database Usage of the
Application (page 13-1) shows where they are useful.

If a connection error occurs, an exception is thrown. The Exception class name is fully
qualified. If the leading '\' was removed then an attempt to call \Oracle\Exception
would occur, causing a run time error because a class called Exception has not been
defined in the Oracle namespace. The namespace separator in PHP is a backslash(\)
because it was the only feasible character available when namespaces were introduced
in PHP 5.3.

The Db instance destructor explicitly closes any open connection. For a persistent
DRCP pooled connection like shown, this returns the database server process to the
DRCP pool for reuse. Because PHP variables internally use a reference counting
mechanism, any variable that increases the reference count on the connection resource
must be freed before the underlying database connection will be physically closed.
Here this means closing the statement resource, which is used later in this manual
when the class is enhanced to run statements.

Creating the Db class

3-4 2 Day + PHP Developer's Guide

http://www.oracle.com/technetwork/articles/dsl/php-web-auditing-171451.html
http://www.oracle.com/technetwork/articles/dsl/php-web-auditing-171451.html

Because of PHP's reference counting mechanism, the destructor shown simply
emulates the default behavior when an instance of the object is destroyed. Statement
and connection resources will be terminated when variables referencing them are
destroyed. This particular implementation of the destructor could therefore be
omitted.

3.3 General Example of Running SQL in PHP OCI8
Running a statement in PHP OCI8 involves parsing the statement text and running it.
In procedural style an INSERT would look like:

 $c = oci_pconnect($un, $pw, $db, $cs);
 $sql = "INSERT INTO mytable (c1, c2) VALUES (1, 'abc')";
 $s = oci_parse($c, $sql);
 oci_execute($s);

If a statement will be re-run in the database system with different data values, then
use bind variables:

 $c = oci_pconnect($un, $pw, $db, $cs);
 $sql = "INSERT INTO mytable (c1, c2) VALUES (:c1_bv, :c2_bv)";
 $s = oci_parse($c, $sql);
 $c1 = 1;
 $c2 = 'abc';
 oci_bind_by_name($s, ":c1_bv", $c1, -1);
 oci_bind_by_name($s, ":c2_bv", $c2, -1);
 oci_execute($s);

Binding associates PHP variables with the bind identifier place holders in the SQL
statement. The bind lengths are set to -1 telling PHP to infer internal buffer sizes from
the lengths of the PHP values. When using oci_bind_by_name() to return data
from the database (such as when assigning a PL/SQL function return value to a bind
variable), the actual expected data length should be specified so enough internal space
can be allocated for the PHP variable.

Bind variables are important for performance and security reasons. They allow the
database to reuse statement metadata for repeated statements where only the variable
values change. An alternative PHP coding style would concatenate PHP variable
values into the SQL statement text. Each such statement would appear unique to the
DB and caching would be reduced. This severely impacts DB performance. Also
concatenation introduces SQL Injection security risks, where concatenation with
malicious user input changes the semantics of the SQL statement.

In PHP, a SQL query is similar to execution but has a subsequent fetch call, of which
PHP has several variants. For example to fetch all rows at once:

 $c = oci_pconnect($un, $pw, $db, $cs);
 $sql = "SELECT * FROM mytable WHERE c1 = :c1_bv AND c2 = :c2_bv";
 $s = oci_parse($c, $sql);
 $c1 = 1;
 $c2 = 'abc';
 oci_bind_by_name($s, ":c1_bv", $c1, -1);
 oci_bind_by_name($s, ":c2_bv", $c2, -1);
 oci_execute($s);
 oci_fetch_all($s, $res, 0, -1, OCI_FETCHSTATEMENT_BY_ROW);

The query results would be in $res. The OCI_FETCHSTATEMENT_BY_ROW constant
indicates the results will be in an array with entries for each row. The rows themselves
are represented by a sub-arrays.

General Example of Running SQL in PHP OCI8

Building a Database Access Class 3-5

If the query returns a large number of rows the memory use might be undesirably
large. Other PHP OCI8 functions like oci_fetch_array() could be called instead.
This function returns only one row of the result set. After the script has processed the
row, it could call oci_fetch_array() again to fetch the next row.

Note:

The bind variable name argument in an oci_bind_by_name() call does not
need to have a colon prefix, but it can help visual code inspection to include it.

3.4 Running SQL with the Db Class
To make our Db class in ac_db.inc.php useful add these two methods to the class:

 /**
 * Run a SQL or PL/SQL statement
 *
 * Call like:
 * Db::execute("insert into mytab values (:c1, :c2)",
 * "Insert data", array(array(":c1", $c1, -1),
 * array(":c2", $c2, -1)))
 *
 * For returned bind values:
 * Db::execute("begin :r := myfunc(:p); end",
 * "Call func", array(array(":r", &$r, 20),
 * array(":p", $p, -1)))
 *
 * Note: this performs a commit.
 *
 * @param string $sql The statement to run
 * @param string $action Action text for End-to-End Application Tracing
 * @param array $bindvars Binds. An array of (bv_name, php_variable, length)
 */
 public function execute($sql, $action, $bindvars = array()) {
 $this->stid = oci_parse($this->conn, $sql);
 if ($this->prefetch >= 0) {
 oci_set_prefetch($this->stid, $this->prefetch);
 }
 foreach ($bindvars as $bv) {
 // oci_bind_by_name(resource, bv_name, php_variable, length)
 oci_bind_by_name($this->stid, $bv[0], $bv[1], $bv[2]);
 }
 oci_set_action($this->conn, $action);
 oci_execute($this->stid); // will auto commit
 }

 /**
 * Run a query and return all rows.
 *
 * @param string $sql A query to run and return all rows
 * @param string $action Action text for End-to-End Application Tracing
 * @param array $bindvars Binds. An array of (bv_name, php_variable, length)
 * @return array An array of rows
 */
 public function execFetchAll($sql, $action, $bindvars = array()) {
 $this->execute($sql, $action, $bindvars);
 oci_fetch_all($this->stid, $res, 0, -1, OCI_FETCHSTATEMENT_BY_ROW);
 $this->stid = null; // free the statement resource

Running SQL with the Db Class

3-6 2 Day + PHP Developer's Guide

 return($res);
 }

These methods do the same as the previous procedural samples, with the addition of
another piece of database tracing metadata called the Action, and a way to tune
performance of queries, called prefetching. Prefetching is discussed later in Query
Performance and Prefetching (page 8-1).

All the tracing metadata set in the Db class is optional, however it is easier to include
it in the design instead of having to retrofit it. It can be painful to troubleshoot
performance or access issues on production applications without it.

Setting the statement identifier resource $this->stid to null initiates the same
internal cleanup as oci_free_statement() (used in the destructor) and also sets
the attribute to null so later methods can test for validity.

Our Db::execute() method allows us to write our INSERT statement as:

 $db = new \Oracle\Db("Test Example", "Chris");
 $sql = "INSERT INTO mytable (c1, c2) VALUES (:c1_bv, :c2_bv)";
 $c1 = 1;
 $c2 = 'abc';
 $db->execute($sql, "Insert Example", array(array(":c1_bv", $c1, -1),
 array(":c2_bv", $c2, -1)));

The query example would be:

 $db = new \Oracle\Db("Test Example", "Chris");
 $sql = "SELECT * FROM mytable WHERE c1 = :c1_bv AND c2 = :c2_bv";
 $c1 = 1;
 $c2 = 'abc';
 $res = $db->execFetchAll($sql, "Query Example",
 array(array(":c1_bv", $c1, -1),
 array(":c2_bv", $c2, -1)));

The Db instance creation uses a fully qualified namespace description.

The bind variables are encapsulated in an array of arrays. Each sub-array describes
one bind variable.

As coded, the Db class automatically commits each time oci_execute() it is called.
This has performance and transactional consistency implications if the class is to be
reused in future applications. To make Db more general purpose you could consider
changing Db::execute() to do:

 ...
 oci_execute($this->stid, OCI_NO_AUTO_COMMIT);
 ...

In this case you would need to add commit and rollback methods to the Db class
that call oci_commit() and oci_rollback() respectively. The examples in this
manual do not require these changes. Note that in PHP any oci_connect() or any
oci_pconnect() call that uses the same connection credentials will reuse the same
underlying connection to the database. So if an application creates two instances of Db,
they will share the same transaction state. Rolling back or committing one instance
will affect transactions in the other. The oci_new_connect() function is different
and will create its own new connection each time it is called.

3.5 Testing the Db Class
Test the Db class by creating a new PHP file called test_db.php:

Testing the Db Class

Building a Database Access Class 3-7

<?php

// test_db.php

require('ac_db.inc.php');

$db = new \Oracle\Db("test_db", "Chris");
$sql = "SELECT first_name, phone_number FROM employees ORDER BY employee_id";
$res = $db->execFetchAll($sql, "Query Example");
// echo "<pre>"; var_dump($res); echo "</pre>\n";

echo "<table border='1'>\n";
echo "<tr><th>Name</th><th>Phone Number</th></tr>\n";
foreach ($res as $row) {
 $name = htmlspecialchars($row['FIRST_NAME'], ENT_NOQUOTES, 'UTF-8');
 $pn = htmlspecialchars($row['PHONE_NUMBER'], ENT_NOQUOTES, 'UTF-8');
 echo "<tr><td>$name</td><td>$pn</td></tr>\n";
}
echo "</table>";

?>

The require() command includes the content of ac_db.inc.php giving the script
access to the Db class.

The module name parameter for the Db instance creation is set to the file name base
test_db. This allows anyone doing database tracing to identify where the connection
was initiated from. The connection identifier is arbitrarily set to a fictitious user's
name. The Action parameter to $db->execFetchAll() is set to the operation in the
file.

No bind variables are passed in this example so the optional bind parameter is not
specified in the $db->execFetchAll() method call. The definition of
Db::execFetchAll() sets the bind variable list to an empty array when there is no
final argument and therefore will not attempt to bind any data.

The query results are returned in $res as an array of row data. You can see the array
structure by un-commenting the var_dump() function, which is useful for simple
PHP debugging. The $res array is iterated over in a foreach() loop that process
each row in turn. The two columns in each row's sub-array are accessed by
$row['FIRST_NAME'] and $row['PHONE_NUMBER']. By default, columns in
Oracle database tables are case insensitive. They will be returned to PHP as upper case
array indices. If the table had been created in Oracle with case a sensitive column
name like

CREATE TABLE mytab ("MyCol" NUMBER);

then in PHP you would need to use a case sensitive array index $row['MyCol'].

In test_db.php, the returned data is processed with htmlspecialchars() to
make sure that any text that happens to look like HTML is treated as displayable text
and not as HTML markup. This escaping of output is very important for security in
web applications to make sure there are no cross-site scripting (XSS) security issues.

The exact htmlspecialchars() options you use would depend on context. PHP
also has an htmlentities() function that might be useful. The character set should
match the HTML page character set. The AnyCo application will do this.

Load test_db.php in a browser: http://localhost/test_db.php. Or, in
NetBeans, right click on the file in the Projects navigator and select Run.

Testing the Db Class

3-8 2 Day + PHP Developer's Guide

It displays:

If you have problems connecting, resolve any PHP interpreter errors. Make sure all
methods are located inside the class definition braces. Review the section Testing PHP
Connections to Oracle (page 2-18) for other common problems.

Testing the Db Class

Building a Database Access Class 3-9

Testing the Db Class

3-10 2 Day + PHP Developer's Guide

4
Building the AnyCo Application

This chapter contains the following topics:

• A Cascading Style Sheet (page 4-1)

• Creating an Application Class for Sessions (page 4-2)

• Providing a Stateful Web Experience with PHP Sessions (page 4-4)

• Adding a Page Class (page 4-5)

• Creating the Application Login Page (page 4-7)

4.1 A Cascading Style Sheet
To start creating the AnyCo application, create a cascading style sheet file style.css.
It contains:

/* style.css */

body {
 background: #FFFFFF;
 color: #000000;
 font-family: Arial, sans-serif;
}

table {
 border-collapse: collapse;
 margin: 5px;
}

tr:nth-child(even) {background-color: #FFFFFF}
tr:nth-child(odd) {background-color: #EDF3FE}

td, th {
 border: solid #000000 1px;
 text-align: left;
 padding: 5px;
}

#header {
 font-weight: bold;
 font-size: 160%;
 text-align: center;
 border-bottom: solid #334B66 4px;
 margin-bottom: 10px;
}

#menu {
 position: absolute;

Building the AnyCo Application 4-1

 left: 5px;
 width: 180px;
 display: block;
 background-color: #dddddd;
}
#user {
 font-size: 90%;
 font-style:italic;
 padding: 3px;
}

#content {
 margin-left: 200px;
}

This gives a simple styling to the application, keeping a menu to the left hand side of
the main content. Alternate rows of table output are colored differently. See Figure 1-1
(page 1-1) in Introducing PHP with Oracle Database (page 1-1).

4.2 Creating an Application Class for Sessions
For the AnyCo application we will create two classes, Session and Page, to give some
reusable components.

The Session class is where web user authentication will be added. It also provides the
components for saving and retrieving web user "session" information on the mid-tier,
allowing the application to be stateful. PHP sessions are not directly related to Oracle
sessions, which were discussed in the DRCP overview. Data such as starting row
number of the currently displayed page of query results can be stored in the PHP
session. The next HTTP request can retrieve this value from the session storage and
show the next page of results.

Create a new PHP file called ac_equip.inc.php initially containing:

<?php

/**
 * ac_equip.inc.php: PHP classes for the employee equipment example
 * @package Equipment
 */
namespace Equipment;

/**
 * URL of the company logo
 */
//define('LOGO_URL', 'http://localhost/ac_logo_img.php');

/**
 * @package Equipment
 * @subpackage Session
 */
class Session {
 /**
 *
 * @var string Web user's name
 */
 public $username = null;
 /**
 *
 * @var integer current record number for paged employee results
 */

Creating an Application Class for Sessions

4-2 2 Day + PHP Developer's Guide

 public $empstartrow = 1;
 /**
 *
 * @var string CSRF token for HTML forms
 */
 public $csrftoken = null;

}

?>

The file starts with a namespace declaration, Equipment in this case.

The commented out LOGO_URL constant will be described later in Uploading and
Displaying BLOBs (page 12-1).

The $username attribute will store the web user's name. The $empstartrow
attribute stores the first row number of the currently displayed set of employees. This
allows employee data to be "paged" through with Next and Previous buttons as
shown in Figure 1-1 (page 1-1). The $csrftoken value will be described in Inserting
Data (page 9-1).

Add two authentication methods to the Session class:

 /**
 * Simple authentication of the web end-user
 *
 * @param string $username
 * @return boolean True if the user is allowed to use the application
 */
 public function authenticateUser($username) {
 switch ($username) {
 case 'admin':
 case 'simon':
 $this->username = $username;
 return(true); // OK to login
 default:
 $this->username = null;
 return(false); // Not OK
 }
 }

 /**
 * Check if the current user is allowed to do administrator tasks
 *
 * @return boolean
 */
 public function isPrivilegedUser() {
 if ($this->username === 'admin')
 return(true);
 else
 return(false);
 }

The authenticateUser() method implements extremely unsophisticated and
insecure user authentication. Typically PHP web applications do their own user
authentication. Here only admin and simon will be allowed to use the application.
For more information on authentication refer to

http://www.oracle.com/technetwork/articles/mclaughlin-
phpid1-091467.html

Creating an Application Class for Sessions

Building the AnyCo Application 4-3

http://www.oracle.com/technetwork/articles/mclaughlin-phpid1-091467.html
http://www.oracle.com/technetwork/articles/mclaughlin-phpid1-091467.html

The isPrivilegedUser() method returns a boolean value indicating if the current
user is considered privileged. In the AnyCo application this will be used to determine
if the user can see extra reports and can upload new data. Only the AnyCo "admin"
will be allowed to do these privileged operations.

4.3 Providing a Stateful Web Experience with PHP Sessions
PHP can store session values that appear persistent as users move from HTML page to
HTML page. By default the session data is stored in a file on the PHP server's disk.
The session data is identified by a unique cookie value, or a value passed in the URL if
the user has cookies turned off. The cookie allows PHP to associate its local session
storage with the correct web user.

PHP sessions allow user HTTP page requests to be handled seamlessly by random
mid-tier Apache processes while still allowing access to the current session data for
each user. PHP allow extensive customization of session handling, including ways to
perform session expiry and giving you ways to store the session data in a database.
Refer to the PHP documentation for more information.

To store, fetch and clear the session values in the AnyCo application, add these three
methods to the Session class:

 /**
 * Store the session data to provide a stateful web experience
 */
 public function setSession() {
 $_SESSION['username'] = $this->username;
 $_SESSION['empstartrow'] = (int)$this->empstartrow;
 $_SESSION['csrftoken'] = $this->csrftoken;
 }

 /**
 * Get the session data to provide a stateful web experience
 */
 public function getSession() {
 $this->username = isset($_SESSION['username']) ?
 $_SESSION['username'] : null;
 $this->empstartrow = isset($_SESSION['empstartrow']) ?
 (int)$_SESSION['empstartrow'] : 1;
 $this->csrftoken = isset($_SESSION['csrftoken']) ?
 $_SESSION['csrftoken'] : null;
 }

 /**
 * Logout the current user
 */
 public function clearSession() {
 $_SESSION = array();
 $this->username = null;
 $this->empstartrow = 1;
 $this->csrftoken = null;
 }

These reference the superglobal associative array $_SESSION that gives access to
PHP's session data. When any of the Session attributes change, the AnyCo application
will call setSession() to record the changed state. Later when another application
request starts processing, its script will call the getSession() method to retrieve the
saved attribute values. The ternary "?:" tests will use the session value if there is one,
or else use a hardcoded default.

Providing a Stateful Web Experience with PHP Sessions

4-4 2 Day + PHP Developer's Guide

Finally, add the following method to the Session class to aid CSRF protection in HTML
forms. This will be described in Preventing CSRF with ac_add_one.php (page 9-5) in
Inserting Data (page 9-1).

 /**
 * Records a token to check that any submitted form was generated
 * by the application.
 *
 * For real systems the CSRF token should be securely,
 * randomly generated so it cannot be guessed by a hacker
 * mt_rand() is not sufficient for production systems.
 */
 public function setCsrfToken() {
 $this->csrftoken = mt_rand();
 $this->setSession();
 }

4.4 Adding a Page Class
A Page class will provide methods to output blocks of HTML output so each web page
of the application has the same appearance.

Add the new Page class to the ac_equip.inc.php file after the closing brace of the
Session class, but before the PHP closing tag '?>'. The class initially looks like:

/**
 * @package Equipment
 * @subpackage Page
 */
class Page {
 /**
 * Print the top section of each HTML page
 * @param string $title The page title
 */
 public function printHeader($title) {
 $title = htmlspecialchars($title, ENT_NOQUOTES, 'UTF-8');
 echo <<<EOF
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
 <meta http-equiv="Content-Type"
 content="text/html; charset=utf-8">
 <link rel="stylesheet" type="text/css" href="style.css">
 <title>$title</title>
</head>
<body>
<div id="header">
EOF;
// Important: do not have white space on the 'EOF;' line before or after the tag

 if (defined('LOGO_URL')) {
 echo ' ';
 }
 echo "$title</div>";
 }
 /**
 * Print the bottom of each HTML page
 */
 public function printFooter() {
 echo "</body></html>\n";

Adding a Page Class

Building the AnyCo Application 4-5

 }

}

The printHeader() method prints the HTML page prologue, includes the style
sheet, and prints the page title.

A PHP 'heredoc' is used to print the big block of HTML content. The variable $title in
the text will be expanded and its value displayed. The closing tag EOF; must be at the
start of the line and also not have any trailing white space. Otherwise the PHP parser
will treat the rest of the file as part of the string text and will produce a random
parsing error when it encounters something that looks like a PHP variable.

A logo will also be displayed in the header when LOGO_URL is defined in a later
example, remember it is currently commented out at the top of ac_equip.inc.php.

The printFooter() methods simply ends the HTML page body. A general
application could augment this to display content that should be printed at the bottom
of each page, such as site copyright information.

The AnyCo application has a left hand navigation menu. Add a method to the Page
class to print this:

 /**
 * Print the navigation menu for each HTML page
 *
 * @param string $username The current web user
 * @param type $isprivilegeduser True if the web user is privileged
 */
 public function printMenu($username, $isprivilegeduser) {
 $username = htmlspecialchars($username, ENT_NOQUOTES, 'UTF-8');
 echo <<<EOF
<div id='menu'>
<div id='user'>Logged in as: $username </div>

Employee List
EOF;
 if ($isprivilegeduser) {
 echo <<<EOF
Equipment Report
Equipment Graph
Upload Logo
EOF;
 }
 echo <<<EOF
Logout

</div>
EOF;
 }

The user name and privileged status of the user will be passed in to customize the
menu for each user. These values will come from the Session class.

Later chapters in this manual will create the PHP files referenced in the links. Clicking
those link without having the files created will give an expected error.

The three classes: Db, Session, and Page, used by the AnyCo application are now
complete.

Adding a Page Class

4-6 2 Day + PHP Developer's Guide

4.5 Creating the Application Login Page
The start page of the AnyCo application is the login page. Create a new PHP file called
index.php. In NetBeans replace the existing contents of this file. The index.php file
should contain:

<?php

/**
 * index.php: Start page for the AnyCo Equipment application
 *
 * @package Application
 */

session_start();
require('ac_equip.inc.php');

$sess = new \Equipment\Session;
$sess->clearSession();

if (!isset($_POST['username'])) {
 $page = new \Equipment\Page;
 $page->printHeader("Welcome to AnyCo Corp.");
 echo <<< EOF
<div id="content">
<h3>Select User</h3>
<form method="post" action="index.php">
<div>
<input type="radio" name="username" value="admin">Administrator

<input type="radio" name="username" value="simon">Simon

<input type="submit" value="Login">
</div>
</form>
</div>
EOF;
// Important: do not have white space on the 'EOF;' line before or after the tag
 $page->printFooter();
} else {
 if ($sess->authenticateUser($_POST['username'])) {
 $sess->setSession();
 header('Location: ac_emp_list.php');
 } else {
 header('Location: index.php');
 }
}

?>

The index.php file begins with a session_start() call. This must occur in code
that wants to use the $_SESSION superglobal and should be called before any output
is created.

An instance of the Session class is created and any existing session data is discarded by
the $sess->clearSession() call. This allows the file to serve as a logout page. Any
time index.php is loaded, the web user will be logged out of the application.

The bulk of the file is in two parts, one creating an HTML form and the other
processing it. The execution path is determined by the PHP superglobal $_POST. The
first time this file is run $_POST['username'] will not be set so the HTML form

Creating the Application Login Page

Building the AnyCo Application 4-7

along with the page header and footer will be displayed. The form allows the web user
login as Administrator or Simon.

The submission action target for the form is index.php itself. So after the user
submits the form in their browser, this same PHP file is run. Since the submission
method is "post", PHP will populate the superglobal $_POST with the form values.
This time the second branch of the 'if' statement will be run.

The user is then authenticated. The radio button input values 'admin' and 'simon' are
the values that will be passed to $sess->authenticateUser(). A valid user will
be recorded in the session data. PHP then sends back an HTTP header causing a
browser redirect to ac_emp_list.php. This file will be created in the next section.

If the user is not validated by $sess->authenticateUser() then the login form is
redisplayed.

Note that scripts should not display text before a header() call is run.

To run the application as it stands, load index.php in a browser. In NetBeans, use
Run->Run Project, or press F6. The browser will show:

Creating the Application Login Page

4-8 2 Day + PHP Developer's Guide

5
Paging Through Employee Data

This chapter creates the main display page of the AnyCo application as shown in
Figure 1-1 (page 1-1). It will show five employee records at a time and allow you to
page through the list of employees.

This chapter contains the following topics:

• Creating the Employee Listing (page 5-1)

• Running the Employee List (page 5-5)

5.1 Creating the Employee Listing
Create a new PHP file ac_emp_list.php initially containing:

<?php

/**
 * ac_emp_list.php: list of employees
 * @package Employee
 */

define('NUMRECORDSPERPAGE', 5);

session_start();
require('ac_db.inc.php');
require('ac_equip.inc.php');

$sess = new \Equipment\Session;
$sess->getSession();
if (!isset($sess->username) || empty($sess->username)) {
 header('Location: index.php');
 exit;
}

$page = new \Equipment\Page;
$page->printHeader("AnyCo Corp. Employees List");
$page->printMenu($sess->username, $sess->isPrivilegedUser());
printcontent($sess, calcstartrow($sess));
$page->printFooter();

// Functions

?>

The NUMRECORDSPERPAGE constant determines how many employee records to
show.

After the $sess->getSession() call retrieves the stored session data there is some
basic validation to confirm the user is authorized to view this page. Here the only

Paging Through Employee Data 5-1

requirement is that the username is set. If it is not, the browser is redirected to the
login page, index.php. Here is where a production application would do more
validation, perhaps checking a timestamp and forcing users to re-login after a certain
idle period. The user name could have been encrypted, making it harder for a hacker
to view session data or to impersonate a session.

The body of the file prints the HTML page header, menu, content and footer of the
page.

This file will show PHP's traditional procedural style instead of continuing the object
oriented approach previously used. Under the Functions comment add the function
to print the page content:

/**
 * Print the main body of the page
 *
 * @param Session $sess
 * @param integer $startrow The first row of the table to be printed
 */
function printcontent($sess, $startrow) {
 echo "<div id='content'>";

 $db = new \Oracle\Db("Equipment", $sess->username);
 $sql = "SELECT employee_id, first_name || ' ' || last_name AS name,
 phone_number FROM employees ORDER BY employee_id";
 $res = $db->execFetchPage($sql, "Equipment Query", $startrow,
 NUMRECORDSPERPAGE);
 if ($res) {
 printrecords($sess, ($startrow === 1), $res);
 } else {
 printnorecords();
 }

 echo "</div>"; // content
 // Save the session, including the current data row number
 $sess->empstartrow = $startrow;
 $sess->setSession();
}

This runs a query on the EMPLOYEES table. The Db::execFetchPage() method is
similar to Db::execFetchAll() and will be shown in a moment. If there are records
to display then printrecords() will show them, else printnorecords() will
display a message that there was nothing to show. The final stage of printing the
content is to update the session with the new starting row number.

The call to printcontent() at the top level uses calcstartrow() to decide which
row number to start at. Add this function to ac_emp_list.php:

/**
 * Return the row number of the first record to display.
 *
 * The calculation is based on the current position
 * and whether the Next or Previous buttons were clicked
 *
 * @param Session $sess
 * @return integer The row number that the page should start at
 */
function calcstartrow($sess) {
 if (empty($sess->empstartrow)) {
 $startrow = 1;
 } else {

Creating the Employee Listing

5-2 2 Day + PHP Developer's Guide

 $startrow = $sess->empstartrow;
 if (isset($_POST['prevemps'])) {
 $startrow -= NUMRECORDSPERPAGE;
 if ($startrow < 1) {
 $startrow = 1;
 }
 } else if (isset($_POST['nextemps'])) {
 $startrow += NUMRECORDSPERPAGE;
 }
 }
 return($startrow);
}

The rows will be displayed with a form having Next and Previous buttons. The
calculation for the starting row depends on which button was clicked and
whereabouts in the data set the user has got to.

Add printrecords() to ac_emp_list.php to show any fetched records:

/**
 * Print the Employee records
 *
 * @param Session $sess
 * @param boolean $atfirstrow True if the first array entry is the first table row
 * @param array $res Array of rows to print
 */
function printrecords($sess, $atfirstrow, $res) {
 echo <<< EOF
 <table border='1'>
 <tr><th>Name</th><th>Phone Number</th><th>Equipment</th></tr>
EOF;
 foreach ($res as $row) {
 $name = htmlspecialchars($row['NAME'], ENT_NOQUOTES, 'UTF-8');
 $pn = htmlspecialchars($row['PHONE_NUMBER'], ENT_NOQUOTES, 'UTF-8');
 $eid = (int)$row['EMPLOYEE_ID'];
 echo "<tr><td>$name</td>";
 echo "<td>$pn</td>";
 echo "<td>Show ";
 if ($sess->isPrivilegedUser()) {
 echo "Add One";
 echo " Add Multiple\n";
 }
 echo "</td></tr>\n";
 }
 echo "</table>";
 printnextprev($atfirstrow, count($res));
}

This function's logic is similar to that shown in test_db.php. Remember that the
EOF; token must be at the start of the line and not have any trailing white space.

Privileged users see extra links to issue pieces of equipment to each employee. At the
end of the HTML table any Next and Previous buttons are shown by calling
printnextprev().

Add printnextprev() to ac_emp_list.php:

/**
 * Print Next/Previous buttons as needed to page through the records
 *
 * @param boolean $atfirstrow True if the first array entry is the first table row
 * @param integer $numrows Number of rows the current query retrieved

Creating the Employee Listing

Paging Through Employee Data 5-3

 */
function printnextprev($atfirstrow, $numrows) {
 if (!$atfirstrow || $numrows == NUMRECORDSPERPAGE) {
 echo "<form method='post' action='ac_emp_list.php'><div>";
 if (!$atfirstrow)
 echo "<input type='submit' value='< Previous' name='prevemps'>";
 if ($numrows == NUMRECORDSPERPAGE)
 echo "<input type='submit' value='Next >' name='nextemps'>";
 echo "</div></form>\n";
 }
}

The printnextprev() logic handles the boundary cases including

• not displaying a Previous button on the first page

• not showing a Next button when a full page was not displayed.

Finally, add printnorecords() to ac_emp_list.php to display a message when
there are no records to show:

/**
 * Print a message that there are no records
 *
 * This can be because the table is empty or the final page of results
 * returned no more records
 */
function printnorecords() {
 if (!isset($_POST['nextemps'])) {
 echo "<p>No Records Found</p>";
 } else {
 echo <<<EOF
 <p>No More Records</p>
 <form method='post' action='ac_emp_list.php'>
 <input type='submit' value='< Previous' name='prevemps'></form>
EOF;
 }
}

Note:

The EOF; token must be at the start of a line and not have trailing white space.

There are two cases here, one where the table has no rows, and the other when the
user is paging through the table and clicking Next gives no more data to display. This
latter case will occur when the number of rows in the table is a multiple of
NUMRECORDSPERPAGE.

Before we can run the application we need to create the Db::execFetchPage()
method. In the file ac_db.inc.php add a new method to the Db class:

 /**
 * Run a query and return a subset of records. Used for paging through
 * a resultset.
 *
 * The query is used as an embedded subquery. do not permit user
 * generated content in $sql because of the SQL Injection security issue
 *
 * @param string $sql The query to run
 * @param string $action Action text for End-to-End Application Tracing

Creating the Employee Listing

5-4 2 Day + PHP Developer's Guide

 * @param integer $firstrow The first row number of the dataset to return
 * @param integer $numrows The number of rows to return
 * @param array $bindvars Binds. An array of (bv_name, php_variable, length)
 * @return array Returns an array of rows
 */
 public function execFetchPage($sql, $action, $firstrow = 1, $numrows = 1,
 $bindvars = array()) {
 //
 $query = 'SELECT *
 FROM (SELECT a.*, ROWNUM AS rnum
 FROM (' . $sql . ') a
 WHERE ROWNUM <= :sq_last)
 WHERE :sq_first <= RNUM';

 // Set up bind variables.
 array_push($bindvars, array(':sq_first', $firstrow, -1));
 array_push($bindvars, array(':sq_last', $firstrow + $numrows - 1, -1));
 $res = $this->execFetchAll($query, $action, $bindvars);
 return($res);
 }

Oracle database does not have a LIMIT clause to return a subset of rows so nesting the
caller's query is needed. PHP's array_push() function appends the extra bind
variables used for the start and end row numbers in the outer query to any bind
variables for the caller's query.

Because the SQL text is concatenated watch out for SQL injection issues. Never pass
user input into this function.

5.2 Running the Employee List
Save all the files and run the application. Login first as Simon. You will see:

Click Logout. Re-login as Administrator. You will see:

Running the Employee List

Paging Through Employee Data 5-5

Use the Next and Previous buttons to page through the data.

Try changing NUMRECORDSPERPAGE to see the effect on paging.

Running the Employee List

5-6 2 Day + PHP Developer's Guide

6
Showing Equipment Records by Using a

REF CURSOR

This chapter creates the report run by clicking the Show link next to an employees
name on the AnyCo Corp. Employees List page from the previous chapter.

The previous chapter showed how to fetch data from a SQL query. This chapter shows
how to use a REF CURSOR in PHP. The REF CURSOR will fetch the names of the
equipment that have been issued to an employee.

This chapter contains the following topics:

• Introduction to PL/SQL Packages and Package Bodies (page 6-1)

• Introduction to PL/SQL Stored Procedures (page 6-1)

• Introduction to REF CURSORs (page 6-2)

• Creating the Equipment Table (page 6-2)

• Calling the REF CURSOR in PHP (page 6-3)

6.1 Introduction to PL/SQL Packages and Package Bodies
A PL/SQL package stores related items as a single logical entity. A package is
composed of two distinct pieces:

• The package specification defines what is contained in the package; it is
analogous to a header file in a language such as C++. The specification defines all
public items. The specification is the published interface to a package.

• The package body contains the code for the procedures and functions defined in
the specification, and the code for private procedures and functions that are not
declared in the specification. This private code is only visible within the package
body.

The package specification and body are stored as separate objects in the data
dictionary and can be seen in the user_source view. The specification is stored as
the PACKAGE type, and the body is stored as the PACKAGE BODY type.

While it is possible to have a specification without a body, as when declaring a set of
public constants, it is not possible to have a body with no specification.

6.2 Introduction to PL/SQL Stored Procedures
A stored procedure is a named set of PL/SQL statements designed to perform an
action. Stored procedures are stored inside the database. They define a programming
interface for the database rather than allowing the client application to interact with

Showing Equipment Records by Using a REF CURSOR 6-1

database objects directly. Stored procedures are typically used for data validation or to
encapsulate large, complex processing instructions that combine several SQL queries.

Stored functions have a single return value parameter. Unlike functions, procedures
may or may not return values.

6.3 Introduction to REF CURSORs
Using REF CURSORs is one of the most powerful, flexible, and scalable ways to return
query results from an Oracle Database to a client application.

A REF CURSOR is a PL/SQL data type whose value is the memory address of a query
work area on the database. In essence, a REF CURSOR is a pointer or a handle to a
result set on the database.

REF CURSORs have the following characteristics:

• A REF CURSOR refers to a memory address on the database. Therefore, the client
must be connected to the database during the lifetime of the REF CURSOR in order
to access it.

• A REF CURSOR involves an additional database round-trip. While the REF
CURSOR is returned to the client, the actual data is not returned until the client
opens the REF CURSOR and requests the data. Note that data is not be retrieved
until the user attempts to read it.

• A REF CURSOR is not updatable. The result set represented by the REF CURSOR is
read-only. You cannot update the database by using a REF CURSOR.

• A REF CURSOR is not backward scrollable. The data represented by the REF
CURSOR is accessed in a forward-only, serial manner. You cannot position a
record pointer inside the REF CURSOR to point to random records in the result set.

• A REF CURSOR is a PL/SQL data type. You create and return a REF CURSOR
inside a PL/SQL code block.

6.4 Creating the Equipment Table
This manual's example scenario is that AnyCo Corp issues each employee various
pieces of equipment to do their job. An EQUIPMENT table will hold the equipment
names and to which employee it was issued.

In SQL*Plus connect as the HR user and run the following script:

sqlplus hr/welcome@localhost

CREATE TABLE equipment(
 id NUMBER PRIMARY KEY,
 employee_id REFERENCES employees(employee_id) ON DELETE CASCADE,
 equip_name VARCHAR2(20) NOT NULL);

CREATE SEQUENCE equipment_seq;
CREATE TRIGGER equipment_trig BEFORE INSERT ON equipment FOR EACH ROW
BEGIN
 :NEW.id := equipment_seq.NEXTVAL;
END;
/

The PL/SQL sequence and trigger assign a unique key to each new equipment record
as it is inserted.

Introduction to REF CURSORs

6-2 2 Day + PHP Developer's Guide

If you run these statements in a SQL editor, such as in NetBeans, omit the trailing
slash ('/') in the CREATE TRIGGER statement. The slash is SQL*Plus's end-of-
statement indicator and is not part of the statement that is run by the database.

Create some sample data:

-- Sample Data
INSERT INTO equipment (employee_id, equip_name) VALUES (100, 'pen');
INSERT INTO equipment (employee_id, equip_name) VALUES (100, 'telephone');
INSERT INTO equipment (employee_id, equip_name) VALUES (101, 'pen');
INSERT INTO equipment (employee_id, equip_name) VALUES (101, 'paper');
INSERT INTO equipment (employee_id, equip_name) VALUES (101, 'car');
INSERT INTO equipment (employee_id, equip_name) VALUES (102, 'pen');
INSERT INTO equipment (employee_id, equip_name) VALUES (102, 'paper');
INSERT INTO equipment (employee_id, equip_name) VALUES (102, 'telephone');
INSERT INTO equipment (employee_id, equip_name) VALUES (103, 'telephone');
INSERT INTO equipment (employee_id, equip_name) VALUES (103, 'computer');
INSERT INTO equipment (employee_id, equip_name) VALUES (121, 'computer');
INSERT INTO equipment (employee_id, equip_name) VALUES (180, 'pen');
INSERT INTO equipment (employee_id, equip_name) VALUES (180, 'paper');
INSERT INTO equipment (employee_id, equip_name) VALUES (180, 'cardboard box');
COMMIT;

In SQL*Plus create a procedure as HR:

CREATE OR REPLACE PROCEDURE get_equip(eid_p IN NUMBER, RC OUT SYS_REFCURSOR) AS
BEGIN
 OPEN rc FOR SELECT equip_name
 FROM equipment
 WHERE employee_id = eid_p
 ORDER BY equip_name;
END;
/

In PHP this procedure can be called by running an anonymous PL/SQL block:

BEGIN get_equip(:id, :rc); END;

The :id bind variable is used similarly to binds shown before. It passes a value from a
PHP variable into the database for the WHERE clause of get_equip(). The bind
variable :rc is different and will hold the query results returned from
equip_name() as explained in a few moments.

6.5 Calling the REF CURSOR in PHP
To display an employee's list of equipment create a new PHP file
ac_show_equip.php:

<?php

/**
 * ac_show_equip.php: Show an employee's equipment
 * @package ShowEquipment
 */

session_start();
require('ac_db.inc.php');
require('ac_equip.inc.php');

$sess = new \Equipment\Session;
$sess->getSession();

Calling the REF CURSOR in PHP

Showing Equipment Records by Using a REF CURSOR 6-3

if (!isset($sess->username) || empty($sess->username)
 || !isset($_GET['empid'])) {
 header('Location: index.php');
 exit;
}
$empid = (int) $_GET['empid'];

$page = new \Equipment\Page;
$page->printHeader("AnyCo Corp. Show Equipment");
$page->printMenu($sess->username, $sess->isPrivilegedUser());
printcontent($sess, $empid);
$page->printFooter();

// Functions

?>

This is similar in structure to ac_emp_list.php. This time the verification test after
$sess->getSession() also checks for an employee identifier. This value is passed
in as a URL parameter from the printrecords() function in ac_emp_list.php:

...
Show
...

The identifier value is accessed in ac_show_equip.php via PHP's $_GET
superglobal array. If the array entry is not set then the assumption is that
ac_show_equip.php was called incorrectly and the user is redirected to the login
page, index.php.

The $_GET['empid'] value is cast to an integer to minimize potential SQL injection
issues. Although we will bind the value, it is better to consistently filter all user input.
If $_GET['empid'] contained alphabetic text for some reason, PHP's casting rules
will result in the number 0 being stored in $empid. If the text had a numeric prefix
then $empid would be that number, but at least the following text would have been
discarded.

Before we get to the main content of the file, add a small helper function
getempname() in the Functions section of ac_show_equip.php:

/**
 * Get an Employee Name
 *
 * @param Db $db
 * @param integer $empid
 * @return string An employee name
 */
function getempname($db, $empid) {
 $sql = "SELECT first_name || ' ' || last_name AS emp_name
 FROM employees
 WHERE employee_id = :id";
 $res = $db->execFetchAll($sql, "Get EName", array(array(":id", $empid, -1)));
 $empname = $res[0]['EMP_NAME'];
 return($empname);
}

This takes the employee identifier that the script was invoked for and looks up the
matching employee name. An exercise for the reader is to handle the case when the
query does not return any rows.

Now add the main printcontent() function to ac_show_equip.php:

Calling the REF CURSOR in PHP

6-4 2 Day + PHP Developer's Guide

/**
 * Print the main body of the page
 *
 * @param Session $sess
 * @param integer $empid Employee identifier
 */
function printcontent($sess, $empid) {
 echo "<div id='content'>\n";
 $db = new \Oracle\Db("Equipment", $sess->username);
 $empname = htmlspecialchars(getempname($db, $empid), ENT_NOQUOTES, 'UTF-8');
 echo "$empname has: ";

 $sql = "BEGIN get_equip(:id, :rc); END;";
 $res = $db->refcurExecFetchAll($sql, "Get Equipment List",
 "rc", array(array(":id", $empid, -1)));
 if (empty($res['EQUIP_NAME'])) {
 echo "no equipment";
 } else {
 echo "<table border='1'>\n";
 foreach ($res['EQUIP_NAME'] as $item) {
 $item = htmlspecialchars($item, ENT_NOQUOTES, 'UTF-8');
 echo "<tr><td>$item</td></tr>\n";
 }
 echo "</table>\n";
 }
 echo "</div>"; // content
}

This calls a new method, Db::refcurExecFetchAll(), which returns an array of
records, printed in a traditional loop.

The REF CURSOR bind parameter :rc needs to be bound specially. Since the bind
variable name could be arbitrarily chosen or located anywhere in the statement text,
its name is passed separately into refcurExecFetchAll() and it is not included in
the array of normal bind variables.

Now create the refcurExecFetchAll() method by editing ac_db.inc.php and
adding this to the Db class:

 /**
 * Run a call to a stored procedure that returns a REF CURSOR data
 * set in a bind variable. The data set is fetched and returned.
 *
 * Call like Db::refcurexecfetchall("begin myproc(:rc, :p); end",
 * "Fetch data", ":rc", array(array(":p", $p, -1)))
 * The assumption that there is only one refcursor is an artificial
 * limitation of refcurexecfetchall()
 *
 * @param string $sql A SQL string calling a PL/SQL stored procedure
 * @param string $action Action text for End-to-End Application Tracing
 * @param string $rcname the name of the REF CURSOR bind variable
 * @param array $otherbindvars Binds. Array (bv_name, php_variable, length)
 * @return array Returns an array of tuples
 */
 public function refcurExecFetchAll($sql, $action, $rcname,
 $otherbindvars = array()) {
 $this->stid = oci_parse($this->conn, $sql);
 $rc = oci_new_cursor($this->conn);
 oci_bind_by_name($this->stid, $rcname, $rc, -1, OCI_B_CURSOR);
 foreach ($otherbindvars as $bv) {
 // oci_bind_by_name(resource, bv_name, php_variable, length)
 oci_bind_by_name($this->stid, $bv[0], $bv[1], $bv[2]);

Calling the REF CURSOR in PHP

Showing Equipment Records by Using a REF CURSOR 6-5

 }
 oci_set_action($this->conn, $action);
 oci_execute($this->stid);
 oci_execute($rc); // run the ref cursor as if it were a statement id
 oci_fetch_all($rc, $res);
 $this->stid = null;
 return($res);
 }

The REF CURSOR bind parameter in $rcname is bound to a cursor created with
oci_new_cursor(), not to a normal PHP variable. The type OCI_B_CURSOR must
specified.

After setting the tracing "action" text, the PL/SQL statement is run. In this example it
calls get_equip(), which opens and returns the cursor for the query. The REF
CURSOR in $rc can now be treated like a PHP statement identifier as if it had been
returned from an oci_parse() call. It is then fetched from. The query results are
returned in $res to the function caller.

Save all files and run the application in a browser. Login as either Simon or
Administrator. Click the Show link next to Steven King. The equipment he has is
displayed:

Calling the REF CURSOR in PHP

6-6 2 Day + PHP Developer's Guide

7
Error Handling

Error handling in web applications should occur at many levels, protecting against
everything from invalid user input right through to database errors. To make the user
experience smooth, PHP errors should never be displayed to the web user. They
should be captured in mid-tier log files and the user should instead be given the
chance to retry or do another task. In a production system the php.ini
display_errors setting should be Off.

This chapter contains the following topics:

• Database Errors (page 7-1)

• Displaying a Custom Error Message (page 7-2)

7.1 Database Errors
At the database level, it is recommended to check all PHP OCI8 errors.

In ac_db.inc.php, currently the only error checking occurs at connection time in
__construct():

 ...
 if (!$this->conn) {
 $m = oci_error();
 throw new \Exception('Cannot connect to database: ' . $m['message']);
 }
 ...

The oci_error() function returns an associative array, one element of which
includes the text of the Oracle error message.

Left as an extra exercise for the reader is to improve the error handling in the Db class.
The rest of this tutorial is not dependent on any changes in this regard. Evaluate each
PHP OCI8 call and decide where to check return values. Call oci_error() to get the
text of the message. For a connection error, do not pass an argument to oci_error(),
as shown above. Unlike connection errors where oci_error() takes no argument, to
check errors from oci_parse() pass the connection resource to oci_error():

$stid = oci_parse($conn, $sql);
if (!$stid) {
 $m = oci_error($conn)
 ...
}

For oci_execute() errors pass the statement handle:

$r = oci_execute($stid);
if (!$r) {
 $m = oci_error($stid)

Error Handling 7-1

 ...
}

7.2 Displaying a Custom Error Message
Simulate an error in ac_show_equip.php by editing getempname() and throwing
an exception in printcontent(). PHP will give a run time error when it reaches
that call:

function printcontent($sess, $empid) {
 echo "<div id='content'>\n";
 $db = new \Oracle\Db("Equipment", $sess->username);
 $empname = htmlspecialchars(getempname($db, $empid), ENT_NOQUOTES, 'UTF-8');
 echo "$empname has: ";

 throw new Exception;

 $sql = "BEGIN get_equip(:id, :rc); END;";

 ...

Run the application in a browser and click the Show link for Steven King. Because we
set display_errors to On for development purposes we see the error displayed in the
content area:

The error is printed after the initial part of the page showing the user name is printed.
In a production site with display_errors set to Off, the user would see just this
partial section content being displayed, which is not ideal. To prevent this, PHP's
output buffering can be used.

Edit ac_show_equip.php and modify where printcontent() is called. Wrap the
call in a PHP try-catch block, changing it to:

...
$page->printMenu($sess->username, $sess->isPrivilegedUser());
ob_start();
try {
 printcontent($sess, $empid);
} catch (Exception $e) {
 ob_end_clean();
 echo "<div id='content'>\n";
 echo "Sorry, an error occurred";
 echo "</div>";
}
ob_end_flush();
$page->printFooter();
...

The ob_start() function captures all subsequently generated output in a buffer.
Other PHP ob_* functions allow that buffer to be discarded or flushed to the browser.
In the code above, the ob_end_clean() call in the exception handler will discard the
"Steven King has:" message so a custom error message can be printed.

Displaying a Custom Error Message

7-2 2 Day + PHP Developer's Guide

Run the application again to see the following error:

If you do not like using object-oriented code, an alternative to throwing and catching
an exception would be to return a boolean from printcontent() and handle the
error manually. If you want to stop execution you can use PHP's trigger_error().

Edit the printcontent() function in ac_show_equip.php and change the
temporary line:

 throw new Exception;

to

 trigger_error('Whoops!', E_USER_ERROR);

To catch and handle PHP errors like E_USER_ERROR, you can use PHP's
set_error_handler() function, which allows an error handler function to be
registered.

At the top of ac_show_equip.php add a call to set_error_handler():

...
session_start();
set_error_handler("ac_error_handler");

require('ac_db.inc.php');
require('ac_equip.inc.php');
...

Also add the called function:

/**
 * Error Handler
 *
 * @param integer $errno Error level raised
 * @param string $errstr Error text
 * @param string $errfile File name that the error occurred in
 * @param integer $errline File line where the error occurred
 */
function ac_error_handler($errno, $errstr, $errfile, $errline) {
 error_log(sprintf("PHP AnyCo Corp.: %d: %s in %s on line %d",
 $errno, $errstr, $errfile, $errline));
 header('Location: ac_error.html');
 exit;
}

This records the message in the Apache log file and redirects to an error page. Create
that error page in a new HTML file ac_error.html:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- ac_error.html: a catch-all error page -->
<head>

Displaying a Custom Error Message

Error Handling 7-3

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title></title>
</head>

<body bgcolor="#ffffff">
<h1>AnyCo Corp. Error Page</h1>
<p>We're sorry an error occurred.<p>
<p>Login</p>

</body>
</html>

Run the application and login. Click Show to see an employee's equipment. The error
page is shown:

Locate the Apache error log on your system, for example in /var/log/httpd/
error_log on Oracle Linux. The log will contain message generated by PHP:

[Wed Apr 27 13:06:09 2011] [error] [client 127.0.0.1] PHP AnyCo Corp.: 256:
Whoops! in /home/chris/public_html/ACXE/ac_show_equip.php on line 71, referer:
http://localhost/~chris/ACXE/ac_emp_list.php

Remove or comment out the temporary trigger_error() call in printcontent()
before continuing with the next chapter.

...
// trigger_error('Whoops!', E_USER_ERROR);
...

Displaying a Custom Error Message

7-4 2 Day + PHP Developer's Guide

8
Query Performance and Prefetching

This chapter contains the following topics:

• Prefetching Overview (page 8-1)

• Creating the Employee Report Page (page 8-1)

• Running the Equipment Report (page 8-3)

• Prefetching with a REF CURSOR (page 8-4)

8.1 Prefetching Overview
This section shows how the performance of fetching query rows can be tuned in PHP.

Prefetching is the way that PHP OCI8 reduces network roundtrips to the database
when fetching query results. By retrieving batches of rows, there is better database and
network efficiency.

Prefetching is enabled by default in PHP OCI8. When the first row is initially retrieved
from the database, up to the configured limit (100 by default) extra rows up will be
returned and stored in an internal buffer local to the PHP process. Any of the PHP
OCI8 oci_fetch_* functions called in a script will internally use data from that
buffer until it is exhausted, at which point another round trip to the database occurs
and a further batch of rows is returned. The way the oci_fetch_* functions return
data to the caller does not change regardless of the prefetch value in effect.

The default prefetch value can be set with oci8.default_prefetch in the
php.ini configuration file, or it can be set at run time with oci_set_prefetch().

So far the AnyCo application has used oci_fetch_all(). For a change, this chapter
will show the other commonly used function, oci_fetch_array(). When this is
called in a loop, it iterates through all rows in the query result set. For bigger data sets,
fetching one row at a time prevents a large amount of memory being needed to hold
the whole result set.

The action and benefits of prefetching would not be changed if oci_fetch_all()
was used. Prefetching is handled in the Oracle client libraries at a layer below PHP.

8.2 Creating the Employee Report Page
Create a new PHP file ac_report.php that generates a report of all employees and
the equipment issued to them. The file initially looks like:

<?php

/**
 * ac_report.php: Full report of all employees and their equipment
 * @package Report
 */

Query Performance and Prefetching 8-1

session_start();
require('ac_db.inc.php');
require('ac_equip.inc.php');

$sess = new \Equipment\Session;
$sess->getSession();
if (!isset($sess->username) || empty($sess->username)
 || !$sess->isPrivilegedUser()) {
 header('Location: index.php');
 exit;
}

$page = new \Equipment\Page;
$page->printHeader("AnyCo Corp. Equipment Report");
$page->printMenu($sess->username, $sess->isPrivilegedUser());
printcontent($sess);
$page->printFooter();

// Functions

?>

In the Functions section add the printcontent() function:

/**
 * Print the main body of the page
 *
 * @param Session $sess
 */
function printcontent($sess) {
 echo "<div id='content'>";
 $db = new \Oracle\Db("Equipment", $sess->username);

 $sql = "select first_name || ' ' || last_name as emp_name, equip_name
 from employees left outer join equipment
 on employees.employee_id = equipment.employee_id
 order by emp_name, equip_name";

 // Change the prefetch value to compare performance.
 // Zero will be slowest. The system default is 100
 $db->setPrefetch(200);

 $time = microtime(true);
 $db->execute($sql, "Equipment Report");
 echo "<table>";
 while (($row = $db->fetchRow()) != false) {
 $empname = htmlspecialchars($row['EMP_NAME'], ENT_NOQUOTES, 'UTF-8');
 $equipname = htmlspecialchars($row['EQUIP_NAME'], ENT_NOQUOTES, 'UTF-8');
 echo "<tr><td>$empname</td><td>$equipname</td></tr>";
 }
 echo "</table>";
 $time = microtime(true) - $time;
 echo "<p>Report generated in " . round($time, 3) . " seconds\n";
 echo "</div>"; // content
}

The structure is basically similar to the layout shown in previous chapters.

The $db->setPrefetch() call is used to set the prefetch value. The microtime()
calls are used to show how long the report took to generate.

Creating the Employee Report Page

8-2 2 Day + PHP Developer's Guide

A new Db::fetchRow() method is used to get one row at a time. It is called in a loop
after the query has been run.

Edit ac_db.inc.php and add the setPrefetch() and fetchRow() methods to
the Db class:

 /**
 * Set the query prefetch row count to tune performance by reducing the
 * number of round trips to the database. Zero means there will be no
 * prefetching and will be slowest. A negative value will use the php.ini
 * default value. Some queries such as those using LOBS will not have
 * rows prefetched.
 *
 * @param integer $pf The number of rows that queries should prefetch.
 */
 public function setPrefetch($pf) {
 $this->prefetch = $pf;
 }

 /**
 * Fetch a row of data. Call this in a loop after calling Db::execute()
 *
 * @return array An array of data for one row of the query
 */
 public function fetchRow() {
 $row = oci_fetch_array($this->stid, OCI_ASSOC + OCI_RETURN_NULLS);
 return($row);
 }

The OCI_ASSOC flag tells PHP to return the results in an associative array, using the
column names as the array keys. The OCI_RETURN_NULLS flag tells PHP to return an
array entry for null data values. The value will be an empty string. This ensures that
the array for each row has the same number of entries.

8.3 Running the Equipment Report
Save all the files and run the Application as Administrator. From the left hand
navigation menu select Equipment Report. It shows all employees and the equipment
they have been issued.

Running the Equipment Report

Query Performance and Prefetching 8-3

At the bottom is the amount of time taken to generate the query output. For this
amount of data and because PHP and the database are not separated by a network, the
time will be small:

To show the effect of turning off prefetching, edit ac_report.php and change the
prefetch setting to 0:

 $db->setPrefetch(0);

This means that each row of data that PHP OCI8 gets from the Oracle Client libraries
initiates a roundtrip request to the database server. No extra rows are prefetched.

Re-run the report. The elapsed time should be longer.

For a small system like this there might be some test variability and the values may be
too small to be reliable. Re-run several times or change the query to return more rows
if this is the case.

8.4 Prefetching with a REF CURSOR
Prefetching can also be used when fetching records with a REF CURSOR. To make the
REF CURSOR prefetch value changeable in the Db class, edit ac_db.inc.php and
add the following lines before the REF CURSOR execution in
Db::refcurExecFetchAll():

 if ($this->prefetch >= 0) {
 oci_set_prefetch($rc, $this->prefetch); // set on the REFCURSOR
 }

This prefetch size is set on the REF CURSOR, not the top level statement. The function
will look as follows:

 public function refcurExecFetchAll($sql, $action, $rcname,
 $otherbindvars = array()) {
 $this->stid = oci_parse($this->conn, $sql);
 $rc = oci_new_cursor($this->conn);
 oci_bind_by_name($this->stid, $rcname, $rc, -1, OCI_B_CURSOR);
 foreach ($otherbindvars as $bv) {
 // oci_bind_by_name(resource, bv_name, php_variable, length)
 oci_bind_by_name($this->stid, $bv[0], $bv[1], $bv[2]);
 }
 oci_set_action($this->conn, $action);
 oci_execute($this->stid);

Prefetching with a REF CURSOR

8-4 2 Day + PHP Developer's Guide

 if ($this->prefetch >= 0) {
 oci_set_prefetch($rc, $this->prefetch); // set on the REFCURSOR
 }
 oci_execute($rc); // run the ref cursor as if it were a statement id
 oci_fetch_all($rc, $res);
 return($res);
 }

With your own applications, testing will show the optimal prefetch size for your
queries. There is no benefit in using too large a value. Conversely, because Oracle
dynamically allocates space, there is little to be gained by making the value too small.

It is unlikely that you want to turn pre-fetching completely off. The only case would
be in PHP code that gets a REF CURSOR, fetches some data from it, and then passes
the cursor back to a PL/SQL procedure, which fetches the remaining data. If
prefetching occurred when PHP fetches records from the REF CURSOR, but those
prefetched rows were not returned to the script via an oci_fetch_* call, those rows
would be "lost" and would not be available to the second PL/SQL procedure.

Note:

PHP must be linked with Oracle Database 12cR1 libraries for prefetching from
REF CURSOR to work. When using earlier versions each requested REF
CURSOR row required a roundtrip to the database, reducing performance of
the system.

Prefetching with a REF CURSOR

Query Performance and Prefetching 8-5

Prefetching with a REF CURSOR

8-6 2 Day + PHP Developer's Guide

9
Inserting Data

To enable pieces of equipment to be assigned to employees the AnyCo application will
have an HTML form. The form allows administrators to assign a piece of equipment to
a specific employee.

This chapter contains the following topics:

• Building the Insert Form (page 9-1)

• Running the Single Insert Form (page 9-4)

• Preventing CSRF with ac_add_one.php (page 9-5)

9.1 Building the Insert Form
Create a new PHP file ac_add_one.php. Initially the file looks like:

<?php

/**
 * ac_add_one.php: Add one piece of equipment to an employee
 * @package Application
 */
session_start();
require('ac_db.inc.php');
require('ac_equip.inc.php');

$sess = new \Equipment\Session;
$sess->getSession();
if (!isset($sess->username) || empty($sess->username)
 || !$sess->isPrivilegedUser()
 || (!isset($_GET['empid']) && !isset($_POST['empid']))) {
 header('Location: index.php');
 exit;
}
$empid = (int) (isset($_GET['empid']) ? $_GET['empid'] : $_POST['empid']);

$page = new \Equipment\Page;
$page->printHeader("AnyCo Corp. Add Equipment");
$page->printMenu($sess->username, $sess->isPrivilegedUser());
printcontent($sess, $empid);
$page->printFooter();

// Functions

?>

The process flow of operation will be similar to index.php. The first time
ac_add_one.php is run an HTML input form will be displayed. When the user

Inserting Data 9-1

submits the form, ac_add_one.php is invoked again, which will insert the data into
the database.

The privileges required by this function include checks that an employee id is set in
either the $_GET['empid'] or $_POST['empid'] superglobals. When
ac_add_one.php is first called (see printrecords() in ac_emp_list.php), the
employee id is passed as a URL parameter and will be in the $_GET superglobal.
When the form (that will shortly be shown) in ac_add_one.php is submitted, the
employee identifier will be in $_POST.

Add the printcontent() function to ac_add_one.php:

/**
 * Print the main body of the page
 *
 * @param Session $sess
 * @param integer $empid Employee identifier
 */
function printcontent($sess, $empid) {
 echo "<div id='content'>\n";
 $db = new \Oracle\Db("Equipment", $sess->username);
 if (!isset($_POST['equip']) || empty($_POST['equip'])) {
 printform($sess, $db, $empid);
 } else {
 /* if (!isset($_POST['csrftoken'])
 || $_POST['csrftoken'] != $sess->csrftoken) {
 // the CSRF token they submitted does not match the one we sent
 header('Location: index.php');
 exit;
 } */
 $equip = getcleanequip();
 if (empty($equip)) {
 printform($sess, $db, $empid);
 } else {
 doinsert($db, $equip, $empid);
 echo "<p>Added new equipment</p>";
 echo '<a href="ac_show_equip.php?empid='
 . $empid . '">Show Equipment' . "\n";
 }
 }
 echo "</div>"; // content
}

The printcontent() function contains the logic to decide if the HTML form should
be printed or the user-entered data should be inserted. The commented-out CSRF
token code will be discussed below.

Also in ac_add_one.php add the printform() function:

/**
 * Print the HTML form for entering new equipment
 *
 * @param Session $sess
 * @param Db $db
 * @param integer $empid Employee identifier
 */
function printform($sess, $db, $empid) {
 $empname = htmlspecialchars(getempname($db, $empid), ENT_NOQUOTES, 'UTF-8');
 $empid = (int) $empid;
 $sess->setCsrfToken();
 echo <<<EOF
Add equipment for $empname

Building the Insert Form

9-2 2 Day + PHP Developer's Guide

<form method='post' action='${_SERVER["PHP_SELF"]}'>
<div>
 Equipment name <input type="text" name="equip">

 <input type="hidden" name="empid" value="$empid">
 <input type="hidden" name="csrftoken" value="$sess->csrftoken">
 <input type="submit" value="Submit">
</div>
</form>
EOF;
}

Note:

The EOF;token must be at the start of a line and not have trailing white space.

This simple form prompts the user for a value. The CSRF token will be described later.

Add the getcleanequip() function to ac_add_one.php:

/**
 * Perform validation and data cleaning so empty strings are not inserted
 *
 * @return string The new data to enter
 */
function getcleanequip() {
 if (!isset($_POST['equip'])) {
 return null;
 } else {
 $equip = $_POST['equip'];
 return(trim($equip));
 }
}

This implementation strips any leading or trailing white space from the entered data.

The general mantra for basic web application security is to filter input and escape
output. The getcleanequip() function filters input. The data could be sanitized in
other ways here. You may decide that you do not want HTML tags to be accepted.
You can strip such tags by using one of PHP's input filters. For example, if you
wanted, you could change:

 $equip = $_POST['equip'];

to

 $equip = filter_input(INPUT_POST, 'equip', FILTER_SANITIZE_STRING);

This would remove HTML tags, leaving other text in place.

In ac_add_one.php, valid data is inserted by doinsert(). Add the code for this
function to the file:

/**
 * Insert a piece of equipment for an employee
 *
 * @param Db $db
 * @param string $equip Name of equipment to insert
 * @param string $empid Employee identifier
 */
function doinsert($db, $equip, $empid) {
 $sql = "INSERT INTO equipment (employee_id, equip_name) VALUES (:ei, :nm)";

Building the Insert Form

Inserting Data 9-3

 $db->execute($sql, "Insert Equipment", array(array("ei", $empid, -1),
 array("nm", $equip, -1)));
}

This uses the existing Db::execute() method in ac_db.inc.php with familiar
bind variable syntax. Note that the Db class automatically commits each time
oci_execute() is called as discussed earlier in the section Running SQL with the Db
Class (page 3-6).

Finally, to complete ac_add_one.php, add the helper function getempname():

/**
 * Get an Employee Name
 *
 * @param Db $db
 * @param integer $empid
 * @return string An employee name
 */
function getempname($db, $empid) {
 $sql = "SELECT first_name || ' ' || last_name AS emp_name
 FROM employees
 WHERE employee_id = :id";
 $res = $db->execFetchAll($sql, "Get EName", array(array("id", $empid, -1)));
 $empname = $res[0]['EMP_NAME'];
 return($empname);
}

This is identical to the function of the same name in ac_show_equip.php.

Similar functionality to the ac_show_equip.php form could be used to delete or
update records, remembering the limitations of a stateless web architecture means that
rows cannot be locked in one HTML page and changed in another.

9.2 Running the Single Insert Form
Run the AnyCo application and log in as Administrator. Click the Add One link
next to Steven King. The equipment input form is displayed:

Enter a new piece of equipment, paper, and click Submit. The new data is inserted.
The updated list can be seen by clicking Show link next to Steven King.

Running the Single Insert Form

9-4 2 Day + PHP Developer's Guide

9.3 Preventing CSRF with ac_add_one.php
The form is currently prone to cross-site request forgery (CSRF) attacks, where another
site can take advantage of you being logged in and cause you to submit data or do
some other privileged operation.

To show this, create a new HTML page called hack.html:

<html>
<!-- hack.html: Show issues with CSRF -->
<body>
<h1>Make Millions!</h1>
<form method='post' action='http://localhost/ac_add_one.php'>
<div>
 Do you dream of being rich?

 <input type="hidden" name="equip" value="fish">
 <input type="hidden" name="empid" value="100">
 <input type="submit" value="Win">
</div>
</form>

</body>
</html>

Change the HTML form action URL to match your system.

Run the AnyCo application in a browser and login as Administrator. In a new
browser tab or window, open the following file:

http://localhost/hack.html

Ostensibly to the person looking at the page it has nothing to do with the AnyCo
application.

Click the Win button. This calls the AnyCo application and causes the bogus
equipment name fish to be inserted into the equipment list of employee 100 (which
is Steven King). The inserted value can be seen on the subsequent Show Equipment
page:

Preventing CSRF with ac_add_one.php

Inserting Data 9-5

Now edit ac_add_one.php and enable CSRF protection by removing the comments
for the check in printcontent():

 ...
 } else {
 if (!isset($_POST['csrftoken'])
 || $_POST['csrftoken'] != $sess->csrftoken) {
 // the CSRF token they submitted does not match the one we sent
 header('Location: index.php');
 exit;
 }
 $equip = getcleanequip();
 ...

The form in ac_add_one.php includes a generated Cross-Site Request Forgery token
as a hidden field. The value is also stored in the user session. The CSRF check in
printcontent() will verify that the token in the submitted form matches PHP's
stored session value.

Save the file and run the AnyCo application again, logging in as Administrator. In
a new browser tab or window, open the following file:

http://localhost/hack.html

Now click Win.

This time the CSRF protection in printcontent() does not find a CSRF token in the
submitted form and redirects to the login page, index.php, which logs out. Log back in
again to the AnyCo application and check that Steven King's equipment list is
unchanged, with no second entry for fish. For hack.html to be successful it would
have to know the value of the csrftoken field that gets stored in the PHP session
when the ac_add_one.php generates the real entry form.

CSRF protection is just one of many kinds of security restrictions that web applications
should enforce. You should do a thorough security evaluation of any code you deploy
on the web.

Many of the popular PHP frameworks provide assistance to reduce the amount of
effort required in producing a secure application. For example they may provide a
more secure implementation of CSRF token generation than the one in the AnyCo
Session class.

Preventing CSRF with ac_add_one.php

9-6 2 Day + PHP Developer's Guide

10
Inserting Multiple Data Values

PHP OCI8 can insert arrays of characters or integers in one call. This reduces network
traffic and database system overhead when inserting multiple values into a table.

This chapter contains the following topics:

• Creating the Multiple Insert Form (page 10-1)

• Running the Multiple Insert Form (page 10-3)

10.1 Creating the Multiple Insert Form
The example in this chapter shows a form allowing three data values to be inserted in
one operation.

The array insert is done using a PL/SQL bulk FORALL command. Login to SQL*Plus
as HR and create a PL/SQL package:

CREATE OR REPLACE PACKAGE equip_pkg AS
 TYPE arrtype IS TABLE OF VARCHAR2(20) INDEX BY PLS_INTEGER;
 PROCEDURE insert_equip(eid_p IN NUMBER, eqa_p IN arrtype);
END equip_pkg;
/

CREATE OR REPLACE PACKAGE BODY equip_pkg AS
 PROCEDURE insert_equip(eid_p IN NUMBER, eqa_p IN arrtype) IS
 BEGIN
 FORALL i IN INDICES OF eqa_p
 INSERT INTO equipment (employee_id, equip_name)
 VALUES (eid_p, eqa_p(i));
 END insert_equip;
END equip_pkg;
/

Note:

The "/" tokens are needed only in SQL*Plus.

The insert_equip() procedure accepts an array of equipment names and inserts
them in to the EQUIPMENT table.

Create a new PHP file ac_add_multi.php and copy the contents of
ac_add_one.php to it. Carefully make the following changes to convert it to handle
an array of values.

In the HTML form in ac_add_multi.php, change the one input field from:

<div>
 Equipment name <input type="text" name="equip">

Inserting Multiple Data Values 10-1

 <input type="hidden" name="empid" value="$empid">
...

to three input fields:

...
<div>
 Equipment name <input type="text" name="equip[]">

 Equipment name <input type="text" name="equip[]">

 Equipment name <input type="text" name="equip[]">

 <input type="hidden" name="empid" value="$empid">
...

Note the [] tokens to return an array, which were not needed in ac_add_one.php.

Replace the getcleanequip() function in ac_add_multi.php so it handles the
array of returned form values:

/**
 * Perform validation and data cleaning so empty strings are not inserted
 *
 * @return array The array of new data to enter
 */
function getcleanequip() {
 if (!isset($_POST['equip'])) {
 return array();
 } else {
 $equiparr = array();
 foreach ($_POST['equip'] as $v) { // Strip out unset values
 $v = trim($v);
 if (!empty($v))
 $equiparr[] = $v;
 }
 return($equiparr);
 }
}

This loops along each of the array entries and only returns non empty strings.

Finally, replace doinsert() in ac_add_multi.php with:

/**
 * Insert an array of equipment values for an employee
 *
 * @param Db $db
 * @param array $equiparr array of string values to be inserted
 * @param string $empid Employee identifier
 */
function doinsert($db, $equiparr, $empid) {
 $arraybinds = array(array("eqa", $equiparr, SQLT_CHR));
 $otherbinds = array(array("eid", $empid, -1));
 $sql = "BEGIN equip_pkg.insert_equip(:eid, :eqa); END;";
 $db->arrayInsert($sql, "Insert Equipment List", $arraybinds, $otherbinds);
}

This uses a new arrayInsert() method in the Db class to call the PL/SQL
insert_equip() procedure. The data value arrays needs to be bound differently
from normal scalar PHP OCI8 binds, so the bind parameters to arrayInsert() are
separated into two kinds.

Edit ac_db.inc.php and add the new method:

Creating the Multiple Insert Form

10-2 2 Day + PHP Developer's Guide

 /**
 * Insert an array of values by calling a PL/SQL procedure
 *
 * Call like Db::arrayinsert("begin myproc(:arn, :p); end",
 * "Insert stuff",
 * array(array(":arn", $dataarray, SQLT_CHR)),
 * array(array(":p", $p, -1)))
 *
 * @param string $sql PL/SQL anonymous block
 * @param string $action Action text for End-to-End Application Tracing
 * @param array $arraybindvars Bind variables. An array of tuples
 * @param array $otherbindvars Bind variables. An array of tuples
 */
 public function arrayInsert($sql, $action, $arraybindvars,
 $otherbindvars = array()) {
 $this->stid = oci_parse($this->conn, $sql);
 foreach ($arraybindvars as $a) {
 // oci_bind_array_by_name(resource, bv_name,
 // php_array, php_array_length, max_item_length, datatype)
 oci_bind_array_by_name($this->stid, $a[0], $a[1],
 count($a[1]), -1, $a[2]);
 }
 foreach ($otherbindvars as $bv) {
 // oci_bind_by_name(resource, bv_name, php_variable, length)
 oci_bind_by_name($this->stid, $bv[0], $bv[1], $bv[2]);
 }
 oci_set_action($this->conn, $action);
 oci_execute($this->stid); // will auto commit
 $this->stid = null;
 }

Binding in Db::arrayInsert() is similar to the example previously shown in this
manual. The oci_bind_array_by_name() function takes slightly different
arguments, since the number of elements in data array must now be passed in. In the
AnyCo application oci_bind_array_by_name is being used only for inserting data
from PHP so the maximum data length parameter can be passed as -1. This tells PHP
to use the actual value lengths. The single oci_execute() call inserts all the data
items into the database.

10.2 Running the Multiple Insert Form
Save the files and run the AnyCo application in a browser. Log in as Administrator
and click the Add Multiple link for Steven King.

Add some data items such as Computer, Monitor, and Keyboard.

Running the Multiple Insert Form

Inserting Multiple Data Values 10-3

Click Submit and then click Show next to Steven King to check that the data items are
inserted.

Array binding also works for fetching data. PL/SQL procedures using the efficient
BULK COLLECT syntax can return data to PHP in one OCI8 oci_execute() call. For
retrieving data from Oracle the oci_bind_array_by_name() call would need to
know how many items and what the maximum data size is so PHP can allocate the
memory correctly.

Running the Multiple Insert Form

10-4 2 Day + PHP Developer's Guide

11
Using JSON and Generating a JPEG Image

This chapter shows how the JSON serialization format can be used for transferring
data from a simple web service. The web service is called by a client that creates an
image using PHP's GD extension.

This chapter contains the following topics:

• Creating a Simple Web Service Returning JSON (page 11-1)

• Creating a JPEG image (page 11-2)

11.1 Creating a Simple Web Service Returning JSON
Create a new PHP file ac_get_json.php containing:

<?php

/**
 * ac_get_json.php: Service returning equipment counts in JSON
 * @package WebService
 */

require('ac_db.inc.php');

if (!isset($_POST['username'])) {
 header('Location: index.php');
 exit;
}

$db = new \Oracle\Db("Equipment", $_POST['username']);

$sql = "select equip_name, count(equip_name) as cn
 from equipment
 group by equip_name";
$res = $db->execFetchAll($sql, "Get Equipment Counts");

$mydata = array();
foreach ($res as $row) {
 $mydata[$row['EQUIP_NAME']] = (int) $row['CN'];
}

echo json_encode($mydata);

?>

Note there is no authentication in this web service. It is "external" to the AnyCo
application. All it requires is a username entry in the POST data.

The file queries the AnyCo Corp. equipment allocation and uses PHP's
json_encode() to return the statistics in JSON format. The output returned by the

Using JSON and Generating a JPEG Image 11-1

web service is something like this, depending on which data you currently have in the
EQUIPMENT table:

{"cardboard box":1,"pen":4,"computer":2,"telephone":3,"paper":3,"car":1}

11.2 Creating a JPEG image
Create a new PHP file ac_graph_img.php to call the web service and create a graph.
The file initially contains:

<?php

/**
 * ac_graph_img.php: Create a JPEG image of the equipment allocation statistics
 *
 * do not have any text or white space before the "<?php" tag because it will
 * be incorporated into the image stream and corrupt the picture.
 *
 * @package Graph
 */

define('WEB_SERVICE_URL', "http://localhost/ac_get_json.php");

session_start();
require('ac_equip.inc.php');

$sess = new \Equipment\Session;
$sess->getSession();
if (!isset($sess->username) || empty($sess->username)
 || !$sess->isPrivilegedUser()) {
 header('Location: index.php');
 exit;
}
$data = callservice($sess);
do_graph("Equipment Count", 600, $data);

// Functions

?>

Change the web service URL to match your system.

To this file add the callservice() function:

/**
 * Call the service and return its results
 *
 * @param Session $sess
 * @return array Equipment name/count array
 */
function callservice($sess) {
 // Call the web "service" to get the Equipment statistics
 // Change the URL to match your system configuration
 $calldata = array('username' => $sess->username);
 $options = array(
 'http' => array(
 'method' => 'POST',
 'header' => 'Content-type: application/x-www-form-urlencoded',
 'content' => http_build_query($calldata)
)
);
 $ctx = stream_context_create($options);

Creating a JPEG image

11-2 2 Day + PHP Developer's Guide

 $result = file_get_contents(WEB_SERVICE_URL, false, $ctx);
 if (!$result) {
 $data = null;
 } else {
 $data = json_decode($result, true);

 // Sort an array by keys using an anonymous function
 uksort($data, function($a, $b) {
 if ($a == $b)
 return 0;
 else
 return ($a < $b) ? -1 : 1;
 });
 }
 return($data);
}

This uses the PHP streams functionality to request the URL and get the statistics. The
stream context includes the username as a post variable, which is required by the
service.

The data is decoded from the JSON format and the array is sorted by name order. The
second argument to PHP's uksort() function is an anonymous function that does the
data comparison.

Edit ac_graph_img.php and add the function to create the image:

/**
 * Draw a bar graph, with bars projecting horizontally
 *
 * @param string $title The Graph's title
 * @param type $width Desired image width in pixels
 * @param array $items Array of (caption, value) tuples
 */
function do_graph($title, $width, $items) {
 $border = 50; // border space around bars
 $caption_gap = 4; // space between bar and its caption
 $bar_width = 20; // width of each bar
 $bar_gap = 40; // space between each bar
 $title_font_id = 5; // font id for the main title
 $bar_caption_font_id = 5; // font id for each bar's title

 // Image height depends on the number of items
 $height = (2 * $border) + (count($items) * $bar_width) +
 ((count($items) - 1) * $bar_gap);

 // Find the horizontal distance unit for one item
 $unit = ($width - (2 * $border)) / max($items);

 // Create the image and add the title
 $im = ImageCreate($width, $height);
 if (!$im) {
 trigger_error("Cannot create image
\n", E_USER_ERROR);
 }
 $background_col = ImageColorAllocate($im, 255, 255, 255); // white
 $bar_col = ImageColorAllocate($im, 0, 64, 128); // blue
 $letter_col = ImageColorAllocate($im, 0, 0, 0); // black
 ImageFilledRectangle($im, 0, 0, $width, $height, $background_col);
 ImageString($im, $title_font_id, $border, 4, $title, $letter_col);

 // Draw each bar and add a caption
 $start_y = $border;

Creating a JPEG image

Using JSON and Generating a JPEG Image 11-3

 foreach ($items as $caption => $value) {
 $end_x = $border + ($value * $unit);
 $end_y = $start_y + $bar_width;
 ImageFilledRectangle($im, $border, $start_y, $end_x, $end_y, $bar_col);
 ImageString($im, $bar_caption_font_id, $border,
 $start_y + $bar_width + $caption_gap, $caption, $letter_col);
 $start_y = $start_y + ($bar_width + $bar_gap);
 }

 // Output the complete image.
 // Any text, error message or even white space that appears before this
 // (including any white space before the "<?php" tag) will corrupt the
 // image data. Comment out the "header" line to debug any issues.
 header("Content-type: image/jpg");
 ImageJpeg($im);
 ImageDestroy($im);
}

This function uses PHP's GD extension to create the graph. The default GD fonts are a
bit clunky but new ones can be added. The output is a JPEG stream so the PHP file can
be called anywhere in a web page's HTML code where you would otherwise include
an image file.

In the AnyCo application, the image can be integrated by creating a new file
ac_graph_page.php:

<?php

/**
 * ac_graph_page.php: Display a page containing the equipment graph
 * @package Graph
 */

session_start();
require('ac_equip.inc.php');

$sess = new \Equipment\Session;
$sess->getSession();
if (!isset($sess->username) || empty($sess->username)
 || !$sess->isPrivilegedUser()) {
 header('Location: index.php');
 exit;
}

$page = new \Equipment\Page;
$page->printHeader("AnyCo Corp. Equipment Graph");
$page->printMenu($sess->username, $sess->isPrivilegedUser());

echo <<<EOF
<div id='content'>

</div>
EOF;

$page->printFooter();

?>

Creating a JPEG image

11-4 2 Day + PHP Developer's Guide

Note:

The EOF; token must be at the start of a line and not have trailing white space.

The image is included in a normal HTML img tag.

Load the AnyCo application in a browser and log in as Administrator. Click the
Equipment Graph link in the left hand navigation menu. The graph is displayed.

If the image does not display, it might be a problem in ac_graph_img.php due to
text such as an error message or even because of white space before the <?php tag.
This text will be included in the image stream and make the picture invalid. To help
debug this kind of problem you could comment out the $session checks and also the
header() call in ac_graph_img.php. Then to show the raw data of the image
stream load the following link in a browser:

http://localhost/ac_graph_img.php

The JSON format is often used to efficiently transfer data between a browser and a
PHP server. The ac_get_json.php web service could be used directly in many of
the available JSON graphics libraries.

Creating a JPEG image

Using JSON and Generating a JPEG Image 11-5

Creating a JPEG image

11-6 2 Day + PHP Developer's Guide

12
Uploading and Displaying BLOBs

This chapter contains the following topics:

• Creating a Table to Store the Logo (page 12-1)

• Uploading Images in PHP OCI8 (page 12-1)

• Fetching the Logo and Creating an Image (page 12-4)

• Displaying the Logo (page 12-6)

12.1 Creating a Table to Store the Logo
The PHP OCI8 extension easily allows LOB data to be manipulated. A BLOB will be
used in the AnyCo application to store a company logo that will be displayed on each
web page.

In SQL*Plus create a table PICTURES to store the logo:

CREATE TABLE pictures (id NUMBER, pic BLOB);

CREATE SEQUENCE pictures_seq;
CREATE TRIGGER pictures_trig BEFORE INSERT ON pictures FOR EACH ROW
BEGIN
 :NEW.id := pictures_seq.NEXTVAL;
END;
/

12.2 Uploading Images in PHP OCI8
Create a new PHP file ac_logo_upload.php. The initial contents are:

<?php

/**
 * ac_logo_upload.php: Upload a new company logo
 * @package Logo
 */

session_start();
require('ac_db.inc.php');
require('ac_equip.inc.php');

$sess = new \Equipment\Session;
$sess->getSession();
if (!isset($sess->username) || empty($sess->username)
 || !$sess->isPrivilegedUser()) {
 header('Location: index.php');
 exit;
}

Uploading and Displaying BLOBs 12-1

$page = new \Equipment\Page;
$page->printHeader("AnyCo Corp. Upload Logo");
$page->printMenu($sess->username, $sess->isPrivilegedUser());
printcontent($sess);
$page->printFooter();

// Functions

?>

Add the printcontent() function:

/**
 * Print the main body of the page
 *
 * @param Session $sess
 */
function printcontent($sess) {
 echo "<div id='content'>";
 if (!isset($_FILES['lob_upload'])) {
 printform();
 } else {
 $blobdata = file_get_contents($_FILES['lob_upload']['tmp_name']);
 if (!$blobdata) {
 // N.b. this test could be enhanced to confirm the image is a JPEG
 printform();
 } else {
 $db = new \Oracle\Db("Equipment", $sess->username);
 $sql = 'INSERT INTO pictures (pic)
 VALUES(EMPTY_BLOB()) RETURNING pic INTO :blobbind';
 $db->insertBlob($sql, 'Insert Logo BLOB', 'blobbind', $blobdata);
 echo '<p>New logo was uploaded</p>';
 }
 }
 echo "</div>"; // content
}

This is in the now familiar two part structure with an HTML form and a form-handler.
The INSERT statement uses a bind value to represent the BLOB. The new Db class
insertBlob() will associate the BLOB data with the bind variable and commit the
record. The uploaded image will be added to the PICTURES table.

Complete ac_logo_upload.php by adding the form function printform():

/**
 * Print the HTML form to upload the image
 *
 * Adding CSRF protection is an exercise for the reader
 */
function printform() {
 echo <<<EOF
Upload new company logo:
<form action="ac_logo_upload.php" method="POST" enctype="multipart/form-data">
<div>
 Image file name: <input type="file" name="lob_upload">
 <input type="submit" value="Upload"
</div>
<form
EOF;
}

Uploading Images in PHP OCI8

12-2 2 Day + PHP Developer's Guide

Note:

The EOF; token must be at the start of a line and not have trailing white space.

When this form is submitted the PHP web server will be able to access uploaded BLOB
data in the temporary file $_FILES['lob_upload']['tmp_name'], as seen in
printcontent().

PHP has various options controlling locations and upper sizes of files, refer to the PHP
documentation. The AnyCo application will use the default values.

Edit ac_db.inc.php and add the insertBlob() method to the Db class:

 /**
 * Insert a BLOB
 *
 * $sql = 'INSERT INTO BTAB (BLOBID, BLOBDATA)
 * VALUES(:MYBLOBID, EMPTY_BLOB()) RETURNING BLOBDATA
 * INTO :BLOBDATA';
 * Db::insertblob($sql, 'do insert for X', myblobid',
 * $blobdata, array(array(":p", $p, -1)));
 *
 * $sql = 'UPDATE MYBTAB SET blobdata = EMPTY_BLOB()
 * RETURNING blobdata INTO :blobdata';
 * Db::insertblob($sql, 'do insert for X', 'blobdata', $blobdata);
 *
 * @param string $sql An INSERT or UPDATE statement that
 * @returns a LOB locator
 * @param string $action Action text for End-to-End Application Tracing
 * @param string $blobbindname Bind variable name of the BLOB
 * @in the statement
 * @param string $blob BLOB data to be inserted
 * @param array $otherbindvars Bind variables. An array of tuples
 */
 public function insertBlob($sql, $action, $blobbindname, $blob,
 $otherbindvars = array()) {
 $this->stid = oci_parse($this->conn, $sql);
 $dlob = oci_new_descriptor($this->conn, OCI_D_LOB);
 oci_bind_by_name($this->stid, $blobbindname, $dlob, -1, OCI_B_BLOB);
 foreach ($otherbindvars as $bv) {
 // oci_bind_by_name(resource, bv_name, php_variable, length)
 oci_bind_by_name($this->stid, $bv[0], $bv[1], $bv[2]);
 }
 oci_set_action($this->conn, $action);
 oci_execute($this->stid, OCI_NO_AUTO_COMMIT);
 if ($dlob->save($blob)) {
 oci_commit($this->conn);
 }
 }

The insertBlob() method accepts a final option parameter for normal bind
variables. This is not used when it is called in printcontent() in
ac_logo_upload.php.

The BLOB is bound as a special type, similar to how a REF CURSOR was bound in the
Showing Equipment Records by Using a REF CURSOR (page 6-1). PHP OCI8 also has
a OCI_B_CLOB constant that can be used for binding CLOBs. The LOB descriptor is an
instance of PHP OCI8's OCI-Lob class, which has various methods for uploading and
reading data. When oci_execute() is processed on the SQL INSERT statement the
OCI_NO_AUTO_COMMIT flag is used. This is because the database transaction must

Uploading Images in PHP OCI8

Uploading and Displaying BLOBs 12-3

remain open until the $dlob->save() method inserts the data. Finally, an explicit
oci_commit() commits the BLOB.

Run the AnyCo application in a browser and log in Administrator. Click the Upload
Logo link in the left hand menu. Locate a JPEG image on your computer and select it.
The next section of this chapter will display the image in the page header with the title,
so choose an image of 15 to 20 pixels in height.

Click the Upload button.

12.3 Fetching the Logo and Creating an Image
Displaying the logo is similar in concept to how the graph image was displayed in the
previous chapter. However since the BLOB is already in JPEG format the GD extension
is not required.

Create a new PHP file ac_logo_img.php. The file contains:

<?php

/**
 * ac_logo_img.php: Create a JPEG image of the company logo
 *
 * do not have any text or white space before the "<?php" tag because it will
 * be incorporated into the image stream and corrupt the picture.
 *
 * @package Logo
 */

session_start();
require('ac_db.inc.php');
require('ac_equip.inc.php');

$sess = new \Equipment\Session;
$sess->getSession();
if (isset($sess->username) && !empty($sess->username)) {
 $username = $sess->username;
} else { // index.php during normal execution, or other external caller
 $username = "unknown-logo";
}

$db = new \Oracle\Db("Equipment", $username);
$sql = 'SELECT pic FROM pictures WHERE id = (SELECT MAX(id) FROM pictures)';
$img = $db->fetchOneLob($sql, "Get Logo", "pic");

header("Content-type: image/jpg");
echo $img;

?>

Fetching the Logo and Creating an Image

12-4 2 Day + PHP Developer's Guide

This queries the most recent logo and sends it back as a JPEG stream. If the image
appears corrupted, comment out the header() and echo function calls and check if
any text or white space is being emitted by the script.

The user name check differs from those used in previous sections. The logo is
displayed on all pages including the login page before the web user name is known.
Because Db accepts a user name for end-to-end tracing, ac_logo_img.php uses a
bootstrap user name unknown-logo.

Edit ac_db.inc.php and add the fetchOneLob() method to the Db class:

 /**
 * Runs a query that fetches a LOB column
 * @param string $sql A query that include a LOB column in the select list
 * @param string $action Action text for End-to-End Application Tracing
 * @param string $lobcolname The column name of the LOB in the query
 * @param array $bindvars Bind variables. An array of tuples
 * @return string The LOB data
 */
 public function fetchOneLob($sql, $action, $lobcolname,
 $bindvars = array()) {
 $col = strtoupper($lobcolname);
 $this->stid = oci_parse($this->conn, $sql);
 foreach ($bindvars as $bv) {
 // oci_bind_by_name(resource, bv_name, php_variable, length)
 oci_bind_by_name($this->stid, $bv[0], $bv[1], $bv[2]);
 }
 oci_set_action($this->conn, $action);
 oci_execute($this->stid);
 $row = oci_fetch_array($this->stid, OCI_RETURN_NULLS);
 $lob = null;
 if (is_object($row[$col])) {
 $lob = $row[$col]->load();
 $row[$col]->free();
 }
 $this->stid = null;
 return($lob);
 }

The oci_fetch_array() options could have included the OCI_RETURN_LOBS flag
to indicate the data should be returned as a PHP string. The code here shows the
column being returned as a locator instead. This shows how a locator can be operated
on, here using the load() to read all the data and free() method to free up
resources. If you had an application with very large data, the locator read() method
could be used to process the LOB in chunks, which would be a memory efficient way
of processing large data streams.

Unlike insertBlob(), which bound using the OCI_B_BLOB type and was therefore
specific for BLOBs, the fetchOneLob() can be used for both BLOB and CLOB data.

If an application processes multiple images (or chunks of an image) sequentially in a
loop, for example:

 while (($img = $db->fetchOneLob($sql, "Get Logo", "pic")) != null) {
 dosomething($img);
 }

then you can reduce PHP's peak memory usage by explicitly un-setting $img at the
foot of the loop:

 dosomething($img);
 $unset($img);

Fetching the Logo and Creating an Image

Uploading and Displaying BLOBs 12-5

This allows the memory allocated for the current $img to be reused for the next image
data stream. Otherwise the original image memory is only freed after PHP constructs
the second image and is ready to assign it to $img. This optimization is not needed by
the AnyCo application.

12.4 Displaying the Logo
To display an uploaded logo in the AnyCo application, edit ac_equip.inc.php and
un-comment the LOGO_URL definition:

define('LOGO_URL', 'http://localhost/ac_logo_img.php');

Make sure the URL is correct for your environment.

The logo is displayed in Page::printHeader(). Every standard page of the
application will show the logo. Rerun the application to verify this:

Keeping images in the database allows the complete application data to be backed up
and shared across all applications. However for performance you could consider
implementing a caching technique that writes the logo to disk so it can be streamed
directly without requiring the overhead of database access. The upload form could
regenerate the disk file each time a new image is uploaded.

Displaying the Logo

12-6 2 Day + PHP Developer's Guide

13
Monitoring Database Usage of the

Application

This chapter contains the following topics:

• Overview of Metadata (page 13-1)

• Viewing Metadata (page 13-1)

• More Uses of Metadata (page 13-2)

• Metadata and Persistent Connections (page 13-2)

13.1 Overview of Metadata
Throughout the implementation of the AnyCo application, metadata values were used
for Oracle's end-to-end application tracing features. Values set were the:

• client identifier

• client information

• module

• action

The client identifier held a value uniquely associated with an end user. The other three
values were effectively a descending hierarchy of data about the application's tasks.

The metadata values are semi-arbitrary text strings. Oracle records the metadata
values and makes them available in certain database features, such as in the list of
currently open connections. How your DBA uses those features and how your
application is designed will determine what values an application should set.

In the AnyCo application the client identifier was set to simon or admin, depending
on which web user was logged into the application. The client information was always
set to 'AnyCo Corp.' Refer to CLIENT_INFO in ac_db.inc.php. The module was set
when each page created an instance of the Db class. By choice, the module name used
was always Equipment, indicating that this set of files was related to manipulating
employees' equipment. The action varied with each SQL statement being run.

13.2 Viewing Metadata
To see where the metadata values are used, login to the AnyCo application and
navigate through several pages.

On Windows, from the Start menu, select Programs (or All Programs), then Oracle
Database 12c, and then Go To Database Administration Page.

Monitoring Database Usage of the Application 13-1

On Linux, click the Application menu (on Gnome) or the K menu (on KDE), then
point to Oracle Database 12c, and then Go To Database Administration Page.
Navigate to the Sessions page and login as the SYSTEM user.

You may see multiple entries. Apache will create a number of processes, any one of
which might handle any of the HTTP requests. As you navigate through the
application pages, different Apache processes handle the page requests.

Drill down by clicking the SID number for one of the AnyCo sessions. Client and
Application information is also available on this page.

The Oracle Database administration tool shows the SQL statement and statistics about
its execution. If you see any poorly tuned or heavily used statements the end-to-end
tracing metadata will let you locate the source PHP files for easy review and re-design.
For statements, the metadata in effect at first execution of each unique statement is the
value recorded.

The accuracy of the metadata is reliant upon the consistency of use in the applications
that connect to the database.

Detailed information on how the client identifier can be used is in the technical article:

http://www.oracle.com/technetwork/articles/dsl/php-web-
auditing-171451.html

13.3 More Uses of Metadata
The Oracle Database administration pane is a simplified view of all the information
Oracle database records about connections and statement execution. Various standard
database administration views such as V$SESSION and V$SQLAREA will also contain
the tracing metadata. You can write your own queries or use other tools to present the
information.

The client identifier metadata can be used to restrict data access. In Oracle Database
you could manually augment each SQL statement to restrict access by testing the client
identifier:

select * from equipment
where sys_context('userenv', 'client_identifier') = 'admin';

If a web user with another client identifier was logged in, the WHERE condition would
evaluate false and no rows would be returned. Only the Administrator would be
able to see data.

In the Enterprise Edition of Oracle Database, the Virtual Private Database feature
supports creation of policy rules that will automatically restrict access to data. This
removes the need for every SQL statement to be modified. The client identifier is also
recorded in the audit log when auditing is enabled.

When using the client identifier for enforcing security, is a very important to have
application code integrity. Is it imperative to ensure that there is no omission or
impersonation of the client identifier.

13.4 Metadata and Persistent Connections
The AnyCo application uses PHP OCI8 persistent connections that are kept open even
when the PHP processes are not processing scripts. The metadata values are not reset
at the end of a user script and they are visible in the Session screen when the PHP
process and the database connection are idle. Also the current values will remain in

More Uses of Metadata

13-2 2 Day + PHP Developer's Guide

http://www.oracle.com/technetwork/articles/dsl/php-web-auditing-171451.html
http://www.oracle.com/technetwork/articles/dsl/php-web-auditing-171451.html

effect if any subsequent oci_pconnect() handled by the PHP process does not
explicitly set them again.

Using non-persistent connections, calls to oci_connect() or oci_new_connect()
will not have this behavior, since those connections are always closed after each PHP
script completes.

In a busy system with little idle time, the left-over metadata for persistent connections
is generally not an issue. The problem areas for DBAs are busy connections, not idle
ones. Not un-setting the metadata gives maximum performance because it avoids a
round trip between PHP and the database. This would slow down the whole system
so it is not recommended. However, you could forcefully clear the metadata by adding
this to the Db destructor:

 $this->stid = oci_parse($this->conn,
 "begin
 dbms_session.clear_identifier;
 dbms_application_info.set_client_info('');
 dbms_application_info.set_module('', '');
 end;");
 oci_execute($this->stid);

If you try this, first restart the web server to close all existing PHP persistent database
connections.

No solution is perfect. If the PHP process crashes it will not be able to clear the values
or notify the database to close a non-persistent connection.

Metadata and Persistent Connections

Monitoring Database Usage of the Application 13-3

Metadata and Persistent Connections

13-4 2 Day + PHP Developer's Guide

14
Building Global Applications

This chapter discusses global application development in a PHP and Oracle Database
environment. It addresses the basic tasks associated with developing and deploying
global Internet applications, including developing locale awareness, constructing
HTML content in the user-preferred language, and presenting data following the
cultural conventions of the locale of the user.

Building a global Internet application that supports different locales requires good
development practices. A locale refers to a national language and the region where the
language is spoken. The application itself must be aware of the locale preference of the
user and be able to present content following the cultural conventions expected by the
user. It is important to present data with appropriate locale characteristics, such as the
correct date and number formats. Oracle Database is fully internationalized to provide
a global platform for developing and deploying global applications.

This chapter contains the following topics:

• Establishing the Environment Between Oracle and PHP (page 14-1)

• Manipulating Strings (page 14-2)

• Determining the Locale of the User (page 14-2)

• Developing Locale Awareness (page 14-3)

• Encoding HTML Pages (page 14-3)

• Organizing the Content of HTML Pages for Translation (page 14-4)

• Presenting Data Using Conventions Expected by the User (page 14-5)

14.1 Establishing the Environment Between Oracle and PHP
Correctly setting up the connectivity between the PHP engine and the Oracle database
is the first step in building a global application. It guarantees data integrity across all
tiers. Most internet based standards support Unicode as a character encoding. In this
chapter we will focus on using Unicode as the character set for data exchange.

PHP uses Oracle's C language OCI interface, and rules that apply to OCI also apply to
PHP. Oracle locale behavior (including the client character set used in OCI
applications) is defined by the NLS_LANG environment variable. This environment
variable has the form:

 <language>_<territory>.<character set>

For example, for a Portuguese user in Brazil running an application in Unicode,
NLS_LANG should be set to

BRAZILIAN PORTUGUESE_BRAZIL.AL32UTF8

Building Global Applications 14-1

The language and territory settings control Oracle behaviors such as the Oracle date
format, error message language, and the rules used for sort order. The character set
AL32UTF8 is the Oracle name for UTF-8.

For information on the NLS_LANG environment variable, see the Oracle Database
installation guides.

When PHP is installed on Oracle Linux's Apache, you can set NLS_LANG in /etc/
sysconfig/httpd:

 export NLS_LANG='BRAZILIAN PORTUGUESE_BRAZIL.AL32UTF8'

You must restart the Web listener to implement the change.

14.2 Manipulating Strings
PHP was designed to work with the ISO-8859-1 character set. To handle other
character sets, specifically multibyte character sets, a set of "MultiByte String
Functions" is available. To enable these functions, you must enable PHP's mbstring
extension.

Your application code should use functions such as mb_strlen() to calculate the
number of characters in strings. This may return different values than strlen(),
which returns the number of bytes in a string.

Once you have enabled the mbstring extension and restarted the Web server, several
configuration options become available. You can change the behavior of the standard
PHP string functions by setting mbstring.func_overload to one of the "Overload"
settings.

For more information, see the PHP mbstring reference manual at

http://www.php.net/mbstring

The PHP intl extension that wraps the ICU library is also popular for manipulating
strings, see

http://www.php.net/intl

14.3 Determining the Locale of the User
In a global environment, your application should accommodate users with different
locale preferences. Once it has determined the preferred locale of the user, the
application should construct HTML content in the language of the locale and follow
the cultural conventions implied by the locale.

A common method to determine the locale of a user is from the default ISO locale
setting of the browser. Usually a browser sends its locale preference setting to the
HTTP server with the Accept Language HTTP header. If the Accept Language header
is NULL, then there is no locale preference information available, and the application
should fall back to a predefined default locale.

The following PHP code retrieves the ISO locale from the Accept-Language HTTP
header through the $_SERVER Server variable.

$s = $_SERVER["HTTP_ACCEPT_LANGUAGE"]

Manipulating Strings

14-2 2 Day + PHP Developer's Guide

http://www.php.net/mbstring
http://www.php.net/intl

14.4 Developing Locale Awareness
Once the locale preference of the user has been determined, the application can call
locale-sensitive functions, such as date, time, and monetary formatting to format the
HTML pages according to the cultural conventions of the locale.

When you write global applications implemented in different programming
environments, you should enable the synchronization of user locale settings between
the different environments. For example, PHP applications that call PL/SQL
procedures should map the ISO locales to the corresponding NLS_LANGUAGE and
NLS_TERRITORY values and change the parameter values to match the locale of the
user before calling the PL/SQL procedures. The PL/SQL UTL_I18N package contains
mapping functions that can map between ISO and Oracle locales.

Table 14-1 (page 14-3) shows how some commonly used locales are defined in ISO
and Oracle environments.

Table 14-1 Locale Representations in ISO, SQL, and PL/SQL Programming
Environments

Locale Locale ID NLS_LANGUAGE NLS_TERRITORY

Chinese (P.R.C.) zh-CN SIMPLIFIED CHINESE CHINA

Chinese (Taiwan) zh-TW TRADITIONAL
CHINESE

TAIWAN

English (U.S.A) en-US AMERICAN AMERICA

English (United
Kingdom)

en-GB ENGLISH UNITED KINGDOM

French (Canada) fr-CA CANADIAN FRENCH CANADA

French (France) fr-FR FRENCH FRANCE

German de GERMAN GERMANY

Italian it ITALIAN ITALY

Japanese ja JAPANESE JAPAN

Korean ko KOREAN KOREA

Portuguese (Brazil) pt-BR BRAZILIAN
PORTUGUESE

BRAZIL

Portuguese pt PORTUGUESE PORTUGAL

Spanish es SPANISH SPAIN

14.5 Encoding HTML Pages
The encoding of an HTML page is important information for a browser and an
Internet application. You can think of the page encoding as the character set used for
the locale that an Internet application is serving. The browser must know about the
page encoding so that it can use the correct fonts and character set mapping tables to

Developing Locale Awareness

Building Global Applications 14-3

display the HTML pages. Internet applications must know about the HTML page
encoding so they can process input data from an HTML form.

Instead of using different native encodings for the different locales, Oracle
recommends that you use UTF-8 (Unicode encoding) for all page encodings. This
encoding not only simplifies the coding for global applications, but it also enables
multilingual content on a single page.

14.5.1 Specifying the Page Encoding for HTML Pages
You can specify the encoding of an HTML page either in the HTTP header, or in
HTML page header.

14.5.1.1 Specifying the Encoding in the HTTP Header

To specify HTML page encoding in the HTTP header, include the Content-Type HTTP
header in the HTTP specification. It specifies the content type and character set. The
Content-Type HTTP header has the following form:

Content-Type: text/html; charset=utf-8

The charset parameter specifies the encoding for the HTML page. The possible
values for the charset parameter are the IANA names for the character encodings that
the browser supports.

14.5.1.2 Specifying the Encoding in the HTML Page Header

Use this method primarily for static HTML pages. To specify HTML page encoding in
the HTML page header, specify the character encoding in the HTML header as
follows:

<meta http-equiv="Content-Type" content="text/html;charset=utf-8">

The charset parameter specifies the encoding for the HTML page. As with the
Content-Type HTTP Header, the possible values for the charset parameter are the
IANA names for the character encodings that the browser supports.

14.5.2 Specifying the Page Encoding in PHP
You can specify the encoding of an HTML page in the Content-Type HTTP header by
setting the PHP configuration variable as follows:

default_charset = UTF-8

This setting does not imply any conversion of outgoing pages. Your application must
ensure that the server-generated pages are encoded in UTF-8.

14.6 Organizing the Content of HTML Pages for Translation
Making the user interface available in the local language of the user is a fundamental
task in globalizing an application. Translatable sources for the content of an HTML
page belong to the following categories:

• Text strings included in the application code

• Static HTML files, image files, and template files such as CSS

• Dynamic data stored in the database

Organizing the Content of HTML Pages for Translation

14-4 2 Day + PHP Developer's Guide

14.6.1 Strings in PHP
You should externalize translatable strings within your PHP application logic so that
the text is readily available for translation. These text messages can be stored in flat
files or database tables depending on the type and the volume of the data being
translated.

14.6.2 Static Files
Static files such as HTML files are readily translatable. When these files are translated,
they should be translated into the corresponding language with UTF-8 as the file
encoding. To differentiate the languages of the translated files, stage the static files of
different languages in different directories or with different file names.

14.6.3 Data from the Database
Dynamic information such as product names and product descriptions is typically
stored in the database. To differentiate various translations, the database schema
holding this information should include a column to indicate the language. To select
the desired language, you must include a WHERE clause in your query.

14.7 Presenting Data Using Conventions Expected by the User
Data in the application must be presented in a way that conforms to the expectation of
the user. Otherwise, the meaning of the data can be misinterpreted. For example, the
date '12/11/05' implies '11th December 2005' in the United States, whereas in the
United Kingdom it means '12th November 2005'. Similar confusion exists for number
and monetary formats of the users. For example, the symbol '.' is a decimal separator
in the United States; in Germany this symbol is a thousands separator.

Different languages have their own sorting rules. Some languages are collated
according to the letter sequence in the alphabet, some according to the number of
stroke counts in the letter, and some languages are ordered by the pronunciation of
the words. Presenting data not sorted in the linguistic sequence that your users are
accustomed to can make searching for information difficult and time consuming.

Depending on the application logic and the volume of data retrieved from the
database, it may be more appropriate to format the data at the database level rather
than at the application level. Oracle Database offers many features that help to refine
the presentation of data when the locale preference of the user is known. The
following sections provide examples of locale-sensitive operations in SQL.

14.7.1 Oracle Date Formats
The three different date presentation formats in Oracle Database are standard, short,
and long dates. The following examples illustrate the differences between the short
date and long date formats for both the United States and Portuguese users in Brazil.

SQL> alter session set nls_territory=america nls_language=american;

Session altered.

SQL> select employee_id EmpID,
 2 substr(first_name,1,1)||'.'||last_name "EmpName",
 3 to_char(hire_date,'DS') "Hiredate",
 4 to_char(hire_date,'DL') "Long HireDate"

Presenting Data Using Conventions Expected by the User

Building Global Applications 14-5

 5 from employees
 6* where employee_id <105;

 EMPID EmpName Hiredate Long HireDate
---------- --------------------------- ---------- -----------------------------
 100 S.King 06/17/1987 Wednesday, June 17, 1987
 101 N.Kochhar 09/21/1989 Thursday, September 21, 1989
 102 L.De Haan 01/13/1993 Wednesday, January 13, 1993
 103 A.Hunold 01/03/1990 Wednesday, January 3, 1990
 104 B.Ernst 05/21/1991 Tuesday, May 21, 1991

SQL> alter session set nls_language = 'BRAZILIAN PORTUGUESE' nls_territory =
'BRAZIL';

Sessão alterada.

SQL> select employee_id EmpID,
 2 substr(first_name,1,1)||'.'||last_name "EmpName",
 3 to_char(hire_date,'DS') "Hiredate",
 4 to_char(hire_date,'DL') "Long HireDate"
 5 from employees
 6* where employee_id <105;

EMPID EmpName Hiredate Long HireDate
----- -------- --------- -------------------------------
100 S.King 17/6/2003 terça-feira, 17 de junho de 2003
101 N.Kochhar 21/9/2005 quarta-feira, 21 de setembro de 2005
102 L.De Haan 13/1/2001 sábado, 13 de janeiro de 2001
103 A.Hunold 3/1/2006 terça-feira, 3 de janeiro de 2006
104 B.Ernst 21/5/2007 segunda-feira, 21 de maio de 2007

14.7.2 Oracle Number Formats
The following examples illustrate the differences in the decimal character and group
separator between the United States and Portuguese users in Brazil.

SQL> alter session set nls_territory=america;

Session altered.

SQL> select employee_id EmpID,
 2 substr(first_name,1,1)||'.'||last_name "EmpName",
 3 to_char(salary, '99G999D99') "Salary"
 4 from employees
 5* where employee_id <105

 EMPID EmpName Salary
---------- --------------------------- ----------
 100 S.King 24,000.00
 101 N.Kochhar 17,000.00
 102 L.De Haan 17,000.00
 103 A.Hunold 9,000.00
 104 B.Ernst 6,000.00

SQL> alter session set nls_territory=brazil;

Session altered.

SQL> select employee_id EmpID,
 2 substr(first_name,1,1)||'.'||last_name "EmpName",
 3 to_char(salary, '99G999D99') "Salary"

Presenting Data Using Conventions Expected by the User

14-6 2 Day + PHP Developer's Guide

 4 from employees
 5* where employee_id <105

 EMPID EmpName Salary
---------- --------------------------- ----------
 100 S.King 24.000,00
 101 N.Kochhar 17.000,00
 102 L.De Haan 17.000,00
 103 A.Hunold 9.000,00
 104 B.Ernst 6.000,00

Note:

If the decimal and thousands separators used by Oracle are not '.' and ','
respectively, then you may see PHP errors when doing arithmetic on returned
data values. This is because PHP will not correctly convert a string variable
containing digits into an integer or float variable if the separators cannot be
parsed in PHP style. To avoid this problem you can set the format explicitly
with:

alter session set nls_numeric_characters = '.,'

14.7.3 Oracle Linguistic Sorts
Spain traditionally treats ch, ll as well as ñ as unique letters, ordered after c, l and n
respectively. The following examples illustrate the effect of using a Spanish sort
against the employee names Chen and Chung.

SQL> alter session set nls_sort=binary;

Session altered.

SQL> select employee_id EmpID,
 2 last_name "Last Name"
 3 from employees
 4 where last_name like 'C%'
 5* order by last_name

 EMPID Last Name
---------- -------------------------
 187 Cabrio
 148 Cambrault
 154 Cambrault
 110 Chen
 188 Chung
 119 Colmenares

6 rows selected.

SQL> alter session set nls_sort=spanish_m;

Session altered.

SQL> select employee_id EmpID,
 2 last_name "Last Name"
 3 from employees
 4 where last_name like 'C%'
 5* order by last_name

Presenting Data Using Conventions Expected by the User

Building Global Applications 14-7

 EMPID Last Name
---------- -------------------------
 187 Cabrio
 148 Cambrault
 154 Cambrault
 119 Colmenares
 110 Chen
 188 Chung

6 rows selected.

14.7.4 Oracle Error Messages
The NLS_LANGUAGE parameter also controls the language of the database error
messages being returned from the database. Setting this parameter prior to submitting
your SQL statement ensures that the language-specific database error messages will be
returned to the application.

Consider the following server message:

ORA-00942: table or view does not exist

When the NLS_LANGUAGE parameter is set to BRAZILIAN PORTUGUESE, the server
message appears as follows:

ORA-00942: a tabela ou view não existe

For more discussion of globalization support features in Oracle Database, see
"Working in a Global Environment" in Oracle Database 2 Day Developer's Guide.

Presenting Data Using Conventions Expected by the User

14-8 2 Day + PHP Developer's Guide

Index

Symbols

__construct() method, 3-2
$_GET superglobal array, 6-3
$action parameter, 5-1, 6-3
$atfirstrow parameter, 5-1
$bindvars parameter, 5-1
$conn attribute, 3-2
$firstrow parameter, 5-1
$numrows parameter, 5-1
$otherbindvars parameter, 6-3
$rcname parameter, 6-3
$res parameter, 5-1
$sess parameter, 5-1
$sess->getSession() call, 5-1
$sql parameter, 5-1, 6-3
$startrow parameter, 5-1

A
ac_cred.inc.php

creating, 3-1
ac_db.inc.php

creating, 3-2
AL32UTF8 character set, 14-1
AnyCo sample application, 2-3
Apache

testing installation on Windows, 2-11
Apache HTTP Server

installation
manually on Linux, 2-9
on Linux, 2-8
on Windows, 2-7
testing, 2-11

installing on Linux, 2-8
setting environment

on Linux, 2-10
setting up user directory, 2-10
testing the installation, 2-11

application
calling locale specific functions, 14-3
externalizing translatable strings, 14-5
globalizing, 14-1

application (continued)
translating HTML and GIF, 14-5
translating the user interface, 14-4
UTF-8 page encoding, 14-3

array_push() function, 5-1

B
bind parameters

rc, 6-3
bind variables

id, 6-2
rc, 6-2

C

calcstartrow() function, 5-1
calls

oci_bind_by_name(), 3-5
character sets

AL32UTF8, 14-1
globalization settings, 14-2
UTF-8, 14-1

charset parameter, 14-4
connections

HR user, 2-2
constants

NUMRECORDSPERPAGE, 5-1, 5-5
conventions

presenting data, 14-5

D
database

dynamic information, 14-5
installing, 2-1
unlocking the HR user, 2-2

database access class
creating, 3-2

Database Resident Connection Pooling, 2-3
date formats in Oracle, 14-5
Db class, 5-1, 6-3
Db((colon))((colon))execFetchAll() method, 5-1

Index-1

Db((colon))((colon))execFetchPage() method, 5-1
Db((colon))((colon))refcurExecFetchAll() method, 6-3
DRCP

architecture, 2-4
pool, 2-4
starting the pool, 2-6

E
environment variables

NLS_LANG, 14-1
NLS_LANGUAGE, 14-3, 14-8
NLS_TERRITORY, 14-3

errors
NLS_LANGUAGE, 14-8

F
files

translating HTML and GIF, 14-5
functions

array_push(), 5-1
calcstartrow(), 5-1
getempname(), 6-3
htmlentities(), 3-7
htmlspecialchars(), 3-7
oci_connect(), 2-5, 2-6, 3-6
oci_fetch_array(), 3-5
oci_new_connect(), 2-5, 2-6, 3-6
oci_pconnect(), 2-6, 3-2
oci_set_client_identifier(), 3-2
printcontent(), 5-1, 6-3
printnextprev(), 5-1
printnorecords(), 5-1
printrecords(), 5-1, 6-3
var_dump(), 3-7

G

getempname() function, 6-3
globalizing

applications, 14-1
calling locale specific functions, 14-3
character sets, 14-2
date formats, 14-5
determining user locale, 14-2
dynamic information, 14-5
HTML page encoding, 14-3
linguistic sorts, 14-7
NLS_LANGUAGE, 14-8
number formats, 14-6
PHP and Oracle environment, 14-1
presenting data, 14-5
sorting data, 14-5
translating the user interface, 14-4

H

HR user, 2-2
HTML

page encoding, 14-3, 14-4
page header, 14-4

htmlentities() function, 3-7
htmlspecialchars() function, 3-7
HTTP header

page encoding, 14-4

I

id bind variable, 6-2
installation

Apache HTTP Server, 2-7
Apache HTTP Server on Linux, 2-8
Apache HTTP Server on Windows, 2-7
Apache httpd package, 2-9
Apache on Linux, manually, 2-9
NetBeans 7.0 IDE, 2-20
NetBeans IDE on Linux, 2-21
NetBeans IDE on Windows, 2-20
OCI8, 2-14
Oracle Database, 2-1
PHP, 2-12
PHP and OCI8 on Oracle Linux, 2-13
PHP on Linux, 2-13
PHP on Windows, 2-12

L

linguistic sorts, 14-7
locale, 14-2

M
methods

__construct(), 3-2
Db((colon))((colon))execFetchAll(), 5-1
Db((colon))((colon))execFetchPage(), 5-1
Db((colon))((colon))refcurExecFetchAll(), 6-3
refcurExecFetchAll(), 6-3

N
NetBeans

configuration, 2-21
installation

on Linux, 2-21
on Windows, 2-20

using, 2-22
NLS_LANG environment variable, 14-1
NLS_LANGUAGE environment variable, 14-3, 14-8
NLS_TERRITORY environment variable, 14-3
number formats in Oracle, 14-6
NUMRECORDSPERPAGE constant, 5-1, 5-5

Index-2

O
obtaining

Oracle Database, 2-1
oci_bind_by_name() call, 3-5
oci_connect() function, 2-5, 2-6, 3-6
oci_fetch_array() function, 3-5
OCI_FETCHSTATEMENT_BY_ROW constant, 3-5
oci_new_connect() function, 2-5, 2-6, 3-6
oci_pconnect() function, 2-6, 3-2
oci_set_client_identifier() function, 3-2
Oracle

date formats, 14-5
establishing environment, 14-1
number formats, 14-6

Oracle Database
installing, 2-1
obtaining and installing, 2-1
prerequisites, 2-1

P

package body, 6-1
PACKAGE BODY type, 6-1
package specification, 6-1
PACKAGE type, 6-1
parameters

$action, 5-1, 6-3
$atfirstrow, 5-1
$bindvars, 5-1
$firstrow, 5-1
$numrows, 5-1
$otherbindvars, 6-3
$rcname, 6-3
$res, 5-1
$sess, 5-1
$sql, 5-1, 6-3
$startrow, 5-1
charset, 14-4

PHP
active process, 2-4
adding OCI8 extension, 2-14
character sets, 14-2
determining user locale, 14-2
establishing environment, 14-1
externalizing translatable strings, 14-5
globalizing your application, 14-1
HTML page encoding, 14-4
idle process, 2-4
installation

on Linux, 2-13
on Windows, 2-12

installing on Linux, 2-13
installing on Windows, 2-12
OCI8 extension, 1-1

PHP (continued)
PHPDocumentor, 3-2
post-installationtasks, 2-15
testing, 2-18
testing installation, 2-16
translating HTML and GIF files, 14-5

PHP - PHP Hypertext Preprocessor, 1-1
PHP calls

oci_bind_by_name(), 3-5
PHP command

define(), 3-1
include_once(), 3-2
include(), 3-2
require_once(), 3-2
require(), 3-1, 3-2

PHP functions
array_push(), 5-1
calcstartrow(), 5-1
getempname(), 6-3
htmlentities(), 3-7
htmlspecialchars(), 3-7
oci_connect(), 2-5, 2-6, 3-6
oci_fetch_array(), 3-5
oci_new_connect(), 2-5, 2-6, 3-6
oci_pconnect(), 2-6, 3-2
oci_set_client_identifier(), 3-2
printcontent(), 5-1, 6-3
printnextprev(), 5-1
printnorecords(), 5-1
printrecords(), 5-1, 6-3
var_dump(), 3-7

PHP OCI8, 2-14
PL/SQL

UTL_I18N package, 14-3
PL/SQL data types

REF CURSOR, 6-2
prerequisites for Oracle Database, 2-1
printcontent() function, 5-1, 6-3
printnextprev() function, 5-1
printnorecords() function, 5-1
printrecords() function, 5-1, 6-3

R

rc bind parameter, 6-3
rc bind variable, 6-2
REF CURSOR, 6-2
refcurExecFetchAll() method, 6-3

S

ShowEquipment package, 6-3
sorting, 14-5, 14-7

Index-3

T
testing

Apache installation on Windows, 2-11
PHP connection to Oracle, 2-18

types
PACKAGE, 6-1
PACKAGE BODY, 6-1

U

unlocking HR account, 2-2
user interface

externalizing translatable strings, 14-5
translating, 14-4

user interface (continued)
UTF-8

character set, 14-1
HTML page encoding, 14-3

UTL_I18N package, 14-3

V

V$CPOOL_CC_STATS, 2-6
var_dump() function, 3-7

W
Web browser

testing Apache installation on Windows, 2-11

Index-4

	Contents
	Preface
	Audience
	Related Documents
	Conventions

	1 Introducing PHP with Oracle Database
	1.1 Purpose
	1.2 Overview of the Sample Application
	1.3 Resources

	2 Getting Started
	2.1 What You Need
	2.2 Installing Oracle Database
	2.2.1 Unlocking the HR User
	2.2.1.1 Unlocking the HR User Using a Command Line
	2.2.1.2 Unlocking the HR User Using SQL Developer:

	2.2.2 Database Resident Connection Pooling
	2.2.3 Starting the DRCP Pool

	2.3 Installing Apache HTTP Server
	2.3.1 Installing Apache on Windows XP
	2.3.2 Installing Apache on Linux
	2.3.2.1 Using the Default HTTPD Package on Oracle Linux
	2.3.2.2 Manually Installing Apache on Linux
	2.3.2.3 Setting the Oracle Environment for Apache on Linux
	2.3.2.4 Setting up a User Directory for the Example Project on Linux

	2.4 Testing the Apache Installation
	2.5 Installing PHP
	2.5.1 Installing PHP on Windows
	2.5.2 Installing PHP on Linux
	2.5.2.1 Installing PHP and OCI8 on Oracle Linux
	2.5.2.2 Adding the OCI8 Extension to an Existing PHP Installation on Linux
	2.5.2.3 Manually Building PHP and OCI8 Together on Linux

	2.5.3 Post PHP Installation Tasks on Windows and Linux

	2.6 Testing the PHP Installation
	2.6.1 Checking PHP Configuration with phpinfo()
	2.6.2 Testing PHP Connections to Oracle

	2.7 Installing the NetBeans IDE
	2.7.1 Installing NetBeans IDE on Windows
	2.7.2 Installing NetBeans IDE on Linux
	2.7.3 Configuring NetBeans on Linux and Windows
	2.7.4 Using NetBeans

	3 Building a Database Access Class
	3.1 Connection Constants
	3.2 Creating the Db class
	3.3 General Example of Running SQL in PHP OCI8
	3.4 Running SQL with the Db Class
	3.5 Testing the Db Class

	4 Building the AnyCo Application
	4.1 A Cascading Style Sheet
	4.2 Creating an Application Class for Sessions
	4.3 Providing a Stateful Web Experience with PHP Sessions
	4.4 Adding a Page Class
	4.5 Creating the Application Login Page

	5 Paging Through Employee Data
	5.1 Creating the Employee Listing
	5.2 Running the Employee List

	6 Showing Equipment Records by Using a REF CURSOR
	6.1 Introduction to PL/SQL Packages and Package Bodies
	6.2 Introduction to PL/SQL Stored Procedures
	6.3 Introduction to REF CURSORs
	6.4 Creating the Equipment Table
	6.5 Calling the REF CURSOR in PHP

	7 Error Handling
	7.1 Database Errors
	7.2 Displaying a Custom Error Message

	8 Query Performance and Prefetching
	8.1 Prefetching Overview
	8.2 Creating the Employee Report Page
	8.3 Running the Equipment Report
	8.4 Prefetching with a REF CURSOR

	9 Inserting Data
	9.1 Building the Insert Form
	9.2 Running the Single Insert Form
	9.3 Preventing CSRF with ac_add_one.php

	10 Inserting Multiple Data Values
	10.1 Creating the Multiple Insert Form
	10.2 Running the Multiple Insert Form

	11 Using JSON and Generating a JPEG Image
	11.1 Creating a Simple Web Service Returning JSON
	11.2 Creating a JPEG image

	12 Uploading and Displaying BLOBs
	12.1 Creating a Table to Store the Logo
	12.2 Uploading Images in PHP OCI8
	12.3 Fetching the Logo and Creating an Image
	12.4 Displaying the Logo

	13 Monitoring Database Usage of the Application
	13.1 Overview of Metadata
	13.2 Viewing Metadata
	13.3 More Uses of Metadata
	13.4 Metadata and Persistent Connections

	14 Building Global Applications
	14.1 Establishing the Environment Between Oracle and PHP
	14.2 Manipulating Strings
	14.3 Determining the Locale of the User
	14.4 Developing Locale Awareness
	14.5 Encoding HTML Pages
	14.5.1 Specifying the Page Encoding for HTML Pages
	14.5.1.1 Specifying the Encoding in the HTTP Header
	14.5.1.2 Specifying the Encoding in the HTML Page Header

	14.5.2 Specifying the Page Encoding in PHP

	14.6 Organizing the Content of HTML Pages for Translation
	14.6.1 Strings in PHP
	14.6.2 Static Files
	14.6.3 Data from the Database

	14.7 Presenting Data Using Conventions Expected by the User
	14.7.1 Oracle Date Formats
	14.7.2 Oracle Number Formats
	14.7.3 Oracle Linguistic Sorts
	14.7.4 Oracle Error Messages

	Index

